八年级数学 第二学期期中考试试卷
八年级下学期数学期中考试试卷含答案(共5套,人教版)
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
2024年人教版八年级数学下册期中考试卷(附答案)
2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
八年级下学期期中考试数学试卷(含有答案)
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
北师大版八年级下册数学期中考试试题(含答案)
北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。
2024年人教版初二数学下册期中考试卷(附答案)
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。
2. 请简述减法的定义。
3. 请简述乘法的定义。
4. 请简述除法的定义。
5. 请简述分数的定义。
五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。
2. 请分析分数与整数之间的关系。
七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。
2. 请用实践操作的方法验证减法的定义。
【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。
八年级数学下册期中测试卷(完整)
八年级数学下册期中测试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8或10D .63.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .124.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2109.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm=,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x=,则x=__________2.计算1273-=___________.3.使x2-有意义的x的取值范围是________.4.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________.5.如图,在ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,ABCD的周长为40,则S ABCD 四边形为________.6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知13(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.5.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、B7、D8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、8333、x 2≥4、67°.5、486、120三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、-33a +,;12-.3、﹣1≤x <2.4、(1)(0,3);(2)112y x =-. 5、(1)略(2)菱形6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
八年级数学下册期中考试卷(附答案)
八年级数学下册期中考试卷(附答案)一、选择题(本大题共10小题,每小题4分,总计40分) 139x +x 的取值范围是( ) A .3x ≥-B .3x ≥-且2x ≠C .3x >-且2x ≠D .3x ≤-且2x ≠2.如图,从一个大正方形中裁去面积为6cm 2和15cm 2的两个小正方形,则留下阴影部分的面积为( )A .2610B .221cmC .2215D .263.对于任意实数x ,多项式257x x -+的值是( ) A .负数B .非正数C .正数D .无法确定正负的数4.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为( ) A .1B .0C .-1D .-25.已知ABC 的三边长分别为a ,b ,c ,且关于x 的一元二次方程2()20c b x ax c b +-+-=有两个相等的实数根,若2|5|(5)0a b -+-=,则ABC 的形状为( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形6.我国南宋数学家杨辉所著的《田亩比类乘除算法》中有这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长和宽各多少步?设这块田地的宽为x 步,则所列的方程正确的是( )A .()12864x x +-=B .()12864x x ++=C .()12864x x -=D .()12864x x +=7.如图,长方形纸片ABCD 中, 点E 是CD 的中点,连接AE ; 按以下步骤作图:①分别 以点A 和E 为圆心, 以大于12AE 的等长为半径作弧,两弧相交于点M 和N ;②作直线MN ,且直线MN 刚好经过点B .若2DE =,BC 则的长度是( )A .2B 3C .23D .48.满足下列条件时,ABC 不是直角三角形的是( ) A .::3:4:5A B C ∠∠∠= B .22A B C ∠=∠=∠ C .34AB =3BC =,5AC =D .20A ∠=︒,70B ∠=︒9.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A 的边长为4,正方形C 的边长为3,则正方形B 的面积为( )A .25B .5C .16D .1210.我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形EFGH 拼成的一个大正方形ABCD ,连接AC ,交BE 于点P ,如图所示,若正方形ABCD 的面积为28,7AE EB +=,则CFP AEP S S -的值是( )A .3B .3.5C .4D .7二、填空题(本大题共4小题,每小题5分,总计20分)1122x x -4x +x =_______.12.若m ,n 分别是一元二次方程2410x x -+=的两个根,则23m m n -+的值为______. 13.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为20cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为 _____.14.对于一元二次方程20ax bx c ++=(a ≠0),下列说法: ①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立; ④若0x 是一元二次方程20ax bx c ++=的根,则()2204b ac a x b -=+. 其中正确的是_________.三、(本大题共2小题,每小题8分,总计16分) 15.计算: 804595-(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭16.已知:53x +=53y -=,求代数式22x y -的值. 四、(本大题共2小题,每小题8分,总计16分)17.已知关于x 的方程2(2)20x k x k -++=. (1)求证:无论k 取任意实数值,方程总有实数根.(2)若等腰三角形ABC 的一边1a =,另两边长b 、c 恰是这个方程的两个根,求ABC 的周长. 18.密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点A 和点B 分别表示两个水质监测站,点C 表示某一时刻监测人员乘坐的监测船的位置.其中,B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向的交汇处,求此时从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数.五、(本大题共2小题,每小题10分,总计20分) 19.a b a b ,因为22a ba b aba b =-=-,所以构造“对偶式”再将其相乘可以有效地将a b和a b ()()22222322222222++==+--+像这样,通过分子、分母同乘一个式子把分母中的根号化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答下列问题: (1)对偶式23+23之间的关系是___________;A .互为相反数B .互为倒数C .绝对值相等 (2)已知5252x y ==-+22x y xy +的值; (3)2482x x --=.248x x t --=) 20.某大型批发商场平均每天可售出某款商品3000件,售出1件该款商品的利润是10元. 经调查发现,若该款商品的批发价每降低1元,则每天可多售出1000件.为了使每天获得的利润更多,该批发商场决定降价x 元销售该款商品.(1)当x 为多少元时,该批发商场每天卖出该款商品的利润为40000元?(2)若按照这种降价促销的策略,该批发商场每天卖出该款商品的利润能达50000元吗?若能,请求出x 的值,若不能,请说明理由.六、(本大题共1小题,每小题12分,总计12分)21.定义:如果一元二次方程()200ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.(1)若()200ax bx a a ++=≠有两个相等的正实数根,请你判断这个方程是否为“凤凰”方程? (2)已知关于x 的方程()22130m x x nx +-+=是“凤凰”方程,且两个实数根都是整数,求整数m的值.七、(本大题共1小题,每小题12分,总计12分)22.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.八、(本大题共1小题,每小题14分,总计14分)23.如图1,长方形ABCD中,6AB=,8AD=,E为AD边上一点,3DE=,动点P从点B出发,沿B C D→→以1个单位/s作匀速运动,设运动时间为t.(1)当t为_________s时,ABP与CDE全等;(2)如图2,EF为AEP△的高,当点Р在BC边上运动时,EF的最小值是_________;(3)当点P在EC的垂直平分线上时,求出t的值.参考答案:题号 1 2 3 4 5 6 7 8 9 10答案 B A C B D D C A A B 1-12.313.30cm14.①②15.(1804595 -453535-=25=(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭19221=+9=.16.解:∵53x +=53y -=, ∴5x y +=3x y -=∴()()225315x y x y x y -=+-=17.(1)解:∵()()2222424420k k k k k ∆=+-⨯=-+=-≥, ∴无论k 取任意实数值,方程总有实数根.(2)解:①当1a =的边为等腰三角形的底边时,b c =, 此时方程有两个相等的实数根, ∴()220k ∆=-=,解得2k =,此时方程为2440x x -+=,解得122x x ==, ∴ABC 的周长为5;②当1a =的边为等腰三角形的腰时,1b a ==或1c a ==, 此时方程有一个根为1,代入方程,可得()1220k k -++=,解得1k =, 此时方程为2320x x -+=,解得11x =,22x =, ∵1、1、2不能满足两边之和大于第三边, ∴此情况舍去.综上所述:ABC 的周长为5.18.解:解:∵B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向,∴452570BAC ∠=︒+︒=︒,754530ABC ∠=︒-︒=︒, ∴180180703080ACB BAC ABC ∠=︒-∠-∠=︒-︒-︒=︒.答:从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数是80°. 19.(1)解:∵((2323431⨯=-=, ∴对偶数23+23之间的关系是互为倒数,故选:B ; (2)由题意得()()5252525252x +=--+,()()5252525252y -==+-+,∴251x y xy +==,, ∴22x y xy +()xy x y =+ 5=(3248x x t --=2482x x --=,得()2482x x t ---=,解得8t =,2488x x --2482x x --②, ∴①+②,得22410x -, 两边同时平方得()424100x -=, 解得=1x -,经检验,=1x -是原方程的解.20.(1)解:该批发商场决定降价x 元销售该款商品,依题意得,()()300010001040000x x +-=,即27100x x -+= 解得:122,5x x ==,答:当x 为2或5时,该饮料批发商店每天卖出该款饮料的利润为40000元 (2)解:()()300010001050000x x +-=, 即27200x x -+=∵24494200b ac ∆=-=-⨯<,原方程无解,∴按照这种降价促销的策略,该饮料批发商店每天卖出该款饮料的利润不能达到50000元. 21.解: (1)解:∵()200ax bx a a ++=≠有两个相等的实数根, ∴()()224220b a b a b a ∆=-=+-=,∵这两个相等的实数根为正数,∴02bx a-=>, ∴a ,b 异号, ∴20b a -≠,∴20b a +=,即0a b a ++=, ∴这个方程是“凤凰”方程; (2)解:方程整理得:()230m x nx m -++=,∵此方程是“凤凰”方程, ∴3230m n m m n -++=+-=, ∴32n m =-,∵()()2222243412324129n m m n m m m m m ∆=--=-+=--+=, ∴()()32393233262626m n n m x m m m --±-±-±-±===---,∴1=1x ,23mx m =-, ∵两个实数根都是整数, ∴整数m 的值为0或2或4或6. 22.解:(1)如图1,三角形为所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.23.(1)解:如图,∵四边形ABCD是长方形,∴90AB CD B D=∠=∠=︒,,当点P在BC边上,且3BP DE==时,ABP CDE△≌△,∵BP t=,∴3t=;当点P在CD边上,若点P与点C重合,满足90AB CD B D=∠=∠=︒,,此时BP DE>,∴ABP与CDE不全等,若点P与点D重合,满足90AB CD BAD D=∠=∠=︒,,此时AP DE>,∴ABP与CDE不全等,综上所述,当3t=时,ABP CDE△≌△;故答案为:3;(2)解:∵6AB=,8AD=,3DE=,∴835AE AD DE=-=-=,当点P在BC边上运动,165152AEPS=⨯⨯=△,∵EF为AEP△的高,∴1152AEPAP EF S⋅==△,∴AP•EF=40,∴EF随AP的增大而减小,∴22222525AP BP AB BP BP +=+=+ ∴AP 随BP 的增大而增大,当点P 与点C 重合时BP 最大,此时AP 也最大,而EF 则最小, 如图,点P 与点C 重合,∵9068B AB BC AD ∠=︒===,,, ∴226810AC =+=, ∵1122PAE AC EF AE AB S ⋅=⋅=△, ∴1065EF =⨯, 解得3EF =, ∴EF 的最小值为3, 故答案为:3;(3)解:设EC 的垂直平分线为直线MN ,如图,点P 在BC 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,作PG AD ⊥于点G ,则90∠=︒PGE , ∵AD BC ∥,PG AD CD AD ⊥⊥,, ∴6PG CD ==, 同理AG BP t ==,5GE t =-,∵222GE PG PE +=, ∴222(5)6(8)t t -+=-,第 11 页 共 11 页 解得12t =; 如图,点P 在CD 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,14PD t =-,∵222DE PD PE +=, ∴2223(14)(8)t t +-=-, 解得474t =,综上所述,t 的值为12或474.。
