2019中考数学训练题 统计与概率(共31张PPT)

合集下载

2019年中考数学《3.2概率》总复习课件ppt

2019年中考数学《3.2概率》总复习课件ppt

A 1B 1 AB BC AC AB,A1B1 BC,A1B1 AC,A1B1
第三章
考点扫描 综合探究
3.2 概

名师考点精讲 名师考点精讲
中考真题再现
安徽五年探究
-15-
(3)由(2)中调查结果知:学生关注最多的两个主题为“感恩”和“进取”.所有调查结果用列表 法表示为:
A A B C D E (B,A) (C,A) (D,A) (E,A)
B (A,B)
C (A,C) (B,C)

名师考点精讲
安徽五年探究
中考真题再现
-22-
4.(2014· 安徽第21题)如图,管中放置着三根同样的绳子AA1,BB1,CC1. (1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少? (2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随 机选两个打一个结,求这三根绳子连结成一根长绳的概率.
第三章
考纲解读 命题解读
3.2 概

名师考点精讲 中考真题再现
安徽五年探究
-3-
2014—2016 年安徽中考命题分析 2017 年安徽中考命题预测 年份 考查点 题型 题号 分值 考查内容:(1)概率有关的概念:确定事件、不 确定事件、概率、频率等;(2)基本计算:概率 2016 概率的计算 解答题 21 12 的计算;(3)基本方法:列表法、画树状图法等. 2015 概率的计算 解答题 19 10 考查题型:从安徽省近几年的中考试题可以 看出,有关概率的题目每年都会考,前几年都 是选择题,近 3 年都是解答题,都是有关概率 的计算问题. 2014 概率的计算 解答题 21 12 中考趋势:预测 2017 年的中考,可能延续近两 年的趋势,考一个有关概率计算的解答题,分 值在 8~12 分之间,难度一般.

2020年中考数学复习解答题专项训练---统计与概率(无答案)

2020年中考数学复习解答题专项训练---统计与概率(无答案)

统计与概率一.统计1.(2019∙常州)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图。

(1)本次调查的样本容量是___,这组数据的众数为___元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数。

300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由。

的分数,请估计该九年级学生中约有多少人达到优秀等级。

4.(2019∙嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.(3)从两人成绩的稳定性角度分析,应选派谁参加比赛合适。

6.(2019∙临沂)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下:(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是____;频数分布表中____;____。

(2)补全频数分布直方图。

(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数。

二.概率1.(2019∙南充) 现有四张完全相同的不透明卡片,其正面分别写有数字−2,−1,0,2,把这四张卡片背面朝上洗匀后放在桌面上。

(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率。

(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率。

(宁夏专版)2019中考数学复习-第1轮 考点系统复习 第8章 统计与概率 第1节 统计(讲解)课件

(宁夏专版)2019中考数学复习-第1轮 考点系统复习 第8章 统计与概率 第1节 统计(讲解)课件

独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。

中考数学专题训练—统计与概率综合

中考数学专题训练—统计与概率综合

2019年中考数学专题训练—统计与概率综合1.某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有名学生,根据调查数据分析,全校约有名学生参加了音乐社团;请你补全条形统计图.2.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2019年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2019年全年阅读中外名著的总本数.3.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.4.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率. 科目 语文 数学 英语 得分 120 146 1405.2019年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.6.双福育才中学为积极响应学校提出的“实现伟大育才梦,建设美丽双福”的号召,面向全校学生开展征文活动,校学生会对七年级各班一周内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)图中投稿篇数为2所对应的扇形的圆心角度数为,并将该条形统计图补充完整.(2)求学校七年级各班在这一周内投稿的平均篇数.(3)若全校共有72个班,请估计全校征文投稿不低于6篇的班级有多少个?7.重庆市巴川中学是全国啦啦操基地,每届学生对啦啦操技巧的掌握都将得到传承,初2019级的同学们本周正在认真学习啦啦操,为庆“六一”表演积极做准备.学校艺体处为了解同学们跳啦啦操的热情和喜爱情况,组织大队委对本年级学生进行随机抽样调查.大队委文艺副部长小王对抽样的同学们对啦啦操的喜爱程度分为四类:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢,并将自己的调查结果绘制成如图的统计图,请你结合图中所给信息解答下列问题:请将条形统计图补充完整;初2019级共有学生2400人,请你用小王的调查结果估计该年级“非常喜欢”和“比较喜欢”跳啦啦操的人数之和有多少人?8.学校教务处为了了解学生下午参加体育活动的情况,采用随机抽样的方式进行问卷调查,调查结果分为“篮球”、“足球”、“乒乓球”、“跳绳”“体育舞蹈”、“其他”六类,分别用A、B、C、D、E、F表示.根据调查结果绘制了如图所示两幅不完整的统计图.结合图中所给出的信息,请补全条形统计图,并根据抽样调查估计全校3600名学生中选择跳绳和体育舞蹈的总人数.9.2019年春节联欢晚会分为A(语言类)、B(歌舞类)、C(魔术类)、D(杂技类)四类节目.为了了解某养老院老人对这几类节目的喜好程度,民政部门在该养老院随机抽取部分老人进行了问卷调查,规定每位老人只能选一类自己最喜欢的节目,并制成了以下两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)补全条形统计图;(2)已知该养老院共有230位老人,请你估计该养老院喜欢语言类节目的老人大约有多少人?10.为丰富我校学生的课余生活,增强学生的综合能力,学校计划在下学年新开设A:国际象棋社;B:皮影社;C:话剧社;D:手语社这四个社团;为了解学生喜欢哪一个社团,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图,请结合图中信息解答下列问题:求样本中喜欢C社团的人数在扇形统计图中的圆心角的度数,并把条形统计图补充完整.11.随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整;(2)扇形统计图中A类所在的扇形的圆心角度数是;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.12.电视节目“了不起的挑战”播出后深受中小学生的喜爱,小刚想知道我校学生最喜欢哪位明星,于是在我校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的明星),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.并将两幅统计图补充完整.(2)若小刚所在学校有3500名学生,请根据图中信息,估计全校喜欢“阮经天”的人数.13.数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.14.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?15.重庆市某超市举行盛大的周年庆庆祝活动,推出“感恩顾客,回馈真情”抽奖活动,活动规定,凡购买商品价值不低于200元的顾客,都能参与一次抽奖活动,奖励的等级分为下列五等:A等级:奖励现金50元,B等级:奖励现金30元;C等级:奖励现金10元;D等级:奖励现金6元;E等级:呵呵,恭喜发财,下次再来(没有奖励)!超市根据部分顾客的抽奖情况,对抽奖结果进行分析,绘制了下列两幅不完整的统计图:根据提供的信息,求扇形统计图中“D等级”所对应的圆心角度数,并求出顾客抽一次奖的平均收益,并补全条形统计图.16.小明参加班委竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是五位评委对小明“演讲答辩”的评分条形统计图及全班50位同学民主测评票数统计表,已知小明“演讲答辩”得分是95分(1)请补全条形统计图;(2)小明的民主测评得分是;(3)请求出小明的综合得分.17.在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.18.食品安全关系千家万户,春节期间,食监部门对某超市的甲、乙两种品牌的菜籽油进行了抽检,共随机抽取了36桶油进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,已知乙种品牌的菜籽油全部合格,统计人员将数据处理后制成了如下的扇形统计图及折线统计图,其中扇形统计图表示甲种品牌菜籽油检测的结果,折线统计图表示甲、乙两种品牌菜籽油检测的结果.(1)甲、乙两种品牌的菜籽油各被抽取了多少桶进行检测?(2)甲、乙两种品牌的菜籽油检测结果中“优秀”各有多少桶?19.近年来,“小组合作学习”成为我区推动课堂教学活动改革,打造高效课堂的重要举措.某中学为了了解“小组合作学习”实施后学生的学习兴趣,随机调查了部分学生,并根据调查结果绘制成如图图表:(1)求调查的学生中学习兴趣“高”的人数的百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)已知该校有750人,请根据调查情况估计全校学习兴趣“极高”的人数是多少?20.某中学上学期开展了以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制如图所示的不完整的统计图,请你根据图中提供的信息补全条形统计图并估计该中学1500名学生中最喜爱律师职业的学生有多少名?21.“六一”儿童节前夕,某县××局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名、7名、8名、10名、12名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有个班级;各班留守儿童人数的中位数是;并补全条形统计图;(2)若该镇所有小学共有65个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.22.《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了名学生,请补全条形统计图;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.23.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;C类所占百分比为;(2)将图1补充完整;(3)现有6名学生,其中A类三名,B类三名,张华在A类,王雨在B类,从A、B中各选1名学生,请用列表法或树状图法求张华、王雨至少有一个被抽到的概率.24.创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).25.某区教委对部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层次,A 级:对学习很感兴趣,B级:对学习比较感兴趣,C级:对学习不敢兴趣)并将调查结果绘制成图1和图2的统计图(不完整)根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,图2中C级扇形的圆心角是度.并将图1补充完整.(2)已知A级中有4名数奥尖子学生,其中有2名男生,2名女生,B级中有3名体育尖子学生,其中有2名男生,1名女生,从这4名数奥尖子学生和3名体育尖子生中各选出1名学生,参加学校的“特长学生经验交流会”.利用”树状图“或者”列表”法求所选出的2名学生恰好是一名男生和一名女生的概率.26.我校学生社团下学年将新增四个社团:A.开心农场、B.小小书吧、C.宏帆传媒、D.学生大使团.为了了解学生对四个社团的喜欢情况,学生会干部随机抽取了部分学生进行调查,并将调查结果绘制成下列的统计图,请结合图中的信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请计算扇形统计图中B的圆心角;并将条形统计图补充完整;(3)为了了解学生喜欢“宏帆传媒”社团的原因,调查到喜欢“宏帆传媒”社团的5个学生中有2个初一的,3个初二的,现在这5个学生中任抽取2名学生参加座谈,请用树状图或列表的方法,求刚好抽到同一年级学生的概率.27.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.28.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.29.经国家体育总局、重庆市××局批准,国家级青少年体育俱乐部-重庆巴蜀青少年体育俱乐部-于2019年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题:(1)将两个不完整的统计图补充完整;(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.30.某公司××部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.。

