层序地层学

合集下载

层序地层学

层序地层学

一、I型层序界面与II型层序界面的异同点与I型层序界面相比,其不同点为:II型层序边界缺乏明显的台地斜坡侵蚀作用和沉积相带向盆地方向的迁移。

在陆棚边缘,II型界面上覆的地层一般是平行和加积的,而I型层序界面上覆的地层主要是斜向和进积的。

II型层序边界形成时海平面在相对短的时间内就开始上升并淹没外台地。

II型层序底部台地和滩边缘楔形体将会在下伏的台地边缘处或稍低的位置发生沉积并向陆地方向上超与I型层序界面相比,其相同点为:在Ⅱ型层序界面形成期间,发生类似小规模I型海平面下降时所产生的淡水成岩作用,其包括颗粒溶解,特别是不稳定文石和高镁方解石的溶解。

也发育少量渗流和潜水胶结物的沉淀和混合带白云化作用。

在II型层序边界形成时,也会发生超盐度白云化作用。

二、三种体系域体系域是指一系列同周期沉积体系的集合体,是一个三维沉积单元,其边界是上超、下超等沉积边界。

(1)低位体系域低位体系域是指I型层序中位置最低、最老的体系域,是在相对海平面下降到最低点并且开始缓慢上升时期行成的。

低水位体系域存在于三种地质背景中:陆架坡折背景(常见于被动大陆边缘);缓坡背景;生长断层背景。

在具有陆棚坡折和深水盆地沉积背景中,低位体系域是由海平面相对下降时形成的盆底扇、斜坡扇和海平面相对上升时期形成的低位前积楔状体以及河流深切谷充填物组成的。

(2)海侵体系域海侵体系域(Transgressive systems tract,简称TST),是I型和Ⅱ型层序中部的体系域,它是在全球海平面迅速上升与构造沉降共同产生的海平面相对上升时期形成的,以沉积作用缓慢的低砂泥比值的一个或多个退积型准层序组为特征。

主要沉积体系类型是陆架沉积、三角洲沉积、海岸平原沉积以及障壁岛及泻湖、受潮汐影响的沉积。

其底界初始海泛面,顶界是一个分布较广的下超面,顶部沉积物以沉积慢、分布广、富含有机质、沉积物细为特征(3)高位体系域高位体系域是I型和Ⅱ型层序上部的体系域,是在海平面相对上升转变为相对下降时期形成的,由向盆内进积的一个或多个准层序组组成主要沉积体系类型相似于海侵体系域,但河流作用更明显,河道砂发育,潮汐影响变小,泻湖和煤系地层不太发育高位体系域顶部以I型和Ⅱ型层序界面为界,底部以下超面为界三、断陷型湖泊层序地层在油气勘探中的应用四、地层剖面和年代地层格架的转换五、I型层序边界与II型层序边界I型层序边界(SB1)I型层序边界是一个区域性的不整合界面,是全球海平面下降速度大于沉积滨线坡折带处盆地下降速度时产生的以河流回春作用、沉积相向盆地方向迁移、海岸上超的向下转移以及与上覆地层相伴生的陆上暴露和同时发生陆上侵蚀作用为特征。

层序地层学基本原理

层序地层学基本原理

可容纳空间(Accomadation)
可容纳空间是指可供沉积的、潜在的沉积 物堆积的空间(Jervey, 1988)。可容纳空间是 海平面升降变化和构造沉降二者的函数。
地震层序 Seismic Sequence
在地震剖面上,顶底以地震反射终止为标志的不连续面 (被解释为不整合面及相关整合面)为界所限定的一套相 关的连续地震反射(被解释为成因相关的地层)。
A relatively conformable succession of reflections on a seismic section, interpreted as genetically related strata; this succession is bounded at its top and base by surfaces of discontinuity marked by reflection terminations and interpreted as unconformities or their correlative conformities.
.
Erosional truncation
isis.ku.dk/kurser
Erosional truncation
isis.ku.dk/kurser
Upper Boundary
Toplap Termination or lapout of strata against an overlying surface mainly as a result of no deposition (sedimentary bypassing) with perhaps only minor erosion (Mitchum, AAPG Memoir 26).

第一篇 层序地层学概念体系

第一篇 层序地层学概念体系
➢ 盆底扇可能沉积在峡谷口处,也可能远离峡谷出口而广泛发 育。峡谷也可能不明显。盆底扇在陆坡上或陆架上毫无同期 的岩石。
➢ 斜坡扇由具天然堤的浊流沟道和漫滩沉积物所组成。它们上 覆于盆底扇之上,并被上覆的低水位楔状体所下超。
➢ 低水位楔状体由一个或多个组成楔状体的进积式准层序组所 组成;楔状体仅发育在陆架坡折的向海一侧(方向),并上 超在先前层序的斜坡上。
HST TST LST
Ⅱ层序边界
➢ Ⅱ型层序边界:当海平面下降的速率小于 沉积滨线坡折处沉降速率,即在这个区域未 产生相对海平面下降时期形成的。 ➢ Ⅱ型层序边界特征是一个区域性界面,沉 积滨线坡折带向陆方向的陆上暴露、上覆地 层的上超以及海岸上超点向下迁移等特征。 没有河流回春作用造成的陆上侵蚀、也没有 沉积相明显向盆地方向迁移。
PDM:前三角洲泥岩
河道单元II
W LST
H2S1B下42层序
HST
H22 层序
SB42:层序界面(H21上亚段底界)
LST:低位体系域
HST:高位体系域
SB42层序界面上发育的大型下切复合水道全景(剖面方向与水流方向近于垂直)
下切谷
下降体系域
东海丽水凹陷海相第三纪断陷盆地
追踪高频的海、湖平面变化旋回,建立高精度的层序格架
临滨
4
滨外陆棚
3
前滨
2
临滨
1
滨外陆棚
6. 准层序和准层序组
2)准层序组(Parasequence sets) 是指由成因相关的一套准层序构成的、
具特征堆砌样式的一种地层序列,其边界 为一个重要的海泛面和与之可对比的面, 可将准层序组划分为进积、加积和退积准 层序组三种类型。
第三章 层 序

