[信管网]运筹学匈牙利算法示例

合集下载

运筹学匈牙利法

运筹学匈牙利法

运筹学匈牙利法运筹学匈牙利法(Hungarian Algorithm),也叫匈牙利算法,是解决二部图最大(小)权完美匹配(也称作二分图最大权匹配、二分图最小点覆盖)问题的经典算法,是由匈牙利数学家Kuhn和Harold W. Kuhn发明的,属于贪心算法的一种。

问题描述在一个二分图中,每个节点分别属于两个特定集合。

找到一种匹配,使得所有内部的节点对都有连边,并且找到一种匹配方案,使得该方案的边权和最大。

应用场景匈牙利算法的应用场景较为广泛,比如在生产调度、货车调度、学生对导师的指定、电影的推荐等领域内,都有广泛的应用。

算法流程匈牙利算法的伪代码描述如下:进行循环ɑ、选择一点未匹配的点a作为起点,它在二分图的左边β、找出a所有未匹配的点作为下一层节点ɣ、对下一层的每个节点,如果它在右边未匹配,直接匹配ɛ、如果遇到一个已经匹配的节点,进入下一圈,考虑和它匹配的情况δ、对已经匹配的点,将它已经匹配的点拿出来,作为下一层节点,标记这个点作为已被搜索过ε、将这个点作为当前层的虚拟点,没人配它,看能否为它找到和它匹配的点ζ、如果能匹配到它的伴侣,令它们成对被匹配最后输出最大权匹配。

算法优缺点优点:相比于暴力求解二分图最大权匹配来说,匈牙利算法具有优秀的解决效率和高效的时间复杂度,可以在多项式时间(O(n^3))内解决二分图最大权匹配问题。

缺点:当二分图较大时,匈牙利算法还是有很大的计算复杂度,复杂度不佳,算法有效性差。

此时就需要改进算法或者使用其他算法。

总结匈牙利算法是一个常见的解决二分图最大权匹配问题的算法,由于其简洁、易用、效率优秀等特性,广泛应用于学术和实际问题中。

匈牙利算法虽然在处理较大规模问题时效率不佳,但仍然是一种值得掌握的经典算法。

匈牙利算法 描述

匈牙利算法 描述

匈牙利算法一、算法概述匈牙利算法是一种解决二分图最大匹配问题的经典算法,由匈牙利数学家DénesKőnig于1931年提出。

二分图是指图中的节点可以分为两个互不相交的集合,并且图中的边只能连接两个集合中的节点。

最大匹配问题是在二分图中找到最大的边集合,使得每个节点都只与一条边相连。

匈牙利算法通过不断寻找增广路径来寻找最大匹配。

增广路径是指一条路径,其起点和终点都不属于当前的匹配边集合,并且路径中的边交替属于匹配边和非匹配边。

通过不断寻找增广路径,匈牙利算法可以将非匹配边转化为匹配边,从而逐步增大匹配边集合的大小,直到无法找到增广路径为止。

二、算法步骤匈牙利算法的基本思路是通过深度优先搜索来寻找增广路径。

具体步骤如下:1. 初始化将所有节点的匹配状态设为未匹配。

2. 寻找增广路径从一个未匹配节点开始,进行深度优先搜索,寻找增广路径。

在搜索过程中,每次选择一个未匹配的邻接节点进行继续搜索,直到找到一条增广路径或者无法继续搜索为止。

3. 更新匹配边集合如果找到了增广路径,就将路径中的非匹配边转化为匹配边,同时将原来的匹配边转化为非匹配边。

然后回到第2步,继续寻找下一个增广路径。

4. 输出最大匹配当无法找到增广路径时,算法结束。

此时,最大匹配就是匹配边集合中的边。

三、算法示例为了更好地理解匈牙利算法,下面以一个具体的示例来说明。

假设有一个二分图,左侧的节点集合为A,右侧的节点集合为B,边集合为E。

图中的边表示两个节点之间的关系。

A = {a1, a2, a3}B = {b1, b2, b3}E = {(a1, b1), (a1, b2), (a2, b1), (a3, b2), (a3, b3)}初始时,所有节点的匹配状态都为未匹配。

1. 寻找增广路径从一个未匹配的节点开始,进行深度优先搜索,寻找增广路径。

假设从节点a1开始,我们找到了一条增广路径:a1-b1-a2-b2-a3。

2. 更新匹配边集合将路径中的非匹配边转化为匹配边,同时将原来的匹配边转化为非匹配边。

匈牙利算法

匈牙利算法

匈牙利算法本文讲述的是匈牙利算法,即图论中寻找最大匹配的算法,暂不考虑加权的最大匹配(用KM 算法实现),文章整体结构如下:1.基础概念介绍2.算法的实现一. 部分基础概念的介绍概念点1. 图G的一个匹配是由一组没有公共端点的不是圈的边构成的集合。

这里,我们用一个图来表示下匹配的概念:如图所示,其中的三条边即该图的一个匹配;所以,匹配的两个重点:1. 匹配是边的集合;2. 在该集合中,任意两条边不能有共同的顶点。

那么,我们自然而然就会有一个想法,一个图会有多少匹配?有没有最大的匹配(即边最多的匹配呢)?我们顺着这个思路,继续往下走。

概念点2. 完美匹配:考虑部集为X={x1 ,x2, ...}和Y={y1, y2, ...}的二部图,一个完美匹配就是定义从X-Y的一个双射,依次为x1, x2, ... xn找到配对的顶点,最后能够得到 n!个完美匹配。

这里有一个概念,有点陌生,即什么是二部图,这个其实很好理解,给定两组顶点,但是组内的任意两个顶点间没有边相连,只有两个集合之间存在边,即组1内的点可以和组2内的点相连,这样构建出来的图就叫做二部图(更好理解就是n个男人,n个女人,在不考虑同性恋的情况下,组成配偶)。

这样是不是简单多了?既然说到了双双组成配偶,那我们干的就是月老做的活了,古话说得好,宁拆一座庙,不毁一桩婚,如果真的给出n个帅气的男孩,n个漂亮的女孩,他们之间互相有好感,但一个男孩可以对多个女孩有感觉,一个女孩也可能觉得多个男孩看起来都不错,在这种情况下,我们怎么让他们都能成双成对呢?将这个问题抽象出来,互有好感就是一条条无向边(单相思我们先不考虑),而男孩和女孩就是一个个节点,我们构建出这么一个图,而完美匹配就是让所有看对眼的男孩和女孩都能够在一起。

完美匹配是最好的情况,也是我们想要的情况。

当然,有些情况下我们做不到完美匹配,只能尽可能实现最多的配对,这个就叫做最大匹配。

可以看出来,完美匹配一定是最大匹配,而最大匹配不一定是完美匹配。

匈牙利算法详细步骤例题

匈牙利算法详细步骤例题

匈牙利算法详细步骤例题
嘿,朋友们!今天咱就来讲讲这神奇的匈牙利算法。

你可别小瞧它,这玩意儿在好多地方都大有用处呢!
咱先来看个具体的例子吧。

就说有一堆任务,还有一堆人,要把这
些任务分配给这些人,怎么分才能最合理呢?这时候匈牙利算法就闪
亮登场啦!
第一步,咱得弄个表格出来,把任务和人之间的关系都给标上。


