一元一次方程测试题

合集下载

一元一次方程单元测试题(含答案)

一元一次方程单元测试题(含答案)

一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列是一元一次方程的是( ) A .x 2﹣2x ﹣3=0B .x +1=0C .x 2+1x=1D .2x +y =52.(3分)已知方程(a ﹣2)x |a |﹣1+7=0是关于x 的一元一次方程,则a 的值为( )A .2B .﹣2C .±2D .无法确定3.(3分)下列变形正确的是( ) A .由ac =bc ,得a =b B .由x 5=x 5−1,得a =b ﹣1C .由2a ﹣3=a ,得a =3D .由2a ﹣1=3a +1,得a =24.(3分)若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( ) A .1B .﹣1C .5D .﹣55.(3分)若x 3+1与2x −73互为相反数,则m 的值为( )A .34B .43C .−34D .−436.(3分)下列各题中不正确的是( ) A .由5x =3x +1移项得5x ﹣3x =1B .由2(x +1)=x +7去括号、移项、合并同类项得x =5C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3)D .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得 4x ﹣2﹣3x ﹣9=17.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( ) A .x ﹣1=(26﹣x )+2 B .x ﹣1=(13﹣x )+2 C .x +1=(26﹣x )﹣2D .x +1=(13﹣x )﹣28.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x 天,则下列方程正确的是( ) A .x +312+x8=1B .x 12+x +38=1 C .x −312+x8=1D .x 12+x −38=1 9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120B .720+120=6(x +32x )C .6x +6×32x +120=720D .6(x +32x )+120=72010.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x ﹣1与x +2的值相等,则x = . 12.(3分)若2a3x +1与−15x 2x +4的和是单项式,则x 的值为 .13.(3分)若P =2y ﹣2,Q =2y +3,2P ﹣Q =3,则y 的值等于 .14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 . 三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x ); (2)x −13=2x −32+117.(8分)已知方程2﹣3(x +1)=0的解与关于x 的方程x +x2−3k =1﹣2x 的解互为倒数,求(5k +12)3的值.18.(8分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米(3)若两人同时出发,相向而行,则几小时后两人相距10千米22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱(2)当标价总额是多少时甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元一元一次方程单元测试题(含答案)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列是一元一次方程的是( ) A .x 2﹣2x ﹣3=0B .x +1=0C .x 2+1x=1D .2x +y =5【分析】利用一元一次方程的定义判断即可. 【解答】解:x +1=0是一元一次方程, 故选:B .【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.(3分)已知方程(a ﹣2)x |a |﹣1+7=0是关于x 的一元一次方程,则a 的值为( )A .2B .﹣2C .±2D .无法确定【分析】根据一元一次方程的定义,得出|a |﹣1=1,注意a ﹣2≠0,进而得出答案. 【解答】解:由题意得:|a |﹣1=1,a ﹣2≠0, 解得:a =﹣2. 故选:B .【点评】此题主要考查了一元一次方程的定义,正确把握定义得出是解题关键. 3.(3分)下列变形正确的是( ) A .由ac =bc ,得a =b B .由x 5=x 5−1,得a =b ﹣1C .由2a ﹣3=a ,得a =3D .由2a ﹣1=3a +1,得a =2【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A 、由ac =bc ,当c =0时,a 不一定等于b ,错误;B 、由x 5=x5−1,得a =b ﹣5,错误; C 、由2a ﹣3=a ,得a =3,正确; D 、由2a ﹣1=3a +1,得a =﹣2,错误;故选:C .【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理. 4.(3分)若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( ) A .1B .﹣1C .5D .﹣5【分析】把x =1代入方程ax +3x =2得出a +3=2,求出方程的解即可. 【解答】解:把x =1代入方程ax +3x =2得:a +3=2, 解得:a =﹣1, 故选:B .【点评】本题考查了一元一次方程的解和解一元一次方程的应用,解此题的关键是得出关于a 的一元一次方程,难度适中.5.(3分)若x 3+1与2x −73互为相反数,则m 的值为( )A .34B .43C .−34D .−43【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到m 的值. 【解答】解:根据题意得:x 3+1+2x −73=0, 去分母得:m +3+2m ﹣7=0, 解得:m =43,故选:B .【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)下列各题中不正确的是( ) A .由5x =3x +1移项得5x ﹣3x =1B .由2(x +1)=x +7去括号、移项、合并同类项得x =5C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3)D .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得 4x ﹣2﹣3x ﹣9=1 【分析】根据解一元一次方程的步骤依次计算可得.【解答】解:A .由5x =3x +1移项得5x ﹣3x =1,此选项正确;B .由2(x +1)=x +7去括号、移项、合并同类项得x =5,此选项正确;C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3),此选项正确; D .由2(2x ﹣1)﹣3(x ﹣3=1)去括号得 4x ﹣2﹣3x +9=1,此选项错误;故选:D .【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.7.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( ) A .x ﹣1=(26﹣x )+2 B .x ﹣1=(13﹣x )+2 C .x +1=(26﹣x )﹣2D .x +1=(13﹣x )﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm =长方形的宽+2cm ,根据此列方程即可.【解答】解:设长方形的长为xcm ,则宽是(13﹣x )cm ,根据等量关系:长方形的长﹣1cm =长方形的宽+2cm ,列出方程得:x ﹣1=(13﹣x )+2,故选:B .【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x 天,则下列方程正确的是( ) A .x +312+x 8=1B .x 12+x +38=1 C .x −312+x8=1D .x 12+x −38=1 【分析】设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天,根据甲完成的部分+乙完成的部分=整个工作量(单位1),即可得出关于x 的一元一次方程,此题得解.【解答】解:设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天, 根据题意得:x 12+x −38=1.故选:D .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120 B .720+120=6(x +32x ) C .6x +6×32x +120=720D .6(x +32x )+120=720【分析】设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,根据相遇问题的数量关系建立方程求出其解即可.【解答】解:设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,由题意,得:120+6(x +32x )=720,故列方程错误的是B . 故选:B .【点评】本题考查了由实际问题抽象一元一次方程的知识,解答本题的关键是仔细审题,根据等量关系建立方程.10.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上【分析】要想知道乙追到甲时在哪一边上,则必须知道它们追上时所行的路程,那么只要求出追到时的时间,就可求出路程.根据路程计算沿正方形所走的圈数,就可知道在哪一边上.【解答】解:设乙第一次追上甲时,所用的时间为x ,依题意得:100x =60x +3×80 解得:x =6∴乙第一次追上甲时所行走的路程为:6×100=600m ∵正方形边长为80m ,周长为320m ,∴当乙第一次追上甲时,将在正方形AB 边上.故选:B.【点评】解决此题的关键是要求出它们相遇时的路程,然后根据路程求沿正方形所行的圈数,即可知道在哪一边上.