大学物理第七章和第八章习题解答

合集下载

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21s s。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。

上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

大学物理习题解答 第八章

大学物理习题解答 第八章

8-1.已知波源在原点(x=0)的平面简谐波的方程为)cos(Cx Bt A y -=式中A,B,C 为正值恒量.试求:(1)波的振幅,波速,频率,周期与波长;(2)写出传播放向上距离波源l 处一点的振动方程;(3)试求任何时刻,在波传播放向上相距为D 的两点的位相差;解:(1) ∵A 、B 、C 为正值恒量,所以该波沿X 轴正方向传播,与平面简谐波的波动方程)(cos cxt A y -=ω比较系数,可得波的振幅为A ,B =ω, π2B f =, B T π2=, C c=ω,C B C c ==ω ,因为f c λ=,所以C B C B CT ππλ22=⋅==. 所以该波的振幅为A,波速为CB,频率为π2B ,周期为B π2,波长为C π2.(2)传播方向上距波源l 处一点的振动方程为:)cos(Cl Bt A y -=.(3)设t 时刻,传播方向上相距为D 的两点分别为x 1,x 2. 那么这两点所对应的波动方程分别为: )cos(11Cx Bt A y -= )cos(22Cx Bt A y -= 所以这两点的相位差Δφ为CD x x C =-=-=∆1221φφφ.8-2. 一列横波沿绳子传播时的波动方程为)410cos(05.0x t y ππ-=,式中x,y 以m 计,t 以s 计.(1)求此波的振幅、波速、频率、和波长;(2)求绳子上各质点振动时的最大速度和最大加速度;(3)求x=0.2m 处的质点在t=1s 时的相位,它是原点处质点在哪一时刻的位相. 这一位相所代表的运动状态在t=1.25s 时刻到达哪一点?在t=1.5s 时刻到达哪一点?(4)分别图示t=1s,1.1s,1.25s,1.5s 各时刻的波形.解:(1)通过与平面简谐波的波动方程比较系数,可得 此波的振幅为:A=0.05m, 波速为:ππ410=c =2.5(m/s). 频率为:ππ210=f =5(HZ). 波长为:f c =λ=0.5(m).答:该波的振幅为0.05m, 波速为2.5m/s, 频率为5HZ,波长为0.5m.(2) ∵平面简谐波的波动方程为:)(cos cxt A y -=ω.∴绳子上各质点的振动速度为: )(sin cxt A t y v --=∂∂=ωω.绳子上各质点的振动加速度为: )(cos 222c xt A ty a --=∂∂=ωω.∴绳子上各质点振动时的最大速度为 ωA v =max =0.5π=1.57(m/s). 绳子上各质点振动时的最大加速度为 2m ax ωA a = =52π=49.35(m/s 2). 答:绳子上各质点振动时的最大速度为1.57m/s ,最大加速度为49.35m/s 2. (3)X=0.2m 处的质点在t=1s 时的位相: φ=9.2π 设该位相是原点处质点在t 时刻的位相,可得 φ=9.2π=10πt t=0.92(s) 这一位相代表的运动状态在t=1.25s 时距离原点的位置为: )(825.0)125.1(2.02.0m c t c x =-+=∆+=同理,在t=1.5s 时,该位相所代表的运动状态,距离原点的位置为: t c x '∆+=2.0=1.45 (m). (4)t=1s 时,x y π4cos 05.0=. t=1.1s 时,x y π4cos 05.0-=. t=1.25s 时,x y π4sin 05.0=. t=1.5s 时,x y π4cos 05.0-=.8-3. 