如说,这个人干这个任务合适不合适呀,合适就标个高分,不合适就
标个低分。

这就好像给他们牵红线似的,得找到最合适的搭配。

然后呢,开始试着给任务找人。

从第一个任务开始,找个最合适的人。

要是这个人还没被别的任务占着,那太好了,直接就配对成功啦!要是已经被占了呢,那就得看看能不能换一换,让大家都更合适。

就好比是跳舞,你得找到最合适的舞伴,跳起来才带劲嘛!要是随
便找个人就跳,那多别扭呀。

这中间可能会遇到一些麻烦,比如好几个人都对同一个任务感兴趣,那可咋办?这就得好好琢磨琢磨啦,得权衡一下,谁更合适。

有时候你会发现,哎呀,怎么这么难呀,怎么都找不到最合适的搭配。

别急别急,慢慢来,就像解一道难题一样,得一点点分析。

咱再说说这算法的奇妙之处。

它就像是一个聪明的红娘,能把最合适的任务和人牵到一起。

你想啊,要是没有它,那咱不得乱点鸳鸯谱呀,那可不行,得把资源都好好利用起来才行呢。

比如说,有五个任务,五个。

匈牙利算法例题

匈牙利算法例题

匈牙利算法例题【最新版】目录1.匈牙利算法简介2.匈牙利算法例题介绍3.匈牙利算法例题解答过程4.匈牙利算法例题解答结果正文一、匈牙利算法简介匈牙利算法(Hungarian algorithm)是一种求解无向图最大匹配问题的经典算法,由匈牙利数学家 MátyásVink 于 1930 年提出。

匈牙利算法采用贪心策略,通过不断迭代寻找图中的匹配点对,最终找到一个最大匹配子图。

它适用于无权无向图,特别是当图中每个顶点的度数为偶数时,它能够保证找到一个完美的匹配。

二、匈牙利算法例题介绍现在,我们通过一个具体的例题来介绍匈牙利算法的应用。

例题:有一个无向图,共有 4 个顶点 A、B、C、D,边数为 6,分别为 AB、AC、AD、BC、BD、CD。

请问这个图的最大匹配数是多少?三、匈牙利算法例题解答过程1.初始化:将所有顶点的度数设为偶数,用 0 表示已匹配的边,用 1 表示未匹配的边。

A: 0 0B: 1 1C: 1 1D: 1 12.寻找匹配点对:从度数为奇数的顶点开始,找到可以匹配的边。

在这个例子中,顶点 A 和 D 的度数为奇数,所以将边 AD 标记为已匹配。

A: 1 0B: 1 1C: 1 1D: 0 13.更新顶点度数:将已匹配的边的度数更新为偶数,未匹配的边的度数减 1。

A: 1 0B: 0 1C: 1 1D: 1 14.重复步骤 2 和 3,直到所有顶点的度数都为偶数。

在这个例子中,最终匹配的边为 AB、AC、AD,所以最大匹配数为 3。

匈牙利算法——精选推荐

匈牙利算法——精选推荐

匈⽛利算法0 - 相关概念0.1 - 匈⽛利算法 匈⽛利算法是由匈⽛利数学家Edmonds于1965年提出,因⽽得名。

匈⽛利算法是基于Hall定理中充分性证明的思想,它是⼆部图匹配最常见的算法,该算法的核⼼就是寻找增⼴路径,它是⼀种⽤增⼴路径求⼆分图最⼤匹配的算法。

0.2 - ⼆分图 若图G的结点集合V(G)可以分成两个⾮空⼦集V1和V2,并且图G的任意边xy关联的两个结点x和y分别属于这两个⼦集,则G是⼆分图。

1 - 基本思想1. 找到当前结点a可以匹配的对象A,若该对象A已被匹配,则转⼊第3步,否则转⼊第2步2. 将该对象A的匹配对象记为当前对象a,转⼊第6步3. 寻找该对象A已经匹配的对象b,寻求其b是否可以匹配另外的对象B,如果可以,转⼊第4步,否则,转⼊第5步4. 将匹配对象b更新为另⼀个对象B,将对象A的匹配对象更新为a,转⼊第6步5. 结点a寻求下⼀个可以匹配的对象,如果存在,则转⼊第1步,否则说明当前结点a没有可以匹配的对象,转⼊第6步6. 转⼊下⼀结点再转⼊第1步2 - 样例解析 上⾯的基本思想看完肯定⼀头雾⽔(很⼤程度是受限于我的表达能⼒),下⾯通过来就匈⽛利算法做⼀个详细的样例解析。

2.1 - 题⽬⼤意 农场主John有N头奶⽜和M个畜栏,每⼀头奶⽜需要在特定的畜栏才能产奶。

第⼀⾏给出N和M,接下来N⾏每⾏代表对应编号的奶⽜,每⾏的第⼀个数值T表⽰该奶⽜可以在多少个畜栏产奶,⽽后的T个数值为对应畜栏的编号,最后输出⼀⾏,表⽰最多可以让多少头奶⽜产奶。

2.1 - 输⼊样例5522532342153125122.2 - 匈⽛利算法解题思路2.2.1 - 构造⼆分图 根据输⼊样例构造如下⼆分图,蓝⾊结点表⽰奶⽜,黄⾊结点表⽰畜栏,连线表⽰对应奶⽜能在对应畜栏产奶。

2.2.2 - 模拟算法流程为结点1(奶⽜)分配畜栏,分配畜栏2(如图(a)加粗红边所⽰)为结点2(奶⽜)分配畜栏,由于畜栏2已经被分配给结点1(奶⽜),所以寻求结点1(奶⽜)是否能够分配别的畜栏,以把畜栏2腾给结点2(奶⽜)。

《管理运筹学》分配问题与匈牙利算法

《管理运筹学》分配问题与匈牙利算法

2019/9/10
第 12页
第4章 整数规划与分配问题
4 5 4 ◎ √
◎ 1 Ø 4
2 ◎ 4 3
3
7
1
Ø



3 4 3 ◎
◎ 1 Ø 5
2 ◎ 4 4
2
6
0
Ø

3 4
◎ 1 2 ◎ 2 6
3 ◎
Ø 5
4 4

Ø

得到4个独立零元素, 所以 最优解矩阵为:

7
8
11
9

-7
运筹学
0 13 11 2
6 0 10 11
0 5 7 4
0 1
4
2

2019/9/10
第 6页
第4章 整数规划与分配问题
运筹学
0 13 11 2
6 0 10 11
0 5 7 4
0
1
4
2

-0 -0 -4 -2
0 13 7 0 6 0 6 9 0 5 3 2 0 1 0 0
2019/9/10
第 11页
第4章 整数规划与分配问题
运筹学
第三步,作最少的直线覆盖所有0元素:
4 5 4 ◎ √
◎ 1 Ø 4
2 ◎ 4 3
3
7
1
Ø



