浙江省宁波市2020版九年级上学期数学期末考试试卷D卷
浙江省宁波市实验学校2019-2020学年九年级数学上册期末模拟试卷(含解析)
2019-2020浙江省宁波市实验学校九年级数学上册期末模拟试卷解析版一、选择题(共10题;共20分)1.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D. 2.小华、小强和小彬三位同学随机地站成一排做游戏,小华站在排头的概率是( ) A. 12 B. 13 C. 23 D. 1 3.如图,直线a ∥b ∥c ,点A ,B 在直线a 上,点C ,D 在直线c 上,线段AC ,BD 分别交直线b 于点E ,F ,则下列线段的比与 AE AC 一定相等的是( )A. CE ACB. BF BDC. BF FDD. ABCD4.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,连结CD 与AB 相交于点P ,则tan ∠APD 的值是( )A. 2B. √2C. 12D. √22 5.对于函数y=(x-2)2+5,下列结论错误的是( )A. 图象顶点是(2,5)B. 图象开口向上C. 图象关于直线x=2对称D. 函数最大值为5 6.如图,等腰直角三角形ABC 的直角边AB 的长为 √3 ,将△ABC 绕点A 逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点D ,则图中阴影△ADC′的面积等于( )A. 3√32cm 2B. 3−√32cm 2C. 2√3cm 2D. 6cm 2 7.如图等腰三角形的顶角 ∠A =45°,以AB 为直径的半圆O 与BC ,AC 相较于点D ,E 两点,则弧AE 所对的圆心角的度数为( )A. 40°B. 50°C. 90°D. 100°8.如图,点A 的坐标为(-3,-2),⊙A 的半径为1,P 为坐标轴上一动点,PQ 切⊙A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A. (0,-2)B. (0,-3)C. (-3,0)或(0,-2)D. (-3,0) 9.如图,在矩形ABCD 中,AB=4,AD=a ,点P 在AD 上,且AP=2,点E 是边AB 上的动点,以PE 为边作直角∠EPF ,射线PF 交BC 于点F ,连接EF ,给出下列结论:①tan ∠PFE= 12 ;②a 的最小值为10.则下列说法正确的是( )A. ①②都对B. ①②都错C. ①对②错D. ①错②对 10.已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论:①abc >0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;≥2.④ a+b+cb其中,符合题意结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分,共24分)11.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.12.如图,在平面直角坐标系中,△OAB与△OCD是以原点O为位似中心的位似图形,且位似比为1:3,已知点A的坐标为(1,2),则点C的坐标是________.13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.14.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.15.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。
2023—-2024学年上学期九年级期末考试数学试卷
准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。
2020年浙江省宁波市中考数学试题及参考答案(word解析版)
宁波市2020年初中学业水平考试数学试题(满分为150分,考试时间为120分钟)试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3 B.﹣C.D.32.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a53.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×10104.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.6.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤27.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.48.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长试题卷Ⅱ二、填空题(每小题5分,共30分)11.实数8的立方根是.12.分解因式:2a2﹣18=.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙45 45 42S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B 作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.三、解答题(本大题有8小题,共80分)17.(本题8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.(本题8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.(本题10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.21.(本题10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.(本题10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.(本题12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.24.(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.答案与解析试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3 B.﹣C.D.3【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数解答.【解题过程】解:﹣3的相反数是3.故选:D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.【解题过程】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.【总结归纳】此题主要考查了同底数幂的乘除运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:1120000000=1.12×109,故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据主视图的意义和画法可以得出答案.【解题过程】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.【总结归纳】考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率公式计算.【解题过程】解:从袋中任意摸出一个球是红球的概率==.故选:D.【总结归纳】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤2【知识考点】二次根式有意义的条件.【思路分析】根据被开方数大于等于0列不等式求解即可.【解题过程】解:由题意得,x﹣2≥0,解得x≥2.故选:C.【总结归纳】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F 为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.4【知识考点】直角三角形斜边上的中线;勾股定理;三角形中位线定理.【思路分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【解题过程】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.【总结归纳】本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解题过程】解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.【总结归纳】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【知识考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解题过程】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误∵;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【总结归纳】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【知识考点】全等三角形的判定与性质;等边三角形的性质.【思路分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【解题过程】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.【总结归纳】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.试题卷Ⅱ二、填空题(每小题5分,共30分)11.实数8的立方根是.【知识考点】立方根.【思路分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解题过程】解:实数8的立方根是:=2.故答案为:2.【总结归纳】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.12.分解因式:2a2﹣18=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式2,再利用平方差公式分解因式得出答案.【解题过程】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙45 45 42S2 1.8 2.3 1.8 明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.【知识考点】算术平均数;方差.【思路分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【解题过程】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【总结归纳】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).【知识考点】弧长的计算.【思路分析】根据弧长公式即可得到结论.【解题过程】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.【总结归纳】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC =OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.【知识考点】勾股定理;切线的性质.【思路分析】当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC===2.【解题过程】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴,故答案为:2或2.【总结归纳】本题考查了切线的性质.勾股定理,正确的理解题意是解题的关键.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,推出S△AOE=S△DEO=12,可得a﹣b=12,推出a﹣b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【解题过程】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x 轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴==3,∴=﹣3.故答案为24,﹣3.【总结归纳】本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.三、解答题(本大题有8小题,共80分)17.(本题8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【知识考点】单项式乘多项式;完全平方公式;解一元一次不等式.【思路分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.【解题过程】解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.【总结归纳】此题主要考查了一元一次不等式的解法以及单项式乘以多项式,正确掌握相关运算法则是解题关键.18.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【知识考点】利用轴对称设计图案;利用旋转设计图案.【思路分析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).【解题过程】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【总结归纳】本题考查利用旋转设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(本题8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【知识考点】等腰三角形的性质;解直角三角形的应用.【思路分析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.【解题过程】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=ABcosB=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=ABsinB=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.【总结归纳】本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.20.(本题10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;抛物线与x轴的交点.【思路分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.【解题过程】解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.【总结归纳】本题考查抛物线与x轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(本题10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【知识考点】用样本估计总体;频数(率)分布直方图;扇形统计图;中位数.【思路分析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.【解题过程】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×=144°.(3)这次测试成绩的中位数是良好.(4)1500×=300(人),答:估计该校获得优秀的学生有300人.【总结归纳】本题考查频数分布直方图,样本估计总体,扇形统计图,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(本题10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【知识考点】一元一次不等式的应用;一次函数的应用.【思路分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B地所需的时间,由题意可列出不等式1.6v≥120,解不等式即可得出答案.【解题过程】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得,解得:,∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);(2)当y=200﹣80=120时,120=80x﹣128,解得x=3.1,由图可甲的速度为=50(千米/小时),货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.【总结归纳】本题考查了一次函数的应用;待定系数法求函数的解析式,根据数形结合得到甲乙相应的速度以及相应的时间是解决本题的关键.23.(本题12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.【知识考点】相似形综合题.【思路分析】(1)证明△ADC∽△ACB,得出,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段,则BF2=BE•BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段,则DE=EF,可求出DG,则答案可求出.【解题过程】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.【总结归纳】此题是相似形综合题,主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,正确掌握相似三角形的判定方法是解题关键.24.(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【知识考点】圆的综合题.【思路分析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出∠FDC+∠FBC=90°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠FAD,证明△FDE≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC =90°,则可求出答案;②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出,求出,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.。
人教版九年级上册数学期末考试试卷含答案详解
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列事件中,必然发生的是()A.某射击运动射击一次,命中靶心B.通常情况下,水加热到100℃时沸腾C.掷一次骰子,向上的一面是6点D.抛一枚硬币,落地后正面朝上3.若反比例函数y=﹣1x的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣13D.134.如图,直线y=kx与双曲线y=﹣2x交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6B.﹣12C.6D.125.如图,经过原点O的⊙P与、轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定6.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm7.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移38.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A.±1B.0C.1D.-19.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对10.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A 的度数为()A.40°B.35°C.30°D.25°11.如图,一个大正方形中有2个小正方形,如果它们的面积分别是S1,S2,则()A.S2>S1B.S1=S2C.S1>S2D.S1≥S212.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题13.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;14.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.15.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为_cm.16.关于x的一元二次方程2210ax x++=有实数解,那么实数a的取值范围是__________. 17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为____________.18.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.三、解答题19.解方程:x2+3x﹣2=0.20.如图为桥洞的形状,其正视图是由 CD和矩形ABCD构成.O点为 CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求 CD所在⊙O的半径DO.21.如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,(2)写出A1,C1的坐标.(3)求点A旋转到A1所经过的路线长.22.如图,抛物线2=-++与x轴交于A、B两点(点A在点B的左侧),点A的y x bx c坐标为()-,,与y轴交于点()10C,,作直线BC.动点P在x轴上运动,过点P作03PM x⊥轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.23.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.24.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.25.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.26.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).27.已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN;(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;:S四边形ABQP=1:4.若存在,求出t的值;若不存在,(3)是否存在某一时刻t,使S△QMC请说明理由;(4)是否存在某一时刻t,使PQ⊥MQ.若存在,求出t的值;若不存在,请说明理由.参考答案1.D【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.2.B【解析】A、某射击运动射击一次,命中靶心,随机事件;B、通常加热到100℃时,水沸腾,是必然事件.C、掷一次骰子,向上的一面是6点,随机事件;D抛一枚硬币,落地后正面朝上,随机事件;故选B.3.C【解析】试题分析:把点A代入解析式可知:m=﹣1 3.故选C.考点:反比例函数图象上点的坐标特征.4.B【解析】【分析】(解法一)将一次函数解析式代入反比例函数解析式中得出关于x的一元二次方程,解方程即可得出A、B点的横坐标,再结合一次函数的解析式即可求出点A、B的坐标,将其代入2x1y2-8x2y1中即可得出结论.(解法二)根据正、反比例函数的对称性,找出x1=-x2、y1=-y2,将其代入2x1y2-8x2y1中利用反比例函数图象上点的坐标特征,即可求出结论.【详解】(解法一)将y=kx代入到y=-2x中得:kx=-2x,即kx2=-2,解得:x1,x2∴y1=kx1y2=kx2,∴2x1y2-8x2y1=2×(×()=-12.(解法二)由正、反比例函数的对称性,可知:x1=-x2,y1=-y2,∴2x1y2-8x2y1=-2x1y1+8x1y1=6x1y1.