已知平面余弦波波源的振动周期T=21s,所激起的波的波长λ=10m,振幅为0.1m,当t=0时,波源处振动的位移恰为正方向的最大值,取波源处为原点并设波沿+X 方向传播,求: (1)此波的方程;(2)沿波传播方向距离波源为2λ处的振动方程; (3)当4T t =时,波源和距离波源为 4λ,2λ,43λ及λ的各点各自离开平衡位置的位移;(4)当4T t =时,波源和距离波源为 4λ,2λ,43λ及λ的各点自离开平衡位置的位移;并根据(3)(4)计算结果画出波形(y-x)曲线; (5)当4T t =和2T 时,距离波源4λ处质点的振动速度. 解:(1)根据题意可知,该平面余弦波的振幅 A=0.1m, 频率f =2(HZ),波速f c λ==20(m/s),初相位φ0=0. 当取波源为原点并沿该波沿+X 方向传播时,波动方程为 )54cos(1.0x t y ππ-=.(2)沿波传播方向距离波源为λ/2处的振动方程为: )254cos(1.0λππ⋅-=t y =-0.1cos4πt.(3)距离波源分别为4λ,2λ,43λ和λ的各点的振动方程为 t y π4sin 1.0=, t y π4cos 1.0-= t y π4sin 1.0-=, t y π4cos 1.0=当4Tt =时,它们各自离开平衡位置的位移为 44sin 1.01Ty ⋅=π=0.1(m), 2y =0(m),3y =-0.1(m), 4y =0(m)(4)与(3)的方法类似,易求得 4λ=x 时, y=0(m). 2λ=x 时, y=0.1(m).43λ=x 时,y=0(m). λ=x 时,y=-0.1(m).(5)各质点的振动速度,)54sin(4.0x t t y v πππ--=∂∂= 当4Tt =时,距离波源4λ处质点的振动速度为: )4544sin(4.0λπππ⨯-⨯-=T v =0(m/s)同理,当2T t =时,距离波源4λ处质点的振动速度为:v =-0.4π(m/s)答:当4Tt =和2T 时,距离波源4λ处质点的振动速度分别为0m/s 和-0.4πm/s. 8-4. 一波源做简谐振动,周期为1001s,经平衡位置向正方向运动时,作为计时起点.设此振动以c=400m/s 的速度沿直线传播,求: (1)这波沿某一波线的方程;(2)距波源为16m 处和20m 处质点振动方程和初位相; (3)距波源为15m 和16 m 的两质点的位相差是多少?解:(1)根据题意可知,该简谐波的频率为ƒ=100(HZ), 波速c=400m/s, 初相位20πφ-=, 设该平面简谐波的波动方程为 )22cos(0φλπλπ+-=x ct A y 将上面的结果代入可得,)222cos(πλππ--=x t T A y =)22200cos(πππ--x t A(2)距波源为16m 和20m 处质点振动方程为:将x=16m 代入上式,得 )2200()2216200cos(1πππππ-=-⨯-=t Aos t A y同理,)2200cos()2220200cos(2πππππ-=-⨯-=t A t A y 初相位分别为:t=0时,210πφ-=,220πφ-=.(3)距波源为15m 和16m 的两质点的位相差: λπφ2⨯∆=∆x =2π. 8-5. 已知某平面简谐波的波源振动方程为)2sin(06.0πt y =,式中y 以m 计,t 以s计.设波速为2m/s,试求离波源5m 处质点的振动方程.这点的位相所表示的运动状态相当波源在哪一时刻的运动状态?解:离波源5m 处质点的振动方程为:将X=5m 代入波动方程得 )5(2sin06.0c t y -=π=)452sin(06.0ππ-t 设该点的位相所代表的运动状态相当波源在t ′时刻的运动状态,所以 t t '=-2452πππ可得 t ′=(t-2.5)(s).8-6.