层序地层学

层序地层学

层序地层学层序地层学是地层学的一个分支,是根据地震、钻井和露头资料进行地层分布型式、沉积环境和岩相综合解释的一门科学。

人们发现,在同一时期的、情况各异的许多沉积盆地内发育着的地层形式,说明存在着一种有效的全球控制因素,这种因素即是全球海平面变化。

P.R.Vail等(1977)曾提出了这样一种观点:大多数地表地质学家普遍见到的旋回性沉积作用基本上或完全受全球范围的海平面升降变化的控制。

层序地层学的产生起源于Mac Jeryey在70年代后期的研究成果,他在数学上模拟和定量表示了产生全球旋回曲线的海平面、构造沉降和物源供给之间的相互关系。

这项工作显示出层序地层学以统一思想对地层学和盆地演化进行研究所产生的巨大潜力。

然而,层序地层学成为独立的学科形成于80年代后期,是由P.R.Vail、J.B.Samgree和J.C.Van Wagoner等学者提出并完善的。

P.R.Vail等(1987)提出的层序地层学概念及其有关沉积模式,是以海洋环境为背景,针对被动大陆边缘提出的。

层序地层学的核心部分是研究全球海平面升降变化对沉积作用的控制。

包括对大陆边缘碎屑沉积作用的控制和对大陆边缘碳酸盐沉积作用的控制。

层序及其内部组成部分体系域是全球海平面升降、地壳沉降以及沉积物供给之间相互作用的产物。

全球海平面升降和构造沉降共同作用的结果,引起海平面的相对变化。

在全球海平面升降的控制下,海平面的相对变化速度是碎屑沉积地层型式和岩相分布的主要控制因素;在长期构造运动的背景下,海平面的相对变化控制碳酸盐沉积地层型式和岩相分布。

根据上述这些相互作用可以建立沉积模式,用以检验人们的认识,预测沉积地层关系和岩相,进行全球不同地域、不同时代地层间的对比。

因此,层序地层学是从四维时空上来认识沉积记录,并将其和全球海平面的周期性变化联系起来,认为沉积记录是全球海平面变化与地壳沉降和沉积物供给的函数,从而增强了全球不同地域、不同时代地层间的可对比性和沉积相的可预测性,将沉积学和地层学推向了一个新的阶段。

层序地层学

层序地层学

1.论述层序地层学发展的主要学派,并阐述他们之间的关键不同点,着重从其形成机制、模式和研究方法论述。

1. 高分辨率层序地层学:是以Cross领导的科罗拉多矿业学院成因地层研究组为代表提出的,邓洪文教授首次将该理论体系在国内作了较为详细的介绍,随后引起了许多地质学家的重视,并逐步在实践中得到应用。

高分辨率层序地层学就是利用高分辨率地震剖面、测井、岩心和露头资料,通过对层序地层基准面的分析,运用精细的层序地层划分对比技术,建立高分辨率层序地层框架,由于时间分辨率的增加,地层预测的准确性大为提高,并能为油藏数值模拟提供可靠的岩石物理模型。

1.理论基础:高分辨率层序地层学理论的核心是:在基准面变化过程中,由于可容纳空间与沉积物通量比值(A/S)的变化,相同沉积体系域或相域中发生沉积物的重新分配作用,导致沉积物的保存程度、地层堆积样式、相序、相类型及岩石结构发生变化。

这些变化是基准面旋回中所处的位置和可容纳空间的函数。

基本理论包括基准面原理、体积划分原理、相分异原理和旋回等时对比法则。

其理论的关键点是基准面变化控制了层序地层的发育。

1.1 高分辨率层序地层学基准面旋回简介:作为对一个基准面旋回变化过程中形成的沉积体进行研究的分支学科,高分辨率层序地层学研究的基本单元是成因层序,即以等时面为界的时间地层单元,研究的基本原理是地层基准面或平衡剖面理论。

地层基准面为一抽象的、动态的非物理界面它是海平面、古构造(区域、局部)、古气候、古物源及沉积物供给速率、古地理等多种影响因子的函数。

基准面位置运动轨迹及方向、波动振幅及频率随时间而变化,并能准确地、动态地反映空间及沉积过程。

基准面在变化中总具有向其幅度的最大值或最小值单向移动的趋势,构成一个完整的上升下降旋回。

一个基准面旋回是等时的,在一个基准面旋回变化过程中(可理解为时代域)保存下来的一套岩石为一个成因地层单元,即成因层序,它以时间面为界,因而为一个时间地层单元。

第二章 层序地层学基本原理

第二章 层序地层学基本原理

3 层 序 级 别 划 分
旋回 级别 一级
二级
三级 四级 五级
六级
王鸿祯等
Vail et al Mitchum et Brett
Cooper
( 2000)
(1991)
al
(1990)
(1990)
(1990)
大 层 序 ( Mg) Magasequen Magasequen Magasequ Megacyc
• 层序边界识别标志
A、地质标志(沉积、成岩)
1.古风化暴露面 2.深切谷 3.岩性、岩相标志 4.淡水透镜体(碳酸盐岩)
B、地震识别标志
不整合面是一个将新 老层分开的界面,沿 这个界面有证据表明 存在指示重大沉积间 断的陆上侵蚀削截或 陆上暴露现象。地层 不整合在地震剖面上 会表现为地震不整一 现象,故利用地震剖 面可以识别不整合面。 地震剖面上不整合面 的识别主要根据同相 轴的反射终止方式来 判别,典型的地震不 整合反射有削蚀、上 超、下超及顶超等三 种终止类型。
准层序和准层序组是层序的地层 构成单元。
层序的体系域组成
• 根据客观标准(包括边界面类型、准层序组的 分布以及其在层序内的位置)可将层序进一步 分成体系域。
• 体系域(system tract):同期沉积体系的组合, 而沉积体系是成因上相关联的沉积相的三维组 合。
• 体系域类型:即低水位、陆棚边缘、海侵及高 水位体系域。
四、层序内部体系域组成
1、体系域概念及分类 2、低位体系域 3、海侵体系域 4、高位体系域 5、陆棚边缘体系域
1、体系域概念及分类
体系域(System tract):
同期沉积体系的组合。
体系域类型:
1 低水位体系域 2 陆棚边缘体系域 3 海侵体系域 4 高水位体系域。