八年级数学下册期中测试卷及完整答案
八年级数学下册期中测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.56.估计()-⋅1230246的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.分解因式:3x -x=__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)21324x x x -+-=0 (2)13222x x x-+=--2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、B7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、﹣33、x (x+1)(x -1)4、25、2456、85三、解答题(本大题共6小题,共72分)1、(1)x=﹣1;(2)x=23.2、-33a +,;12-.3、(1)略;(2)4或4+.4、(1)DE=3;(2)ADB S 15∆=.5、略6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
八年级数学下册期中考试卷(有答案)
1八年级数学下册期中考试卷(有答案)(满分120分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,将正确项编号填在题后括号内. 1. 下列格式中是二次根式的是( )A.38 B. 1- C. 2 D. )0(<x x2. 下列各组数中,不能满足勾股定理的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,5,10 3. 已知一个平行四边形两邻边的长分别为4和7,那么它的周长为( ) A. 11 B. 18 C. 22 D. 28 4. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOB = 60°, AO = 4,则AB 的长是( ) A. 4B. 5C. 6D. 85. 若代数式1-a 在实数范围内有意义,则a 的取值范围是( ) A. 0>a B. a ≥1 C. 0<a D. a ≤06. 下列二次根式中,属于最简二次根式的是( ) A.48 B.baC.44+aD.14 7. 在平行四边形、矩形、菱形、正方形中是轴对称图形的有( ) A. 4个 B. 3 个 C. 2个 D. 1个 8. 如图,在△ABC 中,AB = 8,BC = 10,AC = 6, 则BC 边上的高AD 为( ) A. 8 B. 9 C.524D. 109. 计算2343122÷⨯的结果是( ) A.22B. 33C. 32D. 2310. 顺次连接矩形四边中点得到的四边形一定是( )A. 正方形B. 矩形C. 平行四边形D. 菱形第4题图第11题图第8题图AB CD211. 如图△ABC 中,AB = AC ,点D ,E 分别是边AB ,AC 的中点,点G ,F 在BC 边上,四边形DEFG 是正方形. 若DE = 2cm ,则 AC 的长为 ( ) A. 2cmB. 52cmC. 4cmD. 8cm12. 如图在矩形ABCD 中,BC = 8,CD = 6,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E , 则△BD E 的面积为( )A. 475 B. 421C. 21D. 24二、填空题:本大题共6小题,每小题3分,共18分. 13. 化简:(3 )2 = .14. 已知菱形的两条对角线长分别是4和8,则菱形的面积为 . 15.“内错角相等,两直线平行.”的逆命题是.16. 计算2)252(-的结果是_______.17. 若直角三角形的两直角边长为a 、b ,且满足067=-+-b a ,则该直角三角形的斜边长为_______.(结果保留根号)18. 如图,正方形ABCD 的边长为5,E 是AB 上一点,且BE ∶AE = 1∶4,若P 是对角线AC 上一动点,则PB + PE 的最小值是_______.(结果保留根号)三、解答题:本大题共8小题,共66分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分6分)计算:23218+-第12题图第18题图320.(本小题满分6分)计算:3)8512(+21.(本小题满分8分)先化简再求值.yx y x +•⎪⎪⎭⎫ ⎝⎛+611,其中13,13-=+=y x .22.(本小题满分8分)如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE = CF .求证:四边形DEBF 是平行四边形.第22题图423.(本小题满分8分)如图,在△ABC 中,AD 是BC 边上的高,∠B = 45°,∠C = 60°,AD = 2,求BC 的长.(结果保留根号)24.(本小题满分10分)如图,在△ABC 中,AB = 5,BC = 6,BC 边上的中线AD = 4. 求AC 的长.D CBA第24题图D第23题图525.(本小题满分10分)如图,在平行四边形ABCD 中,M 、N 分别是边AD 、BC 边上的中点,且△ABM ≌△DCM ;E 、F 分别是线段BM 、CM 的中点. (1)求证:平行四边形ABCD 是矩形。
八年级数学下册期中测试卷及答案【完整版】
八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。
八年级数学第二学期期中考试试卷及答案
第二学期期中试卷八年级数学班级姓名学号成绩一、 单项选择题(本题共10小题,在每小题给出的四个选项中,只有一项最符合题意。
每小题3分,共30分)1.要使√a −2在实数范围内有意义,则a 的取值范围是( ) A.a ≥2B.a >2C.a ≠2D.a <22.下面各组数中,以它们为边长的线段能构成直角三角形的是( ) A.2,3,4B.6,8,9C.6,12,13D.7,24,253.平行四边形的周长为10cm ,其中一边长为3cm,则它的邻边长为( ) A.2 cm B.3cmC.4cmD.7cm4.下列各式正确的是( )A.√9=±3B.√(−2)2=−2C.√8+√2=√10D.√8×√2=45.平行四边形ABCD 中,∠A +∠C=110°,则∠B = ()A.70°B.110°C.125°D.130°6.又进一步进行练习:如图,设原点为点O ,在数轴上找A到坐标为2的点A ,然后过点A 作AB ⊥OA ,且AB =3. 以点O 为圆心,OB 为半径作弧,设与原点右侧数轴交点为点P ,则点P 的位置在数轴上( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间 7.在数学活动课上,老师和同学判断教室中的瓷砖是否为菱形,下面是某小组拟定的4种方案,其中不正确...的是( )A.测量两条对角线是否分别平分两组内角 B.测量四个内角是否相等C.测量两条对角线是否互相垂直且平分D.测量四条边是否相等8.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm .若这支铅笔长为18cm ,则这只铅笔在笔筒外面部分长度不可能...的是( )A .3cm B .5cm C .6cm D .8cm9.如图,平行四边形ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果△C DM 的周长为8,那么平行四边形ABCD 的周长是( ) A. 8 B .12 C .16D .2010.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示阴影长方形)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证,则下列说法不一定...成立的是( ) A .ABC ADC S S ∆∆= B. ANF NFGD S S ∆=矩形C.NFGD EFMBS S =矩形矩形 D. AEF ANFS S ∆∆=二、填空题(本题共8小题,每小题2分,共16分) 11. 周长为 8cm 的正方形对角线的长是 cm. 12.在湖的两侧有A ,B 两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为50米,则A ,B 之间的距离应为 米.E DCBA13.若√x −1+(y +2)2=0,则(x +y )2022=.14.如图,矩形 ABCD 中,对角线 AC ,BD 交于点O ,如果∠ADB=30°,那么∠AOB 的度数为 .15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则四边形ABCD 的面积为 ..16.如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若8=AB ,3=OM ,则线段OB 的长为__________.14题图 15题图 16题图17.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在BC 边上的点F 处,则CE 的长是 . 18.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 坐标为(3,0),顶点B 的横坐标为−1,点E 是AD 的中点,则OE = .17题图 18题图DCBAO三、解答题(本题共9小题,其中19、20题每题5分,21题6分,22题8分,23题6分,24题8分,25题6分,26题4分,27题6分,共54分)19.√8+√12−(3√3−√12)20.(√3−√2)(√3+√2)+(√2+1)221. 已知x=√2+1,y=√2−1,求1x +1y的值.22.在平面直角坐标系xOy中,点A(2,1),B(3,−1),(1)在平面直角坐标系中描出点A,B;(2)OA=,OB=.(3)判断△OAB的形状,并说明理由(4)△OAB的面积为.23.如图,在四边形ABCD中,AD∥BC,∠ABC=∠BCD=90 °.对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)CD=2,∠COD=60 °.求△BED的面积.(1)作出y 与x 的函数y =2|x |的图象①自变量x 的取值范围是; ②列表并画出函数图象:③当自变量x 的值从1增加到2时,则函数y 的值增加了.(2)在一个变化的过程中,两个变量x 与y 之间可能是函数关系,也可能不是函数关系.下列各式中, y 是x 的函数的是__. ①x +y =1; ② |x +y |=1③xy =1;④x 2+y 2=1;25.学习了《平行四边形》一章以后,小东根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究. 以下是小东的探究过程,请补充完整:(1)如图,在四边形ABCD 中,对角线AC 与BD 相交于点O .若AB ∥CD ,补充下列条件中的一个,能判断四边形 ABCD 是平行四边形的是 ;(只写出一个你认为正确选项的序号);(A )BC =AD (B )∠BAD =∠BCD (C )AO =CO(2)将(1)中补充好的命题用文字语言表述为:①命题1:;②写出命题1的证明过程;(3)小东进一步探究发现:若一个四边形 ABCD 的三个顶点A ,B ,C 且这个四边形满足CD =AB ,∠B =∠D ,但四边形 ABCD 不是 平行四边形,请.画出..符合题意的四边形 ABCD (不要求尺规.....).进而小东发现:命题2“一组对边相等,一组对角相等的四边 形是平行四边形 ”是一个假命题....A赵爽根据图1利用面积关系证明了勾股定理.(1)小明在此图的基础上,将四个全等的直角三角形变为四个全等的四边形即可得到以下数学问题的解决方案:问题:四边形AMNB 满足∠MAB =38°, ∠NBA =52°,AB =4,MN =2,AM =BN ,求四边形AMNB 的面积.解决思路:① 如图2,将四个全等的四边形围成一个以AB 为边的正方形ABCD ,则四边形MNPQ 的形状是(填一种特殊的平行四边形);②求得四边形AMNB 的面积是 _____ . (2)类比小明的问题解决思路,完成下面的问题:如图3,四边形AMNB 满足∠MAB =27°, ∠NBA =33°,AB =6,MN =2,AM =BN ,补全图3,四边形AMNB 的面积 _____ .图1图2图327.已知△ABC 和△DBC 是等边三角形,M 在射线AB 上,点E 在射线BC 上,且EM =ED .(1)求证:AD ⊥BC ;(2)如图,点M 在线段AB 的延长线上,点E 在线段BC 上,判断△DEM 的形状,并给出证明;(3)当点M 在线段AB 上(不与端点A,B 重合),点E 在线段BC 的延长线上,用等式直接写出线段BM,BE,BD 之间的数量关系.MB卷(共20分)1.(6分)观察下列各等式:√223=2√23,√338=3√38,√4415=4√415,根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在带分数,它的等于它的整数部分与分数部分的的积.(2)填空:√55()=5√5();(3)请你再写一个带分数,使得它具有上述等式的特征(写出完整的等式):.(4)若用x表示满足具有上述等式的带分数的整数部分,y表示其分数部分的分母,则y与x之间的关系可以表示为.2.(7分)如图,在正方形ABCD中,点P在边BC上(异于点B,C),作线段AP的垂直平分线分别交AB,CD,BD,AP于点M,N,Q,H,(1)补全图形;(2)证明:AP=MN;(3)用等式表示线段HQ,MN之间的数量关系,并证明你的结论.3.(7分)在平面直角坐标系xOy 中,给定线段MN 和图形F ,给出如下定义: 平移线段MN 至M′N′,使得线段M′N′上的所有点均在图形F 上或其内部,则称该变换为线段MN 到图形F 的平移重合变换,线段MM′的长度称为该次平移重合变换的平移距离,其中,所有平移重合变换的平移距离中的最大值称为线段MN 到图形F 的最大平移距离,最小值称为线段MN 到图形F 的最小平移距离. 如图1,点A (1,0),P(−1,√3),Q(5,√3),(1)① 在图1中作出线段OA 到线段PQ 的平移重合变换(任作一条平移后的线段O′A′);②线段OA 到线段PQ 的最小平移距离是,最大平移距离是 .(2)如图2,作等边△PQR (点R 在线段PQ 的上方),①求线段OA 到等边△PQR 最大平移距离.②点B 是坐标平面内一点,线段OB 的长度为1,线段OB 到等边△PQR 的最小平移距离的最大值为_________,最大平移距离的最小值为__________.图1图2期中试卷八年级数学(答案)一、单项选择题(本题共10小题,在每小题给出的四个选项中,只有一项最符合题意。