如图所示,A 和B 是两个同位相的波源,相距d=0.10m,同时以30Hz 的频率发出波动,波速为0.50m/s.P 点位于AB 上方,AP 与AB 夹角为30o ,且PA=4m ,求两波通过P 点位相差.解:依题意可知,PA=4m,AB=0.1m, 利用余弦定理,可得 PB=3.91(m),两波通过P 点相位差: λπφ2)(⨯-=∆PB PA又∵fc=λ ∴Δφ=10.8π. 8-7. S 1和S 2是两个相干波源,相距41波长,S 1比S 2的位相超前2π.设两列波在 S 1,S 2连线方向的强度相同且不随距离变化,问S 1,S 2连线上在S 1外侧各点处的合成波的强度如何?又在S 2外侧各点的强度如何?解:两列相干波在空间任意点P 所形成的振动的振幅为 α∆=cos A 2A +A +A 212221A其中Δα为两列相干波在空间任一点所引起的两个振动的位相差 λπααα2)(1212⨯---=∆r r当P 点在S 1外侧时,根据题中所给的条件,可得 πλλππλπααα-=⨯--=⨯---=∆4222)(1212r r∴0)cos(-2A 2A 2020=+=πA 又∵波的强度与振幅的平方成正比 ∴I=0. 同理,当P 点在S 2外侧时, 02)4(22)(1212=⨯---=⨯---=∆λπλπλπαααr r ⇒A=2A 0 ∴04I I =答:S 1,S 2连线上在S 1外侧各点处的合成波的强度为0,而在S 2外侧合成波的强度为4I 0.8-8.图所示,设平面横波1沿BP 方向传播,它在B 点的振动方程为t y πcos 102.021-⨯=,平面横波2沿AP 方向传播,A 点的振动方程为)2cos(102.022ππ+⨯=-t y ,两式中y 以m计,t以s计,P处与B相距0.40m ,与A 相距0.05m,波速为0.20m/s.求: (1)两波传到P 处的为相差; (2)在P 处合振动的振幅;(3)如果在P 处相遇的两横波,振动方向是互相垂直的,则合振动的振幅又如何?解:(1)两波传到P 处的位相差Δα: λπααα2)(1212⨯---=∆r r由题中给出A,B 两点的振动方程可知,A 比B 的位相超前π ∴ππωππλππα5.22)(22)(-=⨯-⨯-=--=∆CPB PA PB PA (2)在P 处合振动的振幅为:α∆++=cos A 2A A A 2010220210A 21083.2-⨯= (m). (3)由于两列横波振幅相同,频率相同,相位差Δα=25π, 所以,当振动方向相互垂直时,合成的结果是圆周运动. ∴A=A 10=0.2×10-2(m).8-9. 一列正弦式空气波,沿直径为0.14m 的圆柱形管行进,波的平均强度为18*10-3J/s ·m 2,频率为300Hz,波速为300m/s,问: (1)波中的平均能量密度和最大能量密度是多少?(2)每两个相邻的,相位差为2π的同相面(亦即相距1波长的两同相面)之间的波段中有多少能量?解:(1)根据题中所给的条件,由C I ω= 则cI=ω=300/10183-⨯=5106-⨯(J ·m -3). 由)(sin 222c rt A -=ωωρω 可得ωωρω222max ==A =4102.1-⨯(J ·m -3)(2)V W ∆⋅=ωd r 2πω==9.23×710-(J)8-10. 为了保持波源的振动不变,需要消耗4W 的功率,如果波源发出的是球面波,且认为媒质不吸收波的 能量,求距离波源1m 和2m 处的能流密度. 解:因为IS P =,所以距离波源1m 处的能流密度为ππ1442111===r S P I =0.318(w ·m -2)距离波源2m 处的能流密度为222244r S P I π===0.08(w ·m -2). 8-11. 