高三数学易错题重做(3)

合集下载

高三数学易错数列多选题 易错题难题同步练习试题

高三数学易错数列多选题 易错题难题同步练习试题

高三数学易错数列多选题 易错题难题同步练习试题一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.已知数列{}n a 的首项1a m =且满足()()14751221nn a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,其中n *∈N ,则下列说法中正确的是( )A .当1m =时,有3n n a a +=恒成立B .当21m =时,有47n n a a ++=恒成立C .当27m =时,有108111n n a a ++=恒成立D .当()2km k N *=∈时,有2n kn k aa +++=恒成立【答案】AC 【分析】题设中的递推关系等价为1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,根据首项可找到{}n a 的局部周期性,从而可得正确的选项. 【详解】因为()()14751221n n a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,故1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数, 当1m =即11a =时,24a =,32a =,41a =,故{}n a 为周期数列且3n n a a +=,故A 正确.当21m =即121a =时,264a =,同理416a =,58a =,64a =,72a =,81a =,故58a a ≠,故B 错误.当2km =即12ka =时,根据等比数列的通项公式可有11222k kk a -⎛⎫= ⎪⎝⎭=,+1+21,4k k a a ==,+32k a =, +1+3k k a a ≠,故D 错误.对于C ,当27m =时,数列{}n a 的前108项依次为:27,82,42,124,62,31,94,47,142,71,214,107,322,161,484242,121,364,182,91,274,, 137,412,206,103,310,155,466,233,700,350,175,526,263,790,395,1186,593,1780, 890,445,1336,668,334,167,502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734, 1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866,433,1300,650, 325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,40,20,10,5,16,故1098a =,1104a =,1112a =,1121a =,1134a =, 所以109112n n a a ++=对任意1n ≥总成立.(备注:因为本题为多选题,因此根据A 正确,BD 错误可判断出C 必定正确,可无需罗列出前108项) 故选:AC. 【点睛】方法点睛:对于复杂的递推关系,我们应该将其化简为相对简单的递推关系,对于数列局部周期性的研究,应该从特殊情况中总结出一般规律,另外,对于多选题,可以用排除法来确定可选项.3.已知数列{}n a 的前n 项和为n S ,11a =,()1*11,221,21n n n a n ka k N a n k --+=⎧=∈⎨+=+⎩.则下列选项正确的为( ) A .614a =B .数列{}()*213k a k N-+∈是以2为公比的等比数列C .对于任意的*k N ∈,1223k k a +=-D .1000n S >的最小正整数n 的值为15 【答案】ABD 【分析】根据题设的递推关系可得2212121,21k k k k a a a a -+=-=-,从而可得22222k k a a +-=,由此可得{}2k a 的通项和{}21k a -的通项,从而可逐项判断正误.【详解】由题设可得2212121,21k k k k a a a a -+=-=-, 因为11a =,211a a -=,故2112a a =+=,所以22212121,12k k k k a a a a +++--==,所以22222k k a a +-=, 所以()222222k k a a ++=+,因为2240a +=≠,故220k a +≠,所以222222k k a a ++=+,所以{}22k a +为等比数列, 所以12242k k a -+=⨯即1222k k a +=-,故416214a =-=,故A 对,C 错. 又112122123k k k a ++-=--=-,故12132k k a +-+=,所以2121323k k a a +-+=+,即{}()*213k a k N -+∈是以2为公比的等比数列,故B 正确. ()()141214117711S a a a a a a a =+++=++++++()()2381357911132722323237981a a a a a a a =+++++++=⨯-+-++-+=,15141598150914901000S S a =+=+=>,故1000n S >的最小正整数n 的值为15,故D 正确. 故选:ABD. 【点睛】方法点睛:题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D 是否成立时注意先考虑14S 的值.4.设数列{}n a 的前n 项和为n S ,若存在实数A ,使得对任意*n N ∈,都有n S A <,则称数列{}n a 为“T 数列”.则以下结论正确的是( )A .若{}n a 是等差数列,且10a >,公差0d <,则数列{}n a 是“T 数列”B .若{}n a 是等比数列,且公比q 满足||1q <,则数列{}n a 是“T 数列”C .若12(1)2n n n a n n ++=+,则数列{}n a 是“T 数列”D .若2241n n a n =-,则数列{}n a 是“T 数列 【答案】BC 【分析】写出等差数列的前n 项和结合“T 数列”的定义判断A ;写出等比数列的前n 项和结合“T 数列”的定义判断B ;利用裂项相消法求和判断C ;当n 无限增大时,n S 也无限增大判断D . 【详解】在A 中,若{}n a 是等差数列,且10a >,公差0d <,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故A 错误. 在B 中,因为{}n a 是等比数列,且公比q 满足||1q <, 所以()11111112111111n nn n a q a a q a a q aS qq q q q q-==-+<------,所以数列{}n a 是“T 数列”,故B 正确. 在C 中,因为11211(1)22(1)2n n n n n a n n n n +++==-+⋅+⋅,所以122311111111111||122222322(1)22(1)22n n n n S n n n ++=-+-++-=-<⨯⨯⨯⨯⋅+⋅+⋅∣∣.所以数列{}n a 是“T 数列”,故C 正确.在D 中,因为22211141441n n a n n ⎛⎫==+ ⎪--⎝⎭,所以222111114342143141n S n n ⎛⎫=+++++⎪⨯-⨯--⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故D 错误. 故选:BC. 【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()122121n n n +--()()()()1121212121n n n n ++---=--1112121n n +=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.5.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( ) A.若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】 对于A,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.6.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d = C .()261n S n n =+ D .数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为64nn + 【答案】BCD 【分析】根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、C ,再利用裂项求和即可判断选项D. 【详解】因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,对于选项A :535114a =⨯-=,故选项A 不正确;对于选项C :()()2222132612n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确; 对于选项D :()()111111313233132n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以前n 项和为111111111325588113132n n ⎛⎫-+-+-++-⎪-+⎝⎭()611132322324n n n n n ⎛⎫=-== ⎪++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.7.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确;121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=, 故D 错误. 故选:AC. 【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.8.将()23nn ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a 31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221nS n n =+-【答案】ACD 【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D. 【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确;()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确; ()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n nn n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD. 【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.二、平面向量多选题9.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 【答案】CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.10.下列各式结果为零向量的有( )A .AB BC AC ++ B .AB AC BD CD +++ C .OA OD AD -+ D .NQ QP MN MP ++-【答案】CD 【分析】对于选项A ,2AB BC AC AC ++=,所以该选项不正确;对于选项B ,2AB AC BD CD AD +++=,所以该选项不正确;对于选项C ,0OA OD AD -+=,所以该选项正确;对于选项D ,0NQ QP MN MP ++-=,所以该选项正确. 【详解】对于选项A ,2AB BC AC AC AC AC ++=+=,所以该选项不正确;对于选项B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,所以该选项不正确;对于选项C ,0OA OD AD DA AD -+=+=,所以该选项正确; 对于选项D ,0NQ QP MN MP NP PN ++-=+=,所以该选项正确. 故选:CD 【点睛】本题主要考查平面向量的加法和减法法则,意在考查学生对这些知识的理解掌握水平.。

高三数学学习中的错题集锦与解题思路

高三数学学习中的错题集锦与解题思路

高三数学学习中的错题集锦与解题思路数学在高中阶段是一门重要的学科,也是许多学生感到困惑的科目之一。

高三阶段对于学生来说尤其重要,因为这一年是他们备战高考的关键时刻。

然而,在学习过程中,同学们免不了会遇到一些难以解答的数学问题,这就是所谓的错题。

为了帮助大家更好地理解和解决高三数学学习中的错题,本文将给出一些常见错题的集锦,并提供相应的解题思路。

1. 一次函数相关错题在解决一次函数相关的错题时,我们通常会遇到以下问题:(1)如何确定直线的斜率?答:直线的斜率可以通过计算两个点的坐标差值来求得。

设直线上两点为(x₁,y₁)和(x₂,y₂),则直线的斜率k可以表示为k=(y₂-y₁)/(x₂-x₁)。

例如,对于一条直线过点(2,3)和(6,4),我们可以计算斜率k=(4-3)/(6-2)=1/4。

(2)如何确定直线的解析式?答:通过已知直线上的一点和斜率,可以确定直线的解析式。

设直线的斜率为k,直线上一点的坐标为(x₁,y₁),则直线的解析式为y-y₁=k(x-x₁)。

(3)如何确定直线与坐标轴的交点?答:要确定直线与x轴的交点,只需令y=0,并解方程求得交点的x坐标。

同理,要确定直线与y轴的交点,只需令x=0,并解方程求得交点的y坐标。

2. 平面几何相关错题平面几何是高中数学中的重点内容之一,也是同学们容易出错的部分。

下面我们来看几个常见的平面几何错题及解题思路。

(1)如何判断两条直线是否平行?答:两条直线平行的条件是斜率相同。

若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁是否等于k₂即可,若相等则两条直线平行。

(2)如何判断两条直线是否垂直?答:两条直线垂直的条件是斜率的乘积为-1。

若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁与k₂的乘积是否为-1即可,若成立则两条直线垂直。

(3)如何判断一个点是否在直线上?答:对于已知直线的解析式为y=kx+b,若一个点(x₀,y₀)在该直线上,则满足该点的横坐标x₀代入方程后,等式成立,即y₀=kx₀+b。

高三数学期末易错题盘点

高三数学期末易错题盘点

高三数学期末易错题盘点题目1:选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)在x = 1处取得最小值,则a的值为()A. 1B. -1C. 0D. -2题目2:填空题:设a、b是实数,且a^2 + b^2 = 1,求证:|a + b| ≤ 1题目3:判断题:在等差数列中,若公差为正,则数列的项数越多,数列的和越大。

()题目4:解答题:已知函数f(x) = x^2 - 4x + 3,求f(x)的导数,并求出导数在x = 2时的值。

题目5:选择题:已知函数f(x) = x^2 - 4x + 3,求f(x)的顶点坐标。

()A. (1, 4)B. (2, 1)C. (3, 0)D. (4, -1)题目6:填空题:已知等差数列的前n项和为S_n,求S_n的表达式。

题目7:判断题:在二次函数中,若函数的对称轴是x = 1,则函数的顶点坐标为(1, 0)。

()题目8:解答题:已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数,并求出导数在x = 2时的值。

题目9:选择题:已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的极值点坐标。

()B. (2, 1)C. (3, 0)D. (4, 1)题目10:填空题:已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数,并求出导数在x = 2时的值。

题目11:判断题:在等比数列中,若首项为正,公比为负,则数列的项数越多,数列的和越小。

()题目12:解答题:已知函数f(x) = x^2 - 4x + 3,求f(x)的导数,并求出导数在x = 2时的值。

题目13:选择题:已知函数f(x) = x^2 - 4x + 3,求f(x)的顶点坐标。

()A. (1, 4)B. (2, 1)D. (4, -1)题目14:填空题:已知等差数列的前n项和为S_n,求S_n的表达式。

2019高三数学错题重做

2019高三数学错题重做



1 2e
,0
C.