层序地层学

层序地层学
3.最大海泛面:指的是最大海侵时期形成密集段或下超面,在盆地内分布范围最大,为划分海侵体系域和高 水位体系域的界面。
4.全球海平面变化:全球海平面指一个固定的基准面点,从地心到海表面的测量值。这个测量值随洋盆和海 水的体积变化而发生变化,与局部因素无关
5.相对海平面变化:相对海平面是指海平面与局部基准面如基底之间的测量值。一个地区相对海平面变化是 全球海平面变化和当地盆地沉降速率的函数,相对海平面变化与沉积物堆积无关,不能与水深相混淆。
感谢观看
基本原理
1.基本原理。遵循多个沉积学和地层学第一原理—沉积地层具有特定的形态和时空组合关系。这种形态和时 空组合关系在地质历史中周期性地出现,因而具有可预测性。层序地层学是地质学若干普遍性原理高度综合的一 门学科 。
2.理论基础。层序地层学是在地震地层学的基础上发展起来的,它继承了地震地层学的理论基础,即控制可 容纳空间的基准面的周期性变化,是形成不整合面或与之对应的整合面为边界的、成因相关的沉积层序的根本原 因。这个基准面是相对的,是由海平面(或者湖平面,或者是陆地表面上的既不沉积也不侵蚀的不发生沉积作用的 平衡表面)升降、构造运动、沉积物供应速度和气候等4种因素综合作用的结果。
油气领域应用
层序地层学之所以能够在油气勘探中发挥重要作用,是因为它能够在钻前对有利于形成油气藏的相带、区块 及其优劣进行预测,并且已经初步形成了一套比较完整的思路与方法。如预测有利生油层段、找寻火山口、寻找 复合密集段等方法。
在基准面发生重大下降过程中,相邻两个或多个层序的密集段彼此紧靠、相互配置,形成丰厚优质的生油岩 和质量良好、配置合理的生储盖组合。层序地层学先进的成因模式,尤其是高分辨率层序地层学提供的地层对比、 相带展布预测、砂体分布模式,极大地提高了石油的生、储、盖、运、圈、保系统的研究精度,提高了各种地层 参数的预测能力,为寻找有利的地层—岩性圈闭提供了科学依据。

朱筱敏-层序地层学基本理论

朱筱敏-层序地层学基本理论
层序地层学的四大理论体系
第一节 理论基础和概念体系
一、层序地层学定义和理论基础 1.层序地层学定义 层序地层学是研究以不整合面或与之 相对应的整合面为边界的年代地层格架 中具有成因联系的,旋回岩性序列 间相互关系的地层学分支学科 。
第一节 理论基础和概念体系
一、层序地层学定义和理论基础 2.层序地层学理论基础
◇低位体系域(Lowstand systems tract, 简称LST)是指Ⅰ型层序中位置最低、沉积 最老的体系域;
◇是在相对海平面下降到最低点并且开始缓 慢上升时期形成的,顶界为首次海泛面;
◇在具有陆棚坡折和深水盆地的沉积背景中, 低位体系域由盆地扇、斜坡扇和低位前积 楔状体以及河流下切谷充填物组成的 。
层序地层学-1 Sequence Stratigraphy
朱筱敏
中国石油大学地球科学学院
层序地层学就是根据露头、 钻测井和地震资料,结合有关沉 积环境和岩相古地理解释,对地 层层序格架进行地质综合解释的 地层学分支学科。
Embry T-R旋回
Vail 层序地层学
Galloway 层序地层学
Cross高分辨率层 序地层学
谢 谢!
1)整合 整合面是一个将新老地层分开的界面,
沿此界面没有陆上和海底侵蚀作用的证据, 也不指示存在重大沉积间断。
整合可包括沉积作用缓慢、在很长地 质时间内仅沉积很薄沉积物的界面。
二、层序地层学基本概念
2、整合和不整合
2)不整合
不整合是一个将新老地层分开的界面, 沿着这个界面有证据表明存在指示重大 沉积间断的陆上侵蚀削截(或与之相对 应的海底侵蚀)或陆上暴露现象。
准层序(Parasequence) 是一个以海泛面或与之相应 的面为界、由成因上有联系 的层或层组构成的相对整合 序列。

层序地层学

层序地层学

一.名词解释1. 层序地层学:(Sequence Stratigraphy)研究以不整和面或与之相对应的整和面为边界的年代地层格架中具有成因联系的、旋回岩性序列间相互关联的地层学分支学科。

2. 层序:(Sequence)一套相对整一的、成因上存在联系的、顶底以不整和面或与之相对应的整和面为界的地层单元。

3. I型层序边界面:一个区域型不整合界面,是全球海平面下降速度大于沉积滨线坡折带处盆地沉降速度时产生的。

即I型层序界面是在沉积滨线坡折带处,由海平面相对下降产生。

4. II型层序边界面:全球海平面下降速度小于沉积滨线坡折带处盆地沉降速度时产生的,在沉积滨线坡折带处未发生海平面的相对下降。

5. I型层序:底部以I型层序界面为界,顶部以I型层序或II型层序界面为界的层序。

6. II型层序:底部以II型层序界面为界,顶部以I型层序或II型层序界面为界的层序。

7. 沉积滨线坡折带:(Depositional shoreline break)陆架剖面上的一个位置,是沉积作用活动的地形坡折,在此坡折向陆方向,沉积表面接近基准面,而向海方向沉积表面低于基准面。

