辽宁省开原市2017届九年级数学上学期期末考试试题(扫描版)新人教版

合集下载

2016-2017学年最新人教版九年级数学(上册)期末测试卷和答案

2016-2017学年最新人教版九年级数学(上册)期末测试卷和答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±2.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,那么()A.b2﹣4ac≥0 B.b2﹣4ac<0 C.b2﹣4ac>0 D.b2﹣4ac=03.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是()A.10% B.11% C.20% D.22%4.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.85.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+26.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=47.随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.8.下列二次根式中,与是同类二次根式的是()A. B. C. D.9.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB 的长是()A.2cm B.3cm C.4cm D.4cm10.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.211.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.D.OD=DE12.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=﹣1时,函数有最大值 D.当x=﹣2时,函数有最小值二、填空题(本大题共8小题,每小题3分,满分24分)13.方程x(x﹣1)=x的解为.14.抛物线y=x2+8x﹣4与直线x=4的交点坐标是.15.二次函数y=﹣x2+3的开口方向是.16.已知:△ABC中,∠C=90°,AC=5cm,AB=13cm,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.18.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为m.19.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为.20.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长26米,且斜坡AB的坡度为,则河堤的高BE为米.三、解答题(本大题共8小题,满分60分)21.计算:(﹣)﹣1+﹣2+|π﹣sin30°|0.22.已知抛物线y=x2﹣2x﹣8与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.23.如图,一根水平放置着的圆柱形输水管道的横截面如图所示,期中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少米?24.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.25.已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB边上的高,求证:AC•BC=AE•CD.26.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45度.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)27.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)求出cosB的值;(2)用含y的代数式表示AE;(3)求y与x之间的函数关系式,并求出x的取值范围;(4)设四边形DECF的面积为S,求出S的最大值.28.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明:△ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2016-2017学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±【考点】二次函数图象上点的坐标特征.【分析】因为点(a,8)在二次函数y=ax2的图象上,所以(a,8)符合解析式,代入解析式得8=a3,即a=2.【解答】解:把点(a,8)代入解析式得8=a3,即a=2.故选A.2.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,那么()A.b2﹣4ac≥0 B.b2﹣4ac<0 C.b2﹣4ac>0 D.b2﹣4ac=0【考点】抛物线与x轴的交点.【分析】先看二次函数y=ax2+bx+c(a>0)的a的值a>0,故二次函数开口向上;再看二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,故可得此二次函数与x轴没有交点,由此得解.【解答】解:∵a>0,∴二次函数开口向上;又因为二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,所以此二次函数与x轴没有交点,所以b2﹣4ac<0.故选B.3.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是()A.10% B.11% C.20% D.22%【考点】一元二次方程的应用.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年该镇农民人均收入的平均增长率是x,那么由题意可得出1×(1+x)2=1.44,解方程即可求解.【解答】解:设这两年该镇农民人均收入的平均增长率是x,根据题意得:1×(1+x)2=1.44解得x=﹣2.2(不合题意舍去),x=0.2所以这两年该镇农民人均收入的平均增长率是20%.故选C.4.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.8【考点】一元二次方程的应用;三角形三边关系;等腰三角形的性质;勾股定理的逆定理.【分析】本题应先解出x的值,然后讨论是何种三角形,接着对图形进行分析,最后运用三角形的面积公式S=×底×高求出面积.【解答】解:x2﹣16x+60=0⇒(x﹣6)(x﹣10)=0,∴x=6或x=10.当x=6时,该三角形为以6为腰,8为底的等腰三角形.∴高h==2,∴S△=×8×2=8;当x=10时,该三角形为以6和8为直角边,10为斜边的直角三角形.∴S△=×6×8=24.∴S=24或8.故选:B.5.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+2【考点】二次函数的三种形式.【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选:D.6.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=4【考点】二次函数的性质.【分析】可以用配方法将抛物线的一般式写成顶点式,或者用对称轴公式x=.【解答】解:∵抛物线y=x2+x﹣4=(x﹣2)2﹣3,∴顶点横坐标为x=2,对称轴就是直线x=2.故选B.7.随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出全部正面朝上的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况有4种,其中全部正面朝上的情况有1种,则掷两枚硬币,落地后全部正面朝上的概率为.故选D.8.下列二次根式中,与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【解答】解:A、=3,故A错误;B、,故B错误;C、=4,故C正确;D、=4,故D错误.故选:C.9.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB 的长是()A.2cm B.3cm C.4cm D.4cm【考点】垂径定理;相交弦定理.【分析】利用垂径定理和相交弦定理求解.【解答】解:利用垂径定理可知,DP=CP=3,∵P是半径OB的中点.∴AP=3BP,AB=4BP,利用相交弦的定理可知:BP•3BP=3×3,解得BP=,即AB=4.故选D.10.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.2【考点】垂径定理;等边三角形的性质.【分析】当OM⊥AB时值最小.根据垂径定理和勾股定理求解.【解答】解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,根据垂径定理,得:BM=AB=3,根据勾股定理,得:OA==5,即⊙O的半径为5.故选A.11.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.D.OD=DE【考点】圆周角定理;垂径定理.【分析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,,而点D不一定是OE 的中点,故D错误.【解答】解:∵OD⊥AB∴由垂径定理知,点D是AB的中点,有AD=BD,,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=∠AOB,由圆周角定理知,∠C=∠AOB,∴∠ACB=∠AOE,故A、B、C正确,D中点D不一定是OE的中点,故错误.故选D.12.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=﹣1时,函数有最大值 D.当x=﹣2时,函数有最小值【考点】二次函数的最值.【分析】本题考查二次函数最小(大)值的求法.【解答】解:原式可化为y=x2+4x+4﹣11=(x+2)2﹣11,由于二次项系数1>0,故当x=﹣2时,函数有最小值﹣11.故选D.二、填空题(本大题共8小题,每小题3分,满分24分)13.方程x(x﹣1)=x的解为x1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣1)=x,x(x﹣1)﹣x=0,x(x﹣1﹣1)=0,x=0,x﹣1﹣1=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.抛物线y=x2+8x﹣4与直线x=4的交点坐标是(4,44).【考点】二次函数图象上点的坐标特征.【分析】将x=4代入y=x2+8x﹣4中求y,可确定交点坐标.【解答】解:将x=4代入y=x2+8x﹣4中,得y=42+8×4﹣4=44,故交点坐标为(4,44).15.二次函数y=﹣x2+3的开口方向是向下.【考点】二次函数的性质.【分析】根据二次项系数的符号,直接判断开口方向.【解答】解:根据二次函数的性质可知a=﹣<0,所以开口向下.16.已知:△ABC中,∠C=90°,AC=5cm,AB=13cm,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B上.【考点】点与圆的位置关系.【分析】首先根据勾股定理可求出BC的长,在根据点与圆的位置关系判定即可.【解答】解:∵∠C=90°,AC=5cm,AB=13cm,∴BC==12cm,∵以B为圆心,以12cm长为半径作⊙B,∴则C点在⊙B上,故答案为:上.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】概率公式;中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.18.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为30m.【考点】平行线分线段成比例.【分析】因为在同一时刻同一地点任何物体的高与其影子长的比值相同,所以利用题目的参照物就可以直接求出塔高.【解答】解:设塔高为x,根据同一时刻同一地点任何物体的高与其影子长的比值相同.得∴x=30.∴塔高为30m.19.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为6cm,8cm.【考点】一元二次方程的应用;勾股定理.【分析】首先设一直角边长为xcm,则另一直角边长为(14﹣x)cm,由题意得等量关系:两直角边的平方和等于10的平方,进而列出方程,再解方程即可.【解答】解:设一直角边长为xcm,根据勾股定理得:(14﹣x)2+x2=102,解得x1=6,x2=8,故答案为:6cm,8cm.20.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长26米,且斜坡AB的坡度为,则河堤的高BE为24米.【考点】解直角三角形的应用-坡度坡角问题.【分析】由已知斜坡AB的坡度,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.【解答】解:由已知斜坡AB的坡度,得:BE:AE=12:5,设AE=5x,则BE=12x,在直角三角形AEB中,根据勾股定理得:262=5x2+(12x)2,即169x2=676,解得:x=2或x=﹣2(舍去),5x=10,12x=24即河堤高BE等于24米.故答案为:24.三、解答题(本大题共8小题,满分60分)21.计算:(﹣)﹣1+﹣2+|π﹣sin30°|0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣2+3﹣5﹣2+1=﹣6+.22.已知抛物线y=x2﹣2x﹣8与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.【考点】抛物线与x轴的交点.【分析】分别求出抛物线顶点P坐标,与x轴交点A、B坐标,即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣8,令y=0得x2﹣2x﹣8=0,∴x=4或﹣2,∴点A(﹣2,0),点B(4,0),∵y=(x﹣1)2﹣9,∴顶点P(1,﹣9),∴S△ABP=×6×9=27.23.如图,一根水平放置着的圆柱形输水管道的横截面如图所示,期中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少米?【考点】垂径定理的应用;勾股定理.【分析】设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,由垂径定理得出AD的长,在Rt△AOD中利用勾股定理即可求出OA的长.【解答】解:设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,∵AB=0.8m,OD⊥AB,∴AD==0.4m,∵CD=0.2m,∴OD=R﹣CD=R﹣0.2,在Rt△OAD中,OD2+AD2=OA2,即(R﹣0.2)2+0.42=R2,解得R=0.5m.∴2R=2×0.5=1米.答:此输水管道的直径是1米.24.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.【考点】圆心角、弧、弦的关系;全等三角形的判定.【分析】证CD和CE所在的三角形全等即可.【解答】证明:∵OA=OB AD=BE,∴OA﹣AD=OB﹣BE,即OD=OE.在△ODC和△OEC中,,∴△ODC≌△OEC(SAS).∴CD=CE.25.已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB边上的高,求证:AC•BC=AE•CD.【考点】三角形的外接圆与外心;相似三角形的判定与性质.【分析】通过分析易证△BDC∽△ECA,利用相似比得出.即可得出AC•BC=AE•CD.【解答】证明:连接EC.∵AE是⊙O的直径,CD是△ABC中AB边上的高,∴∠ACE=∠CDB=90°.又∵∠B=∠E,∴△BDC∽△ECA.∴.∴AC•BC=AE•CD.26.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45度.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=BC﹣BD=60构造方程关系式,进而可解,即可求出答案.【解答】解:由已知,可得:∠ACB=30°,∠ADB=45°,∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵tan30°=,∴,即BC=AB.∵BC=CD+BD,∴AB=CD+AB,即(﹣1)AB=60,∴AB=米.答:教学楼的高度为30(+1)米.27.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)求出cosB的值;(2)用含y的代数式表示AE;(3)求y与x之间的函数关系式,并求出x的取值范围;(4)设四边形DECF的面积为S,求出S的最大值.【考点】相似三角形的判定与性质;二次函数的最值.【分析】(1)根据勾股定理求出AB后,然后根据角的三角函数即可求出结论;(2)根据题意求证四边形DECF为矩形,即可推出DF=EC=y,然后结合图形即可求出AE=8﹣y;(3)根据余角的性质即可推出∠A=∠BDF,继而求证△ADE∽△DBF,结合对应边成比例和BF=4﹣x,AE=8﹣y,即可求出y=﹣2x+8(0<x<4);(4)根据(3)所推出的结论,结合矩形的面积公式通过等量代换,即可求出二次函数S=DE•DF=﹣2x2+8x,然后根据二次函数的最值公式即可求出S的最大值.【解答】解:(1)∵∠C=90°,BC=4,AC=8,∴cosB=BC:AB=4:4=,(2)∵∠C=90°,DE⊥AC,DF⊥BC,∴四边形DECF为矩形,∵DF=y,∴DF=EC=y,∵AC=8,AE=AC﹣EC,∴AE=8﹣y,(3)∵∠C=90°,DE⊥AC,DF⊥BC,∴∠A+∠B=90°,∠BDF+∠ADE=90°,∴∠A=∠BDF,∴△ADE∽△DBF,∴,∵矩形DECF,DF=y,DE=x,∴CF=x,CE=y,∴BF=BC﹣CF=4﹣x,∵AE=8﹣y,∴,∴y=﹣2x+8(0<x<4),(4)∵y=﹣2x+8,DE=x,DF=y,∴S=DE•DF=xy=x(﹣2x+8)=﹣2x2+8x=﹣2(x2﹣4x+4)+8,即S=﹣2(x﹣2)2+8,∴当x=2时,S的值最大,S的最大值为8.28.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明:△ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】抛物线与x轴的交点;勾股定理的逆定理.【分析】(1)抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点,分别将x=0,y=0代入求得A、B、C的坐标;(2)由(1)得到边AB,AC,BC的长,再根据勾股定理的逆定理来判定△ABC为直角三角形;(3)根据抛物线的对称性可得另一点的坐标.【解答】解:(1)∵抛物线y=﹣x2+x+2与x轴交于A、B两点,∴﹣x2+x+2=0.即x2﹣x﹣4=0.解之得:x1=﹣,x2=2.∴点A、B的坐标为A(﹣,0)、B(2,0).将x=0代入y=﹣x2+x+2,得C点的坐标为(0,2);(2)∵AC=,BC=2,AB=3,∴AB2=AC2+BC2,则∠ACB=90°,∴△ABC是直角三角形;(3)当PC∥x轴,即P点与C点是抛物线的对称点,而C点坐标为(0,2)设y=2,把y=2代入y=﹣x2+x+2得:﹣x2+x+2=2,∴x1=0,x2=.∴P点坐标为(,2).第21页(共21页)。