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x﹣1与x+2的值相等,则x= 3 .【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣1=x+2,移项合并得:x=3,故答案为:3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.(3分)若2a3x+1与−15x2x+4的和是单项式,则x的值为 3 .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求解.【解答】解:根据题意得:3x+1=2x+4,解得:x=3.故答案是:3.【点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(3分)若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于 5 .【分析】把P、Q的值代入2P﹣Q=3,得关于y的一次方程,求解方程即可.【解答】解:把P=2y﹣2,Q=2y+3,代入2P﹣Q=3,得2(2y﹣2)﹣(2y+3)=3整理,得2y=10,所以y=5.故答案为:5【点评】本题考查了一元一次方程的解法.把P、Q的值代入得关于y的方程是解决本题的关键.14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为x−1413=x+2614【分析】设春游的总人数是x人,根据大巴的载客量做为等量关系列方程求解.【解答】解:设春游的总人数是x 人.根据题意所列方程为x −1413=x +2614, 故答案为:x −1413=x +2614. 【点评】本题考查理解题意的能力,因为同样的大巴,所以以大巴的载客量做为等量关系列方程求解.15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 1710元 .【分析】设该照相机的原售价是x 元,从而得出售价为,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x 元,根据题意得:=1200×(1+14%),解得:x =1710.答:该照相机的原售价是1710元.故答案为:1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x );(2)x −13=2x −32+1 【分析】(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)去括号得,5+3x =10﹣2x ,移项得,3x +2x =10﹣5,合并同类项得,5x =5,系数化为1得,x =1;(2)去分母得,2(x ﹣1)=3(2x ﹣3)+6,去括号得,2x ﹣2=6x ﹣9+6,移项得,2x ﹣6x =﹣9+6+2,合并同类项得,﹣4x =﹣1,系数化为1得,x =14;【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.17.(8分)已知方程2﹣3(x +1)=0的解与关于x 的方程x +x 2−3k =1﹣2x 的解互为倒数,求(5k +12)3的值.【分析】先求出第一个方程的解得x =−13,再根据倒数的定义把x =﹣3代入第二个方程,求出5k =﹣17,然后代入(5k +12)3,计算即可.【解答】解:解方程2﹣3(x +1)=0得:x =−13,−13的倒数为﹣3,把x =﹣3代入方程x +x 2−3k =1﹣2x 得:x −32−3k =1+6, 解得:5k =﹣17,则(5k +12)3=(﹣17+12)3=﹣125.【点评】本题考查了倒数、解一元一次方程、代数式求值,能得出关于k 的方程是解此题的关键.18.(8分)已知x =﹣2是方程2x ﹣|k ﹣1|=﹣6的解,求k 的值.【分析】将x =﹣2代入原方程,即可得出关于k 的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:∵x =﹣2是方程2x ﹣|k ﹣1|=﹣6的解,∴代入得:﹣4﹣|k ﹣1|=﹣6,∴|k ﹣1|=2,∴k ﹣1=2或k ﹣1=﹣2,解得:k =3或k =﹣1.答:k 的值是3或﹣1.【点评】本题考查了一元一次方程的解,将x =﹣2代入原方程,找出关于k 的含绝对值符号的一元一次方程是解题的关键.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x =4和3x +6=0为“兄弟方程”.(1)若关于x 的方程5x +m =0与方程2x ﹣4=x +1是“兄弟方程”,求m 的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n ,求n 的值;(3)若关于x 的方程2x +3m ﹣2=0和3x ﹣5m +4=0是“兄弟方程”,求这两个方程的解.【分析】(1)根据新定义运算法则解答;(2)根据“兄弟方程”的定义和已知条件得到:n ﹣(﹣n )=8或﹣n ﹣n =8,解方程即可;(3)求得方程2x +3m ﹣2=0和3x ﹣5m +4=0解,然后由“兄弟方程”的定义解答.【解答】解:(1)方程2x ﹣4=x +1的解为x =5,将x =﹣5代入方程5x +m =0得m =25;(2)另一解为﹣n .则n ﹣(﹣n )=8或﹣n ﹣n =8,∴n =4或n =﹣4;(3)方程2x +3m ﹣2=0的解为x =−3x +22, 方程3x ﹣5m +4=0的解为x =5x −43, 则−3x +22+5x −43=0, 解得m =2.所以,两解分别为﹣2和2.【点评】考查了一元一次方程的解的定义,解题的关键是掌握“兄弟方程”的定义.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人【分析】(1)根据旅行社收费标准,分别求出两家旅行社所需的费用,再比较即可;(2)设带领的小孩有x人,根据这两家旅行社的总费用一样列出方程,求解即可.【解答】解:(1)由题意可得,甲旅行社所需费用为:3×200+×200×2=880(元),乙旅行社所需费用为:×(3+2)×200=800(元),故选择乙旅行社更优惠;(2)设带领的小孩有x人,根据题意得3×200+×200x=×(3+x)×200,解得x=6.答:如果这两家旅行社的总费用一样,那么带领的小孩有6人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米(3)若两人同时出发,相向而行,则几小时后两人相距10千米【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b +20b ﹣70|=10,解得,b 1=167,b 2=127, 答:127小时或167小时后两人相距10千米. 【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗说明理由(3)若把n 块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n 所满足的条件.【分析】(1)设用x 块金属原料加工螺栓,则用(20﹣x )块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求解即可;(2)设用y 块金属原料加工螺栓,则用(26﹣y )块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求出的方程的解如果是正整数,那么加工的螺栓和螺帽恰好配套;否则不能配套;(3)设用a 块金属原料加工螺栓,则用(n ﹣a )块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.根据2×螺栓的个数=螺帽的个数列出方程,得出n 与a 的关系,进而求解即可.【解答】解:(1)设用x 块金属原料加工螺栓,则用(20﹣x )块金属原料加工螺帽. 由题意,可得2×3x =4(20﹣x ),解得x =8,则3×8=24.答:最多能加工24个这样的零件;(2)若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y 块金属原料加工螺栓,则用(26﹣y )块金属原料加工螺帽.由题意,可得2×3y =4(26﹣y ),解得y=.由于不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3)设用a块金属原料加工螺栓,则用(n﹣a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n﹣a),解得a=25 n,则n﹣a=35 n,即n所满足的条件是:n是5的正整数倍的数.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系:2×螺栓的个数=螺帽的个数是解题的关键.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱(2)当标价总额是多少时甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是300元时,甲超市实付款=购物标价×,乙超市实付款=300×,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可;(3)首先计算出两次购物标价,然后根据优惠方案即可求解.【解答】解:(1)当一次性购物标价总额是300元时,甲超市实付款=300×=264(元),乙超市实付款=300×=270(元);(2)设当标价总额是x元时,甲、乙超市实付款一样.当一次性购物标价总额是500元时,甲超市实付款=500×=440(元),乙超市实付款=500×=450(元),∵440<450,∴x>500.根据题意得=500×+(x﹣500),解得x=625.答:当标价总额是625元时,甲、乙超市实付款一样;(3)小明两次到乙超市分别购物付款198元和466元,第一次购物付款198元,购物标价可能是198元,也可能是198÷=220元,第二次购物付款466元,购物标价是(466﹣450)÷+500=520元,两次购物标价之后是198+520=718元,或220+520=740元.若他只去一次该超市购买同样多的商品,实付款500×+(718﹣500)=元,或500×+(740﹣500)=642元,可以节省198+466﹣=元,或198+466﹣642=22元.答:若他只去一次该超市购买同样多的商品,可以节省或22元.【点评】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.¥。