1 e



D.


1 e
,0
答案:C. 解:令 h(x)=f(x)﹣g(x)=ex+1﹣ma﹣aex+x=(e﹣a)ex﹣ma+x, 则 h′(x)=(e﹣a)ex+1,
郑州外国语学校 2019 届高三阶段错题重做 第 1 页 共 20 页 理科数学
=
=,

=﹣ ,则
=
=﹣ ,
解得 tanαtanβ=5,即 b2=5a2,可得双曲线的离心率为 e= =
= .故选:D.
7.已知| |=| |=5,| |=1,( )•( )=0,则| |的取值范围是( )
A.[ ﹣1, +1] B.[3,4] C.[ 2 6 - 2,2 6 2 ] D.[6,8]
答案:D.
2.已知四面体
ABCD 外接球球 O 的体积为
32 3

,且
AB

CD

2.
当四面体
ABCD 的体积最大时,设
二面角 A CD B 的大小为 ,则 sin 的值为( )
A.
2 13 13
答案:D.
B.1
C.
2
2 3
D.
43 13
3.已知函数 f x x3 3x2 5x 2 ,若 s,t R ,且满足不等式 f (s2 2s 1) f (1 2t t2 ) 2 ,则当
郑州外国语学校 2019 届高三阶段错题重做
理科数学
一.选择题
1.坐标平面上的点集
S
满足

高三数学易错题重做(3)

高三数学易错题重做(3)

P C D(4)高三数学易错题重做(3)1.一个圆锥形的空杯子上面放着一个球形的冰淇淋,圆锥底的直径与球的直径相同均为10,如果冰淇淋融化后全部流在空杯子中,并且不会溢出杯子,则杯子的高度最小为___ 20_____2. 定义在区间⎪⎭⎫ ⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_____23____ 3. 已知数列}{n b 满足11=b ,x b =2)(*N x ∈, ),2(||*11N n n b b b n n n ∈≥-=-+.①若2=x ,则该数列前10项和为_____9____;②若前100项中恰好含有30项为0,则x 的值为____6或7或8_____.4. 如图,有一圆柱形的开口容器(下表面密封),其轴截面是边长为2的正方形,P 是BC 中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一米粒,则这只蚂蚁取得米粒所需经过的最短路程为____92+π__________.(5)5.已知函数),3[)(+∞-的定义域为x f ,且2)3()6(=-=f f .'()f x 为()f x 的导函数, '()f x 的图像如右图所示.若正数,a b 满足(2)2f a b +<,则32b a +-的取值范围是 3(,)(3,)2-∞-⋃+∞ 6.设函数32()2ln f x x ex mx x =-+-,记()()f x g x x =,若函数()g x 至少存在一个零点,则实数m 的取值范围是 . 21(,]e e-∞+ 7.已知向量OB =(2,0), OC =(2,2), CA =(cos α,sin α)( α∈R),则OA 与OB 夹角的取值范围是 [15°,75°]8.设直线系)20(1sin )2(cos :πθθθ≤≤=-+y x M ,则下列命题中真命题的个数是 5 个 ① 存在一个圆与所有直线相交② 存在一个圆与所有直线不相交③ 存在一个圆与所有直线相切④ M 中所有直线均经过一个定点 ⑤存在定点P 不在M 中的任一条直线上⑥对于任意整数)3(≥n n ,存在正n 边形,其所有边均在M 中的直线上⑦M 中的直线所能围成的正三角形面积都相等9.已知xx x g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,.a R ∈ (1)讨论1=a 时, ()f x 的单调性、极值; (2)求证:在(1)的条件下,1()()2f x g x >+; (3)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.解:(1) x x x f ln )(-=,xx x x f 111)(-=-=' ∴当10<<x 时,/()0f x <,此时()f x 单调递减当e x <<1时,/()0f x >,此时()f x 单调递增∴()f x 的极小值为1)1(=f(2) ()f x 的极小值为1,即()f x 在],0(e 上的最小值为1,∴ 0)(>x f ,min ()1f x = 令21ln 21)()(+=+=x x x g x h ,xx x h ln 1)(-=', 当e x <<0时,0)(>'x h ,()h x 在],0(e 上单调递增 ∴min max |)(|12121211)()(x f e e h x h ==+<+== ∴在(1)的条件下,1()()2f xg x >+ (3)假设存在实数a ,使x ax x f ln )(-=(],0(e x ∈)有最小值3,/1()f x a x =-x ax 1-= ① 当0≤a 时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,e a 4=(舍去),所以,此时)(x f 无最小值. ②当e a <<10时,)(x f 在)1,0(a 上单调递减,在],1(e a上单调递增 3ln 1)1()(min =+==a af x f ,2e a =,满足条件.③ 当e a ≥1时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,e a 4=(舍),此时)(x f 无最小值.综上,存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3.10.在数列{a n }中,a 1=1,a n +a n +1=3n .设b n =a n -14×3n . (1)求证:数列{b n }是等比数列; (2)求数列{a n }的前n 项的和;(3)设T 2n =1a 1+1a 2+1a 3…+1a 2n,求证:T 2n <3. (1)证明:由a n +a n +1=3n ,得a n +1-14×3n +1=-(a n -14×3n ). 即b n +1=-b n .b 1=a 1-34=14.所以数列{b n }是首项为14,公比为-1的等比数列. (2)解:由b n =14×(-1)n -1,得a n -14×3n =14×(-1)n -1, a n =14×3n +14×(-1)n -1=14×[3n +(-1)n -1].S n =a 1+a 2+a 3+…+a n =14[3+32+33+…+3n +(-1)0+(-1)1+(-1)2+…+(-1)n -1]=14[3n +1-32+1+(-1)n +12](3)证明:T 2n =1a 1+1a 2 +1a 3+1a 4…+1a 2n -1+1a 2n=4(13+1+132-1+133+1 +134-1 +…+132 n -1+1+132 n -1) =4[(13+1+133+1 +…+132 n -1+1)+(132-1+134-1+…+132 n -1)] <4[(13+133 +…+132 n -1)+(132-1+134-1+…+132 n -1)]. 因为32 n -1>32 n -1(n ∈N*),所以132 n -1 <132n -1(n ∈N*). 所以132-1+134-1+…+132 n -1<13+133 +…+132n -1. 所以T 2n <8(13+133 +…+132 n -1)=8×13(1-19n )1-19=3(1-19n )<3.。

2024届高考数学易错题专项(排列组合)练习(附答案)

2024届高考数学易错题专项(排列组合)练习(附答案)