两个波在一根很长的细绳上传播,它们的方程设为 )4(cos 06.01t x y -=π,)4(cos 06.02t x y +=π,式中x,y 以m 计,t 以s 计;(1) 求各波的频率,波长,波速和传播方向;(2) 试求这细绳上是做驻波式振动,求节点的位置和腹点的位置; (3)波腹处的振幅多大?在x=1.2m 处振幅多大?解:(1)与波动方程形式)cos(crt A y -=ω作比较,可得)4(4cos 06.01x t y -=π, )4(4cos 06.02xt y +=ππω41= ⇒πω211=f =2(Hz), s m c /41= 111T c =λ=2(m) 传播方向沿x 轴正方向 πω42=, ƒ2=2(Hz), C 2=-4m/s.222T c =λ =2(m). 传播方向沿x 轴负方向(2)由于两列波同频率,同振幅,同振动方向,并且传播速率相同方向相反,故满足驻波条件,所以做的是驻波式振动t x y y y ππ4cos cos 12.021⋅=+= 节点的位置: 2)12(ππ+=k x (k=0,±1, ±2,………) ⇒2)12(+=k x . 腹点的位置: ππk x = (k=0,±1, ±2, ……) ⇒k x =. (3)波腹处的振幅为0.12m.x=1.2m 处的振幅: )2.1cos(12.0π=0.097(m). 8-12. 设入射波的波动方程为)(2cos 1λπxT t A y +=,在x=0处发生反射,反射点为一自由端.求: (1)反射波的波动方程;(2)合成波(驻波)的方程,并由合成波方程说明哪些点是波腹,哪些点是波节.解:(1)反射波的波动方程为: )(2cos 2λπxT t A y -=(2) )2cos()2cos(221T tx A y y πλπ⋅=+波腹点:πλπk x =2 (k=0,±1, ±2,………) ⇒2λk x =.波节点位置:2)12(2πλπ+=k x (k=0,±1, ±2,………) ⇒4)12(λ+=k x8-13. 在实验室中做驻波试验时,将一根长3米的弦线的一端系于电动音叉的一个臂上,这音叉在 垂直于眩线长度的方向撒谎那个以60Hz 的频率做振动,眩线的质量为60*0.001kg.如果使这根弦线产生有四个波腹的振动,必须给这根弦线施多大的力.解:由8.14题的结论可知 μυTl n n 2=(n=1, 2,3,………) 根据题中所给的已知条件,可得 l =3m,n=44υ=60HZ, μ=60·10-3/3=kg 2102-⨯. 代入上式,解得24)2(nlT υμ==162(N).8-14. 把两端固定的一根弦线波动一下,就有横向振动弦线的两固定端传去,并被反射回来形成驻波图样, 一根长度为l 的弦线,它的驻波图样是一定的,所以它可按呈现一个波腹,二个波腹,三个波腹,……的形式做振动或这种基本振动叠加.试证明:一根长度为l 的弦线只能发出下列一些固有频率.μυTl n n 2=n=1,2,3,….. 式中μ是弦线单位的质量,T 是绳中的张力.证明:假设长度为l 的弦线,它的驻波图样可以产生n 个波腹,则n 2λ=l ① 又因波在弦线中传播的速率为 μTc =其中T 是绳中的张力,μ是弦线单位长度的质量μυυλTc nn == ②联立①②,解得 μυTl n n 2=. 故结论得证. 8-15. (1)有一支频率未知的音叉和一支频率已知为384Hz 的标准音叉一起振动时每秒产生三个拍,当这音叉上涂上少量石蜡时,拍频减少,沃尔玛这支音叉频率是多少?(2)某一波形可以用下式表示:11sin sin 3sin 535Y A x A x A x =+++试分别作出该级数前三项的图形,并作出叠加之后的图形. 解:(1)由拍频的定义,可知 123υυυ-==∴ 312±=υυ 即2υ=387或381(Hz). (2)图如下:11。