一元一次方程试题总集(含答案)

一元一次方程试题总集(含答案)

一元一次方程测试题A卷一、填空题1若2a与1 a互为相反数,则a等于___________2、y 1是方程2 3 m y 2y的解,则m _____________3、方程2 - x 4,则x34、如果3x2a 2 4 0是关于x的一元一次方程,那么 a ______(a b)h5、在等式S J 丄中,已知S 800, a=30, h 20,则b _______________26、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发 1.5小时后相遇,列方程可得____________7、将1000元人民币存入银行2年,年利息为5 %,到期后,扣除20%的利息税,可得取回本息和为___________ 元。

9、某品牌的电视机降价10 %后每台售价为2430元,则这种彩电的原价为每台__________ 元。

10、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒_____ 升水。

二、选择题1、卜列方程中,是兀一次方程的是()A2x x3x x 2 B、x 4 x0 C、x y 1 D、1 x 0y2、与方程x12x的解相同的方程是()A 、x 212x B、x 2x 1 C、x 2x 1x 1D、x23、若关于x的方程mx m 2 m 3 0是一元一次方程,则这个方程的解是()A、x 0B、x 3C、x 3D、x 24、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x辆客车,可列方程为()A、44x 328 64B、44x 64 328 c、328 44x 64 D、328 64 44x5、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:1 1 52y y ,怎么呢?小明想了一想,便翻看书后答案,此方程的解是y2 2 3很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是()B、2x x 17、把方程1去分母后,正确的是()。

一元一次方程单元试题4套

一元一次方程单元试题4套

一元一次方程试题1一、选择题1.下列方程中,属于一元一次方程的是( ) A.0127=+yB.082=+y xC.103=zD.0232=-+x x2.已知ax=ay ,下列等式中成立的是( ) A .x=y B.ax+1=ay-1 C .ax=-ay D.3-ax=3-ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40% B.20% C25% D.15% 4.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )A .a 米 B .(a +60)米 C .60a 米 D .(60+2a)米 5.解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。

A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是( ) A .10 B .52 C .54 D .567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ) A .x -1=5(1.5x ) B .3x +1=50(1.5x ) C .3x -1=(1.5x ) D .180x +1=150(1.5x )8.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( ) A .约700元 B .约773元 C .约736元 D .约865元 9.下午2点x 分,钟面上的时针与分针成110度的角,则有( )A . 1105.06+=x xB .1705.06+=x xC .x x 5.01806=-D .505.06+=x x10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为( ) A .15% B .17% C .22% D .80%二、填空题11.若x =-9是方程131-=+m x 的解,则m = 。

一元一次方程测试题及答案

一元一次方程测试题及答案

一元一次方程一、选择题1.下列等式变形正确的是( )A.如果s=12ab,那么b=2s aB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my,那么x=y2.已知关于x 的方程432x m -=的解是x m =,则m 的值是( ).A.2 B .-2 C .27 D .-27. 3.关系x 的方程(2k-1)x 2-(2k+1)x+3=0是一元一次方程,则k 值为( ) A.0 B.1 C.12 D.24.已知:当b=1,c=-2时,代数式ab+bc+ca=10,则a 的值为( )A.12B.6C.-6D.-125.下列解方程去分母正确的是( )A.由1132x x --=,得2x-1=3-3x B.由232124x x ---=-,得2(x-2)-3x-2=-4 C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y D.由44153x y +-=,得12x-1=5y+206.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a B.1.12a C.1.12a D.0.81a 7、已知y=1是关于y 的方程2-31(m -1)=2y 的解,则关于x 的方程m (x -3)-2=m 的解是( )A .1 B .6 C .34 D .以上答案均不对 8、一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x 米/分,则所列方程为( )A .)50(2.18)50(15x x -=+B .)50(2.18)50(15x x +=-C .)50(355)50(15x x -=+D .)50(355)50(15x x +=- 9、一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是( )A.54B.27C.72D.4510、某专卖店2007年的营业额统计发现第二个月比第一个月增长10%,第三个月比第二个月减少10%,那么第三个月比第一个月( )A.增加10%B.减少10%C.不增不减D.减少1%二、填空题11. x=3和x=-6中,________是方程x-3(x+2)=6的解.12.若x=-3是方程3(x-a)=7的解,则a=________.13.若代数式213k --的值是1,则k=_________. 14.当x=________时,代数式12x -与113x +-的值相等. 15.5与x 的差的13比x 的2倍大1的方程是__________. 16.若4a-9与3a-5互为相反数,则a 2-2a+1的值为_________.17.三个连续偶数的和为18,设最大的偶数为x,则可列方程______.18、请阅读下列材料:让我们来规定一种运算:bc ad d c ba -=,例如:243525432-=⨯-⨯=按照这种运算的规定,当x=______时,232121=-x x. 三、解答题19.(7分) 解方程:1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦;20. (7分) 解方程:432.50.20.05x x ---=.21. (8分) 已知2y +m=my-m. (1)当m=4时,求y 的值.(2)当y=4时,求m 的值.22. (10分)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米?23. (10分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗?”试列出方程,解答小赵与小王的问题.24.(12分)振华中学在“众志成城,抗震救灾”捐款活动中,甲班比乙班多捐了20%,乙班捐款数比甲班的一半多10元,若乙班捐款m元.(1)列两个不同的含m的代数式表示甲班捐款数.(2)根据题意列出以m为未知数的方程.(3)检验乙班、甲班捐款数数是不是分别为25元和35元.。

一元一次方程测试题及答案

一元一次方程测试题及答案

一元一次方程测试卷、选择题(每小题3分,共36 分)3x — y= 2, X 」—2=0 , -xx2A. 3x —'3 =2x —'2B. 3x —'6 =2x —^23x —'6=2x —d D. 3x —'3 = 2x —d3.方程x -2 =2 -x 的解是(4 .下列两个方程的解相同的是(D.方程 6x -3(5x-2) =5与 6x-15x=3 5. A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。

若经过x 个月后,存钢材相等,则x 是( )B . 2个C .D. 4个2 .解方程 -_1时,去分母正确的是(2 31 .在方程 X 2—2x -3=0中一元一次方程的个数为(C.A. x =1B . X = -1 C. x =2A.方程5x • 3 = 6与方程2x = 4B.方程3x = x • 1与方程2x = 4x -1 1x 十1 C.方程x 0与方程22两厂库A. 3B. 5C. 2D. 46 .某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%该商品的进货价为(A. 80 元B. 85 元C. 90 元D. 95 元7.下列等式变形正确的是()sA.如果S二ab ,那么b ;B.如果x=6,那么x=3aC.如果x - 3 = y - 3 ,那么x - y = 0 ;D.如果mx = my ,那么x = y28、已知:1 - 3m -5有最大值,则方程5m -4 = 3x • 2的解是()7 9 7 9A— B、一C、D、__9 7 9 79 .小山向某商人贷款1万元月利率为6%0, 1年后需还给商人多少钱()A 17200 元,B 16000 元,C 10720 元,D 10600 元;,来电后10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛同时吹灭,发现其中的一支是另一支的一半,停电时间为()小时。