2024届高考数学易错题专项(排列组合)练习易错点一:相邻与不相邻问题处理方法不当致误(相邻问题)1.2023年杭州亚运会期间,甲、乙、丙3名运动员与5名志愿者站成一排拍照留念,若甲与乙相邻、丙不A.12C.1 4易错点二:“捆绑法”中忽略了“内部排列”或“整体列”(不相邻问题) 1.4名男生和3名女生排队(排成一排)照相,下列说法正确的是( ) A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法D .若甲不站最左边,乙不站最右边,那么一共有7676A 2A 种排法2.某校文艺汇演共6个节目,其中歌唱类节目3个,舞蹈类节目2个,语言类节目1个,则下列说法正确的是( )A .若以歌唱类节目开场,则有360种不同的出场顺序B .若舞蹈类节目相邻,则有120种出场顺序C .若舞蹈类节目不相邻,则有240种不同的出场顺序D .从中挑选2个不同类型的节目参加市艺术节,则有11种不同的选法3.现将8把椅子排成一排,4位同学随机就座,则下列说法中正确的是( )A .4个空位全都相邻的坐法有120种B .4个空位中只有3个相邻的坐法有240种C .4个空位均不相邻的坐法有120种D .4个空位中至多有2个相邻的坐法有900种4.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( ).A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲、乙、丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有36种5.现将9把椅子排成一排,5位同学随机就座,则下列说法中正确的是( )A .4个空位全都相邻的坐法有720种B .4个空位中只有3个相邻的坐法有1800种C .4个空位均不相邻的坐法有1800种D .4个空位中至多有2个相邻的坐法有9000种6.现有3位歌手和4名粉丝站成一排,要求任意两位歌手都不相邻,则不同的排法种数可以表示为( )A .731424735454A A A A A A -- B .4343A AC .7314222473543254A A A A C A A A -- D .4345A A7.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是( )A .某学生从中选2门课程学习,共有15种选法B .课程“乐”“射”排在不相邻的两周,共有240种排法C .课程“御”“书”“数”排在相邻的三周,共有144种排法D .课程“礼”不排在第一周,也不排在最后一周,共有480种排法8.有甲、乙、丙等6名同学,则说法正确的是( )A .6人站成一排,甲、乙两人不相邻,则不同的排法种数为480B .6人站成一排,甲、乙、丙按从左到右的顺序站位,则不同的站法种数为240C .6名同学平均分成三组到A 、B 、C 工厂参观(每个工厂都有人),则有90种不同的安排方法D .6名同学分成三组参加不同的活动,甲、乙、丙在一起,则不同的分组方法有6种9.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( )A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲乙丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有72种10.4名男生和3名女生排成一排照相,要求男生和男生互不相邻,女生与女生也互不相邻,则不同的排法种数是( )A .36B .72C .81D .14411.杭州第19届亚运会火炬9月14日在浙江台州传递,火炬传递路线以“和合台州活力城市”为主题,全长8公里.从和合公园出发,途经台州市图书馆、文化馆、体育中心等地标建筑.假设某段线路由甲、乙等6人传递,每人传递一棒,且甲不从乙手中接棒,乙不从甲手中接棒,则不同的传递方案共有( )A .288种B .360种C .480种D .504种12.A ,B ,C ,D ,E 五名学生按任意次序站成一排,其中A 和B 不相邻,则不同的排法种数为( )A .72B .36C .18D .64易错点三:忽视排列数、组合数公式的隐含条件(排列组合综合) 1.()(2)(3)(4)(15)N ,15x x x x x x +----∈> 可表示为( )在车站的个数为( )A .15B .16C .17D .188.不等式2886x x A A -<⨯的解集为( )A .{2,8}B .{2,6}C .{7,12}D .{8}9.若24C P mm n n =,则m = . 10.已知()1111A A A N ,2n n n n n n x n n -+-+++=∈≥,求x 的值. 11.解关于正整数x 的不等式288P 6P x x -<. 12.解关于正整数n 的方程:4321A 140A n n +=.13.已知57A 56C n n =,且()201212nn n x a a x a x a x -=+++⋅⋅⋅+.求12323n a a a na +++⋅⋅⋅+的值. 14.(1)解不等式266A 4A x x -<.(2)若2222345C C C C 55n ++++= ,求正整数n .15.(1)若32213A 2A 6A x x x +=+,则x = .(2)不等式46C C n n >的解集为 .易错点四:实际问题不清楚导致计算重复或者遗漏致误(加法与乘法原理) 1.高考期间,为保证考生能够顺利进入考点,交管部门将5名交警分配到该考点周边三个不同路口疏导交通,每个路口至少1人,至多2人,则不同的分配方染共有()A.81 B.48 C.36 D.245.从4名优秀学生中选拔参加池州一中数学、物理、化学三学科培优研讨会,要求每名学生至多被一学科选中,则每学科至少要选用一名学生的情况有()种A.24 B.36 C.48 D.606.将5个不同的小球放入3个不同的盒子,每个盒子至少1个球,至多2个球,则不同的放法种数有( )A.30种B.90种C.180种D.270种7.哈六中高一学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为A.484B.472C.252D.2328.下列说法正确的是()A.4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有81种报名方法B.4名同学选报跑步、跳高、跳远三个项目,每项限报一人,且每人至多报一项,共有24种报名方法C.4名同学争夺跑步、跳高、跳远三项冠军,共有64种可能的结果D.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为12个9.如图,线路从A到B之间有五个连接点,若连接点断开,可能导致线路不通,现发现AB之间线路不通,则下列判断正确的是()A.至多三个断点的有19种B.至多三个断点的有22种C.共有25种D.共有28种10.某班有5名同学报名参加校运会的四个比赛项目,计算在下列情况下各有多少种不同的报名方法. (1)每人恰好参加一项,每项人数不限;(2)每项限报一人,每项都有人报名,且每人至多参加一项;(3)每人限报一项,人人参加了项目,且每个项目均有人参加.11.已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品.(1)若在第5次测试时找到最后一件次品,则共有多少种不同的测试方法?(2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法?12.杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A、B、C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A、B项目,乙不能参加B、C项目,那么共有种不同的选拔志愿者的方案.(用数字作答)13.某校在高二年级开设选修课,其中数学选修课开四个班.选课结束后,有四名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有(用数字作答)14.某单位有A、B、C、D四个科室,为实现减负增效,每科室抽调2人,去参加再就业培训,培训后这8人中有2人返回原单位,但不回到原科室工作,且每科室至多安排1人,问共有种不同的安排方法?易错点五:均匀分组与不均匀分组混淆致误(相同元素与不同元素分配问题)1.第19届亚运会将于2023年9月23日在杭州开幕,因工作需要,还需招募少量志愿者.甲、乙等4人报名参加了“莲花”、“泳镜”、“玉琮”三个场馆的各一个项目的志愿者工作,每个项目仅需1名志愿者,每人至多参加一个项目.若甲不能参加“莲花”场馆的项目,则不同的选择方案共有()A.6种B.12种C.18种D.24种2.从2个不同的红球、2个不同的黄球、2个不同的蓝球共六个球中任取2个,放入红、黄、蓝色的三个袋子中,每个袋子至多放入一个球,且球色与袋色不同,那么不同的放法有()A.42种B.36种C.72种D.46种3.阳春三月,草长莺飞,三个家庭的3位妈妈和1位爸爸带着3位女宝宝和2位男宝宝共9人踏春.在沿行一条小溪时,为了安全起见,他们排队前进,宝宝不排最前面也不排最后面,为了方便照顾孩子,每两位大人之间至多排2位宝宝,由于男宝宝喜欢打闹,由这位爸爸照看且排在2位男宝宝之间.则不同的排法种数为()A.216 B.288C.432 D.5124.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.50种D.60种5.杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A、B、C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A、B项目,乙不能参加B、C项目,那么共有()种不同的选拔志愿者的方案.A.36 B.40 C.48 D.526.现有甲、乙、丙3位同学在周一至周五参加某项公益劳动,要求每人参加一天且每天至多安排一人,并要求甲同学安排在另外两位前面,则不同的安排总数为()易错点六:由于重复计数致错(可重复与限制问题)1.2023年6月25日19时,随着最后一场比赛终场哨声响起,历时17天的.2023年凉山州首届“火洛杯”禁毒防艾男子篮球联赛决赛冠军争夺赛在凉山民族体育馆内圆满闭幕,为进一步展现凉山男儿的精神风貌主办方设置一场扣篮表演,分别由西昌市、冕宁县、布拖县、昭觉县4个代表队每队各派1名球员参加扣且在游览过程中必须按先M后N的次序,则不同的游览线路有多少种?9.用0,1,2,3,4,5,6可以组成多少个无重复数字的五位数?其中能被5整除的五位数有多少个?10.某单位安排7位工作人员在10月1日至10月7日值班,每人值班一天,其中甲、乙二人都不安排在10月1日和2日,共有多少种不同的安排方法?参考答案易错点一:相邻与不相邻问题处理方法不当致误(相邻问题)1.2023年杭州亚运会期间,甲、乙、丙3名运动员与5名志愿者站成一排拍照留念,若甲与乙相邻、丙不A .18种B .36种C .72种D .144种【答案】C【详细分析】根据相邻问题捆绑法即可由全排列求解.【答案详解】由题意可得12331233A A A A 72=,故选:C7.甲、乙两个家庭周末到附近景区游玩,其中甲家庭有2个大人和2个小孩,乙家庭有2个大人和3个小孩,他们9人在景区门口站成一排照相,要求每个家庭的成员要站在一起,且同一家庭的大人不能相邻,则所有不同站法的种数为( ) A .144 B .864 C .1728 D .2880【答案】C【详细分析】利用捆绑以及插空法求得正确答案.【答案详解】甲家庭的站法有2223A A 12=种,乙家庭的站法有3234A A 72=种,最后将两个家庭的整体全排列,有22A 2=种站法,则所有不同站法的种数为127221728⨯⨯=. 故选:C8.某驾校6名学员站成一排拍照留念,要求学员A 和B 不相邻,则不同的排法共有( ) A .120种 B .240种 C .360种 D .480种【答案】D【详细分析】正难则反,首先我们可以求出6名学员随机站成一排的全排列数即66A ,然后求学员A 和B 相邻的排列数,两数相减即可.【答案详解】一方面:若要求学员A 和B 相邻,则可以将学员A 和B 捆绑作为一个“元素”,此时一共有5个元素,但注意到学员A 和B 可以互换位置,所以学员A 和B 相邻一共有2525A A 2154321240⋅=⨯⨯⨯⨯⨯⨯=种排法.另一方面:6名学员随机站成一排的全排列数为66A 654321720=⨯⨯⨯⨯⨯=种排法.结合以上两方面:学员A 和B 不相邻的不同的排法共有625625A A A 720240480-⋅=-=种排法.故选:D.9.某高铁动车检修基地库房内有A E ~共5条并行的停车轨道线,每条轨道线只能停一列车,现有动车01,02、A.12C.1 4【答案】B【详细分析】根据分步乘法原理结合排列数求解即可.