2017届尼一中高三数学填空题专题训练16
高三数学一轮复习典型题专题训练:函数(含解析)
高三数学一轮复习典型题专题训练函 数一、填空题1、(南京市、镇江市2019届高三上学期期中考试)函数()27log 43y x x =-+的定义域为_____________2、(南京市2019届高三9月学情调研)若函数f (x )=a +12x -1 是奇函数,则实数a 的值为 ▲3、(苏州市2019届高三上学期期中调研)函数()lg(2)2f x x x =-++的定义域是 ▲ .4、(无锡市2019届高三上学期期中考试)已知8a =2,log a x =3a ,则实数x =5、(徐州市2019届高三上学期期中质量抽测)已知奇函数()y f x =是R 上的单调函数,若函数2()()()g x f x f a x =+-只有一个零点,则实数a 的值为 ▲ .6、(盐城市2019届高三第一学期期中考试)已知函数21()()(1)2xf x x m e x m x =+--+在R 上单调递增,则实数m 的取值集合为 .7、(扬州市2019届高三上学期期中调研)已知函数()f x 为偶函数,且x >0时,32()f x x x =+,则(1)f -= .8、(常州市武进区2019届高三上学期期中考试)已知函数()(1)()f x x px q =-+为偶函数,且在(0,)+∞单调递减,则(3)0f x -<的解集为 ▲9、(常州市2019届高三上学期期末)函数1ln y x =-的定义域为________.10、(海安市2019届高三上学期期末)已知函数f (x )=⎩⎪⎨⎪⎧3x -4,x <0,log 2x ,x >0,若关于x 的不等式f (x )>a 的解集为(a 2,+∞),则实数a 的所有可能值之和为 .11、(南京市、盐城市2019届高三上学期期末)已知y =f (x )为定义在R 上的奇函数,且当x >0时,f (x )=e x +1,则f (-ln2)的值为 ▲ .12、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末) 函数有3个不同的零点,则实数a 的取值范围为____13、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知,a b ∈R ,函数()(2)()f x x ax b =-+为偶函数,且在(0,)+∞上是减函数,则关于x 的不等式(2)0f x ->的解集为 .14、(苏州市2019届高三上学期期末)设函数220()20x x x f x x x ⎧-+≥=⎨-<⎩,,,若方程()3f x kx -=有三个相异的实根,则实数k 的取值范围是 .15、(南京市2018高三9月学情调研)已知函数f (x )=⎩⎨⎧2x 2,x ≤0,-3|x -1|+3,x >0.若存在唯一的整数x ,使得f (x )-a x >0成立,则实数a 的取值范围为 ▲ .16、(苏州市2018高三上期初调研)已知函数()()0af x x a x=+>,当[]1,3x ∈时,函数()f x 的值域为A ,若[]8,16A ⊆,则a 的值是 .17、(镇江市2018届高三第一次模拟(期末)考试)已知k 为常数,函数⎪⎩⎪⎨⎧>≤-+=0ln 0,12)(x x x x x x f ,若关于x 的方程2)(+=kx x f 有且只有4个不同的解,则实数k 的取值集合为18、(苏锡常镇四市2019届高三教学情况调查(一))已知函数2log (3)0()210x x x f x x -≤⎧=⎨->⎩,,,若1(1)2f a -=,则实数a = . 19、(盐城市2019届高三第三次模拟)若函数)1lg()1lg()(ax x x f +++=是偶函数,则实数a 的值_____.20、(江苏省2019年百校大联考)已知函数2,1(),1x x x f x x x ⎧-≥=⎨<⎩ ,则不等式2()f x f x ⎛⎫< ⎪⎝⎭的解集是 .21、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月)) 已知函数()()()2|||2|(0)f x x a x a x a a =+-++<.若(1)(2)(3)f f f +++…(672)0f +=,则满足()2019f x =的x 的值为 ▲ .22、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,,则函数5()log y f x x =-| |的零点的个数为 ▲ .23、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月)) 已知函数2()23f x x x a =-+,2()1g x x =-.若对任意[]103x ∈,,总存在[]223x ∈,,使得 12()()f x g x ≤成立,则实数a 的值为 ▲ .二、解答题1、(南京市、镇江市2019届高三上学期期中)已知k R ∈,函数2()(1)2f x x k x k =+-=-(1)解关于x 的不等式()2f x <(2)对任意(1,2),()1x f x ∈-≥恒成立,求实数k 的取值范围2、(南京市、镇江市2019届高三上学期期中)已知函数4()log log (0a f x x x a =+>且a ≠1)为增函数。
1-6-16统计、统计案例