2022-2023学年第二学期八年级数学期中考试卷
2022-2023学年第二学期期中质量监测试题八年级数学一、选择题(每小题3分,满分30分)1.下列二次根式中,是最简二次根式的是()A.√10B.√27C.√0.2D.√132.以下列长度的线段为边,不能构成直角三角形的是()A.1,√2,√3B.1.5,2.5,2C.3,4,5 D.6,8,12 3.下列式子一定是二次根式的是()A.√−x−2B.√x C.√x2+2D.√x2−24.下列运算正确的是()A.√20÷2√10=2√2B.√2×√3=√5C.√8−√2=√2=1D.√441=√4×√145.在平行四边形ABCD中,若∠A比∠B小40°,则∠A的度数为()A.60°B.70°C.80°D.110°6.下列命题的逆命题是真命题的是()A.如果a=b,那么a2=b2B.若两个数相等,则这两个数的绝对值也相等C.两直线平行,同位角相等D.对顶角相等7.如图,在矩形ABCD中,对角线AC与BD相交于点O,若∠AOB=60°,BD=2,则BC的长是()A.4 B.√5C.√3D.28.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BC B.OA=OC,OB=OD C.AB=CD,AD∥BC D.AC⊥BD9. 下列说法错误的是()A.两组对边分别相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直平分的四边形是正方形D.对角线互相平分且相等的四边形是矩形10.如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为()A.3B.4 C.5D.6二、填空题(本题共计8小题,每题4分,共计32分)11.化简:√(2−√6)2=,√(−4)2=12.√x+1·√x−1=√x2−1成立的条件是.13.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于D,若BC=8,AD=5,则AC=.14.如图,菱形ABCD的周长为8,对角线BD=2,则对角线AC=.15.已知a、b、c是△ABC的三边长,且满足关系式√c2−a2−b2+|a﹣b|=0,则△ABC的形状为.16.如图,四边形ABCD是矩形,若已知∠DOC=120°,AD=6㎝,则AC=_____cm17.平行四边形ABCD的周长为80cm,对角线AC,BD相交于点O,且△AOB 的周长比△BOC的周长多8cm,则BC= _____cm18.阅读下列解题过程:==﹣1;==﹣;==﹣;……则:观察上面的解题过程,请直接写出式子=;三、计算题(本题共计3小题,共计18分)19.(6分)计算:(1)(√45+√18)−(√8−√125);(2)√32×43×5 20.(6分)若代数式√2x+1有意义,求出x的取值范围.1−x21.(6分)一直角三角形的斜边比一直角边长2,另一直角边长为6,求斜边长.四、解答题(本题共计7小题,共计70分)22.(8分)如图,一架梯子AB的长为2.5m,斜靠在竖直的墙上,这时梯子的底端B到墙的距离BC=0.7m,如果梯子顶端A沿墙下滑0.4m到达D,梯子底端B将向右滑动到E,求BE的距离?23.(8分)如图,在△ABC中,点D在BC上,AC=2√5,AB=5,BD=3,AD=4.求CD的长和△ABC的面积.24.(10分)如图,线段DE与AF分别为△ABC的中位线与中线.求证:AF与DE互相平分.25.(10分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,△1=△2.(1)求证:BE=DF;(2)求证:AF△CE.26.(10分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.27.(12分)如图,在平行四边形ABCD中,AC,BD相交于点O,E、F分别是OA,OC的中点。
天津市河东区2023-2024学年八年级下学期期中数学试题(解析版)
2023-2024学年度第二学期八年级数学期中考试试卷一、选择题:本题共12小题,每小题3分,共36分.1. 下列各式一定是二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了二次根式的定义,关键是正确理解二次根式的定义.根据“一般地,我们把形如的式子叫做二次根式”判断即可.详解】解:A 、当无意义,故此选项不合题意;B是二次根式,故此选项符合题意;C 、,该代数式无意义,故此选项不合题意;D的根指数是3,不是二次根式,故此选项不合题意;故选:B.2. 下列二次根式中,是最简二次根式的是( )A. B.C. D. 【答案】D【解析】【分析】根据最简二次根式的定义判断即可.【详解】解:不是最简二次根式,不符合题意;不是最简二次根式,不符合题意;D.故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不能含有开得尽方的因数或因式;熟练掌握最简二次根式必须满足的两个条件是解题的关键.3. 下列各数属于勾股数的是( )A. 、、B. 、、C. 、、D. ,,【)0a ≥0x <70-<2===1.52 2.568103465a 12a 13a【答案】B【解析】【分析】本题考查的是勾股数.根据勾股定理一一计算两个较小的数的平方和是否等于最大数的平方即可.【详解】解: A .因为不是整数,所以不是勾股数,故本选项不符合题意.B .,是勾股数,故本选项符合题意.C .,不是勾股数,故本选项不符合题意.D .因为不一定是整数,所以不一定是勾股数,故本选项不符合题意.故选:B .4. 如图,字母B 所代表的正方形的面积是( )A. 12B. 15C. 144D. 306【答案】C【解析】【分析】根据勾股定理求出字母B 所代表的正方形的边长,根据正方形的性质即可求出面积答案.【详解】解:如图,在中,由勾股定理得,,字母代表的正方形的边长为,字母B 所代表的正方形的面积为:.故选C .【点睛】本题考查的是勾股定理的应用、正方形的面积,熟知如果直角三角形的两条直角边长分别是和,斜边长为,那么是解决问题的关键.2226810+=222546+≠2cm 2cm 2cm 2cm Rt DEF△12EF cm ===∴B 12cm ∴22212144cm EF ==a b c 222+=a b c5. 在平行四边形中,,则( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,根据平行四边形对边平行得到,再根据已知条件求出的度数即可得到答案.【详解】解;∵四边形是平行四边形,∴,∴,∵,∴,∴,故选:D .6. 如图,在四边形中,对角线、相交于点,下列条件不能判定四边形为平行四边形的是( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定,不符合题意;ABCD 23A B ∠∠=::D ∠=36︒60︒72︒108︒180A D A B +=+=︒∠∠∠∠A ∠ABCD AB CD AD BC ∥,∥180A D A B +=+=︒∠∠∠∠23A B ∠∠=::21807232A =︒⨯=︒+∠108D ∠=︒ABCD AC BD O ABCD ,AB CD AD BC∥∥,AD BC AB CD =∥,OA OC OB OD==,AB CD AD BC==B 、无法判定,四边形可能是等腰梯形,也可能是平行四边形,符合题意;C 、根据对角线互相平分的四边形是平行四边形,可以判定,不符合题意;D 、根据两组对边分别相等的四边形是平行四边形,可以判定,不符合题意;故选:B .【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.7. 下列计算结果正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的乘法法则对B 、C 、D 进行判断.【详解】解:A,故错误;BC,故错误;D 、,故错误;故选:B .【点睛】本题考查了二次根式的乘法运算及算术平方根的定义,正确运用二次根式的乘法法则及识别平方根与算术平方根的区别是解题的关键.8. 如图,一棵大树在一次强台风中在距地面处折断,倒下后树顶着地点A 距树底B 的距离为,则这棵大树在折断前的高度为( )A. 10B. 17C. 18D. 20【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC 的长,进而可得出结论.【详解】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC =5m ,AB =12m ,5=±=16=26=5==4==212=5m 12m∴,∴这棵树原来的高度为:BC +AC =5+13=18(m ),即:这棵大树在折断前的高度为18m ,故C 正确.故选:C .【点睛】本题考查了勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.9. 已知实数a 、b 在数轴上的位置如图所示,化简|a +bA. B. 2a C. 2b D. 【答案】A【解析】=|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式=|a|.10. 如图,矩形的对角线,相交于点,若,则四边形的周长为( )的()13m AC ===2a-2b-ABCD AC BD O ,CE BD DE AC ∥∥4AC =OCEDA. B. C. D. 【答案】C【解析】【分析】本题考查了菱形的判定和性质,矩形的性质.根据矩形的性质,判定四边形是菱形,故其周长为计算即可.【详解】因为,所以四边形是平行四边形.因为四边形是矩形,所以,所以四边形是菱形,所以周长为,故选:C .11. 如图,点E ,F ,G ,H 分别是四边形边,,,的中点.则下列说法:①若,则四边形为矩形;②若,则四边形菱形;③若四边形是平行四边形,则与互相平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】A 为46810OCED 42OC AC =,CE BD DE AC ∥∥OCED ABCD OD CO =OCED 428OC AC ==ABCD AB BC CD DA AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD【解析】【分析】本题考查了三角形中位线定理,平行四边形的判定及性质,特殊四边形的判定及性质;由三角形中位线定理及平行四边形的判定方法得四边形是平行四边形,再根据特殊四边形的判定及性质逐一判断即可求解;掌握特殊四边形的判定方法及性质是解题的关键.【详解】解:点E ,F ,G ,H 分别是四边形边,,,的中点,,,,,四边形是平行四边形,①若,则四边形为菱形;结论错误,不符合题意;②若,则四边形为矩形;结论错误,不符合题意;③若四边形是平行四边形,则与不一定互相平分;结论错误,不符合题意;④若四边形是正方形,则与互相垂直且相等;结论正确,符合题意.故选:A .12. 如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是( )A. 3B. 5C.D. 【答案】A【解析】【分析】直线AC 上的动点P 到E 、D 两定点距离之和最小属“将军饮马”模型,由D 关于直线AC 的对称点B ,连接BE ,则线段BE 的长即是PD +PE 的最小值.【详解】如图:连接BE,EFGH ABCD AB BC CD DA EH BD FG ∴∥∥EF AC GH ∥∥12EH FG BD ==12EF GH AC ==∴EFGH AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD ABCD A B C D 120ABC ∠=︒()30A -,E CD P OC PD PE+,∵菱形ABCD ,∴B 、D 关于直线AC 对称,∵直线AC 上的动点P 到E 、D 两定点距离之和最小∴根据“将军饮马”模型可知BE 长度即是PD +PE 的最小值.,∵菱形ABCD ,,点,∴,,∴∴△CDB 是等边三角形∴∵点是的中点,∴且BE ⊥CD , ∴故选:A .【点睛】本题考查菱形性质及动点问题,解题关键是构造直角三角形用勾股定理求线段长.二、填空题:本题共6小题,每小题3分,共18分.13.有意义,则x 的取值范围为____________.【答案】x ≥8【解析】【分析】根据被开方数大于等于0列式计算即可得解.∴x ﹣8≥0,的120ABC ∠=︒()30A -,60,30CDB DAO ∠=︒∠=︒3OA =OD AD DC CB ====BD =E CD 12DE CD ==3BE ==解得:x≥8故答案为x≥8【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的被开方数为非负数的性质是解题关键.14. 已知|a=0,则a +b =___.【答案】3【解析】【分析】根据非负性即可求出a ,b ,故可求解.【详解】根据题意得:a +2=0,b ﹣5=0,解得:a =﹣2,b =5,∴a +b =﹣2+5=3.故答案为:3.【点睛】此题主要考查代数式求值,解题的关键是熟知绝对值与二次根式的非负性.15. 菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.【答案】20【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.∴此菱形的周长为:5×4=20故答案为:20.16. 