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。

2019、2020年浙江中考数学试题分类(8)——统计和概率

2019、2020年浙江中考数学试题分类(8)——统计和概率

2019、2020年浙江中考数学试题分类(8)——统计和概率一.频数(率)分布直方图(共7小题)1.(2020•温州)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有头.2.(2019•温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.3.(2020•宁波)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等级:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?4.(2020•杭州)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?5.(2019•舟山)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组的成绩如下75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.6.(2019•嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.7.(2019•宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<601060≤a<701570≤a<80m80≤a<904090≤a≤10015由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.二.扇形统计图(共5小题)8.(2019•温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人9.(2020•金华)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.10.(2020•绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?11.(2020•衢州)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?12.(2019•台州)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.三.条形统计图(共3小题)13.(2020•湖州)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?14.(2020•嘉兴)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.15.(2019•绍兴)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.四.折线统计图(共4小题)16.(2019•舟山)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%17.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)18.(2020•温州)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.19.(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.①甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.五.算术平均数(共2小题)20.(2020•湖州)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.221.(2020•杭州)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x六.加权平均数(共1小题)22.(2019•湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是分.七.中位数(共1小题)23.(2020•衢州)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.八.众数(共2小题)24.(2020•温州)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm25.(2019•湖州)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇)34567及以上人数(人)2028m1612请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.九.方差(共4小题) 26.(2020•嘉兴)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4 B .众数是3 C .中位数是5 D .方差是3.2 27.(2019•台州)方差是刻画数据波动程度的量.对于一组数据x 1,x 2,x 3,…,x n ,可用如下算式计算方差:s 2=1x [(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2],其中“5”是这组数据的( ) A .最小值 B .平均数 C .中位数 D .众数 28.(2019•宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 丁x24242320S 22.1 1.9 2 1.9 今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ) A .甲 B .乙 C .丙 D .丁 29.(2020•宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差s 2(单位:千克2)如表所示:甲 乙 丙x 45 45 42 s 21.82.3 1.8 明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是 . 一十.标准差(共1小题) 30.(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数 B .中位数 C .方差 D .标准差 一十一.统计量的选择(共1小题) 31.(2020•台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是( ) A .中位数 B .众数 C .平均数 D .方差 一十二.概率公式(共9小题) 32.(2020•衢州)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A .13B .14C .16D .1833.(2020•金华)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .1634.(2020•绍兴)如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12B .13C .14D .1635.(2020•温州)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( ) A .47B .37C .27D .1736.(2020•宁波)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( ) A .14B .13C .12D .2337.(2019•温州)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A .16B .13C .12D .2338.(2019•湖州)已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( ) A .110B .910C .15D .4539.(2019•衢州)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B .23C .13D .1240.(2019•金华)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为( ) A .12B .310C .15D .710一十三.列表法与树状图法(共4小题) 41.(2020•湖州)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.42.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.43.(2019•台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.44.(2019•舟山)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.一十四.利用频率估计概率(共2小题)45.(2019•绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.1546.(2020•台州)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.40.4~0.60.6~0.80.8~1参与度人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?2019、2020年浙江中考数学试题分类(8)——统计和概率参考答案与试题解析一.频数(率)分布直方图(共7小题)1.【解答】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故答案为:140.2.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.3.【解答】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×80200=144°.(3)这次测试成绩的中位数是80﹣90.这次测试成绩的中位数的等级是良好.(4)1500×40200=300(人),答:估计该校获得优秀的学生有300人.4.【解答】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1﹣98.4%)=160,∵100<160,∴估计4月份生产的产品中,不合格的件数多.5.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2450=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.6.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2450=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.7.【解答】解:(1)m=100﹣(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a<90中,但他们的中位数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×40+15100=660(人).二.扇形统计图(共5小题)8.【解答】解:调查总人数:40÷20%=200(人),选择黄鱼的人数:200×40%=80(人),故选:D.9.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.10.【解答】解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×4001000=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)4001000+5501000=9501000=95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.11.【解答】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×25500=18°,即组别A的圆心角度数是18°;(3)25000×25+115500=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.12.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:5101000×100%=51%;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%, (2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×1771000=5.31万(人), 答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人; (3)小明分析数据的方法不合理.宣传活动后骑电瓶车“都不戴”安全帽的百分比:178896+702+224+178×100%=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:1771000×100%=17.7%,8.9%<17.7%,因此交警部门开展的宣传活动有效果. 三.条形统计图(共3小题) 13.【解答】解:(1)抽查的学生数:20÷40%=50(人), 抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示: (2)360°×1550=108°, 答:扇形统计图中表示“满意”的扇形的圆心角度数为108°; (3)1000×(2050+1550)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.14.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B 品牌,是1746万台;由折线统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C 品牌,比较稳定,极差最小;故答案为:B ,C ;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%, ∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C 品牌,因为C 品牌2019年的市场占有率最高,且5年的月销售量最稳定; 建议购买B 品牌,因为B 品牌的销售总量最多,受到广大顾客的青睐. 15.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天), 小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒), 答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天. 四.折线统计图(共4小题)16.【解答】解:A 、错误.签约金额2017,2018年是下降的. B 、错误.与上年相比,2016年的签约金额的增长量最多. C 、正确. D 、错误.下降了:244.5−221.6244.5≈9.4%.故选:C . 17.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<. 18.【解答】解:(1)选择两家酒店月盈利的平均值;x x =1+1.6+2.2+2.7+3.5+46=2.5(万元), x x =2+3+1.7+1.8+1.7+3.66=2.3(万元);(2)平均数,方差反映酒店的经营业绩,A 酒店的经营状况较好.理由:A 酒店盈利的平均数为2.5万元,B 酒店盈利的平均数为2.3万元.A 酒店盈利的方差为1.073平方万元,B 酒店盈利的方差为0.54平方万元,无论是盈利的平均数还是盈利的方差,都是A 酒店比较大,且盈利折线A 是持续上升的,故A 酒店的经营状况较好. 19.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①x 甲=x 乙+50. ①S 甲2=S 乙2.理由:∵S 甲2=15[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8. S 乙2=15[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8, ∴S 甲2=S 乙2.五.算术平均数(共2小题) 20.【解答】解:x =−1+0+3+4+45=2,故选:D . 21.【解答】解:由题意可得, 若去掉一个最高分,平均分为x ,则此时的x 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 去掉一个最低分,平均分为y ,则此时的y 一定大于同时去掉一个最高分和一个最低分后的平均分为z , 故y >z >x , 故选:A .六.加权平均数(共1小题)22.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分). 故答案为:9.1.七.中位数(共1小题) 23.【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5, ∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6, ∴这组数据的中位数是5. 故答案为:5.八.众数(共2小题) 24.【解答】解:由表格中的数据可得, 这批“金心大红”花径的众数为6.7, 故选:C . 25.【解答】解:(1)被调查的总人数为16÷16%=100人, m =100﹣(20+28+16+12)=24;(2)由于共有100个数据,其中位数为第50、51个数据的平均数, 而第50、51个数据均为5篇, 所以中位数为5篇, 出现次数最多的是4篇, 所以众数为4篇; (3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224人.九.方差(共4小题)26.【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S 2=15[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2. 故选:C .27.【解答】解:方差s 2=1x[(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2]中“5”是这组数据的平均数,故选:B . 28.【解答】解:因为甲组、乙组的平均数丙组比丁组大, 而乙组的方差比甲组的小, 所以乙组的产量比较稳定, 所以乙组的产量既高又稳定, 故选:B . 29.【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高, 又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.一十.标准差(共1小题) 30.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .一十一.统计量的选择(共1小题) 31.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数, 半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数, 故选:A .一十二.概率公式(共9小题)32.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:120360=13.。

中考数学专题16 统计与概率(第01期)-2019年中考真题数学试题分项汇编 (解析版)

中考数学专题16 统计与概率(第01期)-2019年中考真题数学试题分项汇编 (解析版)

专题16 统计与概率1.(2019•河北)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【答案】D【解析】由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录,④整理借阅图书记录并绘制频数分布表,③绘制扇形图来表示各个种类所占的百分比,①从扇形图中分析出最受学生欢迎的种类,故选D.2.(2019•江西)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】A.扇形统计图能反映各部分在总体中所占的百分比,此选项说法正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为1–40%=60%,超过50%,此选项说法正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项说法错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1–40%–10%–20%)=108°,此选项说法正确;故选C.【名师点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.3.(2019•安徽)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为A.60 B.50 C.40 D.15【答案】C【解析】由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选C.【名师点睛】本题主要考查众数,熟练掌握众数的定义是解题的关键.4.(2019•新疆)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定【答案】B【解析】由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好.故选B.5.(2019•福建)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【答案】D【解析】A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选D.【名师点睛】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6.(2019•宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.7 0.9 1.1 1.3 1.5及以上人数 2 9 6 5 4 4 则本次调查中阅读时间的中位数和众数分别是A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.1【答案】B【解析】由表格可得,30名学生平均每天阅读时间的中位数是:0.90.92=0.9,30名学生平均每天阅读时间的众数是0.7,故选B.【名师点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.7.(2019•河南)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是A.1.95元B.2.15元C.2.25元D.2.75元【答案】C【解析】这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选C.【名师点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选C.【名师点睛】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.9.(2019•甘肃)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是参加人数平均数中位数方差甲45 94 93 5.3乙45 94 95 4.8A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【答案】A【解析】A、由表格信息可得甲、乙两班的平均水平相同;A选项正确;B、由表格信息无法得出甲、乙两班竞赛成绩的众数相同;B选项不正确;C、由表格信息可以得出乙班的成绩比甲班的成绩稳定;C选项不正确;D、由表格信息可以得出甲班中位数小于乙班的中位数,所以乙班成绩优异的人数比甲班多,D选项不正确;故选A.【名师点睛】本题考查了平均数,众数,中位数,方差;正确的读懂题目中所给出的信息,理解各个统计量的意义是解题的关键.10.(2019•广西)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是A.13B.23C.19D.29【答案】A【解析】图书馆,博物馆,科技馆分别记为A、B、C,画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率=39=13.故选A.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11.(2019•广西)下列事件为必然事件的是A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【答案】B【解析】∵A,C,D选项中的事件均为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选B.【名师点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.(2019•海南)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是A.12B.34C.112D.512【答案】D【解析】∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P=2560=512,故选D.【名师点睛】本题考查了概率,熟练掌握概率公式是解题的关键.13.(2019•宁夏)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为__________小时.【答案】1.15【解析】由图可知,该班一共有学生:8+16+12+4=40(人),该班学生这天用于体育锻炼的平均时间为:(0.5×8+1×16+1.5×12+2×4)÷40=1.15(小时).故答案为:1.15.【名师点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了加权平均数.14.(2019•山西)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是__________.【答案】扇形统计图【解析】要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图.【名师点睛】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.15.(2019•广西)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是__________.(填“甲”或“乙”)【答案】甲【解析】甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为:甲.【名师点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n [(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【名师点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17.(2019•河南)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70;72;74;75;76;76;77;77;77;78;79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9 m八79.2 79.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人;(2)表中m的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【答案】(1)23;(2)77.5;【解析】(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m=77782=77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×515850++=224(人).【名师点睛】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.18.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数8 9 10 11 12频率(台数)10 20 30 30 10(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【答案】(1)“1台机器在三年使用期内维修次数不大于10”的概率为0.6.(2)购买1台该机器的同时应一次性额外购10次维修服务更合适.【解析】(1)“1台机器在三年使用期内维修次数不大于10”的概率=60100=0.6.(2)购买10次时,某台机器使用期内维修次数8 9 10 11 12 该台机器维修费用24000 24500 25000 30000 35000此时这100台机器维修费用的平均数y1=1100(24000×10+24500×20+25000×30+30000×30+35000×10)=27300;购买11次时,某台机器使用期内维修次数8 9 10 11 12 该台机器维修费用26000 26500 27000 27500 32500 此时这100台机器维修费用的平均数y2=1100(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.19.(2019•江西)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.【答案】(1)13.(2)树状图见解析,八(1)班和八(2)班抽中不同歌曲的概率为23.【解析】(1)因为有A,B,C共3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是13;故答案为:13.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率为69=23.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(2019•河北)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿【答案】(1)这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;②乙组两次都拿到8元球的概率为12.【解析】(1)∵P(一次拿到8元球)=12,∴8元球的个数为4×12=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为882=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为12.【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.祝你考试成功!祝你考试成功!。

中考数学专题训练统计与概率(含解析)

中考数学专题训练统计与概率(含解析)

中考数学专题训练统计与概率(含解析)专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2019年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2019·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2019·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2019·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:班级参加人数中位数方差平均分(1)班50 120 103 122(2)班49 121 201 122根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2019·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分36 37 38 39 40人数/人 1 2 1 4 2下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分; 排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40- 38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )α30°45°60°sinαcosαtanαA. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.α30°45°60°sinαcosαtanα 114.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A.平均数B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2019·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( ) A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2019·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:鞋的尺码(单位:cm) 22.5 23 23.5 24 24.5销售量(单位:双) 3 6 12 9 8根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2019·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2019·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2019·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2019·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2019·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2019·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2019·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【解析】(1)平均数中位数方差甲 2乙丙 6(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==. 28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南书法演讲国学诵读征文宁宁书法√演讲√国学诵读√征文√南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2019人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2019×=600(人).(3)列表如下:男1 男2 女1 女2男1 ×(男1,男2) (男1,女1) (男1,女2)男2 (男2,男1) ×(男2,女1) (男2,女2)女1 (女1,男1) (女1,男2) ×(女1,女2)女2 (女2,男1) (女2,男2) (女2,女1) ×画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。

中考数学复习讲义课件 专题4 统计与概率

中考数学复习讲义课件 专题4 统计与概率

男 3,男 2 女,男 2
男 3 男 1,男 3 男 2,男 3
女3,女
由表可知,共有 12 种等可能的结果,其中恰好是一男一女的结果有 6 种,
∴抽取的两位学生恰好是一男一女的概率为162=12.
5.(2021·宁夏)2021 年,“碳中和、碳达峰”成为高频热词.为了解学生对“碳 中和、碳达峰”知识的知晓情况,某校团委随机对该校九年级部分学生进行了 问卷调查,调查结果共分成四个类别:A 表示“从未听说过”,B 表示“不太 了解”,C 表示“比较了解”,D 表示“非常了解”.根据调查统计结果,绘 制成如下两种不完整的统计图.请结合统计图,回答下列问题.
4.(2021·张家界)为了积极响应中共中央文明办关于“文明用餐”的倡议, 某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分 学生,对他们家庭用餐使用公筷情况进行统计,统计分类为以下四种:A(完 全使用)、B(多数时间使用)、C(偶尔使用)、D(完全不使用),将数据进行整 理后,绘制了两幅不完整的统计图.
(2)请将频数分布直方图补充完整; 解:补全频数分布直方图如图所示.
(3)抽取的 200 名学生中竞赛成绩的中位数落在的组别是 C 组;
(4)若该校共有 1000 名学生,请估计本次党史知识竞赛成绩为“优秀”的学 生人数.
解:1000×(0.25+0.3)=1000×0.55=550(人). 答:本次党史知识竞赛成绩为“优秀”的学生约有 550 人.
[分析] (1)由频率之和等于 1 可得 b 的值,再由第一组频数及频率求出被调 查的总人数,根据频数=频率×总人数求解可得 a 的值; (2)根据以上所求数据即可将统计图补充完整; (3)利用样本估计总体的知识求解即可求得答案; (4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选 两人正好都是甲班学生的情况,再利用概率公式即可求得答案.