8.陆棚坡折带:(Shelf-break)大陆架与大陆斜坡之间的过渡地带。

9. 体系域:(Systems tract)一系列同期沉积体系的集合体。

10. 低位体系域: (Lowstand systems tract,简称LST) I型层序中位置最低、沉积最老的体系域,是在相对海平面下降到最低点并且开始缓慢上升时期形成的。

在具陆棚坡折的深水盆地的沉积背景中,低位体系域是由海平面相对下降时形成的盆底扇、斜坡扇和海平面相对上升时形成的低位前积楔状体以及河流深切谷充填物组成的。

低位体系域以初次海泛面为顶界,其上为海进体系域。

11. 海进体系域:(Transgressive systems tract,简称TST):是I型和II型层序中部的体系域,是在全球海平面迅速上升与构造沉降共同产生的海平面相对上升时期形成的,由一系列向陆推进的退积准层序组成,沉积作用缓慢。

层序地层学

层序地层学

层序地层学层序地层学是一门关于地球历史和地质结构的学科,也被称为地层学。

它研究地球表面各个层次的形成、演变、叠置、形态、性质性质和含矿条件等问题。

层序地层学是地质学中的一支重要学科,通过对地质历史进行层序分析,揭示出地球历史的演化过程和构造变化规律,对于理解地球演化史、指导矿产资源勘探开发、支持地质工程和环境保护等具有重要的意义。

下面是层序地层学的详细介绍。

一、层序地层学的概述层序地层学的研究对象是地球表层及其下部岩石的垂直柱状截面(地层柱)、水平展布面(地层露头)、空间分布(地层相)和时空演化过程。

它研究的目的是根据岩性、结构、古生物化石、古地理和特征地质事件等方面的特征,建立地层序列和地层层位,随着研究范围的不同,可以分为区域层序分析、盆地地层学、海相地层学、非海相地层学、构造地层学等。

层序地层学的研究方法主要包括岩石与古生物学、构造地层学、地震地层学、地球化学等方面的技术手段,通过对各种地质现象进行分析和比较,以正确的地图解读和理解,建立真实的地质模型。

二、层序地层学的研究目的和意义1. 研究地球历史和地质构造演化层序地层学的一个主要目的是了解地球历史和地质构造演化。

地球历史是地层学的主要内容之一,通过层次系统对地球历史进行分段和分类,对过去地球环境的演化和特征进行研究,可以推断出古环境、古地理、古气候和地球演化史的重要信息。

2. 指导矿产资源的勘探和开发层序地层学还可以指导矿产资源的勘探和开发。

通过对地层中各种矿产赋存环境、古地理环境和矿床类型的研究,可以确定矿床的分布规律和含矿性质的特征,从而提高矿床的勘探效果和开采利用效率。

3. 支持地质工程和环境保护层序地层学还可以支持地质工程和环境保护。

地层信息可以为工程地质勘察、工程建设和水文地质调查等提供有力的支持,帮助工程师设计科学合理的工程方案,为环境保护、资源可持续性利用和人类生存提供保障。

三、层序地层学的基本概念1. 地层地层是以一定标志为界限所划分出来的,具有一定厚度和广泛垂直分布的自然地质单元。

层序地层学(绪论和第一章)

层序地层学(绪论和第一章)

层序地层学的发展阶段
1980年 “地震地层学”被引进 (徐怀大,牛毓荃等,1980)
1988年 结合我国油气勘探实践, “陆相断陷盆地区域地震地层学研究”问世 (张万选等,1988)
1989年 组织编译了“应用层序地层学” (张宏逵等,1990)
1993年 《层序地层学原理――海平面变化分析》 一书出版(徐怀大等,1993)
• 虽然上述划分层序类型的三种方法各不相同,但均强 调海平面变化是控制层序成因和相分布的内在机制, 可用于全球范围内的地层对比。在层序控制方面将构 造运动、全球海平面变化、沉积物供给、气候变化作 为影响层序产生的四大控制因素。但对于构造沉降作 用、成岩作用的影响考虑较少,这是其局限性所在。
(二)陆相派
第一节 陆相湖盆地质特征 第二节 陆相湖盆层序地层学
第五章 高分辨率层序地层学
第一节 理论基础和研究方法 第二节 在油气勘探和开发中的应用
结论
绪论
一、层序地层学的发展阶段 二、层序地层学研究的学派 三、层序地层学与传统地层学的区别 四、层序地层学的发展趋势 五、层序地层学理论优势所在
层序地层学的发展阶段
层序地层学
概念在沉积岩上的应用有可能提供一个完整统一的地层学概念,
就象 板块构造
曾经提供了一个完整统一的构造概念
一样,
层序地层学改变了分析世界地层记录的基本原则。 因此,它可能
是地质学中的一次革命,
它开创了了解地球历史的一个新阶段。
——P. R. Vail
层序地层学的发展阶段
层序地层学发展历史(Background)
三大发展阶段
概念萌芽阶段 1948-1977
孕育阶段 1977-1988
理论系统化阶段 1988年-现至