如图,正方形ODB C 中,OC =1,OA =OB ,则数轴上点A 表示的数是____.12125AB ===【答案】【解析】,结合数轴即可求解.【详解】∵正方形ODBC 中,OC =1,∴BC =OC =1,∠BCO =90°.∵在Rt△BOC 中,根据勾股定理得,OB .∴OA =OB .∵点A 在数轴上原点的左边,∴点A 表示的数是.【点睛】本题考查了实数与数轴,勾股定理,数形结合是解题关键.17. 如图,点O 是矩形的对角线的中点,点E 是的中点,连接,.若,,则矩形的面积为_______【答案】【解析】【分析】利用直角三角形斜边上中线等于斜边的一半得到,利用中位线定理得到,利用勾股定理得到,即求得矩形的面积.【详解】解:∵四边形是矩形,∴,∵点O 是矩形的对角线的中点,的=ABCD BD BC OA OE 2OA =1OE =ABCD 4BD =22CD OE ==BC =ABCD ABCD 90,BAD BCD ∠=∠=︒AB CD =ABCD BD∴,∴,∵点E 是的中点,∴是的中位线,∴∵,∴,∴,∴矩形的面积为故答案为:【点睛】此题考查了矩形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识,熟练掌握直角三角形的性质和三角形中位线定理是解题的关键.18. 如图,矩形,,,点在轴正半轴上,点在轴正半轴上.当点在轴上运动时,点也随之在轴上运动,在这个运动过程中,点到原点的最大距离为 __.##【解析】【分析】取 的中点 ,连接, ,由勾股定理可求 的长,由直角三角形的性质可求 的长,由三角形的三边可求解.【详解】如图,取的中点,连接,,122AO BD ==4BD =BC OE BCD △12OE CD =1OE =22CD OE ==BC ===ABCD 2BC CD ⋅==ABCD 1AB =2BC =A x D y A x D y C O 1+1AD H CH OH CH OH AD H CH OH矩形,,,,,点是的中点,,,点是的中点,,在中,,当点在上时,,的最大值为,.【点睛】本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.三、计算题:本大题共1小题,共6分.19. 计算:(1;(2)【答案】(1)(2)【解析】【分析】(1)先化简二次根式,然后计算加减法.(2)先去利用完全平方公式和平方差公式去括号,然后计算加减法.ABCD1AB=2BC=1CD AB∴==2AD BC==H AD1AH DH∴==CH∴===90AOD∠=︒H AD112OH AD∴==OCH∆CO OH CH<+H OC CO OH CH=+CO∴1OH CH+=+123-+))2233-++5-【小问1详解】;【小问2详解】解:.【点睛】本题主要考查了二次根式的加减计算,二次根式的混合计算,乘法公式,正确计算是解题的关键.四、解答题:本题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.20. 某开发区有一空地,如图所示,现计划在空地上种草皮,经测量,,,,,,求(1)此四边形空地的面积.(2)若每种植平方米草皮需要元,问总共需要投入多少元?【答案】(1)36平方米(2)3600元【解析】【分析】本题考查了勾股定理,勾股定理逆定理:(1)如图,连接,由勾股定理得,,由,可得是直角三角形,且,根据,求面积即可;23-+(33=--+33=-++=))2233++5459=-++-5=-ABCD 90B Ð=°3m AB =4m BC =12m AD =13m CD =1100AC 5AC =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒ABC ACD ABCD S S S =+四边形△△(2)根据,计算求解即可.【小问1详解】解:如图,连接,∵,,,∴由勾股定理得,,∵,,∴,∴是直角三角形,且,∴.【小问2详解】解:由(1)得共需要投入元,答:共需要投入元.21. 如图,在平行四边形中,对角线,交于点,过点任作直线分别交、于点、.(1)求证:;(2)若,,,求四边形的周长.【答案】(1)见解析(2)15【解析】【分析】此题考查了平行四边形的性质以及全等三角形的判定与性质.(1)根据平行四边形的性质得出,求出,根据推出,即可得出答案;100ABCD S ⨯四边形AC 90B Ð=°3m AB =4m BC=5m AC ==12m AD =13m CD =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒()211113451236m 2222ABC ACD ABCD S S S AB BC AC AD =+=⨯⨯+⨯⨯=⨯⨯+⨯⨯= 四边形361003600⨯=3600ABCD AC BD O O AB CD E F OE OF =6CD =5AD =2OE =AEFD ,AB CD OA OC =∥EAO FCO ∠=∠ASA AEO CFO △△≌(2)由,可得,继而求得答案.【小问1详解】证明:四边形是平行四边形,,,,在和中,,,;【小问2详解】解:,∴,四边形的周长.22. 如图,矩形中,,,是边上一点,将沿直线折叠,点的对应点恰好落在边上,求的长.【答案】3【解析】【分析】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,先由矩形的性质和折叠的性质得到,,,,再利用勾股定理求出,则,设,则,在中,由勾股定理得,解方程即可得到答案.【详解】解:四边形是矩形,将沿直线折叠,点的对应点恰好落在边上AEO CFO △△≌24,6EF OE DF AF AB ==+== ABCD AB CD ∴ OA OC =EAO FCO ∴∠=∠AEO △CFO △OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA AEO CFO ∴ ≌OE OF ∴=OAE OCF △≌△AE CF=24,6EF OE DF AE DF FC CD ∴==+=+==∴AEFD 56415AD DF AE EF =+++=++=ABCD 8AB =10AD =E AB BCE CE B F AD AE 8AB CD ==10BC AD FC ===90D A ∠=∠=︒BE EF =6DF =4AF =AE x =8BE FE x ==-Rt AEF ()22248x x +=- ABCD BCE CE B F AD,,,,,,设,则,在中,由勾股定理得∴,解得,.23. 在中,,C 是的中点,过点D 作,且,连接交于F .(1)求证:四边形是菱形;(2)若,菱形的面积为40,求的长.【答案】(1)见解析;(2)10.【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到,证明即可.(2)根据,计算即可.【小问1详解】证明:,且,∴四边形是平行四边形,∵,C 是的中点,∴,∴平行四边形是菱形.【小问2详解】解:∵四边形是菱形,8AB CD ∴==10BC AD FC ===90D A ∠=∠=︒BE EF=6DF ∴===1064AF ∴=-=AE x =8BE FE x ==-Rt AEF 222AE AF EF +=()22248x x +=-3x =3AE ∴=Rt BDE △90BDE ∠=︒BE AD BE AD BC =AE CD ABCD 8DB =ABCD DE DC BC =12BDE ABCD S S BD DE ==菱形AD BE AD BC =ABCD 90BDE ∠=︒BE DC CB CE ==ABCD ABCD∴,在和中,∵,∴,∴,∵,∴,∴,∴,∴,∴.【点睛】本题考查了平行四边形的判定,菱形的判定,直角三角形的性质,三角形全等的判定和性质,熟练掌握菱形的判定,直角三角形的性质是解题的关键.24. 如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点停止,点,的速度都是每秒个单位长度,连接,,设点,运动的时间为秒.(1)当为何值时,四边形是矩形?(2)当时,判断四边形的形状,并说明理由.(3)整个运动当中,线段扫过的面积是多少?【答案】(1)8(2)四边形为菱形,理由见解析(3)64AB BC CD DA ===ABD △CDB △AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()SSS ABD CDB ≌ABD CBD S S = BC CE =CDE CBD S S = ABD CBD CDE S S S == 12BDE ABCD S S BD DE == 菱形18402DE ⨯⨯=10DE =ABCD 8AB =16BC =P D A A Q B C C P Q 1PQ AQ .CP P Q t t ABQP 6t =AQCP PQ AQCP【解析】【分析】本题主要考查了矩形的性质与判定,勾股定理,菱形的判定:(1)先由矩形的性质得到,,根据题意可得,则,再由当时,四边形为矩形,得到,据此可得答案;(2)当时,,,再证明四边形是平行四边形,利用勾股定理推出,据此可得结论;(3)连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,即为矩形的面积的一半,据此求解即可.【小问1详解】解:在矩形中,,,,.由已知可得,∴,在矩形中,,,∴当时,四边形为矩形,∴,解得,当时,四边形是矩形.【小问2详解】解:四边形为菱形,理由如下:当时,,,∵四边形是矩形,∴,∴四边形是平行四边形,在中,由勾股定理得,∴,16BC AD ==8AB CD ==BQ DP t ==16AP CQ t ==-BQ AP =ABQP 16t t =-6t =6BQ DP ==10AP CQ ==APCQ AP AQ =AC BD AC BD E PQ AED △BEC +△ABCD ABCD 8AB =16BC =16BC AD ∴==8AB CD ==BQ DP t ==16AP CQ t ==-ABCD 90B Ð=°AD BC ∥BQ AP =ABQP 16t t =-8t =∴8t =ABQP AQCP 6t =6BQ DP ==10AP CQ ==ABCD 90,B AD BC ∠=︒∥APCQ Rt ABQ10AQ ==AP AQ =∴四边形为菱形;【小问3详解】解:连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,.,整个运动当中,线段扫过的面积.AQCPAC BD AC BD E PQ AED△BEC+△12AED BEC ABCDS S S+=△△矩形∴PQ118166422AB BC=⨯⨯=⨯⨯=。
八年级数学下册期中考试题(完美版)
八年级数学下册期中考试题(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( )A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <05.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( )A .35°B .40°C .45°D .50° 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .3米B .6米C .3D .3米二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______.4.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__________.5.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD=_____.6.如图所示,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则ABC ∠的度数为________.三、解答题(本大题共6小题,共72分)1.解方程组:23328x y x y -=⎧⎨+=⎩2.先化简,再求值:2211(1)m m m m+--÷,其中3.3.已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.4.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、A5、A6、B7、B8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、-153、54、135、36、45°三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、3、21024x x --,-24、(1)略;(2)S 平行四边形ABCD =245、24°.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
初二数学期中考试试卷(含答案)精选全文
可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。
这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。
答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。
答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。
答案:24. 若一个数的3/5是80,那个数是_______。
答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。
答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。
答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。
2022-2023学年度第二学期期中考试初二数学第二学期期中考试