∵x1y1=-2,∴2x1y2-8x2y1=6x1y1=-12.故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及一元二次方程的解,解题的关键是:(解法一)求出点A、B的坐标;(解法二)根据对称性结合反比例函数图象上点的坐标特征求值.5.B【详解】试题分析:根据圆周角定理的推论可得:∠ACB=∠AOB=90°,故选B.考点:圆周角定理的推论6.A【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【详解】解:连接OA,过点O作OE⊥AB,交AB于点M,交圆O于点E,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴===,60cmOM∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.7.A【解析】试题解析:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选A.考点:1.坐标与图形变化-旋转;2.坐标与图形变化-平移.8.D【分析】根据二次函数图象上点的坐标特征得到-m2+1=0,解得m1=1,m2=-1,然后根据二次函数的定义确定m的值.【详解】把(0,0)代入y=(m-1)x2-mx-m2+1得-m2+1=0,解得m1=1,m2=-1,而m-1≠0,所以m=-1.故选D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的定义.9.C【详解】根据二次函数的定义,易得S是R的二次函数,故选C.10.B【解析】∵PC与⊙O相切,∴∠OCP=90°.∵∠P=20°,∴∠POC=90°-20°=70°,∴∠A=70°÷2=35°.故选B.11.C【解析】【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【详解】如图,设大正方形的边长为x ,根据等腰直角三角形的性质知,BC ,,∴AC=2CD ,CD=3x ,∴S 2x ,S 2的面积为29x 2,S 1的边长为2x ,S 1的面积为14x 2,∴S 1>S 2.故选:C .【点睛】本题考查了正方形的性质和等腰直角三角形的性质,掌握勾股定理及正方形的性质是解题的关键.12.B【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a =1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.3x 2-10x-4=0.【解析】先把一元二次方程3x (x ﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.14.4 9【详解】试题分析:观察这个图形可知:黑色区域(4块)的面积占总面积(9块)的4 9,则它最终停留在黑色方砖上的概率是4 9;故答案为4 9.考点:几何概率.15.4【解析】【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【详解】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴,∴侧面积S侧22,解得r=4,,∴圆锥的高h=4cm,故答案为:4.【点睛】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式.16.10a a≤≠且【解析】∵关于x的一元二次方程ax2+2x+1=0有实数根,∴△=4−4a≥0且a≠0,∴a≤1且a≠0.故答案是:10a a且≤≠.17.1:4.【详解】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.考点:位似变换.18..【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴,∵FP=FC=2,∴,∴点P到边AB距离的最小值是.故答案为:.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.19.∴x 1=2-,x 2=32-【解析】首先找出公式中的a ,b ,c 的值,再代入求根公式求解即可.本题解析:∵a=1,b=3,c=﹣2,∴△=b 2﹣4ac=32﹣4×1×(﹣2)=17,∴x=32-±,∴x 1x 220.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴CD 所在⊙O 的半径DO 为5米.21.(1)图形见解析;(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线长是52π.【详解】试题分析:(1)题目已给出了旋转中心、旋转角度和旋转方向,可连接DA 、DB 、DC,然后根据要求旋转得到对应的顶点A 1、B 1、C 1,再顺次连接三点即可.(2)由(1)得到的图形,可根据A 1、C 1的位置来确定它们的坐标.(3)点A 旋转到A 1所经过的路线长是以D 为圆心、90°为圆心角、DA 为半径的弧长,先求出DA 的长,然后根据弧长公式计算即可.试题解析:(1)(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线是弧AA 1,∵AD=5,∠ADA 1=90°,∴弧AA 1的长=;∴点A 旋转到A 1所经过的路线长是.考点:1.旋转变换,2.弧长的计算.22.(1)y=﹣x 2+2x+3,y=﹣x+3;(2)当m=32时,MN 有最大值,MN 的最大值为94;(3)32+或32.【解析】(1)由A 、C 两点的坐标利用待定系数法可求得抛物线解析式,则可求得B 点坐标,再利用待定系数法可求得直线BC 的解析式;(2)用m 可分别表示出N 、M 的坐标,则可表示出MN 的长,再利用二次函数的最值可求得MN 的最大值;(3)由条件可得出MN=OC ,结合(2)可得到关于m 的方程,可求得m 的值本题解析:(1)∵抛物线过A 、C 两点,∴代入抛物线解析式可得10{3b c c --+==,解得2{3b c ==,∴抛物线解析式为y=﹣x 2+2x+3,令y=0可得,﹣x 2+2x+3=0,解x 1=﹣1,x 2=3,∵B 点在A 点右侧,∴B 点坐标为(3,0),设直线BC 解析式为y=kx+s ,把B 、C 坐标代入可得30{3k s s +==,解得1{3k s =-=,∴直线BC 解析式为y=﹣x+3;(2)∵PM ⊥x 轴,点P 的横坐标为m ,∴M (m ,﹣m 2+2m+3),N (m ,-m+3),∵P 在线段OB 上运动,∴M 点在N 点上方,∴MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m=﹣(m ﹣32)2+94,∴当m=32时,MN 有最大值,MN 的最大值为94;(3)∵PM ⊥x 轴,∴MN ∥OC ,当以C 、O 、M 、N 为顶点的四边形是平行四边形时,则有OC=MN ,当点P 在线段OB 上时,则有MN=﹣m 2+3m ,∴﹣m 2+3m=3,此方程无实数根,当点P 不在线段OB 上时,则有MN=﹣m+3﹣(﹣m 2+2m+3)=m 2﹣3m ,∴m 2﹣3m=3,解得或,综上可知当以C 、O 、M 、N 为顶点的四边形是平行四边形时,m 的值为32或32.23.(1)12;(2)公平,理由见解析.【解析】【分析】(1)首先画树状图,然后根据树状图即可求得甲获胜的概率;(2)根据树状图,求得甲、乙获胜的概率,然后比较概率,即可求得这个游戏规则对甲、乙双方是否公平.【详解】(1)画树状图得:∴一共有12种等可能的结果,两球编号之和为奇数有6种情况,∴P (甲胜)=612=12(2)公平.∵P (乙胜)=612=12,∴P (甲胜)=P (乙胜),∴这个游戏规则对甲、乙双方公平【点睛】本题考查了游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(1)a=4,m=﹣4;(2)双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).【解析】试题分析:(1)将A 坐标代入一次函数解析式中即可求得a 的值,将A (﹣1,4)坐标代入反比例解析式中即可求得m 的值;(2)解方程组=−2+2=−4,即可解答.试题解析:(1)∵点A 的坐标是(﹣1,a ),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A 的坐标是(﹣1,4),代入反比例函数=,∴m=﹣4.(2)解方程组:=−2+2=−4,解得:=−1=4或=2=−2,∴该双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).考点:反比例函数与一次函数的交点问题.25.(1)证明见解析;(2)12;(3【分析】(1)要证明△ABD ∽△AEB ,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可;(2)由于AB :BC=4:3,可设AB=4,BC=3,求出AC 的值,再利用(1)中结论可得2AB AD AE =⋅,进而求出AE 的值,所以tanE=ED AB BE AE=;(3)设AB=4x ,BC=3x ,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【详解】(1)证明:∵∠ABC=90°,∴90ABD DBC ∠=︒-∠,由题意知:DE 是直径,∴∠DBE=90°,∴90E BDE ∠=︒-∠,∵BC=CD ,∴∠DBC=∠BDE ,∴∠ABD=∠E ,∵∠A=∠A ,∴△ABD ∽△AEB ;(2)解:∵AB :BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC -CD=5-3=2,由(1)可知:△ABD ∽△AEB ,∴ABADBDAE AB BE ==,∴2AB AD AE =⋅,∴242AE =,∴AE=8,在Rt △DBE 中,41tan ==82BD ABE BE AE ==;(3)过点F 作FM ⊥AE 于点M ,∵:4:3AB BC =,∴设AB=4x ,BC=3x ,∴由(2)可知;AE=8x ,AD=2x ,∴DE=AE -AD=6x ,∵AF 平分∠BAC ,∴BFABEF AE =,∴4182BF xEF x ==,∵1tan 2E =,∴cos E =5,sin E =∴BD BE =∴5BE x =,∴23EF =,5BE =,∴sin 5MFE EF ==,∴85MF x =,∵1tan 2E =,∴1625ME MF x ==,∴245AM AE ME x =-=,∵222AF AM MF =+,∴22248455x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,∴8x =,∴⊙C的半径为:3x =【点睛】本题属于圆的综合题,涉及了相似三角形判定与性质、三角函数值的知识,综合性较强,解题的关键是熟练掌握有关性质.26.(1)CD=BE .理由见解析;(2)△AMN 是等边三角形.理由见解析.【分析】(1)CD=BE .利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE ≌△ACD ;然后根据全等三角形的对应边相等即可求得结论CD=BE ;(2)△AMN 是等边三角形.首先利用全等三角形“△ABE ≌△ACD”的对应角相等、已知条件“M 、N 分别是BE 、CD 的中点”、等边△ABC 的性质证得△ABM ≌△ACN ;然后利用全等三角形的对应边相等、对应角相等求得AM=AN 、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【详解】(1)CD=BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠EAD=60°,∵∠BAE=∠BAC ﹣∠EAC=60°﹣∠EAC ,∠DAC=∠DAE ﹣∠EAC=60°﹣∠EAC ,∴∠BAE=∠DAC ,在△ABE 和△ACD 中,=AB AC BAE DAC AE AD =⎧⎪∠∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS )∴CD=BE(2)△AMN 是等边三角形.理由如下:∵△ABE ≌△ACD ,∴∠ABE=∠ACD .∵M 、N 分别是BE 、CD 的中点,∴BM=CN∵AB=AC ,∠ABE=∠ACD ,在△ABM 和△ACN 中,=BM CN ABE ACD AB AC =⎧⎪∠∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ).∴AM=AN ,∠MAB=∠NAC .∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN 是等边三角形【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.27.(1)t=209;(2)y=-236105t t +;(3)1:4;(4)t=32【分析】(1)当PQ ∥MN 时,可得:CP CQ PA QB =,从而得到:45t t t t -=-,解方程求出t 的值;(2)作PD BC ⊥于点D ,则可以得到CPD CBA ∽,根据相似三角形的性质可以求出3(4)5PD t =-,CQ t =,利用三角形的面积公式求出S 与t 的关系式;(3)根据S △QMC :1:4ABQP S =四边形可以得到关于t 的方程,解方程求出t 的值;(4)作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,利用相似三角形的性质可以得到:2123()55t -16999()()5555t t =-+,解方程求出t 的值.【详解】解:(1)如图所示,若PQ ∥MN ,则有CP CQ PA QB =,∵CQ PA t ==,4CP t =-,5QB t =-,∴45t t t t-=-,即22209t t t -+=,解得209t =(2)如图所示,作PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCB BA =,∵3BA =,4CP t =-,5BC =,∴453tPD-=,∴3(4)5PD t =-又∵CQ t =,∴△QMC 的面积为:()21336425105y t t t t=⨯-=-+(3)存在2t =时,使得S △QMC :1:4ABQP S =四边形理由如下:∵PM ∥BC ∴236105PQC QMC S S t t∆∆==-+∵S △QMC :1:4ABQP S =四边形,∴S △PQC :S △ABC =1:5,∵3462ABC S ⨯== .∴236:61:5105t t ⎛⎫-+= ⎪⎝⎭∴2440t t -+=∴122t t ==∴存在当2t =时,S △QMC :1:4ABQP S =四边形;(4)存在某一时刻32t =,使PQ MQ⊥理由如下:如图所示,作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCDCB BA CA==∵3BA =,4CP t =-,5BC =,4CA =,∴4534tPD CD-==,∴3(4)5PD t =-,4(4)5CD t =-∵PQ ⊥MQ ,∴△PDQ ∽△QEM ,∴PD DQQE EM =,即··PD EM QE DQ=∵3123(4)555EM PD t t ==-=-,4169(4)555DQ CD CQ t t t =-=--=-,4995[(4)]555QE DE DQ t t t =-=---=+,∴2123()55t -16999()()5555t t =-+,即2230t t -=,∴32t =,0t =(舍去)∴当32t =时,使PQ ⊥MQ .【点睛】本题考查相似三角形的综合运用;一元二次方程的应用.。
2023-2024学年浙江省宁波市镇海区蛟川书院九年级(上)期末数学试卷(含解析)
2023-2024学年浙江省宁波市镇海区蛟川书院九年级(上)期末数学试卷一、选择题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若a>b,下列不等式不一定成立的是( )A. a−2023>b−2023B. −2023a<−2023bC. ac >bcD. a+c>b+c2.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为( )A. 160x +400(1+20%)x=18 B. 160x+400−160(1+20%)x=18C. 160x +400−16020%x=18 D. 400x+400−160(1+20%)x=183.若0<a<1,则a2+1a2−2÷(1+1a)×11+a可化简为( )A. 1−a1+a B. a−11+aC. 1−a2D. a2−14.四个电子宠物排座位,一开始,小鼠,小猴,小兔,小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换位置,…,这样一直下去,第2024次交换位置后,小鼠所在的座号是( )A. 1B. 2C. 3D. 45.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道( )A. 15B. 20C. 25D. 306.已知x,y为正整数,且4x+y整除4y+x,则yx( )A. 所有的和为14.5B. 所有的和为15.5C. 可能4组取值D. 可能5组取值7.若关于x的一元二次方程x2+kx+4k2−3=0的两个实数根分别是x1,x2,且满足x1+x2=x1⋅x2.则k的值为( )A. −1或34B. −1 C. 34D. 不存在8.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=34CG2;③若AF=2DF,则BG=6GF.其中正确的结论( )A. 只有①②B. 只有①③C. 只有②③D. ①②③9.如图,在△ABP中,C、D分别是PA、PB上任意一点,连接AC、BD,M、N分别是AC、BD的中点,若S四边形ABCD=2024,则S△PMN=( )A. 20243B. 506C. 20245D. 不确定10.表中所列x,y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7.x…x1x2x3x4x5x6x7…y…7m14k14m7…根据表中提供的信息,有以下四个判断:①a<0;②7<m<14;③当x=x2+x62时,y的值是k;④b2≥4a(c−k);其中判断正确的有个.( )A. 1B. 2C. 3D. 4二、填空题:本题共6小题,每小题7分,共42分。
浙教版2022-2023学年九年级上学期期末数学模拟测试卷(四)(解析版)
浙教版2022-2023学年九年级上学期期末数学模拟测试卷(四)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.将抛物线y=x2﹣2x﹣3沿x轴折得到的新抛物线的解析式为()A.y=﹣x2+2x+3B.y=﹣x2﹣2x﹣3C.y=x2+2x﹣3D.y=x2﹣2x+3【答案】A【解析】抛物线y=x2﹣2x﹣3关于x轴对称的抛物线的解析式为:﹣y=x2﹣2x﹣3,即y=﹣x2+2x+3,故答案为:A。
2.如图,点A,B,C,D,E在⊙O上,AÊ的度数为60°,则∠B+∠D的度数是()A.180°B.120°C.100°D.150°【答案】D【解析】如图,连接AB,⌢为60°∵AE∴∠ABE=30°∵点A,B,C,D在⊙O上∴四边形ABCD是圆内接四边形∴∠ABC+∠ADC=180°∴∠ABE+∠EBC+∠ADC=180°∴∠EBC+∠D=180°-∠ABE=180°-30°=150°故答案为:D.3.如图,正方形ABCD中,E是CD的中点,P是BC边上的一点,下列条件中,不能推出ΔABP 与ΔECP相似的是()A.∠APB=∠EPC B.∠APE=90∘C.P是BC的中点D.BP:BC=2:3【答案】C【解析】A. ∠APB=∠EPC,根据正方形性质得到∠B=∠C,可以得到ΔABP∽ΔECP,不合题意;B. ∠APE=90∘,根据正方形性质得到∠B=∠C,根据同角的余角相等,得到∠APB=∠PEC,可以得到 ΔABP ∽ ΔPCE ,不合题意;C. P 是 BC 的中点,无法判断 ΔABP 与 ΔECP 相似,符合题意;D. BP:BC =2:3 ,根据正方形性质得到 AB:BP =EC:PC =3:2 ,又∵∠B=∠C ,可以得到 ΔABP ∽ ΔECP ,不合题意. 故答案为:C.4A .2700B .2780C .2880D .2940 【答案】C【解析】∵96100×100%=96%,287300×100%≈96%,770800×100%≈96%,9581000×100%≈96%,19232000×100%≈96%, ∴3000×96%=2880, 故答案为:C .5.如图,△ABC 内接于⊙O ,OD ⊥AB 于D ,OE ⊥AC 于E ,连结DE .且DE = 3√22,则弦BC 的长为( )A .√2B .2 √2C .3 √2D .√6 【答案】C【解析】∵OD ⊥AB ,OE ⊥AC , ∴AD =BD ,AE =CE ,∴BC =2DE =2× 3√22=3 √2 故答案为:C .6.已知二次函数y =﹣2ax 2+ax ﹣4(a >0)图象上三点A (﹣1,y 1)、B (1,y 2)、C (2,y 3),则y 1,y 2,y 3的大小关系为( ) A .y 1<y 3<y 2 B .y 3<y 1<y 2 C .y 1<y 2<y 3 D .y 2<y 1<y 3 【答案】B【解析】∵y =﹣2ax 2+ax ﹣4(a >0),∴抛物线的开口向下,对称轴为直线x =﹣a 2×(−2a)=14, ∴当x >14时,y 随x 的增大而减小,∵点A (﹣1,y 1)关于对称轴的对称点是(32,y 1),而1<32<2,∴y 3<y 1<y 2. 故答案为:B.7.如图,扇形AOB 圆心角为直角,OA =10,点C 在AB⌢上,以OA ,CA 为邻边构造▱ACDO ,边CD 交OB 于点E ,若OE =8,则图中两块阴影部分的面积和为( )A .10π﹣8B .5π﹣8C .25π﹣64D .50π﹣64【答案】C【解析】连接OC .∵四边形OACD 是平行四边形, ∴OA ∥CD ,∴∠OEC+∠EOA =180°, ∵∠AOB =90°, ∴∠OEC =90°,∴EC =√OC 2−OE 2=√102−62 =8,∴S 阴=S 扇形AOB ﹣S 梯形OECA = 90π×102360−12×(6+10)×8=25π﹣64. 故答案为:C.8.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则sinB 的值为( )A .45B .35C .43D .23【答案】B【解析】过点C 作CD ⊥AB 于点D ,AB= √22+42= 2 √5 ,BC= √22+12=√5 ,∵S △ABC = 12 ×3×2= 12 ×2 √5 ×CD , ∴CD= 3√55,∴sinB= CD BC =3√55√5=35 . 故答案为:B.9.已知二次函数y =ax 2+bx +c −2(a ≠0)的图像如图所示,顶点为(−1,0)则下列结论: ①abc <0;②b 2−4ac =0; ③a <−2;④4a −2b +c <0. 其中正确结论的个数是( )A .1B .2C .3D .4 【答案】C【解析】∵二次函数y =ax 2+bx +c −2开口向下,顶点坐标(−1,0)∴a <0 ,−b2a=−1;∴b =2a <0当x =0时,由图像可知:y =c −2<−2 故c <0∴abc <0 ;①符合题意;∵该抛物线的图像与x 轴仅有一个交点(−1,0)∴关于x 的方程ax 2+bx +c −2=0有两个相等的实数根; ∴b 2−4a(c −2)=0;②不符合题意;由图像可知:关于x 的方程ax 2+bx +c −2=0的实数根为:x 1=x 2=−1 ∴a −b +c −2=0将b =2a 代入得:a =c −2<−2 ;③符合题意; 当x =−2时,y =4a −2b +c −2由图像对称性可知:4a −2b +c −2=c −2<−2 ∴4a −2b +c <0;④符合题意; 故答案为:C . 10.如图,点 A 1、A 2、A 3、A 4 在射线 OA 上,点 B 1、B 2、B 3 在射线 OB 上,且 A 1B 1//A 2B 2//A 3B 3 , A 2B 1//A 3B 2//A 4B 3 .若 △A 2B 1B 2、△A 3B 2B 3 的面积分别为1,4,则图中三个阴影三角形面积之和为 ( )A .8B .9C .10D .10.5【答案】D【解析】由已知得: △B 1A 2B 2~△B 2A 3B 3,S △B 1A 2B 2S △B 2A 3B 3=14 ,∴B 1B 2B 2B 3=12,∴A 1B 1A 2B 2=A 1A 2A 2A 3=B 1B 2B 2B 3=12 ,设 A 1B 1,A 2B 2 之间的距离为h ,则: 12A 2B 2·ℎ=1 ,∴A 2B 2=2ℎ,∴A 1B 1=12A 2B 2=1ℎ,∴S △A 1B 1A 2=12A 1B 1·ℎ=12×1ℎ×ℎ=12,∴S △A 2B 2A 3=S △A 1B 1A 2÷(A 1A 2A 2A 3)2=12÷14=2 ,同理有 S △A 3B 3A 4=S △A 2B 2A 3÷14=2×4=8 ,∴图中三个阴影三角形面积之和为:S△A1B1A2+S△A2B2A3+S△A3B3A4=12+2+8=10.5,故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.