2017九年级上学期数学期末试卷(2)

2017九年级上学期数学期末试卷(2)

2017九年级上学期数学期末试卷(2)2017九年级上学期数学期末试卷参考答案一、选择题(本大题有12小题,在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为( )A.﹣2B.2C.4D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2= .2.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A.等腰三角形B.正三角形C.平行四边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是( )A.2.5B.3C.5D.10【考点】切线的性质.【分析】根据直线与圆的位置关系可直接得到点O到直线l的距离是5.【解答】解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.【点评】本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔dr.5.如图,△ABC内接于⊙O,∠OBC=42°,则∠A的度数为( )A.84°B.96°C.116°D.132°【考点】圆内接四边形的性质;圆周角定理.【分析】连接OC,在优弧上取点D,连接BD、CD,根据等腰三角形的性质和三角形内角和定理求出∠BOC,根据圆周角定理求出∠BDC,根据圆内接四边形的性质计算即可.【解答】解:连接OC,在优弧上取点D,连接BD、CD,∵OB=OC,∴∠OCB=∠OBC=42°,∴∠BOC=96°,∴∠BDC= ∠BOC=48°,∴∠A=180°﹣∠BDC=132°,故选:D.【点评】本题考查的是圆周角定理、圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为( )A.1B.2C.3D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴ ,即,解得:EC=2,故选:B.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.7.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )A.∠ABP=∠CB.∠APB=∠ABCC. =D. =【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当 = 时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.8.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【考点】随机事件.【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,9.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为( )A.6B.﹣6C.12D.﹣12【考点】反比例函数图象上点的坐标特征.【分析】反比例函数的解析式为y= ,把A(3,﹣4)代入求出k=﹣12,得出解析式,把B的坐标代入解析式即可.【解答】解:设反比例函数的解析式为y= ,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣ =6,故选A.【点评】本题考查了反比例函数图象上点的坐标特征的应用,解此题的关键是求出反比例函数的解析式,难度适中.10.如图,已知关于x的函数y=k(x﹣1)和y= (k≠0),它们在同一坐标系内的图象大致是( )A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据反比例函数图象所经过的象限判断出k的符号;然后由k的符号判定一次函数图象所经过的象限,图象一致的选项即为正确选项.【解答】解:A、反比例函数y= (k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;B、反比例函数y= (k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第二、四象限,且与y轴交于正半轴.故本选项正确;C、反比例函数y= (k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;D、反比例函数y= (k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于正半轴.故本选项错误;故选:B.【点评】本题考查反比例函数与一次函数的图象特点:①反比例函数y= 的图象是双曲线;②当k>0时,它的两个分支分别位于第一、三象限;③当k<0时,它的两个分支分别位于第二、四象限.11.若抛物线y=(x﹣m)2+(m﹣1)的顶点在第四象限,则m的取值范围( )A.00 C.m<1 D.m>1【考点】二次函数的性质.【分析】根据顶点式得出点的坐标,再由第四象限点的符号得出m的取值范围.【解答】解:∵抛物线y=(x﹣m)2+(m﹣1)的顶点(m,m﹣1)在第四象限,∴ ,解得0故选A.【点评】本题考查了二次函数的性质,以及求抛物线的顶点坐标的方法,掌握每个象限内点的符号是解题的关键.12.对于二次函数y=﹣x2+4x,有下列四个结论:①它的对称轴是直线x=2;②设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(4,0);④当00.其中正确的结论的个数为( )A.1B.2C.3D.4【考点】二次函数的性质.【分析】利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.【解答】解:y=﹣x2+4x=﹣(x﹣2)2+4,故①它的对称轴是直线x=2,正确;②∵直线x=2两旁部分增减性不一样,∴设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1或y2③当y=0,则x(﹣x+4)=0,解得:x1=0,x2=4,故它的图象与x轴的两个交点是(0,0)和(4,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(4,0),∴当00,正确.故选:C.【点评】此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.二、填空题(本题有6个小题,每小题3分,计15)13.方程x2=5的解是x=± .【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=5,直接开平方得,x=± ,故答案为x=± .【点评】本题考查了用直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.14.二次函数y=﹣x2+2x+7的最大值为8 .【考点】二次函数的最值.【专题】计算题.【分析】先利用配方法把一般式配成顶点式,然后根据二次函数的性质求解.【解答】解:原式=﹣x2+2x+7=﹣(x﹣1)2+8,因为抛物线开口向下,所以当x=1时,y有最大值8.故答案为8.【点评】本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y= ;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y= .15.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【考点】概率公式.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【解答】解:抬头看信号灯时,是绿灯的概率为 .故答案为: .【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.【考点】扇形面积的计算.【分析】图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.【解答】解:图中阴影部分的面积= π×22﹣=2π﹣π= π.答:图中阴影部分的面积等于π.故答案为:π.【点评】本题考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y= 的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y= 的图象经过点Q,则k= 2+2 或2﹣2 .【考点】反比例函数图象上点的坐标特征;勾股定理.【专题】分类讨论.【分析】把P点代入y= 求得P的坐标,进而求得OP的长,即可求得Q的坐标,从而求得k的值.【解答】解:∵点P(1,t)在反比例函数y= 的图象上,∴t= =2,∴P(1.2),∴OP= = ,∵过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.∴Q(1+ ,2)或(1﹣,2)∵反比例函数y= 的图象经过点Q,∴2= 或2= ,解得k=2+2 或2﹣2故答案为2+2 或2﹣2 .【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理的应用,求得Q点的坐标是解题的关键.三、解答题:共69分.18.已知:关于x的方程x2﹣2mx+m2﹣1=0.(1)不解方程:判断方程根的情况;(2)若方程有一个根为﹣3,求m的值.【考点】根的判别式;一元二次方程的解.【分析】(1)首先找出方程中a=1,b=﹣2m,c=m2﹣1,然后求△=b2﹣4ac的值即可;(2)把x=﹣3代入方程中列出m的一元二次方程并求出m的值即可.【解答】解:(1)∵关于x的方程x2﹣2mx+m2﹣1=0,∴a=1,b=﹣2m,c=m2﹣1,∴△=b2﹣4ac=(﹣2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2﹣2mx+m2﹣1=0有两个不相等的实数根;(2)∵方程x2﹣2mx+m2﹣1=0的一根为﹣3,∴9+6m+m2﹣1=0,即m2+6m+8=0,∴m=﹣4或﹣2.【点评】本题主要考查了根的判别式以及一元二次方程解的知识,解答本题的关键是熟练掌握根的判别式的意义以及因式分解法解方程的知识.19.某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,每个支干长出的小分支是多少?【考点】一元二次方程的应用.【分析】由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设主干长出x个支干,由题意得1+x+x•x=111,即x2+x﹣110=0,解得:x1=10,x2=﹣11(舍去)答:每个支干长出的小分支是10.【点评】此题主要考查了一元二次方程的应用,解题时,要根据题意分别表示主干、支干、小分支的数目,列方程求解,注意能够熟练运用因式分解法解方程.20.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:△ABC是等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.【考点】圆周角定理;全等三角形的判定与性质.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;故答案为:△ABC是等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP.【点评】本题考查了圆周角定理、等边三角形的判定、三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.21.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为 .(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或树状图灯方法求出两次摸到的球是1个红球和1个白球的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)设红球的个数为x个,根据概率公式得到 = ,然后解方程即可;(2)先画树状图展示所有12种等可能结果,再找出两次摸到的球是1个红球1个白球的结果数,然后根据概率公式计算.【解答】解:(1)设红球的个数为x个,根据题意得 = ,解得x=1(检验合适),所以布袋里红球有1个;(2)画树状图如下:共有12种等可能结果,其中两次摸到的球是1个红球1个白球的结果数为4种,所以两次摸到的球都是白球的概率= = .【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.已知反比例函数y= 的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为10,求m的值.【考点】反比例函数的性质;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、 ),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;(2)∵点B与点A关于x轴对称,若△OAB的面积为10,∴△OAC的面积为5.设A(x, ),则x• =5,解得:m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.23.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转90 度得到;(3)若BC=8,DE=6,求△AEF的面积.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠BAE=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心A 点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE 绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE= =10,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积= AE2= ×100=50(平方单位).【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.24.某服装店销售一种内衣,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x元/件的关系如表:销售单价x(元/件) … 55 60 70 75 …一周的销售量y(件) … 450 400 300 250 …(1)试求出y与x的之间的函数关系式;(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价的什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)服装店决定将一周的销售内衣的利润全部捐给福利院,在服装店购进该内衣的贷款不超过8000元情况下,请求出该服装店最大捐款数额是多少元?【考点】二次函数的应用.【分析】(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过8000元,求出进货量,然后求最大销售额即可.【解答】解:(1)设y=kx+b,由题意得,,解得:,则函数关系式为:y=﹣10x+1000,(x≥50)(2)由题意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为直线x=70,∴当40(3)∵购进该商品的货款不超过8000元,∴y的最大值为 =200(件).由(1)知y随x的增大而减小,∴x的最小值为:x=80,由(2)知当x≥70时,S随x的增大而减小,∴当x=80时,销售利润最大,此时S=8000,即该商家最大捐款数额是8000元.【点评】本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.25.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.【考点】圆的综合题.【专题】证明题.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;(2)设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到 = ,即可解得R=3,从而求得⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,根据∠OME=∠MEH=∠EHO=90°,得到四边形OMEH是矩形,从而得到HE=OM=3和BH=1,证得结论BG=2BH=2.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE= BC=4,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴ = 即 = ,解得R=3,∴⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,∵∠OME=∠MEH=∠EHO=90°,∴四边形OMEH是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.【点评】本题考查了圆的综合知识,题目中还运用到了切线的判定与性质、相似三角形的判定与性质,综合性较强,难度较大.26.在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由直线的解析式y=x+4易求点A和点C的坐标,把A和C的坐标分别代入y=﹣x2+bx+c求出b和c的值即可得到抛物线的解析式;(2)①若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQ∥AO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;②过P点作PF∥OC交AC于点F,因为PF∥OC,所以△PEF∽△OEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点点F(x,x+4),利用,可求出x的值,解方程求出x的值可得点P的坐标,代入直线y=kx即可求出k的值.【解答】解:(1)∵直线y=x+4经过A,C两点,∴A点坐标是(﹣4,0),点C坐标是(0,4),又∵抛物线过A,C两点,∴ ,解得:,∴抛物线的解析式为 .(2)①如图1∵ ,∴抛物线的对称轴是直线x=﹣1.∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,∴PQ∥AO,PQ=AO=4.∵P,Q都在抛物线上,∴P,Q关于直线x=﹣1对称,∴P点的横坐标是﹣3,∴当x=﹣3时,,∴P点的坐标是 ;②过P点作PF∥OC交AC于点F,∵PF∥OC,∴△PEF∽△OEC,∴ .又∵ ,∴ ,设点F(x,x+4),∴ ,化简得:x2+4x+3=0,解得:x1=﹣1,x2=﹣3.当x=﹣1时, ;当x=﹣3时,,即P点坐标是或 .又∵点P在直线y=kx上,∴ .【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,平行四边形的判定和性质,相似三角形的判定和性质,解一元二次方程,题目综合性较强,难度不大,是一道很好的中考题.。