高考专题训练十六统计、统计案例班级_______姓名_______时间:45分钟分值:75分总得分________一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.1.(2011·湖南)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:K2=(a+b)(c+d)(a+c)(b+d)算得,K2=110×(40×30-20×20)260×50×60×50=7.8.附表:A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”解析:∵K2=7.8>6.635,而P(K2≥6.635)=0.010,∴有99%以上的把握认为“爱好该运动与性别有关”.答案:C2.(2011·江西)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则() A.r2<r1<0B.0<r2<r1C.r2<0<r1D.r2=r1解析:作出x,y对应散点图可知y与x正相关,∴r1>0.作出U,V对应散点图可知U与V负相关,∴r2<0.∴r2<0<r1.答案:C3.(2011·安徽“江南十校”联考)已知一组正数x1,x2,x3,x4的方差为s2=14(x21+x22+x23+x24-16),则数据x1+2,x2+2,x3+,x4+2的平均数为()A.2 B.3C.4 D.6解析:∵s2=14(x21+x22+x23+x24-16)=14[(x1-x)2+(x2-x)2+(x3-x)2+(x4-x)2],∴2x(x1+x2+x3+x4)-4x2=16,∴8x2-4x 2=16,x=2,即x1+x2+x3+x4=8,∴x1+2+x2+2+x3+2+x4+24=4.故选C.答案:C4.(2011·邹城一中模拟)在2011年12月12日那天,济宁市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:其线性回归直线方程是:y^=-3.2x+a,则a=()A.24 B.35.6C.40.5 D.40解析:可解得样本中心为(10,8),代入回归方程可得a=40.答案:D5.(2011·哈师大附中、东北师大附中、辽宁省实验中学高三第一次联合模拟)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y^=3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程y^=b^x+a^必过(x,y);④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系.其中错误的个数是()A.0 B.1C.2 D.3本题可以参考独立性检验临界值表:方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y^=3-5x,当x增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y^=b^x+a^必过点(x,y),③正确;因为K2=13.079>10.828,故有99%的把握确认这两个变量有关系,④正确.故选B.答案:B6.甲、乙两名运动员的5次测试成绩如下图所示设s1,s2分别表示甲、乙两名运动员测试成绩的标准差,x1,x分别表示甲、乙两名运动员测试成绩的平均数,则有()2A.x1=x2,s1<s2B.x1=x2,s1>s2C.x1>x2,s1>s2D.x 1=x 2,s 1=s 2解析:x 1=15(17+15+22+28+28)=22,x 2=15(16+18+23+26+27)=22,s 21=15(25+49+0+36+36)=29.2,s 22=15(36+16+1+9+25)=17.4,故选B.答案:B二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.7.(2011·天津)一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:由题意知,这支田径队共有84人,从中抽取21人,抽样比为2184=14.所以从男运动员中应抽取14×48=12人.答案:128.(2011·广东)某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别为173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.解析:记从爷爷起向下各代依次为1,2,3,4,5用变量x 表示,其中5代表孙子.各代人身高为变量x ,则有计算知x =2.5,y =175.25b^=∑4i=1(x i-x)(y i-y)∑4i=1(x i-x)2=278+218+38+81894+14+14+94=3.3,a^=y-b^x=175.25-3.3×2.5=167∴回归方程为y^=3.3x+167当x=5时,y=3.3×5+167=183.5.答案:183.59.(2011·济宁市高三模拟)为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:(请用百分数表示)附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)答案:99.5%10.(2011·南京市高三第一次模拟考试)某校为了解高三男生的身体状况,检测了全部480名高三男生的体重(单位:kg),所得数据都在区间[50,75]中,其频率分布直方图如图所示.若图中从左到右的前3个小组的频率之比为1:2:3,则体重小于60 kg 的高三男生人数为________.解析:依题意得,后两个小组的频率之和等于(0.0125+0.0375)×5=0.25,因此前三个小组的频率之和等于1-0.25=0.75,前两个小组的频率之和等于1+21+2+3×34=38,所以体重小于60 kg 的高三男生人数为480×38=180.答案:180三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.11.(12分)(2011·北京) 以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差; (2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 为平均数)解:(1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10.所以平均数为x =8+8+9+104=354方差为s 2=14⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542=1116.