中考数学专题训练:统计与概率(含答案)

中考数学专题训练:统计与概率(含答案)

中考数学专题训练:统计1. (2012福建)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?【答案】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%。

童装占得百分比1-30%-25%=45%。

补全统计表和统计图如下:(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中合格的数量是135×80%=108,∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是8163.7510884.25%300++=。

2. (2012湖北) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率. 【答案】解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人。

(2)喜爱C 粽的人数:600-180-60-240=120,频率:120÷600=20%; 喜爱A 粽的频率:180÷600=30%。

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。

中考 数学专练10(统计与概率大题)(30题)(老师版)

中考 数学专练10(统计与概率大题)(30题)(老师版)

2022中考考点必杀500题 专练10(统计与概率大题)(30道)1.(2022·浙江绍兴·一模)健康的体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现.某初中学校为了提高学生体质健康,制定合理的校园阳光体育锻炼方案,随机抽查了部分学生最近两周参加体育锻炼活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)抽查的学生中锻炼8天的有______人.(2)本次抽样调查的众数为______,中位数为_______.(3)如果该校约有2000名学生,请你估计全校约有多少名学生参加体育锻炼的天数不少于7天? 【答案】(1)60人 (2)5天,6天(3)估计全校约有800名学生参加体育锻炼的天数不少于7天 【解析】 (1)解:12020600÷=%(人)600254051060⨯---⨯=(1-20%%%%)=600%(人)故抽查的学生中锻炼8天的有60人. (2)解:参加体育锻炼活动5天的人最多,故众数是5; 一共600人,最中间是第300个和301个, 从小到大排序后第300个和301个数都是6天, ∴中位数是6;(3)解:参加体育锻炼的天数不少于7天的人所占百分比是:%%%%,2510540++=⨯%=(人)200040800答:估计全校约有800名学生参加体育锻炼的天数不少于7天.【点睛】本题主要考查了概率统计的知识,包括扇形统计图和条形统计图的联系、众数和中位数的概念和用样本估计总体,牢固掌握以上知识点是做出本题的关键.2.(2022·浙江宁波·二模)第24届冬奥会于2022年2月在北京举行,为推广冰雪运动,发挥冰雪项目的育人功能,教育部近年启动了全国冰雪运动特色学校的䢯选工作.某中学通过将冰雪运动 “早地化” 的方式积极开展了基础滑冰、早地滑雪、早地冰球、早地冰显四个运动项目,要求每一位学生都自主选择一个运动项目,为了了解学生选择冰雪运动项目的情况,随机抽取了部分学生进行调查, 并根据调查结果绘制成如下不完整的条形统计图和扇形统计图.(1)这次随机抽取了_______名学生进行调查,并将条形统计图补充完整.(2)求扇形统计图中 “旱地冰壶” 部分的圆心角度数.(3)如果该校共有2400名学生,请你估计全校学生中喜欢基础滑冰项目有多少人?【答案】(1)50;条形统计图补充完整见解析(2)扇形统计图中 “旱地冰壶” 部分的圆心角度数为108︒(3)估计全校学生中喜欢基础滑冰项目有960人【解析】(1)解:在这次调查中,总人数为10÷20%=50(人),∴喜欢旱地滑雪项目的同学有50﹣20﹣10﹣15=5(人),补全图形如下:(2)旱地冰壶有15人,总人数50人,15÷50×360︒=108︒,∴“旱地冰壶” 部分的圆心角度数为108︒;(3)基础滑冰有20人,总人数50人,202400960⨯=(人),50∴估计全校学生中喜欢基础滑冰项目有960人.【点睛】本题考查条形统计图和扇形统计图的应用,数量掌握统计图的相关数据的关系与应用是解题的关键.3.(2022·湖北十堰·一模)为了解中考体育科目训练情况,从城区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______;(2)图1中α∠的度数是______,并把图2条形统计图补充完整;(3)若城区九年级学生有18000人,如果全部参加这次中考体育科目测试,请估计不及格的人数为______; (4)测试老师想从4位同学(分别记为甲、乙、丙、丁)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中甲的概率. 【答案】(1)40人 (2)54°;作图见详解 (3)3600人 (4)12 【解析】 (1)12÷30%=40(人)∴本次抽样测试的学生人数是40人, 故答案为:40; (2) 63605440α∠=⨯︒=︒. 故答案为:54°;C 级的人数为4035%14⨯=(人), 故补全条形统计图如下:(3)818000360040⨯=(人)∴估计不及格的人数为3600人,故答案为:3600人;(4)根据题意列表如下:由表可知,共有12种等可能的结果,其中选中甲的有6种,∴P(选中甲) =612=12.【点睛】本题考查条形统计图与扇形统计图相关联,用样本估计总体,列表法或画树状图法求概率.根据条形统计图和扇形统计图得到必要的信息和数据是解题关键.4.(2021·陕西渭南·二模)中华人民共和国第十四届全运会将于2021年9月份在陕西举行,“全民全运同心同行”是本届全运会主题口号.某中学为加深对全运会的了解,组织学生玩抽卡片的游戏,游戏规则如下:a.如图,A、B、C、D四张卡片(形状、大小和质地都相同),正面分别写有“全民全运”“同心同行”“相约西安”“筑梦全运”;b.将这四张卡片背面朝上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张;c.若抽取的两张卡片能组成本届全运会主题口号“全民全运同心同行”,则获得一次成为“文明倡导者”的机会.(1)第一次抽取的卡片上写的是“全民全运”的概率为________;(2)请用列表法或画树状图法求乐乐抽取完两张卡片后,能获得成为“文明倡导者”机会的概率.【答案】(1)1 4(2)1 6【解析】(1)第一次抽取的卡片上写的是“全民全运”的概率为14;故答案为:14;(2)列表如下:由表知,共有12种等可能结果,其中抽取完两张卡片后,能获得成为“文明倡导者”机会的有2种结果,所以抽取完两张卡片后,能获得成为“文明倡导者”机会的概率是21 126.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.(2021·陕西渭南·二模)现代交通的发达虽然给人们带来了无尽的便利,但同时也增加了许多安全隐患.为了提高学生的安全意识,珍爱生命,某学校制作了8条安全出行警句,倡导全校1200名学生进行安全警句背诵系列活动,并在活动之后举办安全知识大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查他们安全警句的背诵情况,根据调查结果绘制成的统计图(部分)如图所示.大赛结束一个月后,再次抽查这部分学生安全警句的背诵情况,并根据调查结果绘制成统计表:请根据调查的信息,完成下列问题:(1)补全条形统计图,表格中m的值为_______;(2)求活动启动之初学生安全警句的背诵条数的平均数及中位数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校安全警句背诵系列活动的效果.【答案】(1)10;补图见解析(2)平均数为5,中位数为4.5(3)见解析【解析】(1)解:调查人数为6020120360÷=(人),背诵“4条”的人数为13512045360⨯=(人),补全条形统计图如图所示:大赛结束一个月后,背诵“4条”的人数为120101540252010m=-----=(人),故答案为:10;(2)解:将这120名学生活动启动之初的背诵情况从小到大排列处在中间位置的两个数的平均数为454.52+=,因此中位数是4.5,这120名学生活动启动之初的背诵情况的平均数为:1(153454205166137118)5 120⨯⨯+⨯+⨯+⨯+⨯+⨯=(条),答:活动启动之初学生安全警句的背诵条数的平均数为5,中位数为4.5;(3)解:从中位数上看,活动开展前的中位数是4.5条,活动开展后的中位数是6条,从背诵“6条及以上”人数的变化情况看,活动前是40人,活动后为85人,人数翻了一倍,从而得出活动的开展促进学生背诵能力的提高,活动开展的效果较好.【点睛】本题考查条形统计图、扇形统计图,理解两个统计图中数量之间的关系是正确解答的关键.6.(2021·山东滨州·二模)为了进一步提高中学生的交通安全意识、文明意识,为“创建文明城市”工作的开展营造浓厚的宣传氛围,某区创新宣传方式,组织学生利用“参观体验+知识竞赛”新模式开展安全宣传活动,并取得了良好的效果.赛后区团委随机抽取了部分参赛学生的成绩,整理后按分数分组如下:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100,并绘制出不完整的统计图.请你根据提供的信息,解决下列问题:(1)补全频数分布直方图和扇形统计图;(2)这次竞赛成绩的中位数落在组(填写字母);(3)某区共有2万名中学生,若竞赛成绩在80分以上(包括80分)为“优”,请你估计该区竞赛成绩为“优”的学生有多少人?(4)D组中成绩为100分的同学有三人(两男一女),现准备从他们中随机选出两位同学参加市竞赛,请用画树状图或列表法求刚好抽到两位男生的概率.【答案】(1)见解析(2)C(3)12000人(4)1 3【解析】(1)解:由C组人数和百分比可得本次调查的学生有:360÷40%=900(人),A组学生有:900﹣270﹣360﹣180=90(人),B组所占的百分比为:270÷900×100%=30%,补全的补全频数分布直方图和扇形统计图如图所示:(2)解:一共900名学生,则中位数是第450和第451名学生的平均数,∴A、B组共有90+180=270人,A、B、C组共有90+180+270=540人,∴第450和第451名学生在C组,∴这次竞赛成绩的中位数落在C组;(3)解:20000×(40%+20%)=12000(人),即估计该区竞赛成绩为“优”的学生有12000人.(4)解:将男生分别标记为A1,A2,女生标记为B1由表可知,共有6种等可能结果,其中刚好抽到两位男生的有2种结果,所以刚好抽到两位男生的概率为21 63 .【点睛】本题考查了频数分布直方图和扇形图的关联求值,中位数的概念,由样本估计总体,列表法求概率等知识;掌握图表所表达的数据意义是解题关键.7.(2022·陕西·武功县教育局教育教学研究室二模)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9小时,在备战中考的重要阶段,更要注重睡眠,提高学习效率.某校为了了解该校九年级学生每天的睡眠时间,随机调查了该校九年级部分学生,并将调查结果绘制成如下的统计图和统计表,根据图表中的信息,解答下列问题:(1)本次调查数据的中位数落在______组,表中m的值为______,扇形统计图中C组所在扇形的圆心角为______°;(2)求本次调查数据的平均数;(3)若该校共有600名九年级学生,请估计该校每天睡眠时间不少于9h的九年级学生有多少名?【答案】(1)B;10;90(2)8.5h(3)210名【解析】(1)÷=(人)解:被调查的学生人数为:1845%40故本次调查数据的中位数是这组数据从小到大排列后,第20个和第21个数的平均数故本次调查数据的中位数落在B组m=40-18-8-4=10扇形统计图中C 组所在扇形的圆心角为:10360=9040︒⨯︒ 故答案为:B ;10;90;(2) 解:()7.5188.589.3101148.5h 188104⨯+⨯+⨯+⨯=+++, ∴本次调查数据的平均数为8.5h .(3) 解:104600210188104+⨯=+++(名), ∴估计该校每天睡眠时间不少于9h 的九年级学生有210名.【点睛】本题考查了统计图表,中位数,扇形的圆心角,平均数的求法,用样本估计总体,解题的关键是仔细地审题,从图表中获取相关信息.8.(2022·陕西·武功县教育局教育教学研究室二模)此前,网络上出现了“东航失事原因锁定副驾驶”“黑匣子数据已经出来”等传言,严重误导社会公众认知,干扰事故调查工作,民航局表示:将依法追究造谣者法律责任,为了引导广大民众做“不信谣、不传谣、不造谣”的守法公民,某志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区做《抵制网络谣言·共建网络文明》的宜传活动,已知莹莹和晓晓都是该志愿者团队中的队员.(1)莹莹被分配到B 社区的概率为______;(2)请用列表法或画树状图的方法求莹莹和晓晓被分配到同一个社区的概率.【答案】(1)14(2)14【解析】(1)∴志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区,∴莹莹被分配到B 社区的概率为14. (2)根据题意列表如下:由表格可知,共有16种等可能的结果,其中莹莹和晓晓被分配到同一个社区的情况有4种,∴P(莹莹和晓晓被分配到同一个社区)41 164==.【点睛】此题考查了根据概率公式求解概率以及树状图或列表法求解概率,解题的关键是掌握概率公式以及树状图或列表法求解概率.9.