2022-2023学年度第二学期期中考试八年级数学试卷一、选择题:1.下列手机中的图标是中心对称图形的是 ( )A .B .C .D .2.如图,在平行四边形ABCD 中,∠A =110°,则∠D 的度数为 ( )A .70°B .80°C .110°D .120°3.已知线段a =9,b =1,如果线段c 是线段a 、b 的比例中项,那么c = ( )A .2B .3C .4.5D .54.已知一元二次方程x 2﹣3x +1=0有两个实数根x 1,x 2,则x 1+x 2的值为 ( )A .1B .-1C .3D .-35.如图,A 、B 两地被池塘隔开,小康通过下列方法测出了A 、B 间的距离:先在AB 外选一地点C ,然后测出AC ,BC 的中点M 、N ,并测量出MN 的长为18m ,由此他就知道了A 、B 间的距离.下列有关他这次探究活动的结论中,错误的是 ( )A .AB =36m B .MN ∥ABC .MN =CBD .CM =AC6.如图,如果∠EAD =∠CAB ,那么添加下列一个条件后,仍不能确定△ADE 与△ABC 相似的是 ( )A .∠B =∠D B .∠AED =∠C C .D .第2题 第5题 第6题 第7题7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2,若设道路的宽为xm ,则所列的方程为 ( )A. B. C. D. 8.如右图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC.若AC =4,则四边形CODE 的周长为 ( )A .4B .8C .12D .20AE AC AD AB =BC DEAC AE =5702203220322=+--⨯x x x 570202322032=⨯--⨯x x 570)20)(232(=--x x 570)220)(32(=--x x二、填空题:(本大题共8小题,每小题3分,共24分. 请将答案填写在答题纸上.)9.如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,如果AB =2,BC =4,DE =3,那么EF 的长是 .10.若关于x 的方程x 2﹣4x +k =0有两个不相等的实数根,则k 的取值范围是 .11. 已知线段AB=10,点C 是线段AB 上的黄金分割点(AC BC ),则线段AC 的长度为 .(黄金比≈0.618)12.商店今年1月份的销售额是4万元,3月份的销售额是9万元,从1月份到3月份,则该店销售额平均每月的增长率为 .13.已知m 是方程x 2﹣x ﹣2=0的一个根,则m 2-m+2023的值为 .14.如图,在▱ABCD 中,E 是AD 上一点,且AE :AD =3:5,连接BE 、AC 相交于F ,则S △AEF :S △CBF = ▲ .第9题 第14题 第15题 第16题15.如图,在△ABC 中,∠B =90°,AB =8cm ,BC =16cm ,动点P 从点A 开始沿着边AB 向点B 以2cm /s 的速度移动,动点Q 从点B 开始沿着边BC 向点C 以4cm /s 的速度移动.若P 、Q 两点同时开始运动,当点P 运动到点B 时停止,点Q 也随之停止.运动过程中,若以B 、P 、Q 为顶点的三角形与△ABC 相似,则运动时间为 s .16. 如图,矩形ABCD 中,AD=2,AB=6,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 为CD 边上两个动点,且EF=2,则OF+BE 的最小值为 ▲ .三.解答题:(本大题共8小题,共72分. 请将解答过程填写在答题纸上.)17.(8分) 解下列方程:(1)x 2﹣5x =0; (2)x 2﹣4x ﹣1=0.18.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的顶点均在格点上.(1)画出将△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(2)将△DEF 绕点E 逆时针旋转90°得到△D 1EF 1,画出△D 1EF 1;(3)若△DEF 由△ABC 绕着某点旋转得到的,则这点的坐标为 .19.(6分)如图,在△ABC 中,D 是AC 边上的一点,∠ABD=∠C .(1)请说明:△ADB ∽△ABC ;(2)若AB=6,AD=4,则AC 的长度为 .20.(8分)已知关于x 的方程x 2﹣kx +2k ﹣5=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若此方程的一个根是1,请求出k的值和方程的另一个根.21.(7分)如图,在▱ABCD中,AC的垂直平分线分别交BC、AD于点E、F,垂足为O,连接AE、CF.(1)求证:四边形AECF为菱形;(2)若AB=5,BC=7,则AC= 时,四边形AECF为正方形.22.(4分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点F,使点F是BC的中点;(2)如图2,在BD上找出一点G,使点BD=3GD.23.(9分)某乐园摊位上销售一批玩偶,平均每天可售出30件,每件盈利40元.为了扩大销售,增加盈利,摊主采取了降价措施.假设在一定范围内,玩偶的单价每降1元,摊主平均每天可多售出2件.(1)若某天该玩偶每件降价10元,则该玩偶的销量为 件,当天可获利 元;(2)如果该摊主销售这批玩偶要保证每天盈利为1400元,同时尽快减少库存,那么玩偶的单价应降多少元?24.(11分)阅读理解:如图1,在线段AC上有一点P,若△ABP与△CDP相似,则称点P为△ABP与△CDP 的“似联点”.例如:如图2,△ABP1∽△CDP1,△AP2B∽△CDP2,则点P1、P2为△ABP与△CDP的两个“似联点”.如图3,矩形ABCD中,AB=4,BC=m(m>2),点E是AD边上一定点,DE=1且EF∥AB.(1)当m=4时,线段EF上存在点P为△EDP与△BPF的“似联点”,则EP= ;(2)当m=4.5时,线段EF上△EDP与△BPF的“似联点”P有 个,请说明理由;(3)随着m (m >2)的变化,线段EF 上△EDP 与△BPF 的“似联点”P 的个数有哪些变化?请直接写出相对应的m 的值或取值范围.图1图2 图3 图425.(13分)如图,已知直线AB :交y 轴于点A ,交x 轴于点B ,直线AC 交x 轴于点C (3,0),请解答下列问题:(1)点A 的坐标为 ,点B 的坐标为 ;(2)如图1,作射线BD ∥y 轴,交直线AC 于点D ,请说明:AD 平分∠BAO ;(3)点P 为直线AB 上的一个动点,连接CP ,若,求点P 的坐标;(4)过C 作直线垂直于x轴,若M是直线上的一个动点,在坐标平面内是否存在点N,使以A 、B 、M 、N 为顶点的四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.(图1) (备用图) (备用图)643+-=x y 3=∆∆BPCAPC S S l l。
湘教版八年级下册数学期中考试试卷(带答案)
湘教版八年级下册数学期中考试试题一、单选题1.下列汽车标志中既是轴对称图形又是中心对称图形的是A.B.C.D.2.Rt ABC中,∠ACB=90°,AC=6cm,BC=8cm,D为斜边AB的中点,则CD的长是A.3cm B.4cm C.4.8cm D.5cm3.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为A.6B.5C.4D.34.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为A.6B.5C.4D.35.如图,在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是A.∠E=∠CDF B.BE=2CF C.AD=2BF D.EF=DF 6.如图,在 ABC中,∠B=50°,点D在BC上,且AB=BD,AD=CD,则∠C的度数为A .30°B .32.5°C .45°D .60°7.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠ACB=30°,则∠AOB 的大小为A .30°B .60°C .90°D .120°8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形9.如图,∠BAC=90°,AD ⊥BC ,则图中与∠ABD 互余的角有A .2个B .3个C .4个D .5个10.如图,矩形ABCD 的对角线AC 、BD 交于点O .AC =4,∠AOD =120°,则BC 的长为A .3B .4C .3D .2二、填空题11.在ABC 中,5AC =,12BC =,13AB =,则ABC 的面积为________.12.某多边形的每个内角均为120°,则此多边形的边数为____.13.在平行四边形ABCD 中,∠B =70°,则∠D =_______.14.矩形的长为6厘米,宽为8厘米,则它的对角线长为_________.15.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为_____.16.如图,在平行四边形ABCD中,若AB=4,BC=6,∠B=30°,则此平行四边形ABCD 的面积是_______.17.如图,菱形的对角线AC、BD交于点O,E为AD边中点,OE的长为3,则菱形ABCD 的周长为______.18.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则DF的长为____________.三、解答题19.如图,在 ABC中,∠ACB=90°,CD⊥AB于点D,AC=12cm,BC=16cm,求CD 的长.20.如图,DB∥AC,且DB=1AC,E是AC的中点,2(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?21.如图,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,M是 ABC的边BC的中点,已知AB=10,BC=16,MN=4.(1)求证:BN=DN(2)求 ABC的周长.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,OE=OF.(1)求证:AE//CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.23.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:O是BD的中点;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=2时,求AE的长.24.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图,并简单叙述理由.(1)在图1中,画出一个平行四边形ABCD,使其面积为6;(2)在图2中,画出一个菱形ABCD,使其面积为4;(3)在图3中,画出一个矩形ABCD,使其邻边不等,且都是无理数.25.已知:正方形ABCD的边长为6,点E,F分别在边AD,边AB的延长线上,且DE=BF.(1)如图1,连接CE,CF,EF,请判断△CEF的形状;(2)如图2,连接EF交BD于M,当DE=2时,求AM的长;(3)如图3,点G,H分别在边AB,边CD上,且EF与GH的夹角为45°时,求DE的长.26.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.参考答案1.C2.D3.A4.D5.B6.B7.B8.C9.A10.C11.30【详解】解:在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=12×5×12=30,故答案为:30.12.6【详解】解:180°-120°=60°,360°÷60°=6.即此多边形的边数为6.故答案为:6.13.70°【详解】∵∠B=70°,∴∠D=70°,故答案为:70°.14.10cm【详解】如图所示:已知CD=6,AD=8,∠D=90°,AC==,∴10∴对角线为:10cm,故答案为:10cm.15.60°【详解】解:延长AB交直线b于点E,∵a∥b,∴∠AEC=∠1=60°,∵四边形ABCD是矩形,∴AB∥CD,∴∠2=∠AEC=60°,故答案为60°.16.12【详解】解:过点A作AE⊥BC于E,∵直角△ABE中,∠B=30°,∴AE=12AB=12×4=2∴平行四边形ABCD面积=BC•AE=6×2=12,故答案为:12.17.24【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∵E为AD边中点,∴OE是Rt△AOD的斜边中线,∴AD=2OE=6,∴菱形ABCD的周长=4×6=24;故答案为:24.18.6.【详解】试题分析:根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°.∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10.在Rt△CDF中,由勾股定理得:6=.考点:1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理.19.9.6cm【详解】∵∠ACB=90°,AC=12cm,BC=16cm,∴AB=20cm,根据直角三角形的面积公式,得:9.6AC BC CD cm AB== ,∴9.6CD cm =.20.(1)证明见解析(2)添加AB=BC 【详解】试题分析:(1)要证明BC=DE ,只要证四边形BCED 是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E 是AC 中点,∴EC=AC .∵DB=AC ,∴DB ∥EC .又∵DB ∥EC ,∴四边形DBCE 是平行四边形.∴BC=DE .(2)添加AB=BC .理由:∵DB ∥AE ,DB=AE∴四边形DBEA 是平行四边形.∵BC=DE ,AB=BC ,∴AB=DE .∴▭ADBE 是矩形.考点:矩形的判定;平行四边形的判定与性质.21.(1)见解析;(2)44【详解】解:(1)证明:∵AN 平分∠BAC∴∠1=∠2∵BN ⊥AN∴∠ANB=∠AND=90°在△ABN 和△ADN 中,12AN AN ANB AND∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN (ASA ),∴BN=DN .(2)∵△ABN ≌△ADN ,∴AD=AB=10,又∵点M 是BC 中点,∴MN 是△BDC 的中位线,∴CD=2MN=8,故△ABC 的周长=AB+BC+CD+AD=10+16+8+10=44.22.(1)见解析;(2)【详解】解:(1)证明:∵四边形ABCD 是矩形∴OA=OC ,在△AOE 和△COF 中,OA OCAOE COF OE OF=⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (SAS ),∴∠OAE=∠OCF ,∴AE //CF ;(2)∵OA=OC ,OB=OD ,AC=BD ,∴OA=OB ,∵∠AOB=∠COD=60°,∴△AOB 是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt △ABC 中,=∴矩形ABCD 的面积=AB•BC=6⨯=23.(1)见解析;(2)6【详解】解:(1)∵四边形ABCD 是平行四边形,∴DC //AB ,∴∠OBE=∠ODF .在△OBE 与△ODF 中,OBE ODFBOE DOF BE DF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴BO=DO ,即O 是BD 的中点;(2)∵EF ⊥AB ,AB //DC ,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°.∴AE=GE∵BD ⊥AD ,∴∠ADB=∠GDO=90°.∴∠GOD=∠G=45°.∴DG=DO ,∴OF=FG=2,由(1)可知,OE=OF=2,∴GE=OE+OF+FG=6,∴AE=6.24.(1)见解析;(2)见解析;(3)见解析【详解】解:(1)在图1中,平行四边形ABCD 如图所示;(2)在图2中,菱形ABCD 如图所示;(3)在图3中,矩形ABCD 如图所示;25.(1)△CEF 是等腰直角三角形,理由见解析;(2)25(3)3.【详解】(1)如图1,△CEF 是等腰直角三角形,理由是:在正方形ABCD 中,BC=DC ,∠FBC=∠D=90°,∵BF=DE ,∴△FBC ≌△EDC ,∴CF=CE ,∠ECD=∠FCB ,∴∠ECF=∠ECB+∠FCB=∠ECB+∠ECD=90°,∴△CEF 是等腰直角三角形;(2)如图2,过E 作EN ∥AB ,交BD 于N ,则EN=ED=2,∵EN ∥AB ,∴∠F=∠MEN ,∵∠BMN=∠EMN ,∴△FBM ≌△ENM ,∴EM=FM ,在Rt △EAF 中,224(62)++5∴AM=125(3)如图3,连接EC 和FC ,由(1)得∠EFC=45°,∵∠EMH=45°,∴∠EFC=∠EMH ,∴GH ∥FC ,∵AF ∥DC ,∴四边形FCHG 是平行四边形,∴由勾股定理得:,∴DE=BF=3.26.(1)见解析;(2)①5;②【详解】(1)∵矩形ABCD 折叠使A ,C 重合,折痕为EF ,∴OA =OC ,EF ⊥AC ,EA =EC ,∵AD ∥AC ,∴∠FAC =∠ECA ,在△AOF 和△COE 中,FAO ECOAO CO AOF COE∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOF ≌△COE ,∴OF =OE ,∵OA =OC ,AC ⊥EF ,∴四边形AECF 为菱形;(2)①设菱形的边长为x ,则BE =BC ﹣CE =8﹣x ,AE =x ,在Rt △ABE 中,∵BE 2+AB 2=AE 2,∴(8﹣x )2+42=x 2,解得x =5,即菱形的边长为5;②在Rt △ABC 中,AC∴OA =12AC =在Rt △AOE 中,AE =5,OE∴EF =2OE =。