(2)当X =9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10,分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P (Y =17)=216=18.同理可得P (Y =18)=14;P (Y =19)=14;P (Y =20)=14;P (Y =21)=18.所以随机变量Y 的分布列为:E (Y )=1719)+20×P (Y =20)+21×P (Y =21)=17×18+18×14+19×14+20×14+21×18=19.12.(13分)2011年3月,日本发生了9.0级地震,地震引发了海啸及核泄漏.某国际组织用分层抽样的方法从心理专家、核专家、地质专家三类专家中抽取若干人组成研究团队赴日本工作,有关数据见表1(单位:人).表1随机选取了110只羊进行了检测,并将有关数据整理为不完整的2×2列联表(表2).表2参考公式:①K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d );②χ2=n (n 11n 22-n 12n 21)2n 1++n 2++n +1+n +2.(1)求研究小组的总人数;(2)写出表2中A 、B 、C 、D 、E 的值,并判断有多大的把握认为羊受到高度辐射与身体不健康有关;(3)若从研究团队的心理专家和核专家中随机选2人撰写研究报告,求其中恰有1人为心理专家的概率.解:(1)依题意,726=48y =24x ,解得y =4,x =2.研究团队的总人数为2+4+6=12(人).(2)根据列联表特点得A =20,B =50,C =80,D =30,E =110.可求得K 2=110×(30×10-50×20)250×60×80×30≈7.486>6.635.由临界值表知,有99%的把握认为羊受到高度辐射与身体不健康有关.(3)设研究小组中心理专家为a 1、a 2,核专家为b 1、b 2、b 3、b 4,从中随机选2人,不同的选取结果有:a 1a 2、a 1b 1、a 1b 2、a 1b 3、a 1b 4、a 2b 1、a 2b 2、a 2b 3、a 2b 4、b 1b 2、b 1b 3、b 2b 3、b 1b 4、b 2b 4、b 3b 4,共15种.其中恰好有1人来自心理专家的结果有:a 1b 1、a 1b 2、a 1b 3、a 1b 4、a 2b 1、a 2b 2、a 2b 3、a 2b 4共8种.所以恰好有1人来自心理专家的概率为P =815.。
高三数学三角函数与函数导数专题训练(含解析)
三角函数与函数导数单元测试一、选择题1、函数()()m nf x ax x =1-在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==2、已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A .①③B .①④C .②③D .②④ 3、设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()x g f •;对任意R x ∈,()()())(x g f x g f = ;()()())(x g x f x g f =•.则下列等式恒成立的是( )A .()()()()()())(x h g h f x h g f ••=•B .()()()()()())(x h g h f x h g f •=•C .()()()()()())(x h g h f x h g f =D . ()()()()()())(x h g h f x h g f •••=••4、已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A .[22,22]-+ B .(22,22)-+ C .[1,3] D .(1,3)5、设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1 B .12 C .52 D .226、设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]7、函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)8、函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)89、函数2sin 2xy x =-的图象大致是10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )911、设函数()()212log ,0log ,0x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ).A.()()1001,,-B.()()11,,-∞-+∞C.()()101,,-+∞D.()()101,,-∞-12、设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ). A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦B.[)0,+∞, C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦13、若02πα<<,02πβ-<<,1cos()43πα+=,3cos()423πβ-=,则cos()2βα+=A .33B .33-C .39D .69-y0.1xO0.14已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭15)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则(A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 二、填空题16\如图,△ABC 中,AB=AC=2,BC=23,点D 在BC 边上,∠ADC=45°,则AD 的长度等于______。