(2022·江苏·徐州市新城实验学校一模)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查学生共________人,补全条形统计图:(2)扇形统计图中“观看微课”对应的扇形圆心角等于__________°;(3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数.【答案】(1)120;见解析;(2)72(3)对“在线讲授”最感兴趣的学生人数是780人【解析】(1)总人数:4840%120÷=(人),“在线答题”人数:12036244812---=(人),补全条形统计图如图所示:(2)“观看微课”所占圆心角3607224120︒=︒=⨯, 故答案为:72;(3)本校对“在线授课”最感兴趣的人数260078036120⨯==(人), 答:该校对“在线授课”最感兴趣的学生人数为780人.【点睛】此题主要考查关联扇形统计图与条形统计图、用样本估计总体,利用数形结合的思想解答.解题关键是正确读懂统计图的信息以及明确题意.10.(2022·陕西·一模)一个不透明的袋子中装有1个黄球和若干个蓝球,这些球除颜色外重量、大小、表面光滑度等都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回;搅匀后再摸一个球,记下颜色后放回;不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到黄球的频率在一个常数附近摆动,这个常数是___________(精确到0.01),由此估出蓝球有___________个;(2)现从该袋中一次摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个黄球,1个蓝球的概率.【答案】(1)0.25;3(2)12【解析】(1)解:(1)随着摸球次数的越来越多,频率越来越靠近0.25,因此接近的常数就是0.25;设蓝球由x 个,由题意得:10.251x =+,解得:3x =, 经检验:3x =是分式方程的解;故答案为:0.25,3;(2)(2)画树状图得:∴共有12种等可能的结果,其中恰好摸到一个黄球,一个蓝球有6种情况,∴摸到一个黄球一个蓝球的概率为:61122=; 故答案为:12.【点睛】本题考查了利用频率估计概率、运用树状图法求概率以及概率公式的应用,估算出摸到黄球的概率成为解答本题的关键.11.(2022·辽宁锦州·一模)某校对九年级学生进行“综合素质”评价,评价结果分优秀,良好,合格,不合格四个等级(分别用A,B,C,D表示),现从中随机抽取若干名学生的“综合素质”的等级作为样本进行数据分析,并绘制下列两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)本次随机抽取的学生有_______名,等级为优秀(A)的学生人数所占的百分比是______;(2)在扇形统计图中,等级为合格(C)的学生所在扇形的圆心角度数是______;(3)将条形统计图补充完整;(4)若该校九年级学生共1200名,请根据以上调查结果估算,等级为良好及良好以上的学生共有多少名?【答案】(1)50,40%(2)57.6︒(3)见解析(4)912名【解析】(1)本次随机抽取的学生有18÷36%=50(名).等级为优秀(A)的学生人数为50188420---=(名),∴其所占的百分比是20100%40% 50⨯=,故答案为:50,40%;(2)等级为合格(C)的学生所在扇形的圆心角度数是836057.650⨯︒=︒,故答案为:57.6︒;(3)由(1)可知等级为优秀(A )的学生人数为20名,即可补全统计图如下:(4)2018120091250+⨯=(名), 答:评价结果为良好及良好等级以上的学生大约共有912名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,由样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.12.(2022·浙江湖州·一模)为了解某学校疫情期向学生在家体有锻炼情况,从全体学生中机抽取若干名学生进行调查.以下是根据调查数据绘刺的统计图丧的一部分,根据信息回答下列问题.(1)本次调查共抽取__________名学生.(2)抽查结果中,B组有__________人.(3)在抽查得到的数据中,中位数位于__________组(填组别).(4)若这所学校共有学生800人,则估计平均每日锻炼超过25分钟有多少人?【答案】(1)60(2)18(3)C(4)440(1)解:本次调查共12÷20%=60(人),故答案是:60;(2)解:抽查结果中,B组有60-(9+21+12)=18(人),故答案是:18;(3)解∴共有60个数据,其中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,∴在抽查得到的数据中,中位数位于C组,故答案是:C;(4)解:800211260+⨯=440(人),答:平均每日锻炼超过25分钟有440人.【点睛】本题考查频数(率)分布表、扇形统计图、样本估计总体等知识,解题的关键是根据频数分步图和扇形统计图的关联信息求出被调查学生的总数.13.(2022·湖南岳阳·一模)为落实中小学生五项管理中的手机管理,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m =______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.【答案】(1)40;30;(2)见解析 (3)12【解析】(1)解:)获奖总人数为820%40÷=(人). 404816%100%30%40m ---=⨯=,即30m =;故答案为40;30; (2) 解:“三等奖”人数为40481612---=(人),条形统计图补充为:(3)解:画树状图为:共有12种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为6,所以抽取同学中恰有一名男生和一名女生的概率61 122==.【点睛】本题考查了条形统计图和扇形统计图、及用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率一所求情况数与总情况数之比.牢固掌握画树状图列出所以可能结果是解题的关键.14.(2022·福建三明·二模)某商场举行促销活动,消费满一定金额的顾客可以通过参与摸球活动获得奖励.具体方法如下:从一个装有2个红球、3个黄球(仅颜色不同)的袋中摸出2个球,根据摸到的红球数确定奖励金额,具体金额设置如下表:现有两种摸球方案:方案一:随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球;方案二:随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.(1)求方案一中,两次都摸到红球的的概率;(2)请你从平均收益的角度帮助顾客分析,选择哪种摸球方案更有利?【答案】(1)1 10(2)从平均收益的角度看,顾客选择方案二更有利【解析】(1)解:对于方案一,列表如下.由上表可知,共有20种等可能的结果,两次都摸到红球的结果数是2.故采用方案一摸球,两次都摸到红球的概率为21 2010=.(2)解:由(1)中表可知,采用方案一,两次都摸到红球的概率为110,摸到一次红球的概率为123205=,没有摸到红球的概率为63 2010=.平均收益为331510209.5 10510⨯+⨯+⨯=元.对于方案二,列表如下.由上表可知,共有25种等可能的结果,两次摸到红球的结果数是4,摸到一次红球的结果数是12,没有摸到红球的结果数是9.所以两次都摸到红球的概率为425,摸到一次红球的概率为1225,没有摸到红球的概率为925.平均收益为9124510209.8 252525⨯+⨯+⨯=元.∴9.89.5>,∴从平均收益的角度看,顾客选择方案二更有利.【点睛】本题考查列表法求概率,概率的实际应用,熟练掌握这些知识点是解题关键.15.(2022·重庆渝中·二模)某校党委为提高党员教师使用“学习强国”的积极性,4月份开展了一分钟答题挑战赛.规定:答对一道记1分.下列数据是分别从初中组和高中组随机抽取的10名党员教师的成绩(单位:分).初中组:6,13,7,9,8,11,9,13,9,6;高中组:6,9,5,12,8,11,8,9,14,8.通过以上数据得到如下不完整的统计表:根据以上信息,回答下列问题: (1)=a ______,b =______,c =______;(2)该校初中组和高中组党员教师人数分别为50人和60人,若答对9道题以上(包括9道)为优秀等级,请估计该校共有多少名党员教师获得优秀等级;(3)已知25.89s =初中组,求2s 高中组,并说明哪个组党员教师的成绩波动性较小. 【答案】(1)9.1,8.5,8; (2)60名;(3)26.6s =高中组,初中组. 【解析】 (1)解:初中组的平均数61379811913969.110a +++++++++==(分);将高中组的数据按照从小到大排列后,处于中间位置的两个数是8和9, ∴898.52+=(分), ∴8.5b =;∴高中组的数据中出现次数最多的数是8, ∴8c =. (2)解:∴初中组和高中组党员教师答对9道题以上(包括9道)的分别有6人和5人, ∴655060601010⨯+⨯=(名) ∴该校共有60名党员教师获得优秀等级. (3) 解:()()()()()()()222222226999259129893119149 6.610s ⎡⎤-+-⨯+-+-+-⨯+-+-⎣⎦==高中组∴25.89s =初中组,∴22s s 初中组高中组<,∴初中组党员教师的成绩波动性较小.【点睛】本题主要考查了平均数、中位数、众数、方差以及用样本估计总体,熟练掌握平均数、中位数、众数、方差的计算方法是解题的关键.16.(2022·安徽合肥·二模)某校为了解疫情期间学生自习课落实“停课不停学、学习不延期”在线学习的效果,校长通过网络学习平台,随机抽查了该校部分学生在一节自习课中的学习情况,发现共有四种学习方式(每人只参与其中一种):A.阅读电子教材,B.听教师录播课程,C.完成在线作业,D.线上讨论交流.并根据调查结果绘制成如下两幅不完整的统计图,根据图中信息解答下列问题:(1)填空:校长本次调查的学生总人数为______,并补全条形统计图;(2)求扇形统计图中“D.线上讨论交流”对应的圆心角的度数;(3)若该校在线学习学生共有4000人,请你估计“B.听教师录播课程”有多少人?【答案】(1)90,见解析(2)48°(3)1600人【解析】(1)解:校长本次调查的学生总人数为=18÷20%=90(人),∴B.听教师录播课程的人数=90-24-18-12=36(人),补全条形统计图如图所示:(2)解:“D.线上讨论交流”对应的扇形圆心角的度数是123604890⨯=︒︒,∴扇形统计图中“D.线上讨论交流”对应的圆心角是48°;(3) 解:364000160090⨯=(人), ∴估计“B .听教师录播课程”约有1600人. 【点睛】本题考查了条形统计图和扇形统计图,利用样本估计总体的方法,解题的关键是从两个统计图中读取信息解题.17.(2022·天津河东·一模)疫情防控,人人有责,一方有难,八方支援,作为一名中华学子,我们虽不能像医护人员一样在一线战斗,但我们仍以自己的方式奉献一份爱心,因此学校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图∴和图∴.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数________和m 的值________; (2)求统计的捐款金额的平均数、众数和中位数. 【答案】(1)50,28(2)平均数是13.1,众数为10,中位数为12.5 【解析】 (1)95018%=,14100%28%50⨯= 故答案为:50,28 (2)观察条形统计图, ∴ 591016151420725413.150x ⨯+⨯+⨯+⨯+⨯==,∴ 这组数据的平均数是13.1. ∴ 在这组数据中,10出现了16次,出现的次数最多, ∴ 这组数据的众数为10.∴ 将这组数据按从小到大的顺序排列,其中处于中间的两个数分别是10,15, 有101512.52+=, ∴ 这组数据的中位数为12.5. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,求平均数、众数和中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(2022·河南濮阳·一模)某学校在学生中开展读书活动,学校为了解九年级学生每周平均课外阅读时间的情况,随机抽查了九年级部分同学,对其每周平均课外阅读时间进行统计,绘制了如下的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中的m 值为______;(2)求统计的这组数据的众数、中位数.(3)根据统计的样本数据,估计该校九年级400名学生中,每周平均课外阅读时间大于2h 的学生人数. 【答案】(1)25(2)众数:3h ,中位数:3h。

中考数学专题训练第16讲统计与概率(解析版)

中考数学专题训练第16讲统计与概率(解析版)

统计与概率易错点梳理易错点01 调查方式的选择错误全面调查是对考查对象的全体调查.要求对考查范围内所有个体进行一个不漏的逐个准确统计.而抽样调查则只是对总体中的部分个体进行调查.以样本来估计总体的情况。

易错点02 对各种统计图的意义理解错误条形图能显示每组中的具体数据.注意各个小组不相连.扇形图能显示部分在总体中所占的百分比.注意不能直接判断具体数据的大小.折线图能显示数据的变化趋势.也能得到具体数据的大小.直方图能显示数据的分布情况.能得到每组数据的多少.注意各个小组无间隔。

易错点03 求中位数忘记排序求一组数据的中位数必须将数据按照由小到大(或由大到小)的顺序排列.然后再取中间一个数或中间两个数的平均数就是这组数据的中位数。

易错点04 不能正确计算方差方差是一组数据中各数据与它们的平均数的差的平方的平均数.即:ns 12=[21)(x x -+22)(x x -+……+2)(x x n -]。