华师大版八年级下册数学期中考试试题含答案
华师大版八年级下册数学期中考试试卷一、单选题1.在下列各式:2xyπ,2a ,2a b -,5ab ,2x ﹣2y 中,是分式的共有()A .1个B .2个C .3个D .4个2.若分式211x x -+的值为0,则x 的值为()A .0B .1C .﹣1D .±13.下列各分式中,最简分式是()A .34()51()x y x y -+B .2222x y x y xy ++C .22y x x y-+D .22222-++x y x xy y4.要使式子1m -有意义,则m 的取值范围是()A .m >﹣1B .m≥﹣1C .m >﹣1且m≠1D .m≥﹣1且m≠15.若把分式22x yxy+中的x 和y 都扩大10倍,那么分式的值()A .扩大10倍B .不变C .缩小10倍D .缩小100倍6.若()252m y m x -=+是反比例函数,则m 的值为()A .2B .﹣2C .±2D .无法确定7.函数y ax a =-与(0)ay a x=≠在同一坐标系中的图象可能是()A .B .C .D .8.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s (千米)与时间t(时)之间的关系可以用图中的折线表示.现有如下信息:①小李到达离家最远的地方是14时;②小李第一次休息时间是10时;③11时到12时,小李骑了5千米;④返回时,小李的平均速度是10千米/时.其中,正确的有()A.1个B.2个C.3个D.4个9.反比例函数6yx=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y110.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.611.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A.270020x-=4500xB.2700x=450020x-C.270020x+=4500xD.2700x=450020x+12.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx=图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A .(12,0)B .(1,0)C .(32,0)D .(52,0)二、填空题13.用科学记数法表示0.000000025=_____.14.在正比例函数y=﹣3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在第___象限.15.一次函数y=kx+b (k ,b 为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为________.16.如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行,且经过点A (1,﹣2),则kb=__.17.若关于x 的方程222x mx x-+--=﹣2有增根,则m 的值是_____.18.如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y =1x的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为_____.三、解答题19.(1)计算(﹣12)﹣1π﹣3.14)0﹣2|(2)化简:(222m mm m -+-)÷24m m -.20.解分式方程:(1)2393x x x +--=1.(2)2x x -﹣1=284x -.21.先化简,再求值:22x 4x 31(x 1)(x 2)x 1⎡⎤-++÷⎢⎥+--⎣⎦,其中x =6.22.若分式方程2311x x ++-=21m x -的解是正数,求m 的取值范围.23.小米手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A 款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 款手机每部售价多少元?(2)该店计划新进一批A 款手机和B 款手机共60部,且B 款手机的进货数量不超过A 款手机数量的两倍,应如何进货才能使这批手机获利最多?A ,B 两款手机的进货和销售价格如下表:A 款手机B 款手机进货价格(元)11001400销售价格(元)今年的销售价格200024.如图,已知A 14,2⎛⎫- ⎪⎝⎭,B (-1,2)是一次函数y kx b =+与反比例函数m y x =(0,0m m ≠<)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.25.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t 分后甲、乙两遥控车与B 处的距离分别为d 1,d 2(单位:米),则d 1,d 2与t 的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v 2=________米/分;(2)写出d 1与t 的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰参考答案1.C 【分析】根据分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A B叫做分式即可求解.【详解】解:2a,5ab,2x﹣2y是分式,共3个,故选:C.2.B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式211xx-+的值为零,∴21010xx⎧-=⎨+≠⎩,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键. 3.B【解析】【分析】利用约分可对各选项进行判断.【详解】解:A、34()2()51()3()x y x yx y x y--=++,故A错误;B、2222x yx y xy++是最简分式,故B正确;C、22()()y x y x y x y xx y x y-+-==-++,故C错误;D、22222()()2()x y x y x y x yx xy y x y x y-+--==++++,故D错误.【点睛】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.4.D 【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:1010m m +⎧⎨-≠⎩,解得:m≥﹣1且m≠1.故选D 【点睛】此题主要考查二次根式的性质和分式的有意义的条件,熟练掌握二次根式的性质和分式的有意义的条件即可解题.5.C 【解析】【分析】利用分式的基本性质,x 和y 都扩大10倍,则分子扩大10倍,分母扩大100倍,则分式的缩小10倍.【详解】解:把分式22x yxy+中的x 和y 都扩大10倍,得2101010(2)12210101002102x y x y x yx y xy xy⨯+++==⨯⨯ ,∴分式的值缩小10倍.故选:C .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式6.A【解析】【分析】利用反比例函数的定义得到m+2≠0且m2﹣5=﹣1,然后解方程即可.【详解】解;根据题意得m2﹣5=﹣1,解得m=2或m=-2.又∵m+2≠0,即m≠-2,∴m=2故选:A.【点睛】本题考查了反比例函数的定义:形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.7.B【解析】【分析】首先知道直线经过定点(1,0),讨论a与0的关系,得到各自经过的象限,得到答案.【详解】解:根据函数y=ax−a经过定点(1,0),a>0时经过1,3,4象限,而ayx=在1,3象限;a<0时,函数y=ax−a经过定点(1,0),经过1,2,4象限,而ayx=在2,4象限;故选:B.【点睛】本题考查了一次函数与反比例函数图象;正确从a的符号讨论图象的可能性是关键.8.C【解析】【分析】(1)从图象上可以知道,小亮到达离家最远的地方是在14时,最远距离是30千米;(2)在图象开始处于水平状态的时刻就是小亮第一次休息的时刻;(3)在这段时刻,我们看纵坐标时,两点对应的路程差即是小亮骑车的路程;(4)由图形可知,回去时小亮是匀速行驶,中间没有休息,故速度是路程除以所用的时间.【详解】(1)由图象知,在图形的最高点就是小亮到达离家最远30千米的地方.此时对应的时刻是14时.正确;(2)休息的时候路程为0,即开始出现的第一个水平状态的时刻,由图象可知,小亮第一次休息的时刻是在10时.正确;(3)由图象知,在这段时间内,小亮只在11时到12时运动,对应的路程差为5km.正确;(4)返回时,小亮为匀速运动,路程为30千米,所用时间是2小时,故速度为15千米/小时.错误.所以,共3个信息正确.故选C.【点睛】考查函数的图象问题,关键是考查学生的识图能力,要求学生学会使用数形结合的思想.9.A【解析】【详解】解:k=6>0,所以反比例函数图像位于一三象限,并且当x<0时,y随着x的增大而减小,所以y2<y1<y3.故选A.【点睛】已知反比例函数解析式和点的横坐标要比较纵坐标大小,可以数形结合,借助图像的性质进行比较.10.D【解析】【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S2.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6.故选D.11.D【解析】【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.【详解】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得2700450020 x x=+故选:D【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB 的解析式是y=-x+52,当y=0时,x=52,即P (52,0),故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.13.2.5×10﹣8【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000025=2.5×10﹣8,故答案为:2.5×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.二【解析】【详解】∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为二15.x=-1【解析】【分析】先根据题意求出一次函数解析式,然后求出其与x轴的交点坐标即可.【详解】解:∵一次函数y=kx+b过(2,3),(0,1)点,∴321k bb=+⎧⎨=⎩,解得:11kb=⎧⎨=⎩.∴一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(-1,0)点,∴关于x的方程kx+b=0的解为x=-1,故答案为:x=-1.【点睛】本题考查一次函数图像与方程之间的联系,掌握函数与方程之间的关系是解题关键.16.-8【解析】【分析】根据两条平行直线的解析式的k值相等求出k的值,然后把点A的坐标代入解析式求出b 值,再代入代数式进行计算即可.【详解】解:∵y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∵y=kx+b的图象经过点A(1,﹣2),∴2+b=﹣2,解得b=﹣4,∴kb=2×(﹣4)=﹣8.故答案为:﹣8.17.0【解析】【分析】先把方程化为2﹣(x﹣m)=﹣2(x﹣2),解得x=2﹣m,利用增根的定义得到2﹣m=2,从而得到m的值.【详解】解:去分母得2﹣(x﹣m)=﹣2(x﹣2),解得x=2﹣m,当x=2时,原方程有增根,即2﹣m=2,解得m=0.故答案为0.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.18.12(1) n n-【解析】【详解】解:设OA1=A1A2=A2A3=…=A n-2A n-1=A n-1A n=a,∵当x=a时,1ya=,∴P1的坐标为(a,1a),当x=2a时,12ya=,∴P2的坐标为(2a,12a),……∴Rt△P1B1P2的面积为111() 22aa a-,Rt△P2B2P3的面积为111() 223aa a-,Rt△P3B3P4的面积为111() 234aa a-,……∴Rt △P n -1B n -1P n 的面积为1111111··1()2(1)212(1)a n a na n n n n ⎡⎤-=⨯⨯-=⎢⎥---⎣⎦.故答案为:12(1)n n -19.