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

2017届九年级数学上学期期末考试试题 (2)

2017届九年级数学上学期期末考试试题 (2)

2016~2017学年度第一学期期末检测九年级数学试卷(考试时间120分钟 满分120分)一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.二次函数2(1)3y x =--的最小值是(A) 2 (B) 1 (D) -2 (D ) -3 2.下列事件中,是必然事件的是(A) 明天太阳从东方升起; (B) 射击运动员射击一次,命中靶心;(C) 随意翻到一本书的某页,这页的页码是奇数; (D) 经过有交通信号灯的路口,遇到红灯.3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是(A) 23(B) 12 (C) 25(D) 13 4.如图,在△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于点D ,E ,若AD :DB =1:2,则△ADE 与△ABC 的面积之比是(A) 1:3 (B) 1:4 (C) 1:9 (D) 1:165. 已知点A (1,a )与点B (3,b )都在反比例函数12y x=-的图象上,则a 与b 之间的关系是 (A) a >b (B) a <b (C) a ≥b (D) a =b6. 已知圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面展开图的面积为(A) 18πcm 2 (B) 12πcm 2 (C) 6πcm 2 (D) 3πcm 27. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R 表示电流I 的函数表达式为(A) 3I R = (B) I R=-6 (C) 3I R=-(D) I R=68.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为5,AC =8.则cos B 的值是 (A) 43(B)35(C)3 (D) 49.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形, 勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能 容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是 (A) 5步 (B) 6步 (C) 8步 (D)10步 10. 已知二次函数y 1=ax 2+bx +c (a ≠0)和一次函数y 2=kx +n (k ≠0)的图象如图所示, 下面有四个推断: ①二次函数y 1有最大值②二次函数y 1的图象关于直线1x =-对称 ③当2x =-时,二次函数y 1的值大于0④过动点P (m ,0)且垂直于x 轴的直线与y 1,y 2的图象的交点分别 为C ,D ,当点C 位于点D 上方时,m 的取值范围是m <-3或m >-1. 其中正确的是 (A)①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11. 将二次函数y =x 2-2x -5化为y=a (x-h )2+k 的形式为y= .12.抛物线22y x x m =-+与x 轴有两个公共点,请写出一个符合条件的表达式为 . 13. 如图,若点P 在反比例函数3(0)y x x=-<的图象上,过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,则矩形PMON 的面积为 .14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:则该作物种子发芽的概率约为.15. 如图,△ABC中,D、E分别是AB、AC边上一点,连接DE.请你添加一个条件,使△ADE∽△ABC,则你添加的这一个条件可以是(写出一个即可).16.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.计算:o o o++2sin45tan602cos3018.如图,△ABC中,点D在边AB上,满足∠ACD =∠ABC,若AC AD = 1,求DB的长.19.已知二次函数2(0)y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标; (2)求出该函数图象与x 轴的交点坐标.20. 如图,在平面直角坐标系xOy 中,△ABC 的三个顶点分别为A (2,6),B (4,2), C (6,2). (1)以原点O 为位似中心,将△ABC 缩小为原来的12,得到△DEF . 请在第一象限内, 画出△DEF .(2)在(1)的条件下,点A 的对应点D 的坐标为 ,点B 的对应点E 的坐标为 .21. 如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,CD =10,EM =25.求⊙O 的半径.22. 如图,在Rt △ABC 中,∠C =90°,点D 是BC 边的中点,CD =2,tan B =34.(1)求AD 和AB 的长; (2)求sin ∠BAD 的值.23. 已知一次函数21y x =-+的图象与y 轴交于点A , 点B (-1,n )是该函数图象与反比例函数)(0≠=k xky 图象在第二象限内的交点.(1)求点B 的坐标及k 的值;(2)试在x 轴上确定点C ,使AC AB =,直接写出点C 的坐标.24.如图,用一段长为40m 的篱笆围成一个一边靠墙的矩形花圃ABCD ,墙长28m.设AB 长为x m ,矩形的面积为y m 2.(1)写出y 与x 的函数关系式;(2)当AB 长为多少米时,所围成的花圃面积最大?最大值是多少? (3)当花圃的面积为150m 2时,AB 长为多少米?25.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,且 BC= CD ,过点C 的直线CF ⊥AD 于点F ,交AB 的延长线于点E ,连接AC . (1)求证:EF 是⊙O 的切线;(2)连接FO ,若sin E =12,⊙O 的半径为r ,请写出求线段FO 长的思路.26.某“数学兴趣小组”根据学习函数的经验,对函数y = -x 2+2x +1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:其中m = ;(2)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)根据函数图象,写出: ①该函数的一条性质 ;②直线y =kx +b 经过点(-1,2),若关于x 的方程-x 2+2x +1=kx +b 有4个互不相等的实数根,则b 的取值范围是 .27.在平面直角坐标系xOy 中,直线y =14-x +n 经过点A (-4, 2),分别与x ,y 轴交于点B ,C ,抛物线y = x 2-2mx +m 2-n 的顶点为D . (1) 求点B ,C 的坐标;(2) ①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y = x 2-2mx +m 2-n 与线段BC 有公共点,求m 的取值范围.28.在Rt △ABC 中,∠ACB =90°,O 为AB 边上的一点,且tan B =21,点D 为AC 边上的动点(不与点A ,C 重合),将线段OD 绕点O 顺时针旋转90°,交BC 于点E .(1)如图1,若O 为AB 边中点, D 为AC 边中点,则OE OD 的值为 ;(2)若O 为AB 边中点, D 不是AC 边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D 在AC 边上运动的过程中,(1)中OE OD的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求OE OD 的值的几种想法:想法1:过点O 作OF ⊥AB 交BC 于点F ,要求OE OD的值,需证明△OEF ∽△ODA .想法2:分别取AC ,BC 的中点H ,G ,连接OH ,OG ,要求OE OD的值,需证明△OGE ∽△OHD .想法3:连接OC ,DE ,要求OE OD的值,需证C ,D ,O ,E 四点共圆.......请你参考上面的想法,帮助小军写出求OE OD的值的过程 (一种方法即可);(3)若1BO BA n =(n ≥2且n 为正整数),则OE OD的值为 (用含n 的式子表示).29.在平面直角坐标系xOy 中, C 的半径为r (r >1),P 是圆内与圆心C 不重合的点,C 的“完美点”的定义如下:若直线..CP 与 C 交于点A ,B ,满足2PA PB -=,则称点P 为 C 的“完美点”,下图为 C 及其“完美点”P 的示意图.(1) 当O 的半径为2时,①在点M (32,0),N (0,1),1()2T -中, O 的“完美点”是 ;② 若O 的“完美点”P 在直线y =上,求PO 的长及点P 的坐标;(2) C 的圆心在直线1y =+上,半径为2,若y 轴上存在 C 的“完美点”,求圆心C 的纵坐标t 的取值范围.北京市朝阳区2016~2017学年度第一学期期末检测 九年级数学试卷参考答案及评分标准一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17. 解:2sin 45tan602cos30︒+︒+︒-22=-=18.解:∵,ACD ABC ∠=∠A A ∠=∠, ∴△ACD ∽△ABC . ∴AC ADAB AC=.=. ∴3AB =.∴2DB =.19.解:(1) 由题意,得c = -3.将点(2, 5),(-1,-4)代入,得4235,3 4.a b a b +-=⎧⎨--=-⎩ 解得1,2.a b =⎧⎨=⎩∴223y x x =+- . 顶点坐标为(-1,-4). (2) (-3,0),(1,0).20.解:(1) 如图.(2) D (1,3),E (2,1). 21.解:如图,连接OC ,∵M 是弦CD 的中点,EM 过圆心O , ∴EM ⊥CD . ∴CM =MD . ∵CD =10, ∴CM =5.设OC =x ,则OM =25-x ,在Rt △COM 中,根据勾股定理,得 52+(25-x )2=x 2. 解得 x =13 .∴⊙O 的半径为13 .22. 解: (1) ∵D 是BC 的中点,CD =2, ∴BD =DC =2,BC =4.在Rt △ACB 中, 由 tan B =34AC CB =, ∴344AC =. ∴AC =3.∴AD ,AB =5 . (2) 过点D 作DE ⊥AB 于E ,∴∠C =∠DEB =90°.又∠B =∠B ,∴△DEB ∽△ACB . ∴DEDBAC AB =. ∴235DE =. ∴65DE =.∴sin BAD ∠=23. 解:(1) ∵点B (-1,n )在直线21y x =-+上,∴21 3.n =+=∴B (-1,3).∵点B (-1,3)在反比例函数x ky =的图象上,∴3k =-.(2) ()2,C -0或()2,0.24. 解:(1) 2240y x x =-+.(402)x x -(或写成)(2) 由题意,得0402028x x -≤⎧⎨⎩>,<.∴6≤x <20 .由题意,得 ()2210200y x =--+.∴当x =10时,y 有最大值,y 的最大值为200.∴当AB 长为10m 时,花圃面积最大,最大面积为200m 2.(3) 令y =150,则 2240150x x -+=.∴ 125,15x x == .∵6≤x <20,∴x =15.∴当AB 长为15m 时,面积为150m 2.25. (1) 证明:如图,连接OC ,∵OC=OA,∴∠1 =∠2.∵ BC= CD,∴∠1 =∠3.∴∠2 =∠3.∴OC∥AF.∵CF⊥AD,∴∠CFA=90°.∴∠OCF=90°.∴OC⊥EF.∵OC为⊙O的半径,∴EF是⊙O的切线.(2) 解:求解思路如下:①在Rt△AEF和Rt△OEC中,由sin E=12,可得△AEF,△OEC都为含30°的直角三角形;②由∠1 =∠3,可知△ACF为含30°的直角三角形;③由⊙O的半径为r,可求OE,AE的长,从而可求CF的长;④在Rt△COF中,由勾股定理可求OF的长.26. 解:(1) m= 1.(2)如图.(3)①答案不唯一.如:函数图象关于y轴对称.②1<b<2.27. 解: (1) 把A(-4,2)代入y=14x+n中,得n=1. ∴B(4,0),C(0,1).(2) ①D (m ,-1).②将点(0,1)代入2221y x mx m =-+-中,得211m =-.解得12m m == 将点(4,0)代入2221y x mx m =-+-中,得 201681m m =-+-.解得 125,3m m ==.∴5m ≤≤ .28.解:(1) 12.(2) ①如图.②法1:如图,过点O 作OF ⊥AB 交BC 于点F , ∵∠DOE =90°,∴∠AOD +∠DOF =∠DOF +∠FOE =90°.∴∠AOD =∠FOE .∵∠ACB =90°,∴∠A +∠B =∠OFE +∠B =90°.∴∠A =∠OFE .∴△OEF ∽△ODA .∴OE OFOD OA =.∵O 为AB 边中点,∴OA =OB .在Rt △FOB 中,tan B =21, ∴12OFOB =. ∴1.2OFOA =∴12OE OD =.法2:如图,分别取AC ,BC 的中点H ,G ,连接OH ,OG ,∵O 为AB 边中点,∴OH ∥BC ,OH =12BC ,OG ∥AC .∵∠ACB =90°,∴∠OHD =∠OGE =90°.∴∠HOG =90°.∵∠DOE =90°,∴∠HOD +∠DOG =∠DOG +∠GOE =90°.∴∠HOD =∠GOE .∴△OGE ∽△OHD . ∴OEOGOD OH =.∵tan B =21, ∴1.2OGGB =∵OH =GB , ∴1.2OG OH = ∴12OEOD =.法3:如图,连接OC ,DE ,∵∠ACB =90°,∠DOE =90°,∴DE 的中点到点C ,D ,O ,E 的距离相等.∴C ,D ,O ,E 四点共圆.∴∠ODE =∠OCE .∵O 为AB 边中点,∴OC =OB .∴∠B =∠OCE .∴∠ODE =∠B .∵tan B =21, ∴12OE OD =. (3) 122n -.29. 解:(1) ①N ,T . ②如图,根据题意,2PA PB -=,∴∣OP +2-(2- OP )∣=2.∴OP =1.若点P 在第一象限内,作PQ ⊥x 轴于点Q ,∵点P 在直线y =上,OP =1,∴OQ =12,PQ∴P (12).若点P 在第三象限内,根据对称性可知其坐标为(-12,综上所述,PO 的长为1,,点P 的坐标为(12或(-12,).(2)对于 C 的任意一个“完美点”P 都有2PA PB -=, 即2(2)2CP CP +-=-.可得CP =1.对于任意的点P ,满足CP =1,都有2(2)2CP CP +-=-, 即2PA PB -=,故此时点P 为 C 的“完美点”.因此, C 的“完美点”的集合是以点C 为圆心,1为半径的圆.设直线1y =+与y 轴交于点D ,如图,当 C 移动到与 y 轴相切且切点在点D 的下方时,t 的值最小.设切点为E ,连接CE ,可得DEt的最小值为1当 C移动到与y轴相切且切点在点D的上方时,t的值最大.同理可得t的最大值为1综上所述,t的取值范围为1t ≤1。