【答案详解】先让甲站好中间位置,再让2名女生相邻有两种选法,最后再排剩余的2名男生,根据分步乘法原理得,有22222A A 8⨯⨯=种不同的排法.故选:B12.5名同学排成一排,其中甲、乙、丙三人必须排在一起的不同排法有( )A .70种B .72种C .36种D .12种【答案】C【详细分析】相邻问题用捆绑法即可得解.【答案详解】甲、乙、丙先排好后视为一个整体与其他2个同学进行排列,则共有3333A A 36=种排法.故选:C13.现有2名男生和3名女生,在下列不同条件下进行排列,则( )A .排成前后两排,前排3人后排2人的排法共有120种B .全体排成一排,女生必须站在一起的排法共有36种C .全体排成一排,男生互不相邻的排法共有72种D .全体排成一排,甲不站排头,乙不站排尾的排法共有72种 【答案】ABC【详细分析】根据题意,利用排列数公式,以及捆绑法、插空法,以及分类讨论,结合分类计数原理,逐项判定,即可求解.【答案详解】由题意知,现有2名男生和3名女生,对于A 中,排成前后两排,前排3人后排2人,则有3252A A 120=种排法,所以A 正确;对于B 中,全体排成一排,女生必须站在一起,则有3333A A 36=种排法,所以B 正确;对于C 中,全体排成一排,男生互不相邻,则有3234A A 72=种排法,所以C 正确;对于D 中,全体排成一排,甲不站排头,乙不站排尾可分为两类:(1)当甲站在中间的三个位置中的一个位置时,有13A 3=种排法,此时乙有13A 3=种排法,共有113333A A A 54=种排法;C .如果三名同学选择的社区各不相同,则不同的安排方法共有60种D .如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种 【答案】AC【详细分析】对于A ,根据社区A 必须有同学选择,由甲、乙、丙三名同学都有5种选择减去有4种选择求解;对于B ,根据同学甲必须选择社区A ,有乙丙都有5种选择求解;对于C ,根据三名同学选择的社区各不相同求解;对于D ,由甲、乙两名同学必须在同一个社区,捆绑再选择求解;【答案详解】对于A ,如果社区A 必须有同学选择,则不同的安排方法有335461-=(种),故A 正确; 对于B ,如果同学甲必须选择社区A ,则不同的安排方法有2525=(种),故B 错误;对于C ,如果三名同学选择的社区各不相同,则不同的安排方法共有54360⨯⨯=(种),故C 正确; 对于D ,甲、乙两名同学必须在同一个社区,第一步,将甲、乙视作一个整体,第二步,两个整体挑选社区,则不同的安排方法共有2525=(种),故D 错误. 故选:AC.18.在树人中学举行的演讲比赛中,有3名男生,2名女生获得一等奖.现将获得一等奖的学生排成一排合影,则( )A .3名男生排在一起,有6种不同排法B .2名女生排在一起,有48种不同排法C .3名男生均不相邻,有12种不同排法D .女生不站在两端,有108种不同排法 【答案】BC【详细分析】利用捆绑法可判断A 、B ;利用插空法可判断C ;利用分步计数法可判断D. 【答案详解】解:由题意得:对于选项A :3名男生排在一起,先让3个男生全排后再作为一个整体和2个女生做一个全排,共有3333A A 36⋅=种,A 错误;对于选项B :2名女生排在一起,先让2个女生全排后再作为一个整体和3个男生做一个全排,共有2424A A 48⋅=种,B 正确;对于选项C :3名男生均不相邻,先让3个男生全排后,中间留出两个空位让女生进行插空,共有2323A A 12⋅=种,C 正确;对于选项D :女生不站在两端,先从三个男生种选出两个进行全排后放在两端,共有2232C A 6⋅=种,然后将剩下的3人进行全排后放中间,共有223323C A A 36⋅⋅=种,D 错误.故选:BC易错点二:“捆绑法”中忽略了“内部排列”或“整体列”(不相邻问题)1.4名男生和3名女生排队(排成一排)照相,下列说法正确的是( )A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法D .若甲不站最左边,乙不站最右边,那么一共有7676A 2A -种排法【答案】AC【详细分析】分别利用捆绑法、插空法、优先安排特殊元素法、间接法依次求解.【答案详解】选项A ,利用捆绑法,将3名女生看成一个整体,其排列方式有33A 种,加上4名男生一共有5个个体,则有55A 种排列方式,则由乘法原理可知一共有5335A A 种排法,故A 正确;选项B ,利用插空法,4名男生排成一排形成5个空,其排列方式有44A 种,再将3名女生插入空中,有35A 种排列方式,则由乘法原理可知一共有4345A A 种排法,故B 不正确;选项C ,利用优先安排特殊元素法,甲不站最中间,甲先从除中间之外的6个位置选一个,其选择方式有16C 种,再将剩余的6人全排列,有66A 种排列方式,则由乘法原理可知一共有1666C A 种排法,故C 正确;选项D ,利用间接法,3人站成一排共有77A 种排法,若甲站最左边有66A 种排法,乙站最右边有66A 种排法,甲站最左边且乙站最右边有55A 种排法,所以甲不站最左边,乙不站最右边,那么一共有765765A 2A A -+种排法,故D 不正确; 故选:AC.2.某校文艺汇演共6个节目,其中歌唱类节目3个,舞蹈类节目2个,语言类节目1个,则下列说法正确的是( )A .若以歌唱类节目开场,则有360种不同的出场顺序B .若舞蹈类节目相邻,则有120种出场顺序C .若舞蹈类节目不相邻,则有240种不同的出场顺序D .从中挑选2个不同类型的节目参加市艺术节,则有11种不同的选法 【答案】AD【详细分析】根据全排列、捆绑法、插空法,结合分步与分类计数原理依次详细分析选项,即可判断. 【答案详解】A :从3个歌唱节目选1个作为开场,有13C =3种方法,后面的5个节目全排列,所以符合题意的方法共有553A 360=种,故A 正确;B :将2个舞蹈节目捆绑在一起,有22A 2=种方法,再与其余4个节目全排列,所以符合题意的方法共有552A 240=,故B 错误;C :除了2个舞蹈节目以外的4个节目全排列,有44A 24=种,再由4个节目组成的5个空插入2个舞蹈节目,所以符合题意的方法有2524A 480=种,故C 错误;D :符合题意的情况可能是1个歌唱1个舞蹈、1个歌唱1个语言、1个舞蹈1个语言, 所以不同的选法共111111323121C C C C C C 11++=种,故D 正确. 故选:AD.3.现将8把椅子排成一排,4位同学随机就座,则下列说法中正确的是( ) A .4个空位全都相邻的坐法有120种 B .4个空位中只有3个相邻的坐法有240种 C .4个空位均不相邻的坐法有120种D .4个空位中至多有2个相邻的坐法有900种 【答案】AC【详细分析】对于A ,用捆绑法即可;对于B ,先用捆绑法再用插空法即可;对于C ,用插空法即可;对于D ,用插空法的同时注意分类即可.【答案详解】对于A ,将四个空位当成一个整体,全部的坐法:55A 120=种,故A 对;对于B ,先排4个学生44A ,然后将三个相邻的空位当成一个整体,和另一个空位插入5个学生中有25A 种方法,所以一共有4245480A A =种,故B 错;对于C ,先排4个学生44A ,4个空位是一样的,然后将4个空位插入4个学生形成的5个空位中有45C 种,所以一共有4445A C 120=,故C 对;对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有120种,空位两个两个相邻的有:4245A C 240=,空位只有两个相邻的有412454A C C 720=,所以一共有1202407201080++=种,故D 错; 故选:AC.4.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( ).A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲、乙、丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有36种 【答案】BCD【详细分析】根据相关的计数原理逐项详细分析.【答案详解】对于A ,将甲乙捆绑有22A 种方法,若戊在丙丁之间有22A 排法,丙丁戊排好之后用插空法插入甲乙,有14A 种方法;若丙丁相邻,戊在左右两边有2122A A 种排法,但甲乙必须插在丙丁之间,一共有212222A A A 种排法,所以总的排法有221212224222A A A A A A 24+= ,故A 错误;对于B ,若甲在最左端,有44A 24= 种排法,若乙在最左端,先排甲有13A 3= 种排法,再排剩下的3人有33A 6= ,所以总共有243642+⨯= 种排法,正确;对于C ,先将甲乙丙按照从左至右排好,采用插空法,先插丁有14A 种,再插戊有15A 种,总共有1145A A 20=种,正确;对于D ,先分组,将甲乙丙丁分成3组有24C 种分法,再将分好的3组安排在3个社区有33A 种方法,共有2343C A 36= 种方法,正确;故选:BCD.5.现将9把椅子排成一排,5位同学随机就座,则下列说法中正确的是( ) A .4个空位全都相邻的坐法有720种 B .4个空位中只有3个相邻的坐法有1800种 C .4个空位均不相邻的坐法有1800种D .4个空位中至多有2个相邻的坐法有9000种 【答案】AC【详细分析】对于A ,用捆绑法即可;对于B ,先用捆绑法再用插空法即可;对于C ,用插空法即可;对于D ,用插空法的同时注意分类即可.【答案详解】对于A,将四个空位当成一个整体,全部的坐法:66A 720=,故A 对;对于B ,先排5个学生55A ,然后将三个相邻的空位当成一个整体,和另一个空位插入5个学生中有26A 中方法,所以一共有5256A A 3600=种,故B 错;对于C ,先排5个学生55A ,4个空位是一样的,然后将4个空位插入5个学生中有46C 种,所以一共有5456A C 1800=,故C 对;对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有1800种,空位两个两个相邻的有: 5256A C 1800=,空位只有两个相邻的有521564A C C 7200=,所以一共有18001800720010800++=种,故D 错;故选:AC6.现有3位歌手和4名粉丝站成一排,要求任意两位歌手都不相邻,则不同的排法种数可以表示为( )A .731424735454A A A A A A --B .4343A AC .7314222473543254A A A A C A A A -- D .4345A A【答案】CD【详细分析】第一种排法:先排4名粉丝,然后利用插空法将歌手排好;第二种排法:先计算3位歌手和2位歌手站一起的排法,然后利用总排法去掉前面两种不满足题意的排法即可 【答案详解】第一种排法:分2步进行:①将4名粉丝站成一排,有44A 种排法; ②4人排好后,有5个空位可选,在其中任选3个,安排三名歌手,有35A 种情况. 则有4345A A 种排法,第二种排法:先计算3位歌手站一起,此时3位歌手看做一个整体,有314354A A A 种排法,再计算恰好有2位歌手站一起,此时2位歌手看做一个整体,与另外一个歌手不相邻,有22243254C A A A 种排法, 则歌手不相邻有3142224354773254A A A C A A A A --种排法. 故选:CD7.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是( ) A .某学生从中选2门课程学习,共有15种选法故选:BC.10.4名男生和3名女生排成一排照相,要求男生和男生互不相邻,女生与女生也互不相邻,则不同的排法种数是( )A .36B .72C .81D .144【答案】D【详细分析】先将3名女生全排列,然后利用插空法,将4名男生排到3名女生之间的4个空位上,根据分步乘法计数原理,即可求得答案.【答案详解】由题意先将3名女生全排列,然后利用插空法, 将4名男生排到3名女生之间的4个空位上,故共有3434A A 624144=⨯=种不同的排法,故选:D11.杭州第19届亚运会火炬9月14日在浙江台州传递,火炬传递路线以“和合台州活力城市”为主题,全长8公里.从和合公园出发,途经台州市图书馆、文化馆、体育中心等地标建筑.假设某段线路由甲、乙等6人传递,每人传递一棒,且甲不从乙手中接棒,乙不从甲手中接棒,则不同的传递方案共有( )A .288种B .360种C .480种D .504种【答案】C【详细分析】根据排列数以及插空法的知识求得正确答案. 【答案详解】先安排甲乙以外的4个人,然后插空安排甲乙两人,所以不同的传递方案共有4245A A 480=种.故选:C12.A ,B ,C ,D ,E 五名学生按任意次序站成一排,其中A 和B 不相邻,则不同的排法种数为( )A .72B .36C .18D .64【答案】A【详细分析】先将其余三人全排列,利用插空法求解. 【答案详解】解:先将其余三人全排列,共有33A 种情况, 再将A 和B 插空,共有24A 种情况,所以共有2343A A 12672=⨯=种情况,故选:A.。