若扇形的弧长为34π,圆心角为45°,则该扇形的半径为.【答案】3【解析】设扇形所对应圆的半径为R,由扇形的面积公式,有:12×34πR=45°πR2360°解得R=3.故答案为:3.12.如图,甲,乙两个转盘分别被三等分、四等分,各转动一次,停止转动后,将指针指向的数字分别记为a,b,使抛物线y=ax2−2x+b与x轴有公共点的概率为.【答案】112【解析】若抛物线y=ax2−2x+b与x轴有公共点,则令y=0,得到抛物线对应的一元二次方程ax2−2x+b=0有实根,∴Δ=(−2)2−4ab≥0,解得ab≤1,画树状图得:由树状图知:一共有12种等可能的结果,其中满足ab≤1的有1种结果,∴使抛物线y=ax2−2x+b与x轴有公共点的概率为:112,故答案为:112.13.如图,将三角形纸片ABC折叠,使点B、C都与点A重合,折痕分别为DE、FG.已知∠ACB=15°,AE=EF,DE=√3,则BC的长为.【答案】4+2√3【解析】∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AF=FC,∠FAC=∠C=15°,∴∠AFE=30°,又AE=EF,∴∠EAF=∠AFE=30°,∴∠AEB=60°,∴△ABE是等边三角形,∠AED=∠BED=30°,∴∠BAE=60°,∵DE= √3,∴AE=BE=AB=DEcos30°=2,∴BF=BE+EF=4,∠BAF=60°+30°=90°,∴FC=AF= √BF 2−AB 2 = 2√3 , ∴BC=BF+FC= 4+2√3 , 故答案为: 4+2√3 .14.在半径为5的圆内放置正方形ABCD ,E 为AB 的中点,EF ⊥AB 交圆于点F ,直线DC 分别交圆于点G ,H ,如图所示.若AB =4,EF =DG =CH ,则GH 的长为 .【答案】4√2+4【解析】∵四边形ABCD 是正方形, ∴AB ∥CD ,∠BCD =90°, ∴∠FBE =∠H ,∠BCH =180°﹣90°=90°, ∵EF ⊥AB , ∴∠FEB =90°, ∴∠FEB =∠BCH , ∴△FEB ∽△BCH , ∴EF BC =BE CH∵AB =4,E 为AB 的中点, ∴BE =2, ∴EF 4=2CH ∴EF•CH =8, ∵EF =CH , ∴EF 2=8,∴EF =2 √2 或EF =﹣2 √2 (舍去), ∴EF =DG =CH =2 √2 ,∴GH =DG+DC+CH =2 √2 +4+2 √2 =4 √2 +4. 故答案为:4√2+4.15.如图1,一张矩形纸片ABCD ,点E 、F 分别在AB ,CD 上,点G ,H 分别在AF 、EC 上,现将该纸片沿AF ,GH ,EC 剪开,拼成如图2所示的矩形,已知DF :AD =5:12,GH =6,则AD 的长是 .【答案】10【解析】如图,设DF =5x ,依题意得AD =12x ,AF =√AD 2+DF 2=13x ,在图2中∵∠CHA =∠FDA =90°,∠CAH =∠FAD ∴△ADF ∽△AHC ∴AD AH =DF HC =AF AC ,∴12x 6+12x =5x HC =13xFC+13x, ∴HC =5x +52,FC =132,∴拼成如图2所示的矩形面积=AH ×HC =(12x +6)(5x +52)=60(x +12)2,在图1中CD =DF +FC =5x +132,原矩形面积=AD ×DC =12x(5x +132)∴60(x +12)2=12x(5x +132)解得x =56∴AD =12x =12×56=10 故答案为:10.16.如图,在Rt △ABC 中,∠ACB=90°,AC<BC ,CD 平分∠ACB 交AB 于点D ,以DB 为直径作⊙O ,分别交CD ,BC 于点E ,F ,连结BE ,EF .则∠EBF= 度;若DE=DC , BC=8,则EF 的长为【答案】45;2√5【解析】连接DF ,过点E 作EG ⊥BC 于点G ,∵BD 是直径, ∴∠CEB=90°, ∵∠ACB=90°,CD 平分∠ACD , ∴∠DCF=12∠ACB=45°,∴∠EBF=90°-∠DCF=90°-45°=45°;∵BD 是直径, ∴∠DFG=90°, ∴DF ⊥BC , ∴DF ∥FG , ∵DE=DC , ∴CF=FG ,∵∠FCG=∠EBC=45°, ∴EC=BE ,在Rt △CEB 中,∠EBC=45°,BC=8,∴BE=CBsin ∠EBC=8sin45°=8×√22=4√2; 在Rt △EBG 中EG=CG=BEsin ∠EBC=4√2sin45°=4√2×√22=4,∴FG=CG-4, ∴FG=2在Rt △EFG 中EF =√FG 2+EG 2=√22+42=2√5. 故答案为:45,,2√5三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.一个袋中装有3个红球,5个白球,7个黑球,每个球除颜色外其余完全相同. (1)求从袋中随机摸出一个球是白球的概率;(2)从袋中摸出3个白球和a 个红球,再从剩下的球中摸出一个黑球的概率为710,求a 的值.【答案】(1)解:由题意,袋中球的总数为:3+5+7=15(个),其中5个白球,因此从袋中随机摸出一个球是白球的概率为:515=13.(2)解:摸出3个白球和a 个红球后,袋中球的总数为:15−a −3=12−a (个),其中7个黑球,∵从剩下的球中摸出一个黑球的概率为710,∴712−a =710,去分母,化为整式方程得 :10=12−a ,解得a =2.经检验,a =2是原方程的解.故a 的值为2.18.如图, AB 是 ⊙O 的直径,点 C 为圆上一点,点 D 为 CAB ⌢ 的中点,连结 AD ,作 DE ⊥AB交 BC 的延长线于点 E .(1)求证: DE =EB .(2)连结 DO 并延长交 BC 于点 F ,若 CF =2CE , BD =5 ,求 ⊙O 的半径.【答案】(1)证明:∵点D 为 CAB⌢ 的中点, ∴DC⌢=DB ⌢ , ∴∠DBC=∠A , ∵AB 为直径, ∴∠ADB=90°, ∵DE ⊥AB ,∴∠A+∠DBA=∠EDB+∠DBA=90°, ∴∠A=∠EDB , ∴∠DBC=∠EDB , ∴DE=EB ;(2)解:如图:∵D 为 CAB⌢ 的中点, ∴DF ⊥BC ,CF=BF , ∵CF=2CE ,设CE=x ,CF=BF=2x ,则DE=EB=5x ,DF=4x , 在Rt △DFB 中, DF 2+BF 2=BD 2,即16x 2+4x 2=52,解得:x= √52,∴BF= √5 ,DF=2 √5 , DF BD =2√55,∵∠A=∠EDB=∠DBF ,∴sinA=sin ∠DBF =DF DB =2√55,∴DB 2r =2√55, ∴r =5√54.答:半径是 5√54.19.已知:如图,在梯形ABCD 中,AD//BC ,∠BCD=90º,对角线AC 、BD 相交于点E ,且AC ⊥BD .(1)求证: ;(2)点F 是边BC 上一点,联结AF ,与BD 相交于点G .如果∠BAF=∠DBF ,求证:.【答案】(1)证明:∵AD//BC ,∠BCD=90º,∴∠ADC=∠BCD=90º.又∵AC ⊥BD ,∴∠ACD+∠ACB=∠CBD+∠ACB=90º.∴∠ACD=∠CBD .∴△ACD ∽△DBC .∴AD CD =CD BC,即CD 2=BC ×AD (2)证明:∵AD//BC ,∴∠ADB=∠DBF .∵∠BAF=∠DBF ,∴∠ADB=∠BAF .∵∠ABG=∠DBA ,∴△ABG ∽△DBA .∴AG AD =AB BD .两边同时平方得: AG 2AD 2=AB 2BD2 .又由于△ABG ∽△DBA ,∴BG AB =AB BD.∴AB 2=BG ×BD .∴AG 2AD 2=AB 2BD 2=BG×BD BD2=BG BD 20.如图,一个书架上放着8个完全一样的长方体档案盒,其中左边7个档案盒紧贴书架内侧竖放,右边一个档案盒自然向左斜放,档案盒的顶点 D 在书架底部,顶点 F 靠在书架右侧,顶点 C 靠在档案盒上,若书架内侧长为 60cm , ∠CDE =53° ,档案盒长度 AB =35cm .(参考数据:sin53°≈0.80 , cos53°≈0.60 , tan53°≈0.75 )(1)求点 C 到书架底部距离 CE 的长度; (2)求 ED 长度;(3)求出该书架中最多能放几个这样的档案盒. 【答案】(1)解:∵∠CED=90°,∠CDE=53°,CD=AB=35cm ,∴sin53°=CE CD, ∴CE≈35×0.80=28cm ; (2)解:∵∠CED=90°,∠CDE=53°,CD=AB=35cm ,∴cos53°=DE CD, ∴DE≈35×0.60=21cm ; (3)解:如图,∵BG=60cm ,BE=AB=35cm ,DE=21cm , ∴DG=4cm , ∵∠CDE=53°, ∴∠FDG=37°, ∴∠DFG=53°,∴DF=DG sin53°≈40.8sin53°=5cm , ∴60÷5=12, ∴该书架中最多能放12个这样的档案盒.21.如图,抛物线y =x 2+bx +c 与x 轴交于A (-1,0)和B (3,0)两点,交y 轴于点E .(1)求此抛物线的解析式;(2)若直线y =x +1与抛物线交于A ,D 两点,求点A ,D 的坐标; (3)请直接写出当一次函数值小于二次函数值时,x 的取值范围. 【答案】(1)解:∵ 抛物线y =x 2+bx +c 与x 轴交于A (-1,0)和B (3,0)两点,∴{1−b +c =09+3b +c =0,整理得{−b +c =−13b +c =−9 解得:{b =−2c =−3所以抛物线为:y =x 2−2x −3(2)解:由题意得:{y =x +1y =x 2−2x −3∴x 2−2x −3=x +1,整理得:x 2−3x −4=0, 解得:x 1=−1,x 2=4, 当x 1=−1, 则y 1=0,当x 2=4, 则y 2=5,所以方程组的解为:{x =−1y =0或{x =4y =5,所以两个函数的交点坐标为:A(−1,0),D(4,5), (3)x <−1或x >4 【解析】(3)当一次函数值小于二次函数值时, 则一次函数的图象在二次函数的图象的下方, 此时:x <−1或x >4. 22.问题探究(1)如图1,已知锐角△ABC 中,点D 在BC 边上,当线段AD 最短时,请你在图中画出点D 的位置.(2)若一个四边形的四个顶点分别在一个三角形的三条边上,则称这个四边形为该三角形的内接四边形.如图2,在Rt △ABC 中,AB =6,BC =8,∠B =90°.矩形BEFG 是△ABC 的内接矩形,若EF =2,则矩形BEFG 的面积为 . 如图3,在△ABC 中,AB =6 √2 ,BC =8,∠B =45°,矩形DEFG 是△ABC 的一个内接矩形且D 、E 在边BC 上.若EF =2,求矩形DEFG 的面积; 问题解决:(3)如图4,△ABC 是一块三角形木板余料,AB =6,BC =8,∠B =30°,木匠师傅想利用它裁下一块矩形DEFG 木块,矩形DEFG 是△ABC 的一个内接矩形且D 、E 在边BC 上,请在图4中画出对角线DF 最短的矩形DEFG ,请说明理由,并求出此时DF 的长度. 【答案】(1)解:在图1中,过点A 作AD ⊥BC 于点D(2)解:在图2中,∵四边形BEFG 为矩形, ∴EF ∥AB , ∴△CEF ∽△CBA , ∴ = ,即=, ∴CE =, ∴BE =BC ﹣CE =, ∴S 矩形BEFG =BE•EF =×2=. 故答案为: . 在图3中,过点A 作AM ⊥BC 于点M ,则AM = AB =6, 同理可得出:△BDG ∽△BMA ,△CEF ∽△CMA , ∴ = , = ,即 = ,=, ∴BD =BM ,CE =CM , ∴DE =BC ﹣BD ﹣CE =BC =,∴S 矩形BEFG =DE•EF =×2=(3)解:在图4中,过点A 作AN ⊥BC 于点N ,则AN = 12AB =3.设EF =x (0<x <3),由(2)可知:DE =BC ﹣ EF AN •BC =8﹣ 8x 3 = 83(3﹣x),∴DF 2=DE 2+EF 2, = 649 (3﹣x )2+x 2,= 739 x 2﹣ 1283x+64,= 739 (x ﹣ 19273 )2+ 57673 .∵739>0, ∴当x = 19273 时,DF 2取最小值,最小值为 57673,∴DF 的最小值为 24√7373.23.如图,已知抛物线与x 轴交于A 、B 两点,其中A (﹣1,0),顶点C (1,﹣1),点E 为对称轴上点,D 、F 为抛物线上点(点D 位于对称轴左侧),且四边形CDEF 为正方形.(1)求该抛物线的解析式; (2)求正方形CDEF 面积;(3)如图2、图3,连接DF ,且与CE 交于点M ,与y 轴交于点N ,点P 为抛物线上位于DF 下方的点,点Q 为直线BN 上点,当△MPQ 是以点M 为直角顶点的等腰直角三角形时,求点P 坐标. 【答案】(1)解:∵抛物线的顶点为C(1,−1),设该抛物线的解析式为y =a(x −1)2−1,将A(−1,0)代入y =a(x −1)2−1中,解得a =14,∴该抛物线的解析式为y =14(x −1)2−1,即y =14x 2−12x −34.(2)解:如图1,过点F作FR⊥EC,垂足为R,设F点的坐标为(t,14t2−12t−34),则R点的坐标为(1,14t2−12t−34),∴RC=14t2−12t+14,RF= t−1.∵四边形CDEF是正方形,∴RF=RC,∴14t2−12t+14=t−1,解得t=1(舍去)或t=5,∴F(5,3),RF=5−1=4,∴CF2=2RF2=32,∴正方形CDEF的面积是32.(3)解:由题可知,B(3,0),N(0,3),M(1,3),∴直线BN的解析式为y=﹣x+3,设Q点的坐标为(m,3﹣m),①如图2,当Q点在直线DF下方时,过点Q作QG⊥DF交于点G,作PT⊥DF交于点T,∴∠MTP=∠QGM= 90°.∵△PQM是等腰直角三角形,∴∠TMP+∠GMQ=90°,∠TMP+∠MPT=90°,∴∠MPT=∠GMQ,∵MP=MQ,∴△MTP≌△QGM(AAS),∴MG=PT,MT=GQ,∴PT=MG=m﹣1,MT=GQ=m,∴P(1﹣m,4﹣m),∵P点在抛物线上,∴4﹣m=14(1﹣m)2﹣12(1﹣m)﹣34,解得m=﹣2±2√6,∵m>0,∴m=﹣2+2√6,∴P(3﹣2√6,6﹣2√6);②如图3,当Q点在直线DF上方时,过点Q作QS⊥ME交于S点,过点P作PK⊥ME交于K点,∴∠QSM=∠MKP=90°.∵△PQM是等腰直角三角形,∴∠QMS+∠MQS=90°,∠QMS+∠PMK=90°,∴∠MQS =∠PMK.∵MQ=MP,∴△QMS≌△MPK(AAS),∴QS=MK,MS=PK,∵QS=1﹣m=MK,SM=PK=﹣m,∴P(m+1,m+2),∵P点在抛物线上,∴2+m=14(1+m)2﹣12(1+m)﹣34,解得m=﹣2或m=6,∵m<0,∴m=﹣2,∴P(﹣1,0);综上所述:当△MPQ是以点M为直角顶点的等腰直角三角形时,点P坐标为(﹣1,0)或(3﹣2√6,6﹣2√6).24.如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为BC⌢上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:∠OAD=60°;②求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.【答案】(1)解:①如图,连接OD,则OA=OD∵AB=PA+PB=1+3=4∴OA= 12AB=2∴OP=AP=1即点P是线段OA的中点∵CD⊥AB∴CD垂直平分线段OA∴OD=AD∴OA=OD=AD即△OAD是等边三角形∴∠OAD=60°②连接AQ∵AB是直径∴AQ⊥BQ根据圆周角定理得:∠ABQ=∠ADH,∴cos∠ABQ=cos∠ADH∵AH⊥DQ在Rt△ABQ和Rt△ADH中cos∠ABQ=BQAB=cos∠ADH=DHAD∴BQDH=ABAD∵AD=OA=2,AB=4∴BQDH=ABAD=42=2(2)解:连接AQ、BD与(1)中的②相同,有BQDH=ABAD∵AB是直径∴AD⊥BD∴∠DAB+∠ADP=∠DAB+∠ABD=90°∴∠ADP=∠ABD∴Rt△APD∽Rt△ADB∴PAAD=ADAB∵AB=PA+PB=1+m∴AD=√PA·AB=√1+m∴BQDH=ABAD=1+m√1+m=√1+m(3)解:由(2)知,BQDH=√1+m∴BQ= √1+m·DH即BQ2=(1+m)DH2∴BQ2﹣2DH2+PB2= (1+m)DH2−2DH2+m2=(m−1)DH2+m2当m=1时,BQ2﹣2DH2+PB2是一个定值,且这个定值为1,此时PA=PB=1,即点P与圆心O重合∵CD⊥AB,OA=OD=1∴△AOD是等腰直角三角形∴∠OAD=45°∵∠OAD与∠Q对着同一条弧∴∠Q=∠OAD=45°故存在半径为1的圆,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值1,此时∠Q的度数为45.。
浙江省宁波市南三县2022-2023学年九年级上学期期末质量检测数学(含答案)
2022学年第一学期期末抽测九年级数学试题一、选择题(10小题,每小题4分,共40分)1.若一个正n 边形的每个外角为30°,则这个正n 边形的边数是( )A .10B .11C .12D .142.如图,在Rt ABC △中,90C ∠=︒,5AB =,3AC =,则cos B 的值为( )A .35B .45C .34D .54 3.要将抛物线23y x =-平移后得到抛物线()2313y x =-++,下列平移方法正确的是( )A .向左平移1个单位,再向上平移3个单位B .向左平移1个单位,再向下平移3个单位C .向右平移1个单位,再向上平移3个单位D .向右平移1个单位,再向下平移3个单位4.利用六张编号为1,2,3,4,5,6的扑克牌进行频率估计概率的试验中,同学小张统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A .抽中的扑克牌编号是3的概率B .抽中的扑克牌编号是3的倍数的概率C .抽中的扑克牌编号大于3的概率D .抽中的扑克牌编号是偶数的概率 5.二次函数242y kx x =-+的图象与x 轴有两个交点,则k 满足的条件是( )A .2k >B .3k =C .2k <且0k ≠D .2k ≤6.如图,在Rt ABC △中,90C ∠=︒,8AC =,14BC =,点D 在边BC 上,6CD =,以点D 为圆心作D ,其半径长为r ,要使点A 恰在D 外,点B 在D 内,则r 的取值范围是( )A .810r <<B .68r <<C .610r <<D .214r << 7.如图,在O 中,点A 、B 、C 在圆上,点D 在AB 的延长线上,已知130AOC ∠=︒,则CBD ∠=( )A .68°B .65°C .50°D .70°8.如图,在□ABCD 中,对角线AC ,BD 交于点O ,E 为AD 三等分点且AE DE >,连接CE 交BD 于点F ,若DEF △的面积为1,则□ABCD 的面积为( )A .16B .20C .24D .18 9.如图所示为二次函数()20y ax bx c a =++≠的图象,对称轴是直线1x =,下列结论:①24b ac >;②930a b c ++>;③0abc <;④30a c +<;其中正确的个数是( )A .1B .2C .3D .410.如图,在平行四边形FBCE 中,点J ,G 分别在边BC ,EF 上,JG BF ∥,四边形ABCD ~四边形HGF A ,相似比3k =,则下列一定能求出BIJ △面积的条件是( )A .四边形HDEG 和四边形AHGF 的面积之差B .四边形ABCD 和四边形HDEG 的面积之差C .四边形ABCD 和四边形ADEF 的面积之差D .四边形JCDH 和四边形HDEG 的面积之差 二、填空题(6小题,每小题5分,共30分)11.若2x y =,则23x y x y +-的值是______.12.从π、0,137,1-中任取一个数,取到无理数的概率是______.13.抛物线()2212y x =++的顶点坐标是______.14.如图,小明借助太阳光线测量树高.在早上8时小明测得树的影长为2m ,下午3时又测得该树的影长为8cm ,且这两次太阳光线刚好互相垂直,则树高为______m .15.在圆O 中,A ,B ,C ,E 四点在圆上,OC AB ⊥,8AB =,2CD =,则CE 的值为______.16.如图,在正方形ABCD 中,点E 在AB 上,3AE BE =,连接CE ,取CE 中点F ,过F 作GF CF ⊥且使得GF CF =,连接AG 并延长,将CFG △绕点C 旋转到CF G ''△,当A ,G ,G ',三点共线且AG =时,KG '=______.三、解答题(8小题,共76分)17.(8分)23cos30tan 602sin 30sin 45︒-︒+︒-︒.18.(8分)如图,在正方形网格中,每个小正方形边长为1,当三角形的三个顶点都在正方形网格线的交点上时,我们称三角形为格点三角形.(1)如图1,请在图1.(2)请在图2中画一个格点三角形与原三角形相似且有一条公共边,并写出所画三角形与原三角形相似比.相似比为:______19.(8分)随着教育部“双减”政策的深入,某校开发了丰富多彩的课后托管课程,并于开学初进行了学生自主选课活动.小明和小王分别打算从以下四个特色课程选择一个参加:A .竞技乒乓,B .围棋博弈,C .名著阅读,D .街舞少年.(1)小明选择街舞少年的概率为______.(2)用画树状图或列表的方法求小明和小王选择同一个课程的概率.20.(10分)如图1是一个简易手机支架,由水平底板DE 、侧支撑杆BD 和手机托盘长AC 组成,侧面示意图如图2所示.已知手机托盘长10AC cm =,侧支撑杆10BD cm =,75CBD ∠=︒,60BDE ∠=︒,其中点A 为手机托盘最高点,支撑点B 是AC 的中点,手机托盘AC 可绕点B 转动,侧支撑杆BD 可绕点D 转动.(1)如图2,求手机托盘最高点A 离水平底板DE 的高度h (精确到0.1cm ).(2)如图3,当手机托盘AC 绕点B 逆时针旋转15︒后,再将BD 绕点D 顺时针旋转α,使点C 落在水平底板DE 上,求α(精确到0.1︒).(参考数据:tan 26.60.5︒≈ 1.41≈ 1.73≈)21.(本题10分)生鲜水果店采购了某品牌樱桃,进价每千克50元.而据统计发现樱桃的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系2200y x =-+.(1)该生鲜水果店要想每日获得1200元的利润,则樱桃的售价每千克应定为多少元?(2)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?22.(本题10分)如图,在ABC △中,以边AB 为直径作O 分别交BC ,AC 于点D ,E ,点D 是BC 中点,连结OE ,OD .(1)求证:ABC △是等腰三角形.(2)若6AB =,40A ∠=︒,求AE 的长和扇形EOD 的面积.23.(本题12分)已知二次函数2y ax bx c =++的图像经过三点()1,0A -,()4,0B ,()0,3C . (1)求二次函数的表达式.(2)二次函数的图象上若有两点17,2y ⎛⎫ ⎪⎝⎭,()2,m y 且12y y <,根据图象直接写出m 的取值范围. (3)点D 是第一象限内二次函数的图象上的一动点,作DE y ∥轴交BC 于点E ,作DF BC ⊥于点F .当D 点运动时,求DEF △面积的最大值.24.(本题14分)如图1,ABC △为圆O 的内接三角形,ABC △的三条角平分线交于点I ,延长AI 交圆O 于点D ,连结DC .(1)求证:DI DC =.(2)如图2,连结BD ,设BC 与AD 交于点P ,若OI AD ⊥,8AB =,求BP 的长.(3)如图3,四边形ABCD 内接于圆O ,连接对角线AC ,BD 交于点E ,且AC 平分BAD ∠,过B 作BF CD ∥交AC 于点F ,BG 平分ABD ∠交AC 于点G ,若1sin 3BAC ∠=,6AD =,求FG 的最大值,并求此时圆O 的半径.2022学年第一学期九年级期末揣抽测数学参考答案与评分标准一、选择题(10小题,每小题4分,共40分)二、填空题(6小题,每小题4分,共24分)11.45-12.2513.()1,2-14.415.16三、解答题(8小题,共78分)17.(8分)23cos30tan602sin30tan45︒-︒+︒-︒解:原式2132222⎛⎫=⨯⨯- ⎪⎪⎝⎭12=18.(8分)(图1、图2画对各得3分,填空2分)图1图2相似比为:1:19.(8分)(1)14(2)画树状图如下:共有16种等可能的结果,其中小明和小王选择同一个课程的结果有4种,∴小明和小王选择同一个课程的概率为41164=.20.(10分)(1)12.2h cm =≈ (2)33.4︒21.(本题10分)解:(1)由题意可列式:()()2200501200x x -+-= 解得:170x =,280x = 答:樱桃的售价每千克定为70元或80元时日获得1200元的利润.(2)设销售额为W 元()()220050W x x =-+-()22751250x =--+ 当75x =时,1250W =最大元 答:当每千克樱桃的售价定为75元时,日销售利润最大,最大利润是1250元.22.(本题10分)解:(1)连结AD ,∵AB 为O 直径 ∴90ADB ∠=︒,即AD BC ⊥ 又∵D 是BC 中点 ∴AD 是线段BC 的中垂线∴AB AC =(2)由题可得100AOE ∠=︒ 由弧长公式得:弧100351803AE ππ⨯== (3)由题可得40EOD ∠=︒ 由弧长公式得:2403360EOD S ππ⨯==扇形23.(本题12分)解:由交点式设二次函数表达式为()()14y a x x =+- 把()0,3C 带入得:34a =- ∴二次函数表达式为()()2339143444y x x x x =-+-=-++ (2)有图像可知:1722m -<< (3)由题意直线BC 的解析式为334y x =-+ 设239,344D m m m ⎛⎫-++ ⎪⎝⎭,3,34E m m ⎛⎫-+ ⎪⎝⎭则()222393333332344444DE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭∴当2m =时,max 3DE =可证ABC FDE ∽△△,则得::::3:4:5EF DF DE AC AB BC == ∴53EF DE =,45DF DE = ∴211436225525DEF S DF EF DE DE DE =⋅=⋅⋅=△ 当DE 最大时,DEF S △最大,即当2m =时,max 3DE =,此时:()2max 66549252525DEF S DE ==⨯=△ 24.(本题14分)解:(1)证明:通过外角性质证明DIC DCI ∠=∠,从而得到DC DI =(2)∵OA OD =,OI AD ⊥,∴12AI DI AD ==.∵AD 平分BAC ∠,∴点D 为弧BC 的中点,∵DI DC BD ==,∴12AI BD ID AD ===.由题意可证得BDP ADB ∽△△,∴2AB AD BP BD==,∴142BP AB ==.(3)过C 作CH BD ⊥于点H ∵AC 平分BAD ∠,BG 平分ABD ∠由(2)可知BC DC CG == ∴BAC DAC CBD CDB ∠=∠=∠=∠∴1sin sin 3BAC CBD ∠=∠=设CH m =,则3CB CD CG m ===,BH DH == ∵BF CD ∥∴BFC ACD ABD ∠=∠=∠ 又∵BCF ADB ∠=∠ ∴BCF ADB ∽△△∴BC CFAD BD = ∴36m = ∴2CF = ∴23FG CG CF m =-=-∴当8m ==时,max 16FG = 此时,8BC = 作直径CP ,连接BP则1sin sin 3BAC BPC ∠=∠= ∴38PC BC == ∴半径为16。