人教版2016-2017学年九年级(上册)期末数学试卷及答案

人教版2016-2017学年九年级(上册)期末数学试卷及答案

人教版2016-2017学年九年级(上册)期末数学试卷及答案2016-2017学年九年级(上册)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。

若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°3.若关于x的方程2x²-ax+a-2=0有两个相等的实根,则a 的值是()A.-4B.4C.4或-4D.24.二次函数y=-x²+2x+4的最大值为()A.3B.4C.5D.65.在平面直角坐标系中,点A的坐标为(-1,-2),将OA绕原点O逆时针旋转180°得到OA',点A'的坐标为(a,b),则a-b等于()A.1B.-1C.3D.-36.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)7.若c(c≠0)为关于x的一元二次方程x²+bx+c=0的根,则c+b的值为()A.1B.-1C.2D.-28.如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是()A.πB.24πC.πD.12π二、填空题(共6小题,每小题3分,满分18分)9.小红有一个正方体玩具,6个面上分别画有线段、角、平行四边形、圆、菱形和等边三角形这6个图形。

抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_______。

2017年秋人教版九年级上数学期末检测试卷含答案

2017年秋人教版九年级上数学期末检测试卷含答案

1 2 x +mx+n与x轴交于A,B两 2 点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0), C(0,2). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰 三角形?如果存在,直接写出P点坐标,如果不存在,请说明理由; (3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于 点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边 形CDBF的最大面积及此时E点的坐标. 1 3 解:(1)y=- x2+ x+2 2 2 4.(2014· 兰州)如图,抛物线y=-
版权所有-
解:(1)∵一次函数 y=x-1的图象经过B点,∴B点坐标为(1,0). ∵A点坐标为(-3,0),抛物线顶点P的纵坐标为-4,
a+b+c=0, ∴抛物线顶点P的坐标为(-1,-4),∴9a-3b+c=0, a-b+c=-4. a=1, 解方程组得b=2, 故抛物线的解析式为y=x2+2x-3 c=-3,
版权所有-
(2)存在.如图,①当点N在x轴的下方, ∵四边形ACNM是平行四边形,∴CN⊥对称轴, 5 ∴点C与点N关于对称轴x=2对称,∵C点的坐标为(0,- ), 2 5 ∴点N的坐标为(4,- );②当点N′在x轴上方时,作N′H⊥x轴于点 2 H,∵四边形ACM′N′是平行四边形,∴AC=M′N′,∠N′M′H= ∠CAO,∴Rt△CAO≌Rt△N′M′H,∴N′H=OC,∵点C的坐 5 5 5 1 2 5 标为(0,- ),∴N′H= ,即N点的纵坐标为 ,∴ x -2x- = 2 2 2 2 2 5 5 ,解得x1=2+ 14,x2=2- 14 ,∴点N′的坐标为(2- 14, )和 2 2 5 (2+ 14 , ).综上所述,满足条件的点N共有三个,分别为(4,- 2 5 5 5 ),(2- 14, )和(2+ 14 , ) 版权所有2 2 2

九年级数学上学期期末考试试题新人教版4

九年级数学上学期期末考试试题新人教版4

2017~2018学年九年级第一学期期末试卷九年级数学(试卷分值:100分 考试时刻:100分钟) 同窗们,一个学期的拼搏今天即将展此刻试卷上,教师相信你必然会把诚信答满试卷,也必然会让尽力书写成功,答题时记住细心和耐心.注意:1. 本试卷由问卷和答卷两部份组成,其中问卷共4页,答卷共4页。

要求在答卷上答题,在问卷上答题无效;2. 答题时能够利用科学计算器。

一、选择题:(此题共10小题,每题3分,共30分)在每题给出的四个选项中,只有一个是符合题目要求的,请将选项代号的字母填写在答卷的相应位置上.1.以下标志既是轴对称图形又是中心对称图形的是A .B .C .D . 2.将二次函数322+-=x x y 化为()k h x y +-=2的形式,结果为A .()214y x =-+B .()212y x =-+C .()214y x =++D .()212y x =++3.以下事件中,必然事件是A .抛掷1枚质地均匀的骰子,向上的点数为6B .两直线被第三条直线所截,同位角相等C .抛一枚硬币,落地后正面朝上D .实数的绝对值是非负数4.如图,点B 在⊙O 上,弦AC ∥OB ,︒=∠50BOC ,那么OAB ∠=A .︒25B .︒50C .︒60D .︒305.关于x 的一元二次方程()01222=++-x x m 有实数根,那么m 的取值范围是A .3≤mB .3<mC .23≠<m m 且D .23≠≤m m 且6.如图,在半径为5cm 的⊙O 中,弦6cm AB =,AB OC ⊥于点C ,那么OC =A .3cmB .4cmC .5cmD .6cm7.将一枚质地均匀的骰子掷两次,那么两次点数之和等于9的概率为A .13B .16C .19D .112 8.抛物线2y ax bx c =++的部份图象如下图(对称轴是1x =),若0<y ,那么x 的取值范围是A .41<<-xB .31<<-xC .1x <-或4x >D .1x <-或3x >9.某商场将进价为20元∕件的玩具以30元∕件的价钱出售时,天天可售出300件,经调查当单价每涨1元时,天天少售出10件.假设商场想天天取得3750元利润,那么每件玩具应涨多少元?假设设每件玩具涨x 元,那么以下说法错误的选项是A .涨价后每件玩具的售价是()x +30元B .涨价后天天少售出玩具的数量是x 10件C .涨价后天天销售玩具的数量是()x 10300-件D .可列方程为()()37501030030=-+x x10.如图,已知函数()02≠++=a c bx ax y 的图象如下图,有以下四个结论:①0=abc ,②0>++c b a ,③b a >,④042<-b ac ;其中正确的结论有 A .1个B .2个C .3个D .4个 二、填空题(本大题共6小题,每题3分,共18分,将正确的答案直接写在答卷的横线上)11.假设点()3,2M a -与()3,N a -关于原点对称,那么a = .12.关于x 的230x ax a --=的一个根是2x =-,那么它的另一个根是 .13.已知圆锥的底面半径是3cm ,高为4cm ,那么其侧面积为 2cm .14.一个不透明的袋中装有假设干个红球,为了估量袋中红球的个数,小文在袋中放入10个白球(每一个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发觉,摸到白球的频率是72,那么袋中红球约为 个. 15.有一人得了流感,通过两轮传染后共有169人得了流感,每轮传染中平均一个人传染了 人.16.如图,在ABC ∆中,90,5cm,12cm ACB AC BC ∠=︒==,将BCA ∆绕点B 顺时针旋转︒60,取得BDE ∆,连接DC 交AB 于点F ,那么ACF ∆与BDF ∆的周长之和为 cm .三、解答以下各题(第17题6分;第1八、19题每题7分;第20、2一、2二、23题每题8分;共52分)17.解方程:()()x x x -=-2223.18.某地域2015年投入教育经费2500万元,2017年投入教育经费3025万元.(1)求2015年至2017年该地域投入教育经费的年平均增加率;(2)依照(1)所得的年平均增加率,估量2018年该地域将投入教育经费多少万元.19.如图,在ABC Rt ∆中,︒=∠90B ,BC AB =,B A ,的坐标别离为()()4,2,4,0-,将ABC ∆绕点P 旋转︒180后取得A B C '''∆,其中点B 的 对应点B '的坐标为()2,2.(1)求出点C 的坐标;(2)求点P 的坐标,并求出点C 的对应点C '的坐标.20.有4张看上去无不同的卡片,上面别离写着1,2,3,4,随机抽取1张后,放回并混在一路,再随机抽取1张.(1)请用树状图或列表法等方式列出各类可能显现的结果;(2)求两次抽到的卡片上的数字之和等于5的概率.21.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,CD AC =,︒=∠120ACD .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部份的面积.22.如下图,某小区要用篱笆围成一矩形花坛,花坛的一边用足够长的墙,另外三边所用的篱笆之和恰好为16米.(1)求矩形ABCD 的面积(用s 表示,单位:平方米)与边AB (用x 表示,单位:米)之间的函数关系式(不要求写出自变量x 的取值范围);如何围,可使花坛面积最大?(2)如何围,可使此矩形花坛面积是30平方米?23.已知抛物线c bx x y ++=2通过()()1,0,3,0A B -两点. (1)求抛物线的解析式和极点坐标;(2)设点P 为抛物线上一点,假设6PAB S ∆=,求点P 的坐标.参考答案一.选择题(共8小题,总分值24分,每题3分)1.A .2.B .3.D 4.A .5.D .6.B .7.C .8.B .9.D .10.C .二.填空题(共6小题,总分值18分,每题3分)11.1.12.6.13.π15.14.25.15.12.16.42三.解答题(共8小题,总分值58分)17.由原方程,得()()0223=-+x x∴02023=-=+x x 或,解得 2,3221=-=x x .…6分 18.设2015年至2017年该地域投入教育经费的年平均增加率为x .依照题意得:()3025125002=+x 解得()舍去或1.21.0-==x x .答:2015年至2017年该地域投入教育经费的年平均增加率为%10.…5分(2)()5.3327%1013025=+⨯(万元).答:依照(1)所得的年平均增加率,估量2018年该地域将投入教育经费5.3327万元.…7分19.(1)()2,2-C ;…3分(2)()3,0P ,()2,4C '…7分20.解:(1)画树状图得:…5分(2)两次抽到的卡片上的数字之和等于5的概率为:41164=.…8分 21.解:(1)证明:连接OC .∵︒=∠=120,ACD CD AC ,∴︒=∠=∠30D A .∵OC OA =,∴︒=∠=∠302A .∴︒=∠-∠-∠-︒=∠902180D A OCD∴CD OC ⊥,∴CD 是⊙O 的切线.…4分(2)解:∵︒=∠30A ,∴︒=∠=∠6021A .∴π32=BOC S 扇形. 在OCD Rt ∆中,42==OC OD ,依照勾股定理可得:32=CD .∴3221=⋅=∆CD OC S OCD .∴图中阴影部份的面积为:π3232-.…8分 22.(1)()x x x x S 1622162+-=-=当4=x 时,S 有最大值.∴8,4===BC CD AB 时,花坛的面积最大.…4分(2)将30=S 代入x x S 1622+-=,解得53==x x 或答:10,3===BC CD AB 或6,5===BC CD AB 时花坛面积是30平方米.…8分23.(1)把()()1,0,3,0A B -别离代入c bx x y ++=2中,得:⎩⎨⎧=++=+-03901c b c b ,解得:⎩⎨⎧-=-=32c b , ∴抛物线的解析式为322--=x x y ,极点坐标为()4,1-.…4分(2)∵()()1,0,3,0A B -,∴4=AB .设()y x p ,,那么6221==⋅=∆y y AB S PAB ,∴3=y ,∴3±=y . ①当3=y 时,3322=--x x ,解得:71,7121-=+=x x ,现在P 点坐标为()()3,713,71-+或;②当3-=y 时,3322-=--x x ,解得:2,021==x x ;现在P 点坐标为()()3,23,0--或综上所述,P 点坐标为()()3,2,3,0--,()()3,71,3,71-+. …8分。