独立零元素的个数m等于最少直线数l,即l=m=3<n=4;
第四步,变换矩阵(bij)以增加0元素:没有被直线覆盖的所有元素中的最小元素为1,然后 打√各行都减去1;打√各列都加上1,得如下矩阵,并转第二步进行试指派:
第4章 整数规划与分配问题

数学建模匈牙利算法

数学建模匈牙利算法

数学建模匈牙利算法
【最新版】
目录
一、匈牙利算法的概念与基本原理
二、匈牙利算法的应用实例
三、匈牙利算法的优缺点
正文
一、匈牙利算法的概念与基本原理
匈牙利算法(Hungarian algorithm)是一种求解二分图最大匹配问题的算法,由匈牙利数学家 Mátyásovszky 于 1937 年首次提出。

该算法的基本思想是:通过不断循环寻找图中的偶数长度路径,并将路径中的顶点依次匹配,直到找不到这样的路径为止。

此时,图中的所有顶点都已匹配,即得到了二分图的最大匹配。

二、匈牙利算法的应用实例
匈牙利算法广泛应用于任务分配、资源调度、数据融合等领域。

下面举一个简单的例子来说明匈牙利算法的应用。

假设有 5 个工人和 8 个任务,每个工人完成不同任务的效率不同。

我们需要为每个任务分配一个工人,使得总效率最大。

可以用一个二分图来表示这个问题,其中顶点分为两类:工人和任务。

边表示任务与工人之间的效率关系。

匈牙利算法可以用来求解这个问题,找到最优的任务分配方案。

三、匈牙利算法的优缺点
匈牙利算法的优点是简单、高效,可以解决二分图的最大匹配问题。

然而,它也存在一些缺点:
1.匈牙利算法只能解决无向图的匹配问题,对于有向图,需要将其转
换为无向图才能使用匈牙利算法。

2.当图中存在环时,匈牙利算法无法找到最大匹配。

这时需要使用其他算法,如 Euclidean algorithm(欧几里得算法)来解决。

3.匈牙利算法在实际应用中可能存在数值稳定性问题,即在计算过程中可能出现精度误差。

匈牙利算法示例

匈牙利算法示例

0 0 0 1 1 0 0 0
15
3 ◎ 2 2
3 ◎ Ø 5 1 ◎ 4 4 6 ◎ Ø 4
得到4个独 立零元素, 所以最优解 矩阵为:
练习:
费 工作 用 人员
A
7
B
5
C
9
D
8
E
11


丙 丁 戊
9
8 7 4
12
5 3 6
7
4 6 7
11
6 9 5
0 13 11 2 6 0 10 11 0 5 7 4 0 1 4 2
4 2
0 13 7 0 6 0 6 9 0 5 3 2 0 1 0 0
Ø 0 0 13 7 ◎ 6 0 6 9 ◎ ◎ 0 5 3 2 ◎ Ø 0 0 1 0 Ø
0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0
例二、 有一份中文说明书,需译成英、日、德、俄四种 文字,分别记作A、B、C、D。现有甲、乙、丙、丁四 人,他们将中文说明书译成不同语种的说明书所需时 间如下表所示,问如何分派任务,可使总时间最少?
任务
人员
例一:
任务
人员
A 2
10 9 7
B 15
4 14 8
C 13
14 16 11
D 4
15 13 9

乙 丙 丁
2 10 9 7
15 13 4 4 14 15 14 16 13 8 11 9
2 4
9
7
0 13 11 2 6 0 10 11 0 5 7 4 0 1 4 2
2 2 4 4 ◎ 0

运筹学指派问题的匈牙利法

运筹学指派问题的匈牙利法

运筹学课程设计指派问题的匈牙利法专业:姓名:学号:1.算法思想:匈牙利算法的基本思想是修改效益矩阵的行或列,使得每一行或列中至少有一个为零的元素,经过修正后,直至在不同行、不同列中至少有一个零元素,从而得到与这些零元素相对应的一个完全分配方案。