一元一次方程精编测试题

一元一次方程精编测试题
三、解决问题
17.解方程
8x-12( =-4
18.(1)已知 是方程 的根,求代数式 的值.
19.如果方程 的解与方程3x﹣(3a+1)=x+(2a﹣1)的解相同,求式子 的值.
20.一项工程,甲队单独施工需要10天完成,乙队单独施工需要5天完成.现在由甲队先工作1天,剩下的由甲、乙两队合作,还需要几天才能完成任务?
6.关于x的方程 x 1变形正确的是( )
A. x 1B. x 1
C. 10x 100D. 100x 100
7.从-4,-2,-1,1,2,4中选一个数作为k的值,使得关于x的方程 的解为整数,则所有满足条件的k的值的积为( )
A.-32 B.-16C.32D.64
8.小强从家里骑自行车到学校,每小时骑15km,可早到15分钟;每小时骑12km 就会迟到7分钟.问他家到学校的路程是多少千米?设他家到学校的路程是xkm,则可列方程是( )
17.一项工程,A组单独做需要10天完成,B组单独做需要15天完成.若A组先做5天,然后再由A、B两组合做________天,才能完成全部工程的三分之二.
三、解决问题
18.解方程
19.已知关于的方程 与方程4 的解相同,求k的值.
20.某校七年级组织师生爬山,一人一座,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,则少租一辆,且余15个座位.
A.赔了90元 B.赚了90元 C.赚了100元 D.不赔不赚
5.下列方程变形中,正确的是( )
A.方程 ,未知数系数化为1,得x=-1
B.方程3x+5=4x+1,移项,得3x-4x=1+5
C.方程3x-7(x-1)=3-2(x+3),去括号,得3x-7x+7=3-2x-3

一元一次方程测试题(含答案)

一元一次方程测试题(含答案)

一元一次方程测试题(含答案)一、选择题1.对等式x 2=y 3进行变形,则下列等式成立的是( ) A .2x =3y B .3x =2y C .x 3=y 2 D .x =32y 2.如果方程x 2n−5−2=0是关于x 的一元一次方程,则n 的值为( )A .2B .3C .4D .53.下列方程的变形正确的是( )A .x 5+1=x 2,去分母,得2x +1=5xB .5−2(x −1)=x +3,去括号,得5−2x −1=x +3C .5x +3=8,移项,得5x =8+3D .3x =−7,系数化为1,得x =−734.如图①,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即12+3=15.如图①,当y =505时,b 的值为( )A .205B .305C .255D .3155.学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x 人去甲处,则( )A .48=2(42﹣x )B .48+x =2×42C .48﹣x =2(42+x )D .48+x =2(42﹣x )6.方程|x|+|x −2022|=|x −1011|+|x −3033|的整数解共有( )A .1010B .1011C .1012D .20227.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;①一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;①一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.3208.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P,则P的值为()A.21B.24C.27D.36二、填空题9.写出一个以x=−2为解的一元一次方程:(任写一个即可).10.定义运算:a⊗b=a2−2ab,例如3⊗1=32−2×3×1=3,则关于x的方程(−3)⊗x=2的解是.11.已知非负实数a、b、c满足条件:3a+2b+c=4,2a+b+3c=5,设S=5a+4b+7c的最大值为m,最小值为n,则n−m等于.12.学校为“中国共产党建党100周年合唱比赛”印制宣传册,某复印店的收费标准如下:①印制册数不超过100册时,每册2元;①印制册数超过100册但不超过300册时,每册按原价打八折;①印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省..元.三、计算题13.解方程:x+13−x−32=1.14.在数学实践课上,小明在解方程2x−15+1=x+a2时,因为粗心,去分母时方程左边的1没有乘10,从而求得方程的解为x=4,试求a的值及原方程正确的解.四、解答题15.五一前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.求甲、乙两种商品的每件进价分别是多少元?16.某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?17.若|x+3|=6,|y−4|=2,且|x|−|y|≥0,求|x−y|的值.五、综合题18.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3−1|可以理解为数轴上表示3 和 1 的两点之间的距离;|3+1|可以理解为数轴上表示3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为:4-(-3).根据以上阅读材料探索下列问题:(1)数轴上表示3 和9 的两点之间的距离是;数轴上表示 2 和﹣5 的两点之间的距离是;(直接写出最终结果)(2)①若数轴上表示的数x 和﹣2 的两点之间的距离是4,则x 的值为;①若x 为数轴上某动点表示的数,则式子|x+1|+|x−3|的最小值为.答案解析部分1.【答案】B2.【答案】B3.【答案】D4.【答案】A5.【答案】D6.【答案】C7.【答案】C8.【答案】C9.【答案】2x=−4(答案不唯一)10.【答案】−7611.【答案】-212.【答案】76.8或4813.【答案】解:2(x+1)−3(x−3)=62x+2−3x+9=62x−3x=6−2−9−x=−5x=5 14.【答案】解:把x=4代入2(2x−1)+1=5(x+a),可得2×(2×4−1)+1=5(4+a)20+5a=15a=−1把a=−1代入原方程,可得2x−15+1=x−1 22(2x−1)+10=5(x−1) 4x−2+10=5x−54x−5x=−5+2−10−x=−13x=13∴a=−1,x=1315.【答案】解:设乙种商品每件进价为x元.由题意可得,7(x−20)+2x=760解得x=100100−20=80元答:甲商品的每件进价是80元,乙商品的每件进价100元.16.【答案】解:设初一(1)班有x人,则初一(2)班有(x-5)人,初一(3)班有[101-x-(x-5])人.①初一(1)班有20多人,不足30人,①(1)班最多29人,(2)班最多24人,则(3)班最少48人;(1)班最少21人,(2)班最少16人,则(3)班最多64人.根据题意,①当初一(3)班的人数不超过60人时,有15x+15(x −5)+12[101 −x −(x −5)]=1365;解得:x=28.①x −5=23,101 −x −x+5= 50;①当初一(3)班的人数超过60人时,有15x+15(x −5)+10[101 −x −(x −5)]=1365解得:x= −38.①人数不能为负,①这种情况不存在;答:初一(1)班有28人.初一(2)班有23人.初一(3)班有50人.17.【答案】解:由|x+3|=6可知若x+3>0,则有x+3=6,解得x=3,|x|=3若x+3<0,则有-3-x=6,解得x=-9,|x|=9由|y−4|=2可知若y-4>0,则有y-4=2,解得y=6,|y|=6若y-4<0,则有4-y=2,解得y=2,|y|=2①|x|−|y|≥0①当|x|=3时,|y|=2满足条件则|x−y|=|3−2|=1当|x|=9时,|y|=6满足条件则|x−y|=|−9−6|=|−15|=15当|x|=9时,|y|=2满足条件则|x−y|=|−9−2|=|−11|=11综上所述|x−y|的值为1,11,15 18.【答案】(1)6;7(2)-6或2;4。

一元一次方程测试题

一元一次方程测试题

一元一次方程测试卷一、选择题(每小题3分,共30分)1.在方程23=-y x ,021=-+xx ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个2.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x3.方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x4.把方程103.02.017.07.0=--x x 中的分母化为整数,正确的是( ) A.132177=--x x B.13217710=--x x C.1032017710=--x x D.132017710=--x x 5.与方程12x x -=的解相同的方程是( ) A 、212x x -=+B 、21x x =+C 、21x x =-D 、12x x += 6.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A 、0x =B 、3x =C 、3x =-D 、2x =7. 下列等式变形正确的是( )A.如果s=12ab,那么b=2s a; B.如果12x=6,那么x=3 C.如果x-3=y-3,那么x-y=0; D.如果mx=my,那么x=y8、下列解方程去分母正确的是( )A.由1132x x --=,得2x-1=3-3x; B.由232124x x ---=-,得2(x-2)-3x-2=-4 C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y; D.由44153x y +-=,得12x-1=5y+20 9、一个长方形的长是宽的4倍多2厘米,设长为x 厘米,那么宽为( )厘米。