2020年浙江省宁波市中考数学试卷(含答案)
2020年浙江省宁波市中考数学试卷(含答案)宁波市2020年初中学业水平考试数学试题姓名:__________准考证号:__________考生须知:1.全卷分试题卷I、试题卷Ⅱ和答题卷。
试题卷共6页,有三个大题,24个小题。
满分为150分,考试时间为120分钟。
2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上。
3.答题时,把试题卷I的答案在答题卷Ⅱ上对应的选项位置用2B铅笔涂黑、涂满。
将试题卷Ⅱ的答案用黑色字迹的钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效。
4.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示。
试题卷I一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求)1.-3的相反数为A。
-3B。
1/3C。
3D。
-1/32.下列计算正确的是A。
a3×a2=a6B。
(a3)2=a52C。
a6÷a3=a3D。
a2+a3=a53.2019年宁波舟山港货物吞吐量为1,120,000,000吨,比上年增长3.3%,连续11年蝉联世界首位。
数1,120,000,000用科学记数法表示为A。
1.12×108B。
1.12×109C。
1.12×1010D。
0.112×10104.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是(删除了图)5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同。
从袋中任意摸出一个球是红球的概率为A。
2/3B。
1/4C。
1/2D。
2/56.二次根式x-2中字母x的取值范围是A。
x>2B。
x≠2C。
x≥2D。
x≤27.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF。
若AC=8,BC=6,则BF的长为(删除了图)8.根据《孙子算经》中的问题,需要求解一根木条的长度。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.下列一元二次方程中没有实数根是()A .2540x x ++=B .2440x x -+=C .2320x x --=D .2230x x ++=3.从2,5,3,6,4这5个数中随机抽取一个,恰好为2的倍数的概率为()A .15B .25C .35D .454.某商品原价为225元,连续两次平均降价的百分率为a ,连续两次降价后售价为144元,下面所列方程正确的是()A .()22251144a +=B .()22251144a -=C .()222512144a -=D .()21441225a +=5.在同一平面直角坐标系内,将函数22y x -=的图象向右平移3个单位,再向下平移2个单位得到图象的顶点坐标是()A .()32-,-B .()32-,C .(3,-2)D .(3,2)6.如图,将△ABC 绕着点C 按顺时针方向旋转25°,B 点落在B′位置,点A 落在A'位置,若AC ⊥A'B',则∠BAC 的度数是()A .55°B .65°C .75°D .85°7.如图,点,,,,A B C D E 都在⊙O 上,,24BC DE BAC =∠=︒,则∠DOE=()A .24°B .42°C .48°D .72°8.一个圆锥的母线长为6,侧面展开图是半圆,则圆锥的侧面积是()A .6πB .12πC .18πD .24π9.在同一直角坐标系中,函数y ax a =+和函数22y ax x =++(a 是常数,且a≠0)的图象可能是()A .B .C .D .10.抛物线2y ax bx c =++的顶点为D(-1,3),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则以下结论:①240ac b -<;②0a b c ++<;③3c a -=;④方程220ax bx c ++-=有两个不相等的实数根;⑤若点()()1122,,,x y x y 都在该函数图象上,且1230.5x x --<<<,则123y y <<.其中正确结论的个数为()A .2个B .3个C .4个D .5个二、填空题11.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是____12.若一元二次方程220x x -=的两个根分别为12,x x ,则1212x x x x +-的值是____.13.如图,D 、E 分别是ΔABC 的边AB 、AC 上的动点,若3,8,6AE AC AB ===,且ΔADE 与ΔABC 相似,则AD 的长度是_______.14.如图,已知四边形ABCD 内接于⊙O ,E 在AD 的延长线上,∠CDE=82°,则∠ABC的度数是_____.15.已知CD 是⊙O 的一条弦,作直径AB ,使AB CD ⊥,垂足为E ,若1,6AE CD ==,则AB 的长为______.16.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.17.如图所示,抛物线23y x bx =-++与x 轴交于点A 和点B ,与y 轴交于点C ,且OA=OC ,点M 、N 是直线x=-1上的两个动点,且MN=2(点N 在点M 的上方),则四边形BCNM 的周长的最小值是______.三、解答题18.解方程:(1)2450x x --=(2)()()22320x x x +-+=19.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?20.如图所示,AB 是⊙O 直径,OD AC ⊥弦于点F ,且交⊙O 于点E ,若BEC ADO ∠=∠.(1)判断直线AD 和⊙O 的位置关系,并说明理由;(2)当54AB AC ==,时,求AD 的长.21.如图,抛物线()20y ax bx c a =++≠经过点A(2,0),B(-2,4),(-4,0),直线AB 与抛物线的对称轴交于点E .(1)求抛物线的表达式;(2)点M 在直线AB 上方的抛物线上运动,当ΔABM 的面积最大时,求点M 的坐标;(3)若点F 为平面内的一点,且以点,,,B E C F 为顶点的四边形是平行四边形,请写出符合条件的点F 的坐标.22.如图,⊙O 与△ABC 的边BC 相切于点D ,与AB 、AC 的延长线分别相切于点E 、F ,连接OB ,OC .(1)若∠ABC=80°,∠ACB=40°,求∠BOC 的度数.(2)∠BOC 与∠A 有怎样的数量关系,并说明理由.23.如图,正比例函数2y x =的图象与反比例函数k y x=的图象交于点A(m ,2)(1)求反比例函数的解析式和A 点的坐标;(2)点C 在y 轴的正半轴上,点D 在x 轴的正半轴上,直线CD 经过点A ,直线CD 交反比例函数图象于另一点B ,若OD =2OC ,求点B 的坐标.24.如图,在⊙O中,AB为弦,CD为直径,且AB⊥CD,垂足为E,P为 AC上的动点(不与端点重合),连接PD.(1)求证:∠APD=∠BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:∠AIP+∠DAI=180°;(3)在(2)的条件下,连接IC、IE,若∠APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.25.已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.26.如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)若点P是y轴上一点,当∠APB=90°时,求点P的坐标.参考答案1.B2.D3.C4.B5.C6.B7.C8.C9.D10.C11.-112.213.4或9414.82°15.1016.9517.218.(1)15=x ,21x =-.(2)12x =-,21x =.【分析】(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.(1)2450x x --=由题意得,a =1,b =﹣4,c =﹣5,∵∆=24b ac -=()()24415--⨯⨯-=36,∴46232x ±===±,∴15=x ,21x =-.(2)()()22320x x x +-+=原方程整理得,()()210x x +-=,∴20x +=或10x -=,∴12x =-,21x =.19.(1)50元或58元(2)54元【分析】(1)设每件商品的售价应为x 元,根据总利润和每件利润与件数的关系列出总利润的代数式,建立方程(x-33)[300+20(60-x)]=8500解答;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据w 和每件利润与件数的关系列出函数表达式,配方成顶点式,得到当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.(1)解:设每件商品的售价应为x 元,根据题意,得(x-33)[300+20(60-x)]=8500解得150x =,258x =,∴售价应为50元或58元;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据题意,得()333002060w x x =-+⎦-⎡⎤⎣()220216049500x x =-+-()220548820x =--+,当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.20.(1)相切,理由见解析(2)103【分析】(1)先证明∠FAO+∠AOF=90°,再根据圆周角定理证明∠BAC=∠ADO ,即可推出∠ADO+∠AOF=90°,由此得到∠DAO=90°,即可证明结论;(2)先利用垂径定理和勾股定理求出OE 的长,再证明△AOF ∽DOA ,利用相似三角形的性质求解即可.(1)解:直线AD 和⊙O 相切.理由如下:∵OD ⊥AC 于点F ,∴∠AFO=90°,在Rt △AOF 中,∠FAO+∠AOF=90°,又∵∠BEC=∠ADO ,∠BEC=∠BAC ,∴∠BAC=∠ADO ,∴∠ADO+∠AOF=90°,∴∠DAO=180°-(∠ADO+∠AOF )=180°-90°=90°,∵OA 为圆O 半径,∴直线AD 和⊙O 相切.(2)解:由垂径定理可知,122AF AC ==,又∵OA=12AB=2.5,由勾股定理可知 1.5OF ==,∵直线AD 和⊙O 相切,∴∠DAB=90°=∠AFO ,又∵∠AOD=∠AOF ,∴△AOF ∽△DOA ,∴OF AF OA AD =即15225AD =..,∴AD=103.【点睛】本题主要考查了圆周角定理,切线的判定,相似三角形的性质与判定,垂径定理,勾股定理等等,熟知切线的判定以及相似三角形的性质与判定条件是解题的关键.21.(1)2142y x x =--+(2)(0,4)(3)(-5,1)或(1,7)或(-3,-1)【分析】(1)已知抛物线上的三点用待定系数法求解析式;(2)根据抛物线的解析式,设出点M 的坐标,作一条竖线交AB 于N ,利用公式()12ABM A B S MN x x =-△求△ABM 的面积;(3)求出点E 坐标,利用平行四边形的性质和平移求点F 的坐标,注意分类讨论.(1)解:将点A(2,0),B(-2,4),C(-4,0)分别代入2y ax bx c =++得:4201640424a b c a b c a b c ++=⎧⎪-+=⎨⎪-+=⎩,解得1214a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩.∴抛物线的表达式为y=2142x x --+.(2)如图,作MN ∥y 轴交直线AB 于点N,设点M(m ,2142m m --+).设直线AB 的方程为y kx n =+,将20()2)4(A B -,,,代入解析式得:2024k n k n +=⎧⎨-+=⎩,解得12k n =-⎧⎨=⎩,∴直线AB 的解析式为:2y x =-+,∴2()N m m -+,,()221142222MN m m m m =--+--+=-+,∴()()2211122242222(2)ABM A B S MN x x m m m ∆=-=⨯-++=-+-⨯(<<),∵-1<0,且-2<0<2,∴当m=0时,ΔABM 的面积最大,此时21442m m --+=,所以M 的坐标为(0,4).(3)∵抛物线的对称轴为直线,将1x =-代入2y x =-+得y=3,∴E (-1,3),当BC 为对角线时,构成BECF .∵B(-2,4),E(-1,3),∴点E到点B向左一个单位长度,向上1个单位长度,∴点C到点F也向左一个单位长度,向上1个单位长度,∵C(-4,0),∴F(-5,1).同理,当BE为对角线时,构成BCEF,可得F(1,7);当BF为对角线时,构成BCFE,可得F(-3,-1).综上所述点F得坐标为(-5,1)或(1,7)或(-3,-1).22.(1)60°(2)∠BOC=90°-12∠A,见解析【分析】(1)方法一:先根据平角的定义求出∠EBC和∠DCF的度数,再根据切线长定理得到∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,据此理由三角形内角和定理求解即可;方法二:如图,连接OD,OE,OF,则由切线的性质可知,证明Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),得到∠EOB=∠DOB,∠COD=∠COF,先求出∠A的度数,再利用四边形内角和定理求出∠EOF=120°,则∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)同(1)方法二求解即可.(1)解:方法一:由题意得∠EBC=180°-∠ABC=180°-80°=100°,∠DCF=180°-∠ACB=180°-40°=140°,由切线长定理可知,∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,∴在△OBC中,∠BOC=180°-∠OBC-∠BCO=180°-70°-50°=60°;方法二:如图,连接OD,OE,OF,则由切线的性质可知,∠BEO=∠BDO=∠CDO=∠CFO=90°,又∵OD=OE=OF,OB=OB,OC=OC,∴Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),∴∠EOB=∠DOB,∠COD=∠COF,在△ABC中,∠A=180°-∠ABC-∠ACB=60°,在四边形AEOF 中,∠A+∠EOF=180°,∴∠EOF=120°,∴∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)解:同(1)方法二可得180EOF A =︒-∠∠,∠EOB=∠DOB ,∠COD=∠COF ,∴∠BOC=∠BOD+∠COD=12∠EOF=1902A ︒-∠.【点睛】本题主要考查了切线的性质,切线长定理,三角形内角和定理,四边形内角和定理,全等三角形的性质与判定等等,熟知切线的性质和切线长定理是解题的关键.23.(1)反比例函数解析式为2y x=,点A 的坐标为(1,2),(2)(4,12)【分析】(1)先把点A 的坐标代入正比例函数解析式求出点A 的坐标,然后把点A 的坐标代入反比例函数解析式求出反比例函数解析式即可;(2)设直线CD 的解析式为1=y k x b +,求出点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,得到1b OC b OD k ==-,,再根据OD=2OC ,求出112k =-,得到直线CD 的解析式为12y x b =-+,然后代入A 点坐标求出直线CD 的解析式即可求出点B 的坐标.(1)解:∵点A (m ,2)在正比例函数y=2x 的图象上,∴2m=2,∴m=1,∴点A 的坐标为(1,2),把点A 的坐标代入反比例函数解析式得2=1k,∴k=2,∴反比例函数解析式为2y x=(2)解:设直线CD 的解析式为1=y k x b +,令0x =,y b =,令0y =,10k x b +=,即1bx k =-,∴点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,∴1bOC b OD k ==-,,∵OD=2OC ,∴12bb k -=,∴112k =-,∴直线CD 的解析式为12y x b =-+,把点A 的坐标代入直线CD 解析式得1122b -⨯+=,∴52b =,∴直线CD 的解析式为1522y x =-+,联立15222y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,解得412x y =⎧⎪⎨=⎪⎩或12x y =⎧⎨=⎩(舍去),∴点B 的坐标为(4,12).24.(1)见解析(2)见解析(3)2【分析】(1)根据垂径定理和圆周角定理可证明;(2)作∠BAP的平分线交BP于I,证明∠DAI=∠AID,进而命题可证;(3)连接BI,AC,先计算得∠AIB=120°,从而确定I在以D为圆心,AD为半径的圆上运动,根据“射影定理”得AD2=DE•CD,进而证明△DI′E∽△DCI′,从而求得结果.(1)解:证明:∵直径CD⊥弦AB,∴=,AD BD∴∠APD=∠BPD;(2)如图,作∠BAP的平分线,交PD于I,证:∵AI平分∠BAP,∴∠PAI=∠BAI,∴∠AID=∠APD+∠PAI=∠APD+BAI,∵=,AD BD∴∠DAB=∠APD,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI,∴∠AID=∠DAI,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)如图2,连接BI,AC,OA,OB,∵AI平分∠BAP,PD平分∠APB,∴BI平分∠ABP,∠BAI=12∠BAP,∴∠ABI=12∠ABP,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP)=60°,∴∠AIB=120°,∴点I的运动轨迹是 AB,∴DI=DA,∵∠AOB=2∠APB=120°,∵AD⊥AB,∴AD BD,∴∠AOB=∠BOD=60°,∵OA=OD,∴△AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.25.(1)(1,0)-或(2,3)(2)见解析(3)①(2,3);②333022m m -<<【分析】(1)把1m =代入抛物线及直线解析式,并联立即可求解;(2)联立方程组求解即可求证;(3)①由(2)可直接得到;②先求出抛物线G ',再联立抛物线G '和直线h ,求出交点,再进行分类讨论即可.(1)解:当1m =时,抛物线21:1G y x =-,直线2:1h y x =+,令211x x -=+,解得1x =-或2x =,∴抛物线G 与直线h 交点的坐标为(1,0)-或(2,3);(2)证明:令2(33)2332mx m x m mx m --+-=+-,整理得2(43)460mx m x m --+-=,即(2)(23)0x mx m --+=,解得2x =或23m x m -=,当2x =时,3y =;当23m x m-=时,0y =;∴抛物线G 与直线h 的交点分别为(2,3)和23(m m-,0),∴必有一个交点在x 轴上;(3)①证明:由(2)可知,抛物线一定过点(2,3);②解:抛物线21:(33)23(23)(1)G y mx m x m mx m x =--+-=-+-,则抛物线G 与x 轴的交点为(1,0),23(m m-,0), 抛物线G 与抛物线G '关于原点对称,∴抛物线G '过点(1,0)-,23(m m--,0),∴抛物线G '的解析式为:223(1)((33)23m y m x x mx m x m m-'=-++=----+,令2(33)2332mx m x m mx m ----+=+-,整理得2(43)0mx m x +-=,0x ∴=或34m x m-=,即四个交点分别为:(0,32)m -,(2,3),23(m A m -,0),34(m m -,66)m -,2302(0)m m m-∴<<>,不等式无解,这种情况不成立;当340m m -<时,则304m <<,则34232m m m m --<<,解得1m >,不成立;当342m m->时,得102m <<,此时23340m m m m --<<,解得得102m <<,333022m m -∴<<.即抛物线G 对称轴的取值范围为:333022m m -<<.【点睛】本题主要考查二次函数与一次函数交点问题,第(3)关键是求出四个交点,由“点A 的横坐标既不是最大值又不是最小值”,对四个点进行分类讨论.26.(1)y=-x 2+2x+3(2)(0,1)或(0,3)【分析】(1)将点A (1,4)代入y=-2x+m ,确定直线解析式即可求出B 点坐标,再设抛物线解析式为y=a(x-1)2+4,将所求的B点坐标代入即可求a的值;(2)(2)设P(0,t),则可求AB=AB的中点M(2,2),再由直角三角形斜边的中线等于斜边的一半可得4+(t-2)2=5,即可求P点坐标为(0,1)或(0,3).【小题1】解:将点A(1,4)代入y=-2x+m,∴-2+m=4,∴m=6,∴y=-2x+6,令y=0,则x=3,∴B(3,0),设抛物线解析式为y=a(x-1)2+4,将B(3,0)代入y=a(x-1)2+4,∴4a+4=0,∴a=-1,∴y=-x2+2x+3;【小题2】设P(0,t),∵A(1,4),B(3,0),∴AB=AB的中点M(2,2),∵∠APB=90°,∴∴4+(t-2)2=5,∴t=1或t=3,∴P点坐标为(0,1)或(0,3).。
2019-2020学年浙江省宁波市海曙区九年级上册期末数学试卷