高三数学易错数列多选题 易错题专项训练学能测试

高三数学易错数列多选题 易错题专项训练学能测试

高三数学易错数列多选题 易错题专项训练学能测试一、数列多选题1.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a << B.11b <<C .22n n S T <D .22n n S T ≥【答案】ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有222(21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.2.如图,已知点E 是ABCD 的边AB 的中点,()*n F n ∈N为边BC 上的一列点,连接n AF 交BD 于n G ,点()*n G n ∈N 满足()1223n n n n n G D a G A a G E +=⋅-+⋅,其中数列{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )A .313a =B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--【答案】AB 【分析】化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到答案. 【详解】()()112232n n n n n n G D a G A a G A G B +=⋅-+⋅+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故1230n n a a +--=,即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故123n n a +=-.432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;123n n a +=-,C 错误;2124323412nn n S n n +-=-=---,故D 错误.故选:AB . 【点睛】本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.3.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依次类推…,第n 项记为n a ,数列{}n a 的前n 项和为n S ,则( )A .6016a =B .18128S =C .2122k k k a -+=D .2221kk kS k +=-- 【答案】AC 【分析】对于AC 两项,可将数列进行分组,计算出前k 组一共有()12k k +个数,第k 组第k 个数即12k -,可得到选项C由C 得到9552a =,60a 则为第11组第5个数,可得60a 对于BD 项,可先算得22k kS +,即前k 组数之和18S 即为前5组数之和加上第6组前3个数,由21222k k kS k ++=--结论计算即可. 【详解】A.由题可将数列分组第一组:02 第二组:012,2, 第三组:0122,2,2,则前k 组一共有12++…()12k k k ++=个数 第k 组第k 个数即12k -,故2122k k k a -+=,C 对又()10101552+=,故9552a = 又()11111662+=, 60a 则为第11组第5个数第11组有数:0123456789102,2,2,2,2,2,2,2,2,2,2 故460216a ==,A 对对于D. 每一组的和为0122++ (1)2122121k k k --+==-- 故前k 组之和为1222++…()122122221k k k k k k +-+-=-=---21222k k k S k ++=--故D 错. 对于B.由D 可知,615252S =--()551152+=,()661212+=01261815222252764S S =+++=--+=故B 错 故选:AC 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.4.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.5.已知首项为1的数列{}n a 的前n 项和为n S ,当n 为偶数时,11n n a a --=;当n 为奇数且1n >时,121n n a a --=.若4000m S >,则m 的值可以是( ) A .17 B .18C .19D .20【答案】BCD 【分析】由已知条件得出数列奇数项之间的递推关系,从而得数列21{3}k a -+是等比数列,由此可求得奇数项的表达式(也即得到偶数项的表达式),对2k S 可先求得其奇数项的和,再得偶数项的和,从而得2k S ,计算出与4000接近的和,184043S =,173021S =,从而可得结论. 【详解】依题意,2211k k a a -=+,21221k k a a +=+,*k N ∈,所以2211k k a a -=+,2122121212(1)123k k k k a a a a +--=+=++=+,∴()2121323k k a a +-+=+.又134a +=,故数列{}213k a -+是以4为首项,2为公比的等比数列,所以121423k k a --=⋅-,故S 奇()21321141232(44242)43321k k k k k a a a k k -+-===+⨯++⨯--+++-=---,S 偶21232412()242k k k a a a k k a a a +-=+=+++=+++--,故2k S S =奇+S 偶3285k k +=--,故121828454043S =--=,173021S =,故使得4000m S >的最小整数m 的值为18.故选:BCD . 【点睛】关键点点睛:本题考查数列的和的问题,解题关键是是由已知关系得出数列的奇数项满足的性质,求出奇数项的表达式(也可求出偶数项的表达式),而求和时,先考虑项数为偶数时的和,这样可分类求各:先求奇数项的和,再求偶数项的和,从而得所有项的和,利用这个和的表达式估计和n S 接近4000时的项数n ,从而得出结论.6.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】 由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,7.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12为首项,12为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=+, 令1nn n Fb -=⎝⎭,则11n n b ++,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭32-为公比的等比数列,所以1n n b -+, 所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件;故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.8.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;二、平面向量多选题9.已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断.【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y =所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在xy e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.10.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λa b ,则a b a b +=-【答案】AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.。

(完整版)高中数学易错题

(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。

2024版高三上册第三章数学易错练习题

2024版高三上册第三章数学易错练习题

2024版高三上册第三章数学易错练习题试题部分一、选择题:1. 已知函数f(x) = 2x^3 3x^2 12x + 5,则f(x)的极小值点是()A. x = 1B. x = 1C. x = 2D. x = 32. 在等差数列{an}中,若a1 = 3,a3 = 9,则公差d等于()A. 2B. 3C. 4D. 63. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. 原点D. 不确定4. 已知三角形ABC的三个内角A、B、C满足3sin^2A + 4sin^2B = 2,则三角形ABC的形状是()A. 钝角三角形B. 直角三角形C. 锐角三角形D. 不能确定5. 设函数g(x) = x^2 2x + 3,则g(x)在区间(1,3)上的最小值是()A. 2B. 3C. 4D. 56. 若直线y = kx + b与圆x^2 + y^2 = 1相切,则k的取值范围是()A. [1, 1]B. (1, 1)C. (∞, 1] ∪ [1, +∞)D. (∞, 1) ∪ (1, +∞)7. 已知等比数列{bn}的前三项分别为2,4,8,则b4等于()A. 16B. 16C. 32D. 328. 若向量a = (2, 3),向量b = (x, 1),且a与b共线,则x的值为()A. 3B. 3C. 2D. 29. 在空间直角坐标系中,点P(1, 2, 3)到x轴的距离是()A. 1B. 2C. 3D. √510. 已知函数h(x) = ax^3 + bx^2 + cx + d在x = 1处取得极大值,且h(0) = 4,h(2) = 8,则a的值为()A. 1B. 0C. 1D. 2二、判断题:1. 若函数f(x)在区间(a, b)上单调递增,则f'(x) > 0在区间(a,b)上恒成立。

()2. 若向量a与向量b的模相等,则a与b共线。

高三数学易错题

高三数学易错题

高三数学易错题(一)1、 函数f (x )=)2(log 25.0x x +-的单调递增区间2、 把由函数y =k x 与y =x +k (k>0)的图像围成的三角形的面积S 表示成k 的函数,则函数解析式为3、 f (x )是周期为2的奇函数,当x []1,0∈时,f (x )=x 2,则x []2,1∈时,f (x )=4、设函数f (x )的反函数为1()f x -,给出以下命题; (1)若f(x)是奇函数,则1()f x -必定是奇函数;(2)若y =f(x )和y= 1()f x -的图像有公共点,则公共点必在直线y=x 上; (3)若y =f(x)在[]b a ,上是增函数,则y= 1()f x -在[]b a ,上必定是增函数; 则上述命题中真命题的序号是5、若函数f(x)=)22(log 2+-x x a 的最大值为0,则g(x)=21x a -有最 值为6、设函数y={}{}7,5,3,2,1,,⊂q p x pq ,则所得函数是偶函数的概率是7、设P 、Q 、M 三个集合,则“P ⊂Q”是“)()(M Q M P ⋂⊂⋂”成立的 条件8、A 、B 、C 、是三个集合,写出一个使“)(C B A ⋂⊂”成立的必要不充分条件 9、设f(x)=,234++x x 则()[]x f f 1-= ,()[]x f f 1-=10、函数f(x)=x 2lga-2x+1的图像与x 轴有两个不同的交点,则a 的取值范围是11、若函数y=f(2x+1)是偶函数,则函数y=f(2x)的图像的对称轴的方程是12、对定义在R 上的函数f(x),若实数x 0满足f(x 0)=x 0,则称x 0为函数f(x 0)的一个不动点,若函数f(x)=ax 2-2x-1只有一个不动点,则实数a 的值是0,13、若函数f(x)=)3(log 221m mx x +-在),2(+∞是减函数,则实数m 的取值范围是14、函数)0(10101010〉-+=--x y xx xx 的反函数是15、不等式11〈-x ax的解集为A ,若()()()()+∞⋃∞-⊆⊂∞-,21,1,A 则实数a 的取值范围是16、集合⎭⎬⎫⎩⎨⎧∈=Z n n x x ,4sinπ的子集的个数是高三数学易错题(二)1.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是2.过点P (2005,2005)且在两坐标轴上截距相等的直线方程为3.2y kx =+与221x y -=有且仅有一个公共点,则k =4.求焦点在直线34120x y --=上的抛物线的标准方程是5.抛物线2y px =的焦点坐标为6.P 是双曲线221918x y -=上任意一点,F 1、F 2分别为左、右焦点, |PF 1|=8,则|PF 2|=7.M 是抛物线220y px p =>上点,A (3,1),F 是抛物线焦点,则|AM |+|MF |的最小值为8.2221211t x y t t ==++化为普通方程是9.已知点A (1,2)、B (5,-1),且A 、B 两点到直线l 的距离都是2,求直线l 方程10.若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是11.已知抛物线x y 42=的顶点为O ,抛物线上B A ,两点满足0=⋅OB OA ,则点O 到直线AB 的最大距离为12.在坐标平面内,与点A (1,2)的距离为1,且与点B (5,5)的距离为d 的直线共有4条,则d 的取值范围是 .13.已知实数x ,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是14.与圆3)5(22=++y x 相切,且纵截距和横截距相等的直线共有15.如果不论实数 b 取何值,直线b kx y +=与双曲线1222=-y x 总有公共点,那么k 的取值范围为 。