当它用于效益矩阵时,这个完全分配方案就是一个最优分配,它使总的效益为最小。

这种方法总是在有限步內收敛于一个最优解。

该方法的理论基础是:在效益矩阵的任何行或列中,加上或减去一个常数后不会改变最优分配。

2.算法流程或步骤:1.将原始效益矩阵C的每行、每列各元素都依次减去该行、该列的最小元素,使每行、每列都至少出现一个0元素,以构成等价的效益矩阵C’。

2.圈0元素。

在C’中未被直线通过的含0元素最少的行(或列)中圈出一个0元素,通过这个0元素作一条竖(或横)线。

重复此步,若这样能圈出不同行不同列的n个0元素,转第四步,否则转第三步。

3.调整效益矩阵。

在C’中未被直线穿过的数集D中,找出最小的数d,D中所有数都减去d,C’中两条直线相交处的数都加的d。

去掉直线,组成新的等价效益矩阵仍叫C’,返回第二步。

X=0,这就是一种最优分配。

最低总4.令被圈0元素对应位置的X ij=1,其余ij耗费是C中使X=1的各位置上各元素的和。

ij算法流程图:3.算法源程序:#include<iostream.h>typedef struct matrix{float cost[101][101];int zeroelem[101][101];float costforout[101][101];int matrixsize;int personnumber;int jobnumber;}matrix;matrix sb;int result[501][2];void twozero(matrix &sb);void judge(matrix &sb,int result[501][2]);void refresh(matrix &sb);void circlezero(matrix &sb);matrix input();void output(int result[501][2],matrix sb);void zeroout(matrix &sb);matrix input(){matrix sb;int m;int pnumber,jnumber;int i,j;float k;char w;cout<<"指派问题的匈牙利解法:"<<endl;cout<<"求最大值,请输入1;求最小值,请输入0:"<<endl;cin>>m;while(m!=1&&m!=0){cout<<"请输入1或0:"<<endl;cin>>m;}cout<<"请输入人数(人数介于1和100之间):"<<endl;cin>>pnumber;while(pnumber<1||pnumber>100){cout<<"请输入合法数据:"<<endl;cin>>pnumber;}cout<<"请输入工作数(介于1和100之间):"<<endl;cin>>jnumber;while(jnumber<1||jnumber>100){cout<<"请输入合法数据:"<<endl;cin>>jnumber;}cout<<"请输入"<<pnumber<<"行"<<jnumber<<"列的矩阵,同一行内以空格间隔,不同行间以回车分隔,以$结束输入:\n";for(i=1;i<=pnumber;i++)for(j=1;j<=jnumber;j++){cin>>sb.cost[i][j];sb.costforout[i][j]=sb.cost[i][j];}cin>>w;if(jnumber>pnumber)for(i=pnumber+1;i<=jnumber;i++)for(j=1;j<=jnumber;j++){sb.cost[i][j]=0;sb.costforout[i][j]=0;}else{if(pnumber>jnumber)for(i=1;i<=pnumber;i++)for(j=jnumber+1;j<=pnumber;j++){sb.cost[i][j]=0;sb.costforout[i][j]=0;}}sb.matrixsize=pnumber;if(pnumber<jnumber)sb.matrixsize=jnumber;sb.personnumber=pnumber;sb.jobnumber=jnumber;if(m==1){k=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]>k)k=sb.cost[i][j];for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=k-sb.cost[i][j];}return sb;}void circlezero(matrix &sb){int i,j;float k;int p;for(i=0;i<=sb.matrixsize;i++)sb.cost[i][0]=0;for(j=1;j<=sb.matrixsize;j++)sb.cost[0][j]=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]==0){sb.cost[i][0]++;sb.cost[0][j]++;sb.cost[0][0]++;}for(i=0;i<=sb.matrixsize;i++)for(j=0;j<=sb.matrixsize;j++)sb.zeroelem[i][j]=0;k=sb.cost[0][0]+1;while(sb.cost[0][0]<k){k=sb.cost[0][0];for(i=1;i<=sb.matrixsize;i++){if(sb.cost[i][0]==1){for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0)break;sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;if(sb.cost[0][j]>0)for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][j]==0&&sb.zeroelem[p][j]==0){sb.zeroelem[p][j]=2;sb.cost[p][0]--;sb.cost[0][j]--;sb.cost[0][0]--;}}}for(j=1;j<=sb.matrixsize;j++){if(sb.cost[0][j]==1){for(i=1;i<=sb.matrixsize;i++)if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0)break;sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;if(sb.cost[i][0]>0)for(p=1;p<=sb.matrixsize;p++)if(sb.cost[i][p]==0&&sb.zeroelem[i][p]==0){sb.zeroelem[i][p]=2;sb.cost[i][0]--;sb.cost[0][p]--;sb.cost[0][0]--;}}}}if(sb.cost[0][0]>0)twozero(sb);elsejudge(sb,result);}void twozero(matrix &sb){int i,j;int p,q;int m,n;float k;matrix st;for(i=1;i<=sb.matrixsize;i++)if(sb.cost[i][0]>0)break;if(i<=sb.matrixsize){for(j=1;j<=sb.matrixsize;j++){st=sb;if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0){sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;for(q=1;q<=sb.matrixsize;q++)if(sb.cost[i][q]==0&&sb.zeroelem[i][q]==0){sb.zeroelem[i][q]=2;sb.cost[i][0]--;sb.cost[0][q]--;sb.cost[0][0]--;}for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][j]==0&&sb.zeroelem[p][j]==0){sb.zeroelem[p][j]=2;sb.cost[p][0]--;sb.cost[0][j]--;sb.cost[0][0]--;}k=sb.cost[0][0]+1;while(sb.cost[0][0]<k){k=sb.cost[0][0];for(p=i+1;p<=sb.matrixsize;p++){if(sb.cost[p][0]==1){for(q=1;q<=sb.matrixsize;q++)if(sb.cost[p][q]==0&&sb.zeroelem[p][q]==0)break;sb.zeroelem[p][q]=1;sb.cost[p][0]--;sb.cost[0][q]--;sb.cost[0][0]--;for(m=1;m<=sb.matrixsize;m++)if(sb.cost[m][q]=0&&sb.zeroelem[m][q]==0){sb.zeroelem[m][q]=2;sb.cost[m][0]--;sb.cost[0][q]--;sb.cost[0][0]--;}}}for(q=1;q<=sb.matrixsize;q++){if(sb.cost[0][q]==1){for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][q]==0&&sb.zeroelem[p][q]==0)break;sb.zeroelem[p][q]=1;sb.cost[p][q]--;sb.cost[0][q]--;sb.cost[0][0]--;for(n=1;n<=sb.matrixsize;n++)if(sb.cost[p][n]==0&&sb.zeroelem[p][n]==0){sb.zeroelem[p][n]=2;sb.cost[p][0]--;sb.cost[0][n]--;sb.cost[0][0]--;}}}}if(sb.cost[0][0]>0)twozero(sb);elsejudge(sb,result);}sb=st;}}}void judge(matrix &sb,int result[501][2]){int i,j;int m;int n;int k;m=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1)m++;if(m==sb.matrixsize){k=1;for(n=1;n<=result[0][0];n++){for(i=1;i<=sb.matrixsize;i++){for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1)break;if(i<=sb.personnumber&&j<=sb.jobnumber)if(j!=result[k][1])break;k++;}if(i==sb.matrixsize+1)break;elsek=n*sb.matrixsize+1;}if(n>result[0][0]){k=result[0][0]*sb.matrixsize+1;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1){result[k][0]=i;result[k++][1]=j;}result[0][0]++;}}else{refresh(sb);}}void refresh(matrix &sb){int i,j;float k;int p;k=0;for(i=1;i<=sb.matrixsize;i++){for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1){sb.zeroelem[i][0]=1;break;}}while(k==0){k=1;for(i=1;i<=sb.matrixsize;i++)if(sb.zeroelem[i][0]==0){sb.zeroelem[i][0]=2;for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==2){sb.zeroelem[0][j]=1;}}for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]==1){sb.zeroelem[0][j]=2;for(i=1;i<=sb.matrixsize;i++)if(sb.zeroelem[i][j]==1){sb.zeroelem[i][0]=0;k=0;}}}}p=0;k=0;for(i=1;i<=sb.matrixsize;i++){if(sb.zeroelem[i][0]==2){for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]!=2)if(p==0){k=sb.cost[i][j];p=1;}else{if(sb.cost[i][j]<k)k=sb.cost[i][j];}}}}for(i=1;i<=sb.matrixsize;i++){if(sb.zeroelem[i][0]==2)for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=sb.cost[i][j]-k;}for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]==2)for(i=1;i<=sb.matrixsize;i++)sb.cost[i][j]=sb.cost[i][j]+k;}for(i=0;i<=sb.matrixsize;i++)for(j=0;j<=sb.matrixsize;j++)sb.zeroelem[i][j]=0;circlezero(sb);}void zeroout(matrix &sb){int i,j;float k;for(i=1;i<=sb.matrixsize;i++){k=sb.cost[i][1];for(j=2;j<=sb.matrixsize;j++)if(sb.cost[i][j]<k)k=sb.cost[i][j];for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=sb.cost[i][j]-k;}for(j=1;j<=sb.matrixsize;j++){k=sb.cost[1][j];for(i=2;i<=sb.matrixsize;i++)if(sb.cost[i][j]<k)k=sb.cost[i][j];for(i=1;i<=sb.matrixsize;i++)sb.cost[i][j]=sb.cost[i][j]-k;}}void output(int result[501][2],matrix sb) {int k;int i;int j;int p;char w;float v;v=0;for(i=1;i<=sb.matrixsize;i++){v=v+sb.costforout[i][result[i][1]];}cout<<"最优解的目标函数值为"<<v;k=result[0][0];if(k>5){cout<<"解的个数超过了限制."<<endl;k=5;}for(i=1;i<=k;i++){cout<<"输入任意字符后输出第"<<i<<"种解."<<endl;cin>>w;p=(i-1)*sb.matrixsize+1;for(j=p;j<p+sb.matrixsize;j++)if(result[j][0]<=sb.personnumber&&result[j][1]<=sb.jobnumber)cout<<"第"<<result[j][0]<<"个人做第"<<result[j][1]<<"件工作."<<endl;}}void main(){result[0][0]=0;sb=input();zeroout(sb);circlezero(sb);output(result,sb);}4. 算例和结果:自己运算结果为:->⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡3302102512010321->⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡330110241200032034526635546967562543----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡可以看出:第1人做第4件工作;第2人做第1件工作;第3人做第3件工作;第4人做第2件工作。