2019-2020学年浙江省宁波市海曙区九年级上册期末数学试卷2019-2020学年浙江省宁波市海曙区九年级上册期末数学试卷题号⼀⼆三四总分得分第I卷(选择题)⼀、选择题(本⼤题共12⼩题,共48.0分)1.下列图形中,中⼼对称图形有()A. 1个B. 2个C. 3个D. 4个2.如果ab =23,那么aa+b等于()A. 32B. 25C. 53D. 353.对于⼆次函数y=2(x+1)(x?3),下列说法正确的是()A. 图像的开⼝向下B. 当x>1时,y随x的增⼤⽽减⼩C. 当x<1时,y随x的增⼤⽽减⼩D. 图像的对称轴是直线x=?14.如图所⽰,已知AB//CD//EF,那么下列结论正确的是()CEB. BCCE =DFADC. CDEF =BCBED. CDEF =ADAF5.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A. 100°B. 110°C. 115°D. 120°6.如果直线上⼀点到⊙O的圆⼼O的距离⼤于⊙O的半径,那么这条直线与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 相交、相切、相离都有可能7.如图,要在宽为22⽶的九洲⼤道AB两边安装路灯,路灯的灯臂CD长2⽶,且与灯柱BC成120°⾓,路灯采⽤圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直.当灯罩的轴线DO通过公路路⾯的中⼼线时照明效果最佳.此时,路灯的灯柱BC⾼度应该设计为()A. (11?2√2)⽶B. (11√3?2√2)⽶C. (11?2√3)⽶D. (11√3?4)⽶8.若⼀直⾓三⾓形的斜边长为c,内切圆半径是r,则内切圆的⾯积与三⾓形⾯积之c+2r B. πrc+rC. πr2c+rD. πrc2+r29.在平⾯直⾓坐标系中,直线y=?√33x+1分别与x轴、y轴交于B、C点,点A沿着某条路径运动,以点A为旋转中⼼,将点C逆时针⽅向旋转90°后,刚好落在线段OB上,则点A的运动路径长为()A. √62B. √6 C. √22π D. 2√210.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的⾯积为()A. 9π?9B. 9π?6√3C. 9π?18D. 9π?12√311.已知抛物线y=x2?4x+3与x轴相交于点A、B(点A在点B的左侧),顶点为M.平移该抛物线,使平移后点M的对应点M′落在x轴上,平移后点B的对应点B′落在y 轴上,则平移后的抛物线对应的函数表达式为()A. y=x2+2x+1B. y=x2+2x?1C. y=x2?2x+1D. y=x2?2x?112.如图,边长为正整数的正⽅形ABCD被分成了四个⼩长⽅形且点E,F,G,H在同⼀直线上(点F在线段EG上),点E,N,H,M在正⽅形ABCD的边上,长⽅形AEFM,GNCH的周长分别为6和10.则正⽅形ABCD的边长的最⼩值为()A. 3B. 4D. 不能确定第II卷(⾮选择题)⼆、填空题(本⼤题共6⼩题,共24.0分)13.正⼗边形⼀个内⾓度数为______.14.如图,矩形ABCD的宽AB=5,若沿其长边对折后得到的矩形与原矩形相似,则长边BC的长为__________.15.如图,⼆次函数y=ax2+bx+c的图象开⼝向上,图象经过点(?1,2)和(1,0),且与y轴相交于负半轴(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0,其中正确结论的序号是;(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是.16.在⼀个不透明的袋⼦⾥装有除颜⾊外其它均相同的红、蓝⼩球各⼀个,每次从袋中摸出⼀个⼩球记下颜⾊后再放回,摸球三次,“仅有⼀次摸到红球”的概率是______.17.在等腰△ABC中,AB=AC,如果cosC=1,那么tanA=______.418.(1)如图,∠AOE=∠BOE=15°,EF//OB,EC⊥OB,若EC=2,则S△OFE=______.(2)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(?2,0),抛物线的对称轴为直线x=2,则线段AB的长为______.(3)如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为.(4)已知点A(4,y1),B(√2,y2),C(?2,y3)都在⼆次函数y=(x?2)2?1的图象上,则y1、y2、y3的⼤⼩关系是.(5)如图,P为△ABC边BC上的⼀点,且PC=2PB,已知∠ABC=45°,∠APC=60°,则∠ACB的度数是。
2023届浙江省宁波市南三县九年级数学第一学期期末学业水平测试模拟试题含解析
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是( )A .已知:在⊙O 中,∠AOB=∠COD ,弧AB=弧CD .求证:AB=CDB .已知:在⊙O 中,∠AOB=∠COD ,弧AB=弧BC .求证:AD=BCC .已知:在⊙O 中,∠AOB=∠COD .求证:弧AD=弧BC ,AD=BCD .已知:在⊙O 中,∠AOB=∠COD .求证:弧AB=弧CD ,AB=CD2.式子2x +在实数范围内有意义,则x 的取值范围是( )A .x >﹣2B .x≥﹣2C .x <﹣2D .x≤﹣2 3.如图,点A 、B 、C 是⊙0上的三点,若∠OBC=50°,则∠A 的度数是( )A .40°B .50°C .80°D .100° 4.如图为二次函数2y ax bx c =++的图象,在下列说法中:①0ac <;②方程20ax bx c ++=的根是121,3x x =-=③ 0a b c ++>;④当1x >时,y 随x 的增大而增大;⑤20a b -=;⑥240b ac ->,正确的说法有( )A .1B .2C .3D .45.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .36.若2y -7x =0,则x ∶y 等于( )A .2∶7B .4∶7C .7∶2D .7∶47.如图,在平面直角坐标系中,点P 在函数y =2x(x >0)的图象上从左向右运动,PA ∥y 轴,交函数y =﹣6x (x >0)的图象于点A ,AB ∥x 轴交PO 的延长线于点B ,则△PAB 的面积( )A .逐渐变大B .逐渐变小C .等于定值16D .等于定值24 8.已知函数()22y x =--的图像上两点()1,A a y ,()21,B y ,其中1a <,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .无法判断9.下列事件是必然事件的是( )A .明天太阳从西方升起B .打开电视机,正在播放广告C .掷一枚硬币,正面朝上D .任意一个三角形,它的内角和等于180°10.如图,在锐角△ABC 中,∠A=60°,∠ACB=45°,以BC 为弦作⊙O ,交AC 于点D ,OD 与BC 交于点E ,若AB 与⊙O 相切,则下列结论:①∠BOD=90°;②DO ∥AB ;③CD=AD ;④△BDE ∽△BCD ;⑤2BE DE 正确的有( )A .①②B .①④⑤C .①②④⑤D .①②③④⑤二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy 中,点A 在函数y =2x(x >0)的图象上,AC ⊥x 轴于点C ,连接OA ,则△OAC 面积为_____.12.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.13.已知点A (a ,2019)与点A ′(﹣2020,b )是关于原点O 的对称点,则a +b 的值为_____.14.如图,点A 在双曲线y =4x上,点B 在双曲线y =k x (k ≠0)上,AB ∥x 轴,分别过点A ,B 向x 轴作垂线,垂足分别为D ,C ,若矩形ABCD 的面积是9,则k 的值为_____.15.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______.16.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A 、B 、C 、D 、O 都在横格线上,且线段AD ,BC 交于点O ,则AB :CD 等于______.17.如图,是一个半径为6cm ,面积为215cm π的扇形纸片,现需要一个半径为R 的圆形纸片,使两张纸片刚好能组合成圆锥体,则R =_____.18.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.三、解答题(共66分)19.(10分)如图,在1010⨯的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系.(1)若将ABC ∆沿x 轴对折得到111A B C ∆,则1C 的坐标为 .(2)以点B 为位似中心,将ABC ∆各边放大为原来的2倍,得到22A BC ∆,请在这个网格中画出22A BC ∆.(3)若小明蒙上眼睛在一定距离外,向1010⨯的正方形网格内掷小石子,则刚好掷入22A BC ∆的概率是多少? (未掷入图形内则不计次数,重掷一次)20.(6分)某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x 棵橙子树,果园橙子的总产量为y 个.(1)求y 与x 之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60 420个以上?21.(6分)如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系 ;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;(3)在图②的基础上,将△CED 绕点C 继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.22.(8分)如图,已知O 是坐标原点,B 、C 两点的坐标分别为()3,1-,()2,1,将BOC ∆绕点O 逆时针旋转90度,得到11B OC ∆,画出11B OC ∆,并写出B 、C 两点的对应点1B 、1C 的坐标,23.(8分)如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -.()1求一次函数和反比例函数的表达式;()2请直接写出12>时,x的取值范围;y y()3过点B作BE//x轴,AD BE=,求点C的坐标.⊥于点D,点C是直线BE上一点,若AC2CD24.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.25.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.26.(10分)如图,AB是⊙O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使∠1=∠2=∠A.(1)求证:直线PC是⊙O的切线;(2)若CD=4,BD=2,求线段BP的长.参考答案一、选择题(每小题3分,共30分)1、D【分析】根据命题的概念把原命题写成:“如果...求证...”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果...求证...”的形式,是解题的关键.2、B【分析】根据二次根式有意义的条件可得20x+≥,再解不等式即可.【详解】解:由题意得:20x+≥,解得:2x≥-,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3、A【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.4、D【分析】根据抛物线开口向上得出a>1,根据抛物线和y轴的交点在y轴的负半轴上得出c<1,根据图象与x轴的交点坐标得出方程ax 2+bx+c=1的根,把x=1代入y=ax 2+bx+c 求出a+b+c <1,根据抛物线的对称轴和图象得出当x >1时,y 随x 的增大而增大,2a=-b ,根据图象和x 轴有两个交点得出b 2-4ac >1.【详解】∵抛物线开口向上,∴a >1,∵抛物线和y 轴的交点在y 轴的负半轴上,∴c <1,∴ac <1,∴①正确;∵图象与x 轴的交点坐标是(-1,1),(3,1),∴方程ax 2+bx+c=1的根是x 1=-1,x 2=3,∴②正确;把x=1代入y=ax 2+bx+c 得:a+b+c <1,∴③错误;根据图象可知:当x >1时,y 随x 的增大而增大,∴④正确; ∵-2b a=1, ∴2a=-b ,∴2a+b=1,不是2a-b=1,∴⑤错误;∵图象和x 轴有两个交点,∴b 2-4ac >1,∴⑥正确;正确的说法有:①②④⑥.故答案为:D .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性.5、B【解析】过点O 作OC⊥AB,垂足为C ,则有AC=12AB=12×24=12,在Rt △AOC 中,∠ACO=90°,AO=13, ∴OC=22AO AC =5,即点O 到AB 的距离是5.6、A【分析】由2y -7x =0可得2y =7x ,再根据等式的基本性质求解即可.【详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.7、C【分析】根据反比例函数k的几何意义得出S△POC =12×2=1,S矩形ACOD=6,即可得出13PCAC=,从而得出14PCPA=,通过证得△POC∽△PBA,得出2POCPAB116S PCS PA⎛⎫==⎪⎝⎭,即可得出S△PAB=1S△POC=1.【详解】如图,由题意可知S△POC=12×2=1,S矩形ACOD=6,∵S△POC=12OC•PC,S矩形ACOD=OC•AC,∴POCACOD 1OC?PC1 2OC?AC6S S ==矩形,∴13 PCAC=,∴14 PCPA=,∵AB∥x轴,∴△POC∽△PBA,∴2POCPAB116 S PCS PA⎛⎫==⎪⎝⎭,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键. 8、B【分析】由二次函数()22y x =--可知,此函数的对称轴为x =2,二次项系数a =−1<0,故此函数的图象开口向下,有最大值;函数图象上的点与坐标轴越接近,则函数值越大,故可求解.【详解】函数的对称轴为x =2,二次函数()22y x =--开口向下,有最大值,∵1a <,A 到对称轴x =2的距离比B 点到对称轴的距离远,∴12y y <故选:B .【点睛】本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y =ax 2+bx +c (a ≠0)的图象性质.9、D【分析】必然事件就是一定会发生的事件,依次判断即可.【详解】A 、明天太阳从西方升起,是不可能事件,故不符合题意;B 、打开电视机,正在播放广告是随机事件,故不符合题意;C 、掷一枚硬币,正面朝上是随机事件,故不符合题意;D 、任意一个三角形,它的内角和等于180°是必然事件,故符合题意;故选:D .【点睛】本题是对必然事件的考查,熟练掌握必然事件知识是解决本题的关键.10、C【解析】根据同弧所对的圆周角等于它所对圆心角的一半,由圆周角∠ACB=45°得到圆心角∠BOD=90°,进而得到BD 的度数为90°,故选项①正确;又因OD=OB ,所以△BOD 为等腰直角三角形,由∠A 和∠ACB 的度数,利用三角形的内角和定理求出∠ABC=180°-60°-45°=75°,由AB 与圆切线,根据切线的性质得到∠OBA 为直角,求出∠CBO=∠OBA -∠ABC=90°-75°=15°,由根据∠BOE 为直角,求出∠OEB=180°-∠BOD -∠OBE=180°-90°-15°=75°,根据内错角相等,得到OD∥AB,故选项②正确;由D 不一定为AC 中点,即CD 不一定等于AD ,而选项③不一定成立;又由△OBD 为等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代换得到两个角相等,又∠CBD 为公共角,根据两对对应角相等的两三角形相似得到△BDE∽△BCD,故④正确;连接OC,由相似三角形性质和平行线的性质,得比例BE DBDE DC=,由BD=2OD,等量代换即可得到BE等=2DE,故选项⑤正确.综上,正确的结论有4个.故选C.点睛:此题考查了相似三角形的判定与性质,圆周角定理,切线的性质,等腰直角三角形的性质以及等边三角形的性质,熟练掌握性质与定理是解本题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据反比例函数比例系数k的几何意义可得S△OAC=12×2=1,再相加即可.【详解】解:∵函数y=2x(x>0)的图象经过点A,AC⊥x轴于点C,∴S△OAC=12×2=1,故答案为1.【点睛】本题考查了反比例函数比例系数k的几何意义,掌握过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键.12、5【分析】设线段AB=x,根据黄金分割点的定义可知AD=352AB,BC=352AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC 35x -,则CD=AB﹣AD﹣BC=x﹣2×35x-=1,解得:x=2+5.故答案为:2+5【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.13、1.【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,∴a=2020,b=﹣2019,∴a+b=1.故答案为:1.【点睛】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的符号是解题关键.14、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB 的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=4x上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.15、2【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴30.6 3x=+,解得:x=2,故黑球的个数为2个.故答案为2.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16、2:1.【解析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得AB OECD OF=,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴AB OECD OF==23,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.17、5 2【分析】先根据扇形的面积和半径求出扇形的弧长,即圆锥底面圆的周长,再利用圆的周长公式即可求出R.【详解】解:设扇形的弧长为l ,半径为r , ∵扇形面积1161522S lr l π==⨯=, ∴5l π=,∴52R ππ= ,∴52R =. 故答案为:52. 【点睛】 本题主要考查圆锥的有关计算,掌握扇形的面积公式是解题的关键.18、3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2.三、解答题(共66分)19、(1)(4,-1);(2)见解析;(3)325. 【分析】(1)根据对称的特点即可得出答案;(2)根据位似的定义即可得出答案;(3)分别求出三角形和正方形的面积,再用三角形的面积除以正方形的面积即可得出答案.【详解】解:(1)()41-,(2)(3)∵22164122A BC S ∆=⨯⨯=,1010100S =⨯=正方形∴12310025 P==【点睛】本题考查的是对称和位似,比较简单,需要掌握相关的基础知识.20、(1)y=600-5x(0≤x<120);(2)7到13棵【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600-5x)(100+x)=-5x2+100x+60000当y=-5x2+100x+60000=60420时,整理得出:x2-20x+84=0,解得:x1=14,x2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10,∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.21、AE;(2),证明详见解析;(3)结论不变,AE,理由详见解析.【分析】(1)如图①中,结论:AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.【详解】解:(1)如图①中,结论:AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF ,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AE .(2)如图②中,结论:AE .理由:连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE ,∵∠DKC=∠C ,∴DK=DC ,∵DF=AB=AC ,∴KF=AD ,在△EKF 和△EDA 中,{EK DKEKF ADE KF AD=∠=∠=,∴△EKF ≌△EDA ,∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE .(3)如图③中,结论不变,AE .理由:连接EF ,延长FD 交AC 于K .∵∠EDF=180°﹣∠KDC ﹣∠EDC=135°﹣∠KDC ,∠ACE=(90°﹣∠KDC )+∠DCE=135°﹣∠KDC ,∴∠EDF=∠ACE ,∵DF=AB ,AB=AC ,∴DF=AC在△EDF 和△ECA 中,DF AC EDF ACE DE CE =∠=⎪∠⎧⎪⎨⎩=,∴△EDF ≌△ECA ,∴EF=EA ,∠FED=∠AEC ,∴∠FEA=∠DEC=90°,∴△AEF 是等腰直角三角形,∴AF=2AE .【点睛】本题考查四边形综合题,综合性较强.22、详见解析;点1B ,1C 的坐标分别为()1,3,()1,2-【分析】利用网格特点和旋转的性质画出B 、C 的对应点B 1、C 1即可.【详解】解:如图,11B OC ∆为所作,点1B ,1C 的坐标分别为()1,3,()1,2-【点睛】本题考查了画图−性质变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、()1反比例函数的解析式为22y x =,一次函数解析式为:1y x 1=+;()2当2x 0-<<或x 1>时,12y y >;()3当点C 的坐标为()13,1-或)31,1-时,AC 2CD =. 【分析】(1)利用待定系数法求出k ,求出点B 的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD ,分点C 在点D 的左侧、点C 在点D 的右侧两种情况解答.【详解】()1点()A 1,2在反比例函数2k y x=的图象上, k 122∴=⨯=,∴反比例函数的解析式为22y x=, 点()B 2,m -在反比例函数22y x=的图象上, 2m 12∴==--, 则点B 的坐标为()2,1--,由题意得,{a b 22a b 1+=-+=-, 解得,{a 1b 1==,则一次函数解析式为:1y x 1=+; ()2由函数图象可知,当2x 0-<<或x 1>时,12y y >;()3AD BE ⊥,AC 2CD =,DAC 30∠∴=,由题意得,AD 213=+=,在Rt ADC 中,CD tan DAC AD ∠=,即CD 3=解得,CD =当点C 在点D 的左侧时,点C 的坐标为()11--,当点C 在点D 的右侧时,点C 的坐标为)1,1-,∴当点C 的坐标为()11-或)1,1-时,AC 2CD =.【点睛】本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键.24、(1)14;(2)116【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.25、(1)详见解析;(2)1.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB =∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22-=6,于是得到结论.BE BD【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE22-6,BE BD∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.26、(1)详见解析;(2)10 3【分析】(1)连接OC,由AB是⊙O的直径证得∠ACO+∠BCO=90°,由OA=OC证得∠2=∠A=∠ACO,由此得到∠PCO=90°,即证得直线PC是⊙O的切线;(2)利用∠1=∠A证得∠CDB=90°,得到CD2=AD•BD,求出AD,由此求得AB=10,OB=5;在由∠OCP=90°推出OC2=OD•OP,求出OP=253,由此求得线段BP的长.【详解】(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠A=∠ACO,∵∠A=∠1=∠2,∴∠2=∠ACO,∴∠2+∠BCO=90°,∴∠PCO=90°,∴OC⊥PC,∴直线PC是⊙O的切线;(2)∵∠ACB=90°,∴∠A+∠ABC=90°∴∠1=∠A,∴∠1+∠ABC=90°,∴∠CDB=90°,∴CD2=AD•BD,∵CD=4,BD=2,∴AD=8,∴AB=10,∴OC=OB=5,∵∠OCP=90°,CD⊥OP,∴OC2=OD•OP,∴52=(5﹣2)×OP,∴OP=253,∴PB=OP﹣OB=103.【点睛】此题是圆的综合题,考查圆的切线的判定定理,圆中射影定理的判定及性质,(2)中求出∠CDB=90°是此题解题的关键,由此运用射影定理求出线段的长度.。