公安一中2017届高三数学周考(一)
公安一中2017届高三数学周考(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集{1,2,3,4,5,6},{2,3,4},{4,5}U M N ===,则()U M N =ð( )A. {1,3,5}B. {2,4,6}C. {1,5}D. {1,6}2. 如图所示的Venn 图中,阴影部分对应的集合是( )A. A BB. ()U A B ðC. ()U AB ðD. ()U A B ð3. 若全集2{|4}U x x =≤,则集合{||1|1}A x x =+≤ 的补集U A ð为( )A. {|02}x x <<B. {|02}x x <≤C. {|02}x x <≤D. {|02}x x ≤≤4. 命题“2000,10x R x x ∃∈++<”的否定为( )A. “2000,10x R x x ∃∈++≥”B. “2000,10x R x x ∃∈++≤”C. “2,10x R x x ∀∈++≥”D. “2,10x R x x ∀∈++<”5. 命题“若220a b +=,则0a =且0b =”的逆否命题是( )A.“若0a ≠或0b ≠,则220a b +≠”B.“若220a b +≠,则0a ≠或0b ≠”C.“若0a =且0b =,则220a b +≠”D.“若220a b +≠,则0a ≠且0b ≠”6. 集体{|03,}A x x x N =<<∈的真子集的个数是 ( )A. 8B. 4C. 3D. 17. 已知集合{1,},{1,2,3}A a B ==,则“3a =”是“A B ⊆”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 已知全集{0,1,2,3,4,5}U =,集合{0,3,5}M =,则满足(){0,3}U M A =ð的集合A 可以是( )A. {1,2,4}B. {1,2,5}C. {2,3,4}D. {2,3,5}9. 已知实数集R 为全集,集合2{|log (1)},{|}A x y x B y y ==-=,则()U A B =ð( )A. (,1]-∞B. (0,1)C. [0,1]D. (1,2]10. 某班共有30人,其中15人喜爱下象棋,10人喜爱下围棋,8人对这两项棋类都不喜爱,那么喜爱下围棋但不喜爱下象棋的人数为( )A. 12B. 7C. 8D. 9 11. 若,m n 是正整数,则m n m n +>成立的充要条件是( )A. ,m n 都等于1B. ,m n 都不等于2C. ,m n 都大于1D. ,m n 至少有一个等于112. 已知命题:p 若x y >,则x y -<-;命题q :若x y <,则22x y >,给出下列命题: ①p q ∧; ②p q ∨; ③()p q ∧⌝; ④()p q ⌝∨ 其中的真命题 ( )A. ①③B. ①④C. ②③D. ②④第Ⅱ卷 (非选择题部分,90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13. 已知集合2{(,)|,}A x y y x x R ==∈,{(,)|||,}B x y y x x R ==∈,则AB 中元素的个数是____________________. 14. 若不等式10x x->成立的充分不必要条件是x a >,则实数a 的取值范围是________. 15. 已知:2:,20p x R x x a ∃∈++≤,若p 是错误的,则实数a 的取值范围是__________.(用区间表示)16. 用()C A 表示非空集合A 中元素的个数,定义()(),()()*()(),()()C A C B C A C B A B C B C A C A C B -⎧=⎨-<⎩≥.若22{1,2},{|()(2)0}A B x x ax x ax ==+++=,且*1A B =,设实数a 的所有可能取值组成的集合是S ,则()C S =________________.三、计算题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设命题:p “对任意的2,2x R x x a ∈->”,命题:q “存在x R ∈,使2220x ax a ++-=”. 如果命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.18. (本小题满分12分)已知全集U R =,集合{|121},{|01}A x a x a B x x =-<<+=<<. (1)若12a =,求A B ; (2)若A B =∅,求实数a 的取值范围.19.(本小题满分12分)已知集合2{|8200}P x x x =--≤,{||1|,}S x x m m R =-∈≤,且S 不为空集. (1)若()PS P ⊆,求实数m 的取值范围;(2)是否存在实数m ,使得“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.20.(本小题满分12分) 已知21:0,;:210p x x a q x ax x∀>+>-+≤的解集非空. 若p 不正确,q 正确,求a 的取值范围.21.(本小题满分12分)已知集合{|(1)(23)0,}A x x x a a R =---<∈,函数2(2)lg()2x a y a R a x-+=∈-的定义域为集合B. (1)若1a =,求()R AB ð;(2)若1a >-且“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1:平面几何选讲如图,在ABC ∆中,CD 是∠ACB 的角平分线,ADC ∆的外接圆交BC 于点E ,AB=2AC. (1)求证:BE=2AD ;(2)当AC=3,EC=6时,求AD 的长.23.