层序地层学 地理学学科

层序地层学 地理学学科

层序地层学地理学学科
《层序地层学》是一门涉及地质结构、矿物学、地层结构的地的理学科。

随着地质年代学的发展,在19世纪,层序地层学开始成为独特的学科,成为地球科学中的一个重要分支。

层序地层学也称作“层序地层结构学”。

层序地层学主要研究地壳的历史演变,如形成地层的物质来源,探究岩石构成的演变过程、层序的历史发展以及其所表示的地质年代的研究。

为了更好地识别和分析地层,研究者需要运用各种实验和分析技术,如岩石薄片、地壳测绘、地球物理、地球化学等,来分析和揭示岩石的层序特征。

层序地层学在识别油气藏和矿产资源中有着重要的作用。

准确识别目标油气藏或矿产资源所在的层序,是油气勘探与矿产勘探中的基础性工作。

层序地层学研究成果,可以帮助油气勘探者更有效的探测油气藏和矿产资源,从而更快的获得收益和利润。

层序地层学是一门复杂的学科,它综合了地质学、地球物理、地球化学等多学科的知识,涉及面广泛,内容繁杂,也是地质工程学科中的重要组成部分。

通过系统交叉学科研究、层序地层学研究,研究者可以获得更深入的了解地壳的历史演化及其表示的地质信息。

层序地层学也可以用于地质教育和地质科普,帮助地质教师和科普人员熟悉地质历史的演化过程及其表象,因此可以发挥重要作用。

在地质教学中,层序地层学可以普及科学知识,可以帮助学生更好地理解地质学中自然现象,从而更好地了解地质历史及其表示的地质信
息。

因此,层序地层学在地质科学研究中具有十分重要的意义。

通过系统的层序地层学研究,可以更好地了解地质历史的演化,发挥其在油气勘探和矿产勘探中的作用,也可以帮助更好地普及科学知识,推动地质科学进步。

层序地层学-总结

层序地层学-总结

层序地层学总结理论部分:1层序地层学的基本概念层序:一套相对整一的、成因上有联系的地层,顶、底以不整合和可以与之对比的整合为界所限定的三维沉积组合体。

体系域;同一时期内具成因联系的沉积体系组合,为层序构成单元。

每个体系域都解释为与全球海水面变化曲线的某一特定间段。

基准面:分割侵蚀作用与沉积作用的理论均衡面。

“在该面之上,沉积物不能停留;在该面之下,可以发生沉积作用和埋藏作用”。

可容纳空间;指可供沉积物堆积的空间,是海平面升降变化和构造沉降二者的函数。

(=全球海面变化增量+盆地沉降增量+沉积压实增量)最大海泛面;一个层序中最大海侵时形成的界面,是海侵体系域与高位体系域的分界面,是海侵体系域的顶界面并被上覆的高位体系域下超。

密集段:指在极缓速度下沉积的地层段,一般很薄,缺乏陆源物质,发育于海平面相对上升到最大,海岸线海侵最大时期,沉积于陆架、陆坡和盆地平原地区。

其代表大陆边缘饥饿性沉积时期内的缓慢沉积作用,并且能够与下超面相对应。

2其他概念及知识点层序地层学:研究以侵蚀面或无沉积作用面、或者与之可以对比的整合面为界的、重复的、成因上有联系的地层的年代地层框架内岩石间的关系。

准层序;由相对整合、成因上相关的层或层组所组成的序列,以海(湖)泛面和与之可以对比的面为界。

相当于四级或五级沉积旋回。

准层序组;由成因上相关的若干小层序所组成的序列,其垂向上构成一个特征的叠加型式。

准层序组内的各小层序的叠加型式有前积、退积和加积三种。

不整合:一个分开新老地层的界面,沿着这个面存在陆上侵蚀削截(在某些地区为可与之对比的海底侵蚀面)的证据,或者存在明确重要沉积间断的陆上暴露的证据,并具有的明确的沉积间断。

Ⅰ型不整合;发育于快速的海平面下降、更迅速的构造沉降期。

海岸线可能移至陆架边缘,伴随着陆架下切谷的发育和海底峡谷的深切作用,陆表遭受广泛的侵蚀作用。

碎屑岩块沿着峡谷体系被搬运至陆架斜坡的底部,形成了广泛的低水位体系域。

层序地层学原理及应用

层序地层学原理及应用

层序地层学原理及应用层序地层学是一种研究地层堆积规律的学科,它通过分析和解释地层中不同岩性、沉积体系和古地理环境的特征,揭示地球历史的演变和沉积作用的原理。

层序地层学的原理和应用在油气勘探、水文地质、环境地质等领域具有重要意义。

一、层序地层学的原理:层序地层学主要包括沉积相、海平面变化及沉积体系等原理。

1. 沉积相原理:不同沉积相的岩性和沉积特征可以反映不同的沉积环境和沉积作用。

通过对沉积相的研究,可以揭示地层中不同地区和时期的沉积环境变化,从而推测地层的堆积规律和古地理演化。

2. 海平面变化原理:根据全球的海平面变化曲线以及沉积序列中的海侵和海退相特征,可以推测地层的相对时代和地层联系。

在地层划分和对比中,海平面变化起着重要的作用,可以确认地层的对应关系。

3. 沉积体系原理:沉积体系是指在特定沉积环境中形成的具有一定规模和岩性组合的沉积单元。

通过对沉积体系的分析,可以揭示沉积环境的变化和沉积作用的机制,进而推测地层的层序关系。

二、层序地层学的应用:层序地层学在下面几个方面有重要的应用:1. 油气勘探:层序地层学可以揭示不同沉积体系的油气储集规律和分布特征。

通过对沉积相、海平面变化和沉积体系的分析,可以确定含油气层的位置、分布范围和储集类型,为油气勘探提供重要的依据。

2. 水文地质:层序地层学可以揭示地下水的流动和分布规律。

通过对地层的划分,可以确定地下水的赋存状态和供水能力,为地下水资源的开发利用提供科学依据。

3. 工程地质:层序地层学可以揭示地质灾害的形成机制和演化规律。

通过对地层的分析,可以确定不同地层的稳定性和工程地质条件,为工程建设和地质灾害防治提供参考。

4. 环境地质:层序地层学可以揭示环境演变和气候变化的历史。

通过对地层的分析,可以了解过去地球环境的变化和人类活动对环境的影响,为环境保护和生态建设提供参考。

综上所述,层序地层学通过分析和解释地层中不同岩性、沉积体系和古地理环境的特征,揭示地球历史的演变和沉积作用的原理。

层序地层学

层序地层学

层序地层学层序地层学( sequence stratigraphy):研究旋回式的、成因上有联系的、以侵蚀面( 或无沉积作用面) 或者与其可以对比的整合面为界的年代地层格架, 以及沉积层序内部地层、岩相分布模式的学科,是地层学的分支学科。