浙江省2024届九年级上学期期末数学试卷(含答案)
浙江省2023-2024学年九年级上学期期末数学复习卷范围:1-4章满分:120分考试时间:120分钟姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.下列四个函数中是二次函数的是()A.B.C.D.2.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其余都相同,则从布袋里任意摸出一个球是红球的概率是()A.B.C.D.3.已知的半径是5,点P在内,则OP的长可能是()A.4 B.5 C.5.5 D.64.若点Р是线段的黄金分割点,,则的长为()A.B.C.D.5.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-26.如图,D、E分别是边上的点,,若,,,则的长是()A.2 B.4 C.6 D.87.如图,四边形内接于⊙O,交的延长线于点E,若平分,,则等于()A.B.6 C.D.8.已知点,,在抛物线上,则,,的大小关系是()A.B.C.D.9.如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A.B.C.D.10.如图,是的外角平分线,与的外接圆交于点D,连接交于点F,且,则下列结论错误的是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分.不需写出解答过程,请将正确答案填写在横线上)11.某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数50 100 300 400 600 1000发芽频数47 96 284 380 571 948估计这批青稞发芽的概率是.(结果保留到0.01)12.如图,四边形的四个顶点均在半圆上,若,则.13.如图,在ΔABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为.14.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转后得到正方形,继续旋转至次得到正方形,则点的坐标是.15.二次函数的部分对应值列表如下:x …0 1 3 5 …y …7 7 …则一元二次方程的解为.16.如图,内接于半径为的半,为直径,点是的中点,连接交于点,平分交于点,且为的中点,则的长为 .三、解答题(本大题共7小题,共66分.第17题6分;第18题8分;第19题8分;第20题10分;第21题10分;第22题12分;第23题12分;解答时应写出文字说明、证明过程或演算步骤)17.已知二次函数的图象经过点.(1)求的值.(2)若点也在这个二次函数的图象上,求的值.18.游戏者用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.让两个转盘分别自由转动一次.(1)求两次数字之和为4的概率;(2)若两次数字之积大于2,则游戏者获胜,请问这个游戏公平吗?请说明理由.19.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)合格频数合格频率(1)估计任抽一件衬衣是合格品的概率(结果精确到);(2)估计出售件衬衣,其中次品..大约有几件.20.如图,抛物线与x轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长;(4)在该抛物线位于第四象限内的部分上是否存在点,使得的面积最大?若存在,求出点的坐标;若不存在,请说明理由.21.如图,的直径垂直弦于点E,F是圆上一点,D是的中点,连接交于点G,连接.(1)求证:;(2)若,求的长.22.基础巩固:(1)如图1,在中,是上一点,过点作的平行线交于点,点是上任意一点,连结交于点,求证:;尝试应用:(2)如图2,在(1)的条件下,连结,,若,、恰好将三等分,求的值;拓展延伸:(3)如图3,在等边中,,连结,点在上,若,求的值.23.如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC;(2)当是等腰三角形时,求∠BCE的大小.(3)当AE=4,CE=6时,求边BC的长.浙江省2023-2024学年九年级上学期期末数学复习卷一、单选题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.下列四个函数中是二次函数的是()A.B.C.D.答案:C2.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其余都相同,则从布袋里任意摸出一个球是红球的概率是()A.B.C.D.答案:C3.已知的半径是5,点P在内,则OP的长可能是()A.4 B.5 C.5.5 D.6答案:A4.若点Р是线段的黄金分割点,,则的长为()A.B.C.D.答案:A5.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2答案:A6.如图,D、E分别是边上的点,,若,,,则的长是()A.2 B.4 C.6 D.8答案:C7.如图,四边形内接于⊙O,交的延长线于点E,若平分,,则等于()A.B.6 C.D.答案:B8.已知点,,在抛物线上,则,,的大小关系是()A.B.C.D.答案:D9.如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A.B.C.D.答案:C故选:C.10.如图,是的外角平分线,与的外接圆交于点D,连接交于点F,且,则下列结论错误的是()A.B.C.D.答案:B∴第II卷(非选择题)二、填空题(本大题共6小题,每小题4分,共24分.不需写出解答过程,请将正确答案填写在横线上)11.某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数50 100 300 400 600 1000发芽频数47 96 284 380 571 948估计这批青稞发芽的概率是.(结果保留到0.01)答案:0.9512.如图,四边形的四个顶点均在半圆上,若,则.答案:130°13.如图,在ΔABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为.答案:14.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转后得到正方形,继续旋转至次得到正方形,则点的坐标是.故答案为.15.二次函数的部分对应值列表如下:x …0 1 3 5 …y …7 7 …则一元二次方程的解为.答案:16.如图,内接于半径为的半,为直径,点是的中点,连接交于点,平分交于点,且为的中点,则的长为 .答案:三、解答题(本大题共7小题,共66分.第17题6分;第18题8分;第19题8分;第20题10分;第21题10分;第22题12分;第23题12分;解答时应写出文字说明、证明过程或演算步骤)17.已知二次函数的图象经过点.(1)求的值.(2)若点也在这个二次函数的图象上,求的值.答案:(1);(2).18.游戏者用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.让两个转盘分别自由转动一次.(1)求两次数字之和为4的概率;(2)若两次数字之积大于2,则游戏者获胜,请问这个游戏公平吗?请说明理由.答案:(1)(2)该游戏公平,理由见解析19.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)合格频数合格频率(1)估计任抽一件衬衣是合格品的概率(结果精确到);(2)估计出售件衬衣,其中次品..大约有几件.答案:(1)估计任抽一件衬衣是合格品的概率为;(2)估计出售件衬衣,其中次品大约有件20.如图,抛物线与x轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长;(4)在该抛物线位于第四象限内的部分上是否存在点,使得的面积最大?若存在,求出点的坐标;若不存在,请说明理由.答案:(1)抛物线的解析式为:;(2)是直角三角形(3),的最小周长为:(4)存在,21.如图,的直径垂直弦于点E,F是圆上一点,D是的中点,连接交于点G,连接.(1)求证:;(2)若,求的长.答案:(1)见解析(2).22.基础巩固:(1)如图1,在中,是上一点,过点作的平行线交于点,点是上任意一点,连结交于点,求证:;尝试应用:(2)如图2,在(1)的条件下,连结,,若,、恰好将三等分,求的值;拓展延伸:(3)如图3,在等边中,,连结,点在上,若,求的值.答案:(1)见解析;(2);(3)(1)根据,可得,从而得到,同理,进而得到,即可;(2)根据,可得,,再由、恰好将三等分,可得到,再由直角三角形的性质可得,从而得到,即可;(3)过作的平行线,分别交、于、.可得也是等边三角形,从再而得到,再证得,可得,由(1)和,得,设,则.可得,,然后根据,可得,即可.详解:(1)证明:∵,∴,∴,同理,∴,∴;(2)∵,∴,,∵、恰好将三等分,∴,∴,∵,∴在中,,∴,根据(1)得,;(3)过作的平行线,分别交、于、.∵是等边三角形,∴,,∵,∴∴也是等边三角形,∴,∴,∴,又∵∴∴∴.∴,即,∴,由(1)和,得,设,则.∴,,∴,∴.∵,∴,∵,∴,∴,即,∴,∴.23.如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC;(2)当是等腰三角形时,求∠BCE的大小.(3)当AE=4,CE=6时,求边BC的长.答案:(1)见解析;(2)67.5°或72°;(3)(1)根据题意可得,∠BAD=90°,再根据∠BAC=2∠ABE证即可;(2)由题意可知:,根据腰不同进行分类讨论,依据三角形内角和列方程即可;(3)连接AO并延长,交BC于点F,根据AE=4,CE=6,结合相似三角形,表示线段OA、DC、BE,求出半径长,即可求BC.(1)证明:∵BD是⊙O的直径,∴∠BAD=90°,∴90°∵,∴∴∴∴∴(2)由题意可知:,分情况:①那么,∴∴∴②那么∴∴∴③,此时E,A重合,舍去(3)连接AO并延长,交BC于点F,∵OA=OB,∴∠ABE=∠OAB,∵∠BAC=2∠ABE.∴∠BAF=∠CAF,∵AB=AC,∴AF⊥BC,∴∠AFB=90°,∵BD是⊙O的直径∴∴AF//CD∴∴,,,BE=,∵∠AEB=∠DEC,∠ABE=∠DCE,∴~∴∴∵∴∴∴,在直角中,∵∴。
2020-2021学年浙江省宁波市江北区九年级(上)期末数学试卷(含解析)
2020-2021学年浙江省宁波市江北区九年级第一学期期末数学试卷一、选择题(共10小题).1.若3a=2b,则的值为()A.B.C.D.2.下列是有关防疫的图片,其中是中心对称图形的是()A.B.C.D.3.如图所示的几何体的主视图为()A.B.C.D.4.九年级(1)班与九年级(2)班准备举行拔河比赛,根据双方的实力,小明预测:“九年级(1)班获胜的可能性是80%”下列四句话能正确反映其观点的是()A.九年级(2)班肯定会输掉这场比赛B.九年级(1)班肯定会赢得这场比赛C.若进行10场比赛,九年级(1)班定会赢得8次D.九年级(2)班也有可能会赢得这场比赛5.在Rt△ABC中,∠C=90°,AB=10,BC=8,则tan B的值是()A.B.C.D.6.已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠C=50°,则∠BAD的度数是()A.40°B.45°C.50°D.55°7.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表所示,下列说法正确的是()x…013…y…131…A.a>0B.x>1时y随x的增大而减小C.y的最大值是3D.关于x的方程ax2+bx+c=3的解是x1=1,x2=28.如图,在▱ABCD中,点O是对角线BD上的一点,且,连接CO并延长交AD于点E,若△COD的面积是2,则四边形ABOE的面积是()A.3B.4C.5D.69.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,⊙O的半径为2,圆心在AB边上运动,当⊙O与△ABC的边恰有4个交点时,OA的取值范围是()A.7.5<OA<8B.7.5<OA<8或2<OA<5C.<OA<7.5D.7.5<OA<8或2<OA<10.如图,已知⊙O的半径为3,弦CD=4,A为⊙O上一动点(点A与点C、D不重合),连接AO并延长交CD于点E,交⊙O于点B,P为CD上一点,当∠APB=120°时,则AP•BP的最大值为()A.4B.6C.8D.12二、填空题(共6小题).11.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.84估计从该批次口罩中任抽一只口罩是合格品的概率为.12.已知圆锥的高为4cm,母线长为5cm,则圆锥的侧面积为cm2.13.二次函数y=(x﹣1)2+3图象的顶点坐标是.14.如图,A是⊙O外一点,AB,AC分别与⊙O切于点B,C.点P是上任意一点(点P与点B,C不重合),过点P作⊙O的切线,交AB于点M,交AC于点N.若AO=13,BO=5,则△AMN的周长为.15.如图,有一圆形木制艺术品,记为⊙O,其半径为12cm,在距离圆心8cm的点A处发生虫蛀,现需沿过点A的直线PQ将圆形艺术品裁掉一部分,然后用美化材料沿PQ进行粘贴,则美化材料(即弦PQ的长)最少需要cm.16.如图,在Rt△ABC中,∠C=90°,点D,E在BC上,结AD,AE.记CD=a,DE=.=EB=b ,图中所有三角形中,若恰好存在两对相似三角形,则17.计算:20210+|﹣|﹣2sin60°.18.如图,将一个直角三角形形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩底下,可以使木桩向上运动.如果楔子底面的倾斜角为10°,其高度AC为1.8cm,楔子沿水平方向前进一段距离(如箭头所示),留在外面的楔子长度HC为3cm,那么木tan10°≈0.18,结果精确到0.1cm)桩上升了多少厘米?(sin10°≈0.17,cos10°≈0.98,“病毒防疫”知识问答测试成绩频数分布统计表级别成绩(分)频数A95<x≤22100B90<x≤1895C85<x≤90D80<x≤853(1)本次共随机抽取了名学生,在频数分布统计表中,成绩是C级的频数是;(2)在扇形统计图中,成绩是B级的圆心角的度数是多少?(3)学校将从获得A级成绩里最好的4名学生中,任选2名参加“病毒防疫”宣讲,其中小江、小北恰在这4名选手中,请用列表法或画树状图法,求小江、小北两人同时被选中的概率.20.图1是由六个全等且边长为2的小正五边形,以及五个全等且顶角为36°、腰长为2的等腰三角形镶嵌而成的一个大正五边形,正五边形和等腰三角形的顶点称为格点,连接格点而成的三角形称为格点三角形.在图2的三个图中,分别画出一个与图中已知△ABC相似但不全等的格点三角形,并注明三角形的顶点字母.21.如图,已知抛物线y=﹣x2+bx+c与坐标轴交于A,B,C三点,其中A(﹣2,0),B (4,0).(1)求该抛物线的表达式;(2)根据图象,直接写出y>0时,x的取值范围;(3)若要使抛物线与x轴只有一个交点,则需将抛物线向下平移几个单位?22.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.23.扶贫工作小组对果农精准扶贫,帮助果农将一种有机生态水果推广进市场.某水果店从果农处直接批发这种水果,批发价格为每千克24元,当每千克的销售价格定为32元时,每天可售出80千克,根据市场行情,若每千克的销售价格降低0.5元,则每天可多售出10千克(销售单价不低于批发价)现决定降价销售,设这种水果每千克的销售价格为x 元,每天的销售量为y千克.(1)求每天的销售量y千克与销售单价x元之间的函数关系式以及x的取值范围;(2)当销售单价为多少元时,这种水果每天的销售利润最大,最大利润为多少元?24.如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是,的中点,连接DE分别交AC,BC于点F,G.(1)求证:△DFC∽△CGE;(2)若DF=3,tan∠GCE=,求FG的长;(3)如图2,连接AD,BE,若=x,=y,求y关于x的函数表达式.参考答案一、选择题(共10小题).1.若3a=2b,则的值为()A.B.C.D.解:∵3a=2b,∴=.故选:C.2.下列是有关防疫的图片,其中是中心对称图形的是()A.B.C.D.解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:A.3.如图所示的几何体的主视图为()A.B.C.D.解:从正面看所得的图形为,故选:C.4.九年级(1)班与九年级(2)班准备举行拔河比赛,根据双方的实力,小明预测:“九年级(1)班获胜的可能性是80%”下列四句话能正确反映其观点的是()A.九年级(2)班肯定会输掉这场比赛B.九年级(1)班肯定会赢得这场比赛C.若进行10场比赛,九年级(1)班定会赢得8次D.九年级(2)班也有可能会赢得这场比赛解:∵小明预测:“九年级(1)班获胜的可能性是80%”只能说明九年级(1)班获胜的可能性很大,∴九年级(2)班也有可能会赢得这场比赛,故选:D.5.在Rt△ABC中,∠C=90°,AB=10,BC=8,则tan B的值是()A.B.C.D.解:∵Rt△ABC中,∠C=90°,AB=10,BC=8,∴AC==6,则tan B===.故选:A.6.已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠C=50°,则∠BAD的度数是()A.40°B.45°C.50°D.55°解:如图,连接OB,∵∠C=50°,∴∠AOB=2∠C=100°,∵OA=OB,∴∠OAB=∠OBA=40°,则∠BAD的度数是40°.故选:A.7.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表所示,下列说法正确的是()x…013…y…131…A.a>0B.x>1时y随x的增大而减小C.y的最大值是3D.关于x的方程ax2+bx+c=3的解是x1=1,x2=2解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,a<0,故A错误;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,∴x=对应的y的值最大,故C错误;∵抛物线开口向下,∴x>时y随x的增大而减小,故B错误;∵抛物线的对称轴为直线x=,且抛物线经过点(1,3),∴点(1,3)关于对称轴的对称点为(2,3),∴关于x的方程ax2+bx+c=3的解是x1=1,x2=2,故D正确;故选:D.8.如图,在▱ABCD中,点O是对角线BD上的一点,且,连接CO并延长交AD于点E,若△COD的面积是2,则四边形ABOE的面积是()A.3B.4C.5D.6解:∵,△COD的面积是2,∴△BOC的面积为4,∵四边形ABCD是平行四边形,∴AD∥BC,S△ABD=S△BCD=2+4=6,∴△DOE∽△BOC,∴=()2=,∴S△DOE=1,∴四边形ABOE的面积=6﹣1=5,故选:C.9.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,⊙O的半径为2,圆心在AB边上运动,当⊙O与△ABC的边恰有4个交点时,OA的取值范围是()A.7.5<OA<8B.7.5<OA<8或2<OA<5C.<OA<7.5D.7.5<OA<8或2<OA<解:∵∠C=90°,BC=6,AC=8,∴AB===10,如图1,当⊙O过点A时,此时⊙O与△ABC的边恰有3个交点,此时OA=2,当⊙O'过点B时,此时⊙O'与△ABC的边恰有3个交点,此时O'B=2,则O'A=8;如图2,当⊙O与AC相切于点E时,此时⊙O与△ABC的边恰有3个交点,连接OE,∴OE⊥AC,∴∠AEO=∠ACB=90°,又∵∠A=∠A,∴△AEO∽△ACB,∴,∴,∴AO=,当⊙O'与BC相切于点F时,此时⊙O'与△ABC的边恰有3个交点,同理可求O'B=2.5,∴O'A=7.5,∴当⊙O与△ABC的边恰有4个交点时,OA的取值范围为7.5<OA<8或2<OA<.故选:D.10.如图,已知⊙O的半径为3,弦CD=4,A为⊙O上一动点(点A与点C、D不重合),连接AO并延长交CD于点E,交⊙O于点B,P为CD上一点,当∠APB=120°时,则AP•BP的最大值为()A.4B.6C.8D.12解:延长AP交⊙O于T,连接BT.设PC=x.∵AB是直径,∴∠ATB=90°,∵∠APB=120°,∴∠BPT=60°,∴PT=PB•cos60°=PB,∵PA•PB=2PA•PT=2PC•PD=2x•(4﹣x)=﹣2(x﹣2)2+8,∵﹣2<0,∴x=2时,PA•PB的最大值为8,故选:C.二、填空题(每小题5分,共30分)11.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:50100150500100020001000050000抽取只数(只)合格频率0.820.830.820.830.840.840.840.84估计从该批次口罩中任抽一只口罩是合格品的概率为0.84.解:∵随着抽样的增大,合格的频率趋近于0.84,∴估计从该批次口罩中任抽一只口罩是合格品的概率为0.84.故答案为:0.84.12.已知圆锥的高为4cm,母线长为5cm,则圆锥的侧面积为15πcm2.解:根据题意,圆锥的底面圆的半径==3(cm),所以圆锥的侧面积=×2π×3×5=15π(cm2).故答案为15π.13.二次函数y=(x﹣1)2+3图象的顶点坐标是(1,3).解:∵二次函数y=(x﹣1)2+3,∴该函数图象的顶点坐标为(1,3),故答案为:(1,3).14.如图,A是⊙O外一点,AB,AC分别与⊙O切于点B,C.点P是上任意一点(点P与点B,C不重合),过点P作⊙O的切线,交AB于点M,交AC于点N.若AO=13,BO=5,则△AMN的周长为24.解:∵AB,AC分别与⊙O切于点B,C,∴AB=AC,OB⊥AB,在Rt△AOB中,AB===12,∵MN与⊙O相切于P,∴MB=MP,NC=NP,∴△AMN的周长=AM+MN+AN=AM+MP+NP+AN=AM+BM+NC+AN=AB+AC=2AB=2×12=24.故答案为24.15.如图,有一圆形木制艺术品,记为⊙O,其半径为12cm,在距离圆心8cm的点A处发生虫蛀,现需沿过点A的直线PQ将圆形艺术品裁掉一部分,然后用美化材料沿PQ进行粘贴,则美化材料(即弦PQ的长)最少需要8cm.解:如图,连接OA,过点A作弦P′Q′⊥OA,连接OQ′,此时P′Q′的值最小.在Rt△OAQ′中,AQ′===4(cm),∵OA⊥P′Q′,∴AQ′=AP′,∴P′Q′=2AQ′=8(cm),故答案为:8.16.如图,在Rt△ABC中,∠C=90°,点D,E在BC上,结AD,AE.记CD=a,DE =EB=b,图中所有三角形中,若恰好存在两对相似三角形,则=或.解:∵恰好存在两对相似三角形,∴其中一对一定为△ADE∽△BDA,∴,∴AD2=DE•BD=b•2b=2b2,第二对:①若△ACD∽△BCA,∴,∴AC2=CD•CB=a(a+2b),∵a2+AC2=AD2,∴a2+a2+2ab=2b2,即a2+2b﹣b2=0,两边同除以b2,可得:,令m=>0,∴m2+m﹣1=0,解得:(舍去),∴,②若△ACD∽△ECA,∴,∴AC2=CE•CD=a(a+b),∴AC2+a2=AD2,∴a2+ab+a2=2b2,∴,两边同除以b2,可得:,令n=,∴,解得:(舍去),∴,综上所述,的值为或.故答案为:或.三、解答题(本题有8小题,共80分17.计算:20210+|﹣|﹣2sin60°.解:原式=1+﹣2×=1+﹣=1.18.如图,将一个直角三角形形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩底下,可以使木桩向上运动.如果楔子底面的倾斜角为10°,其高度AC为1.8cm,楔子沿水平方向前进一段距离(如箭头所示),留在外面的楔子长度HC为3cm,那么木桩上升了多少厘米?(sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,结果精确到0.1cm)解:在Rt△ABC中,∠ABC=10°,tan∠ABC=,则BC=≈=10(cm),∴BH=BC﹣HC=7(cm),在Rt△ABC中,∠ABC=10°,tan∠ABC=,则PH=BH×tan∠ABC≈7×0.18≈1.3(cm),答:木桩上升了大约1.3厘米19.为进一步普及新冠病毒防疫知识,我区某校举行了“病毒防疫”知识问答测试,随机抽取一部分学生的成绩,将成绩绘制成统计图表:“病毒防疫”知识问答测试成绩频数分布统计表级别成绩(分)频数A95<x≤10022B90<x≤9518C85<x≤90D80<x≤853(1)本次共随机抽取了50名学生,在频数分布统计表中,成绩是C级的频数是7;(2)在扇形统计图中,成绩是B级的圆心角的度数是多少?