(11;(2)m ﹣6【解析】【分析】(1)根据负整数指数幂、零指数幂、绝对值的意义和二次根式的性质计算;(2)先把括号内通分和除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】解:(1)原式=﹣2+4﹣2﹣1;(2)原式=2(2)(2)(2)(2)(2)(2)m m m m m m m m m--++-+- =22242m m m m m---=26m m m-=m ﹣6.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了实数的运算.20.(1)x =﹣4;(2)无解【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:3+x (x+3)=x 2﹣9,解得:x =﹣4,经检验:x =﹣4是分式方程的解;(2)去分母得:x (x+2)﹣x 2+4=8,解得:x =2,经检验x =2是增根,分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.解:原式=()()()2(x 1)(x 2)+2x 4x+3x 2(x 1)(x 1)x +x 6x 1x 1===x 1(x 1)(x 2)x 3x 2x 3x 2x 3+---+----⋅⋅⋅-+-+-+-+.当x =6时,原式=6-1=5.【解析】【详解】分式的化简求值.【分析】先把括号里面的分子分解因式,再约分化简,然后再通分计算,再把括号外的除法运算转化成乘法运算,再进行约分化简,最后把x=6代入即可求值.22.m >1且m≠6【解析】【分析】先把方程化为整式方程,解整式方程得到x =15m -,再利用原方程的解为正数得到15m ->0且15m -≠1,然后求出两不等式的公共部分即可.【详解】解:去分母得2(x ﹣1)+3(x+1)=m ,解得x =15m -,∵原方程的解为正数,∴x >0且x≠1,即15m ->0且15m -≠1,∴m >1且m≠6.【点睛】本题考查了分式方程的解:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.23.(1)今年A款手机每部售价1600元;(2)进A款手机20部,B款手机40部时,这批手机获利最大.【解析】【分析】(1)设今年A款手机的每部售价x元,则去年售价每部为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A款手机a部,则B款手机(60-a)部,获利y元,由条件表示出y与a 之间的关系式,由a的取值范围就可以求出y的最大值【详解】解:(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,由题意,得()50000120% 50000400x x-=+,解得:x=1600.经检验,x=1600是原方程的根.答:今年A款手机每部售价1600元;(2)设今年新进A款手机a部,则B款手机(60﹣a)部,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B款手机的进货数量不超过A款手机数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B款手机的数量为:60﹣20=40部.∴当新进A款手机20部,B款手机40部时,这批手机获利最大.【点睛】考查一次函数的应用,分式方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.24.(1)当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=12x+52;m=﹣2;(3)P 点坐标是(﹣12,54).【解析】【分析】(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m 的值;(3)设P 的坐标为(x ,12x+52)如图,由A 、B 的坐标可知AC=12,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣12x ﹣52),由△PCA 和△PDB 面积相等得,可得答案.【详解】解:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x <﹣1,所以当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b ,y=kx+b 的图象过点(﹣4,12),(﹣1,2),则1422k b k b ⎧-+=⎪⎨⎪-+=⎩,解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩一次函数的解析式为y=12x+52,反比例函数y=m x图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC 、PD ,如图,设P 的坐标为(x ,12x+52)如图,由A 、B 的坐标可知AC=12,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣12x ﹣52),由△PCA 和△PDB 面积相等得1 2×12×(x+4)=12×|﹣1|×(2﹣12x﹣52),x=﹣52,y=12x+52=54,∴P点坐标是(﹣52,54).25.(1)40;(2)当0≤t≤1时,d1=﹣60t+60;当1<t≤3时,d1=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【解析】【分析】(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a 的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【详解】(1)乙的速度v2=120÷3=40(米/分),(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=6060(01) {6060(13)t tt t-+≤-≤≤<;(3)d2=40t,当0≤t<1时,d2-d1>10,即-60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2-d1>10,即40t-(60t-60)>10,当1≤t<52时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.。
华师大版八年级下册数学期中考试试题附答案
华师大版八年级下册数学期中考试试卷一、单选题1.若分式1xx -有意义,则x 的取值范围是()A .x≠1B .x≠﹣1C .x =1D .x =﹣12.在平面直角坐标系中,一次函数y=2x ﹣3的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限3.若把分式xx y2+中的x 和y 同时扩大为原来的3倍,则分式的值()A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变4.一次函数y =kx ﹣k 与反比例函数y =kx在同一直角坐标系内的图象大致是()A .B .C .D .5.反比例函数y =kx(k >0),当x <0时,图象在()A .第一象限B .第二象限C .第三象限D .第四象限6.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s (m )与时间t (min )的大致图象是()A B C D7.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则x 1,x 2,3x 的大小关系是()A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<8.直线y =-32x +3与x 轴、y 轴所围成的三角形的面积为()A .3B .6C .34D .329.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a+b =6,则直线AB 的解析式是()A .y =﹣2x ﹣3B .y =﹣2x ﹣6C .y =﹣2x+3D .y =﹣2x+610.如图,点P 在反比例函数y =kx的图象上,PA ⊥x 轴于点A ,若△PAO 的面积为4,那么k 的值为()A .2B .4C .8D .﹣4二、填空题11.已知反比例函数y=kx(k≠0)的图象在第二、四象限,则k 的值可以是:____(写出一个满足条件的k 的值).12.将y=2x ﹣3的图象向上平移2个单位长度得到的直线表达式为_____.13.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.14.一次函数y =(m +2)x +3-m ,若y 随x 的增大而增大,函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是____.15.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是________.16.如图,直线l 1:y=x+1与直线 l 2:y=mx+n 相交于点P(1,b ),则关于x 、y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解为__________.三、解答题17.计算(1)1211|32|5(2019)2π-⎛⎫-+-+-⨯- ⎪⎝⎭(2)2221211a a aa a a --÷+++(3)32422a b c bc c ab a ⎛⎫⎛⎫⎛⎫⋅÷ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭(4)23243a a bb b a⎛⎫-÷⋅⎪⎝⎭18.解分式方程:25431x x x x x++=--.19.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =.20.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,回答下列问题:(1)李师傅修车用了多时间;(2)修车后李师傅骑车速度是修车前的几倍.21.已知3(1)(2)12Ax B Cx x x x+=++-+-,求A、B、C的值.22.已知点P在(m,n)直线y=﹣x+2上,也在双曲线y=1x上,求m2+n2的值.23.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:鞋长16192427鞋码22283844(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数;(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?24.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.25.如图所示,已知一次函数y kx b=+(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数myx=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.26.如图,已知A(−4,n),B(2,−4)是一次函数y=kx+b的图象和反比例函数myx的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b−mx<0的解集(请直接写出答案).参考答案1.A【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x﹣1≠0,解得x≠1,故选A.2.B【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【详解】∵2>0,∴y 随x 的增大而增大;∵-3<0,∴图像与y 轴的负半轴相交,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选B .【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b (k 为常数,k≠0),当k >0,b >0,y=kx+b 的图象在一、二、三象限;当k >0,b <0,y=kx+b 的图象在一、三、四象限;当k <0,b >0,y=kx+b 的图象在一、二、四象限;当k <0,b <0,y=kx+b 的图象在二、三、四象限.3.D 【解析】根据题意把分式xx y2+中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断.【详解】解:∵分式xx y2+中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变.故选:D 4.C 【解析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:A.∵由反比例函数的图象在一、三象限可知,k >0∴0k -<∴一次函数y kx k =-的图象经过一、三、四象限.故本选项错误;B.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误;C.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项正确;D.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误.故选:C 5.C 【解析】首先利用k 的符号确定反比例函数图象的分布,进而利用x 的符号确定所在象限.【详解】解:∵反比例函数()0ky k x=>∴图象分布在第一、三象限∵0x <∴图象在第三象限.故选:C 【点睛】本题主要考查了反比例函数的性质,正确记忆反比例函数图象的分布规律是解题关键.6.C 【详解】小明从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选:C .7.B 【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据A 、B 、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.【详解】解:∵反比例函数y =12x中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵y 1<y 2<0<y 3,∴213x x x <<.故选B .8.A 【解析】根据一次函数图象上点的坐标特点,直线y =-32x +3与x 轴、y 轴分别交于(2,0),(0,3),故可求出三角形的面积.【详解】当x=0时,y=3,即与y 轴的交点是(0,3),当y=0时,x=2,即与x 轴的交点是(2,0),所以直线y =-32x +3与x 轴、y 轴所围成的三角形的面积为12332⨯⨯=.故选A.