匈牙利算法示例范文

匈牙利算法示例范文

匈牙利算法示例范文匈牙利算法是一种解决二分图最大匹配问题的经典算法,也称为增广路径算法。

它的核心思想是通过不断寻找增广路径来不断增加匹配数,直到无法找到新的增广路径为止。

下面我将通过一个示例来详细介绍匈牙利算法的流程和原理。

假设有一个二分图G=(V,E),其中V={U,V}是图的两个顶点集合,E 是边集合。

我们的目标是找到一个最大的匹配M,即图中不存在更多的边可以加入到匹配中。

首先,我们需要为每个顶点u∈U找到一个能和它相连的顶点v∈V,这个过程称为初始化匹配。

我们可以将所有的顶点u初始化为null,表示还没有和它相连的顶点v。

然后,我们选择一个u∈U的顶点作为起始点,尝试寻找一条增广路径。

增广路径是指一条交替经过未匹配边和已匹配边的路径。

我们从起始点u开始,按照深度优先的方式扩展路径,不断寻找下一个可以加入路径的顶点v。

1. 如果u没有和任何顶点相连,那么说明找到了一条增广路径。

我们将路径上的未匹配边变为已匹配边,已匹配边变为未匹配边,然后返回true,表示找到了一条增广路径。

2. 如果u有和一些顶点v相连,但是v还没有和其他顶点相连,即v的匹配点为null,那么说明找到了一条增广路径。

我们将路径上的未匹配边变为已匹配边,已匹配边变为未匹配边,并将v设置为u的匹配点。

然后返回true,表示找到了一条增广路径。

3. 如果v已经和其他顶点相连,那么我们尝试寻找一条从v的匹配点u'出发的增广路径。

如果找到了一条增广路径,我们将路径上的未匹配边变为已匹配边,已匹配边变为未匹配边,并将v设置为u'的匹配点。

然后返回true,表示找到了一条增广路径。

4. 如果无法找到可行的增广路径,返回false。

通过不断重复上述过程,直到无法找到新的增广路径为止。

此时,我们得到的匹配M就是最大匹配。

下面我们通过一个具体的例子来演示匈牙利算法的运行过程。

假设我们有一个二分图,U={1,2,3},V={4,5,6},边集E={(1,4),(1,5),(2,4),(3,5),(3,6)}。

匈牙利算法——精选推荐

匈牙利算法——精选推荐

二分图最优匹配:对于二分图的每条边都有一个权(非负),要求一种完备匹配方案,使得所有匹配边的权和最大,记做最优完备匹配。

(特殊的,当所有边的权为1时,就是最大完备匹配问题)解二分图最优匹配问题可用穷举的方法,但穷举的效率=n!,所以我们需要更加优秀的算法。

先说一个定理:设M是一个带权完全二分图G的一个完备匹配,给每个顶点一个可行顶标(第i个x顶点的可行标用lx[i]表示,第j个y顶点的可行标用ly[j]表示),如果对所有的边(i,j) in G,都有lx[i]+ly[j]>=w[i,j]成立(w[i,j]表示边的权),且对所有的边(i,j) in M,都有lx[i]+ly[j]=w[i,j]成立,则M是图G的一个最优匹配。

Kuhn-Munkras算法(即KM算法)流程:v(1)初始化可行顶标的值v(2)用匈牙利算法寻找完备匹配v(3)若未找到完备匹配则修改可行顶标的值v(4)重复(2)(3)直到找到相等子图的完备匹配为止KM算法主要就是控制怎样修改可行顶标的策略使得最终可以达到一个完美匹配,首先任意设置可行顶标(如每个X节点的可行顶标设为它出发的所有弧的最大权,Y节点的可行顶标设为0),然后在相等子图中寻找增广路,找到增广路就沿着增广路增广。

而如果没有找到增广路呢,那么就考虑所有现在在匈牙利树中的X节点(记为S集合),所有现在在匈牙利树中的Y节点(记为T 集合),考察所有一段在S集合,一段在not T集合中的弧,取delta = min {l(xi)+l(yj)-w(xi,yj) , | xi in S, yj in not T} 。

明显的,当我们把所有S集合中的l(xi)减少delta之后,一定会有至少一条属于(S, not T)的边进入相等子图,进而可以继续扩展匈牙利树,为了保证原来属于(S,T )的边不退出相等子图,把所有在T 集合中的点的可行顶标增加delta。

随后匈牙利树继续扩展,如果新加入匈牙利树的Y节点是未盖点,那么找到增广路,否则把该节点的对应的X匹配点加入匈牙利树继续尝试增广。

【信息系统项目管理】运筹学匈牙利算法示例

【信息系统项目管理】运筹学匈牙利算法示例
立0元素,就以这n个独立0元素对应解矩阵(xij)中的元 素为1,其余为0,这就得到最优解。找独立0元素,常 用的步骤为:
(1)从只有一个0元素的行(列)开始,给这个0元素加 圈,记作◎ 。然后划去◎ 所在列(行)的其它0元素,记作 Ø ;这表示这列所代表的任务已指派完,不必再考虑 别人了。
(2)给只有一个0元素的列(行)中的0元素加圈,记作 ◎;然后划去◎ 所在行的0元素,记作Ø .
0Ø 13 7 ◎0 6 0◎ 6 9 0◎ 5 3 2 0Ø 1 0◎ Ø0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
例二、 有一份中文说明书,需译成英、日、德、俄四种 文字,分别记作A、B、C、D。现有甲、乙、丙、丁四 人,他们将中文说明书译成不同语种的说明书所需时 间如下表所示,问如何分派任务,可使总时间最少?
第四步:变换矩阵(bij)以增加0元素。 在没有被直线覆盖的所有元素中找出最小元素,然后 打√各行都减去这最小元素;打√各列都加上这最小元 素(以保证系数矩阵中不出现负元素)。新系数矩阵 的最优解和原问题仍相同。转回第二步。
例一:
任务 人员
A
B
C
D

2
15 13
4
乙 10
4
14 15

9
14 16 13
-1 -2
2 0 4 2 4 2 5 0 3 0 4 1 0 1 3 4 0 3 5 1 0 2 3 0 5
2 ◎0 4 2 4 2 5 Ø0 3 ◎0 4 1 ◎0 1 3 4 Ø0 3 5 1 ◎0 2 3 0Ø 5
2 ◎0 4 2 4 √ 2 5 Ø0 3 ◎0 4 1 ◎0 1 3 4 Ø0 3 5 1 √ ◎0 2 3 0Ø 5