易错点05 混淆确定性事件和随机事件的概念在一定条件下.有些事件必然会发生.这样的事件称为必然事件.有些事件必然不会发生.这样的事件称为不可能事件.必然事件与不可能事件统称确定事件.在一定条件下.可能发生也可能不发生的事件称为随机事件。

易错点06 混淆频率与概率频率和概率是两个不同的概念.事件的概率是一个确定的常数.而频率是不确定的.当试验次数较少时.频率的大小摇摆不定.当试验次数增大时.频率的大小波动变小.并逐渐稳定在概率附近。

易错点梳理考向01 数据的收集与整理例题1:(2021·辽宁凌海·九年级期中)如图①所示.一张纸片上有一个不规则的图案(图中画图部分).小雅想了解该图案的面积是多少.她采取了以下的办法:用一个长为5m.宽为3m 的长方形.将不规则图案围起来.然后在适当位置随机地向长方形区域扔小球.并记录小球在不规则图案上的次数(球扔在界线上或长方形区域外不计入试验结果).她将若干次有效试验的结果绘制成了图②所示的折线统计图.由此她估计此不规则图案的面积大约为( )A .6m 2B .5m 2C .4m 2D .3m 2【答案】A【思路分析】首先假设不规则图案面积为x .根据几何概率知识求解不规则图案占长方形的面积大小.继而根据折线图用频率估计概率.综合以上列方程求解. 【解析】解:假设不规则图案面积为x m 2. 由已知得:长方形面积为53⨯=15m 2.根据几何概率公式小球落在不规则图案的概率为:15x. 当事件A 试验次数足够多.即样本足够大时.其频率可作为事件A 发生的概率估计值.故由折线图可知.小球落在不规则图案的概率大约为0.4. 综上有:15x=0.4. 解得x =6. 故选:A .例题分析【点拨】本题考查几何概率以及用频率估计概率.并在此基础上进行了题目创新.解题关键在于清晰理解题意.能从复杂的题目背景当中找到考点化繁为简.创新题目对基础知识要求极高.例题2:(2021·内蒙古呼伦贝尔·中考真题)下列说法正确的是()A.在小明.小红.小月三人中抽2人参加比赛.小刚被轴中是随机事件B.要了解学校2000学生的体质健康情况.随机抽取100名学生进行调查.在该调查中样本容量是100名学生C.预防“新冠病毒”期间.有关部门对某商店在售口罩的合格情况进行抽检.抽检了20包口罩.其中18包合格.该商店共进货100包.估计合格的口罩约有90包D.了解某班学生的身高情况适宜抽样调查【答案】C【思路分析】根据随机事件的定义、样本容量的定义、用样本的率计算总体中该项的数量、全面调查的特点依次判断即可得到答案.【解析】解:在小明.小红.小月三人中抽2人参加比赛.小刚被轴中是不可能事件.故A选项不正确.要了解学校2000学生的体质健康情况.随机抽取100名学生进行调查.在该调查中样本容量是100.故B选项错误.预防“新冠病毒”期间.有关部门对某商店在售口罩的合格情况进行抽检.抽检了20包口罩.其中18包合格.故该口罩的合格率为90%.该商店共进货100包.估计合格的口罩约有90包.故C选项正确.了解某班学生的身高情况适宜全面调查.故D选项错误.故选:C.【点拨】此题考查语句判断.正确理解随机事件的定义、样本容量的定义、用样本的率计算总体中该项的数量、全面调查的特点是解题的关键.考向02 数据分析例题3:(2021·云南·昆明市第三中学模拟预测)垃圾分类是对垃圾进行有效处置的一种科学管理方式.是对垃圾收集处置传统方式的改革.甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异.两个班成绩的平均数、中位数、方差如表所示.则下列说法正确的是()参加人数平均数中位数方差甲40 95 93 5.1乙40 95 95 4.6AB.甲班成绩优异的人数比乙班多C.甲.乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名【答案】D【思路分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【解析】A.乙班成绩的方差小于甲班成绩的方差.所以乙班成绩稳定.此选项错误.不符合题意.B.乙班成绩的中位数大于甲班.所以乙班成绩不低于95分的人数多于甲班.此选项错误.不符合题意.C.根据表中数据无法判断甲、乙两班成绩的众数.此选项错误.不符合题意.D.因为甲班共有40名同学.甲班的中位数是93分.所以小明得94分将排在甲班的前20名.此选项正确.符合题意.故选:D.【点拨】本题考查了平均数、中位数、方差及众数的概念.平均数、中位数及众数反映的是一组数据的平均趋势及水平.平均数与每个数据有关.方差反映的是一组数据的波动程度.在平均数相同的情况下.方差越小.说明数据的波动程度越小.也就是说这组数据更稳定.例题4:(2021·江苏洪泽·二模)实验中学选择10名青少年志愿者参加读书日活动.年龄如表所示:这10名志愿者年龄的众数和中位数分别是()年龄12 13 14 15人数 2 3 4 1【答案】C【思路分析】根据众数和中位数的意义求解.【解析】解:这10名志愿者年龄出现次数最多的是14.因此众数是14.将这10名志愿者年龄从小到大排列处在中间位置的两个数的平均数为13142=13.5.因此中位数是13.5.故选:C【点拨】本题考查众数和中位数的应用.熟练掌握众数和中位数的意义和计算方法是解题关键.考向03 概率例题5:(2021·云南省楚雄天人中学九年级期中)在一个不透明的纸箱中.共有15个蓝色、红色的玻璃球.它们除颜色外其他完全相同.小柯每次摸出一个球后放回.通过多次摸球试验后发现摸到蓝色球的频率稳定在20%.则纸箱中红色球很可能有()A.3个B.6个C.9个D.12个【答案】D【思路分析】根据利用频率估计概率得到摸到蓝色球的概率为20%.由此得到摸到红色球的概率=1-20%=80%.然后用80%乘以总球数即可得到红色球的个数.【解析】解:∵摸到蓝色球的频率稳定在20%.∴摸到红色球的概率=1-20%=80%.∵不透明的布袋中.有黄色、白色的玻璃球共有15个.∴纸箱中红球的个数有15×80%=12(个).故选:D.【点拨】本题考查了利用频率估计概率:大量重复实验时.事件发生的频率在某个固定位置左右摆动.并且摆动的幅度越来越小.根据这个频率稳定性定理.可以用频率的集中趋势来估计概率.这个固定的近似值就是这个事件的概率.例题6:(2021·福建省漳州第一中学九年级期中)我国古代有着辉煌的数学研究成果.其中《算经十书》是指汉、唐一千多年间的十部著名的数学著作.这些数学著作曾经是隋唐时代国子监算学科的教科书.十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》、《算经十书》标志着中国古代数学的高峰.《算经十书》这10部专著.有着十分丰富多彩的内容.是了解我国古代数学的重要文献.这10部专著中据说有6部成书于魏晋南北朝时期.其中《张丘建算经》、《夏侯阳算经》就成书于魏晋南北朝时期.某中学拟从《算经十书》专著中的魏晋南北朝时期的6部算经中任选2部作为“数学文化”进行推广学习.则所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为()A.13B.15C.115D.118【答案】C【思路分析】设六部成书于魏晋南北朝的算经分别用A、B、C、D、E、F表示.其中《张丘建算经》、《夏侯阳算经》分别用A、B表示,列树形图表示所有等可能性.根据概率公式即可求解.【解析】解:设六部成书于魏晋南北朝的算经分别用A、B、C、D、E、F表示.其中《张丘建算经》、《夏侯阳算经》分别用A、B表示.根据题意列树形图得由树形图得共有30种等可能性.其中两部专著恰好是A 、B 即《张丘建算经》、《夏侯阳算经》的有两种等可能性.∴所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为213015P ==. 故选:C【点拨】本题考查了列树形图求概率.根据题意分别用字母表示六种算经并正确列出树形图是解题关键.一、单选题1.在一个不透明的口袋中装有4个红球和若干个白球.他们除颜色外其他完全相同.通过多次摸球实验后发现.摸到红球的频率稳定在25%附近.则口袋中白球可能有( ) A .12个 B .14个 C .15个 D .16个【答案】A【解析】设白球有x 个.根据题意列出方程.4254100x =+. 解得x =12.经检验得x =12是原方程的解. 故选A .2.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)下列调查中.适合于采用普查方式的是( ) A .调查央视“五一晚会”的收视率 B .了解外地游客对兴城旅游景点的印象 C .了解一批新型节能灯的使用寿命 D .了解某航班上的乘客是否都持有“绿色健康码” 【答案】D【解析】A.调查央视“五一晚会”的收视率.适合抽样调查. B.了解外地游客对兴城旅游景点的印象.适合抽样调查. C.了解一批新型节能灯的使用寿命.适合抽样调查.微练习D.了解某航班上的乘客是否都持有“绿色健康码”.适合普查. 故选:D .3.(2021·江苏·连云港市新海实验中学二模)我校开展了“好书伴我成长”读书活动.为了解5月份九年级学生的读书情况.随机调查了九年级50名学生读书的册数.统计数据如下表所示.下列说法正确的是( )册数 0 1 2 3 4 人数 41216171A 【答案】B【解析】这组样本数据中.3出现了17次.出现的次数最多.∴这组数据的众数是3.将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是2.∴这组数据的中位数为2.观察表格.可知这组样本数据的平均数为: (0 × 4 + 1 × 12 + 2 × 16 + 3 × 17 + 4 ×1)÷50=9950. 这组数据的方差为:()()()()()22222140-1.98+121-1.98+162-1.98+173-1.98+4-1.9850⎡⎤⨯⨯⨯⨯⎣⎦ 2≠.故选:B .4.(2021·江苏新吴·二模)已知一组数据x 、y 、的平均数为3.方差为4.那么数据2x -.2y -.2z -的平均数和方差分别( )A .1.2B .1.4C .3.2D .3.4【答案】B【解析】由于数据x 、y 、z 的平均数为3.所以有x +y +z =9 则[]111(2)(2)(2)(6)31333x y z x y z -+-+-=++-=⨯= 由于数据x 、y 、z 的方差为4.即2221(3)(3)(3)43x y z ⎡⎤-+-+-=⎣⎦所以22222211(21)(21)(21)(3)(3)(3)433x y z x y z ⎡⎤⎡⎤--+--+--=-+-+-=⎣⎦⎣⎦即数据2x -.2y -.2z -的方差仍为4故数据2x -.2y -.2z -的平均数和方差分别为1和4 故选:B .5.(2021·黑龙江绥化·中考真题)近些年来.移动支付已成为人们的主要支付方式之一.某企业为了解员工某月,A B 两种移动支付方式的使用情况.从企业2000名员工中随机抽取了200人.发现样本中AB 、两种支付方式都不使用的有10人.样本中仅使用A 种支付方式和仅使用B 种支付方式的员工支付金额a (元)分布情况如下表: 支付金额a (元)01000a <≤ 10002000a <≤ 2000a >仅使用A 36人 18人 6人 仅使用B 20人28人2人①根据样本数据估计.企业2000名员工中.同时使用,A B 两种支付方式的为800人. ②本次调查抽取的样本容量为200人.③样本中仅使用A 种支付方式的员工.该月支付金额的中位数一定不超过1000元. ④样本中仅使用B 种支付方式的员工.该月支付金额的众数一定为1500元. 其中正确的是( ) A .①③ B .③④ C .①② D .②④【答案】A【解析】解:根据题目中的条件知:①从企业2000名员工中随机抽取了200人.同时使用,A B 两种支付方式的人为:20010(362018+28+6+2)=80--++(人).∴样本中同时使用,A B 两种支付方式的比例为:8022005=. ∴企业2000名员工中.同时使用,A B 两种支付方式的为:220008005⨯=(人).故①正确. ②本次调查抽取的样本容量为200.故②错误.③样本中仅使用A 种支付方式的员工共有:60人.其中支付金额在01000a <≤之间的有.36人.超过了仅使用A 种支付方式的员工数的一半.由中位数的定义知:中位数一定不超过1000元.故③是正确.④样本中仅使用B 种支付方式的员工.从表中知月支付金额在10002000a <≤之间的最多.但不能判断众数一定为1500元.故④错误.综上:①③正确.故选:A .6.为考察两名实习工人的工作情况.质检部将他们工作第一周每天生产合格产品的个数整理成甲.乙两组数据.如下表:甲 2 6 7 7 8 乙23488关于以上数据.下列说法正确的有()个.①甲、乙的众数相同.②甲、乙的中位数相同.③甲的平均数小于乙的平均数.④甲的方差小于乙的方差.A.1个B.2个C.3个D.4个【答案】A【解析】甲的众数为7.乙的众数为8.故①错误.甲的中位数为7.乙的中位数为4.故②错误.甲的平均数为15×(2+6+7+7+8)=6.乙的平均数为15×(2+3+4+8+8)=5.故③错误.甲的方差为15×[(2﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2+(8﹣6)2]=4.4.乙的方差为15×[(2﹣5)2+(3﹣5)2+(4﹣5)2+(8﹣5)2+(8﹣5)2]=6.4.甲的方差小于乙的方差.故④正确.故选:A.7.(2021·黑龙江松北·二模)两个不透明盒子里分别装有3个标有数字3.4.5的小球.它们除数字不同外其他均相同.甲、乙二人分别从两个盒子里摸球1次.二人摸到球上的数字之和为奇数的概率是()A.13B.23C.49D.59【答案】C【解析】解:画树状图如图:共有9种等可能的结果.甲、乙二人摸到球上的数字之和为奇数的结果有4种.