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为()4R πθρ=∈,曲线C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩. (1)写出直线l 的直角坐标方程及曲线C 的普通方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若8||||3MA MB ⋅=,求点M 轨迹的直角坐标方程.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|2||23|,()|1| 2.f x x a x g x x =-++=-+ (1)解不等式:|()|5g x <;(2)若对任意的1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.。
高考数学考前刷题大卷练1 集合与常用逻辑用语(文)(含解析)-人教版高三全册数学试题
大卷练1 集合与常用逻辑用语一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·全国卷Ⅰ]已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2} 答案:A解析:A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}.故选A.2.[2019·某某肃南月考]已知集合P ={2,3,4,5,6},Q ={3,5,7}.若M =P ∩Q ,则M 的子集个数为( )A .5B .4C .3D .2 答案:B解析:因为P ∩Q ={3,5},所以集合M 的子集个数为4.故选B.3.[2017·全国卷Ⅰ文,1]已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫xx <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫xx <32 D .A ∪B =R 答案:A解析:由题意知A ={x |x <2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32.由图易知A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2},故选A.4.[2019·某某一检]已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-4≤x <12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪x <12且y ≥-4D .∅ 答案:B解析:由题意得M =⎝ ⎛⎭⎪⎫-∞,12,N =[-4,+∞),所以M ∩N =⎣⎢⎡⎭⎪⎫-4,12. 5.[2019·某某某某模拟]已知集合A ={0,1,2},若A ∩∁Z B =∅(Z 是整数集合),则集合B 可以为( )A .{x |x =2a ,a ∈A }B .{x |x =2a,a ∈A } C .{x |x =a -1,a ∈N } D .{x |x =a 2,a ∈N } 答案:C解析:由题意知,集合A ={0,1,2},可知{x |x =2a ,a ∈A }={0,2,4},此时A ∩∁Z B ={1}≠∅,A 不满足题意;{x |x =2a,a ∈A }={1,2,4},则A ∩∁Z B ={0}≠∅,B 不满足题意;{x |x =a -1,a ∈N }={-1,0,1,2,3,…},则A ∩∁Z B =∅,C 满足题意;{x |x =a 2,a ∈N }={0,1,4,9,16,…},则A ∩∁Z B ={2}≠∅,D 不满足题意.故选C.6.[2019·某某某某联考]设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∩N =MB .M ∪(∁R N )=MC .N ∪(∁R M )=RD .M ∩N =N 答案:D解析:由题意可得N =(0,2),M =(-∞,4),N ⊆M .故选D.7.已知集合A ={4,a },B ={x ∈Z |x 2-5x +4≥0},若A ∩(∁Z B )≠∅,则实数a 的值为( ) A .2 B .3 C .2或6 D .2或3 答案:D解析:因为B ={x ∈Z |x 2-5x +4≥0},所以∁Z B ={x ∈Z |x 2-5x +4<0}={x ∈Z |1<x <4}={2,3}.若A ∩(∁Z B )≠∅,则a =2或a =3,故选D.8.[2019·某某市高三第二次教学质量检测]命题p :∀a ≥0,关于x 的方程x 2+ax +1=0有实数解,则綈p 为( )A .∃a <0,关于x 的方程x 2+ax +1=0有实数解 B .∃a <0,关于x 的方程x 2+ax +1=0没有实数解 C .∃a ≥0,关于x 的方程x 2+ax +1=0没有实数解 D .∃a ≥0,关于x 的方程x 2+ax +1=0有实数解 答案:C解析:根据全称命题的否定可知,綈p 为∃a ≥0,关于x 的方程x 2+ax +1=0没有实数解,故选C.9.[2019·某某五校联考]已知命题p :“a >b ”是“2a>2b”的充要条件;q :∃x 0∈R ,|x 0+1|≤x 0,则( )A .(綈p )∨q 为真命题B .p ∨q 为真命题C .p ∧q 为真命题D .p ∧(綈q )为假命题 答案:B解析:由函数y =2x是R 上的增函数,知命题p 是真命题.对于命题q ,当x +1≥0,即x ≥-1时,|x +1|=x +1>x ;当x +1<0,即x <-1时,|x +1|=-x -1,由-x -1≤x ,得x ≥-12,无解,因此命题q 是假命题.所以(綈p )∨q 为假命题,A 错误;p ∨q 为真命题,B 正确;p ∧q 为假命题,C 错误;p ∧(綈q )为真命题,D 错误.选择B.10.