高三数学易错数列多选题 易错题难题提高题检测试题

高三数学易错数列多选题 易错题难题提高题检测试题

高三数学易错数列多选题 易错题难题提高题检测试题一、数列多选题1.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++,数列{}n a 的前n 项为n S ,则( ) A .12n k += B .133n n a a +=- C .()2332n a n n =+D .()133234n n S n +=+- 【答案】ABD 【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】由题意可知,第1次得到数列1,3,2,此时1k = 第2次得到数列1,4,3,5,2,此时3k = 第3次得到数列1, 5,4,7,3,8,5,7,2,此时 7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k = 第n 次得到数列1,123,,,,k x x x x ,2 此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得: 123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈用等比数列求和可得()33132n n a -=+则 ()121331333322n n n a+++--=+=+23322n +=+ 又 ()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+ 所以 133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误. 123n n S a a a a =++++23133332222n n +⎛⎫=++++ ⎪⎝⎭()231331322nn --=+ 2339424n n +=+-()133234n n +=+-,故D 项正确. 故选:ABD. 【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.2.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.3.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++,化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.4.已知数列{}n a ,{}n b 满足1n n n a a +-=,21n n n b a nb ⋅+=,且11a =,n S 是数列{}n b 的前n 项和,则下列结论正确的有( )A .m +∃∈N ,55m m a a a +=+B .n +∀∈N ,33314n a n +≥ C .m +∃∈N ,16m b = D .n +∀∈N ,113n S ≤< 【答案】BD 【分析】用累加法得到222n n n a -+=,代入21n n n b a nb ⋅+=,得11212n b n n ⎛⎫=- ⎪++⎝⎭, 代入5m a +5m a a =+求出m 可判断A ;代入33n a n+求最值可判断B ; 令1121612m b m m ⎛⎫=-= ⎪++⎝⎭解出m 可判断C ;裂项相消后可求出n S 的范围可判断D. 【详解】因为1n n n a a +-=,所以211a a -= 322a a -=11(2)n n n a a n -=-≥-以上各式累加得1121(1)2n a a n n n =+++-=--,所以(1)12n n n a -=+,当1n =时,11a =成立, 所以2(1)2122n n n n a n --+=+=,由21n n n b a nb ⋅+=,得112112(1)1222(1)(2)12n n b a n n n n n n n n ⎛⎫====- ⎪+++++⎝-+⎭+,对于A ,()()5254922122m a m m m m ++++++==,25(1)5(51)2411222m a a m m m m -⨯--+=+++=+ , 当55m m a a a +=+时,222492222m m m m -+++=,得15m +=∉N ,A 错误; 对于B,(1)1(13333343411)22222n n n n a n n n n n ++==+=+-≥--+, 当且仅当268n =取等号,因为n +∀∈N ,所以8n =时,8333184a +=, 所以B 正确;对于C ,令1121612m b m m ⎛⎫=-=⎪++⎝⎭得,215308m m ++=,解得m +=N ,所以C 错误;对于D , n +∀∈N ,1231111112233412n S b b b n n ⎛⎫=+++=-+-++- ⎪++⎝⎭112211222n n ⎛⎫=-=-< ⎪++⎝⎭,可以看出n S 是关于n 递增的,所以1n =时有最小值13, 所以113n S ≤<,D 正确. 故选:BD. 【点睛】本题考查了由递推数列求通项公式、裂项相消求数列和,关键点是用累加法求出n a ,然后代入求出n b ,考查了学生的推理能力、计算能力.5.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =-B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t ta a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC 【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.6.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.7.(多选题)已知函数()22()()n n f n n n ⎧=⎨-⎩当为奇数时当为偶数时,且()()1n a f n f n =++,则na 等于( )A .()21n -+B .21n -C .21nD .12n -【答案】AC【分析】对n 进行分类讨论,按照()()1n a f n f n =++写出通项即可. 【详解】当n 为奇数时,()()()()22112121n a f n f n n n n n =++=-+=--=-+; 当n 为偶数时,()()()221121n a f n f n n n n =++=-++=+,所以()()()2121n n n a n n ⎧-+⎪=⎨+⎪⎩当为奇数时当为偶数时. 故选:AC . 【点睛】易错点睛:对n 进行分类讨论时,应注意当n 为奇数时,1n +为偶数;当n 为偶数时,1n +为奇数.8.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,则下列命题为真命题的是( )A .数列{}n n a b -单调递增B .数列{}n n a b +单调递增C .数列{}n a 单调递增D .数列{}n b 从某项以后单调递增【答案】BCD 【分析】计算221122ln 2a b a b a b -=--<-,知A 错误;依题意两式相加{}ln +-n n a b n 是等比数列,得到()1113ln -+=+⋅+n n n a b a b n ,知B 正确;结合已知条件,计算10n n a a +->,即得C 正确;先计算()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-,再结合指数函数、对数函数增长特征知D 正确. 【详解】由题可知,12n n n a a b +=+①,1312lnn n n n b a b n ++=++②,①-②得,1131lnn n n n n a b a b n+++-=--,当1n =时,2211ln 2a b a b -=--,∴2211-<-a b a b ,故A 错误.①+②得,()113ln(1)3ln n n n n a b a b n n +++=+++-,()11ln(1)3ln n n n n a b n a b n +++-+=+-,∴{}ln +-n n a b n 是以11a b +为首项,3为公比的等比数列,∴()111ln 3-+-=+⋅n n n a b n a b ,∴()1113ln -+=+⋅+n n n a b a b n ,③又110a b +>,∴B 正确.将③代入①得,()()11113ln n n n n n n a a a b a a b n -+=++=++⋅+,∴()11113ln 0n n n a a a b n -+-=+⋅+>,故C 正确.将③代入②得,()()11113311ln 3ln ln n n n n n n n n b b a b b a b n n n -+++=+++=++⋅++,∴()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-.由110a b +>,结合指数函数与对数函数的增长速度知,从某个()*n n N∈起,()1113ln 0n a b n -+⋅->,又ln(1)ln 0n n +->,∴10n n b b +->,即{}n b 从某项起单调递增,故D 正确. 故选:BCD . 【点睛】判定数列单调性的方法:(1)定义法:对任意n *∈N ,1n n a a +>,则{}n a 是递增数列,1n n a a +<,则{}n a 是递减数列;(2)借助函数单调性:利用()n a f n =,研究函数单调性,得到数列单调性.二、平面向量多选题9.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 的外接圆半径是3【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确;若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以sin 2A =,故ABC 的面积是:11sin 610222bc A =⨯⨯⨯= 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以sin 2A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin 3a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.10.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的为( )A .当0x =时,[]2,3y ∈B .当P 是线段CE 的中点时,12x =-,52y = C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 D .x y -的最大值为1-【答案】BCD【分析】利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确.【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ 1153(2)222OB OB AB OA OB =+-+=-+,故B 对 x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:OP ON OM =+;又OP xOA yOB =+;0x ∴,1y ;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.。

高三数学一轮复习易错题3基本初等函数

高三数学一轮复习易错题3基本初等函数
综上可知所求的取值范围是1< <2
易错点7.公式运用不熟练没有得到最终解
【例7】已知 求
【错解】∵ ∴

错因:因对性质不熟而导致题目没解完.
【正解】∵ ∴

易错点8.关于方程根考虑不全面
【例8】已知 有且只有一根在区间(0,1)内,求 的取值范围.
【错解】设 ∵ 有且只有一根在区间(0,1)内
∴ 得 <-2
所以 ,解得 ,此时 ,
综上 ,即 的取值范围是 ,
故选:D.
10.函数 在 的图像大致为()
A. B.
C. D.
【答案】D
【解析】因为 ,所以 为奇函数,关于原点对称,故排除 ,又因为 , , , ,故排除 、 ,
故选:D.
11.已知函数 ,若 ,则实数 的取值范围是( )
A. B. C. D.
【答案】C
【正解】方法一:∵
= = =- ,∴ 是奇函数
方法二:∵

∴ 是奇函数
易错点5.不理解定义域和单调性的联系
【例5】已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,求x的取值范围.
【错解】∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),
综上, .
故选:C
8.函数 的零点个数为( )
A.1B.2C.3D.4
【答案】B
【解析】函数f(x)=ex|lnx|﹣2的零点可以转化为:|lnx| 的零点;
在坐标系中画出两个函数 的图象,根据图象可得有两个交点;
故原函数有两个零点.
故选:B.
9.已知 ,函数 ,若关于 的不等式 在 上恒成立,则 的取值范围为()

【高考数学】高三易错题138道

【高考数学】高三易错题138道

高三易错题一:集合与命题易错题错误原因分析1.已知集合{}220,M x x x m x R =-+=∈非空,则集合M 中所有元素之和为.入选理由:集合的互异性考的比较隐蔽2.已知A 是由实数组成的数集,满足:A a ∈则A a∈-11;且A ∉1.(1)若A ∈2,则A 中至少含有哪些元素;(2)A 能否为单元素集合?若能,求出集合A ;若不能,说明理由;(3)若A a ∈,则a11-是A 中的元素吗?说明理由.入选理由:集合新定义的理解3.已知集合A {|25}x x =-≤≤,B {|121}x m x m =+≤≤-,满足B A ⊆,求实数m 的取值范围入选理由:交并集运算注意∅是否存在以及端点处是否可取4.非空集合P 满足(1){}54321,,,,⊆P ;(2)若a P ∈,则6a P -∈,符合上述两个条件的集合P 的个数是_______________入选理由:子集个数的运算。

对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n 21n -22n-.高三易错题二:不等式易错题错误原因分析1.已知41,145a c a c -≤-≤--≤-≤,试求9a c -的取值范围.入选理由:待定系数法的应用2.解关于x 的不等式2(2)20mx m x +-->,并写出解集入选理由:字母讨论不全,没有条理导致分类不全3.若不等式20ax bx c ++>的解集为()1,2,求不等式20cx bx a ++>的解集。

入选理由:韦达定理的应用4.入选理由:图像法求不等式8.若不等式()11m x x ≤++-的解集为全集,求实数m 的求值范围.入选理由:绝对值函数的值域高三易错题三:函数16.已知18361log 9,18,,log 455n m m n -==试用表示.入选理由:对数的基本性质可否熟练高三易错题三:三角比和三角函数易错题错误原因分析1.已知sin sin(2)(1),m m βαβ=+≠求证:1tan()tan .1mmαβα++=-入选理由:角的拼凑(由结论去找条件)9.将一块圆心角为120︒,半径为20cm的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.入选理由:模拟考试中得分率很低高三易错题四:数列1.已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围入选理由:数列单调性与函数单调性的区别错误原因分析2.设等差数列{}n a 的前n 项和为n S ,若{}nS 也是等差数列,且公差和{}n a 的公差相同,则数列{}n a 的首项和公差的和_________1=+d a ;入选理由:等差数列和前n 项和的公式入选理由:奇数项和偶数项之间的关系(相除和相减)项的和在等差数列10.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-求数列{a n }的通项公式;入选理由:对于分式递推公式。