∴甲、乙二人摸到球上的数字之和为奇数的概率为49.故选:C.8.有两把不同的锁和三把不同的钥匙.其中两把钥匙分别能打开这两把锁.第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁.一次打开锁的概率是()A.12B.13C.14D.23【答案】B【解析】解:列表得:锁1 锁2钥匙1 (锁1.钥匙1)(锁2.钥匙1)钥匙2 (锁1.钥匙2)(锁2.钥匙2)钥匙3 (锁1.钥匙3)(锁2.钥匙3)由表可知.所有等可能的情况有6种.其中随机取出一把钥匙开任意一把锁.一次打开锁的2种.则P(一次打开锁)=21=63.故选:B.9.(2021·山东南区·二模)一个口袋中有3个黑球和若干个白球.在不允许将球倒出来数的前提下.小明为估计其中的白球数.采用了如下的方法:从口袋中随机摸出一球.记下颜色.然后把它放回口袋中.摇匀后再随机摸出一球.记下颜色.再放回.不断重复上述过程.小明共摸了100次.其中80次摸到白球.根据上述数据.小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【答案】C【解析】解:由题可得:31008080-÷=12(个).故答案为:12.10.广东省2021年的高考采用“312++”模式:“3”是指语文、数学、外语3科为必选科目.“1”是指在物理、历史2科中任选1科.“2”是指在化学、生物、思想政治、地理4科中任选2科.若小红在“1”中选择了历史.则她在“2”中选地理、生物的概率是()A.16B.13C.14D.12【答案】A【解析】解:用树状图表示所有可能出现的结果如下:共有12种等可能的结果数.其中选中“地理”“生物”的有2种.则P(地理、生物)=2÷12=16.故选A.二、填空题11.(2021·北京丰台·二模)某单位有10000名职工.想通过验血的方式筛查出某种病毒的携带者.如果对每个人的血样逐一化验.需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组.然后将各组5个人的血样混合再化验.如果混合血样呈阴性.说明这5个人全部阴性.如果混合血样呈阳性.说明其中至少有一个人呈阳性.就需要对这组的每个人再分别化验一次.假设携带该病毒的人数占0.05%.回答下列问题:(1)按照这种化验方法是否能减少化验次数________(填“是”或“否”).(2)按照这种化验方法至多需要________次化验.就能筛查出这10000名职工中该种病毒的携带者.【答案】是2025【解析】解:(1)第一轮化验10000名÷5=2000次<10000次故按照这种化验方法是能减少化验次数故答案为:是(2)按照这种方法需要两轮化验.第一轮化验2000次携带该病毒的人数=10000×0.05%=5人最多有5组需要进行第二轮化验一一化验需要5×5=25次化验一共进行2000+25=2025次化验.按照这种化验方法至多需要2025次化验.就能筛查出这10000名职工中该种病毒的携带者.故答案为:2025.12.某校组织了一次初三科技小制作比赛.有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%.其它几个班的参赛作品情况及获奖情况绘制在图1和图2两幅尚不完整的统计图中.则获奖率最高的班级是________.【答案】C班【解析】解:由统计图可得.A 班的获奖率为:1410035%100%()40%÷⨯⨯=.B 班的获奖率为:()11100135%20[]%20%100%44%÷⨯---⨯=.C 班的获奖率为50%.D 班的获奖率为:()810020%100%40%÷⨯⨯=.由上可得.获奖率最高的班级是C 班.故答案为:C 班. 13.(2021·内蒙古赛罕·二模)下列命题错误的序号是_________.①若1∠和2∠是同位角.则12∠=∠.②如果一个三角形的两条边和一个角与另一个三角形的两条边和一个角相等.那么这两个三角形全等.1x -.④某班投票选班长.小丽15票.小伟20票.小刚18票.这组数据的众数是20.⑤为排查肺炎疑似病人同机乘客的健康情况.应采用全面调查的方式进行. 【答案】①②③④【解析】解:①两直线平行时.同位角相等.不是所有互为同位角的两个角都相等.故此命题错误.②根据三角形全等的判定定理可知.当一个三角形的两个边和其夹角与另一个三角形的对应边角相等时.两个三角形才会全等.故此命题错误.③一般地.(0)a a ≥的式子叫作二次根式.需要10x -≥这个条件存在.题中没有.故此命题错误.④一组数据中出现次数最多的那个数据叫作这组数据的众数.故此命题错误.⑤排查所有同机乘客需要进行全面调查.故此命题正确.14.(2021·贵州铜仁·中考真题)若甲、乙两人射击比赛的成绩(单位:环)如下: 甲:6.7.8.9.10. 乙:7.8.8.8.9.则甲、乙两人射击成绩比较稳定的是______________(填甲或乙). 【答案】乙【解析】解:甲乙二人的平均成绩分别为:678910==85x ++++甲.78889==85x ++++乙.∴二人的方差分别为:()()()()()22222268788898108==25S -+-+-+-+-甲()()()()()22222278888888982==55S -+-+-+-+-乙. ∵22S S 乙甲>.乙的成绩比较稳定.故答案为:乙15.(2021·四川·成都绵实外国语学校九年级期中)小明为研究函数y =2x的图象.在﹣2、﹣1、1中任取一个数为横坐标.在﹣2、﹣1、2中任取一个数为纵坐标组成点P 的坐标.点P 在函数y =2x的图象上的概率是___.【答案】13【解析】解:列表如下:2-1-22- ()2,2--()2,1-- ()2,2-1-()1,2--()1,1--1,21()1,2-()1,1-1,2其中点P 在函数2y x=上的有()2,1--.()1,2--.1,2共3种. 所有点P 在函数y =2x 的图象上的概率是31=.93故答案为:1316.(2021·四川·成都嘉祥外国语学校九年级期中)有四张正面分别标有数字﹣4.﹣3.﹣2.1.的不透明卡片.它们除数字不同外其他全部相同.现将它们背面朝上.洗匀后从中抽取一张.将该卡片上的数字记为a .放回后洗匀.再从中抽取一张.将该卡片上的数字记为b .则a .b 使得二次函数y =x 2﹣(a +5)x +3当x ≤1时y 随x 的增大而减小.且一元二次方程(a +2)x 2+bx +1=0有解的概率为 ___. 【答案】516【解析】解:∵二次函数y =x 2﹣(a +5)x +3.二次项系数为1.大于0. ∴抛物线开口向上.对称轴为直线52a x +=. ∵要使得当x ≤1时.y 随x 的增大而减小. ∴应满足512a +≥. 解得:3a ≥-.∵一元二次方程(a +2)x 2+bx +1=0有解.∴20a +≠且()2420b a ∆=-+≥. ∴2a ≠-且()2420b a ∆=-+≥.∴由题意可知.a 仅能取-3或1.当3a =-时.()224324b b ∆=-⨯-+=+.∴b 取﹣4.﹣3.﹣2.1时.均满足0∆≥.当1a =时.()2241212b b ∆=-⨯+=-.∴仅有b 取﹣4时.满足0∆≥.综上分析.当3a =-时.b 取﹣4.﹣3.﹣2.1.满足题意.当1a =时.b 取﹣4满足题意.共有5种情况满足题意.∵由题意可得.两次抽取共有16种情况发生. ∴两次抽取后满足题意的概率为516P =. 故答案为:516. 三、解答题17.某校为了解本校初中学生体能情况.随机抽取部分学生进行了一次测试.并根据标准按测试成绩分成A .B .C .D 四个等级.绘制出以下两幅不完整的统计图.请根据图中信㿝解答下列问题:(1)本次抽取㐱加则试的学生为 人.扇形统计图中A 等级所对的圆心角是 度. (2)请补全条形统计图.(3)若该校初中学生有1200人.请估计该校学生体能情况成绩为C 等级的有多少人数? 【答案】(1)50.108.(2)画图见解析.(3)240人 【解析】解:(1)由B 类22人.占比44%.可得: 总人数为:2244%=50人.扇形统计图中A 等级所对的圆心角是30%360=108, 故答案为:50.108(2)C 类的人数有:501522310---=人. 补全图形如下:(3)该校初中学生有1200人.则该校学生体能情况成绩为C 等级的有:10120024050⨯=人. 答:该校初中学生有1200人.则该校学生体能情况成绩为C 等级的有240人. 18.甲、乙两名队员参加射击训练.每人射击10次.成绩分别如下:平均成绩 中位数 众数 方差甲 a 7 7 1.2 乙 7b8c根据以上信息.(1)填空:a = .b = .c = .(2)从平均数和中位数的角度来比较.成绩较好的是 .(填“甲”或“乙”) (3)若需从甲、乙两名队员中选择一人参加比赛.你认为选谁更加合适?请说明理由. 【答案】(1)7.7.5.4.2.(2)乙.(3)选择乙参加比赛.理由见解析 【解析】解:(1)甲的平均成绩为()()1115264728195122816971010a =⨯+⨯+⨯+⨯+⨯=++++= 乙的成绩从低到高排列为:3.4.6.7.7.8.8.8.9.10. 所以中位数()1787.52b =+= ()()()()()()()222222213747672773879710710c ⎡⎤=-+-+-+-+-+-+-⎣⎦=[]11691034910++++++ =4.2故答案为:7.7.5.4.2.(2)由表中数据可知.甲、乙平均成绩相等.乙的中位数7.5大于甲的中位数7.说明乙的成绩好于甲. 故答案为:乙.(3)选择乙参加比赛.理由:从平均数上看.甲、乙平均成绩相等.总分相等.从中位数上看乙的中位数和众数都大于甲.说明乙的成绩好于甲. 从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定. 从众数看乙的众数是8.甲的众数是7.说明乙成绩要好些. 从折线图看.乙开始时发挥不好.后来乙的成绩呈上升趋势. 故应选乙队员参赛.19.(2021·四川达州·九年级期中)达州市红色旅游景点众多.例如罗江镇张爱萍故居.宣汉县红军公园、王维舟纪念馆.万源战史陈列馆等等.为了解初三学生对达州历史文化的了解程度.随机抽取了男、女各m 名学生进行问卷测试.问卷共30道选择题.现将得分情况统计.并绘制了如图不完整的统计图(数据分组为A 组:18x <.B 组:1822x ≤<.C 组:2226x ≤<.D 组:2630x ≤≤.x 表示问卷测试的分数).其中男生得分处于C 组的有14人.男生C 组得分情况分别为:22.22.22.22.22.23.23.23.24.24.24.25.25.25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别 平均数 中位数 众数 男 20 n22 女202320(1)求m .n 的值.(2)已知初三年级总人数为1800人.请估计参加问卷测试.成绩处于C 组的人数. (3)据了解男生中有两名同学得满分.女生中分数最高的两名同学分别是30分和29分.现从这四名同学中随机抽取两名参加全校总决赛.用树状图或列表的方法求恰好抽到两名男生的概率是多少?【答案】(1)50m =.25n =.见解析.(2)522人.(3)见解析.16【解析】解:(1)由题意得:1428%50m =÷=(人).男生成绩处在A 组的百分比=1-24%-46%-28%=2%.∴男生的中位数成绩为第25名与第26名成绩的平均成绩 ∵()502%24%12⨯+=(人). ∴男生中位数()2525225n =+÷=. 女生C 组人数502132015=---=(人). 条形图如图所示:(2)14151800522100+⨯=(人). 答:估计成绩处于C 组的人数约为522人. (3)如图所以恰好抽到两名男生的概率为:21126=. 20.现有两根长度分别为3cm 和4cm 的线段.同时.在一旁另有8根长度不等的线段.这些线段的长度分别与相应的卡片正面上标注的线段长一致.这8张卡片的背面完全相同.卡片正面上分别标注了2cm 3cm 3cm 4cm 4cm 5cm 6cm 6cm 、、、、、、、.把这8张卡片背面朝上.从中随机抽取一张卡片.以卡片上标注的数据对应的线段作为第三条线段的长度.回答以下问题:(1)“从中抽取的长度能够与3cm 和4cm 组成直角三角形”的概率为________. (2)求抽出的卡片上标注的数据对应的线段能够与3cm 和4cm 的线段组成等腰三角形的概率.(3)小红和小艺打算以取出一张卡片上标注的数据对应的线段能够与3cm 和4cm 组成三角形的周长的奇偶性作为游戏规则.若三角形周长为奇数.则小红胜.若三角形周长为偶数.则小艺胜.请问游戏公平吗?若公平.请说明理由.若不公平.请重新设计一个公平的游戏规则.【答案】(1)18.(2)12.(3)不公平.游戏规则改为:等腰三角形的周长为偶数.则小艺胜.等腰三角形周长为奇数.则小红胜【解析】解:(1)∵该三条线段组成的是直角三角形. ∴2234=5+22437-. ∴符合的卡片有标注5cm 的一张.∴“从中抽取的长度能够与3cm 和4cm 组成直角三角形”的概率为18.故答案为:18.(2)能构成等腰三角形的线段有3cm .3 cm .4 cm .4 cm 共四条.∴抽出的卡片上标注的数据对应的线段能够与3cm 和4cm 的线段组成等腰三角形的概率为4182=. (3)∵3+4=7.∴当抽到的线段为奇数即抽到3cm 、3cm 或5cm 时.三角形的周长为偶数.此时小艺胜的概率为38.当抽到的线段为偶数即抽到2cm 、4cm 、4cm 、6cm 或6cm 时.三角形的周长为奇数.此时小红胜的概率为58. ∴游戏不公平.游戏规则改为:等腰三角形的周长为偶数.则小艺胜.等腰三角形周长为奇数.则小红胜. 21.(2021·浙江·宁波市镇海蛟川书院九年级期中)A 、B 两人去九龙湖风景区游玩.已知每天某一时段开往风景区有三辆舒适程度不同的车.开过来的顺序也不确定.两人采取了。