最新2016-2017学年人教版九年级上册数学期末测试卷及答案(1)

最新2016-2017学年人教版九年级上册数学期末测试卷及答案(1)

第 1 页 共 2 页 2016---2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A .y =2(x -1)2-3B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 65.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B . cm 2C .2 D.26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( )A .35°B .45°C .55°D .75° 7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y < B.21y y > C.21y y = D.1y 、2y 的大小不确定8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .9.一次函数y ax b =+与二次函数2y ax bx c =++在同一坐标系中的图像可能是( )A .B .C .D .10.如图,有一圆锥形粮堆,其正视图是边长为6m 的正三角形ABC ,粮堆母线AC的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m .(结果不取近似值)A .3B .3根号3C .D .4二、填空题(每小题3分,共18分)第3题图 第6题图 第4题图 第12题图24、(共10分)如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.第 2 页共 2 页。

2017年秋季学期新版新人教版九年级数学上册期末检测试卷含答案

2017年秋季学期新版新人教版九年级数学上册期末检测试卷含答案

检测内容:期末检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是( )A .14B .12C .34D .1 2.已知一个直角三角形的两条直角边的长恰好是方程x 2-3x =4(x -3)的两个实数根,则该直角三角形斜边上的中线长是( )A .3B .4C .6D .2.53.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x ,由题意,所列方程正确的是( )A .28(1-2x)=16B .16(1-2x)=28C .28(1-x)2=16D .16(1-x)2=284.将二次函数y =x 2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )A .y =(x -1)2+3B .y =(x +1)2+3C .y =(x -1)2-3D .y =(x +1)2-35.若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A .抛物线开口向上 B .抛物线的对称轴是x =1C .当x =1时,y 的最大值为-4D .抛物线与x 轴的交点为(-1,0),(3,0) 6.如图,PA ,PB 切⊙O 于点A ,B ,点C 是⊙O 上一点,且∠P =36°,则∠ACB =( ) A .54° B .72° C .108° D .144°,第6题图) ,第9题图),第10题图)7.在体检中,12名同学的血型结果为:A 型3人,B 型3人,AB 型4人,O 型2人,若从这12名同学中随机抽出2人,这两人的血型均为O 型的概率为( )A .166B .133C .1522D .7228.已知x 1,x 2是关于x 的一元二次方程x 2-(2m +3)x +m 2=0的两个不相等的实数根,且满足x 1+x 2=m 2,则m 的值是( )A .-1B .3C .3或-1D .-3或19.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵的中点,则下列结论不成立的是( )A .OC ∥AEB .EC =BC C .∠DAE =∠ABED .AC ⊥OD 10.(2016·齐齐哈尔)如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.点P(-2,5)关于原点对称的点的坐标是________.12.已知一个圆锥的底面直径为20 cm ,母线长为30 cm ,则这个圆锥的表面积是________.13.(2016·河南)已知A(0,3),B(2,3)是抛物线y =-x 2+bx +c 上两点,该抛物线的顶点坐标是________.14.已知二次函数y =-x 2-2x +3的图象上有两点A(-7,y 1),B(-8,y 2),则y 1________y 2.(填“>”“<”或“=”)15.如图,△ABC 和△A′B′C 是两个不完全重合的直角三角板,∠B =30°,斜边长为10 cm ,三角板A′B′C 绕直角顶点C 顺时针旋转,当点A′落在AB 边上时,CA ′旋转所构成的扇形的弧长为________cm .,第15题图) ,第16题图),第18题图)16.如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO ,以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于点F ,G ,连接EF.若∠BAC =22°,则∠EFG =________.17.已知AB ,AC 分别是同一圆的内接正方形和内接正六边形的边,那么∠ABC 的度数为________.18.如图,△ABC 中,∠ACB =90°,∠A =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°)得到△DEC ,设CD 交AB 于点F ,连接AD ,当旋转角α度数为________,△ADF 是等腰三角形.三、解答题(共66分) 19.(8分)解方程:(1)53x +错误!=x 2; (2)2(x -3)2=x 2-9.20.(8分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C,过点C 作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD的面积.21.(8分)如图,AB是⊙O的弦,D为半径OA上的一点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.求证:BC是⊙O的切线.22.(10分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF,EO,若DE=23,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.23.(10分)在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其他均相同.甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数.若该两位数能被4整除,则甲胜,否则乙胜.问这个游戏公平吗?说明理由.24.(10分)(2016·铜仁)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用函数解析式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?25.(12分)如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点;①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.单元清七1.A 2.D 3.C 4.A 5.C 6.B 7.A 8.B 9.D 10.B 11.(2,-5) 12.300π cm 2 13.(1,4) 14.>15.5π3 16.33° 17.15°或105° 18.40°或20° 19.(1)x 1=2,x 2=-13 (2)x 1=3,x 2=9 20.解:(1)y =-x 2+2x +3 (2)B ,C ,D 三点的坐标分别为:B(3,0),C(0,3),D(1,3),∴CD =1,BO =3,CO =3,S 梯形COBD =12(CD +BO)·CO =12×4×3=6 21.证明:连接OB ,∵CE =CB ,∴∠CEB =∠CBE ,又∵CD ⊥AO ,∴∠A +∠AED =90°,又∵∠AED =∠CEB ,∴∠A +∠CBE =90°,又∵OA =OB ,∴∠A =∠OBA ,∴∠OBA +∠CBE =90°,即∠OBC =90°,∴OB ⊥BC ,∴BC 为⊙O 的切线 22.解:(1)连接FO ,∵AP ⊥DE ,∠DPA =45°,∴∠D =45°,∴∠EOF =90°,又AC =CO ,∴OE =2OC ,∴∠COE =60°,又CE =CD =3,∴CO 2+(3)2=(2OC)2,∴OC =1,OE =R =2 (2)S 阴影=S 扇形EOF -S △OEF =14πR 2-12OE ·OF =14π×4-12×2×2=π-2 23.解:画树状图如下:由图可知,所有等可能的结果共有9种,其中,两位数能被4整除的情况有3种,所以P(甲获胜)=39=13,P(乙获胜)=23,因为13≠23,所以这个游戏不公平 24.解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y =180-10(x -12)=-10x +300(12≤x ≤30) (2)设王大伯获得的利润为W ,则W =(x -10)y =-10x 2+400x -3 000,令W =840,则-10x 2+400x -3 000=840,解得:x 1=16,x 2=24,∴王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元 (3)∵W =-10x 2+400x -3 000=-10(x -20)2+1 000,∵a =-10<0,∴当x =20时,W 取最大值,最大值为1 000.故当售价定为20元时,王大伯获得利润最大,最大利润是1 000元25.(1)∵点A(-3,0)与点B 关于直线x =-1对称,∴点B 的坐标为(1,0) (2)∵a =1,∴y =x 2+bx +c ,∵抛物线过点(-3,0),且对称轴为直线x =-1,∴b =2,c =-3,∴y =x 2+2x -3,且点C 的坐标为(0,-3),①设P 的坐标为(x ,y),由题意S △BOC =12×1×3=32,∴S △POC =6.当x >0时,有12×3×x =6,∴x =4,∴y =42+2×4-3=21.当x <0时,有12×3×(-x)=6,∴x =-4,∴y =(-4)2+2×(-4)-3=5,∴点P 的坐标为(4,21)或(-4,5)②∵直线y =mx +n 过A ,C 两点,∴⎩⎪⎨⎪⎧-3m +n =0,n =-3.解得⎩⎪⎨⎪⎧m =-1n =-3.∴y =-x -3.设点Q 的坐标为(x ,y),-3≤x ≤0.则有QD =-x -3-(x 2+2x -3)=-x 2-3x =-(x +32)2+94,∵-3≤-32≤0,∴当x =-32时,QD 有最大值94,∴线段QD 长度的最大值为94。

2017初三上学期数学期末试卷

2017初三上学期数学期末试卷

精心整理2017初三上学期数学期末试卷一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1.PA.2.A .34.A .B.C.D.5.已知⊙O1、⊙O2的半径分别是1cm 、4cm ,O1O2=cm ,则⊙O1和⊙O2的位置关系是A .外离B .外切C .内切D .相交6.某二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是A.a>0,b>0,c>0B.a>0,b>0,c0,b0D.a>0,b17.如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD于点G,延长AG交BC于点F.求证:AB2=BF&#8226;BC.18.(1(2标;(319.ABCD(1(2(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.20.口袋里有5枚除颜色外都相同的棋子,其中3枚是红色的,其余为黑色.(1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21.已知函数y1=-x2和反比例函数y2的图象有一个交点是A(,-1).(1(2(3x的同22.(1(223.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC 于点M、N,在AC的延长线上取点P,使∠CBP=∠A.(1)判断直线BP与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为1,tan∠CB P=0.5,求BC和BP的长.24.已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B 恰好落在AD边上点E处.(1)设AE=x,四边形AMND的面积为S,求S关于x的函数解析式,(2(325.0)、B (0为1(1(2(3一、ACCB DABB二、9.:110.k⑶由图象知:当x时,y1⑵不能.…………………………………………4分∵r2=(4–2)>4–2×1.75=(dm),即r2>dm.,又∵CD=2dm,∴CD<4r2,故不能再裁出所要求的圆铁片.…………………………………5分∵AB∵AB⑵∵在Rt△ABN中,AB=2,tan∠BAN=tan∠CBP=0.5,可求得,BN=,∴BC=.…………………………………………4分作CD⊥BP于D,则CD∥AB,.在Rt△BCD中,易求得CD=,BD=.…………………………………5分代入上式,得=.∴CP=.…………………………………………6分∴DP=.∴BP=BD+DP=+=.…………………………………………7分再由作=(2-+)×4=-+2x+8.……………………………3分其中,0≤x<4.………………………………4分⑵∵S=-+2x+8=-(x-2)2+10,∴当x=2时,S=10;…………………………………………5分此时,AM=2-×22=1.5………………………………………6分答:当AM=1.5时,四边形AMND的面积,为10.⑶不能,0<AM≤2.…………………………………………7分则即解得∴∠BAO=∠CBO.又∵∠ABO+∠BAO=90°,∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°.………………4分∴AC是△ABC外接圆的直径.∴r=AC=×[-(-4)]=.………………5分⑶∵点N在以BM为直径的圆上,∴∠MNB=90°.……………………6分①.当AN=ON时,点N在OA的中垂线上,∴点m=-。