匈牙利算法(二分图)

匈牙利算法(二分图)

匈⽛利算法(⼆分图)---------------------------------------------------------------------题材⼤多来⾃⽹络,本篇由神犇整理基本概念—⼆分图⼆分图:是图论中的⼀种特殊模型。

若能将⽆向图G=(V,E)的顶点V划分为两个交集为空的顶点集,并且任意边的两个端点都分属于两个集合,则称图G为⼀个为⼆分图。

匹配:⼀个匹配即⼀个包含若⼲条边的集合,且其中任意两条边没有公共端点。

如下图,图3的红边即为图2的⼀个匹配。

1 最⼤匹配在G的⼀个⼦图M中,M的边集中的任意两条边都不依附于同⼀个顶点,则称M是⼀个匹配。

选择这样的边数最⼤的⼦集称为图的最⼤匹配问题,最⼤匹配的边数称为最⼤匹配数.如果⼀个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。

如果在左右两边加上源汇点后,图G等价于⼀个⽹络流,最⼤匹配问题可以转为最⼤流的问题。

解决此问的匈⽛利算法的本质就是寻找最⼤流的增⼴路径。

上图中的最⼤匹配如下图红边所⽰:2 最优匹配最优匹配⼜称为带权最⼤匹配,是指在带有权值边的⼆分图中,求⼀个匹配使得匹配边上的权值和最⼤。

⼀般X和Y集合顶点个数相同,最优匹配也是⼀个完备匹配,即每个顶点都被匹配。

如果个数不相等,可以通过补点加0边实现转化。

⼀般使⽤KM算法解决该问题。

3 最⼩覆盖⼆分图的最⼩覆盖分为最⼩顶点覆盖和最⼩路径覆盖:①最⼩顶点覆盖是指最少的顶点数使得⼆分图G中的每条边都⾄少与其中⼀个点相关联,⼆分图的最⼩顶点覆盖数=⼆分图的最⼤匹配数;②最⼩路径覆盖也称为最⼩边覆盖,是指⽤尽量少的不相交简单路径覆盖⼆分图中的所有顶点。

⼆分图的最⼩路径覆盖数=|V|-⼆分图的最⼤匹配数;4 最⼤独⽴集最⼤独⽴集是指寻找⼀个点集,使得其中任意两点在图中⽆对应边。

对于⼀般图来说,最⼤独⽴集是⼀个NP完全问题,对于⼆分图来说最⼤独⽴集=|V|-⼆分图的最⼤匹配数。

匈牙利算法基本原理

匈牙利算法基本原理

匈牙利算法基本原理概述匈牙利算法是一种用于解决二分图最大匹配问题的经典算法。

它是由匈牙利数学家Dénes Kőnig在20世纪30年代提出的。

该算法的基本原理是通过不断地寻找增广路径,来不断扩大二分图的匹配,直到无法找到增广路径为止。

二分图在了解匈牙利算法之前,首先要明确什么是二分图。

二分图是指一个图中的顶点可以分为两个不相交的集合,且图中的边仅连接两个不同集合中的顶点。

可以将一个二分图形象地表示为两列顶点,其中一列的顶点与另一列的顶点之间有边相连。

匹配与增广路径在二分图中,匹配是指图中的一组边,使得每个顶点最多与匹配中的一条边相连。

而增广路径是指一条连接未匹配顶点的交替路径,即该路径依次经过匹配边和非匹配边。

增广路径上的非匹配边可以用来改变原有的匹配状态。

匈牙利算法的步骤匈牙利算法的执行过程可以分为以下几个步骤:步骤一:初始化匹配首先,将图中的所有边标记为未匹配状态。

同时初始化一个大小与二分图中顶点个数相同的数组,用于记录每个顶点的匹配状态。

步骤二:寻找增广路径从二分图的一侧选择一个未匹配顶点作为起始点,然后通过深度优先搜索(DFS)或广度优先搜索(BFS)等算法寻找增广路径。

在寻找增广路径的过程中,记录每个顶点的前一个顶点,以便在后续步骤中进行路径的还原和匹配的更新。

步骤三:更新匹配如果找到了增广路径,则将路径上的匹配边和非匹配边进行交替匹配。

即将路径上的匹配边从匹配状态中移除,将路径上的非匹配边加入匹配状态中。

更新完匹配后,继续寻找下一个增广路径。

步骤四:返回结果重复步骤二和步骤三,直到无法找到增广路径为止。

最终得到的匹配即为二分图的最大匹配。

举例说明图的表示方式在实际应用中,二分图的顶点和边可以用矩阵或邻接表的形式表示。

下面是图的一个示例:考虑一个二分图,其中左侧顶点集合为{A,B,C},右侧顶点集合为{X,Y,Z},边集合为{(A,X),(A,Z),(B,Y),(C,X),(C,Y)}. 用邻接表的形式表示如下:A: X ZB: YC: X Y匈牙利算法实现下面是一个简化版的匈牙利算法的伪代码:function HungarianAlgorithm(graph):初始化匹配状态和前一个顶点数组for each 未匹配的顶点 u:if DFS(u):增加匹配数目返回最大匹配数目function DFS(u):for each 与顶点 u 相连的顶点 v:if v 未访问过:标记 v 为已访问if v 为未匹配顶点或者 DFS(v) 不是匹配顶点的前一个顶点:更新匹配状态返回 True返回 False小结匈牙利算法是一种经典的用于解决二分图最大匹配问题的算法。

匈牙利算法 浅析 带例子

匈牙利算法 浅析 带例子

什么是二分图,什么是二分图的最大匹配,二分图的最大匹配有两种求法,第一种是最大流(我在此假设读者已有网络流的知识);第二种就是我现在要讲的匈牙利算法。

这个算法说白了就是最大流的算法,但是它跟据二分图匹配这个问题的特点,把最大流算法做了简化,提高了效率。

匈牙利算法其实很简单,但是网上搜不到什么说得清楚的文章。

所以我决定要写一下。

最大流算法的核心问题就是找增广路径(augment path)。

匈牙利算法也不例外,它的基本模式就是:初始时最大匹配为空while 找得到增广路径do 把增广路径加入到最大匹配中去可见和最大流算法是一样的。

但是这里的增广路径就有它一定的特殊性,下面我来分析一下。

(注:匈牙利算法虽然根本上是最大流算法,但是它不需要建网络模型,所以图中不再需要源点和汇点,仅仅是一个二分图。

每条边也不需要有方向。

)图1是我给出的二分图中的一个匹配:[1,5]和[2,6]。

图2就是在这个匹配的基础上找到的一条增广路径:3->6->2->5->1->4。

我们借由它来描述一下二分图中的增广路径的性质:(1)有奇数条边。

(2)起点在二分图的左半边,终点在右半边。

(3)路径上的点一定是一个在左半边,一个在右半边,交替出现。

(其实二分图的性质就决定了这一点,因为二分图同一边的点之间没有边相连,不要忘记哦。

)(4)整条路径上没有重复的点。

(5)起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。

(如图1、图2所示,[1,5]和[2,6]在图1中是两对已经配好对的点;而起点3和终点4目前还没有与其它点配对。

)(6)路径上的所有第奇数条边都不在原匹配中,所有第偶数条边都出现在原匹配中。

(如图1、图2所示,原有的匹配是[1,5]和[2,6],这两条配匹的边在图2给出的增广路径中分边是第2和第4条边。

而增广路径的第1、3、5条边都没有出现在图1给出的匹配中。

)(7)最后,也是最重要的一条,把增广路径上的所有第奇数条边加入到原匹配中去,并把增广路径中的所有第偶数条边从原匹配中删除(这个操作称为增广路径的取反),则新的匹配数就比原匹配数增加了1个。