A 、2x -B 、42x -C 、42x -D 、24x - 10. 甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙?若设x 秒后甲追上乙,列出的方程应为( )A.7x=6.5B.7x=6.5(x+2)C.7(x+2)=6.5xD.7(x -2)=6.5x二、填空题(每小题3分,共18分)11.比a 的3倍大5的数是9,列出方程式是__________________。

一元一次方程测试题

一元一次方程测试题

一元一次方程测试题一元一次方程测试题姓名。

学号。

成绩:一、选择题(每题3分,共30分)1.下列方程是一元一次方程的是:A、x+2y=9.B、x2-3x=1.C、1/x-1=3x/2.D、x-1=3x/22.方程2x+a-4=0的解是x=-2,则a等于:A、-8.B、0.C、2.D、83.下列方程变形正确的是:A、方程3x-2=2x+1移项得3x-2x=-1+2B、方程3-x=2-(5x-1),去括号,得3-x=2-5x+1C、方程t=2x-3,未知数系数化为1,得x=1D、方程(-1)/(2x-5)=1化成3x=6.4.解方程(-1)/(2x-5)=2/3时,去分母正确的是:A、3x-3=2x-2.B、3x-6=2x-2.C、3x-6=2x-1.D、3x-3=2x-15.方程x-2=2-x的解是:A、x=1.B、x=-1.C、x=2.D、x=06.下列两个方程的解相同的是:A、方程5x+3=6与方程2x=4B、方程3x=x+1与方程2x=4x-1C、方程x+1/2=2与方程2x-1/5=3D、方程6x-3(5x-2)=5与6x-15x=37.x的2倍比它的5倍少3,列方程得:A、2x=5x+3.B、2x=5x-3.C、3x=5x-3.D、3x=5x+38.某种品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为:A、80元。

B、85元。

C、90元。

D、95元9.小山向某商人贷款1万元月利率为6‰,1年后需还给商人多少钱:A、元。

B、元。

C、元。

D、元10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水:A、3瓶。

B、4瓶。

C、5瓶。

D、6瓶二、填空题(每空3分,共24分)11.如果-3x+2a-1+6=0是一元一次方程,那么a=5/2,方程的解为x=-1.12.若x=-4是方程ax2-6x-8=0的一个解,则a=-1.13.一件进货价为60元的衬衫,提高50%后的标价为90元,八折优惠价为72元。

一元一次方程简单练习测试题

一元一次方程简单练习测试题

一元一次方程练习题(一) 1、2x-3=-2????????? ? ?2、1-(2x+3)= -317、25211x x =-- 18、9x-6-18-x=2x 19.2(x-2)+2=-4 20.(x-1)+(x-2)=-3一元一次方程练习题(三)1.今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可列方程 。

2. 如果21m x -+8=0是一元一次方程,则m= 。

3. 若3x -的倒数等于12,则x-1= 。

4. 如果方程340x +=与方程3418x k +=是同解方程,则k= 。

5. 若52x +与29x -+是相反数,则x-2的值为 。

6. 一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.7. 有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 升水。

8. 小李在解方程5a-x=13(x 为未知数)时,误将-x 看+x?,解得方程的解x=-2,则原方程的解为___________________________.9.单项式-2x a-1与12 x —a+1为同类项则a= . 10. 有一棵树,刚移栽时,树高为2m ,假设以后平均每年长0.3m ,几年后树高为5m 11. 环形跑道一周长400m ,沿跑道跑多少周,可以跑3000m?12. 国庆期间, “重客隆”綦江店搞促销活动,小军买了一件衣服,按8折销售的售价为88元,问这件衣服的原价是多少元13. 甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝14. x 取什么数时,3x-2的是x-4的相反数?15. 某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件16.甲、乙两车分别从相距360千米的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?。

一元一次方程测试(含经典解析)

一元一次方程测试(含经典解析)

一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:.11.计算:(1)计算:(2)解方程:13.解方程:(1)(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3 18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).30.解方程:.参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.析:解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.解一元一次方程.考点:专计算题.题:分此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)点:专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x ﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1 去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x ﹣﹣3 考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] ====.(3)解方程:4x﹣3(5﹣x)=2 去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15 合并同类项,得7x=17 系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7 (2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k 为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案一、选择题1. 解一元一次方程 \( ax + b = 0 \)(\( a \neq 0 \))时,应将\( x \) 的系数化为1,即解得 \( x = \) 。

A. \( -\frac{b}{a} \)B. \( \frac{b}{a} \)C. \( \frac{a}{b} \)D. \( -\frac{a}{b} \)2. 方程 \( 3x - 5 = 14 \) 的解是:A. \( x = 3 \)B. \( x = 4 \)C. \( x = 5 \)D. \( x = 6 \)3. 如果 \( x \) 满足方程 \( 2x + 4 = 10 \),那么 \( x \) 的值是:A. \( 1 \)B. \( 2 \)C. \( 3 \)D. \( 4 \)二、填空题4. 解方程 \( 5x - 7 = 18 \) 时,首先需要将方程两边同时加上______,然后将两边同时除以______。

5. 方程 \( 3x + 2 = 7x - 1 \) 移项后,合并同类项得到 \( 4x = ______ \)。

三、解答题6. 解方程 \( \frac{2}{3}x - 1 = \frac{1}{2}x + 2 \)。

7. 解方程 \( 2(x - 3) = 3(4x + 1) - 5x \)。

四、应用题8. 某工厂生产一批零件,如果每天生产50个,需要20天完成。

如果每天生产60个,需要多少天完成?答案:1. A2. C3. B4. 7, 55. 36. 解:\( \frac{2}{3}x - \frac{1}{2}x = 2 + 1 \),得\( \frac{1}{6}x = 3 \),\( x = 18 \)。