2017年九年级数学上期末试卷

2017年九年级数学上期末试卷

2017年九年级数学上期末试卷相信就是强大,怀疑只会抑制能力。

相信同学们有能力完成九年级数学期末试卷题。

以下是店铺为你整理的2017年九年级数学上期末试题,希望对大家有帮助!2017年九年级数学上期末试题一、选择题:本大题共16小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A. B. C. D.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长( )A.18cmB.5cmC.6cmD.±6cm3.对于二次函数y=﹣ +x﹣4,下列说法正确的是( )A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点4.发展工业是强国之梦的重要举措,如图所示零件的左视图是( )A. B. C. D.5.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为( )A.20°B.40°C.50°D.70°6.若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是( )A.k<1B.k≤1C.k>﹣1D.k>17.如图,已知点P在△ABC的边AC上,下列条件中,不能判断△ABP∽△ACB的是( )A.∠ABP=∠CB.∠APB=∠ABCC.AB2=AP•ACD. =8.函数y=﹣x2+1的图象大致为( )A. B.C. D.9.已知α为锐角,如果sinα= ,那么α等于( )A.30°B.45°C.60°D.不确定10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )A.E、F、GB.F、G、HC.G、H、ED.H、E、F11.小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为( )A. B. C. D.12.已知反比例函数y= 图象的两个分支分别位于第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k>0D.k<013.餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为( )A.(160+x)(100+x)=160×100×2B.(160+2x)(100+2x)=160×100×2C.(160+x)(100+x)=160×100D.2(160x+100x)=160×10014.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?( )A.1小时B. 小时C.2小时D. 小时15.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有( )月.A.5B.6C.7D.816.如图是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形,小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,A、B两点的距离为18米,则这种装置能够喷灌的草坪面积为( )m2.A.36πB.72πC.144πD.18π二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分,把答案写在题中横线上.17.若x2﹣4x+5=(x﹣2)2+m,则m= .18.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S乙2=1.2,那么两队中队员身高更整齐的是队.(填“甲”或“乙”)19.(4分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm 2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式:.(2)当面条粗 1.6mm 2时,面条总长度是m.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.(9分)某销售冰箱的公司有营销人员14人,销售部为指定销售人员月销售冰箱定额(单位:台),统计了这14位营销人员该月的具体销售量如下表:每人销售台数 20 17 13 8 5 4人数 1 1 2 5 3 2(1)该月销售冰箱的平均数、众数、中位数各是多少?(2)销售部选择哪个数据作为月销售冰箱定额更合适?请你结合上述数据作出合理的分析.21.(9分)某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为 .(1)该批产品有正品件;(2)如果从中任意取出2件,求取出2件都是正品的概率.22.(9分)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.23.(9分)有一位滑翔伞爱好者,正在空中匀速向下滑翔,已知水平方向上的风速为5.8m/s,如图,在A点他观察到C处塔尖的俯角为30°,5s后在B点的他观察到C处塔尖的俯角为45°,此时,塔尖与他本人的距离BC是AC的,求此人垂直下滑的距离.(参考数据,结果精确到0.1m)24.(10分)已知:如图,在△ABC中,∠A=45°,以AB为直径的⊙O交AC于点D,且AD=DC,CO的延长线交⊙O于点E,过点E 作弦EF⊥AB,垂足为点G.(1)求证:BC是⊙O的切线;(2)若AB=2,求EF的长.25.(10分)如图,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)建立如图所示的坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面部分的高为0.8m、宽为4m(横断面如图所示).若暴雨后,水位达到警戒线CD,此时这艘船能从这座拱桥下通过吗?请说明理由.26.(12分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.2017年九年级数学上期末试卷答案一、选择题:本大题共16小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A. B. C. D.【考点】锐角三角函数的定义;坐标与图形性质.【分析】利用勾股定理列式求出OA,再根据锐角的余弦等于邻边比斜边列式即可.【解答】解:由勾股定理得OA= =5,所以cosα= .故选D.【点评】本题考查了锐角三角函数的定义,坐标与图形性质,勾股定理,熟记概念并准确识图求出OA的长度是解题的关键.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长( )A.18cmB.5cmC.6cmD.±6cm【考点】比例线段.【分析】由c是a、b的比例中项,根据比例中项的定义,列出比例式即可得出线段c的长,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故选C.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.3.对于二次函数y=﹣ +x﹣4,下列说法正确的是( )A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点【考点】二次函数的性质;二次函数的图象.【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=﹣ +x﹣4可化为y=﹣ (x﹣2)2﹣3,又∵a=﹣ <0∴当x=2时,二次函数y=﹣ x2+x﹣4的最大值为﹣3.故选B.【点评】本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.发展工业是强国之梦的重要举措,如图所示零件的左视图是( )A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形平均分成2个,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.5.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为( )A.20°B.40°C.50°D.70°【考点】圆周角定理.【分析】先根据圆周角定理求出∠B及∠ACB的度数,再由直角三角形的性质即可得出结论.【解答】解:∵∠D=40°,∴∠B=∠D=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣40°=50°.故选C.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是( )A.k<1B.k≤1C.k>﹣1D.k>1【考点】根的判别式.【分析】当△>0时,方程有两个不相等的两个实数根,据此求出k 的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴(﹣2)2﹣4×1×k>0,∴4﹣4k>0,解得k<1,∴k的取值范围是:k<1.故选:A.【点评】此题主要考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况,要熟练掌握,解答此题的关键是要明确:当△>0时,方程有两个不相等的两个实数根.7.如图,已知点P在△ABC的边AC上,下列条件中,不能判断△ABP∽△ACB的是( )A.∠ABP=∠CB.∠APB=∠ABCC.AB2=AP•ACD. =【考点】相似三角形的判定.【分析】根据相似三角形的判定定理(①有两角分别相等的两三角形相似,②有两边的比相等,并且它们的夹角也相等的两三角形相似)逐个进行判断即可.【解答】解:A、∵∠A=∠A,∠ABP=∠C,∴△ABP∽△ACB,故本选项错误;B、∵∠A=∠A,∠APB=∠ABC,∴△ABP∽△ACB,故本选项错误;C、∵∠A=∠A,AB2=AP•AC,即 = ,∴△ABP∽△ACB,故本选项错误;D、根据 = 和∠A=∠A不能判断△ABP∽△ACB,故本选项正确;故选:D.【点评】此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握有两角对应相等的三角形相似与两边对应成比例且夹角相等的三角形相似定理的应用.8.函数y=﹣x2+1的图象大致为( )A. B.C. D.【考点】二次函数的图象.【分析】根据二次函数的开口方向,对称轴,和y轴的交点可得相关图象.【解答】解:∵二次项系数a<0,∴开口方向向下,∵一次项系数b=0,∴对称轴为y轴,∵常数项c=1,∴图象与y轴交于(0,1),故选B.【点评】考查二次函数的图象的性质:二次项系数a<0,开口方向向下;一次项系数b=0,对称轴为y轴;常数项是抛物线与y轴的交点的纵坐标.9.已知α为锐角,如果sinα= ,那么α等于( )A.30°B.45°C.60°D.不确定【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解.【解答】解:∵α为锐角,sinα= ,∴α=45°.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )A.E、F、GB.F、G、HC.G、H、ED.H、E、F【考点】点与圆的位置关系.【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA= = ,∴OE=2OF=2OG=1OH= =2 >OA,所以点H在⊙O外,故选A【点评】此题是点与圆的位置关系,主要考查了网格中计算两点间的距离,比较线段长短的方法,计算距离是解本题的关键.点到圆心的距离小于半径,点在圆内,点到圆心的距离大于半径,点在圆外,点到圆心的距离大于半径,点在圆内.11.小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为( )A. B. C. D.【考点】概率公式.【分析】抛掷一枚质地均匀的骰子,有6种结果,每种结果等可能出现,点数为2的情况只有一种,即可求.【解答】解:抛掷一枚质地均匀的骰子,有6种结果,每种结果等可能出现,出现“点数为2”的情况只有一种,故所求概率为 .故选:A.【点评】本题考查的是古典型概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .12.已知反比例函数y= 图象的两个分支分别位于第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k>0D.k<0【考点】反比例函数的性质.【分析】根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数y= 图象的两个分支分别位于第二、四象限,∴k﹣1<0,解得k<1.故选B.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.13.餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为( )A.(160+x)(100+x)=160×100×2B.(160+2x)(100+2x)=160×100×2C.(160+x)(100+x)=160×100D.2(160x+100x)=160×100【考点】由实际问题抽象出一元二次方程.【分析】本题可先求出桌布的面积,再根据题意用x表示桌面的长与宽,令两者的积为桌布的面积即可.【解答】解:依题意得:桌布面积为:160×100×2,桌面的长为:160+2x,宽为:100+2x,则面积为=(160+2x)(100+2x)=2×160×100.故选B.【点评】本题考查的是一元二次方程的运用,要灵活地运用面积公式来求解.14.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?( )A.1小时B. 小时C.2小时D. 小时【考点】解直角三角形的应用-方向角问题.【分析】过B作AC的垂线,设垂足为D.由题易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°,得AC=BC.由此可在Rt△CBD中,根据BC(即AC)的长求出CD的长,进而可求出该船需要继续航行的时间.【解答】解:作BD⊥AC于D,如下图所示:易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°.∴AC=BC,∵轮船以40海里/时的速度在海面上航行,∴AC=BC=2×40=80海里,∴CD= BC=40海里.故该船需要继续航行的时间为40÷40=1小时.故选A.【点评】本题考查了解直角三角形的应用中的方向角问题,注意掌握“化斜为直”是解三角形的常规思路,需作垂线(高),原则上不破坏特殊角(30°、45°60°).15.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有( )月.A.5B.6C.7D.8【考点】二次函数的应用.【分析】令W=0,解得x=4或12,求出不等式﹣x2+16x﹣48>0的解即可解决问题.【解答】解:由W=﹣x2+16x﹣48,令W=0,则x2﹣16x+48=0,解得x=12或4,∴不等式﹣x2+16x﹣48>0的解为,4∴该景点一年中处于关闭状态有5个月.故选A.【点评】本题考查二次函数的应用,二次不等式与二次函数的关系等知识,解题的关键是学会解二次不等式,属于中考常考题型.16.如图是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形,小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,A、B两点的距离为18米,则这种装置能够喷灌的草坪面积为( )m2.A.36πB.72πC.144πD.18π【考点】垂径定理的应用;扇形面积的计算.【分析】作OC⊥AB,根据垂径定理得出AC=9米,继而可得圆的半径OA的值,再根据扇形面积公式可得答案.【解答】解:过点O作OC⊥AB于C点.∵OC⊥AB,AB=18米,∴AC= AB=9米,∵OA=OB,∠AOB=360°﹣240°=120°,∴∠AOC= ∠AOB=60°.在Rt△OAC中,OA2=OC2+AC2,又∵OC= OA,∴r=OA=6 .∴S= πr2=72π(m2).故选:B.【点评】本题主要考查垂径定理和扇形的面积公式,熟练掌握垂径定理求得圆的半径是解题的关键.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分,把答案写在题中横线上.17.若x2﹣4x+5=(x﹣2)2+m,则m= 1 .【考点】配方法的应用.【分析】已知等式左边配方得到结果,即可确定出m的值.【解答】解:已知等式变形得:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1=(x﹣2)2+m,则m=1,故答案为:1【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.18.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S乙2=1.2,那么两队中队员身高更整齐的是乙队.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=1.9,S乙2=1.2,∴S甲2=1.9>S乙2=1.2,∴两队中队员身高更整齐的是乙队;故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm 2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式:y= .(2)当面条粗 1.6mm 2时,面条总长度是80 m.【考点】反比例函数的应用.【分析】(1)首先根据题意,y与s的关系为乘积一定,为面团的体积,即可得出y与s的反比例函数关系式;(2)将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【解答】解:(1)设y与x的函数关系式为y= ,将s=4,y=32代入上式,解得:k=4×32=128,∴y= ;故答案为:= .(2)当s=1.6时,y= =80,当面条粗1.6mm2时,面条的总长度是80m;故答案为:80.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.某销售冰箱的公司有营销人员14人,销售部为指定销售人员月销售冰箱定额(单位:台),统计了这14位营销人员该月的具体销售量如下表:每人销售台数 20 17 13 8 5 4人数 1 1 2 5 3 2(1)该月销售冰箱的平均数、众数、中位数各是多少?(2)销售部选择哪个数据作为月销售冰箱定额更合适?请你结合上述数据作出合理的分析.【考点】众数;统计表;加权平均数;中位数.【分析】(1)根据平均数、中位数和众数的定义求解;(2)众数和中位数,是大部分人能够完成的台数.【解答】解:(1)平均数是9(台),众数是8(台),中位数是8(台).(2)每月销售冰箱的定额为8台才比较合适.因为在这儿8既是众数,又是中位数,是大部分人能够完成的台数.若用9台,则只有少量人才能完成,打击了大部职工的积极性.【点评】此题考查了学生对中位数,众数,平均数的掌握情况.它们都是反映数据集中趋势的指标.21.某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为 .(1)该批产品有正品 3 件;(2)如果从中任意取出2件,求取出2件都是正品的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出2件都是正品的情况,再利用概率公式即可求得答案.【解答】解:(1)∵某种电子产品共4件,从中任意取出一件,取得的产品为次品的概率为 ;∴批产品有正品为:4﹣4× =3.故答案为:3;(2)画树状图得:∵结果共有12种情况,且各种情况都是等可能的,其中两次取出的都是正品共6种,∴P(两次取出的都是正品)= = .【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.【考点】一元二次方程的应用;二次函数的应用.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t的一元二次方程,解方程即可;(3)由题意可得方程20t﹣t2=m 的两个不相等的实数根,由根的判别式即可得m的范围.【解答】解:(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+ 或t=2﹣,故经过2+ 或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.【点评】本题主要考查二次函数背景下的求值及一元二次方程的应用、根的判别式,根据题意得到相应的方程及将实际问题转化为方程问题是解题的关键.23.有一位滑翔伞爱好者,正在空中匀速向下滑翔,已知水平方向上的风速为5.8m/s,如图,在A点他观察到C处塔尖的俯角为30°,5s后在B点的他观察到C处塔尖的俯角为45°,此时,塔尖与他本人的距离BC是AC的,求此人垂直下滑的距离.(参考数据,结果精确到0.1m)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点C作点A所在水平线的垂线,垂足为D,交点B所在水平线于点E,则CE⊥BE,设BC=x,则AC=4x,建立关于x的方程,求出x的值,进而可求出DE=CD﹣CE=2x﹣x≈13.6m,即此人垂直下滑的距离.【解答】解:过点C作点A所在水平线的垂线,垂足为D,交点B所在水平线于点E,则CE⊥BE设BC=x,则AC=4x,在Rt△BCE中,∠B=45°,∴BE=CE= ,在Rt△ACD中,∵∠A=30°,∴CD=AC•sin30°=2x,AD=AC•cos30°= •4x=2 x,由题意可知,解得x≈10.52,∴DE=CD﹣CE=2x﹣x≈13.6m,答:此人垂直下滑的距离是13.6米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.24.(10分)(2016•聊城模拟)已知:如图,在△ABC中,∠A=45°,以AB为直径的⊙O交AC于点D,且AD=DC,CO的延长线交⊙O 于点E,过点E作弦EF⊥AB,垂足为点G.(1)求证:BC是⊙O的切线;(2)若AB=2,求EF的长.【考点】切线的判定;勾股定理;垂径定理;相似三角形的判定与性质.【分析】(1)连接BD,有圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)AB=2,则圆的直径为2,所以半径为1,即OB=OE=1,利用勾股定理求出CO的长,再通过证明△EGO∽△CBO得到关于EG的比例式可求出EG的长,进而求出EF的长.【解答】(1)证明:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴BD⊥AC,∵AD=CD,∴AB=BC,∴∠A=∠ACB=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵AB=2,∴BO=1,∵AB=BC=2,∴CO= = ,∵EF⊥AB,BC⊥AB,∴EF∥BC,∴△EGO∽△CBO,∴ ,∴ ,∴EG= ,∴EF=2EG= .【点评】本题考查了切线的判定与性质、相似三角形的判定于性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.25.(10分)(2016秋•安平县期末)如图,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)建立如图所示的坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面部分的高为0.8m、宽为4m(横断面如图所示).若暴雨后,水位达到警戒线CD,此时这艘船能从这座拱桥下通过吗?请说明理由.【考点】二次函数的应用.【分析】(1)先设抛物线的解析式y=ax2,再找出几个点的坐标,代入解析式后可求解.(2)求出拱桥顶O到CD的距离为1m,x=2时,y=﹣0.16,由此即可判定.【解答】解:(1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得 .∴y=﹣ x2;(2))∵b=﹣1,∴拱桥顶O到CD的距离为1m,∵x=2时,y=﹣ =﹣0.16,1﹣0.8=0.2>0.16,∴水位达到警戒线CD,此时这艘船能从这座拱桥下通过.【点评】本题考查二次函数的应用,解题的关键是把一个实际问题通过数学建模,转化为二次函数问题,用二次函数的性质加以解决.26.(12分)(2015•潍坊模拟)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.【考点】相似三角形的判定与性质.【分析】(1)分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:根据勾股定理得:BA= ;(1)分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴ ,解得,t=1,②当△BPQ∽△BCA时,,∴ ,解得,t= ;∴t=1或时,△BPQ∽△BCA;(2)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示:则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴ ,∴ ,解得t= .。