[2019·东北师大附中、某某师大附中、某某省实验中学联考]对于实数x ,y ,若p :x +y ≠4,q :x ≠3或y ≠1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:由于命题“若x =3且y =1,则x +y =4”为真命题,可知该命题的逆否命题也为真命题,即p ⇒q .由x ≠3或y ≠1,但x =2,y =2时有x +y =4,即qD p .故p 是q 的充分不必要条件.故选A.11.[2019·某某某某第一次调研]设有下面四个命题:p 1:∃n ∈N ,n 2>2n ;p 2:x ∈R ,“x >1”是“x >2”的充分不必要条件;p 3:命题“若x =y ,则sin x =sin y ”的逆否命题是“若sin x ≠sin y ,则x ≠y ”; p 4:若“p ∨q ”是真命题,则p 一定是真命题.其中为真命题的是( ) A .p 1,p 2 B .p 2,p 3 C .p 2,p 4 D .p 1,p 3 答案:D解析:∵n =3时,32>23,∴∃n ∈N ,n 2>2n,∴p 1为真命题,可排除B ,C 选项.∵(2,+∞)⊂(1,+∞),∴x >2能推出x >1,x >1不能推出x >2,x >1是x >2的必要不充分条件,∴p 2是假命题,排除A.故选D.12.[2019·某某某某长安区质量检测大联考]已知命题p :∀x ∈R ,不等式ax 2+22x +1<0解集为空集,命题q :f (x )=(2a -5)x在R 上满足f ′(x )<0,若命题p ∧(綈q )是真命题,则实数a 的取值X 围是( )A.⎣⎢⎡⎦⎥⎤52,3 B .[3,+∞) C .[2,3] D.⎣⎢⎡⎦⎥⎤2,52∪[3,+∞) 答案:D解析:由题意命题p :∀x ∈R ,不等式ax 2+22x +1<0解集为空集,a =0时,不满足题意.当a ≠0时,必须满足:⎩⎨⎧a >0,Δ=222-4a ≤0,解得a ≥2.命题q :f (x )=(2a -5)x在R 上满足f ′(x )<0,可得函数f (x )在R 上单调递减,∴0<2a -5<1,解得52<a <3.∵命题p ∧(綈q )是真命题,∴p 为真命题,q 为假命题.∴⎩⎪⎨⎪⎧a ≥2,a ≤52或a ≥3,解得2≤a ≤52或a ≥3,则实数a 的取值X 围是[3,+∞)∪⎣⎢⎡⎦⎥⎤2,52.故选D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 018+b 2 018的值为________.答案:1解析:因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a =0,a 2=1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),故a2 018+b2 018=1.14.某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中既爱好体育又爱好音乐的有________人.答案:26解析:设只爱好音乐的人数为x ,两者都爱好的人数为y ,只爱好体育的人数为z ,作Venn 图如图所示,则x +y +z =55-4=51,x +y =34,y +z =43,故y =(34+43)-51=26.故答案为26.15.[2019·某某玉山一中月考]已知命题p :关于x 的方程x 2-mx -2=0在[0,1]上有解;命题q :f (x )=log 2x 2-2mx +12在[1,+∞)上单调递增.若“綈p ”为真命题,“p ∨q ”为真命题,则实数m 的取值X 围为______.答案:⎝⎛⎭⎪⎫-1,34 解析:对于命题p :令g (x )=x 2-mx -2,则g (0)=-2,∴g (1)=-m -1≥0,解得m ≤-1,故命题p :m ≤-1.∴綈p :m >-1.对于命题q :⎩⎪⎨⎪⎧m ≤1,1-2m +12>0,解得m <34.又由题意可得p 假q 真,∴-1<m <34,即实数m 的取值X 围为⎝⎛⎭⎪⎫-1,34.16.[2019·某某闽侯二中模拟]设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值X 围是________.答案:⎣⎢⎡⎦⎥⎤0,12 解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1[a ,a +1].∴a ≤12且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值X 围是⎣⎢⎡⎦⎥⎤0,12.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],某某数m 的值; (2)若A ⊆∁R B ,某某数m 的取值X 围. 解析:由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B , ∴m -2>3或m +2<-1,即m >5或m <-3. 所以实数M 的取值X 围是{m |m >5,或m <-3}. 18.(本小题满分12分)设集合A ={x |132≤2-x ≤4},B ={x |x 2-3mx +2m 2-m -1<0}.(1)当x ∈Z 时,求A 的非空真子集的个数; (2)若B ⊆A ,求m 的取值X 围.解析:化简集合A ={x |-2≤x ≤5},集合B 可写为B ={x |(x -m +1)(x -2m -1)<0}. (1) x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5},即A 中含有8个元素,∴A 的非空真子集数为28-2=254(个).(2)当B =∅即m =-2时,B ⊆A . 当B ≠∅即m ≠-2时.(ⅰ)当m <-2 时,B =(2m +1,m -1),要B ⊆A ,只要⎩⎪⎨⎪⎧2m +1≥-2,m -1≤5⇒-32≤m ≤6,所以m 的值不存在;(ⅱ)当m >-2 时,B =(m -1,2m +1),要B ⊆A ,只要⎩⎪⎨⎪⎧m -1≥-2,2m +1≤5⇒-1≤m ≤2.