7. 解:\( 2x - 6 = 12x + 3 - 5x \),得 \( -8x = 9 \),\( x =-\frac{9}{8} \)。

8. 解:设需要 \( x \) 天完成。

一元一次方程测试题

一元一次方程测试题

一元一次方程测试题(总分:100分)一、选择题(每小题3分,共30分)1.已知下列方程:①x -2=2x ;②0.3x =1;③x2=5x -1;④x 2-4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数有( ) A .2个 B .3个 C .4个 D .5个2.下列等式变形正确的是( )A .如果s =12ab ,那么b =2s aB .如果12x =6,那么x =3C .如果x -3=y -3,那么x -y =0D .如果mx =my ,那么x =y3.已知某数x ,若比它的34大1的数的相反数是5,求x.则可列出方程( )A .-34x +1=5B .-34(x +1)=5 C.34x -1=5 D .-(34x +1)=54.方程2x -13=x -2的解是( )A .x =5B .x =-5C .x =2D .x =-25.解方程2x +13-10x +16=1时,去分母后,正确的结果为( )A .4x +1-10x +1=1B .4x +2-10x -1=1C .4x +2-10x -1=6D .4x +2-10x +1=66.某推销员每周工资是250元,再加上该周销售额的8%作为奖金,在一周结束时,他挣得了410元,那么这周推销员的销售额为( )A .800元B .1 200元C .1 600元D .2 000元7.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元8.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是( )A .星期一B .星期二C .星期五D .星期日9.(铜仁中考)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C.5(x+21-1)=6x D.5(x+21)=6x10.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有( )A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共18分)11.如果2x4a-3+6=0是一元一次方程,那么方程的解为 .12.若代数式3a+7的值等于-8,则a的值是 .13.已知|x+4|+(y-3)2=0,则2x+y= .14.在等式3×□-2×□=15的两个方格中分别填入一个数,使这两个数是互为相反数且使等式成立,则第二个方格内应填入的数是 .15.如果定义运算a*b=a(ab+1),则方程(-12)*x=3的解是.16.(漳州中考改编)如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为 .三、解答题(共52分)17.(10分)解下列方程:(1) x-x-12=2-x+23; (2)25(3y-1)=23y-2.18.(10分)a 为何值时,方程3(5x -6)=3-20x 的解也是方程a -103x =2a +10x的解?19.(10分)为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?20.(10分)A 、B 两地果园分别有苹果20吨和30吨,C 、D 两地分别需要苹果15吨和35吨.已知从A 、B 到C 、D 的运价如下表:(1)若从A 果园运到C 地的苹果为x 吨,则从A 果园运到D 地的苹果为 吨,从A 果园将苹果运往D 地的运输费用为 元;(2)用含x的式子表示出总运输费;(要求:列式后,再化简)(3)如果总运输费为545元时,那么从A果园运到C地的苹果为多少吨?21.(12分)为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表(1)如果两所学校分别单独购买服装一共应付5 000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.参考答案一、选择题(每小题3分,共30分)1.B 2.C 3.D 4.A 5.C 6.D 7.A 8.D 9.A 10.C 二、填空题(每小题3分,共18分)11. x =-3. 12. -5. 13. -5. 14. -3. 15. 14. 16. x +23x =75.三、解答题(共52分) 17. (1) x =1.(2) y =-3.18. 解方程3(5x -6)=3-20x ,得x =35.将x =35代入a -103x =2a +10x ,解得a =-8.19. 设小强乘公交车的平均速度是每小时x 千米,则小强乘自家车的平均速度是每小时(x +36)千米.依题意得:2060x =560(x +36).解得x =12. 所以2060x =4.答:从小强家到学校的路程是4千米. 20. (1) (20-x)吨, 12(20-x)元;(2)15x +12(20-x)+10(15-x)+9(35-20+x)=2x +525. (3)由题意得2x +525=545,解得x =10. 答:从A 果园运到C 地的苹果为10吨.21. (1)设甲校x 人,则乙校(92-x)人,依题意,得50x +60(92-x)=5 000.解得x =52. 则92-x =40.答:甲校有52人参加演出,乙校有40人参加演出. (2)乙:92-52=40(人), 甲:52-10=42(人),两校联合:50×(40+42)=4 100(元), 而此时比各自购买节约了:(42×60+40×60)-4 100=820(元); 若两校联合购买了91套只需: 40×91=3 640(元), 此时又比联合购买每套节约: 4 100-3 640=460(元).因此,最省钱的购买方案是两校联合购买91套服装,即比实际人数多买91-(40+42)=9(套).。

一元一次方程单元测试卷(三套含答案)

一元一次方程单元测试卷(三套含答案)

一元一次方程单元测试卷(1)一.选择题(每题3分,共18分) 1.下列等式变形正确的是( ) A.如果s=12ab ,那么b=2saB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my ,那么x=y 2.下列方程中,是一元一次方程的是( )A. 243x x -=B.0x =C.21x y +=D. 11x x-= 3.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x4.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是( ) A. 1,4B. 2,3C. 3,2D. 4,15.某区中学生足球赛共赛8轮(即每队均参赛8 场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了( )场.A.3B.4C.5D.66.某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店( )A.不赚不亏B.赚5元C.亏5元D. 赚10元 二.填空题(每题4分,共24分)7.当=x ________时,代数式24+x 与93-x 的值互为相反数.8.已知 ()0332=-+--m x m m 是关于x 的一元一次方程, 则m=________. 9.在梯形面积公式 S =12(a + b ) h 中, 用 S 、a 、h 表示b ,b = ________, 当16,3,4S a h ===时, b 的值为________.10.若关于x 的方程mx+2=2(m-x )的解是12x =,则m=________.11.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计).12.如图,一个长方形恰被分成六个正方形,其中最小的正方形面积是1平方厘米,则这个长方形的面积为________平方厘米. 三.解方程(每题5分,共30分)13). 5x +3=-7x+9 14). 14)13(2)1(5-=---x x x15).312x +=76x+ 16). 511241263x x x +--=+17).75.001.003.02.02.02.03=+-+xx 18).解关于x 的方程9(2)4(3m x m x m---=四.应用题(每题7分,共28分)19.甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运多少吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?21.某城市按以下规定收取煤气费:每月使用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,超过部分按每立方米1.2元收费。

一元一次方程测试加答案

一元一次方程测试加答案

一元一次方程测试题一、填空题1、已知关于x的一元一次方程ax+b=cx+d无解,则a,b,c,d应满足的条件是。

2、已知x=-2是方程a(x+3)=a+x的解,则a=.3、关于x 的方程mx+4=3x+5的解是x=1,则m=________.4、已知某月有5个星期五,且它们的日期之和是75,那么这个月的6日是星期________.5、甲、乙两商店某种铅笔标价都是一元,学生小王欲购买这种铅笔,发现甲、乙两商店都让利优惠,甲店实行每买5枝送一枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需花___________元二、选择题6、下列说法正确的有()(1)立方根是它本身的数是0和1。

(2) 3是的算术平方根(3 绝对值是它相反数的数是负数。

(4)将方程变形得。

A 0个B 1个C 2个D 4个7、方程组()A. B. C. D.8、一元一次方程2x- 4=0的解是()9、10、方程2x+1=0的解是()A. B. C. 2 D.-211、方程4x-1=3的解是( )A.x=-1 B.x=1 C.x=-2 D.x=212、已知3是关于x的方程2x-a=1的解,则a的值是( )A.-5 B.5 C.7 D.213、已知y1=x+3,y2=6-x,当x取何值时,y1=2y2.A.1 B.3 C. D.14、关于x的方程的解是负数,则a的取值范围是().A.a>3 B.a<3 C.a≥3 D.a≤315、一件衣服标价132元,以9折降价出售,仍可获利10%,则这件衣服进价是(). A.105元 B.106元 C.108元 D.118元三、计算题16、解方程:。

27、在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由。

一元一次方程练习题(含答案)

一元一次方程练习题(含答案)