人教版九年级上册数学期末试卷解析版

人教版九年级上册数学期末试卷解析版

人教版九年级数学考试题测试题人教版初中数学2017-2018学年辽宁省铁岭市九年级(上)期末数学试卷一、选择题(请将答案填在括号中,每小题2分,共16分)1.cos60°的值等于()A.B.C.D.2.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B. C.D.3.已知两点(x1,y1),(x2,y2)在函数y=﹣的图象上,当x1>x2>0时,下列结论正确的是()A.y1>y2>0 B.y1<y2<0 C.y2>y1>0 D.y2<y1<04.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根5.如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则弧BC的长是()A.πB.πC.πD.π6.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BD,且AE、BD相交于点F,DE:EC=2:3,则S△DEF :S△ABF等于()A.4:25 B.4:9 C.9:25 D.2:37.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;正确的是()A.4个 B.3个 C.2个 D.1个二、填空题9.如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为.10.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?11.如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为米.12.2路公交车每隔5分钟发一班车.小莹来到2路公交站牌,候车时间不少于2分钟的概率为.13.关于x的一元二次方程x2+bx+c=0的两个根为x1=1,x2=2,那么抛物线y=x2+bx+c 的顶点坐标为.14.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.15.如图,已知△ABC中,AB=5,AC=3,点D在边AB上,且∠ACD=∠B,则线段AD的长为.16.如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A n﹣1A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n代数式表示)三、解答题已知α是锐角,且cos(α﹣15°)=,计算﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1的值.18.(8分)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.19.(8分)为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了名学生,两幅统计图中的m=,n=.(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?四、解答题20.(8分)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A (4,n),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.21.(8分)如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)22.(8分)如图,△ABC中,AB=AC,以边AB为直径作⊙O,交BC于点D,过D作DE⊥AC于点E.(1)求证:DE为⊙O的切线;(2)若AB=13,sinB=,求CE的长.五、代数几何综合题(12分)23.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t 秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.2017-2018学年辽宁省铁岭市九年级(上)期末数学试卷参考答案与试题解析一、选择题(请将答案填在括号中,每小题2分,共16分)1.cos60°的值等于()A.B.C.D.【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值解题即可.【解答】解:cos60°=.故选:A.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.2.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B. C.D.【考点】H2:二次函数的图象.【分析】根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.【点评】本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.3.已知两点(x1,y1),(x2,y2)在函数y=﹣的图象上,当x1>x2>0时,下列结论正确的是()A.y1>y2>0 B.y1<y2<0 C.y2>y1>0 D.y2<y1<0【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1>x2>0,判断出两点所在的象限,根据该函数在此象限内的增减性即可得出结论.【解答】解:∵反比例函数y=﹣中,k=﹣5<0,∴此函数图象的两个分支在二、四象限,∵x1>x2>0,∴两点都在第四象限,∵在第四象限内y的值随x的增大而增大,∴y2<y1<0.故选D.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及两点所在的象限是解答此题的关键.4.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则弧BC的长是()A.πB.πC.πD.π【考点】MA:三角形的外接圆与外心;MN:弧长的计算.【分析】连接OB、OC,根据圆周角定理求出∠BOC,利用弧长公式计算即可.【解答】解:连接OB、OC,由圆周角定理得,∠BOC=2∠A=90°,∴弧BC的长是==π,故选:B.【点评】本题考查的是三角形的外接圆和外心的概念和性质,掌握圆周角定理、弧长公式是解题的关键.6.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BD,且AE、BD相交于点F,DE:EC=2:3,则S△DEF :S△ABF等于()A.4:25 B.4:9 C.9:25 D.2:3【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案【解答】解:如图,∵四边形ABCD是平行四边形,∴DC∥AB,CD=AB.∴△DFE∽△BFA,∴=,∵DE:EC=2:3,∴DE:DC=DE:AB=2:5,∴S△DEF :S△ABF=4:25故选:A.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个【考点】X8:利用频率估计概率.【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:设红球有x个,根据题意得,4:(4+x)=1:5,解得x=16.故选A.【点评】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;正确的是()A.4个 B.3个 C.2个 D.1个【考点】S9:相似三角形的判定与性质;LB:矩形的性质;T7:解直角三角形.【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;③正确.只要证明DM垂直平分CF,即可证明;④错误.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有=,即b=a,可得tan∠CAD===.【解答】解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④错误;故选B.【点评】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.二、填空题9.如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为2π﹣3.【考点】MO:扇形面积的计算;MM:正多边形和圆.【分析】此题是考查圆与正多边形结合的基本运算,空白正六边形为六个边长为2的正三角形,利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×.【解答】解:∵圆的半径为2,∴面积为12π,∵空白正六边形为六个边长为2的正三角形,∴每个三角形面积为×2××sin60°=3,∴正六边形面积为18,∴阴影面积为(12π﹣18)×=2,故答案为:2.【点评】本题主要考查了正多边形和圆的面积公式,注意到阴影面积=(圆的面积﹣正六边形的面积)×是解答此题的关键.10.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?【考点】AD:一元二次方程的应用.【分析】设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.【解答】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,答:人行通道的宽度为2米.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.11.如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为7米.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据∠DBC=45°,得到BC=CD,根据tanα=0.7和正切的概念列出算式,解出算式得到答案.【解答】解:∵∠DBC=45°,∴BC=CD,tanα==,则=,解得CD=7.故答案为:7.【点评】本题考查的是解直角三角形的知识,掌握锐角三角函数的概念是解题的关键,注意仰角和俯角的概念.12.2路公交车每隔5分钟发一班车.小莹来到2路公交站牌,候车时间不少于2分钟的概率为.【考点】X4:概率公式.【分析】由2路公交车每隔5分钟发一班车,直接利用概率公式求解即可求得候车时间不少于2分钟的概率.【解答】解:∵2路公交车每隔5分钟发一班车,∴小莹来到2路公交站牌,候车时间不少于2分钟的概率为:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.关于x的一元二次方程x2+bx+c=0的两个根为x1=1,x2=2,那么抛物线y=x2+bx+c 的顶点坐标为(,﹣).【考点】H3:二次函数的性质;AB:根与系数的关系.【分析】首先根据一元二次方程x2+bx+c=0的两个根为x1=1,x2=2,求出b和c 的值,然后抛物线解析式进行配方,得到顶点坐标式,即可求出顶点坐标.【解答】解:∵一元二次方程x2+bx+c=0的两个根为x1=1,x2=2,∴1+2=﹣b,1×2=c,∴b=﹣3,c=2,∴抛物线解析式为y=x2﹣3x+2,∴y=,∴抛物线y=x2﹣3x+2的顶点坐标为(,﹣),故答案为(,﹣).【点评】本题主要考查了二次函数的性质以及根与系数的关系的知识,解答本题的关键是求出b和c的值,此题难度不大.14.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.【考点】HE:二次函数的应用.【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.【点评】此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.15.如图,已知△ABC中,AB=5,AC=3,点D在边AB上,且∠ACD=∠B,则线段AD的长为.【考点】S9:相似三角形的判定与性质.【分析】由已知先证△ABC∽△ACD,再根据相似三角形的性质,相似三角形的对应边成比例,即可求出AD的值.【解答】解:∵∠A=∠A,∠ACD=∠B,∴△ABC∽△ACD,∴=,∵AB=5,AC=3,∴=,∴AD=.故答案为.【点评】本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的值.16.如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,A nP n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,﹣1A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n代数式表示)【考点】G6:反比例函数图象上点的坐标特征;G2:反比例函数的图象;L5:平行四边形的性质.【分析】根据反比例函数图象上点的坐标特征求得点P1、P2的纵坐标,由平行四边形对边平行且相等的性质求得点B1的纵坐标是y2+y1、B2的纵坐标是y3+y2、B3的纵坐标是y4+y3,据此可以推知点B n的纵坐标是:y n+y n=+=.+1【解答】解:∵点P1(1,y1),P2(2,y2)在反比例函数的图象上,∴y1=3,y2=;∴P1A1=y1=3;又∵四边形A1P1B1P2,是平行四边形,∴P1A1=B1P2=3,P1A1∥B1P2 ,∴点B1的纵坐标是:y2+y1=+3,即点B1的纵坐标是;同理求得,点B2的纵坐标是:y3+y2=1+=;点B3的纵坐标是:y4+y3=+1=;…点B n的纵坐标是:y n+1+y n=+=;故答案是:.【点评】本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点B n的纵坐标y n+1+y n.