——就是根据露头、钻测井和地震资料,结合有关沉积环境和岩相古地理解释,对地层层序格架进行地质综合解释的地层学分支学科。

曲线对比的共同点:1、突变界面2、沉积旋回3、沉积背景第一章绪论第一节层序地层学的形成和发展一、层序地层学的萌芽阶段——概念萌芽阶段(1949-1977)20世纪70年代以前,主要建立了层序地层学赖以发展的地质基础,包括以生物地层学、岩石地层学、年代地层学及动力地貌学为依据建立的一些层序、旋回及均衡剖面理论等。

1、地质学的核心-地层学;地层学的核心——国际地层表(或国际地质年代表)成了讨论任何与沉积地质学有关问题的准绳和尺度。

2、国际地层表的根本问题:①地层表中各代、纪、世、期的命名没有反映出各地质时代的地质特征和它们内在成因联系,存在人为的主观因素。

部分“系”是两分的,部分“系”是三分的。

②地层划分指南中提出的生物地层、年代地层和岩石地层是一个三元分类系统。

没有把此三元分类系统统一到带有纵向成因演化特征的“年代地层单元”这一最根本的客观标准上3、层序地层学的诞生和发展首先得益于“层序”概念的提出。

1)Hutton (1788)首次指出“不整合面”是区分隆起、剥蚀和沉积旋回的物理界面。

2) Lyell和Agassiz(1835,1840)提出的冰川理论中就初步讨论了海平面变化与构造作用之间的关系;3)Suess (1906)发展了冰川理论并进一步讨论了海平面升降与沉积物上超和下超之间的关系。

4)Chamberlin (1909)论述了地壳运动控制了世界范围内海平面变化。

从这个意义上说,可以认为Chamberlin 是当代层序地层学的先驱。

4、层序的概念:“层序是以主要区域不整合为边界的地层集合体”二、地震地层学形成发展阶段——孕育阶段(1977-1988)1、新理论和新方法的出现1) 精确定年方法:同位素年代定年;古地磁测量定年;超微生物分带定年2)板块构造理论发展成熟——深海钻探计划(ODP)的实施(1)地球物理和盆地分析方法去分析地壳的垂向升降、横向伸缩以及各种构造活动、(2)火山活动、重大地质事件发生的时代和规模(3)不同板块演化阶段和不同板块部位发育不同沉积类型组合3)古地理背景研究古沉积:沉积体系的概念和地质与地球物理资料研究古水深:沉积岩性、古生态学、特殊矿物古气候:孢粉组合、沉积岩性以及颜色古水温和古盐度:碳氧同位素、微量元素和包裹体4)高分辨率数字地震勘探技术的发展地质学家可以得到比较精确的、能够反映地下地层形态、岩性、物性、流体性质的不同维数的图像。

层序地层学

层序地层学

一、名词解释1、层序地层学:层序地层学是在地震地层学基础上发展起来的一门相对新兴的地层学分支学科,研究以侵蚀面或无沉积作用面、或者与之可以对比的整合面为界的、重复的、成因上有联系的地层的年代地层框架内岩石间的关系的学科。

2、地震地层学:是根据地震资料总的地震特征来划分沉积层序,分析沉积相和沉积环境,进一步预测沉积盆地的有利油气聚集带的一门学科。

是一门利用地震资料来研究地层和沉积相的地学分支学科。

它是地球物理学与地层学概念、地震技术与沉积学理论结合的新范畴。

3、层序:是一套相对整一的、成因上有联系的、其顶、底面以不整合面或与这些不整合面可以对比的整合面为界的地层。

层序是对应于海面升降周期曲线上相临的两个下降速度转折点(翼拐点)之间沉积的,它由一套体系域组成。

是层序地层学研究的基本单元。

4、凝缩层:又称浓缩层、密集段、缓慢沉积段,以沉积速率极低为特征的一种薄的海(湖)相沉积地层层段(沉积速率小于10-100mm/万年),是在相对海面上升到最大、水域扩大最大时期(海岸线海侵最大时期)在外陆架、陆坡和盆地底部沉积的沉积物。

一般由厚度很薄的、缺乏陆源物质的半深海和深海沉积物组成5、超覆:当相对海(湖)平面上升时,沉积盆地的水体逐渐扩大,沉积范围也逐渐扩大,在盆地的边缘地带,越来越新的沉积地层依次向陆地方向扩展,逐渐超越下面的较老地层,直接覆盖于盆地边缘陆地的剥蚀面上,形成不整合接触,称为超覆。

6、退覆:当相对海(湖)平面下降时,部分海(湖)水退出陆地,陆地面积相对扩大,海水或湖水面积相对缩小,即海(湖)退。

在地层垂直剖面上,自下而上沉积物粒度由细变粗;由于水体面积越来越小,在盆地边缘新形成的岩层分布面积小于老地层面积,从而形成了退覆现象。

7、基准面:分隔沉积区和剥蚀区的物理面。

8、基准面旋回:地层基准面并不是一个完全固定不变的界面,它在变化过程中总是表现出向基准面幅度最大值或最小值单向移动的趋势,构成一个完整的基准面上升或者下降旋回,这种基准面的一个上升或下降的旋回称为基准面旋回。

层序地层学标准化

层序地层学标准化
海侵 风化壳
MFS
HST
Coal
TST
MRS & MRS
MFS
21
PY33-1-1
HNR
T
23.8
HNR T
25.5
MRHSNR
T 26.5
HNR
MRS-MFS重叠, TST几乎缺失
MFS & TRS
T
MRS
向 上 坡变 度细 变 化 不向 连上 续变 粗
SU of FSST
HNR
FR
LNR
T HNR
FR LNR
圣诞树型(组合)
PY33-1-1井
突变界面
渐变界面
SB2 SB1
HNR:粗粒沉积物总体向盆地迁移; T:粗粒沉积物快速向陆地迁移
LNR:粗粒沉积物总体向陆地迁移
BY6-1-1-1
LW3-1-1
FR:粗粒沉积向盆地迁移;
HST向上变粗 渐变漏斗状GR曲线
浊积或风暴
浊积
或风 暴
HST→FSST,突变;斜坡半深水(深 灰色泥岩夹浊积或风暴沉积砂岩)→滨 海(薄层浅灰色砂泥岩)
FR 强制海退
CC*-由Posamentier及Allen(1999_定义;CC**--由Hunt和Tucker(1992)定义
SU(subaerial unconformity) ----陆表不整合
河流
间断7Ma
滨海
SU
侵蚀谷河流充填砂体
浅海
河流
突变
河流
河流
突变
河流
根土岩
海进侵蚀面(TRS)
向上变 细的沉 积趋势
河流相
河口湾
河流相
滨海
陆棚
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容提要层序地层学(Sequence Stratigraphy,Van Wagonar et. Al, 1988)代表了地质学领域里的一场革命,是一种划分、对比和分析沉积岩层系的新方法,是油气、煤、铀等矿产勘查与盆地地质研究的重要工具和手段。