【点睛】本题主要考查一次函数图象与x 轴、y 轴的交点.9.D 【解析】平移时k 的值不变,只有b 发生变化.再把相应的点的坐标代入即可得解.【详解】解:∵直线AB 经过点(),a b ,且26a b +=∴直线AB 经过点(),62a a -∵直线AB 与直线2y x =-平行∴设直线AB 的解析式是:12y x b =-+把(),62a a -代入函数解析式得:1622a a b -=-+则16b =∴直线AB 的解析式是26y x =-+.故选:D 【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变.10.C 【解析】【分析】由△PAO 的面积为4可得12|k|=4,再结合图象经过的是第一、三象限,从而可以确定k 值.【详解】解:∵S △PAO =4,∴12|x•y|=4,即12|k|=4,则|k|=8,∵图象经过第一、三象限,∴k >0,∴k =8,故选:C .【点睛】本题主要考查了反比例函数ky x=中k 的几何意义,解题的关键是要明确过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为12|k|.11.-2(答案不唯一)【解析】【分析】由反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限可写出一个满足条件的k的值.【详解】解:∵函数图象在二四象限,∴k<0,∴k可以是-2.故答案为-2(答案不唯一).【点睛】本题考查了反比例函数图象的性质(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.12.y=2x﹣1【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将函数y=2x﹣3的图象向上平移2个单位所得函数的解析式为y=2x﹣3+2,即y=2x﹣1.故答案为y=2x﹣1.【点睛】本题考查了一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.14.-2<m<3【解析】【详解】解:由已知得:20 30 mm>>+⎧⎨-⎩,解得:-2<m<3.故答案为:-2<m<3.15.1-【解析】【分析】让未知数的指数为-1,系数小于0列式求值即可.【详解】∵是反比例函数,∴m2-2=-1,解得m=1或-1,∵图象在第二、四象限,∴2m-1<0,解得m<0.5,∴m=-1,故答案为-1.【点睛】考查反比例函数的定义及性质:一般形式为y=kx(k≠0)或y=kx-1(k≠0);图象在二、四象限,比例系数小于0.16.12 xy=⎧⎨=⎩【解析】【分析】首先利用待定系数法求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线y=x+1经过点P(1,b),∴b=1+1,解得b=2,∴P(1,2),∴关于x的方程组10x ymx y n-+=⎧⎨-+=⎩的解为12xy=⎧⎨=⎩,故答案为:12 xy=⎧⎨=⎩.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.17.(1)﹣2(2)1a;(3)833ab c-;(4)89.【解析】【分析】(1)先根据乘方法则、绝对值意义、负整数指数幂法则、零指数幂法则进行化简再根据实数加减乘除混合运算法则进行计算即可得解;(2)先将分式的除法运算转化为分式乘法运算、同时将能够因式分解的分子或分母进行因式分解,最后再进行约分即可得解;(3)先根据分式的乘方运算法则进行计算,再将分式乘除运算统一成分式乘法运算,最后进行约分即可得解;(4)先根据分式的乘方运算法则进行计算,再将分式乘除运算统一成分式乘法运算,最后进行约分即可得解.【详解】解:(1)()-10211+-52019-2π⎛⎫-⨯ ⎪⎝⎭=12251-+-⨯=1225-+-2=-(2)2221211a a a a a a --÷+++()()()()211111a a a a a a +-+=⋅-+1a=;(3)32422a b c bc c ab a ⎛⎫⎛⎫⎛⎫⋅÷ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭634443224a b c b c c a b a=⋅÷-634432244a b c a c a b b c =⋅⋅-833a b c=-;(4)23243a a b b b a ⎛⎫-÷⋅ ⎪⎝⎭224233a b b a ab =⋅⋅89=.【点睛】本题考查了实数的混合运算、分式的混合运算,体现了数学运算的核心素养,熟练掌握各项运算法则是解决问题的关键.18.1x =是增根,原分式方程无解【解析】【分析】先确定分式方程最简公分母,然后方程两边乘最简公分母,从而将分式方程转化为整式方程,再解整式方程,最后检验即可得解.【详解】解:25431x x x x x++=--()54311x x x x x ++=--方程两边同时乘以()1x x -()5143x x x -+=+5543x x x -+=+88x =1x =检验:∵当1x =时,()()11110x x -=⨯-=∴1x =是增根,原分式方程无解.【点睛】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验;(3)去分母时要注意符号的变化.19.11x +,2.【解析】【分析】括号内先通分,进行分式加减法运算,再把除法运算化为乘法运算,约分后得到结果,再把x 的值代入计算.【详解】解:原式=2(1)(1)21(1)x x x x x x x+-++÷-=2(1)(1)(1)(1)x x x x x x +-⋅-+=11x +,当1x =时,原式2.考点:分式的化简求值.20.(1)5分钟;(2)2倍【解析】【分析】(1)观察图象可得李师傅离家10分钟时开始修车、离家15分钟修完车,两数相减即可得解;(2)观察图象可得李师傅修车前后行驶的路程和时间,即可求得相应的行驶速度,两速度相除即可得解.【详解】解:(1)由图可得,李师傅修车用了15105-=(分钟);(2)∵修车后李师傅骑车速度是200010002002015-=-(米/分钟),修车前速度为100010010=(米/分钟)∴2001002÷=∴修车后李师傅骑车速度是修车前的2倍.【点睛】本题考查了从图象中读取信息的数形结合的能力,需要注意分析其中的“关键点”,还要善于分析各部分图象的变化趋势.21.A =0,B =﹣1,C =1.【解析】【分析】先将已知等式右边两项进行通分、并利用同分母分式的加法法则进行计算,再利用分式相等的条件列出关于A 、B 、C 的方程组,解方程组即可得解.【详解】解:∵3(1)(2)12Ax B C x x x x +=++-+-∴()()()213(1)(2)(1)(2)Ax B x C x x x x x +-++=+-+-∴()()()213Ax B x C x +-++=∴()2223Ax B C A x B C ++--+=∴02023A B C A B C =⎧⎪+-=⎨⎪-+=⎩∴011A B C =⎧⎪=-⎨⎪=⎩.【点睛】本题考查了分式的加减法以及解三元一次方程组,熟练掌握相关知识点是解决本题的关键.22.2【解析】【分析】先利用一次函数图象上点的坐标特征、以及反比例函数图象上点的坐标特征得出n m +、mn 的值,再利用完全平方公式将原式变形即可得到答案.【详解】解:∵点(),P m n 在直线2y x =-+上∴2n m +=∵点(),P m n 在双曲线1y x=上∴1mn =∴()2222422m n m n mn +=+-=-=.【点睛】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、完全平方公式以及整体代入法求代数式的值,灵活运用相关知识点是解决问题的关键.23.(1)一次函数;(2)y =2x ﹣10;(3)应该买42码的鞋.【解析】【分析】(1)由表格可知,给出了四对对应值,鞋长每增加3cm ,鞋码增加6,即鞋码与鞋长之间的关系是一次函数关系;(2)设y kx b =+,把表中任意两对值代入即可求出y 与x 的关系;(3)当26x cm =时,代入函数关系式即可计算出鞋码的值.解:(1)根据表中信息得“鞋码”与鞋长之间的关系是一次函数;(2)设y kx b=+则由题意得22162819k b k b=+⎧⎨=+⎩解得:210k b =⎧⎨=-⎩∴210y x =-;(3)当26x cm =时,2261042y =⨯==答:应该买42码的鞋.【点睛】本题考查了识表能力、利用待定系数法求一次函数解析式、利用函数解决实际问题的能力,难度不大属于简单题型.24.(1)y =x ﹣1;(2)x <1.【解析】【分析】(1)先根据反比例函数图象上点的意义求出()3,2A 、()2,3B --,用待定系数法即可求得一次函数解析式;(2)根据0y <可得10x -<,即1x <.【详解】解:(1)设一次函数的解析式为y kx b=+∵当3x =时,2y =,即()3,2A ;当3y =-时,2x =-,即()2,3B --∴把点()3,2A 、()2,3B --分别代入y kx b =+得,3223k b k b +=⎧⎨-+=-⎩∴解得11k b =⎧⎨=-⎩∴1y x =-.(2)∵0y <∴1x <∴当1x <时,一次函数的函数值小于零.【点睛】本题考查了用待定系数法求一次函数解析式、一次函数与不等式的关系等知识点,熟练掌握相关知识点是解决本题的关键.25.(1)A (-1,0),B (0,1),D (1,0)(2)一次函数的解析式为y x 1=+反比例函数的解析式为2y x=【解析】【分析】(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A 、B 两点坐标分别代入y kx b =+,可用待定系数法确定一次函数的解析式,由C 点在一次函数的图象上可确定C 点坐标,将C 点坐标代入m y x =可确定反比例函数的解析式.【详解】解:(1)∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0).(2)∵点A 、B 在一次函数y kx b =+(k≠0)的图象上,∴k b 0{b 1-+==,解得k 1{b 1==.∴一次函数的解析式为y x 1=+.∵点C 在一次函数y=x+1的图象上,且CD ⊥x 轴,∴点C 的坐标为(1,2).又∵点C 在反比例函数m y x=(m≠0)的图象上,∴m=1×2=2.∴反比例函数的解析式为2y x =.26.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【解析】【分析】(1)先把B 点坐标代入代入m y x=求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx+b−m x <0可得kx+b<m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
八年级数学 第二学期期中考试试卷
班级 姓名 得分
一、选择题:本大题共10小题,每小题3分,共30分, 1.
=
) A.1x <且0x ≠ B.0x >且1x ≠
C.01x <≤ D.01x <<
2. 下列各式一定是最简二次根式的是( )
B.m 48
C.3.0
3. 下列各组二次根式中,同类二次根式是( )
B.
,
4. 解一元二次方程2
120x x --=,结果正确的是( ) A.1243x x =-=, B.1243x x ==-,
C.1243x x =-=-,
D.1243x x ==,
5. 一个三角形的三边长分别为15,20,25,则这个三角形最大边上的高为(
)
A.10 B.12 C.24 D.48
6. 直角三角形的三边长为连续自然数,则它的面积为( ) A.6 B.7.5 C.10 D.12 7.
如果1a b ==,那么 A.a b =
B.a b >
C.a b <
D.1ab =
8.代数式2x 2
+4x+3=0的最小值是( )
A -1
B 1
C 2
D 3 9.
2
得( )
A. 2 B.44x -+ C.-2 D.44x -
10. 市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率( ) A 10﹪ B 20﹪ C 30﹪ D 180﹪
二、填空题:本大题共10小题,每小题3分,共30分,
11.⊿ABC 中,∠A=30°,∠B=60°AB=2,AC=1,则BC=_______.
12. 已知关于x 的一元二次方程x 2
—(k+1)x -6=0的一个根是2,则另一个根是_______.
k 的值是_______.
13. 已知y=(),121212-+-+
-x x x 则()2006y x +=_______.
14.下面是王华同学在平时作业中的解答。
其中答对的序号是_______. ① 若x 2
=9,则x=3;
② 方程x (5—2x )=5-2x 的 解为x=1;
③ 若方程x 2
+2x+k=0有两个相等的实数根,则k=1;
④ 若分式1
4
52-+-x x x 的值为0,则x=1或 4
15.解方程061512
=-⎪⎭
⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x ,可设
1+x x =y 则原方程可变形为y 2
-5y-6=0体现了_______的数学思想方法。
16. 若2
326x x -+的值为8,则代数式
2
312
x x -+的值是_______. 17.有一根140cm 的木棒,要放在长,宽,高分别是30cm ,40cm ,120cm 的木箱中,至少露在外面 ______ cm . 18.已知 ()
()
054222
2
2=-+-+b a b a ,则22b a +=_______.
19.已知一元二次方
程2(1)10m x m -+-=有两个相等实数根,则
_____m =.
20.a 是8的整数部分,b 是8的小数部分,则()()=++-2
2
2b a _______.
三、计算题:本大题共5小题,共30分, 21.(本小题12分) 计算:
2
(1)()
12322
--+4821 (2)5
3125135.04÷⨯-
22.(本小题12分) 解方程:
(1)2
3230x x +-= (2)
12
121=+---x x
x
23.(本小题7分) 如图,一块地,已知AD=4,CD=3,AD ⊥CD ,AB=13,BC=12,求这块地
的面积。
四、应用题:本大题共2小题,共16分,
24.(本小题8分) 某商场进了一批单价为40元的商品,按50元出售时,能卖500个,若该商品每涨价1元,其销售量减少10个,为了赚8000元利润,应涨价多少元?
25.(本小题8分) 如图,小明把一根长为160cm 的铁丝弯成三段,做成一个等腰三角形的风筝,已知风筝的高40cm AD =,你知道小明是怎样弯折铁丝的吗?
五、说理题:本大题共1小题,共8分,
26.(本小题8分) 用22cm 长的铁丝,能不能折成一个面积为32cm 2
的长方形呢?请说明理由。
六、操作题:剪一剪,拼一拼,本大题共1小题,共5分, 27. 将下图剪两刀,拼成一个正方形。
用虚线划出,并画出正方形。