13.1.2线段垂直平分线的性质1

合集下载

13.1.2线段的垂直平分线的性质(1)+课件+2023—2024学年人教版数学八年级上册

13.1.2线段的垂直平分线的性质(1)+课件+2023—2024学年人教版数学八年级上册

3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,
连接AE.若BC=6,AC=5,则△ACE的周长为( B )
A.8
B.11
C.16
D.17
4.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,交AC于点 E,ED垂直平分AB于点D,求证:BE+DE=AC. 证明:∵∠ACB=90°, ∴AC⊥BC. 又ED⊥AB,BE平分∠ABC, ∴CE=DE. ∵ED垂直平分AB, ∴AE=BE. ∴BE+DE=AE+CE=AC.
(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长. 解:∵△ABC的周长为14 cm, ∴AB+BC+AC=14cm. ∵AC=6 cm, ∴AB+BC=8cm. ∵AB=EC,BD=DE, ∴DC=DE+EC=12(AB+BC)=12 ×8=4(cm).
7.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°, 则∠AOC=__7_8_°__.
长为( C ) A.25
B.22
C.19
D.18
4.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB, BC于点D,E,若∠CAE=∠B+18°,则∠B的度数为__2_4_°__.
5.【几何直观、推理能力】如图,在△ABC中,DM,EN分别垂直 平分AC和BC,分别交AB于M,N两点,DM与EN相交于点F. (1)若△CMN的周长为15 cm,求AB的长; 解:∵DM,EN分别垂直平分AC和BC, ∴AM=CM,BN=CN. ∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB. 又△CMN的周长为15 cm, ∴AB=15 cm.
∴AD=BC.
(2)点O在线段AB的垂直平分线上. ∠DOA=∠COB,

13.1.2线段垂直平分线性质(1)

13.1.2线段垂直平分线性质(1)

13.1.2线段的垂直平分线的性质(1)课型: 学习新知课 主备人: 彭骥春 审定人 姚小俐 执 教 者班级: 学习小组 学生姓名一、温故知新,情境激疑 (1)什么是轴对称图形?联系实际,你能举出一个轴对称图形的例子吗? (2)轴对称的概念是什么?轴对称和全等有什么关系?(3)说说轴对称和轴对称图形的区别和联系?线段的垂直平分线的定义:轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 类似地,轴对称图形的性质:轴对称图形的对称轴,是小组评价: 等级:(1) 在一张半透明的纸上画线段AB ,用量角器和刻度尺画线段AB 的垂直平分线CD ,在CD 上任取一点P ,连结PA 、PB,量一量PA 、PB 的长,你有什么发现?(2) 沿直线CD 对折,线段PA 、PB 重合吗?(3) 垂直平分线的性质:○1线段垂直平分线上的点与这条线段 的距离相等。

你能证明这个性质吗?(2)、在一张纸上线段AB 及点P 1、P 2,使P 1A=P 1B ,P 2A=P 2B,再画线段AB 的垂直平分线CD ,你又有什么发现?垂直平分线的性质:○2与一条线段两个端点距离相等的点,在这条线段的 上。

学习目标 1. 通过事例记住用直方图的几个重要步骤. 2. 理解组距、频数、频数分布的意义,能绘制频数分布图。

自主学习 课标要求 图解释数据中蕴涵的信息。

合作探究你能证明这个性质吗?1.下列说法正确的是( )A .如果图形甲和图形乙关于直线MN 对称,则图形甲是轴对称图形B .任何一个图形都有对称轴,有的图形不止一条对称轴 C .平面上两个大小、形状完全一样的图形一定关于某直线对称D .如果△ABC 和△EFG 成轴对称,那么它们的面积一定相等2.如图,正六边形ABCDEF 关于直线l 的轴对称图形是六边形A ′B ′C ′D ′E ′F ′,下列判断错误的是( )B .A .AB=A ′B ′ B .BC ∥B ′C ′ C .直线l ⊥BB ′D .∠A ′=120ɑ3、如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB•的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,求线段MN 的长。

课件1:13.1.2 线段的垂直平分线的性质

课件1:13.1.2 线段的垂直平分线的性质

C F
B
D
小结: 如果两个图形关于某条直线对称,那么对称轴
是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点
所连线段的垂直平分线。 线段垂直平分线上的点与这条线段两个端点 的距离相等。
与一条线段两个端点距离相等的点,在这条线段的
垂直平分线上。
第 十 二 章



1 2
AB
的长为半径作弧(为什么),两弧相
交于C、D两点。
D
3、 作直线CD。 CD就是所求的直线 思考:怎样得到图形的对称轴?
聚焦中考
• △ABC中,AB>AC ,∠A的平分线与BC的垂直平 分线DM相交于D,过D作DE ⊥AB于E,作 DF⊥AC于F,求证:BE=CF ABiblioteka EMC FB
D
A
EM
图形轴对称的性质
• 如果两个图形关于某条直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。
• 轴对称图形的对称轴,是任何一对对应点所连线 段的垂直平分线。
如图:
l垂直平分__A__A_’____, l垂直平分__B__B_’____, l垂直平分__C__C_’____.
--B------A------A---’------B--’-

第十
13.1.2 线段的垂直平分线
十三 一章章
的性质
三轴 角对
形称
— 1—
l
A.
. A1
B C
B1 C1
如经图过:线△段A中BC点和并△且A垂1B直1C于1关这于条直线线段l的对直称线,点,A1, B1, CC叫1C分1做与别这直是条线A线, l 有段B什,的么C垂的关直对系平称?分点线,(。线垂段直A平A分1,)BB1,

13-1-2 线段的垂直平分线的性质(解析版)

13-1-2 线段的垂直平分线的性质(解析版)