2023年运筹学指派问题的匈牙利法实验报告

2023年运筹学指派问题的匈牙利法实验报告

2023年运筹学指派问题的匈牙利法实验报告一、前言运筹学是一门涉及多学科交叉的学科,其主要研究通过数学模型和计算机技术来提高生产和管理效率的方法和技术。

其中,指派问题是运筹学中的重要研究方向之一。

针对指派问题,传统的解决方法是匈牙利法。

本文将基于匈牙利法,通过实验的方法来探讨2023年指派问题的发展。

二、指派问题1.定义指派问题是指在一个矩阵中指定每一行和每一列只选一个数,使得多个行和列没有相同的数,而且总和最小。

2.传统算法匈牙利算法是一种经典的用于解决指派问题的算法。

该算法基于图论的思想,用于寻找最大匹配问题中的最大流。

匈牙利算法的时间复杂度为 $O(n^3)$,但是,该算法仍然被广泛应用于实际问题求解。

三、实验设计1.实验目的本实验旨在探究匈牙利算法在指派问题中的应用以及其发展趋势,同时,通过对比算法运行速度来评估其效率和实用性。

2.实验原材料本实验将采用Python语言来实现匈牙利算法,数据集选取为UCI Machine Learning Repository中的鸢尾花数据集。

3.实验步骤步骤1:导入数据集,并进行数据预处理。

步骤2:计算每个样本在所有类别中的得分,并选取得分最高的类别作为预测结果。

步骤3:使用匈牙利算法对预测结果进行优化,以求得更优的分类方案。

步骤4:对比优化前后的分类结果,评估算法的实用性和效率。

四、实验结果本实验的最终结果表明,匈牙利算法在指派问题中的应用具有很好的效果。

实验数据表明,经过匈牙利算法优化后,分类器的准确率有了显著提高,分类结果更加精确。

同时,通过对比算法运行时间,也发现该算法具有较高的运行速度和效率。

五、实验结论本实验通过大量数据实验表明,匈牙利算法在指派问题中的应用具有很高的效率和精度。

将算法运用到实际生产和管理中,可有效地提高生产效率和管理水平。

但是,由于算法的时间复杂度比较高,因此在实际运用过程中需要合理选择算法,并对算法进行优化,以确保其效率达到最大化。

《运筹学匈牙利法》课件

《运筹学匈牙利法》课件

总结
匈牙利算法的优缺点和适 用范围
匈牙利算法具有较高的精度和效 率,但受数据结构限制,应用对 象有一定局限性。
匈牙利算法的进一步研究 方向
运筹学在日常生活中的重 要性和应用前景
未来可继续深入探究匈牙利算法 和其他优化算法在实际问题中的 应用,完善算法理论和算法应用。
随着科技的不断发展,运筹学在 日常生活中的应用前景越来越广 泛,对提高效率和优化资源分配 具有重要意义。
的权值之和达到最大。
解决方案
匈牙利算法
匈牙利算法是解决二分图匹 配问题最经典的算法之一, 在求解最大权匹配和最小路 径覆盖问题方面都有广泛应 用。
拓展匈牙利算法
拓展匈牙利算法是一种扩展 了匈牙利算法的新算法,可 以有效解决复杂数据结构中 的匹配问题。
Байду номын сангаас
应用案例分析
将匈牙利算法应用于实际问 题的案例分析,深入了解如 何应用该算法求解实际问题, 加深理解和应用。
匈牙利法的目的和意义
匈牙利法可以帮助我们有效解决 二分图匹配问题,例如任务分配、 稳定婚姻问题等。
问题解析
1
最小路径覆盖问题
指在一个有向无环图(DAG)里选出尽
最大权匹配问题
2
可能少的路径,这些路径覆盖了DAG图 上的每个点恰好一次。
是一类用二分图描述的优化问题,给定
一个二分图,找到一个匹配使得匹配边
《运筹学匈牙利法》PPT 课件
运筹学匈牙利法是一种优化算法,用于解决二分图匹配问题。本课件将介绍 匈牙利法的背景、意义、解析以及应用案例分析。
背景介绍
运筹学在实际生活中的应用 匈牙利法的提出背景
运筹学的方法广泛应用于物流、 交通、能源、金融等领域,帮助 优化资源分配,提高效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0
例二、 有一份中文说明书,需译成英、日、德、俄四种 文字,分别记作A、B、C、D。现有甲、乙、丙、丁四 人,他们将中文说明书译成不同语种的说明书所需时 间如下表所示,问如何分派任务,可使总时间最少?
任务
人员
用匈牙利法求解下列指派问题,已知效率矩 阵分别如下:
7 13 15 11
9 10 12 12 16 17 16 14 15 12 15 16
3 8 8 7 6 4 8 4 9 10
2 10 2 2 2 6 9 7 3 9
3 7 5 5 10
第三步:作最少的直线覆盖所有0元素。 (1)对没有◎的行打√号; (2)对已打√号的行中所有含Ø元素的列打√号; (3)再对打有√号的列中含◎ 元素的行打√号;
(4)重复(2),(3)直到得不出新的打√号的行、列为止; (5)对没有打√号的行画横线,有打√号的列画纵线, 这就得到覆盖所有0元素的最少直线数 l 。l 应等于m, 若不相等,说明试指派过程有误,回到第二步(4),另 行试指派;若 l=m < n,须再变换当前的系数矩阵, 以找到n个独立的0元素,为此转第四步。 第四步:变换矩阵(bij)以增加0元素。 在没有被直线覆盖的所有元素中找出最小元素,然后 打√各行都减去这最小元素;打√各列都加上这最小元 素(以保证系数矩阵中不出现负元素)。新系数矩阵 的最优解和原问题仍相同。转回第二步。
4 ◎ 2 3
4 ◎ √ Ø 4 1 ◎ 4 3 √ 7 1 Ø √ 5
3 ◎ 2 2
3 ◎ 1 Ø 5 ◎ 4 4 6 0 Ø 4
3 4 0 1 2 0 2 6
0 1 0 0 0 0 1 0
3 0 0 5 4 4 0 0
28
此问题有多个最优解
◎ 0 1 3 2 0 Ø
Ø 0
3
Ø 0
◎ 0
Ø 0
6 2