综上可知m 的取值X 围是:{m |m =-2或-1≤m ≤2}. 19.(本小题满分12分)[2019·某某某某第一中学第二次检测]若集合A ={(x ,y )|x 2+mx -y +2=0,x ∈R },B ={(x ,y )|x -y +1=0,0≤x ≤2},当A ∩B ≠∅时,某某数m 的取值X 围.解析:∵集合A ={(x ,y )|x 2+mx -y +2=0,x ∈R }={(x ,y )|y =x 2+mx +2,x ∈R },B ={(x ,y )|x -y +1=0,0≤x ≤2}={(x ,y )|y =x +1,0≤x ≤2},∴A ∩B ≠∅等价于方程组⎩⎪⎨⎪⎧y =x 2+mx +2,y =x +1在x ∈[0,2]上有解,即x 2+mx +2=x +1在[0,2]上有解,即x 2+(m -1)x +1=0在[0,2]上有解,显然,x =0不是该方程的解,从而问题等价于-(m -1)=x +1x在(0,2]上有解.又∵当x ∈(0,2]时,1x +x ≥2当且仅当1x=x ,即x =1时取“=”,∴-(m -1)≥2,∴m ≤-1,即m ∈(-∞,-1].20.(本小题满分12分)[2019·某某陵县一中月考]已知命题p :x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立;命题q :不等式ax 2+2x -1>0有解.若命题p 是真命题,命题q 是假命题,某某数a 的取值X 围.解析:因为x 1,x 2是方程x 2-mx -2=0的两个实根,所以⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=-2,所以|x 1-x 2|=x 1+x 22-4x 1x 2=m 2+8.所以当m ∈[-1,1]时,|x 1-x 2|max =3.由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,得a 2-5a -3≥3,解得a ≥6或a ≤-1,所以命题p 为真命题时,a ≥6或a ≤-1. 命题q :不等式ax 2+2x -1>0有解, ①a >0时,显然有解; ②当a =0时,2x -1>0有解;③当a <0时,因为ax 2+2x -1>0有解,所以Δ=4+4a >0,解得-1<a <0. 所以命题q 为真命题时,a >-1. 又因为命题q 是假命题,所以a ≤-1.所以命题p 是真命题且命题q 是假命题时,实数a 的取值X 围为(-∞,-1]. 21.(本小题满分12分)[2019·某某某某模拟]命题p :实数a 满足a 2+a -6≥0,命题q :函数y =ax 2-ax +1的定义域为R ,若命题p ∧q 为假,p ∨q 为真,某某数a 的取值X 围.解析:当命题p 为真时,即a 2+a -6≥0,解得a ≥2或a ≤-3; 当命题q 为真时,可得ax 2-ax +1≥0对任意x ∈R 恒成立, 若a =0,则满足题意;若a ≠0,则有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4,∴0≤a ≤4.∵p ∧q 为假,p ∨q 为真,∴“p 真q 假”或“p 假q 真”,①当p 真q 假时,则⎩⎪⎨⎪⎧a ≥2或a ≤-3,a >4或a <0,∴a >4或a ≤-3;②当p 假q 真时,则⎩⎪⎨⎪⎧-3<a <2,0≤a ≤4,∴0≤a <2.∴实数a 的取值X 围是(-∞,-3]∪[0,2)∪(4,+∞). 22.(本小题满分12分)[2019·某某潍坊联考]已知m ∈R ,设p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0成立;q :∃x ∈[1,2],log 12(x 2-mx +1)<-1成立.如果“p ∨q ”为真,“p ∧q ”为假,某某数m的取值X 围.解析:若p 为真,则对∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立. 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3, ∴f (x )在[-1,1]上的最小值为-3,∴4m 2-8m ≤-3,解得12≤m ≤32,∴p 为真时,12≤m ≤32.若q 为真,则∃x ∈[1,2],x 2-mx +1>2成立,即m <x 2-1x成立.设g (x )=x 2-1x =x -1x ,则g (x )在[1,2]上是增函数,∴g (x )的最大值为g (2)=32,∴m <32,∴q 为真时,m <32.∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假. 当p 真q 假时,⎩⎪⎨⎪⎧ 12≤m ≤32,m ≥32,∴m =32;当p 假q 真时,⎩⎪⎨⎪⎧m <12或m >32,m <32,∴m <12.综上所述,实数m 的取值X 围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <12或m =32。
届高三理科数学六大专题训练题含详解