13.1.2线段的垂直平分线的性质瞄准目标,牢记要点夯实双基,稳中求进线段垂直平分线的性质题型一:线段垂直平分线的性质【例题1】(2019·常熟市第一中学八年级月考)如图,ABC中,边AB的中垂线分别交BC、AB于点D、E,3cmAE=,ABC的周长为17cm,则ADC的周长是__________cm.【答案】11【分析】由DE垂直平分AB可知BD=AD,AB=2AE,从而发现ADC的周长即为BC AC+的长,然后求解即可.【详解】解:∵DE垂直平分AB,∵BD=AD,AB=2AE,∵ABC的周长为17cm,∵17AB BC AC++=(cm),∵3cmAE=,∵26cmAB AE==,知识点管理归类探究1.线段的轴对称性:线段是轴对称图形,线段的垂直平分线是它的对称轴.2.线段垂直平分线的性质定理文字描述:线段垂直平分线上的点到线段两端的距离相等;几何语言:∵MN是线段AB的垂直平分线(或MN⊥AB于点D,且AD = BD),∴CA = CB.∵()17611cm BC AC +=-=ADC 的周长为AD DC AC BD DC AC BC AC ++=++=+,∵ADC 的周长是11cm , 故答案为:11.【点睛】本题考查了线段垂直平分线的性质,发现ADC 的周长即为BC AC +的长,是解题的关键. 变式训练【变式1-1】(2020·吴江区盛泽第二中学九年级月考)在ABC 中,9BC =,AB 的垂直平分线分别交AB ,AC 于点D ,E ,若BCE 的周长为17,则AC 的长为___________.【答案】8【分析】根据线段的垂直平分线的性质得到EA =EB ,根据∵BCE 的周长等于17,求出AC 的长. 【详解】解:∵DE 是AB 的垂直平分线, ∵EA =EB ,由题意得,BC +CE +BE =17,则BC +CE +AE =17,即BC +AC =17,又BC =9, ∵AC =8, 故答案为:8.【点睛】本题主要考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【变式1-2】(2021·扬州市梅岭中学九年级一模)如图,根据图中尺规作图痕迹,计算1∠的度数是( )A .22︒B .32︒C .34︒D .68︒【答案】A【分析】根据作图痕迹可知CD 是AB 的垂直平分线,再根据垂直平分线的性质,即可求解. 【详解】解:由尺规作图痕迹,可知:CD 是AB 的垂直平分线, ∵AC =BC ,∵∵1=∵ABC =90°-68°=22°, 故选A .【点睛】本题主要考查垂直平分线的性质和尺规作图,掌握垂直平分线上的点到线段的两个端点距离相等,是解题的关键.【变式1-3】(2021·九年级一模)如图,在ABC 中,34A ∠=︒分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧分别相交于点M 、N ,直线MN 与AC 相交于点E .过点C 作CD AB ⊥,垂足为点D ,CD 与BE 相交于点F .若BD CE =,则BFC ∠的度数为( )A .102︒B .107︒C .108︒D .124︒【答案】B【分析】连接DE ,如图,利用基本作图得到AE =CE ,则DE 为斜边AC 的中线,所以DE =AE =CE ,则∵ADE =∵A =34°,接着证明BD =DE ,所以∵DBE =∵DEB =17°,然后利用三角形外角性质计算∵BFC 的度数. 【详解】解:连接DE ,如图,由作法得MN 垂直平分AC , ∵AE =CE , ∵CD ∵AB ,∵∵CDB =∵CDE =90°, ∵DE 为斜边AC 的中线, ∵DE =AE =CE , ∵∵ADE =∵A =34°, ∵BD =CE , ∵BD =DE , ∵∵DBE =∵DEB=12∵ADE =17°, ∵∵BFC =∵DBF +∵BDF =17°+90°=107°. 故选:B . 【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).线段垂直平分线的判定线段垂直平分线的性质定理文字描述:到线段两端距离相等的点在线段的垂直平分线上; 几何语言:∵CA = CB ,∴点C 在线段AB 的垂直平分线上.题型二:线段垂直平分线的判定【例题2】(2020·吴江区青云实验中学八年级月考)如图,DE=DF ,,DE AB DF AC ⊥⊥,垂足分别是,E F 连接,EF EF 与AD 相交于点G .(1)求证:AD 是EF 的垂直平分线;(2)若3,5,2AB AC ED ===,求ABC 的面积. 【答案】(1)见解答;(2)8 【分析】(1)先证明Rt ∵ADE ∵Rt ∵ADF 得到AE =AF ,然后根据线段垂直平分线的判定定理得到结论; (2)先得到DF =DE =2,然后根据三角形面积公式计算. 【详解】解:(1)证明:∵DE ∵AB ,DF ∵AC , ∵AD =AD ,DE =DF , ∵Rt ∵ADE ∵Rt ∵ADF (HL ), ∵AE =AF ,∵AD 是EF 的垂直平分线; (2)∵DF =DE =2, ∵S ∵ABC =S ∵ABD +S ∵ACD =12×2×3+12×2×5 =8. 【点睛】本题考查了线段垂直平分线的判定,以及全等三角形的判定和性质,解题的关键是灵活运用所学定理证明三角形全等. 变式训练【变式2-1】(2020·吴江经济开发区实验初级中学八年级月考)三角形纸片ABC 上有一点P ,量得3cm PA =,3cm PB =,则点P 一定( )A .是边AB 的中点 B .在边AB 的中线上C .在边AB 的高上D .在边AB 的垂直平分线上【答案】D【分析】已知条件知道线段相等,利用线段垂直平分线上的点到线段两端的距离相等的逆定理可知点P 一定在边AB 的垂直平分线上. 【详解】解:∵PA =3cm ,PB =3cm ∵点P 一定在边AB 的垂直平分线上. 故选:D .【点睛】本题主要考查了线段垂直平分线的性质的逆定理;熟练掌握该知识是解答本题的关键.【变式2-2】(2020·南京市溧水区和凤初级中学八年级月考)已知:如图,AB =AC ,点D ,E 分别在AC ,AB 上,AD =AE ,BE ,CD 相交于点O . 求证:点O 在线段BC 的垂直平分线上.【答案】详见解析 【分析】由SAS 得出∵ADB∵∵AEC ,得出∵ABD=∵ACE ,再根据AAS 证明∵BOE∵∵COD ,得出OB=OC ,由等腰三角形的性质即可得出结论. 【详解】证明:在∵ADB 和∵AEC 中,AD AE A A AB AC ⎧=∠=∠=⎪⎨⎪⎩∵∵ADB ∵∵AEC (SAS ), ∵∵ABD =∵ACE . ∵AB =AC ,AD =AE ,∵BE =CD .在∵BOE 与∵COD 中,BOE COD BE CDOBE OCD ∠=∠=∠=∠⎧⎪⎨⎪⎩∵∵BOE ∵∵COD (AAS ), ∵OB =OC ,∵点O 在线段BC 的垂直平分线上.【点睛】本题主要考查了全等三角形的判定及性质,线段垂直平分线的判定.通过证明三角形全等得出OB=OC 是解题的关键.【变式2-3】(2019·盐城市·八年级期中)如图,AB =AC ,点D 、E 分别在AB 、AC 上,且AD =AE ,BE 、CD 交于点O ,求证:AO 垂直平分BC .【分析】由SAS 得出∵ADC∵∵AEB ,得出∵ACD=∵ABE ,再根据AAS 证明∵BOD∵∵COE ,得出OB=OC ,由线段垂直平分线的判定得出结论. 【详解】证明:在∵ADC 和∵AEB 中,AD AE A A AC AB =⎧⎪∠=∠⎨⎪=⎩, ∵∵ADC ∵∵AEB (SAS ), ∵∵ACD =∵ABE . ∵AB =AC ,AD =AE , ∵BD =CE .在∵BOD 与∵COE 中,00BD CE BOD COE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∵∵BOD ∵∵COE (AAS ), ∵OB =OC ,∵点O 在线段BC 的垂直平分线上.同理AB =AC ,点A 在线段BC 的垂直平分线上 ∵AO 垂直平分BC .【点睛】本题主要考查了全等三角形的判定及性质,线段垂直平分线的判定.通过证明两套三角形全等得出OB=OC 是解题的关键.线段垂直平分线的画法题型三:画线段垂直平分线【例题3】(2021·沙坪坝区·重庆八中九年级月考)如图,在钝角ABC 中,90BAC ∠>︒.(1)作AC 的垂直平分线,与边BC ,AC 分别交于点D 、E (要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,过点B 作BH AC ⊥交CA 的延长线于点H ,连接AD ,求证ADE HBC ∠=∠. 【答案】(1)见详解;(2)见详解【分析】(1)利用尺规作图法作AC 的垂直平分线即可;(2)在(1)的条件下,画出∵ABC的AC边上的高BH即可,进而可以写出∵ADE和∵HBC的大小关系.【详解】解:(1)如图,AC的垂直平分线DE即为所求;(2)在(1)的条件下,AC边上的高BH即为所求.∵ADE和∵HBC的大小关系为:相等.理由如下:∵DE是AC的垂直平分线,∵DA=DC,AE=EC,又∵DE=DE,∵∵ADE∵∵CDE(SSS),∵∵ADE=∵CDE,∵BH∵AC,DE∵AC,∵DE∵BH,∵∵CDE=∵HBC,∵∵ADE=∵HBC.【点睛】本题考查了作图−复杂作图、线段垂直平分线的性质,全等三角形的判定和性质,解决本题的关键是掌握线段垂直平分线的性质.变式训练【变式3-1】(2020·江阴市长寿中学八年级月考)如图,已知∵ABC(AC<AB),用尺规在AB上确定一点P,使PB+PC=AB,则符合要求的作图痕迹是()A.B.C.D.【答案】C【分析】利用PB+PC=AB,PB+PA=AB,得到PC=PA,根据线段垂直平分线的判定定理,得到点P在线段AC的垂直平分线上,由此可知选项C符合题意.【详解】解:∵点P在AB上,∵PB+PA=AB,又∵PB+PC=AB,∵PC=PA,∵点P在线段AC的垂直平分线上,且线段AC的垂直平分线交AB于点P.∵选项C符合要求,故选:C.【点睛】本题考查了线段垂直平分线的尺规作图,结合几何图形的基本性质把AB拆成PA与PB之和进而得到PC=PA是解决本题的关键.【变式3-2】(2020·连云港市·八年级期中)题目:用直尺和圆规过直线l外一点P做直线l的垂线.作法:(1)在直线l上任取两点A、B;(2)以点A为圆心,AP的长为半径画弧,以点B为圆心,BP的长为半径画弧,两弧相交于Q,如图所示;(3)作直线PQ则直线PQ就是直线l的垂线.