(3)学校将从获得A级成绩里最好的4名学生中,任选2名参加“病毒防疫”宣讲,其中小江、小北恰在这4名选手中,请用列表法或画树状图法,求小江、小北两人同时被选中的概率.解:(1)本次共随机抽取了学生的人数为:3÷6%=50(名),成绩是C级的频数是50﹣22﹣18﹣3=7,故答案为:50,7;(2)在扇形统计图中,成绩是B级的圆心角的度数为:360°×=129.6°;(3)把小江、小北分别记为A、B,其他2名学生记为C、D,画树状图如图:共有12个等可能的结果,小江、小北两人同时被选中的结果有2个,∴小江、小北两人同时被选中的概率为=.20.图1是由六个全等且边长为2的小正五边形,以及五个全等且顶角为36°、腰长为2的等腰三角形镶嵌而成的一个大正五边形,正五边形和等腰三角形的顶点称为格点,连接格点而成的三角形称为格点三角形.在图2的三个图中,分别画出一个与图中已知△ABC相似但不全等的格点三角形,并注明三角形的顶点字母.解:如图,△DEF,△GHQ,△MNP即为所求.图①中,∠EDF=∠BAC=36°,DE=DF,AB=AC;图②中,GH∥AB,HQ∥BC;图③中,∠BAC=108°,AB=AC.21.如图,已知抛物线y=﹣x2+bx+c与坐标轴交于A,B,C三点,其中A(﹣2,0),B (4,0).(1)求该抛物线的表达式;(2)根据图象,直接写出y>0时,x的取值范围;(3)若要使抛物线与x轴只有一个交点,则需将抛物线向下平移几个单位?解:(1)把A(﹣2,0),B(4,0)代入y=﹣x2+bx+c,得,解得,抛物线解析式为y=﹣x2+2x+8;(2)由图象知,当﹣2<x<4时,y>0;(3)∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴抛物线的顶点坐标为(1,9),∴把抛物线y=﹣x2+2x+8向下平移9个单位,抛物线与x轴只有一个交点.22.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.【解答】(1)证明:连接OC,如图1,∵DC=DE,∴∠DCE=∠DEC,∵∠DEC=∠AEO,∴∠DCE=∠AEO,∵OA⊥OE,∴∠A+∠AEO=90°,∴∠DCE+∠A=90°,∵OA=OC,∴∠A=∠ACO,∴∠DCE+∠ACO=90°,∴OC⊥DC,∴CD是⊙O的切线;(2)如图2,过点D作DF⊥CE于点F,∵AC=2,BC=,∴AB===5,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AOE,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴,∴AE=,∴CE=AC﹣AE=2﹣=,∵CD=DE,∴CF=CE=,∠DEC=∠DCE,∵∠DEC=∠AEO,∠AEO=∠B,∴∠DCE=∠B,又∵∠DFC=∠ACB,∴△DFC∽△ACB,∴,∴,∴DC=.23.扶贫工作小组对果农精准扶贫,帮助果农将一种有机生态水果推广进市场.某水果店从果农处直接批发这种水果,批发价格为每千克24元,当每千克的销售价格定为32元时,每天可售出80千克,根据市场行情,若每千克的销售价格降低0.5元,则每天可多售出10千克(销售单价不低于批发价)现决定降价销售,设这种水果每千克的销售价格为x 元,每天的销售量为y千克.(1)求每天的销售量y千克与销售单价x元之间的函数关系式以及x的取值范围;(2)当销售单价为多少元时,这种水果每天的销售利润最大,最大利润为多少元?解:(1)由题意可得,y=80+×10=﹣20x+720,∵销售单价不低于批发价,∴24≤x≤32,即每天的销售量y千克与销售单价x元之间的函数关系式是y=﹣20x+720(24≤x≤32);(2)设销售利润为w元,由题意可得,w=(x﹣24)(﹣20x+720)=﹣20(x﹣30)2+720,∴当x=30时,w取得最大值,此时w=720,即当销售单价为30元时,这种水果每天的销售利润最大,最大利润为720元.24.如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是,的中点,连接DE分别交AC,BC于点F,G.(1)求证:△DFC∽△CGE;(2)若DF=3,tan∠GCE=,求FG的长;(3)如图2,连接AD,BE,若=x,=y,求y关于x的函数表达式.解:(1)∵点D是的中点,∴,∴∠ACD=∠CED,∵点E是的中点,∴,∴∠CDE=∠BCG,∴△DFC∽△CGE;(2)由(1)知,∠ACD=∠CED,∠CDE=∠BCG,∴∠ACD+∠CDE=∠CED+∠BCG,∴∠CFG=∠CGF,∵CF=CG,∵∠ACB=60°,∴△CFG是等边三角形,如图1,过点C作CH⊥FG于H,∴∠DHC=90°,设FH=a,∴∠FCH=30°,∴FG=CF=2a,CH=a,∵DF=3,∴DH=DF+FH=3+a,∵∠GCE=∠CDE,tan∠GCE=,∴tan∠CDE=,在Rt△CHD中,tan∠CDE==,∴=,∴a=1,∴FG=2a=2;(3)如图2,连接AE,则∠AEB=∠ACB=60°,∠DAE=∠CAD+∠CAE=∠ACD+∠CDF=∠CFG=60°,∴∠AEB=∠DAE,∴BE∥AD,设BE与AD的距离为h,∴=,∴S△ABE=•S△ADE,∵D,E分别是,的中点,∴CD=AD,BE=CE,∴S△ABE=•S△ADE,过点D作DM⊥AC于M,∵,∴AD=CD,∴AC=2CM,由(2)知,△CFG是等边三角形,∴∠CFG=60°,∴∠DFM=60°,∴∠MDF=30°,设MF=m,则DM=m,DF=2m,∵=x,∴CF=x•DF=2mx,∴CG=CF=2mx,由(1)知,△DFC∽△CGE,∴,∴=,∴S△ABE=•S△ADE=S△ADE,∴S四边形ABED=S△ADE+S△ABE=S△ADE,∵MF=m,CF=x•DF=2mx,∴CM=MF+CF=m+2mx=(2x+1)m,∴AC=2CM=2(2x+1)m,∴AF=AC﹣CF=2(2x+1)m﹣2mx=2(x+1)m,过点A作AN⊥DF于N,∴S△ADF=AF•DM=DF•AN,∴AN===(x+1)m,过点C作CP⊥FG,由(2)知,PF=CF=mx,CP=mx,∴y===•=•=•=•=.。
浙江省宁波市鄞州区曙光中学2024-2025学年九年级上学期10月月考数学试题
浙江省宁波市鄞州区曙光中学2024-2025学年九年级上学期10月月考数学试题一、单选题1.抛物线()2321y x =-+的顶点坐标是( )A .()2,1B .()2,1-C .()2,1-D .()2,1-- 2.如图,在矩形ABCD 中,5AB =,12AD =,若以点D 为圆心,12为半径作D e ,则下列各点在D e 外的是( )A .点AB .点BC .点CD .点D3.下列生活中的事件,属于不可能事件的是( )A .经过有交通信号灯的路口,遇到绿灯B .在一个只装着白球和黑球的袋中摸球,摸出红球C .打开电视,正在播放2023年杭州亚运会男子100米决赛D .从两个班级中任选三名学生,至少有两名学生来自同一个班级4.由二次函数23(2)1y x =-+-,可知( )A .其图像的对称轴为直线2x =B .其最大值为1C .当2x ≤-时,y 随x 的增大而增大D .其图像与y 轴的交点为()0,1- 5.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( ) A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.已知一个直角三角形的两条直角边的长恰好是方程27120x x -+=的两个实数根,则该直角三角形外接圆的半径长为( )A .3B .4C .6D .2.57.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )A .B .C .D .8.已知一个二次函数图象经过()113,P y -,()221,P y -,()331,P y ,()443,P y 四点,若324y y y <<,则1234,,,y y y y 的最值情况是( )A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定9.如图,AB 为O e 的直径,弦CD AB ⊥于点F ,OE AD ⊥于点E ,若O e 的半径为3,2BF =,则OE 的长为( )A .1 BC D10.已知二次函数 y =ax 2+bx+c (a≠0),过(1,y 1)(2,y 2).①若 y 1>0 时,则 a+b+c >0②若 a =b 时,则 y 1<y 2③若 y 1<0,y 2>0,且 a+b <0,则 a >0④若 b =2a ﹣1,c =a ﹣3,且 y 1>0,则抛物线的顶点一定在第三象限上述四个判断正确的有( )个.A .1B .2C .3D .4二、填空题11.已知二次函数2y x x m =++的图象过点()1,2,则m =.12.“盐城马拉松”的赛事共有三项,“马拉松” 、“半程马拉松”和“迷你健身跑”.乐乐参加了志 愿者服务工作,为估算“半程马拉松”的人数,对部分参赛选手作了调查:请估算本次赛事参加“半程马拉松”人数的概率为 .(精确到 0.01)13.如图,在Rt △OAB 中,30AOB ∠=︒,将△OAB 绕点O 逆时针旋转100︒得到△11OA B (A 、B 分别与1A 、1B 对应),则1AOB ∠的度数为度.14.一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,3cm AB =,4cm CD =.请你帮忙计算纸杯的直径为cm .15.若函数()21122y m x x m =+-+的图象与坐标轴有两个不同的交点,则m 的值为. 16.一块含45︒角的直角三角板和一块量角器如图摆放(三角板顶点A 与量角器0刻度处重合),量角器与三角板交于点D ,经测量知18cm AD =,点E 为AD 中点,点F 为弧AD 上一动点,则EF 的最小值为.三、解答题17.已知二次函数246y x x =-+.(1)将246y x x =-+化成2()y a x h k =-+的形式;(2)写出抛物线的开口方向、对称轴和顶点坐标.(3)当13x -<<时,直接写出函数y 的取值范围.18.如图,已知ABC V 的三个顶点坐标分别是()3,5A ,()1,2B ,()4,1C .(1)根据要求画图:将ABC V 绕原点O 逆时针旋转90︒后得到111A B C △.(2)111A B C △的面积是______.19.学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校.某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进行了调查,并将调查结果分为三类:A :好,B :中,C :差.请根据图中信息,解答下列问题:(1)求全班学生总人数;(2)在扇形统计图中,a =,b =,C 类的圆心角为;(3)张老师在班上随机抽取了4名学生,其中A 类1人,B 类2人,C 类1人,若再从这4人中随机抽取2人,请用列表法或画树状图的方法求出全是B 类学生的概率.20.已知:二次函数2y ax bx c =++的图像与x 轴交于(3,0)A -,(1,0)B 两点,与y 轴交于点(0,3)C -.(1)求抛物线的解析式;(2)若有一直线:l y mx n =+经过点A 、C ,直接写出不等式2ax bx c mx n ++≥+的解集;(3)若抛物线上有一动点P ,使三角形ABP 的面积为6,请直接写出P 点的坐标. 21.如图所示,O e 的直径为8cm ,弦AB ,CD 相交于点P ,已知点C 是»AB 的中点,弦CD的长为.(1)求圆心O 到弦CD 的距离.(2)求APC ∠的度数.22.某公司销售某种电子产品,该产品的进价为30元/件,根据市场调查发现,该产品每周的销售量y (单位:件)与售价x (单位:元/件)(x 为正整数)之间满足一次函数的关系,下表记录的是某三周的有关数据.(1)求y 与x 的函数表达式(不求自变量的取值范围);(2)若某周该产品的销售量不少于750件,求这周该商场销售这种产品获得的最大利润;(3)规定这种产品的售价不超过进价的2倍,若产品的进价每件提高m 元()0m >时,该商场每周销售这种产品的利润仍随售价的增大而增大,请直接写出m 的取值范围为_____________.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,在半径为2的扇形AOB 中,∠AOB=90°,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)当BC=1时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.。
2020-2021学年浙江省宁波市余姚市九年级(上)期末数学试卷 (解析版)
2020-2021学年浙江省宁波市余姚市九年级第一学期期末数学试卷一、选择题(共10小题).1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A.明天30%的地区不会下雨B.明天下雨的可能性较大C.明天70%的时间会下雨D.明天下雨是必然事件3.把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+4)2+1D.y=(x﹣4)2+14.一个圆的内接正六边形与内接正方形的边长之比为()A.3:2B.1:C.1:D.:5.如图,直线l1∥l2∥l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A.18B.20C.25D.306.在4×5网格中,A,B,C为如图所示的格点(正方形的顶点),则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=7.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A.8.5米B.8.8米C.8.3米D.9米9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=y B.3x=2y C.x=1,y=2D.x=3,y=2 10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f(e,f 为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB =90°,则a的值为()A .﹣B .﹣C .﹣D .﹣二、填空题(共6小题).11.如图,已知角α的终边经过点P(4,3),则cosα=.摸球的次数n1001502005008001000600058961162954846013601到白球的次数m0.580.640.580.590.6050.6010.600摸到白球的频率小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是(若有正确的,则填编号;若没有正确的,则填“无”).13.已知,点A(﹣1,y1),B(﹣0.5,y2),C(4,y3)都在二次函数y=ax2﹣2ax﹣1(a >0)的图象上,则y1,y2,y3的大小关系是.14.如图,AB为⊙O的直径,=2,M为的中点,过M作MN∥OC交AB于N,连接BM,则∠BMN的度数为.15.如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为.16.如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:;②m=(用含S1,S3的代数式表示m).三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.计算求值:(1)已知,求的值;(2)2sin30°﹣tan60°•cos30°.18.如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.19.某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).20.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.21.如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.22.如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接PA,PB,分别交⊙O于点C,D,=.(1)求证:PA=PB;(2)若∠P=60°,=3.△AOC的面积等于9,求图中阴影部分的面积.23.如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ∥AC,交直线BC于点Q,作PM∥y轴交BC于M.①求证:△PQM∽△COA;②求线段PQ的长度的最大值.24.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA•AE的最大值.参考答案一、选择题(共10小题).1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.解:根据旋转的定义,A,B,C中的三角形绕一点旋转一次不能得到另一三角形,不符合题意,选项D符合题意.故选:D.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A.明天30%的地区不会下雨B.明天下雨的可能性较大C.明天70%的时间会下雨D.明天下雨是必然事件解:天气台预报明天下雨的概率为70%,说明明天下雨的可能性很大,故B正确.故选:B.3.把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+4)2+1D.y=(x﹣4)2+1解:把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为y=(x﹣1+3)2﹣3+4,即y=(x+2)2+1.故选:A.4.一个圆的内接正六边形与内接正方形的边长之比为()A.3:2B.1:C.1:D.:解:设此圆的半径为R,它的内接正六边形的边长为R,则它的内接正方形的边长为R,内接正六边形和内接四边形的边长比为R:R=1:.故选:C.5.如图,直线l1∥l2∥l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A.18B.20C.25D.30解:∵l1∥l2∥l3,∴=,即=,∴DF=25.故选:C.6.在4×5网格中,A,B,C为如图所示的格点(正方形的顶点),则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=解:由网格构造直角三角形可得,AB2=12+32=10,AC2=12+22=5,BC2=12+22=5,∵AB2=AC2+BC2,∴△ABC是等腰直角三角形,∴∠A=∠B=45°,∴sin A=sin45°=,cos A=cos45°=,tan A=tan45°=1,∴选项D是正确的,故选:D.7.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π解:如图,连接OB.∵CD⊥AB,CD是直径,∴=,∴∠AOC=∠BOC,∵OA=OB,∴∠A=∠B=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠COB=∠AOB=60°,∴∠DOB=180°﹣60°=120°,∴的长==2π,故选:B.8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A.8.5米B.8.8米C.8.3米D.9米解:由于台阶共高出地面1.53米,斜坡的坡角不得超过10°,斜坡的水平宽度AB至少为AB=≈8.5(米).故选:A.9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=y B.3x=2y C.x=1,y=2D.x=3,y=2解:如图,当矩形ABCD∽矩形EFGH时,则有=,∴=,可得3x=2y,选项B符合题意,当矩形ABCD∽矩形EHFG时,则有=,∴=,推不出:x=y或3x=2y或x=1,y=2或x=3,y=2.故选项A,B,C,D都不满足条件,此种情形不存在.∴矩形ABCD∽矩形EFGH,可得3x=2y,故选:B.10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f(e,f 为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB =90°,则a的值为()A.﹣B.﹣C.﹣D.﹣解:∵C(m,n)和D(m+8,n),∴CD∥x轴,且二次函数的对称轴x=m+4,∴AB⊥CD,∵点C,D在二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f (e,f为常数)的图象上,∴y=ax2+bx+c=a(x﹣m)(x﹣m﹣8)+n,y=(x﹣m)(x﹣m﹣8)+n,∴A(m+4,n﹣16a),B(m+4,n﹣8),设AB与CD的交点为E,则E(m+4,n),则CE=4,AE=﹣16a,BE=8;在△ABC中,∠ACB=90°,且AB⊥CD,则CE2=AE•BE,∴42=﹣16a×8,解得,.故选:C.二、填空题(每题5分,共30分)11.如图,已知角α的终边经过点P(4,3),则cosα=.解:过点P作PA⊥x轴于点A,∵点P的坐标为(4,3),∴PA=3,OA=4,由勾股定理得,OP ==5,∴cosα==,故答案为:.12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记第下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000600058961162954846013601到白球的次数m0.580.640.580.590.6050.6010.600摸到白球的频率小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是②(若有正确的,则填编号;若没有正确的,则填“无”).解:由题意可得,若摸10000次,则频率不一定为0.6,可能为0.6,故①错误;由表格中的数据可以估计摸一次得白球的概率约为0.6,故②正确;故答案为:②.13.已知,点A(﹣1,y1),B(﹣0.5,y2),C(4,y3)都在二次函数y=ax2﹣2ax﹣1(a >0)的图象上,则y1,y2,y3的大小关系是y2<y1<y3.解:当x=﹣1时,y1=a×(﹣1)2﹣2a×(﹣1)﹣1=3a﹣1;当x=﹣0.5时,y2=a×(﹣0.5)2﹣2a×(﹣0.5)﹣1=1.25a﹣1;当x=4时,y3=a×42﹣2a×4﹣1=8a﹣1.∵a>0,∴1.25a﹣1<3a﹣1<8a﹣1,∴y2<y1<y3.故答案为:y2<y1<y3.14.如图,AB为⊙O的直径,=2,M为的中点,过M作MN∥OC交AB于N,连接BM,则∠BMN的度数为45°.解:连接OM.∵AB是直径,=2,∴∠BOC=×180°=60°,∵=,∴∠MOB=∠COM=30°,∵OM=OB,∴∠B=∠OMB=(180°﹣30°)=75°,∵OC∥MN,∴∠MNB=∠COB=60°,∴∠BMN=180°﹣∠BNM﹣∠NBM=180°﹣60°﹣75°=45°,故答案为:45°.15.如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为.解:如图,作AM⊥BC于M,AM交DE于N.∵S△ABC=BC•AM=10,BC=5,∴AM=4.∵DE∥BC,AM⊥BC,∴△ADE∽△ABC,AM⊥DE,∴=,即=,∴AN=,∴平行四边形DEGF的高MN=AM﹣AN=4﹣=,∴平行四边形纸片的面积=2×=.故答案为:.16.如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:S2=(S1+S3);②m=.(用含S1,S3的代数式表示m).解:①观察图像(2)可知,S1=8S△AEH+S3,4S△AEH=S2﹣S3,∴S1=2(S2﹣S3)+S3,∴2S2=S1+S3,∴S2=(S1+S3),故答案为:S2=(S1+S3).②∵HE⊥EF,AK⊥HE,∴AK∥EF,同理:BL∥GF,DJ∥HE,CI∥GH,∴四边形MNOP是平行四边形,且△MKL≌△NLI≌△OIJ≌△PJK,∴MN∥GF∥EH,∴∠LMK=∠EKH=90°,∠MLK=∠HEL,∴△MLK∽△KEH,∴==,设AE=x,PE=y,则:==,∴ML=,MK==LN,∴MN=+=,∴m=MN2=2=,∵S1=(x+y)2,S2=x2+y2,S3=(x﹣y)2,∴m===.故答案为:.三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.计算求值:(1)已知,求的值;(2)2sin30°﹣tan60°•cos30°.解:(1)∵,∴设a=3x,则b=4x,∴==﹣;(2)原式=2×﹣×=1﹣=﹣.18.如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.解:如图所示,△ADE和△ADB即为所求.19.