层序地层学来源于地震地层学,但这并不意味可以不加任何改动地将其标准模式搬入地震解释中,必须注意地震剖面和地质剖面的差异。

地震地层学(Seismic Stratigraphy)是1975年在美国石油地质家协会(AAPG)召开的一次研讨会上确定的(P. R. Vail, 1977)。

一.现代地层学的启示地质学已经诞生近200年。

它的诞生起源于人们对成层沉积岩的观察,并从而产生地质学的核心——地层学。

古生物学、构造地质学、岩石学、矿物学、地球化学、地球物理学、矿床学以及种种为找寻矿产资源或者为解决国计民生中重大课题的应用科学(如测井、勘探地球物理学等),就是在这个古老的地层学的基础上派生出来的。

20世纪以来,地球科学发生了翻天覆地的变化。

然而早年毕业的大学生们还会记得,地层学是相当乏味的。

它的中心任务是按照业已成文的地层术语规范,机械地对地层进行描述、对比、划分、作图。

无数的地区性命名,大量的地方性运动,把长于记忆的学生搞得疲惫不堪,甚至一些地层的命名人,在经过一段的闲置后,对自己的命名也感到生疏。

地层学实际上处于停滞状态。

少数地层学家甚至宁愿说自己是沉积学家。

然而,在过去的20多年间,地层学发生了根本性的变革。

部分地层学家会同沉积学家,开始冲破了单纯的文牍式地描述地层的旧习,致力于研究地层的成因。

结果发现,现今看到的基本地层单位,都是由一些三角洲、扇体、河道、碳酸盐岩台地、礁、滩、沼泽、潮坪等沉积体组成的。

它们在空间上,组合成有一定规律的沉积体系,这些沉积体系又组合成有一定分布规律的体系域。

地层层序就是由一定类型的体系域构成的。

而在纵向上,地层层序又以某种周期性的方式重复叠置着,像框架与砖石一样,构筑成完整的地层记录。

这些最新研究成果不但把地层学从描述阶段推向成因地层学的新高度,而且为深入探索油气以及其它与沉积现象有关的金属非金属矿产的分布规律开辟了新的途径。

二.海面变化的启示——地震地层学诞生现代的地层学,已经从岩性的描述,进入对其成因的追溯与分析,而沉积模式的研究以及沉积体的成因解释,则导致层序地层学的发展,特别是与全球海平面变化有关的沉积体系的建立。

近三十年来,反射地震勘探的仪器设备,从光点记录,经过模拟磁带记录,发展到数字磁带记录,并利用瞬时浮点增益,可以无畸变地将反射纵波记录下来。

野外观测方法中,广泛使用共深点(common depth point)技术采集,使有效信号得到极大的加强。

利用电子计算机对反射地震资料的处理,使用包括反褶积(deconvolution)在内的各种数字滤波,可以将未畸变的反射地震信息显示出来。

从而,反射地震勘探的发展已经跨进了一个新的阶段,即用来进行地质解释的信息,不再单纯是研究构造的运动地震学参数,同时还应利用与地层或岩性有关的动力地震学参数。

长期以来,反射地震勘探只能使用运动学参数(时间)研究地下岩层的结构形态,尽管这样已经为油气勘探作出了许多贡献。

现在的技术进步能够提供弹性波传播的频率、振幅、相位等多种动力学参数,而这些地震信息都是与地层的物理性质或岩性紧密相关的。

例如,瞬时浮点数字地震仪记录下来的反射地震波波形的变化,显示出地下沉积相的不同,从而可以用来判断沉积环境。

再如,反射地震波的振幅异常,表示地下反射界面具有巨大的波阻抗差异,其中包括物质相态的不同,甚至可能反映出烃类的存在。

此外,反射地震资料与各种测井曲线的相互补充,相互印证,可能给出岩石的某些物理性质,甚至算出其孔隙度和渗透率。

地震地层学这个名称是1975年在美国召开的石油地质家协会(AAPG)召开的地震地层学研讨会上定下来的。

它和生物地层学、古地磁地层学、同位索地层学、事件地层学等一样,属于地层学的一个分支。

依1972年国际地层划分、术语和用法报告汇编(H.D.Hedberg,1972)所下定义:“地层学源于拉丁文Stratum和希腊文graphia,是地层的描述科学,涉及在正常顺序下,岩层(和其它共生者体)的形状、排列、分布、年代顺序、划分以及有关岩石可以具有的任一成全部特征,成分和性质的关系。

包括成因、组成、环境、年代、历史、与生物进化的关系以及不可胜数的其它岩层特征。

所有的岩石类型——岩浆岩、变质岩以及沉积岩都属于地层学和地层划分的总范畴。

某些非层状的岩体,因为与岩层伴生或关系密切,也置于地层学下考察。

”因此,地震地层学也就是通过地震资料,在它的能力范围内、独立的或者与其它学科结合,解决上述问题。

然而,正如前面所讲的那样,尽管1972年的“地层划分、术语和用法指南”较过去的“指南”有了很大进步,但是在摆脱描述性、强调成因单位方面,还有商榷的余地。

关于地震地层学的研究范围和命名,国内外有着不同的意见。

有人提出来用“石油地震地质学”这一命名(石油地震地质,1985,No.1),把地震地层学的研究范围缩小到“石油和天然气的资源勘探”,而研究的广度又扩大到构造、生油、资源评价等等方面.国内广为流行的不成文叫法是把区域性地震地层学研究称之为“区域地震地层学”,也有个别人称之为“地层地震学”,以强调地震的重要性。