请你对这种作法加以证明.【分析】根据线段的垂直平分线的判定证明即可.【详解】由作法得AP=AQ,BP=BQ,∵点A 在PQ 的垂直平分线上.点B 在PQ 的垂直平分线上,∵直线AB 垂直平分PQ,∵直线PQ 就是直线l 的垂线.【点睛】本题考查作图−复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】(2021·山西吕梁市·九年级二模)如图,在Rt∵ABC中,∵C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.∵作出AB 的垂直平分线MN ,MN 分别与AB 交于点D ,与BC 交于点E .∵过点B 作BF 垂直于AE ,垂足为F .(2)推理证明:求证AC =BF .【答案】(1)∵见解析;∵见解析;(2)见解析【分析】(1)∵根据垂直平分线的作法得出即可;∵延长AE ,再根据过直线外一点作已知直线的垂线的作法得出即可;(2)根据垂直平分线的性质得到AE =BE ,再加上90BFE ACE ∠=∠=︒,BEF AEC ∠=∠,证得:BEF AEC △≌△,根据全等的性质得AC BF =.【详解】(1)∵∵:如图直线MN ,BF 就是所要求的作的图形.(2)证明:∵MN 垂直平分AB ,∵AE =BE .∵BF ∵AE ,垂足为F ,∵90BFE ACE ∠=∠=︒.∵BEF AEC ∠=∠,∵BEF AEC △≌△.∵AC =BF .【点睛】此题主要考查了垂直平分线的作法、过直线外一点作已知直线的垂线的作法、垂直平分线性质以及全等三角形的应用,根据已知得出AE 与BE 的关系是解题关键.【变式3-4】(2021·贵州贵阳市·)如图,已知线段6AB =,利用尺规作AB 的垂直平分线,步骤如下:∵分别以点,A B为圆心,以b的长为半径作弧,两弧相交于点C和D.∵作直线CD.直线CD就是线段AB 的垂直平分线.则b的长可能是()A.1B.2C.3D.4【答案】D【分析】利用基本作图得到b>12AB,从而可对各选项进行判断.【详解】解:根据题意得:b>12 AB,即b>3,故选:D.【点睛】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).题型四:线段垂直平分线的实际应用【例题4】(2020·扬州市·八年级月考)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪的三个顶点的距离相等,凉亭的位置应选在()A.∵ABC三边的垂直平分线的交点B.∵ABC的三条中线的交点C.∵ABC三条角平分线的交点D.∵ABC三条高所在直线的交点【答案】A【分析】由于凉亭到草坪的三个顶点的距离相等,所以根据垂直平分线上任意一点,到线段两端点的距离相等,可知是∵ABC三条边垂直平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,∵凉亭选择∵ABC三边的垂直平分线的交点.故选:A.【点睛】本题主要考查的是线段的垂直平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.变式训练A B C三名同学站在一个三角形的三个顶点位置【变式4-1】(2020··八年级月考)在联欢晚会上,有、、上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在ABC的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点【答案】D【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】解:利用线段垂直平分线的性质得:要放在三边中垂线的交点上.故选:D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.【变式4-2】(2020·常州市第二十四中学八年级期中)如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∵A、∵B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处【答案】D【分析】根据线段垂直平分线的性质即可得出答案.【详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.【变式4-3】(2020·昆山高新区汉浦中学八年级月考)在元旦联欢会上,三个小朋友分别站在三角形的三个顶点的位置上,他们玩抢凳子游戏,要求在他们中间放一个木凳,谁先做到凳子上谁就获胜,为使游戏公平,则凳子应放在三角形的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点【答案】D【分析】根据三角形三边中垂线的交点到三个顶点的距离相等可得答案.【详解】解:∵三角形三边中垂线的交点到三个顶点的距离相等,∵为使游戏公平,凳子应放的最适当的位置在三角形的三边的垂直平分线的交点,故选:D.【点睛】本题主要考查游戏公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平,并熟练掌握三角形内心、外心、垂心和重心的性质.【变式4-4】(2020·磴口县诚仁中学八年级期中)如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.【答案】(1)见解析;(2)见解析.【分析】(1)作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB 最小.【详解】(1)根据垂直平分线的性质:垂直平分线上的点到线段两个端点的距离相等知,作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP是最小的.【点睛】本题考查了垂直平分线的性质,轴对称的性质和距离之和最短问题,熟悉性质及距离之和最短问题的作法是关键.链接中考【真题1】(2012·无锡市·中考真题)如图,梯形ABCD中,AD∵BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于()A.17B.18C.19D.20【答案】A【解析】梯形和线段垂直平分线的性质.【分析】由CD 的垂直平分线交BC 于E ,根据线段垂直平分线上的点到线段两端距离相等的性质,即可得DE=CE ,即可由已知AD=3,AB=5,BC=9求得四边形ABED 的周长为:AB+BC+AD=5+9+3=17.故选A .【真题2】(2010·无锡市·中考真题)如图,∵ABC 中,DE 垂直平分AC 交AB 于E ,∵A=30°,∵ACB=80°,则∵BCE=_____ °.【答案】50【分析】根据∵ABC 中DE 垂直平分AC ,可求出AE=CE ,再根据等腰三角形的性质求出∵ACE=∵A=30°,再根据∵ACB=80°即可解答.【详解】∵DE 垂直平分AC ,∵A=30°,∵AE=CE ,∵ACE=∵A=30°,∵∵ACB=80°,∵∵BCE=80°-30°=50°.故答案为:50.【真题3】(2019·泰州市·中考真题)如图,ABC ∆中,90C =∠,4AC =,8BC =.用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法)【分析】分别以A ,B 为圆心,大于12AB 为半径画弧,两弧交于点M ,N ,作直线MN 即可.. 【详解】如图直线MN 即为所求.【点睛】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【拓展1】(2020·南京市·中考真题)如图,线段AB、BC的垂直平分线1l、2l相交于点O,若1∠=39°,则AOC∠=__________.【答案】78︒【分析】如图,利用线段垂直平分线的性质结合三角形外角性质得到∵AOC=∵2+∵3=2(∵A+∵C),再利用垂直的定义结合三角形外角性质得到∵AOG =51︒-∵A,∵COF =51︒-∵C,利用平角的定义得到∵AOG+∵2+∵3+∵COF+∵1=180︒,计算即可求解.【详解】如图,连接BO并延长,满分冲刺∵1l 、2l 分别是线段AB 、BC 的垂直平分线,∵OA=OB ,OB=OC ,∵ODG=∵OEF=90︒,∵∵A=∵ABO ,∵C=∵CBO ,∵∵2=2∵A ,∵3=2∵C ,∵OGD=∵OFE=90︒-39︒=51︒,∵∵AOC=∵2+∵3=2(∵A+∵C),∵∵OGD=∵A+∵AOG ,∵OFE=∵C+∵COF ,∵∵AOG =51︒-∵A ,∵COF =51︒-∵C ,而∵AOG+∵2+∵3+∵COF+∵1=180︒,∵51︒-∵A+2∵A+2∵C+51︒-∵C+39︒=180︒,∵∵A+∵C=39︒,∵∵AOC=2(∵A+∵C)=78︒,故答案为:78︒.【点睛】本题考查了线段垂直平分线的性质,三角形外角的性质,垂直的定义,平角的定义,注意掌握辅助线的作法,注意掌握整体思想与数形结合思想的应用.【拓展2】(2018·南通市启秀中学八年级期中)如图,在Rt GMN 中,90M P ∠=︒,为MN 的中点 ∵用直尺和圆规在GN 边上求作点Q ,使得GQM PQN ∠=∠(保留作图痕迹,不要求写作法); ∵在∵的条件下,如果60G ∠=︒,那么Q 是GN 的中点吗?为什么?【答案】∵作图见详解,∵Q是GN的中点,证明见详解.【分析】∵利用尺规进行作图即可,注意要保留作图痕迹.∵证明Q是GN的中点,根据∵的条件大胆猜想综合运用等角和等边转换,从而分析证明.【详解】解:∵∵ 在∵的条件下,如果∵G=60°,那么Q是GN的中点,理由如下:设PP'交GN于点K,∵∵G=60°,∵GMN=90°,∵∵N=90°─60°=30°,∵点P关于GN的对称点是点P',∵PK∵KN,PK=12P P',∵∵PKN=90°,又∵∵N=30°,∵PK=12PN,PP'=PN,∵P为MN的中点,∵PM=PN,PP'=PM,∵∵PР'M=∵PMР',∵∵PK N=90°,∵N=30°,∵∵NРK=90°-30°=60°,又∵∵PP'M+∵PMP’=∵NPK,∵∵PM P'=12×60°=30°,又∵∵N=30°,∵∵PM P'=∵N,QM=QN,∵∵GMN=90°,∵PM P'=30°,∵∵GMQ=90°-30°=60°,又∵∵G=60°,∵∵GMQ=∵G,∵QG=QM,又∵QM=QN,∵QG=QN,Q是GN的中点。