某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).解:(1)小丽通过A通道进入校园的概率为;(2)列表如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小丽和小聪从两个不同通道进入校园的有6种可能,∴小丽和小聪从两个不同通道进入校园的概率为=.20.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.解:(1)如图,过O作OG⊥BD于点G,∵AE⊥BD,∴OG∥AE,∵BO=DO,∴OG平分∠BOD,∴∠BOG=∠BOD=×56°=28°,∴∠EAB=∠BOG=28°,在Rt△ABE中,AB=AO+BO=70+80=150(cm),∴AE=AB•cos∠EAB=150×cos28°≈150×0.88=132(cm),答:点A离地面的高度AE约为132cm;(2)∵OG∥AE,∴∠EAB=∠BOG,∵CF⊥BD,∴CF∥OG,∴∠DCF=∠DOG,∵∠BOG=∠DOG,∴∠BAE=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△CFD,∴=,∴CF===100(cm),答:C点离地面的高度CF为100cm.21.如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.解:(1)设矩形的长为x米,则宽为米,由题意可知x≤a,∴设矩形的面积为S,则S=x×=﹣x2+12x=﹣(x﹣12)2+72,∵﹣<0,抛物线开口向下,对称轴为直线x=12,∴当0<x≤12时,S随x的增大而增大,当x≥12时,S随x的增大而减小;①a=15时,x≤a即x≤15;∴当x=12时,S有最大值为72平方米;②a=10时,x≤a即x≤10,∴当x=10时,面积的最大值为﹣×(10﹣12)2+72=70(平方米).(2)令S=67.5得:﹣(x﹣12)2+72=67.5,解得x=9或x=15,由x≤a可知,当x=15时,a≥15,由(1)知,此时矩形最大值在x=12时取得,面积最大值为72平方米,故x=15舍去.∴a=9.22.如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接PA,PB,分别交⊙O于点C,D,=.(1)求证:PA=PB;(2)若∠P=60°,=3.△AOC的面积等于9,求图中阴影部分的面积.【解答】(1)证明:连接OA,OC,OD,OB,设OM⊥AC于M,ON⊥BD于N,设OP交⊙O于E.∵=,∴AC=BD,∵OA=OC=OB=OD,OM⊥AC,ON⊥BD,∴CM=AM,BN=DN,∠OMC=∠OND=90°,∴CM=DN,在Rt△OMC和Rt△OND中,,∴Rt△OMC≌Rt△OND(HL),∴OM=ON,在Rt△POM和Rt△PON中,,∴Rt△POM≌Rt△PON(HL),∴PM=PN,∵AM=BN,∴PA=PB.(2)解:∵∠APB=60°,∠PMO=∠PNO=90°,∴∠MON=120°,∵△POM≌△PON,∴∠POM=∠PON=60°,∵=3,∴∠COE=3∠COM,∴∠COM=15°,∴∠AOC=2∠COM=30°,过点A作AJ⊥OC于J.设OA=OB=R,则AJ=R∴S△AOC=9,∴•R••R=9,∴R=6,∴S阴=S阴=S阴﹣S△AOC=﹣9=3π﹣9.23.如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ∥AC,交直线BC于点Q,作PM∥y轴交BC于M.①求证:△PQM∽△COA;②求线段PQ的长度的最大值.解:(1)∵二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),∴,解得:,∴二次函数表达式为y=﹣x2+x+2;(2)△ABC是直角三角形,理由如下:∵抛物线y=﹣x2+x+2与y轴交于点C,∴点C(0,2),又∵点A(﹣1,0),B(4,0),∴AB=5,AC===,BC===2,∵AB2=25,AC2+BC2=25,∴AB2=AC2+BC2,∴∠ACB=90°,∴△ABC是直角三角形;(3)①∵∠ACB=∠AOC=90°,∴∠ACO+∠BCO=90°=∠ACO+∠CAO,∴∠BCO=∠CAO,∵PQ∥AC,PM∥y轴,∴∠ACB=∠CQP=∠PQM=90°,∠PMQ=∠BCO=∠CAO,∴△PMQ∽△COA;②如图,延长PM交AB于H,∵∠PMQ=∠BMH,∠PQM=∠PHB=90°,∴∠QPM=∠CBA,∵B(4,0),点C(0,2),∴直线BC解析式为y=﹣x+2,设P(m,﹣m2+m+2),则点M(m,﹣m+2),∴PM=﹣m2+m+2﹣(﹣m+2)=﹣(m﹣2)2+2,∵cos∠CBA=cos∠QPM,∴,∴=,∴PQ=﹣(m﹣2)2+,∴当m=2时,PQ有最大值为.24.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA•AE的最大值.【解答】(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠PAF=∠PBC,∵AP平分∠BAF,∴∠PAF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴=,∴点P为的中点;②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴,∴PH是直径,∵∠BPC=∠BAC,∠BOG=∠BPG=∠BPC,∵OG⊥BC,∴BG=BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG==;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC===3,设∠APC=x,∵A是的中点,∴=,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x﹣x=x=∠CPE,∴CE=PC=3;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠PAF=∠PAB,∴△ACE∽△APB,∴,∴PA•AE=AC•AB,∵sin∠BAC=,∴CQ=AC•sin∠BAC=AC,∴S△ABC=AB•CQ=,∴PA•AE=S△ABC,∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时PA•AE=×=80.。
2020-2021学 年上 学期人教版九年级数学试题
2020-2021上学期人教版九年级数学期末试卷一.选择题(共12小题)1.如果一个数的绝对值小于另一个数,则这两个数的和是()A.正数B.正数或零C.负数D.负数或零2.下列各数:1,,4.112134,0,,3.14,其中分数有()A.6个B.3个C.4个D.5个3.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个4.等式就像平衡的天平,能与如图的事实具有相同性质的是()A.如果a=b,那么ac=bc B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+c D.如果a=b,那么a2=b25.若M在第三象限,则M点的坐标可能是()A.(1,2)B.(2,﹣3)C.(﹣5,﹣6)D.(﹣3,5)6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(,0),顶点D的坐标为(0,),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A₂,作正方形A2B2C2C1,…,按这样的规律进行下去,第2021个正方形的周长为()A.()2020B.()2021C.4×()2020D.4×()2021 7.下列几何体,用一个平面去截,不能截得三角形截面的是()A.圆柱B.圆锥C.三棱柱D.正方体8.已知正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积是()A.27cm3B.27πcm3C.18cm3D.18πcm39.如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.如图,在等边△ABC中,点D和点B关于直线AC对称,过点D做DE⊥BC,交BC 的延长线于点E,若CE=5,则BE的长为()A.5B.10C.5D.1511.某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是()A.测试该市某一所中学初中生的体重B.测试该市某个区所有初中生的体重C.测试全市所有初中生的体重D.每区随机抽取5所初中,测试所抽学校初中生的体重12.﹣2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之一段,那么n的最小值是()A.5B.6C.7D.8二.填空题(共6小题)13.若向前进10米记为+10,那么向后退10米记为.14.方程(b﹣3)b+2015=1的解是b=.15.点P到x轴和y轴的距离分别为2和3,且点P在第四象限,则P点的坐标为.16.一个直棱柱一共有21条棱,那么这个棱柱的底面的形状是.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序.(只填序号)三.解答题(共9小题)19.为全力迎接全国第十四届运动会,西安市将继续加快交通高质量发展,不断增强市民获得感和幸福感.某检修小组从O地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下,(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣1(1)求收工时距O地多远?(2)在第几次记录时距O地最远?(3)若每千米耗油0.2升,问共耗油多少升?20.把下列各数填在相应的集合中:22,,0.81,﹣3,,﹣3.1,0,3.14,π,1.6整数集合{…};负分数集合{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.已知方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,求a的值.23.已知点P(2x﹣6,3x+1)在y轴上,求P的坐标.24.计算下面圆锥的体积.25.国庆期间,广场上对一片花圃做了美化造型(如图所示),整个造型构成花的形状.造型平面呈轴对称,其正中间“花蕊”部分(区域①)摆放红花,两边“花瓣”部分(区域②)摆放黄花.(1)两边“花瓣”部分(区域②)的面积是.(用含a的代数式表示)(2)已知a=2米,红花价格为220元/平方米,黄花价格为180元/平方米,求整个造型的造价(π取3).26.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.27.若干个人相聚,其中有些人彼此认识,已知:(1)如果某两个人有相等数目的熟人,则他两没有公共的熟人;(2)有一个人至少有56个熟人.证明:可找出一个聚会者,他恰好有56个熟人.2020-2021上学期人教版九年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据一个数的绝对值小于另一个数,可知另一个数是正数,并且另一个数的绝对值较大,根据有理数的加法法则即可确定答案.【解答】解:∵一个数的绝对值小于另一个数,∴另一个数是正数,并且另一个数的绝对值较大,∴这两个数的和一定是正数.故选:A.2.【分析】根据有理数的分类判断即可.【解答】解:在1,,4.112134,0,,3.14中,分数有4.112134,,3.14,共3个.故选:B.3.【分析】分别求出四个方程的解各是多少,判断出x=3是所给方程的解的有多少个即可.【解答】解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.4.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.5.【分析】根据在第三象限的点的横坐标和纵坐标均为负数判断即可.【解答】解:A.点(1,2)在第一象限;B.(2,﹣3)在第四象限;C.(﹣5,﹣6)在第三象限,D.(﹣3,5)在第二象限,故选:C.6.【分析】根据相似三角形的判定定理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的周长公式计算三个正方形的周长,从中找出规律,问题也就迎刃而解了.【解答】解:设正方形的周长分别为C1,C2 (2021)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(两直线平行,同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,∵顶点A的坐标为(,0),顶点D的坐标为(0,),∴OA=,OD=,在直角△ADO中,根据勾股定理,得:AD==1,∴AD=AB=1,∵cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=1+=,同理,得:C1A2=+==()2,由正方形的周长公式,得:C1=4×()0C2=4×()1,C3=4×()2,…由此,可得∁n=4×()n﹣1,∴C2021=4×()2020.故选:C.7.【分析】当截面的角度和方向不同时,圆柱,球的截面不相同,无论什么方向截取圆柱都不会截得三角形.【解答】解:用一个平面截一个几何体,不能截得三角形的截面的几何体有圆柱.故选:A.8.【分析】首先根据题意可得将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,再计算体积即可.【解答】解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,∴所得几何体的体积=32•π•3=27π(cm3),故选:B.9.【分析】利用轴对称画图可得答案.【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.10.【分析】连接CD,构造含30°角的直角三角形DCE,根据BC=DC进行计算即可.【解答】解:如图,连接CD,∵△ABC是等边三角形,点D和点B关于直线AC轴对称,∴BC=DC,∠ACB=∠ACD=60°,∴∠DCE=60°,∵DE⊥CE,CE=5,∴∠CDE=30°,∴CD=2CE=10,∴BC=10.∴BE=BC+CE=10+5=15.故选:D.11.【分析】利用抽样调查的中样本的代表性即可作出判断.【解答】解:某市有9个区,为了解该市初中生的体重情况,设计了四种调查方案.比较合理的是:每区随机抽取5所初中,测试所抽学校初中生的体重,故选:D.12.【分析】将数轴上的3段看成3个抽屉,先考虑相反的情况,得到的结果再取反即为答案.令每个抽屉最多有2个点,则最多有6个点,由此可得出结论.【解答】解:∵令每个抽屉最多有2个点,则最多有6个点,∴n≥7.故选:C.二.填空题(共6小题)13.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若向前进10米记为+10,那么向后退10米记为﹣10.故答案为:﹣10.14.【分析】根据零指数幂的性质得到b+2015=0,右侧求得b的值.【解答】解:根据题意,得b+2015=0,或b﹣3=1.解得b=﹣2015或b=4故答案是:﹣2015或4.15.【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【解答】解:∵点P(x,y)在第四象限,P到x轴,y轴的距离分别等于2和3,∴点P的横坐标是3,纵坐标是﹣2,∴点P的坐标为(3,﹣2).故答案为:(3,﹣2).16.【分析】根据n棱柱有3n条棱可得答案.【解答】解:∵一个直n棱柱有3n条棱,∴21÷3=7,故答案为:7.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据调查的一般步骤,得出结论.【解答】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.三.解答题(共9小题)19.【分析】(1)首先把题目的已知数据相加,然后根据结果的正负即可确定相距O多少千米;(2)分别写出各次记录时距离O地的距离,然后判断即可;(3)首先把所给的数据的绝对值相加,然后乘以0.2升,即可求解.【解答】解:(1)﹣4+7+(﹣9)+8+6+(﹣5)+(﹣1)=2(千米).答:收工时检修小组在O地东面2千米处;(2)第一次距O地|﹣4|=4千米;第二次:|﹣4+7|=3(千米);第三次:|3﹣9|=|﹣6|=6(千米);第四次:|﹣6+8|=2(千米);第五次:|2+6|=8(千米);第六次:|8﹣5|=3(千米);第七次:|3﹣1|=2(千米).所以距O地最远的是第5次;(3)从出发到收工汽车行驶的总路程:|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣5|+|﹣1|=40;从出发到收工共耗油:40×0.2=8(升).答:从出发到收工共耗油8升.20.【分析】根据整数包括正整数、0和负整数,可得整数集合;根据小于0的分数为负分数,可得负分数集合.【解答】解:整数集合{22,﹣3,0…};负分数集合{,﹣3.1…}.故答案为:22,﹣3,0;,﹣3.1.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】先求出每个方程的解,根据相反数得出关于a的方程,求出方程的解即可.【解答】解:解方程3x+2a﹣1=0得:x=,解方程x﹣2a=0得:x=2a,∵方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,∴2a+(﹣)=0,解得:a=﹣.23.【分析】根据y轴上点的横坐标为0列方程求出x的值,再求解即可.【解答】解:∵点P(2x﹣6,3x+1)在y轴上,∴2x﹣6=0,解得x=3,所以,3x+1=9+1=10,故P(0,10).24.【分析】根据圆锥的体积解答即可.【解答】解:圆锥的体积:=(cm3).25.【分析】(1)区域②的面积=2个正方形的面积.(2)分别求出区域①,②的面积,再乘以单价即可.【解答】解:(1)区域②的面积=2a2.故答案为:2a2.(2)整个造型的造价:220(2×22﹣×22)+180(2×22+•π•22)=2960(元).26.【分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行判断;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.27.【分析】考虑聚会中熟人最多的人(如果不止一个,则任取其中之一),记为A,设A认识了n个人,设为B1,B2,…,B n,由条件(1)知B i,B j熟人的数目不相等,于是B1,B2,…,B n,各人的熟人数互不相等,且均不超过n(根据的最大性),因此,必然是1,2,…,n,再根据条件(2)知n≥56,从而求解.【解答】解:考虑聚会中熟人最多的人(如果不止一个,则任取其中之一),记为A,设A认识了n个人,设为B1,B2,…,B n,由于任意两人B i,B j都以A为共同熟人,由条件(1)知B i,B j熟人的数目不相等,于是B1,B2,…,B n,各人的熟人数互不相等,且均不超过n(根据的最大性),因此,必然是1,2,…,n,再根据条件(2)知n≥56,因此1,2,…,n中包含着56,即B1,B2,…,B n中必有人恰好认识56人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省宁波市2020版九年级上学期数学期末考试试卷D卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2017八上·西湖期中) 对应命题“若,则”,下面四组,的值中,能说明这个命题是假命题的是().
A . ,
B . ,
C . ,
D . ,
2. (2分) (2016九上·门头沟期末) 在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()
A .
B .
C .
D .
3. (2分)(2018·夷陵模拟) 已知△ABC的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形的中点构成第三个三角形,以此类推,则第2012个三角形的周长为()
A .
B .
C .
D .
4. (2分)如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()
A . 2㎝
B . 3㎝
C . 4㎝
D . 5㎝
5. (2分) (2018七上·腾冲期末) 如图所示的几何体,从左面看到的平面图形是().
A .
B .
C .
D .
6. (2分) (2018九上·焦作期末) 如图,Rt△AOB的一条直角边OA在轴上,且 .若某反比例函数图象的一支经过点B,则该反比例函数的解析式为()
A .
B .
C .
D .
7. (2分)一个袋子中有4个球,其中2个红球,2个蓝球,除颜色外其余特征均相同,若从这个袋子中任取1个球,是蓝色的概率是()
A .
B .
C .
D .
8. (2分)对于任意实数k关于x的方程x2﹣2kx+k2﹣1=0根的情况为()
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 没有实数根
D . 无法确定
9. (2分)下列四边形中,对角线不可能相等的是()
A . 直角梯形
B . 正方形
C . 等腰梯形
D . 长方形
10. (2分)如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A′B′与AB的相似比为,得到线段A′B′.正确的画法是()
A .
B .
C .
D .
二、填空题 (共5题;共6分)
11. (1分)方程x2-8=0的解是________,3x2-36=0的解是________.
12. (2分)在菱形ABCD中,AE为BC边上的高,若AB=5,AE=4,则线段CE的长为________.
13. (1分) (2016七下·威海期末) 在一个不透明的布袋里共装有80个红球和白球,这些球除颜色外完全相同,小明通过多次摸球试验后发现,摸到红色球的频率稳定在20%左右,则可以估计到布袋中红色球可能有________个。
14. (1分)(2018·连云港) 已知A(﹣4, )、B(﹣1, )是反比例函数图像上的两个点,
则与的大小关系为________.
15. (1分)(2017·东莞模拟) 如图,双曲线y= 经过Rt△BOC斜边上的点A,且满足 = ,与BC 交于点D,S△BOD=21,求k=________.
三、解答题 (共8题;共41分)
16. (5分) (2019七上·北京期中) 解方程:
(1) -6 - 3x = 2 (5-x)
(2)
17. (2分)(2017·如皋模拟) 若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
18. (15分) (2019九上·苏州开学考) 如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点E、F分别在AC,AB上,连接EF.
(1)将△ABC沿EF折叠,使点A落在AB边上的点D处,如图1,若S四边形ECBD=2S△EDF,求AE的长;
(2)将△ABC沿EF折叠,使点A落在BC边上的点M处,如图2,若MF⊥CB.
①求AE的长;②求四边形AEMF的面积;
(3)若点E在射线AC上,点F在边AB上,点A关于EF所在直线的对称点为点P,问:是否存在以PF、CB 为对边的平行四边形,若存在,求出AE的长;若不存在,请说明理由.
19. (5分)在矩形ABCD中,AB=10,BC=12,E为DC的中点,连接BE,作AF⊥BE,垂足为F.
(1)求证:△BEC∽△ABF;
(2)求AF的长.
20. (2分)(2017·平南模拟) 如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E.已知C点的坐标是(6,﹣1),DE=3.
(1)
求反比例函数与一次函数的解析式.
(2)
根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?
21. (5分) (2017九上·梅江月考) 如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2 ,则修建的路宽应为多少米?
22. (5分)(2017·东丽模拟) 如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.
23. (2分)如图1,在△ABC中,AB边上高CE与AC边上高BD相交于H点.若BC=25,BD=20,BE=7.
(1)求DE的长;
(2)如图2,若以DE为直径作圆,分别与AC、AB交于G、F,连AH,求证:AH⊥GF.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共8题;共41分)
16-1、
16-2、
17-1、
17-2、
18-1、
18-2、
19-1、
20-1、20-2、
21-1、
22-1、23-1、
23-2、。