【易错题】高三数学下期中试题含答案(3)

【易错题】高三数学下期中试题含答案(3)

【易错题】高三数学下期中试题含答案(3)一、选择题1.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1762.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为n T ,则2017T =( ) A .2016B .2017C .2018D .20193.数列{}n a 为等比数列,若11a =,748a a =,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则5(S = )A .3116B .158C .7D .314.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .565.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =6.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .157.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .168.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .169.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .71010.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .611.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 23sin 0b A a B +=,3b c =,则ca的值为( ) A .1B .33C 5D .7712.已知正项数列{}n a *12(1)()2n n n a a a n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.14.已知,x y 满足约束条件420y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为__________.15.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______. 16.已知是数列的前项和,若,则_____.17.已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=L ,且13k a =,则k =_________.18.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)19.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 20.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.三、解答题21.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。

2024版高三上册第三章数学易错综合练习题

2024版高三上册第三章数学易错综合练习题

2024版高三上册第三章数学易错综合练习题试题部分一、选择题(每题2分,共20分)1. 已知函数f(x) = x^3 3x,则f'(1)的值为()A. 2B. 0C. 2D. 32. 若等差数列{an}的前三项分别为2,5,8,则第10项a10等于()A. 29B. 30C. 31D. 323. 设平面直角坐标系中,点A(2, 1),点B(3, 4),则线段AB的中点坐标为()A. (1/2, 3/2)B. (1/2, 3/2)C. (1/2, 3/2)D. (1/2, 3/2)4. 已知矩阵M = [[1, 2], [3, 4]],则行列式|M|的值为()A. 2B. 2C. 10D. 105. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y=x线上D. y=x线上6. 在ΔABC中,a=8, b=10, sinA=3/5, 则cosB的值为()A. 4/5B. 3/5C. 3/4D. 4/37. 已知数列{bn}为等比数列,b1=3, b3=9,则公比q为()A. 2B. 3C. √3D. 1/√38. 若函数g(x) = ax^2 + bx + c在x=1处取得极小值,则a、b 的关系为()A. a > 0, b = 0B. a < 0, b ≠ 0C. a > 0, b ≠ 0D. a < 0, b = 09. 设函数h(x) = lnx,则h'(x)等于()A. 1/xB. lnxC. 1D. x10. 若向量a = (2, 3),向量b = (1, 2),则向量a与向量b的夹角余弦值为()A. 7/10B. 3/10C. 7/10D. 3/10二、判断题(每题2分,共20分)1. 若函数f(x)在区间(a, b)上单调递增,则f'(x) > 0对任意x∈(a, b)恒成立。

2020-2021学年高考总复习数学(理)高考易错考点排查练(三)

2020-2021学年高考总复习数学(理)高考易错考点排查练(三)

阶段易错考点排查练(三)数列、不等式、推理与证明考点一数列1.设S n是等差数列{a n}的前n项和,若5a3=9,则9S5等于( )A.1B.-1C.2D.12【解析】选A.因为a1+a9=2a5,a1+a5=2a3,所以S9S5=9(a1+a9)25(a1+a5)2=9a55a3=9×55×9=1.2.数列{−2n2+29n+3}中的最大项为. 【解析】由已知,得a n=-2n2+29n+3=-2(n−294)2+10818.由于n∈N*,故当n取距离294最近的正整数7时,a n取得最大值108. 所以数列{−2n2+29n+3}中的最大项为a7=108.答案:1083.求和:1+3+5+…+(2n+1)= .【解析】因为a1=1,d=2,项数为n+1,所以所求和为(n+1)×1+n(n+1)×22=n2+2n+1.答案:n2+2n+14.若数列{a n}的前n项和为S n,且S n=n2-2n+5,则数列{a n}的通项a n为. 【解析】因为a1=S1=4,a n=S n-S n-1=2n-3(n≥2),n=1时,a1=2×1-3=-1≠4,所以a n={4,n=1,2n−3,n≥2.答案:a n={4,n=1,2n−3,n≥25.在数列{a n}中,已知a n=x n(x≠0),求它的前n项和S n.【解析】当x≠1时,S n=x+x2+x3+…+x n=x(1−x n)1−x;当x=1时,S n=n.考点二不等式1.设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x+1x+3,则对于y=f(x)在x<0时,下列说法正确的是( )A.有最大值7B.有最大值-7C.有最小值7D.有最小值-7【解析】选B.由于y=f(x)是定义在R上的奇函数,则f(x)的图象关于原点对称,当x>0时,f(x)=4x+1x+3,由4x+1x ≥2√4x·1x=4,当且仅当x=12时,取得最小值,且为4,即有x>0时,f(x)的最小值为7, 则x<0时,f(x)有最大值-7. 2.解不等式√2x −5<1. 【解析】原不等式可化为{2x −5≥0,2x −5<1,解得52≤x<3.所以原不等式的解集为{x |52≤x <3}.3.有一批钢管,长度都是4000mm,要截成500mm 和600mm 两种毛坯,且这两种数量比大于13,要使钢管截得的毛坯最多,问怎样截最合理?【解析】设截500mm 的毛坯x 根,600mm 的毛坯y 根.根据题意,得{5x +6y ≤40,y <3x ,x >0,y >0,且x,y 均为正整数.作出可行域,如图中阴影部分.目标函数为z=x+y,作一组平行直线x+y=t,经过可行域中的点且和原点距离最远的直线必为过点B(8,0)的直线(在此时,有的同学由于没有考虑到实际问题的特殊性,所以会误认为(8,0)是最优整数解).这时x+y=8. 因为x,y 为正整数,所以(8,0)不是最优解.在可行域内找整点,使x+y=7.经验证,可知点(2,5),(3,4),(4,3),(5,2),(6,1)均为最优解.答:每根钢管截500mm的两根600mm的五根,或截500mm的三根600mm的四根,或截500mm的四根,600mm的三根,或截500mm的五根600mm的两根,或截500mm的六根600mm的一根最合理.考点三推理证明n n,并且对于所有的自然数n,a n与2的等差中项等于S n与2的等比中项.(1)写出数列{a n}的前3项.(2)求数列{a n}的通项公式(写出推证过程).=√S n·2,分别令n=1,2,3,可解得a1=2,a2=6,a3=10.【解析】(1)由题意得a n+22(2)由(1)猜想数列{a n}有通项公式a n=4n-2.下面用数学归纳法证明数列{a n}的通项公式是a n=4n-2(n∈N*).①当n=1时,因为4×1-2=2,又在(1)中已求出a1=2,所以上述结论成立.=√2S k,②假设n=k时结论成立,即有a k=4k-2.由题意,有a k+22将a k=4k-2代入上式,得2k=√2S k,解得S k=2k2,由题意,有a k+1+2=√2S k+1,S k+1=S k+a k+1,2将S k=2k2代入,化简得a k +12-4a k+1+4-16k 2=0, 解得a k+1=2±4k.由a k+1>0, 所以a k+1=2+4k=4(k+1)-2,这就是说,当n=k+1时,上述结论成立. 根据①②,上述结论对所有的n ∈N *成立. 2.用数学归纳法证明对于任意正整数n, (n+1)(n+2)(n+3)…(n+n)=2n ·1·3·5…(2n-1).【证明】(1)当n=1时,左式=1+1=2,右式=21,所以等式成立. (2)假设当n=k(k ∈N *)时,等式成立,(k+1)(k+2)(k+3)…(k+k)=2k ·1·3·5…(2k-1), 那么当n=k+1时,(k+2)(k+3)(k+4)…(k+k)(k+1+k)(k+1+k+1) =(2k+2)(k+2)(k+3)…(k+k)(2k+1) =2(k+1)(k+2)(k+3)…(k+k)(2k+1) =2·2k ·1·3·5…(2k-1)(2k+1) =2k+1·1·3·5…(2k-1)[2(k+1)-1]. 这就是说,当n=k+1时,等式成立. 由(1)、(2),可知等式对任意n ∈N *成立.3.是否存在自然数m,使得f(n)=(2n+7)·3n +9对任意正整数n,都能被m 整除,若存在,求出m 的最大值,并证明你的结论;若不存在,说明理由. 【解析】f(1)=(2+7)·3+9=36, f(2)=(4+7)·9+9=108, f(3)=(6+7)·27+9=360,……猜想,f(n)能被36整除,用数学归纳法证明如下:(1)当n=1时,f(1)=36,能被36整除.(2)假设当n=k(k∈N*)时,f(k)=(2k+7)·3k+9能被36整除.那么,当n=k+1时,f(k+1)=[2(k+1)+7]·3k+1+9=[(2k+7)+2]·3·3k+9=3[(2k+7)·3k+9]+18(3k-1-1).由归纳假设,3[(2k+7)·3k+9]能被36整除,当k为正整数时,3k-1-1为偶数,则18(3k-1-1)能被36整除.所以3[(2k+7)·3k+9]+18(3k-1-1)能被36整除,这就是说当n=k+1时命题成立.由(1)、(2)知对任意n∈N*,f(n)都能被36整除.当m取大于36的自然数时,f(1)=36不能被m整除,所以36为最大.关闭Word文档返回原板块。