13.1.2线段的垂直平分线的性质(第1课时) 说课稿 2022-2023学年人教版数学八年级上册

13.1.2线段的垂直平分线的性质(第1课时) 说课稿 2022-2023学年人教版数学八年级上册

13.1.2 线段的垂直平分线的性质(第1课时)说课稿选题及教材分析本课是人教版数学八年级上册的第13章几何图形的认识,第1节线段的垂直平分线的性质,第2课时。

本节课主要介绍线段的垂直平分线的性质,即垂直平分线的定义和性质。

本节课的主要内容包括:垂直平分线的定义和性质;垂直平分线的判定方法;垂直平分线的特点和应用;垂直平分线的应用于解决实际问题。

通过本节课的学习,学生能够初步认识垂直平分线的概念和性质,能够判断是否为垂直平分线,并能够应用垂直平分线解决几何问题。

教学目标1.知识与能力:–掌握垂直平分线的定义和性质;–掌握垂直平分线的判定方法;–掌握垂直平分线的特点和应用;–能够应用垂直平分线解决几何问题。

2.过程与方法:–通过引导学生观察实例,培养学生发现问题、分析问题和解决问题的能力;–组织学生合作探究,激发学生的学习兴趣。

3.情感、态度与价值观:–培养学生对几何图形的兴趣,并提高对几何的艺术欣赏能力;–培养学生观察、思考和合作的能力,培养学生的创新意识和实践能力。

教学重点1.垂直平分线的定义和性质;2.垂直平分线的判定方法;3.垂直平分线的特点和应用。

教学难点1.垂直平分线的判定方法。

教学过程导入(5分钟)引导学生回顾上节课学习的内容,复习线段的定义和性质。

通过问题导入,激发学生的思考兴趣。

问题:如何判断一个线段的中垂线和一条直线相垂直?概念讲解(10分钟)通过示意图,向学生解释垂直平分线的定义。

引导学生观察图形,总结垂直平分线的性质,并与其他类型的平分线进行对比。

探究活动(15分钟)1.将学生分成小组,每个小组给出一个线段,让小组成员观察线段上的点是否能构成垂直平分线。

2.每个小组选择一个代表,将自己的观察结果进行讲解和展示。

3.引导学生总结判定垂直平分线的方法。

辅助讲解(10分钟)对学生总结出的判定方法进行讲解,解答学生提出的疑惑。

拓展应用(15分钟)通过一些实际问题的引导,让学生运用垂直平分线的性质解决几何问题。

13.1.2__线段的垂直平分线性质

13.1.2__线段的垂直平分线性质
13.1.2 线段的垂直
平分线的性质
M P
定理:线段垂直平分线上的点到这 条线段两个端点距离相等.
B
A N
C
提示:这个结论是经常用来证明两条 线段相等的根据之一.
几何语言:
∵AC=BC,MN⊥AB,P是MN上任意一点(已知), ∴PA=PB(线段垂直平分线上的点与这条线段两个端 点距离相等).
P A B
小结与作业:
(1)本节课学习了哪些内容? (2)线段垂直平分线的性质和判定是如何得到的? 两者之间有什么关系? (3)如何判断一条直线是否是线段的垂直平分线?
教科书习题13.1第6、9题.
12.3 角的平分线
D A P O E
13.1 线段的垂直平分线
M P A N 定 理 线段垂直平分线上的点和 这条线段两个端点的距离相等. 逆定理 和一条线段两个端点距离相 等的点,在这条线段的垂直平分线上. 线段的垂直平分线可以看作是和线段 两个端点距离相等的所有点的集合. B
你能用其 他方法证线的判定:
定理:与一条线段两个端点距离相等的点, 在这条线段的垂直平分线上. P ∵ ∴
用数学符号表示为: PA =PB, 点P 在AB 的垂直平分线上. A
B
提示:这个结论是经常用来证明点在直线上(或直线 经过某一点)的根据之一.
归纳:
你能再找一些到线段AB 两端点的距离相 等的点吗?能找到多少个到线段AB 两端点距 离相等的点? P 这些点能组成什么几何图形? 线段AB 的垂直平分线l 上的 点与A,B 的距离都相等;反过来, 与A,B 的距离相等的点都在直线l A 上,所以直线l 可以看成与两点A、 B 的距离相等的所有点的集合.
C
B
课堂练习

初中数学八年级上册《13.1.2 线段的垂直平分线的性质(1)》

初中数学八年级上册《13.1.2 线段的垂直平分线的性质(1)》

13.1.2 线段的垂直平分线的性质(1)学习目标:1.掌握线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.3会过已知直线外一点作这条直线的垂线的尺规作图,了解作图的道理.一、学前准备1. 线段的垂直平分线的概念: .二、预习导航(一)预习指导活动1 线段的垂直平分线的性质(阅读教材第61页,掌握线段垂直平分线的性质)2.线段的垂直平分线的性质: .几何推理形式:如图所示,∵,∴ .活动2 线段的垂直平分线的判定(阅读教材第61页,掌握线段垂直平分线的判定)3.线段的垂直平分线的判定: .4.如图,已知PA=PB,求证:点P在线段AB 的垂直平分线上.活动3过点作已知直线的垂线(阅读教材第62页,过已知直线外一点作这条直线的垂线,了解作图的道理)5.如图,已知直线AB及AB上的一点P,求作:直线AB的垂线,使它经过点P.(保留作图痕迹,不写作法)预习疑惑:(二)预习检测6.如图,PA=PB.(1)若PC⊥AB,垂足为C,则AC= ;(2)若AC=BC,则PC⊥ .(3)已知线段AB及一点P,PA=PB=3 cm,则点P在 .7.如图,AB=AC=8,AB的垂直平分线MN交AC于D.若△ADB的周长为18,求DC的长.三、课堂互动问题1线段垂直平分线性质和判定的应用8.如图,在△ABC 中,ON 是AB 的垂直平分线,OA =OC ,求证:点O 在BC 的垂直平分线上.方法总结:四、总结归纳1. 你有什么收获?(从知识、方法、规律方面总结)2. 你还有哪些疑惑?3. 你认为老师上课过程中还有哪些需要注意或改进的地方?4. 在展示中,哪位同学是你学习的榜样?哪个学习小组的表现最优秀?教(学)后记:五、达标检测1.如图,在△ABC 中,EF 是AC 的垂直平分线,AF =12,BF =3,则BC = .2.如图,D 为BC 边上一点,且BC=BD+AD ,则AD DC ,点D 在 的垂直平分线上. 第1题图第2题图3.如图,CD为AB的垂直平分线,若AC=1.6 cm,BD=2.4 cm,则四边形ACBD的周长为()第3题图A.4 cmB.8 cmC.5.6 cmD.6.4 cm4.如图,若△ACD的周长为7cm,DE为边AB的垂直平分线,则AC+BC=cm.第4题图5.如图所示,在△ABC中,AB=AC=5,AB的垂直平分线分别交AB、AC于点E、D. 若△BCD的周长为8,求BC的长.AEDB C第3题图《13.1.2 线段的垂直平分线的性质(1)》参考答案一、学前准备1.略.二、预习导航2.线段垂直平分线上的点与这条线段两个端点的距离相等. 几何推理形式:∵PC 是AB 的垂直平分线,∴PC ⊥AB ,AC=BC .3.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.解:如图,过点P 作PC ⊥AB 交AB 于点C .∵PC ⊥AB ,∴∠PCA =∠PCB =90°.在Rt △PCA 和Rt △PCB 中,PA PB PC PC ==⎧⎨⎩ ∴Rt △PCA ≌Rt △PC B(HL ) .∴AC=BC .∴点P 在线段AB 的垂直平分线上.5.略.6.(1)BC ;(2)AB ;(3)AB 的垂直平分线上.7.解:∵MN 是AB 的垂直平分线,∴DA=DB .又∵AB=AC=8,△ABD的周长为AB+AD+DB=18,∴8+2AD=18,解得AD=5.又∵AC=8,∴DC=AC-AD=8-5=3.三、课堂互动8.证明:∵ON是AB的垂直平分线,∴OA=OB.又∵OA=OC,∴OB=OC.∴点O在BC的垂直平分线上.五、达标检测1.答案:15.2.答案:=;AC.3.解:B.4.解:7.5.解∵DE是AB的垂直平分线,∴AD=BD.∵△BCD的周长为8,∴BC+CD+BD=BC+CD+AD=BC+AC=8.∵AB=AC=5,∴BC=3.。