(完整版)大学物理学(课后答案)第7章

(完整版)大学物理学(课后答案)第7章

第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。

又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。

故选(C )。

7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。

7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。

故选择(C )。

7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。

大学物理习题解答8第八章振动与波动 (2)

大学物理习题解答8第八章振动与波动 (2)

第七章 电磁感应本章提要1. 法拉第电磁感应定律· 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中就将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。

· 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化石,回路中产生地感应电动势i e 与磁通量m Φ变化率的关系为d d t=-F e其中Φ为磁链,负号表示感应电动势的方向。

对螺线管有N 匝线圈,可以有m N Φ=Φ。

2. 楞次定律· 楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。

3. 动生电动势· 磁感应强度不变,回路或回路的一部分相对于磁场运动,这样产生的电动势称为动生电动势。

动生电动势可以看成是洛仑兹力引起的。

· 由动生电动势的定义可得:()d bab ae 醋ò=v B l· 洛伦兹力不做功,但起能量转换的作用。

4. 感生电动势·当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。

d dd d d d L S t te F =??蝌Ñ-=-i E r B S 其中E i 为感生电场强度。

5. 自感· 当回路中的电流发生变化,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:d d L iL te =-(L 一定时)负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。

· 自感系数表达式为:L iY =· 自感磁能212m W LI =6. 互感· 对于两个临近的载流回路,当其中一回路中的电流变化时,电流所激发的变化磁场在另一回路中产生感应电动势。

《大学物理》课后解答题 第七章稳恒磁场

《大学物理》课后解答题  第七章稳恒磁场

第7章 稳恒磁场一、思考讨论题1、如图4.1所示的电流元Idl 是否在空间所有点的磁感应强度均不为零?请你指出Idl在a 、b 、c 、d 四点产生的磁感应强度的方向。

解:不是,电流元Idl在自身产生的磁感应强度为零。

a 、垂直纸面向外b 、垂直纸面向外c 、垂直纸面向内d 、垂直纸面向内2、分别求图4.2中的三种情况下,通有电流I 的直线电流在图中点产生磁感应强度B 的大小和方向。

解:a 图,()a I cos cos a I B πμπμ823145304--=-=方向垂直纸面向内 b 图,()aIcos cos a I B πμπμ82345604--=-= 方向垂直纸面向内 c 图() 30041cos cos a I B -=πμ () 1806030402cos cos tan c a I B -=πμ aIB B B πμ41312-=-= 方向垂直纸面向内3、电流分布如图4.3所示,分别求出各图中O 点的磁感应强度O B的大小和方向。

图4.1图4.2a图4.2ba图4.2c1 R 3解:a 图, 321B B B B ++=()30060431cos cos cos R IB B -==πμ23601202a I B μ=方向垂直纸面向内b 图, 01=B ,RIR I B 126122μμ==,()2322180150243-=-⋅=R I cos cos R I B πμπμ所以,⎪⎪⎭⎫⎝⎛-+=R R I B πμ432121 方向垂直纸面向内 c 图,RIR I B 834321μμ==,052==B B R I B B πμ16243==,所以,⎪⎪⎭⎫ ⎝⎛+=πμ238R I B 方向垂直纸面向外 4、若空间中存在两根无限长直载流导线,则磁场的分布就不存在简单的对称性,因此:(A )安培环路定理已不成立,故不能直接用此定理计算磁场分布。

(B )安培环路定理仍然成立,故仍可直接用此定理计算磁场分布。

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第七、八章习题解

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第七、八章习题解

第七章 气体动理论7–1 一定量的理想气体,在保持温度T 不变的情况下,使压强由P 1增大到P 2,则单位体积内分子数的增量为_________________。

解:由nkT P =,可得单位体积内分子数的增量为kTP P kT P n 12-=∆=∆ 7–2 一个具有活塞的圆柱形容器中贮有一定量的理想气体,压强为P ,温度为T ,若将活塞压缩并加热气体,使气体的体积减少一半,温度升高到2T ,则气体压强增量为_______,分子平均平动动能增量为_________。

解:设经加热和压缩后气体的压强为P ',则有TV P T PV 22/⨯'=所以P P 4='压强增量为P P P P 3=-'=∆由分子平均平动动能的计算公式kT 23=ε知分子平均平动动能增量为kT 23。

7–3 从分子动理论导出的压强公式来看,气体作用在器壁上的压强,决定于 和 。

解:由理解气体的压强公式k 32εn P =,可知答案应填“单位体积内的分子数n ”,“分子的平均平动动能k ε”。

7–4 气体分子在温度T 时每一个自由度上的平均能量为 ;一个气体分子在温度T 时的平均平动动能为 ;温度T 时,自由度为i 的一个气体分子的平均总动能为 ;温度T 时,m /M 摩尔理想气体的内能为 。

解:kT 21;kT 23;kT i2;RT i M m 27–5 图7-1所示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线,其中曲线(a )是__________气分子的速率分布曲线; 曲线(c )是__________气分子的速率分布曲线。