【2019中考数学真题+分类汇编】专题16统计与概率(第01期)(解析版)【2019数学中考真题分类汇编系列】

【2019中考数学真题+分类汇编】专题16统计与概率(第01期)(解析版)【2019数学中考真题分类汇编系列】

专题16 统计与概率1.(2019•河北)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【答案】D【解析】由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录,④整理借阅图书记录并绘制频数分布表,③绘制扇形图来表示各个种类所占的百分比,①从扇形图中分析出最受学生欢迎的种类,故选D.2.(2019•江西)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】A.扇形统计图能反映各部分在总体中所占的百分比,此选项说法正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为1–40%=60%,超过50%,此选项说法正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项说法错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1–40%–10%–20%)=108°,此选项说法正确;故选C.【名师点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.3.(2019•安徽)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为A.60 B.50 C.40 D.15【答案】C【解析】由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选C.【名师点睛】本题主要考查众数,熟练掌握众数的定义是解题的关键.4.(2019•新疆)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定【答案】B【解析】由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好.故选B.5.(2019•福建)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【答案】D【解析】A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选D.【名师点睛】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6.(2019•宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.1【答案】B【解析】由表格可得,30名学生平均每天阅读时间的中位数是:0.90.92=0.9,30名学生平均每天阅读时间的众数是0.7,故选B.【名师点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.7.(2019•河南)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是A.1.95元B.2.15元C.2.25元D.2.75元【答案】C【解析】这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选C.【名师点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选C.【名师点睛】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.9.(2019•甘肃)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【答案】A【解析】A、由表格信息可得甲、乙两班的平均水平相同;A选项正确;B、由表格信息无法得出甲、乙两班竞赛成绩的众数相同;B选项不正确;C、由表格信息可以得出乙班的成绩比甲班的成绩稳定;C选项不正确;D、由表格信息可以得出甲班中位数小于乙班的中位数,所以乙班成绩优异的人数比甲班多,D选项不正确;故选A.【名师点睛】本题考查了平均数,众数,中位数,方差;正确的读懂题目中所给出的信息,理解各个统计量的意义是解题的关键.10.(2019•广西)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是A.13B.23C.19D.29【答案】A【解析】图书馆,博物馆,科技馆分别记为A、B、C,画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率=39=13.故选A.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11.(2019•广西)下列事件为必然事件的是A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【答案】B【解析】∵A,C,D选项中的事件均为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选B.【名师点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.(2019•海南)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是A.12B.34C.112D.512【答案】D【解析】∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P=2560=512,故选D.【名师点睛】本题考查了概率,熟练掌握概率公式是解题的关键.13.(2019•宁夏)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为__________小时.【答案】1.15【解析】由图可知,该班一共有学生:8+16+12+4=40(人),该班学生这天用于体育锻炼的平均时间为:(0.5×8+1×16+1.5×12+2×4)÷40=1.15(小时).故答案为:1.15.【名师点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了加权平均数.14.(2019•山西)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是__________.【答案】扇形统计图【解析】要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图.【名师点睛】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.15.(2019•广西)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是__________.(填“甲”或“乙”)【答案】甲【解析】甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为:甲.【名师点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n [(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【名师点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17.(2019•河南)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70;72;74;75;76;76;77;77;77;78;79c.七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人;(2)表中m的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【答案】(1)23;(2)77.5;【解析】(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m=77782+=77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×515850++=224(人).【名师点睛】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.18.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【答案】(1)“1台机器在三年使用期内维修次数不大于10”的概率为0.6.(2)购买1台该机器的同时应一次性额外购10次维修服务更合适.【解析】(1)“1台机器在三年使用期内维修次数不大于10”的概率=60100=0.6.(2)购买10次时,此时这100台机器维修费用的平均数y1=1100(24000×10+24500×20+25000×30+30000×30+35000×10)=27300;购买11次时,此时这100台机器维修费用的平均数y2=1100(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.19.(2019•江西)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.【答案】(1)13.(2)树状图见解析,八(1)班和八(2)班抽中不同歌曲的概率为23.【解析】(1)因为有A,B,C共3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是13;故答案为:13.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率为69=23.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(2019•河北)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.【答案】(1)这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;②乙组两次都拿到8元球的概率为12.【解析】(1)∵P(一次拿到8元球)=12,∴8元球的个数为4×12=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为882=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为12.【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.。

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)知识点总结1. 事件:①确定事件:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件。

②随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

2. 事件的可能性(概率)大小:事件的可能性大小用概率来表示。

表示为()事件P 。

必然事件的概率为1;不可能事件的概率为0;随机事件的概率为10<<P 。

3. 概率的定义与计算公式:①概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为()A P =p②概率公式:随机事件A 的概率()所有可能出现的结果数随机事件出现的次数=A P 。

4. 几何概率:在几何中概率的求解皆用部分面积比总面积,或部分长度比总长度,或部分角度比整个大角角度。

专项练习题1.(2022•巴中)下列说法正确的是( )A .4是无理数B .明天巴中城区下雨是必然事件C .正五边形的每个内角是108°D .相似三角形的面积比等于相似比【分析】根据二次根式的化简可得=2,随机事件,正五边形每个内角是108°,相似三角形的性质,逐一判断即可解得.【解答】解:A.∵=2,∴是有理数,故A不符合题意;B.明天巴中城区下雨是随机事件,故B不符合题意;C.正五边形的每个内角是108°,故C符合题意;D.相似三角形的面积比等于相似比的平方,故D不符合题意;故选:C.2.(2022•宁夏)下列事件为确定事件的有()(1)打开电视正在播动画片(2)长、宽为m,n的矩形面积是m n(3)掷一枚质地均匀的硬币,正面朝上(4)π是无理数A.1个B.2个C.3个D.4个【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:(1)打开电视正在播动画片,是随机事件,不合题意;(2)长、宽为m,n的矩形面积是mn,是确定事件,符合题意;(3)掷一枚质地均匀的硬币,正面朝上,是随机事件,不合题意;(4)π是无理数,是确定事件,符合题意;故选:B.3.(2022•辽宁)下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球【分析】根据随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、射击运动员射击一次,命中靶心,是随机事件,故A不符合题意;B、掷一次骰子,向上一面的点数是6,是随机事件,故B不符合题意;C、任意买一张电影票,座位号是2的倍数,是随机事件,故C不符合题意;D、从一个只装有红球的盒子里摸出一个球是红球,是必然事件,故D符合题意;故选:D.4.(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.5.(2022•武汉)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【分析】根据随机事件,必然事件,不可能事件的定义,即可判断.【解答】解:彩民李大叔购买1张彩票,中奖.这个事件是随机事件,故选:D.6.(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同【分析】根据概率公式求出小星抽到各个数字的概率,然后进行比较,即可得出答案.【解答】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是,∴小星抽到每个数的可能性相同;故选:D.7.(2022•襄阳)下列说法正确的是()A.自然现象中,“太阳东方升起”是必然事件B.成语“水中捞月”所描述的事件,是随机事件C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D .若抽奖活动的中奖概率为501,则抽奖50次必中奖1次 【分析】根据概率的意义,概率公式,随机事件,必然事件,不可能事件的特点,即可解答.【解答】解:A 、自然现象中,“太阳东方升起”是必然事件,故A 符合题意; B 、成语“水中捞月”所描述的事件,是不可能事件,故B 不符合题意;C 、襄阳明天降雨的概率为0.6”,表示襄阳明天降雨的可能性是60%,故C 不符合题意;D 、若抽奖活动的中奖概率为,则抽奖50次不一定中奖1次,故D 不符合题意;故选:A .8.(2022•长沙)下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次【分析】根据概率的意义,全面调查与抽样调查,条形统计图,随机事件,逐一判断即可解答.【解答】解:A 、调查某班45名学生的身高情况宜采用全面调查,故A 符合题意; B 、“太阳东升西落”是必然事件,故B 不符合题意;C 、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故C 不符合题意;D 、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数可能是13次,故D 不符合题意;故选:A .9.(2022•东营)如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A .32B .21C .31D .61 【分析】根据轴对称图形的概念、概率公式计算即可.【解答】解:如图,当涂黑1或2或3或4区域时,所有黑色方块构成的图形是轴对称图形,则P (是轴对称图形)==,故选:A .10.(2022•丹东)四张不透明的卡片,正面标有数字分别是﹣2,3,﹣10,6,除正面数字不同外,其余都相同,将它们背面朝上洗匀后放在桌面上,从中随机抽取一张卡片,则这张卡片正面的数字是﹣10的概率是( )A .41B .21C .43D .1【分析】用﹣10的个数除以总数即可求得概率.【解答】解:由题意可知,共有4张标有数字﹣2,3,﹣10,6的卡片,摸到每一张的可能性是均等的,其中为﹣10的有1种,所以随机抽取一张,这张卡片正面的数字是﹣10的概率是,故选:A .11.(2022•益阳)在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A ,B ,C ,D ,E ,F ,考生从中随机抽取一道试题,则某个考生抽到试题A 的概率为( )A .32B .41C .61D .241 【分析】根据抽到试题A 的概率=试题A 出现的结果数÷所有可能出现的结果数即可得出答案.【解答】解:总共有24道题,试题A 共有4道,P (抽到试题A )==,故选:C . 12.(2022•兰州)无色酚酞溶液是一种常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( )A .51B .52C .53D .54 【分析】总共5种溶液,其中碱性溶液有2种,再根据概率公式求解即可.【解答】解:∵总共5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色的概率是,故选:B .13.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )A .红球B .黄球C .白球D .蓝球【分析】根据概率的求法,因为红球的个数最多,所以摸到红球的概率最大.【解答】解:在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,因为红球的个数最多,所以摸到红球的概率最大,摸到红球的概率是:, 故选:A .14.(2022•百色)篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是( )A .1B .21C .41D .61 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:抛硬币有两种结果:正面向上、反面向上,则正面向上的概率为.故选:B .15.(2022•呼和浩特)不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a b +B .a bC .b a a +D .ba 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是.故选:A . 16.(2022•齐齐哈尔)在单词statistics (统计学)中任意选择一个字母,字母为“s ”的概率是( )A .101B .51C .103D .52 【分析】根据题意,可以写出任意选择一个字母的所有可能性和选择的字母是s 的可能性,从而可以求出相应的概率.【解答】解:在单词statistics (统计学)中任意选择一个字母一共有10种可能性,其中字母为“s ”的可能性有3种,∴任意选择一个字母,字母为“s ”的概率是, 故选:C .17.(2022•镇江)从2021、2022、2023、2024、2025这五个数中任意抽取3个数.抽到中位数是2022的3个数的概率等于 .【分析】列举得出共有10种等可能情况,其中中位数是2022有3种情况,再由概率公式求解即可.【解答】解:从2021、2022、2023、2024、2025这五个数中任意抽取3个数为:2021、2022、2023,2021、2022、2024,2021、2022、2025,2021、2023、2024,2021、2023、2025,2021、2024、2025,2022、2023、2024,2022、2023、2025,2022、2024、2025,2023、2024、2025,共有10种等可能情况,其中中位数是2022有3种情况,∴抽到中位数是2022的3个数的概率为,故答案为:.18.(2022•阜新)如图,是由12个全等的等边三角形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .41B .43C .32D .21 【分析】先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,再根据几何概率的求法即可得出答案.【解答】解:先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,则这个点取在阴影部分的概率是=.故选:D .19.(2022•徐州)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .41B .31C .21D .33 【分析】如图,将整个图形分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,设每个小三角形的面积为a ,则阴影的面积为6a ,正六边形的面积为18a ,∴将一枚飞镖任意投掷到镖盘上,飞镖落在阴影区域的概率为=,故选:B .20.(2022•朝阳)如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .83B .21C .85D .1【分析】根据阴影部分的面积所占比例得出概率即可.【解答】解:由图知,阴影部分的面积占图案面积的,即这个点取在阴影部分的概率是,故选:A .21.(2022•通辽)如图,正方形ABCD 及其内切圆O ,随机地往正方形内投一粒米,落在阴影部分的概率是( )A .4πB .1﹣4πC .8πD .1﹣8π 【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.22.(2022•黔东南州)如图,已知正六边形ABCDEF内接于半径为r的⊙O,随机地往⊙O 内投一粒米,落在正六边形内的概率为()A.π233B.π23C.π43D.以上答案都不对【分析】求出正六边形的面积占圆面积的几分之几即可.【解答】解:圆的面积为πr2,正六边形ABCDEF的面积为r×r×6=r2,所以正六边形的面积占圆面积的=,故选:A.23.(2022•苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .12πB .24πC .6010πD .605π 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为5×6=30,其中阴影部分面积为=, ∴飞镖落在阴影部分的概率是=,故选:A . 24.(2022•成都)如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .【分析】作OD ⊥CD ,OB ⊥AB ,设⊙O 的半径为r ,根据⊙O 是小正方形的外接圆,是大正方形的内切圆,可得OB =OC =r ,△AOB 、△COD 是等腰直角三角形,即可得AE =2r ,CF =r ,从而求出答案.【解答】解:作OD ⊥CD ,OB ⊥AB ,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.。