专题13.1.2 线段的垂直平分线的性质(解析版)

专题13.1.2 线段的垂直平分线的性质(解析版)

第十三章轴对称13.1.2线段的垂直平分线的性质班级:________________ 姓名:________________一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在A.三条边的垂直平分线的交点B.三个角的角平分线的交点C.三角形三条高的交点D.三角形三条中线的交点【答案】A【解析】猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.故选A.2.点P是△ABC中边AB的垂直平分线上的点,则一定有A.PA=PB B.PA=PCC.PB=PC D.点P到∠ACB的两边的距离相等【答案】A【解析】∵点P在AB的垂直平分线上,∴PA=PB,故选A.3.下列说法错误的是A.E,D是线段AB的垂直平分线上的两点,则AD=BD,AE=BEB.若AD=BD,AE=BE,则直线DE是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线【答案】D【解析】A、∵E是线段AB的垂直平分线上的点,∴AE=BE.同理AD=BD.故A正确;B、若AD=BD,∴D在AB的垂直平分线上.同理E在AB的垂直平分线上.∴直线DE是线段AB的垂直平分线.故B正确;C、若PA=PB,则点P在线段AB的垂直平分线上,故C正确;D、若PA=PB,则点P在线段AB的垂直平分线上.但过点P的直线有无数条,不能确定过点P的直线是线段AB的垂直平分线.故D错误.故选D.4.关于线段的垂直平分线有以下说法:①一条线段的垂直平分线的垂足,也是这条线段的中点;②线段的垂直平分线是一条直线;③一条线段的垂直平分线是这条线段的唯一对称轴.其中,正确的说法有A.1个B.2个C.3个D.4个【答案】B【解析】①一条线段的垂直平分线的垂足,也是这条线段的中点,正确;②线段的垂直平分线是一条直线;正确;③一条线段的垂直平分线是这条线段的唯一对称轴.错误,线段有2条对称轴:还有本身.故选B.5.如图,AC=AD,BC=BD,那么下列判断正确的是A.CD垂直平分AB B.AB垂直平分CDC.CD平分∠ACB D.∠ACB=∠ADB=90°【答案】B【解析】∵AC=AD,∴点A在线段CD的垂直平分线上,∵BC=BD,∴点B在线段CD的垂直平分线上,∴AB垂直平分CD.故选B.6.如图,在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AD=AC,∠B=25°,则∠C=A.70°B.60°C.50°D.40°【答案】C【解析】由作法得MN垂直平分AB,∴DA=DB,∴∠DAB=∠B=25°,∴∠CDA=∠DAB+∠B=50°,∵AD=AC,∴∠C=∠CDA=50°.故选C.7.如图,△ABC中,AD⊥BC于点D,且BD=DC,E是BC延长线上一点,且点C在AE的垂直平分线上.有下列结论:①AB=AC=CE;②AB+BD=DE;③AD=12AE;④BD=DC=CE.其中,正确的结论是A.只有①B.只有①②C.只有①②③D.只有①④【答案】B【解析】∵BD=CD,AD⊥BC,∴AD垂直平分BC,∴AB=AC,∵C在AE的垂直平分线上,∴AC=CE,∴AB=AC=CE,故①正确,∴AB+BD=AC+CD=CE+CD=DE,故②正确,∵∠E不一定等于30°,∴AD不一定等于12AE,故③错误,∵BD=CD<AC,故④错误.故选B.二、填空题:请将答案填在题中横线上.8.如图,D 是△ABC 的边BC 延长线上一点,BD =BC +AC ,则C 点在线段_________的垂直平分线上.【答案】AD【解析】BD BC AC =+Q , 而BD BC CD =+, ∴AC CD =,∴点C 在AD 的垂直平分线上. 故答案为:AD .9.如图,AD ⊥BC 于D ,BD =CD ,则AB =AC ,理由__________.【答案】线段的垂直平分线上的点到线段两端点的距离相等 【解析】∵AD ⊥BC ,BD =CD ,即AD 是BD 的垂直平分线, ∴AB =AC (线段的垂直平分线上的点到线段两端点的距离相等). 故答案为:线段的垂直平分线上的点到线段两端点的距离相等. 三、解答题:解答应写出文字说明、证明过程或演算步骤.10.如图所示,一辆汽车在笔直的公路AB 上由A 向B 行驶,M ,N 分别是位于公路AB 两侧的村庄,当汽车行驶到哪个位置时,与村庄M ,N 的距离相等.【解析】(1)连接MN ; (2)作线段MN 的垂直平分线l , 交直线AB 于C 点,则C 点即为所求.11.如图,在Rt△ABC中,过直角边AC上的一点P作直线交AB于点M,交BC的延长线于点N,且∠APM=∠A.求证:点M在BN的垂直平分线上.【解析】∵∠B+∠A=90°,∠N+∠CPN=90°,又∵∠CPN=∠MPA=∠A,∴∠B=∠N,∴BM=MN,∴点M在BN的垂直平分线上.12.如图,AB=AC,DB=DC,E是AD延长线上一点,求证:BE=CE.【解析】如图,连接BC,∵AB=AC,DB=DC,∴A在线段BC的垂直平分线上,D在线段BC的垂直平分线上,即AD是线段BC的垂直平分线,∵E在直线AD上,∴BE=CE.13.已知点M在直线l上,A、B是直线l外的两点,按照下面要求完成作图:(1)过点M作直线l的垂线;(2)在已作出的垂线上确定一点P,使得点P到A、B两点的距离相等.(注意:要求用尺规作图,画图必须用铅笔,不要求写作法,但要保留作图痕迹并给出结论)【解析】(1)如图所示:(2)如上图所示,结论:垂直平分线上的点到线段两端点距离相等.14.如图,△ABC中,DE是BC边的垂直平分线,垂足为E,AD平分∠BAC且MD⊥AB,DN⊥AC延长线于N.求证:BM=CN.【解析】连接BD,DC,如图,∵DE所在直线是BC的垂直平分线,∴BD=CD,∵AD平分∠BAC,过点D作DM⊥AB于点M,DN⊥AC交AC的延长线于点N,∴DM=DN,在Rt△BMD与Rt△CDN中,BD DC DM DN=⎧⎨=⎩,∴Rt△BMD≌Rt△CDN,∴BM=CN.。