近年来,地震地层学的创始入之一Vail,致力于研究中显生宙以来全球统一的地层划分,提出“层序地层学“(sequence stratigraphy)一词,它是区域地震地层学的一个组成部分。

在利用地震资料研究地下地层细节方面,国外曾出现两种不同叫法,即“地震岩性学”(seismic lithology)和‘开采地震学”(production seismology)。

国内也有岩性地震学、局部地震地层学等不同叫法。

作者在本书的命名上沿用“地震地层学”这一旧称,并把区域性的地层划分、沉积体系研究与局部地区的岩性研究包容在内,其目的是避免内容过于庞大和尊重原创始人的命名。

但是作者确信,随着科学的发展,一定会有新的学科分支发展起来。

三.从地震地层学到层序地层尽管L. L. Sloss(1988)把层序地层学的发展历史向前推了40年,但是真正的现代意义的层序地层学是1987年由B. U. Haq、J. Harderbol和P. R. Vail在一篇题为“三叠纪以来的海平面变化”的文章中公开提出来的。

系统的层序地层学论著是一本名叫“Sea-Level Changes —An Integrated Approach”(1988,中译本名为“层序地层学原理(海平面综合分析)”,1992)的文集,这是国际沉积学会(SEPM)第42集特刊。

它系统全面地讨论了层序地层学的理论、方法,厘定了名词和术语的定义。

从此掀起了全球性的层序地层学热潮。

从1988年至今,它一直是全世界地学界的一个研究热点,而且是越来越热,同时也是争论的焦点。

当然,这一学科的争论也被带到了中国。

层序地层学理论的产生有两个基础:一是地层普遍具有旋回性;这是地质家就认识到的。

二是高精度地震反射资料揭示了过去各种方法所不能认识到的现象。

特别是地震反射基本上是地质上的等时面,提供给地质家一个多年来梦寐以求的前所未有的年代地层解释工具。

注意,这后一点是计算机技术带来的数字地震资料所揭示的。

在此之前,人们一直认为,地层像千层饼一样彼此平行地分布着。

然而,数字地震资料揭示出上超、下超和顶超等现象,而且在众多的平行地层中间,发现了众多的斜列地层,证明了过去的许多地层对比可能是错误的。

地层之间除了彼此平行之外,还有许多地层是一团一块的局部分布的,而且许多油田和它们有关。

地震反射界面基本上是等时面,加上地震界面的各种结构特征,构成了地震地层学的形成基础。

层序地层学则是在地震资料的大量地层学解释的基础上发展起来的。

但是,地震地层学实际上可以分成两部分(图1),一部分是利用上超和下超等结构上的特征,研究沉积体系,研究基准面的升降变化,以及进行地层的划分;在此基础上发展成层序地层学。

它的另一部分是研究地震波的基本波形,即子波的特征,以及反映某一地层的复合波形的振幅、频率、极性和相位的变化,从中找出它们与油层的厚度、岩性、物性及含油性之间的关系,这一部分发展成开发地震地层学,或者叫做油藏描述。

这也是近年来与油气勘探开发密切相关的新兴学科。

地震地层学层序地层学油藏描述理论依据1 地层客观存在的旋回性2 地震反射界面基本上是等时面3 数字地震剖面中客观存在的上超、下超与顶超、削截现象反映了地下地层和沉积体的纵向周期性变化及三维展布特征4 据此可以划分层序。

在与油藏描述技术相结合的情况下,可以预测油藏的质量和数量,即油藏的好坏和储量大小1 子波的理论2 地震反射是众多子波合成的3 不同厚度、岩性、物性和含油性的薄互层复合波在振幅、频率、极性、相位上有不同的响应4 与测井资料分析相结合,可以研究油藏的质量和数量图1 地震地层学的发展及其与层序地层学和油藏描述的关系四.层序地层学是地震地层学的最新发展及其理论的更新层序地层学的发展可以追溯到40多年前,但是成为独立的一门学科形成于80年代后期。

地震地层学问世以后,在地学界引起了一场激烈的争论,众说纷法,毁誉参半。

其中以A.D. Maill(1986)反对的最为强烈。

矛盾的焦点是缺乏支持性资料,因为这些资料私人公司不允许公开发表,详细程度更高的白垩纪海平面升降曲线也未出版。

对P.R.Vail的海平面升降曲线的批评集中在:(l)局部和区域性沉降缺乏适当的校正;(2)某些重大事件发生的时间是否具有同时性;(3)没有采用最新的地质年表。

在借鉴他人建设性意见的基础上,P. R. Vail与 B. U. Haq、J. Hardenbol、M. T. Jervey、H. W. Posamentier、R. J. Weimer及Van Wagoner等学者致力于露头、测井、岩心、海洋地质及地震资料的综合研究,力求使原有的理论更为完善。

早在 70年代后期, Mac. Jervey就在数学上模拟了和定量表示了产生全球旅回曲线的海平面升降、构造沉降和沉积物供应速度之间的关系。

EXXON公司的科研人员吸收了这项成果并给予很高的评价,同时发表了以前的成果,弥补了1977年出版物的不足,地震地层学的理论逐渐被接受。

1987年,Vail等在美国AAPG和Science刊物上推出了第2代海平面升降曲线,特点是曲线呈圆滑的波状,每个周期顶底标明了不整合的性质,层序界面位于海平面升降曲线每个周期的下降(F)拐点上,上升(R)拐点稍后的某个位置处为最大海泛面,划分了海平面升降周期的级次,引起了更多的古生物地层学、年代地层学和磁性地层学的资料,并且提出了新的地层学科,即层序地层学。

相关文档
最新文档