[标签:标题]篇一:七年级上:一元一次方程50道练习题(含答案)一元一次方程50道练习题(含答案)(1)2x?1?(3)1x?4;(2)0.8x?0.1?0.5x?0.7 2153x?17?xx?4?2x?3?x;(4)?;2236(5)x?12x?3x?132123?1??;(6)[(x?1)?2]??x23232463(7)2[1?11?x110?3x1111(x?)]?(2x?)(8)(2x?3)?(2x?4)?(2x?5)?(2x?6) 33232345 (9)5x+2=7x-8;(10)7?2x?1??3?4x?1??2?3x?2??1?0(11)5x?17?;63(12)7?2y?1??1?1?2y??2?2y?1?;223(13)2x?1x?213?2????;(14)?2x?1??2?x?2 662 (15)1?x1?3x??x2??3?2??2?1?????12;7x?12(5x?1)?8?2(6x?9(17)323)(x?1)?30%?(100?x)?25%?2(19)5x;(21)1?1?1?6??1x?1???3????5??1 ?4??3?2???2??3??16)34[43(12x?14)?8]?32x?1 x?2?18x?x?(18)6922?3x?5?x3?x4?2(20)2(22)2(2x-1)-4(4x-1)-5(2x+1)-19=0((23)3x?13x?5x?410.4x?0.90.1x?0.50.03?0.02x?1???2 (24)??3462(25)3[2(1x?1)?2]?212342?2x3(27)2(0.3x-4)-5(0.2x+3)=9(29)3x-2(x?3)?16?x?22?x?236(31)1917[15(x?23?4)?6]?8}?10.50.20.03(26)2{3[4(5x-1)-8]-20}-7=1(28)2[(x+3)-2(x+1)]-5=0(30)x?3?x?40.150.2?1.6(32)3x=2x+5 (33)2y+3=y-1(34)7y=4-3y(35)-21y=(36)10x+7=12x-5-3x35(37)8x―4+2x= 4x―3 (38).2(3x+4)=6-5(x-7)(39).x2?2x?43?1?5x?126 (41)2(2x?1)0.01?2.5?0.2?20x0.2?3.5(43)4x?1.50.5?5x?0.80.2?1.2?x0.1?3(40)x?12[x?12(x?12)]?2(42)?(x?5)?x?2x?34?x2?3?5(44). x-1?xx?23=6-10.4y?0.9y?50.3?0.2y(45) 0.5-2=0.311(46) 3(x+2)-3(2x-3)=2(2x-3)-2(x+2)1111(47) 3{3[3(3x-2)-2]}-2=0 (48) 5(y+8)―5 =4(2y―7);(49)、233?x2?3x1.8?8x1.3?3x5x?0.4x?(1?)???;(50)、;32361.220.3篇二:七年级数学解一元一次方程练习题及答案七年级数学解一元一次方程练习题及答案(1)(2)(3)(4)(5)(6)(7)(8).(9)5x+2=7x-8;(10);(11)(13);(15)(17)(19)(20).(12)(14)(16)(18)(21)(23)(24)(25)(27)2(0.3x-4)-5(0.2x+3)=9(22)2(2x-1)-4(4x-1)-5(2x+1)-19=0 (26)2{3[4(5x-1)-8]-20}-7=1 (28)2[(x+3)-2(x+1)]-5=0 (29)3x-(30)(31)(32)3x=2x+5(33)2y+3=y-1 (34)7y=4-3y=(36) 10x+7=12x- 5 -3x(35)-(37)8x―4+2x= 4x―3 (38).2(3x+4)=6-5(x-7)(39).(40)(41)(42)(43)(44). x- = -1(45).-=篇三:一元一次方程单元测试题(含答案--高质量)2007年春期七年级教学质量过程监测题(一)数学(一元一次方程)(90分钟完卷)说明:试卷总成绩等级对照表:等级转换说明:一、选择题:(每小题3%,共30%)1.下列方程是一元一次方程的是()A.3x-2=6y+3B.2m+1=3C.2.下列方程变形正确的是()A.由4+x=6得x=6+4B.由3x=-5得x=-C.由1+x=1D.2x-1=x2 x3 51y=0得y=4D.由3-x=-2得x=3+2 411 B.C.-3 D.3 333.方程1-3x=0的解是( ) A.-4.已知某数比它的2倍小3,若设某数为x,则下列列出的方程不正确的是( )A.2x=x+3B.2x-x=3C.x-3=2xD.x=2x-35.如单项式2x与-3x是同类项,则n为()A. 1B. 2C. 3D. 43n?52(n?1)6.当x=2时,代数式ax-2的值为4,则当x=-2时,代数式ax-2的值为( )A.-8B.-4C.2D.87.某商品以八折的优惠价出售一件,少收入15元,那么原来一件的价格为( )A.35元B.60元C.75元D.150元8.植树节到了,某学习小组组织大家种树,如每个人种10棵,则还剩6棵;如每个人种12棵,则缺6棵,设该学习小组共有x人种树,则方程为()A.10x-6=12x+6B.10x+6=12x-6C.xxxx+6=-6D.-6=+6 101210129.小明在解方程3a-2x=11(x是未知数)时,误将-2x看成了+2x,得到的解为x=-2,请聪明的你帮小明算一算,方程正确的解为()A. x=2B.x=0C. x=-3D.x=1b;(2)ax当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程+3x1a=-(x-6)无解,则a的值是( ) 2610.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=A.1B.-1C.±1D.a≠1二、填空题:(每小题3%,共15%)11.请你写出一个解为-2的一元一次方程_______________.12.若2(x+3)和3(1-x)互为相反数,则x=________.13.今年母女二人的年龄和为60岁,10年前母亲的年龄是女儿10年前年龄的7倍,则母亲今年的年龄为_________岁.14.一个角的余角比它的补角的20还多5,则这个角的度数为_________. 715.方程│2x+1│=5的解为x=__________.三.解答题:(每小题5%,共20%)16.解方程:5x-3(x-1)=x+117.解方程:18.解方程:(a-1)·60%=0.1+(a+1)·40%19.已知关于x的方程6x+a=12与方程3x+1=7的解相同,求a的值.四.解答题:(20题,21题每小题5%,22题,23题,24题每小题6%,25题7% ,共35%)20.已知(3m-n+4)2+│2(n-1)-4│=0,求m2-n2的值.21.梯形的面积公式为S=y?2y=+1 63(a?b)h,若已知下底b=25,高h=12,面积S=240,求上底a的值. 222.甲工厂有某种原料120吨,乙工厂有同样原料96吨,现在每天甲厂用去原料15吨,乙厂用去原料9吨,多少天后两厂剩下的原料数量相等?23.大明共有4800元钱,他将一部分钱按活期存了一年,剩下的钱用来买了企业债券,一年后共获利48元,已知活期储蓄的年利率是0.8%,企业债券的年利率是1.1%,则大明存活期和买债券的钱各用了多少元?24.如图是一块在电脑屏幕上出现的长方形色块图,它是由6个不同颜色的正方形组成的,已知中间最小的正方形的边长是1cm,则这块长方形色块图的总面积是多少?25.宏运公司组织一次小组外出活动,8人(司机除外)分别乘两辆小汽车赶往火车站,其中一辆汽车在距离火车站15千米处出了故障,此时离火车停止检票时间还有42分钟,这时可以利用的交通工具只有一辆汽车,或者步行.小汽车连司机在内限乘5人,这辆汽车的平均速度为60千米/时,步行速度为5千米/时,问这8人都能赶上火车吗(中途停车的时间忽略不计)?若能,请你通过计算设计几种可能的方案,并选出最省时的方案,说明理由.一.选择题:1.B;2.D;3.B;4.C;5.C;6.A;7.C;8.B;9.A;10.D.二.填空题:11.略;12.9;13.45;14.470;15.x=2或x=-3三:解答题:16.x=-2;17.y=-8;18.(提示:方程左右两边同乘以10)a=5.519.先解得x=2,后再解得a=0四.解答题:20.m=?21.a=1522.设x天后,两厂原料数量相等,则有120-15x=96-9xx=423.设存活期为x元,则有0.8%x+(4800-x)1.1%=48 x=1600所以存活期1600元,买企业债券3200元.24.(提示:利用长方形的长相等列方程)设第二小的正方形的边长为xcm.则有x+x+(x +1)=(x+2)+(x+3)x=4所以长方形的长为13,宽为11,面积=13×11=143㎝225.能赶上火车,有两种可行方案:①小车在送前4 人的同时,剩下的人也同时步行不停的往前走,小车送到火车站后再返回接剩下的人:设小车在送第一批人到火车站后,返回时用了x小时与步行的人相遇,则有:60x+(18,n=3,m2-n2=?8 39511?5x)=15x=≈12.7 所以共用时间:12.7×2+15≈40.4(分钟)452②先用小汽车把第一批人送到离火车站较近的某一处,让第一批人步行,与此同时第二批人也在步行中;接着小汽车再返回接第二批人,使第二批人与第一批同时到火车站,在整个过程中,每个人不是乘车就是在步行,没有人浪费时间原地不动,所以这样最省时,需37分钟.。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案测试题:1. 解方程:2x + 3 = 72. 解方程:4(x - 5) = 163. 解方程:3(2x - 1) + 2 = 5(x + 3) - 14. 解方程:5x + 3 = 2 - 4x5. 解方程:2(3x + 4) - 5(x - 2) = 146. 解方程:3(2x - 1) = 4(3x + 2) - 17. 解方程:6x - 7 = 5(x - 3)8. 解方程组:2x + 3y = 74x - 2y = 89. 解方程组:3x + y = 4x - 2y = -110. 解方程组:2x + y = 13x - 2y = 4答案及解析:1. 解方程:2x + 3 = 7解:首先,将方程中的常数项移动到等号的右边,得到2x = 7 - 3。