13.1.2 线段垂直平分线的性质

13.1.2 线段垂直平分线的性质
M
不一定。仅有一点无法确定 一条直线。 B

D M
C
问题思考:既然轴对称图形的对称轴是任何 一对对称点所连线段的垂直平分线,那么轴对称 图形的对称轴如何来作呢?
只要我们找到一对对应 点,作出连接它们的线段的 垂直平分线,就可以得到这 两个图形的对称轴了.
如何作出线段的垂直平分线? 由两点确定一条直线和线段垂直平分线的性质可知, 只要作出到线段两端点距离相等的两点并连接即可.
解:∵ AD⊥BC,BD =DC, A ∴ AD 是BC 的垂直平分线, ∴ AB =AC. ∵ 点C 在AE 的垂直平 分线上, B D ∴ AC =CE.
C
E
课堂练习
练习2 如图,在△ABC 中,BC =8,AB 的中垂线 交BC于D,AC 的中垂线交BC 与E,则△ADE 的周长等 8 . 于______ A
有A,B,C三个村庄,现准备要建一所学校,要求学校
到三个村庄的距离相等,请你确定学校的位置. 【提示】学校在连接任意两 点的两条线段的垂直平分线 的交点处. A C
B

变式训练:某地有两所大学M,N和两条相交 叉的公路OA,OB,现计划修建一个物资仓 库,希望仓库到两所大学的距离相等,到 两条公路的距离也相等,请你确定该点。
P
A
C
B
N
6
线段的垂直平分线的性质定理:
线段的垂直平分线上的点到这条线 段的两个端点的距离相等.
几何语言: ∵点P在线段AB的垂直平分线上 ∴PA=PB 或
P
M
A
∵ MN⊥AB于C, AC=CB,点P在MN上
N
B
∴PA=PB
课堂练习
练习1 如图,AD⊥BC,BD =DC,点C 在AE 的 垂直平分线上,AB,AC,CE 的长度有什么关系? AB+BD与DE 有什么关系?

人教版数学八年级上册第十三章13.1.2线段的垂直平分线的性质

人教版数学八年级上册第十三章13.1.2线段的垂直平分线的性质

第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定学习目标:1.理解并掌握线段的垂直平分线的性质和判定方法.2.会用尺规过一点作已知直线的垂线.3.能够运用线段的垂直平分线的性质和判定解决实际问题.重点:线段的垂直平分线的性质和判定方法难点:运用线段的垂直平分线的性质和判定解决实际问题自主学习一、知识链接线段是轴对称图形吗?通过折叠的方法作出线段AB的对称轴l,交AB与O.(1)点A的对称点是_______(2)量出AO与BO的长度,它们有什么关系?(3)AB与直线l在位置上有什么关系?经过线段________并且______于这条线段的________,叫做这条线段的垂直平分线.二、新知预习已知直线l垂直平分线段AB,交AB与O.点C是l上任意一点,连接AC,BC.(1)量出AC,BC的长度,它们有什么关系?(2)另在l上任找一点D,量出AD,DB的长度,它们有什么关系?(3)由(1),(2),你得到什么结论?要点归纳:线段垂直平分线上的点与这条线段两个端点的__________.三、自学自测如图所示,直线CD是线段PB的垂直平分线,点P为直线CD 上的一点,且PA=5,则线段PB的长为()A. 6B. 5C. 4D. 3四、我的疑惑___________________________________________________________________________一、要点探究探究点1:线段垂直平分线的性质 证一证:线段垂直平分线上的点和这条线段两个端点的距离相等. 已知:如图,直线MN ⊥AB ,垂足为C ,AC =CB ,点P 在MN 上.求证:PA =PB .典例精析 例1:如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为( ) A .5cm B .10cm C .15cm D .17.5cm方法总结:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长.例2: 已知:如图,在ΔABC 中,边AB ,BC 的垂直平分线交于P.求证:PA=PB=PC.结论:三角形三边垂直平分线交于一点,这一点到三角形三个顶点的距离相等. 实际应用:某区政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.例3:如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延课堂探究B ACM N M ' N ' PBAC长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.方法总结:证明线段相等的方法一般有:1.由全等得对应线段相等;2.由线段垂直平分线的性质得出线段相等.针对训练1.如图,△ABC中,AC的垂直平分线交AB于点D,∠A=50°,则∠BDC=()第1题图第2题图2.如图,△ABC中,AB=AC=18cm,BC=10cm,AB的垂直平分线ED交AC于D点,则△BCD的周长为_________.3.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB,交AB于D,求证:BE+DE=AC.探究点2:线段垂直平分线的判定1.做一做:用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射出去.图①图②(1)如图①要使CO垂直于AB,需要添加什么条件?为什么?点C在_____________上.(2)如图②,拉动C,到达D的位置,若AD=DB,那么点D在__________上.(3)由(1),(2),你得到什么猜想?要点归纳:DA BOOBAC与线段两个端点距离________的点在这条线段的______________上.2.证一证:已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.典例精析例4:已知:如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分线.针对训练1.三角形纸片上有一点P,量得PA=3cm,PB=3cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.小明做了一个如图所示的风筝,其中EH=FH,ED=FD,小明说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是__________________________________________.3.如图,在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.二、课堂小结PA B线段垂直平分线的判定线段垂直平分线的性质与判定线段垂直平分线的性质三角形三边的垂直平分线的交点到三角形三个顶点的距离相等.证明线段相1.如图所示,AC=AD,BC=BD,则下列说法正确的是( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分 D .CD 平分∠ ACB2.在锐角三角形ABC 内一点P,,满足PA=PB=PC,则点P 是△ABC ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点3.已知线段AB ,在平面上找到三个点D 、E 、F ,使DA =DB ,EA =EB,FA =FB ,这样的点的组合共有_________种.4.下列说法:①若点P 、E 是线段AB 的垂直平分线上两点,则EA =EB ,PA =PB ; ②若PA =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若PA =PB ,则点P 必是线段AB的垂直平分线上的点;④若EA =EB ,则经过点E 的直线垂直平分线段AB .其中正确的有_________(填序号).5.如图,△ABC 中,AB=AC,AB 的垂直平分线交AC 于E,连接BE ,AB+BC=16cm,则△BCE 的周长是_________cm.6.如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的位置关系.拓展提升7.如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O. (1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.当堂检测ABDC第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第2课时线段垂直平分线的有关作图学习目标:1.能用尺规作已知线段的垂直平分线.2.进一步了解尺规作图的一般步骤和作图语言,理解作图的依据.3.能够运用尺规作图的方法解决简单的作图问题.重点:用尺规作已知线段的垂直平分线.难点:运用尺规作图的方法解决简单的作图问题温故知新1.按如下要求,用尺规作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.2.轴对称图形的性质是_______________________________________.3.线段垂直平分线的性质是_______________________________________.二、要点探究探究点1:线段垂直平分线的画法问题1:如何验证两个图形是轴对称的?不折叠图形,你能准确地作出图形的对称轴吗?图①图②问题2:如何作出线段的垂直平分线?[提示:由两点确定一条直线和线段垂直平分线的性质,只要作出到线段两端点距离相等的两点即可.]已知:线段AB.求作:线段AB的垂直平分线.作法:思考1:在上述作法中,为什么要以“大于AB的长”为半径作弧?思考2:根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.归纳总结:可以运用线段垂直平分线的尺规作图,确定线段的中点.典例精析例1:如图,已知点A、点B以及直线l.(1)用尺规作图的方法在直线l上求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM=PN,BN=PM,求证:∠MAP=∠NPB.例2:如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计(尺规作图,不写作法,保留作图痕迹).方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线段的垂直平分线上.课堂探究探究点2:作轴对称图形的对称轴问题:下图中的五角星有几条对称轴?如何作出这些对称轴呢?方法总结:对于轴对称图形,只要找到任意一组对称点,作出对称点所连线段的垂直平分线,即能得此图形的对称轴.典例精析如图,△ABC和△A′B′C′关于直线l对称,请用无刻度的直尺作出它们的对称轴.方法总结:成轴对称的两个图形对称点连线段(或延长线)相交,交点必定在对称轴上.针对训练1.作出下列图形的一条对称轴.和同学比较一下,你们作出的对称轴一样吗?2.如图,小河边有两个村庄,要在河岸边建一自来水厂向A村与B村供水,若要使厂部到A,B 的距离相等,则应选在哪里?二、课堂小结ABCA′B′C′线段垂直平分线的有关作图用尺规作图作线段垂直平分线作轴对称图形的对称轴作对称轴的重要方法l1.如图,在△ABC中,分别以点A,B为圆心,大于12AB长为半径画弧,两弧分别交于点D,E,则直线DE是()A.∠A的平分线B.AC边的中线C.BC边的高线D.AB边的垂直平分线第1题图第2题图2.如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙两种作法:甲:分别作∠ACP、∠BCP的平分线,分别交AB于D、E,则D、E即为所求;乙:分别作AC、BC的垂直平分线,分别交AB于D、E,则D、E两点即为所求.下列说法正确的是()A.甲、乙都正确B.甲、乙都错误C.甲正确,乙错误D.甲错误,乙正确3.如图,与图形A 成轴对称的是哪个图形?画出它的对称轴.4.如图,角是轴对称图形吗?如果是,它的对称轴是什么?5.如图,有A,B,C三个村庄,现准备要建一所希望小学,要求学校到三个村庄的距离相等,请你确定学校的位置.当堂检测A BC DCAB。