解:在相同温度下,对不同种类的气体,分子质量大的,速率分布曲线中的最慨然速率p v 向量值减小方向迁移。

可得图7-1中曲线(a )是氩气分子的速率分布曲线,图7-1中曲线(c )是氦气分子的速率分布曲线。

7–6 声波在理想气体中传播的速率正比于气体分子的方均根速率。

《大学物理》第二版课后习题答案第七章

《大学物理》第二版课后习题答案第七章

习题精解7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。

解(1)如图所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。

根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB R μπ=方向垂直纸面向内。

半圆弧在O 点产生的磁感应强度为 00022444RIIdl I B R R R Rπμμμπππ===⎰方向垂直纸面向里。

(2)如图(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。

根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 024Idl dB R μπ=方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为0002224428RIIdl I R B R R Rπμμμπππ===⎰方向垂直纸面向里。

如图所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。

解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。

AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为0120(cos cos )4IB r μθθπ=- 式中120,,2r a πθθπ=== 。

所以500(cos cos ) 4.010()42I B T a μπππ=-=⨯ 方向垂直纸面向里。

(完整版)大学物理学(课后答案)第7章

(完整版)大学物理学(课后答案)第7章

第七章课后习题解答一、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能,仅与温度有关,因此当氦气和32k kTε=氮气的平均平动动能相同时,温度也相同。

又由理想气体的压强公式,p nkT =当两者分子数密度相同时,它们压强也相同。

故选(C )。

7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为(B) 动能为2ikT 2iRT(C) 平均动能为(D) 平均平动动能为2ikT 2iRT分析:由理想气体分子的的平均平动动能和理想气体分子的的平均动32k kT ε=能,故选择(C )。

2ikT ε=7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为,则其压强之比为 [ ]()()()1/21/21/222::2A B Cvv v =1:2:4A B C p :p :p (A)(B)(C)(D) 1:2:41:4:81:4:164:2:1,又由物态方程,所以当三=p nkT =容器中得分子数密度相同时,得。

故选择(C )。

123123::::1:4:16p p p T T T ==7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

如果和分别表示氧气和氢气的最概然速率,则[ ]()2p O v ()2p H vh(A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=尔质量,可知氢气的最概然速率大于氧气的最概然速率,故曲线对22H O M M <a 应于氧分子的速率分布曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业班级_____ 姓名________ 学号________
第七章 静电场中的导体和电介质
一、选择题:
1,在带电体 A 旁有一不带电的导体壳 B,C 为导体壳空腔内的一点,如下图所示。则由静电 屏蔽可知:[ B ]
(A)带电体 A 在 C 点产生的电场强度为零; (B)带电体 A 与导体壳 B 的外表面的感应电荷在 C 点所产生的
2
不变,则C增大;且
U1
U2
U

变。故总能量We
1 2
CU 2增大

10. 一空气平行板电容器,极板间距为 d,电容为 C,若在两板中间平行插入一块厚度为 d/3
的金属板,则其电容值变为 [ C ]
(A)C (C)3C/2
(B)2C/3 (D)2C
d
d 3
11.C1 和 C2 两个电容器,其上分别标明 200pF(电容量)、500V(耐压值)和 300pF、900V, 把它们串连起来在两端加上 1000V 电压,则 [ C ]
(A)E↑,C↑,U↑,W↑
(B)E↓,C↑,U↓,W↓
(C)E↓,C↑,U↑,W↓
(D)E↑,C↓,U↓,W↑
13.如果某带电体其电荷分布的体密度ρ增大为原来的 2 倍,则其电场的能量变为原来的
[ C] (A)2 倍
(B)1/2 倍
(C)4 倍
(D)1/4 倍
二、填空题:
1.一带电量 Q 的导体球,外面套一不带电的导体球壳(不与球接触),则球壳内表面上有
3. 当一个带电导体达到静电平衡时:[ D ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。
4. 如图示为一均匀带电球体,总电量为+Q,其外部同心地罩一内、外半径分别为 r1、r2 的
(A)高斯面内不包围自由电荷,则面上各点电位移矢量 D 为零。
(B)高斯面上处处 D 为零,则面内必不存在自由电荷。
(C)高斯面的 D 通量仅与面内自由电荷有关。
(D)以上说法都不正确。
6, 如图所示,一带电量为 q、半径为 rA 的金属球外,同心地套上一层内、外半径分别为 rB
和 rC ,相对介电常数为 r 的均匀电介质球壳。球壳外为真空,则介质点 P(rB r rC ) 处
,代入参数可得答案
D。
8. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源,再将一块与板面积相
同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储
能的影响为:[ A ]
(A)储能减少,但与金属板位置无关。 (B)储能减少,且与金属板位置有关。
(C)储能增加,但与金属板位置无关。 (D)储能增加,且与金属板位置无关。
9. 两个完全相同的电容器 C1 和 C2,串联后与电源连接,现将一各向同性均匀电介质板插入
3
C1 中,则[ D ]
(A)电容器组总电容减小。
(B)C1 上的电量大于 C2 上的电量。
(C)C1 上的电压高于 C2 上的电压。 (D)电容器组贮存的总能量增大。
解答:串联时:
1 C
1 C1
1 C2
,故C1增大,C
ED q 40r r 2
故选(A)
7. 孤立金属球,带有电量 1.2×10-8C,当电场强度的大小为 3×106V/m 时,空气将被击穿,
若要空气不被击穿,则金属球的半径至少大于 [ D ]
(A)3.6×10-2m
(B)6.0×10-6m
(C)3.6×10-5m
(D)6.0×10-3m
解答
E
q 40 R2
的电场强度的大小为
[A]
2
(A)E= 1 4 0 r
q r2
;
(C)E=
q 40r r2
r er
1
;
(B)E=
1 4
0
q r2
;
(D)E=
q 40r r2ຫໍສະໝຸດ rC rBrA rA