三、解答题(2015•鞍山)已知α是锐角,且cos(α﹣15°)=,计算﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1的值.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】利用特殊角的三角函数值,求得α,进一步按照运算顺序,化简二次根式,计算0指数幂,负整数指数幂,特殊角的三角函数值,最后合并即可.【解答】解:∵cos(α﹣15°)=,∴α﹣15°=30°,∴α=45°,则﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1=3﹣3+1﹣1﹣2=﹣2.【点评】此题考查实数的运算,特殊角的三角函数,掌握运算顺序与计算方法是解决问题的关键.18.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.【考点】R8:作图﹣旋转变换;MN:弧长的计算.【分析】(1)在平面直角坐标系中画出△ABC,然后根据网格结构找出点B、C 的对应点B′,C′的位置,然后顺次连接即可;(2)根据图形即可得出点A的坐标;(3)利用AC的长,然后根据弧长公式进行计算即可求出点B转动到点B′所经过的路程.【解答】解:(1)△AB′C′如图所示;(2)点B′的坐标为(3,2),点C′的坐标为(3,5);(3)点C经过的路径为以点A为圆心,AC为半径的圆弧,路径长即为弧长,∵AC=4,∴弧长为:==2π,即点C经过的路径长为2π.【点评】本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.19.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了120名学生,两幅统计图中的m=48,n=15.(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用A类的人数和所占的百分比求出总人数,用总数减去A,C,D 类的人数,即可求出m的值,用C类的人数除以总人数,即可得出n的值;(2)用该校喜欢阅读“A”类图书的学生人数=学校总人数×A类的百分比求解即可;(3)列出图形,即可得出答案.【解答】解:(1)这次调查的学生人数为42÷35%=120(人),m=120﹣42﹣18﹣12=48,18÷120=15%;所以n=15故答案为:120,48,15.(2)该校喜欢阅读“A”类图书的学生人数为:960×35%=336(人),(3)抽出的所有情况如图:两名参赛同学为1男1女的概率为:.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题20.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为3,k的值为12;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.【考点】GB:反比例函数综合题.【分析】(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x 轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比例函数的性质即可得到当y≥﹣2时,自变量x的取值范围.【解答】解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.(2)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(3)当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.故答案为:3,12.【点评】本题考查了反比例函数综合题,利用了待定系数法求函数解析式,菱形的性质和全等三角形的判定和性质,勾股定理,反比例函数的性质等知识,综合性较强,有一定的难度.21.如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中求出BD=AB=20,在R t△BDP中求出PB即可.【解答】解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中,∵AB=40,∠A=30,∴BD=AB=20,在R t△BDP中,∵∠P=45°,∴PB=BD=20≈28.3(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.【点评】此题主要考查了方向角问题的应用,根据已知得出△PDB为等腰直角三角形是解题关键.22.如图,△ABC中,AB=AC,以边AB为直径作⊙O,交BC于点D,过D作DE ⊥AC于点E.(1)求证:DE为⊙O的切线;(2)若AB=13,sinB=,求CE的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质;T7:解直角三角形.【分析】(1)连接OD,AD,欲证DE是⊙O的切线,只需证明DE⊥OD即可;(2)根据已知条件求得AD、BD'DC,利用△ABD∽△DCE对应边成比例求出CE 的即可.【解答】(1)证明:连接OD与AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC且∠B=∠C,即D为BC的中点,∵D为AB的中点,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.(2)解:∵AB=13,sinB=,∴=,即AD=12,∴BD===5,∴DC=5,在△ABD和△DCE中,∠B=∠C,∠CED=∠ABD=90°,∴△ABD∽△DCE,∴=,∴CE==.【点评】本题主要考查了切线的判定以及相似三角形的判定和性质,解答本题的关键在于如何利用三角形相似求出CE的值.五、代数几何综合题(12分)23.(12分)(2015•铁岭)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t 秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.【考点】HF:二次函数综合题.【分析】(1)直接代入求得函数解析式即可,由点D与C对称求得点D坐标即可;(2)由特殊角的三角函数值得出∠DAP=60°,则点Q一直在直线AD上运动,分别探讨当点P在线段AO上;点Q在AD的延长线上,点P在线段OB上以及点Q在AD的延长线上,点P在线段OB上时的重叠面积,利用三角形的面积计算公式求得答案即可;(3)由于OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形,分两种情况探讨:当△AMO以∠AMO为直角的直角三角形时;当△AMO以∠OAM为直角的直角三角形时;得出答案即可.【解答】解:(1)∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,∴,解得,∴抛物线解析式为y=﹣x2﹣x+;则D点坐标为(﹣2,).(2)∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,∴∠DAP=60°,又∵△APQ为等边三角形,∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:AP=AD==2.①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD 的重叠面积.AP=t,∵∠QAP=60°,∴点Q的纵坐标为t•si n60°=t,∴S=×t×t=t2.②当2<t≤3时,如图:此时点Q在AD的延长线上,点P在OA上,设QP与DC交于点H,∵DC∥AP,∴∠QDH=∠QAP=∠QHD=∠QPA=60°,∴△QDH是等边三角形,∴S=S△QAP ﹣S△QDH,∵QA=t,∴S△QAP=t2.∵QD=t﹣2,∴S△QDH=(t﹣2)2,∴S=t2﹣(t﹣2)2=t﹣.③当3<t≤4时,如图:此时点Q在AD的延长线上,点P在线段OB上,设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,∵OP=t﹣3,∠FPO=60°,∴OF=OP•tan60°=(t﹣3),∴S△FOP=×(t﹣3)(t﹣3)=(t﹣3)2,∵S=S△QAP ﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.∴S=t﹣﹣(t﹣3)2=﹣t2+4t﹣.综上所述,S与t之间的函数关系式为S=.(3)∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.①当△AMO以∠AMO为直角的直角三角形时;如图:过点M2作AO的垂线,垂足为N,∵∠M2AO=30°,AO=3,∴M2O=,又∵∠OM2N=M2AO=30°,∴ON=OM2=,M2N=ON=,∴M2的坐标为(﹣,).同理可得M1的坐标为(﹣,).②当△AMO以∠OAM为直角的直角三角形时;如图:∵以M 、O 、A 为顶点的三角形与△OAC 相似, ∴=,或=,∵OA=3, ∴AM=或AM=3,∵AM ⊥OA ,且点M 在第二象限, ∴点M 的坐标为(﹣3,)或(﹣3,3).综上所述,符合条件的点M 的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).【点评】此题考查二次函数的综合运用,图形的运动,待定系数法求函数解析式,特殊角的三角函数,三角形的面积,分类讨论是解决问题的关键.初三第一学期期末学业水平调研数 学本试卷共8页,共三道大题,28道小题,满分100分。

辽宁省铁岭市开原市2017届九年级(上)期末数学试卷(解析版)人教版

辽宁省铁岭市开原市2017届九年级(上)期末数学试卷(解析版)人教版

A.(2n﹣ 1, 2n) 2n﹣ 1)
B.( 2n﹣ ,2n) C.(2n﹣1﹣ ,2n﹣1)
D.(2n﹣1﹣ 1,
二、填空题:每小题 3 分,共 24 分. 11.已知在 Rt△ ABC 中,∠ C=90°,sinA= ,则 tanB 的值为 . 12.在方格纸中, 每个小格的顶点称为格点, 以格点的连线为边的三角形称为格 点三角形,如图所示的 5×5 的方格纸中,如果想作格点△ ABC 与△ OAB 相似 (相似比不能为 1),则 C 点坐标为 .
2016-2017 学年辽宁省铁岭市开原市九年级(上)期末数学试卷
一、选择题:每小题 3 分,共 30 分.
1.在 RT△ ABC 中,∠ C=90°,∠ A 、∠ B、∠ C 的对边分别为 a、b、c,则下列
式子一定成立的是(

A. a=c?sinB B. a=c?cosB C.a=b?tanB D.b=
6.如图,在 2× 2 正方形网格中,以格点为顶点的△ ABC 的面积等于 ,则 sin ∠ CAB= ( )
A.
B. C.
D.
7.已知 k1< 0< k2,则函数 y=k1x﹣ 1 和 y= 的图象大致是()A. NhomakorabeaB.
C.
D.
8.如图所示,一般书本的纸张是在原纸张多次对开得到.矩形 ABCD 沿 EF 对 开后,再把矩形 EFCD 沿 MN 对开,依此类推.若各种开本的矩形都相似,那 么 等于( )
B.
C.
D.
10.彼此相似的矩形 A 1B1C1D1,A 2B2C2D2,A 3B3C3D3, …,按如图所示的方式 放置.点 A 1, A 2,A 3,…,和点 C1,C2, C3,… ,分别在直线 y=kx +b(k>0) 和 x 轴上,已知点 B1、B2 的坐标分别为 ( 1,2),( 3,4),则 Bn 的坐标是 ( )

最新2016-2017学年人教版九年级上册数学期末测试卷及答案(1)

最新2016-2017学年人教版九年级上册数学期末测试卷及答案(1)

第 1 页 共 2 页2016---2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A .y =2(x -1)2-3B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 65.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B .2C .2D .26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( )A .35°B .45°C .55°D .75°7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y <B.21y y >C.21y y =D.1y 、2y 的大小不确定第3题图 第6题图第4题图 第12题图第 2 页 共 2 页 17.(共8分)解方程:(1)122=+x x (2)0)3(2)3(2=-+-x x18.(共6分)已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠.(1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.19.(共6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .20.(共8分)某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A 1表示,女生用B 1表示)和九年(2)班的1名男生1名女生(男生用A 2表示,女生用B 2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.21.(共8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22、(共8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°.(1)求∠ABC 的度数;(2)求证:AE 是⊙O 的切线;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档