高三数学易错数列多选题 易错题提高题学能测试

高三数学易错数列多选题 易错题提高题学能测试

高三数学易错数列多选题 易错题提高题学能测试一、数列多选题1.已知等比数列{}n a 首项11a >,公比为q ,前n 项和为n S ,前n 项积为n T ,函数()()()()127f x x x a x a x a =+++,若()01f '=,则( )A .{}lg n a 为单调递增的等差数列B .01q <<C .11n a S q ⎧⎫-⎨⎬-⎩⎭为单调递增的等比数列D .使得1n T >成立的n 的最大值为6【答案】BCD 【分析】令()()()()127g x x a x a x a =+++,利用()()127001f g a a a '===可得3411a a q ==,01q <<,B 正确;由()()111lg lg lg 1lg n n a a q a n q -==+-可得A 错误;由()111111111n n n a a a qS q q q q q --=--=⋅---可得C 正确;由11a >,01q <<,41a =可推出671T T >=,81T <可得D 正确. 【详解】令()()()()127g x x a x a x a =+++,则()()f x xg x =, ()()()f x g x xg x ''∴=+,()()127001f g a a a '∴===,因为{}n a 是等比数列,所以712741a a a a ==,即3411a a q ==,11a >,01q ∴<<,B 正确;()()111lg lg lg 1lg n n a a q a n q -==+-,{}lg n a ∴是公差为lg q 的递减等差数列,A 错误;()111111111n n n a a a q S q q q q q --=--=⋅---,11n a S q ⎧⎫∴-⎨⎬-⎩⎭是首项为101a q q <-,公比为q 的递增等比数列,C 正确;11a >,01q <<,41a =,3n ∴≤时,1n a >,5n ≥时,01n a <<,4n ∴≤时,1n T >,7712741T a a a a ===,8n ∴≥时,78971n n T T a a a T =<=,又75671T T a a =>,7671T T a =>,所以使得1n T >成立的n 的最大值为6,D 正确. 故选:BCD 【点睛】关键点点睛:利用等比数列的性质、通项公式、求和公式、数列的单调性求解是解题关键.2.下列说法正确的是( )A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列()k N *∈B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,仍为等比数列()k N *∈C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值D .若数列{}n a 满足21159,4n n n a a a a +=-+=,则121111222n a a a +++<--- 【答案】ACD 【分析】根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111233n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =+++,2122k k k k k S S a a a ++-=+++,3221223k k k k k S S a a a ++-=+++,,可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,所以k S ,2k k S S -,32k k S S -,构成等差数列,故A 正确;对于B 中,设数列{}n a 的公比为()0q q ≠,当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;对于D 中,由2159n nn a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----, 所以1212231111111111222333333n n n a a a a a a a a a ++++=-+-++---------- 1111111333n n a a a ++=-=----.因为14a =,所以2159n nn n a a a a +=-+>,可得14n a +>,所以11113n a +-<-,故D 正确.故选:ACD 【点睛】方法点睛:由2159n nn a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111233n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.3.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】 由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭,又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.4.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.5.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.6.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( )A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021 D .数列{}n a 的第50项为2550 【答案】AC 【分析】用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得. 【详解】因为11n n a a a n +=++,11a =, 所以11n n a a n +-=+, 所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误, 12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-=⎪⎝⎭,B 错,C 正确. 故选:AC . 【点睛】本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.7.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式1122n nn a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.8.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nn S a <0,但是随着n 的增大而增大.∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.二、平面向量多选题9.Rt △ABC 中,∠ABC =90°,AB =BC =1,0PA PB PC PAPBPC++=,以下正确的是( ) A .∠APB =120° B .∠BPC =120° C .2BP =PC D .AP =2PC【答案】ABCD 【分析】根据条件作几何图形,由向量的关系可得P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形,∠APB =∠BPC =∠APC =120°,进而可确定P 为Rt △ABC 的费马点,利用相似可确定BP 、 AP 、 PC 之间的数量关系. 【详解】在直线PA ,PB ,PC 上分别取点M ,N ,G ,使得|PM |=|PN |=|PG |=1, 以PM ,PN 为邻边作平行四边形PMQN ,则PM PN PQ +=, ∵0PA PB PC PAPBPC++=,即0PM PN PG ++=,即0PQ PG +=,∴P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形, ∴∠APB =∠BPC =∠APC =120°,故A 、B 正确; ∵AB =BC =1,∠ABC =90°, ∴AC =2,∠ACB =60°,在△ABC 外部分别以BC 、AC 为边作等边△BCE 和等边△ACD ,直线CP 绕C 旋转60°交PD 于P’,∴120CE CB ECA BCD CA CD =⎧⎪∠=∠=︒⎨⎪=⎩,即ECA BCD ≅,故EAC BDC ∠=∠, EAC BDC CA CDPCA P CD ∠=∠⎧⎪=⎨⎪'∠=∠⎩,即CPA CP D '≅,故CP CP '=, ∴CPP '为等边三角形,120CP D CPA '∠=∠=︒,则B ,P ,D 三点共线,同理有A ,P ,E 三点共线, ∴△BPC ∽△BCD ,即12BP BC CP CD ==,即PC =2BP ,故C 正确, 同理:△APC ∽△ACB ,即AP ACCP BC==2,即AP =2PC ,故D 正确.故选:ABCD.【点睛】关键点点睛:根据已知条件及向量的数量关系确定P 为Rt △ABC 的费马点,结合相似三角形及费马点的性质判断各项的正误.10.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 【答案】ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误;对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a a b a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,2||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒,得a 与a b λ+的夹角为30°,故D 项错误.故错误的选项为ACD故选:ACD【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
C D
(4)
高三数学易错题重做(3)
1.一个圆锥形的空杯子上面放着一个球形的冰淇淋,圆锥底的直径与球的直径相同均为10,如果冰淇淋融
化后全部流在空杯子中,并且不会溢出杯子,则杯子的高度最小为___ 20_____
2. 定义在区间⎪⎭
⎫ ⎝⎛
20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_____23____ 3. 已知数列}{n b 满足11=b ,x b =2)(*N x ∈, ),2(||*11N n n b b b n n n ∈≥-=-+.
①若2=x ,则该数列前10项和为_____9____;
②若前100项中恰好含有30项为0,则x 的值为____6或7或8_____.
4. 如图,有一圆柱形的开口容器(下表面密封),其轴截面是边长为2的正方形,P 是BC 中点,现有一
只蚂蚁位于外壁A 处,内壁P 处有一米粒,则这只蚂蚁取得米粒所需经过的最短路程为____92+π__________.
(5)
5.已知函数),3[)(+∞-的定义域为
x f ,且2)3()6(=-=f f .'()f x 为()f x 的导函数, '()f x 的图像如右图所示.若正数,a b 满足(2)2f a b +<,则32
b a +-的取值范围是 3(,)(3,)2-∞-⋃+∞ 6.设函数32()2ln f x x ex mx x =-+-,记()()f x g x x =
,若函数()g x 至少存在一个零点,则实数m 的取值范围是 . 21(,]e e
-∞+ 7.已知向量OB =(2,0), OC =(2,2), CA =(cos α,sin α)( α∈R),则OA 与OB 夹角的取值范围是
[15°,75°]
8.设直线系)20(1sin )2(cos :πθθθ≤≤=-+y x M ,则下列命题中真命题的个数是 5

① 存在一个圆与所有直线相交
② 存在一个圆与所有直线不相交
③ 存在一个圆与所有直线相切
④ M 中所有直线均经过一个定点
⑤存在定点P 不在M 中的任一条直线上
⑥对于任意整数)3(≥n n ,存在正n 边形,其所有边均在M 中的直线上
⑦M 中的直线所能围成的正三角形面积都相等
9.已知x
x x g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,.a R ∈ (1)讨论1=a 时, ()f x 的单调性、极值; (2)求证:在(1)的条件下,1()()2f x g x >+
; (3)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由. 解:(1) x x x f ln )(-=,x
x x x f 111)(-=-=' ∴当10<<x 时,/()0f x <,此时()f x 单调递减
当e x <<1时,/()0f x >,此时()f x 单调递增
∴()f x 的极小值为1)1(=f
(2) ()f x 的极小值为1,即()f x 在],0(e 上的最小值为1,
∴ 0)(>x f ,min ()1f x = 令21ln 21)()(+=+=x x x g x h ,x
x x h ln 1)(-=', 当e x <<0时,0)(>'x h ,()h x 在],0(e 上单调递增 ∴min max |)(|12
121211)()(x f e e h x h ==+<+== ∴在(1)的条件下,1()()2
f x
g x >+ (3)假设存在实数a ,使x ax x f ln )(-=(],0(e x ∈)有最小值3,/1()f x a x =-
x ax 1-= ① 当0≤a 时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,e a 4=
(舍去),所以,此时)(x f 无最小值. ②当e a <<10时,)(x f 在)1,0(a 上单调递减,在],1(e a
上单调递增
3ln 1)1()(min =+==a a
f x f ,2e a =,满足条件. ③ 当e a ≥1时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,e a 4=(舍),此时)(x f 无最小值.综上,存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3.
10.在数列{a n }中,a 1=1,a n +a n +1=3n .设b n =a n -14
×3n . (1)求证:数列{b n }是等比数列; (2)求数列{a n }的前n 项的和;
(3)设T 2n =1a 1+1a 2+1a 3…+1a 2n
,求证:T 2n <3. (1)证明:由a n +a n +1=3n ,得a n +1-14×3n +1=-(a n -14
×3n ). 即b n +1=-b n .b 1=a 1-34=14.所以数列{b n }是首项为14
,公比为-1的等比数列. (2)解:由b n =14×(-1)n -1,得a n -14×3n =14
×(-1)n -1, a n =14×3n +14×(-1)n -1=14
×[3n +(-1)n -1].
S n =a 1+a 2+a 3+…+a n =14[3+32+33+…+3n +(-1)0+(-1)1+(-1)2+…+(-1)n -1]=14[3n +1-32+1+(-1)n +
12] (3)证明:T 2n =1a 1+1a 2 +1a 3+1a 4…+1a 2n -1+1a 2n
=4(13+1+132-1+133+1 +134-1 +…+132 n -1+1+132 n -1
) =4[(13+1+133+1 +…+132 n -1+1)+(132-1+134-1+…+132 n -1
)] <4[(13+133 +…+132 n -1)+(132-1+134-1+…+132 n -1
)]. 因为32 n -1>32 n -1(n ∈N*),所以132 n -1 <132
n -1(n ∈N*). 所以132-1+134-1+…+132 n -1<13+133 +…+132
n -1. 所以T 2n <8(13+133 +…+132 n -1)=8×13(1-19n )1-19
=3(1-19n )<3.。

相关文档
最新文档