13.1.2 线段的垂直平分线的性质 解题技巧

13.1.2 线段的垂直平分线的性质  解题技巧

13.1.2线段的垂直平分线的性质技巧1线段的垂直平分线的应用1.利用性质求角度如图,在△ABC中,∠BAC=126°,MP和NQ分别是AB和AC的垂直平分线,求∠P AQ的度数.解析:综合线段垂直平分线的性质与三角形的内角和定理及其推论来求解.解:∵PM是AB的垂直平分线,∴P A=PB(线段垂直平分线上的点到线段两端点的距离相等).∴∠PMB=∠PMA=90°.在Rt△APM和Rt△BPM中,AP=BP,PM=PM,∴Rt△APM≌Rt△BPM(HL).∴∠P AB=∠B.又∵∠APQ=∠B+∠P AB,∴∠APQ=2∠B.同理可得∠AQP=2∠C.在△ABC中,∠BAC=126°,∴∠B+∠C=180 -∠BAC=180°-126°=54°.∴∠P AQ=180°-∠APQ-∠AQP=180°-(∠APQ+∠AQP)=180°-(2∠B+2∠C)=180°-2(∠B+∠C)=180°-2×54°=72°.2.利用性质判定线段位置关系如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,EF与AD交于点G.求证:AD垂直平分EF.解析:利用定义法或者判定定理进行证明.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△AED和Rt△AFD中,AD=AD,DE=DF,∴Rt△AED≌Rt△AFD(HL).∴AE=AF.在△AEG和△AFG中,AE=AF,∠EAG=∠F AG,AG=AG,∴△AEG≌△AFG(SAS).∴EG=FG,∠AGE=∠AGF=90°.∴AD垂直平分EF(垂直平分线定义).3.利用性质解决实际问题如图(1)所示,A,B,C三点表示三个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到三个村庄距离相等,请你在图中确定学校的位置.(1) (2)解析:三角形三边的垂直平分线交于一点,并且这点到三个顶点的距离相等.找三角形中到三个顶点距离相等的点的方法是找两边的垂直平分线的交点.解:如图(2)所示.(1)连接AB,AC,BC;(2)分别作AB,BC的垂直平分线交于点P.则点P就是所要确定的学校的位置.。

13.1.2 第1课时 线段的垂直平分线的性质

13.1.2 第1课时 线段的垂直平分线的性质
图 13-1-20
解:∵点 C 在 AE 的垂直平分线上, ∴CA=CE. ∵AD⊥BE,BD=DC, ∴AB=AC, 又∵△ABC 的周长为 22 cm, ∴AB+BC+AC=2AC+2DC=2(AC+CD)=2(CE+CD)=2DE=22, 解得 DE=11 cm.
6.如图 13-1-21,在△ABC 中,AB 边的垂直平分线 l1 交 BC 于点 D,AC 边 的垂直平分线 l2 交 BC 于点 E,l1 与 l2 相交于点 O,△ADE 的周长为 6 cm.
(2)∵AB 边的垂直平分线 l1 与 AC 边的垂直平分线 l2 相交于点 O, ∴OB=OA=OC. ∵△OBC 的周长为 16 cm, 即 OC+OB+BC=16 cm, ∴OC+OB=16-6=10 (cm), ∴OC=OB=5 cm,∴OA=5 cm.
分层作 业
点击进入word链接
4.小明做了一个如图 13-1-19 的风筝,其中 EH=FH,ED=FD,小明说不 用测量就知道 DH 是 EF 的垂直平分线,其中蕴含的道理是 与一条线段两个端点
距离相等的点,在这条线段的垂直平分线. 上
图 13-1-19
5.如图 13-1-20,在△ABE 中,AD⊥BE 于点 D,C 是 BE 上一点,BD=DC, 且点 C 在 AE 的垂直平分线上,若△ABC 的周长为 22 cm,求 DE 的长.
3.[2018 春·渝中区校级期中]如图 13-1-14,在△ABC 中,直线 ED 是线段 BC
的垂直平分线,直线 ED 分别交 BC,AB 于点 D,E,已知 BD=3,△ABC 的周
长为 20,则△AEC 的周长为( A )
A.14
B.20
C.16
D.12

13.1.2线段垂直平分线的性质

13.1.2线段垂直平分线的性质

点P在线段BC的 垂直平分线上 PB=PC
B
M’
P C N N’
PA=PB=PC ∵PA=PC ∴点P在AC的垂直平分线上
例1 已知:如图,在ΔABC中,边AB,BC的垂直平分 线交于P. 求证:点P在AC的垂直平分线上;
A
证明: ∵点P在线段AB的垂直平分线MN上, ∴PA=PB(?) 同理 PB=PC.
A
C
B
N
[探究2]
• 如左图.木条L与AB钉在 一起,L垂直平分AB,P1, P2 ,P3 ,…是L上的点, 分 别 量 一 量 点 P1 , P2 , 图2 P3 ,…到A与B的距离, 你有什么发现? 结论:线段垂直平分线上的
点与这条线段两个端点的距 离相等
线段的垂直平分线
性质定理:线段垂直平分线上的点到这条线段两个端点的 距离相等。 M
点P在线段 AB的垂直 平分线上
?
PA=PB
几何语言叙述: ∵PA=PB ∴点P在线段AB的垂直平分线上 A
C
B
线段的垂直平分线
一、性质定理:线段垂直平分线上的点到这条线段两个端 点的距离相等。 二、逆定理:到线段两个端点距离相等的点,在这条 线段的垂直平分线上。
点P在线段 AB的垂直 平分线上
线段垂直平分线上的点到这 条线段两个端点的距离相等
1、如图直线MN垂直平 分线段AB,则AE=AF。
2、如图线段MN被直线AB 垂直平分,则ME=NE。
3、如图PA=PB,则 直线MN是线段AB的 垂直平分线。
线段的垂直平分线
例1 已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P. 求证:点P在AC的垂直平分线上;
分析:
M
A

13.1.2 线段的垂直平分线的性质(第一课时)

13.1.2 线段的垂直平分线的性质(第一课时)

《13.1.2 线段的垂直平分线的性质》陕西省延安市实验中学朱华【教材依据】本节课程选自九年义务教育人教版数学八年级上册第十三章《轴对称》第一节第二课时《13.1.2线段的垂直平分线的性质》。

主要内容是线段垂直平分线的性质定理及其逆定理、经过已知直线外一点作这条直线的垂线。

一、设计思路1.指导思想线段的垂直平分线的性质是在学习了“轴对称的性质”,明确了线段垂直平分线的概念之后,通过学生自己动手测量、猜想,然后利用轴对称图形的对折得到了这个性质,并应用三角形全等的方法作了证明。