解答 均匀分布在导体球上的自由电荷 q 激发的电场具有球对称性,均匀电介质球壳内、
外表面上束缚电荷 q′均匀分布,所激发的电场也是球对称性的,故可用高斯定理求解。
金属球壳、设无穷远处为电势零点,则在
球壳内半径为 r 的 P 点处的场强和电势为:
[D]
(A)E= Q ,U Q (B)E=0,U Q
4 0r 2
4 0r
4 0 r1
(C)E=0,U Q 4 0 r
(D)E=0,U Q 40r2
r1
+Q
r
r2
P
5. 关于高斯定理,下列说法中哪一个是正确的? [ C ]
通过 p 点以 r 为半径,在电介质球壳中作一同心高斯球面 S,应用电介质时的高斯定理,
D dS qi ,高斯面 S 上的电位移通量为 D( r2 ) ,S 面内包围的自由电荷为
s
i
qi q ,有 i
D(4 r2 ) q,
D q / 4 r2
由 D E, 两者方向相同,则电介质中 p 点的电场强度不大小为
合电场强度为零; (C)带电体 A 与导体壳 B 的内表面的感应电荷在 C 点所产生的合电场强度为零; (D)导体壳 B 的内、外表面的感应电荷在 C 点产生的合电场强度为零。 解答 单一就带电体 A 来说,它在 C 点产生的电场强度是不为零的。对于不带电的导体 壳 B,由于它在带电体 A 这次,所以有感应电荷且只分布在外表面上(因其内部没有带电体) 此感应电荷也是要在 C 点产生电场强度的。由导体的静电屏蔽现象,导体壳空腔内 C 点的合 电场强度为零,故选(B)。
2,在一孤立导体球壳内,如果在偏离球心处放一点电荷+q,则在球壳内、外表面上将出现
感应电荷,其分布情况为
[B ]
(A)球壳内表面分布均匀,外表面也均匀;
(B)球壳内表面分布不均匀,外表面均匀;
(C)球壳内表面分布均匀,外表面不均匀;
(D)球壳的内、外表面分布都不均匀。
1
解答 由于静电感应,球壳内表面感应-q,而外表面感应+q,由于静电屏蔽,球壳内部 的点电荷+q 和内表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感 应电荷均匀分布。故选(B)。
(A)C1 被击穿,C2 不被击穿。
(B)C2 被击穿,C1 不被击穿。
(C)两者都被击穿。
(D)两者都不被击穿。
12. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性,均匀电
介质,则电场强度的大小 E、电容 C、电压 U、电场能量 W 四个量各自与充入介质前相比较,
增大(↑)或减小(↓)的情形为:[ B ]
相关文档
最新文档