2
Ø 0
0 4
2 4
3
◎ 0
3 ◎ 0 3 Ø 0 6
0 Ø 1 3 2 ◎ 0
Ø
0 6 2
3
Ø 0
◎ 0

0 2
Ø 0

0 4
2 4
3
Ø 0
3 ◎ 0 3 Ø 0 6 -1ຫໍສະໝຸດ -22 2 4 4 0
0 4 2 4 5 0 3 0 1 0 1 3 0 3 5 1 2 3 0 5
2 2 4 4 ◎ 0

0 4 2 4 5 Ø 3 ◎ 0 0 1 ◎ 1 3 0 Ø 3 5 1 0 Ø 2 3 0 5
A
6 4 3
B
7 5 1
C
11 9 10
D
2 8 4
甲 乙 丙

5
9
8
2
求解过程如下:
第一步,变换系数矩阵:
6 4 (c ij ) 3 5 7 11 2 2 4 5 9 8 1 10 4 1 9 8 2 2
4 0 2 3
第二步,试指派:
第三步,作最少的直线覆盖所有0元素:
4 ◎ 2 3 4 ◎ √ 1 Ø 4 ◎ 4 3 √ 7 1 Ø √ 5
独立零元素的个数m等于最少直线数l,即l=m=3<n=4; 第四步,变换矩阵(bij)以增加0元素:没有被直线 覆盖的所有元素中的最小元素为1,然后打√各行都减 去1;打√各列都加上1,得如下矩阵,并转第二步进 行试指派:
√ √
√ √ √ √

l =m=4 < n=5
1 2 4 3 ◎ 0

0 3 1 3 6 ◎ 3 Ø 0 0 2 Ø 1 3 0 Ø 2 4 ◎ 0 0 3 3 Ø 5 0
√ √
√ √ √ √
0 1 3 2 0
0 3 0 3 6 0 2 0 2 0 0 3 0 2 3 0 4 4 0 6
(4)若仍有没有划圈的0元素,且同行(列)的0元素至 少有两个,则从剩有0元素最少的行(列)开始,比较这 行各0元素所在列中0元素的数目,选择0元素少的那列 的这个0元素加圈(表示选择性多的要“礼让”选择性 少的)。然后划掉同行同列的其它0元素。可反复进行, 直到所有0元素都已圈出和划掉为止。
(5)若◎ 元素的数目m 等于矩阵的阶数n,那么这指 派问题的最优解已得到。若m < n, 则转入下一步。
匈牙利算法示例
信管网():最专业信息系统项目管理师网站
(二)、解题步骤: 指派问题是0-1 规划的特例,也是运输问题的特例, 当然可用整数规划,0-1 规划或运输问题的解法去求 解,这就如同用单纯型法求解运输问题一样是不合算 的。利用指派问题的特点可有更简便的解法,这就是 匈牙利法,即系数矩阵中独立 0 元素的最多个数等于 能覆盖所有 0 元素的最少直线数。
0 0 0 1 1 0 0 0
15
3 ◎ 2 2
3 ◎ Ø 5 1 ◎ 4 4 6 ◎ Ø 4
得到4个独 立零元素, 所以最优解 矩阵为:
练习:
费 工作 用 人员
A
7
B
5
C
9
D
8
E
11


丙 丁 戊
9
8 7 4
12
5 3 6
7
4 6 7
11
6 9 5
2 2 4 4 ◎ 0

0 4 2 4 5 Ø 3 ◎ 0 0 1 ◎ 1 3 0 Ø 3 5 1 0 Ø 2 3 0 5


√ l =m=4 < n=5
2 2 4 4 ◎ 0

0 4 2 4 5 Ø 3 ◎ 0 0 1 ◎ 1 3 0 Ø 3 5 1 0 Ø 2 3 0 5
5 9 0 1 5 4 0 9 3 7 6 0 -5
4 0 2 3
5 4 0 1 0 4 0 4 3 7 1 0
4 ◎ 2 3
4 ◎ 1 Ø 4 ◎ 4 3 找到 3 个独立零元素 Ø 但 m = 3 < n = 4 7 1 5
第一步:变换指派问题的系数矩阵(cij )为(bij),使 在(bij)的各行各列中都出现0元素,即 (1) 从(cij)的每行元素都减去该行的最小元素; (2) 再从所得新系数矩阵的每列元素中减去该列的最 小元素。
第二步:进行试指派,以寻求最优解。 在(bij)中找尽可能多的独立0元素,若能找出n个独 立0元素,就以这n个独立0元素对应解矩阵(xij)中的元 素为1,其余为0,这就得到最优解。找独立0元素,常 用的步骤为: (1)从只有一个0元素的行(列)开始,给这个0元素加 圈,记作◎ 。然后划去◎ 所在列(行)的其它0元素,记 作Ø ;这表示这列所代表的任务已指派完,不必再考 虑别人了。 (2)给只有一个0元素的列(行)中的0元素加圈,记作 ◎;然后划去◎ 所在行的0元素,记作Ø . (3)反复进行(1),(2)两步,直到尽可能多的0元素都 被圈出和划掉为止。

0 1 3 2 0
0 3 0 3 6 0 2 0 2 0 0 3 0 2 3 0 4 4 0 6
Ø 0 1 3 2 ◎ 0

0 3 0 3 Ø ◎ 6 0 2 Ø 0 Ø ◎ 2 0 0 3 Ø 2 3 ◎ 0 0 Ø 4 4 0 6
9
8 6 11
7 9 8 7 4
5 9 8 11 5 7 12 7 11 9 5 4 6 94 3 6 9 63 6 7 5 11 4
2 2 4 4 0
0 4 3 6 5 0 4 2 1 0 2 5 0 3 6 3 2 3 1 7

0 3 1 3 √ √ 6 ◎ 3 Ø 0 0 2 Ø 1 3 √ 0 √ Ø 2 4 ◎ 0 0 3 3 Ø 5 0
√ √

1 2 4 3 ◎ 0

0 3 1 3 6 ◎ 3 Ø 0 0 2 Ø 1 3 0 0 0 Ø 2 4 ◎ 3 3 Ø 5 0
0 13 11 2 6 0 10 11 0 5 7 4 0 1 4 2
4 2
0 13 7 0 6 0 6 9 0 5 3 2 0 1 0 0
Ø 0 0 13 7 ◎ 6 0 6 9 ◎ ◎ 0 5 3 2 ◎ Ø 0 0 1 0 Ø
例一:
任务
人员
A 2
10 9 7
B 15
4 14 8
C 13
14 16 11
D 4
15 13 9

乙 丙 丁
2 10 9 7
15 13 4 4 14 15 14 16 13 8 11 9
2 4
9
7
0 13 11 2 6 0 10 11 0 5 7 4 0 1 4 2
1 2 4 3 0
0 3 1 3 6 0 3 0 2 0 1 3 0 2 4 0 3 3 0 5
1 2 4 3 0
0 3 1 3 6 0 3 0 2 0 1 3 0 2 4 0 3 3 0 5
1 2 4 3 ◎ 0
相关文档
最新文档