2019年中考数学总复习单元测试试题7 统计与概率(含答案)

2019年中考数学总复习单元测试试题7 统计与概率(含答案)

统计与概率 单元测试题一、单项选择题(共10小题,每小题5分,满分50分)1.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( ) A.B.C.D.2.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:关于这组文化程度的人数数据,以下说法正确的是 ( ) A.众数是20 B.中位数是17 C.平均数是12 D.方差是263.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是( )A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差4.如图,将一块菱形ABCD 硬纸片固定后进行投针训练.已知纸片上AE ⊥BC 于点E,CF ⊥AD 于点F,sin D=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是( ) A. B. C. D.5.某学校小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A.袋中装有大小和质地都相同的3个红球和2个黄球,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过96.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球7.一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是( )A.3.8B.4C.3.6或3.8D.4.2或48.下列说法正确的是( )A.“打开电视机,正在播放《达州》新闻”是必然事件B.天气预报“明天降水概率50%”是指明天有一半的时间会下雨C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是=0.3,=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为79.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析该表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数≥150为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是( )A.①②B.②③C.①③D.①②③10.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表:对他们的训练成绩作如下分析,其中说法正确的是( ) A.他们训练成绩的平均数相同 B.他们训练成绩的中位数不同 C.他们训练成绩的众数不同D.他们训练成绩的方差不同二、填空题(共4小题,每小题5分,满分20分)11.下表记录了某种幼树在一定条件下移植成活情况:由此估计这种幼树在此条件下移植成活的概率约是 .(精确到0.1)12.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80 000名九年级学生中“综合素质”评价结果为“A”的学生约为 人.13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 .据此判断该游戏 .(填“公平”或“不公平”)14.下表为甲、乙两人比赛投篮球的记录,以命中率(投进球数与投球次数的比值)来比较投球成绩的好坏,得知他们的成绩一样好,下面有四个关于a,b的关系式:①a-b=5;②a+b=18;③a∶b=2∶1;④a∶18=2∶3.其中正确的是.(把所有正确结论的序号都选上)三、(题共2小题,每小题16分,满分32分)15.某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:(2)补全频数分布直方图:(3)根据频数分布表或频数分布直方图,分析数据的分布情况.16.一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、-2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.四、(本大题共2小题,每小题16分,满分32分)17.某校举行“汉字听写”比赛,每位学生听写汉字39个.比赛结束后随机抽查部分学生听写结果,图1,图2是根据抽查结果绘制的统计图的一部分.组听写正确的人根据以上信息解决下列问题:(1)本次共随机抽查了多少名学生?求出m,n的值并补全图2的条形统计图;(2)求出图1中∠α的度数;(3)该校共有3 000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.18. “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如下:请结合图表完成下列各题:(1)①求表中a的值;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组6名同学中,有4名男同学,现将这6名同学平均分成两组进行对抗赛,且4名男同学每组分两人,求其中小华和小强两名男同学能分在同一组的概率.五、(本题满分16分)19.在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,如图是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.答案ACBBD CDCDD11 0.912 16 00013 不公平14 ②③④15(1)补充频数分布表如下:(2)补全频数分布直方图,如图:(3)本题答案不唯一,如:分布在17≤x<22之间的温度数据最多. 16(1)画树状图如下:点A的坐标有(1,-2),(1,3),(-2,1),(-2,3),(3,1),(3,-2).(2)点A落在第四象限的概率为.17(1)15÷15%=100(名);m=30%×100=30;n=20%×100=20.补图:(2)∠α=×360°=90°.(3)3000×=1500(名).18(1)①a=50-5-10-15-6=14.②图略.(2)不低于80的人数为14+6=20(人)故本次测试的优秀率为×100%=40%.(3)用字母A表示小华,字母B表示小强,另外两名男生用字母C、D表示,4名男同学中的两人分在第一小组(或第二小组)的情况如下:共有6种等可能的结果,其中使得小华与小强分在同一组的情况有两种:(A、B),(C、D),所以小华与小强分在同一组的概率为.19(1)由题意可知该班的总人数=15÷30%=50.(2)足球项目所占的人数=50×18%=9,所以其他项目所占人数=50-15-9-16=10,补全条形统计图如图所示.(4)画树状图如图,所以P(恰好选出一男一女)=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B 解析:由折线统计图,得与2015年相比,2016年我国 与东欧地区的贸易额有所增长,正确,故A不合题意;由折 线统计图,得2011-2016年,我国与东南亚地区的贸易额 2014年后有所下降,故逐年增长错误,故B符合题意;2011 -2016年,我国与东南亚地区的贸易额的平均值为(3632.5 +4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358, 故超过4200亿美元正确,故C不合题意; ∵4554.4÷1368.2≈3.33,∴2016年我国与东南亚地区的贸 易额比我国与东欧地区的贸易额的3倍还多正确,故D不符合 题意.
统计与概率—训练题
一、选择题(本大题共20个小题,每小题3分,共60分) 1.下列调查中,适合采用全面调查(普查)方式的是( D ) A.了解西宁电视台“教育在线”栏目的收视率 B.了解青海湖斑头雁种群数量 C.了解全国快递包裹产生包装垃圾的数量 D.了解某班同学“跳绳”的成绩
2.蜀山区三月中旬每天平均空气质量指数(AQI)分别为118,
16.根据下表中的信息解决问题:
数据 频数
37 38 39 40 41 845a1
13.将分别标有“孔”“孟”“之”“乡”汉字的四个小球 装在一个不透明的口袋中,这些球除汉字外无其他差别,每 次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出 一球,两次摸出的球上的汉字组成“孔孟”的概率是( B )
B 解析:画树状图如图.
共有12种等可能的结果,其中两次摸出的球上的汉字组成 “孔孟”的结果数为2,所以两次摸出的球上的汉字组成 “孔孟”的概率为
5.下列调查的样本选取方式,最具有代表性的是( B ) A.在青少年中调查年度最受欢迎的男歌手 B.了解班上学生的睡眠时间,调查班上学号为双号的学生的睡 眠时间 C.为了了解你所在学校的学生每天的上网时间,向八年级的同 学进行调查 D.对某市的出租司机进行体检,以此反映该市市民的健康状况
6.下列说法中,正确的是( D ) A.“打开电视,正在播放湖北新闻节目”是必然事件 B.某种彩票中奖概率为10%是指买十张一定有一张中奖 C.“明天降雨的概率是50%表示明天有半天都在降雨” D.“掷一次骰子,向活动情况,对部分学生参加 户外活动的时间进行抽样调查,结果如下表:
户外活动的时间(小时) 学生人数(人)
1236 2242
则关于“户外活动时间”这组数据的众数、中位数、平均
数分别是(A ) A.3,3,3 B.6,2,3 C.3,3,2 D.3,2,3
A 解析:众数是一组数据中出现次数最多的数据,所以众 数为3.∵共10人,∴中位数为第5和第6人的平均数.∴中位数 为(3+3)÷2=3.平均数为(1×2+2×2+3×4+6×2)÷10= 3.
96,60,82,56,69,86,112,108,94,为了描述这十天
空气质量的变化情况,最适合用的统计图是( A )
A.折线统计图
B.频数分布直方图
C.条形统计图
D.扇形统计图
3.为了解某市参加中考的45000名学生的身高情况,抽查 了其中1500名学生的身高进行统计分析.下面叙述正确的 是( B ) A.45000名学生是总体 B.1500名学生的身高是总体的一个样本 C.每名学生是总体的一个个体 D.以上调查是全面调查
7.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组 的频数分别为12,10,6,4,则第5组的频率是( B ) A.0.1 B.0.2 C.0.3 D.0.4
8.如图是根据我市某天七个整点时的气温绘制成的统计图,则 这七个整点时气温的中位数和平均数分别是( B ) A.30,28 B.26,26 C.31,30 D.26,22
10.某市4月份日平均气温统计图情况如图所示,则在日平均气 温这组数据中,众数和中位数分别是( C ) A.13,13 B.13,13.5 C.13,14 D.16,13
11.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个 小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( C )
C 解析:当涂黑②④⑤时,与图中阴影部分构成轴对 称图形,则构成轴对称图形的概率为
12.若数据10,9,a,12,9的平均数是10,则这组数据的方差 是( B ) A.1 B.1.2 C.0.9 D.1.4
B 解析:∵数据10,9,a,12,9的平均数是10.∴(10+ 9+a+12+9)÷5=10,解得a=10.∴这组数据的方差是 ×[(10-10)2+(9-10)2+(10-10)2+(12-10)2+(9- 10)2]=1.2.
9.某校260名学生参加植树活动,要求每人值4~7棵,活动结束 后调查了每名学生的植树量,并分为四种类型,A:4棵;B:5 棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统 计图,根据统计图提供的信息,可知该校植树量不少于6棵的学 生有( D ) A.26名 B.52名 C.78名 D.104名
4.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条 鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一 段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞 50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这 个鱼塘鱼的数量约为( A ) A.1250条 B.1750条 C.2500条 D.5000条
15.下面的统计图反映了我国与“一带一路”沿线部分地区的贸 易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图
(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》) 根据统计图提供的信息,下列推理不合理的是( B ) A.与2015年相比,2016年我国与东欧地区的贸易额有所增长 B.2011-2016年,我国与东南亚地区的贸易额逐年增长 C.2011-2016年,我国与东南亚地区的贸易额的平均值超过 4200亿美元 D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易 额的3倍还多
相关文档
最新文档