对于线段的垂直平分线的性质定理的逆定理,则让学生自己给出证明,这就经历了观察、探究、猜想、证明的完整过程,感受了证明的必要性。

这部分内容是后续学习的基础, 它是在认识了轴对称性的础上进行的,是今后证明线段相等和直线互相垂直的依据,因此本节课具有承上启下的重要作用。

从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

认知状况来说,学生在此之前已经学习了轴对称图形,对线段的垂直平分线已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于其性质的理解,学生可能会产生一定的困难,所以教学中应具体生动,深入浅出的为学生讲解清楚。

2.教学目标(1)知识与技能目标:了解线段的垂直平分线的性质,会利用线段的垂直平分线的性质进行简单的推理、判断、计算。

能利用尺规,过直线外一点作已知直线的垂线。

(2)过程与方法目标:自己动手探究发现线段的垂直平分线的性质,培养学生的观察力、实验推理能力。

(3)情感态度与价值观目标:要求学生在操作过程中,体验几何发现的乐趣,在实际操作动手中感受几何应用美,并加深师生交流,培养学生的探究能力,增强他们的合作意识,提高他们的学习兴趣。

13.1.2.1 线段的垂直平分线的性质 课件(共22张PPT)人教版数学八年级上册

13.1.2.1 线段的垂直平分线的性质 课件(共22张PPT)人教版数学八年级上册

例5:如图,在Rt△ABC中,∠ACB=90°,D是AB上一点, BD=BC,过点D作AB的垂线交AC于点E,连接BE.求证: BE垂直平分CD.
证明:∵∠ACB=90°,DE⊥AB, ∴∠EDB=∠ACB=90°.∵BD=BC,BE=BE, ∴Rt△BED≌Rt△BEC,点B在CD的垂直平分线上, ∴DE=CE,∴点E在CD的垂直平分线上, ∴BE垂直平分CD.
13.1 轴对称
13.1.2线段的垂直平分线的性质
13.1.2.1 线段的垂直平分线的性质
学习目标
1.通过学生自主探究,理解并掌握线段垂直平分线的性质和判定,会用 线段的垂直平分线的性质和判定解决简单的数学问题,培养学生解决问 题的能力.
2.学生经历动手实践、合作交流、演绎推理的过程,培养学生的动手操 作能力和逻辑推理能力.
4.如果将已知、求证换一下位置,还能成立吗?试着探究一下.
如图,已知 PA=PB,
求证:点 P 在 AB 的垂直平分线上.
证明:如图,过点 P 作 AB 的垂线 l 交 AB 于点 C,

R
t△PAC

Rt△PB
C
中,
PA=PB, CP=CP,
∴R t △PAC≌R t △PB C(H L ).
∴AC=BC.∴直线 l 垂直平分 AB,
∴点 P 在 AB 的垂直平分线上.
小组讨论
1.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平 分线ON交于点O,分别交BC于点D,E,△ADE的周长为5 cm. (1)求BC的长;(2)求证:点O在线段BC的垂直平分线上.
(1)解:∵OM,ON分别是线段AB,AC的垂直平分线, ∴AD=BD,AE=CE.∵△ADE的周长=AD+AE+DE=5 cm, ∴BC=BD+DE+EC=5 cm.

13.1.2线段垂直平分线性质课件(共34张PPT)

13.1.2线段垂直平分线性质课件(共34张PPT)

B的距离.你有什么发现?再取几个点试试.你能说明理由吗?
发现: P到A的距离与P到B的距离相等.
P
已知:如图.AC=BC. PC⊥AB,P是MN上任意一点.
求证:PA=PB.
证明:∵MN⊥AB, ∴ ∠PCA=∠PCB=90° 在△APC与△BPC中:
PC=PC(公共边) ∠PCA=∠PCB(已证) AC=BC(已知) ∴△PCA≌△PCB(SAS) ∴PA=PB(全等三角形的对应边相等)
五角星的对称轴有什么特点? 相交于一点.
练习
1.作出下列图形的一条对称轴.和同学比较一下.你们 作出的对称轴一样吗?
练习
2.如图,角是轴对称图形吗?如果是,它的对称轴是什 么?
练习
3.如图,与图形A 成轴对称的是哪个图形?画出它的 对称轴.
A
B
C
D
做一做
1.正方形ABCD边长为a,点E,F分别是对角线BD上的两点, 过点E,F分别作AD,AB的平行线,如图所示,则图中阴影 部分的面积之和等于 1 a 2 .
B A
5.求作一点P,使它和已△ABC的三个顶点 距离相等.
A
·P
B
C
试一试
N
已 知 : P为 M ON内 一 点 。 P与 A关 于 ON对 称 , A
P与 B关 于 OM 对 称 。 若 AB长 为 15cm
求 : PCD的 周 长 .
D P
解: P与A关于ON对称
ON为PA的中垂线(
? …)
F
∴PA=PB 同理:PB=PC
P E
∴PA=PB=PC
A
N
B
结论:三角形三边的垂直平分线交于一 点,并且这点到三个顶点的距离相等.

13.1.2线段的垂直平分线的性质

13.1.2线段的垂直平分线的性质

第十三章 轴对称13.1.2线段的垂直平分线的性质课标要求理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理: 线段垂直 平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直 平分线上.能用尺规完成以下基本作图:过一点作已知直线的垂线。

学习目标:1.理解线段垂直平分线的性质和判定.2 •能运用线段垂直平分线的性质和判定解决实际问题.3.会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理. 学习重点:线段垂直平分线的性质和判定. 学习难点:线段垂直平分线的性质的探究 教学过程(各个环节都配以多媒体教学课件进行辅助)环节提示环节一:创设情景,引入新课 师生活动:回顾思考。

设计意图:引入新课。

轴对称的性戚:如臺南柚形关丁皐采奁线对你那么 对樹由足怔何-对对称点所评线段的垂有平分^ 轴对称圏形的性驕:轴对称囹形的对称轴屈任何一 对对应点所宙段的垂有平分线"环节二:探究性质师生活动:学生通过观察、测量得到自己的猜想, 指导学生说岀自己的发现。

在此基础上把这一命 题转化为几何证明上的证明题,并由学生完成。

设计意图:让学生经历观察、猜想、归纳、验证 的过程,提升学生的推理能力LL^n^SAB, OAB 的屮点, 有绞MN ABH 过点直 t&M M 就辱4辭 AB 的垂直平 分妊一已尸直戸酣丄的 点+分别:WLtt 悬F>” F?尸和… 到心目的雌离一祢做咨现什线段垂点平分线的性质走理*线段垂宜平分缠上的点与运畫级盛两介踹点的 乍斤离相锌.创设情景,引入新课概念:经过线段中点幷冃弄直T 時线段的立细H 做这采线段的垂直平分线一尸严=尸& P 3A=P ?B P 3A-P aBm 寺誉ixwrw^imniR'iiPvi^A ■戸目 吗-?ilHfeIK 己知△ABC 中.iiAH=AC 7AL>>2kABC 的信平另'鰻" DE LAB,DF 丄灶€\垂足分别是巳F ・则下列四个结论中 丁禎的有< )①AdL 任盍:一点到匚启的距為相等<5>BD=DE.AD I BC③AD 丄任哥-点到AB”典匚的距詡蒔<®^BDE=^CDFA 4个B 壬个C 尹卜 □ 4个2^女u 图” 的壬HT 平?亍绒知辰曰C 、凤B 于 E- O. itn^AB^AC-^dem^ fflij/i ACDfrtEJ-^^-A-u 4-0cm : 3>0cm U. 3&cm! D P 2Scm>线段垂直平分线的性质 定理二 线段垂直平分践上的点写这 眾 线段两个端点 的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.设计意图:提高学生的动手能力及归纳能力,同时我们可以看出轴对称图形与
对称轴所在直线经过对称点所连线段的中点,并且
那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.
AP2、BP1、BP2应满足什么条件?
,那么沿L将图形折叠后,A与B不可能AB不垂直.。

相关文档
最新文档