接着,将式子进行计算,得到2x = 4。

最后,将方程两边同时除以2,得到x = 2。

答案:x = 22. 解方程:4(x - 5) = 16解:首先,将括号内的式子进行计算,得到4x - 20 = 16。

接着,将常数项移动到等号的右边,得到4x = 16 + 20。

最后,将方程两边同时除以4,得到x = 9。

答案:x = 93. 解方程:3(2x - 1) + 2 = 5(x + 3) - 1解:首先,将括号内的式子进行计算,得到6x - 3 + 2 = 5x + 15 - 1。

接着,将常数项移动到等号的右边,得到6x - 1 = 5x + 14。

接着,将方程两边同时减去5x,得到x - 1 = 14。

最后,将方程右边的常数项移动到等号左边,得到x = 15。

答案:x = 154. 解方程:5x + 3 = 2 - 4x解:首先,将方程中的常数项移动到等号的右边,得到5x = 2 - 3 + 4x。

接着,将方程两边同时减去4x,得到x = 2 - 3。

最后,将右边的常数项进行计算,并化简方程,得到x = -1。

答案:x = -15. 解方程:2(3x + 4) - 5(x - 2) = 14解:首先,将括号内的式子进行计算,得到6x + 8 - 5x + 10 = 14。

一元一次方程测试题及答案

一元一次方程测试题及答案

一元一次方程测试卷一、选择题(每小题3分,共36分)1.在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个2.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x3.方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x4.下列两个方程的解相同的是( )A .方程635=+x 与方程42=xB .方程13+=x x 与方程142-=x xC .方程021=+x 与方程021=+x D .方程5)25(36=--x x 与3156=-x x 5.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。

若经过x 个月后,两厂库存钢材相等,则x 是( )A .3B .5C .2D .46.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。

A .80元B .85元C .90元D .95元7.下列等式变形正确的是( )A.如果ab s =,那么as b =; B.如果x=6,那么x=3 C.如果x -3=y -3,那么x -y =0; D.如果m x =m y ,那么x =y8、已知:()2135m --有最大值,则方程5432m x -=+的解是( ) 7979 B C D 9797A --、、、、 9.小山向某商人贷款1万元月利率为6‰ ,1年后需还给商人多少钱( )A 17200元,B 16000元,C 10720元,D 10600元;10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程测试题
姓名 学号 成绩
一、选择题(每题3分,共30分)
( )1.下列方程是一元一次方程的是:
A 、x+2y=9 B.x 2-3x=1 C.11=x
D.x x 3121
=-
( )2.方程042=-+a x 的解是2-=x ,则a 等于: A ;8- B . ;0 C ;2 D .8 ( )3.下列方程变形正确的是: A. 方程3x-2=2x+1移项得3x-2x=-1+2
B . 方程()1523--=-x x ,去括号,得;1523--=-x x
C. 方程23
32=t ,未知数系数化为1,得;1=x
D. 方程
15
.02.01=--x
x 化成.63=x ( )4.解方程3
1
12-=-x x 时,去分母正确的是:
A.2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x ( )5.方程x x -=-22的解是:
A .1=x
B .1-=x C.2=x D .0=x ( )6.下列两个方程的解相同的是:
A .方程635=+x 与方程42=x
B .方程13+=x x 与方程142-=x x
C .方程021=+x 与方程
02
1
=+x D .方程5)25(36=--x x 与3156=-x x ( )7.x 的2倍比它的5倍少3,列方程得:
A .352+=x x
B .352-=x x
C .353-=x x
D .3=5+3x x
( )8.某种品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为:
A .80元
B .85元
C .90元
D .95元
( )9.小山向某商人贷款1万元月利率为6‰ ,1年后需还给商人多少钱: A 17200元, B 16000元, C 10720元, D 10600元;
( )10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水:
A. 3瓶
B. 4瓶
C. 5瓶
D. 6瓶 二、填空题(每空3分,共24分)
11.如果06312=+--a x 是一元一次方程,那么=a ,方程的解为=x
12.若4-=x 是方程0862=--x ax 的一个解,则=a 。

13.一件衬衫进货价60元,提高50%标价为______, 八折优惠价为______。

14.若关于x 的方程3x+5=0与3x+2k= -1的解相同,则k= 15.已知关于x 的方程ax+b=c 的解是x=1,则1b a c ---= 16.代数式12+a 与a 21+互为相反数,则=a 。

三、解答题(46分)
17.解下列方程(每题4分,共16分)
(1)10(1)5x -= (2)2(2)3(41)9(1)y y y +--=-
(3)14
2
312-+=-y y (4) 312423(1)32x x x -+-+=-
18.(4分)k取何值时,代数式
31
+
k
值比
21
3+
k
的值小1?
19.(6分)在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?
20.(6分)某商店进了一批商品,提高进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为多少元?
21.(6分)一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由甲、乙两人合做,并且施工期间乙休息6天,问几天完成?
的值是。

(2)比赛规定胜一场积分,负一场积分。

(3)在这次欧州冠军杯其它小组比赛中,能否出现一个球队保持不败战绩(6场比赛都不输),且胜场总积分恰好等于它的平场总积分?。

相关文档
最新文档