届高三理科数学六大专题训练题含详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高三数学(理科)专题训练一《三角函数、三角恒等变换与解三角形》一、选择题1.α为三角形的一个内角,,125tan -=α则=αcos ()A .1312-B .135-C .135D .13122.函数x y sin =和函数x y cos =都是增函数的区间是()A .)](22,232[Z k k k ∈++ππππB.)](232,2[Z k k k ∈++ππππC .)](22,2[Z k k k ∈+πππD .)](2,22[Z k k k ∈++ππππ3.已知,51)25sin(=+απ那么=αcos ()A .52-B .51-C .51D .524.在图中,A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,A点的坐标为),54,53(且AOB ∆是正三角形.则COB ∠cos 的值为()A .10334+B .10334- C .10343+D .10343-5.将函数)(sin cos 3R x x x y ∈+=的图象向左平移)0(>m m 个长度单位后,所得到的图象关于y 轴对称,则m 的最小值是() A .12πB .6πC .3πD .65π6.下列关系式中正确的是() A .︒<︒<︒168sin 10cos 11sin B .︒<︒<︒10cos 11sin 168sinC .︒<︒<︒10cos 168sin 11sinD .︒<︒<︒11sin 10cos 168sin7.在锐角ABC ∆中,角A ,B 所对的边长分别为b a ,.若,3sin 2b B a =则角A 等于()A .3πB .4πC .6πD .12π8.已知函数),,0,0)(cos()(R A x A x f ∈>>+=ϕωϕω则“)(x f 是奇函数”是“=ϕ2π”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 二、填空题9.已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,则该扇形面积是____.10.设,sin 2sin αα-=),,2(ππα∈则α2tan 的值是________. 11.在锐角ABC ∆中,,1=BC ,2A B ∠=∠则AACcos 的值等于___,AC 的取值范围为___. 12.函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为________. 三、解答题 13.已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图象关于直线3π=x 对称,且图象上相邻两个最高点的距离为.π(1)求ω和ϕ的值;(2)若),326(43)2(παπα<<=f 求)23cos(πα+的值.14.已知向量),21,(cos -=x a ),2cos ,sin 3(x x b =,R x ∈设函数.)(b a x f ⋅=(1)求)(x f 的最小正周期; (2)求)(x f 在]2,0[π上的最大值和最小值.15.已知函数,),4sin()(R x x A x f ∈+=π且.23)125(=πf (1)求A 的值;(2)若),2,0(,23)()(πθθθ∈=-+f f 求).43(θπ-f16.已知函数,2cos 21cos sin 3)(x x x x f ωωω-=,0>ω,R x ∈且函数)(x f 的最小正周期为.π(1)求ω的值和函数)(x f 的单调增区间;(2)在ABC ∆中,角C B A ,,所对的边分别是,,,c b a 又,54)32(=+πA f ,2=b ABC ∆的面积等于3,求边长a 的值. 17.已知函数⋅+=2cos 34cos 4sin 2)(xx x x f(1)求函数)(x f 的最小正周期及最值;(2)令),3()(π+=x f x g 判断函数)(x g 的奇偶性,并说明理由. 18.在ABC ∆中,内角C B A 、、所对的边分别为.c b a 、、已知,3,==/c b a(1)求角C 的大小;(2)若,54sin =A 求ABC ∆的面积.高三数学(理科)专题训练二数列一、选择题1.数列,,11,22,5,2 的一个通项公式是()A .33-=n a nB .13-=n a n C .13+=n a n D .33+=n a n 2.已知等差数列}{n a 中,,1,16497==+a a a 则12a 的值是() A .15B .30C .31D .64 3.等比数列}{n a 中,,20,647391=+=a a a a 则11a 的值是()A .1B .64C .1或64D .1或324.ABC ∆的三边c b a ,,既成等差数列又成等比数列,则此三角形是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 5.已知数列}{n a 满足),2(11≥-=-+n a a a n n n ,3,121==a a 记,321n n a a a a S ++++= 则下列结论正确的是()A .2,120142014=-=S aB .5,320142014=-=S aC .2,320142014=-=S aD .5,120142014=-=S a6.如果在等差数列}{n a 中,,12543=++a a a 那么=+++721a a a ()A .14B .21C .28D .357.数列}{n a 中,,,10987,654,32,14321 +++=++=+==a a a a 那么=10a ()A .495B .505C .550D .5958.各项均为实数的等比数列}{n a 的前n 项和为,n S 若,1010=S ,7030=S 则=40S ()A .150B .200-C .150或200-D .400或50- 二、填空题9.在等差数列}{n a 中,,8,12543531=-=++a a a a a a 则通项=n a ________.10.设等比数列}{n a 的前n 项和为,n S 若,336=S S 则=69S S________.11.设平面内有n 条直线),2(≥n 其中任意两条直线都相交且交点不同;若用)(n f 表示这n 条直线把平面分成的区域个数,则=)2(f ______,=)3(f ______,=)4(f ______.当4>n 时,=)(n f ________. 12.已知数列}{n a 的通项公式为*).(21log 2N n n n a n ∈++=设其前n 项和为,n S 则使5-<n S 成立的最小自然数n 是________. 三、解答题13.等差数列}{n a 的前n 项和为,23,1=a S n 公差d 为整数,且第6项为正,从第7项起变为负. (1)求d 的值;(2)求n S 的最大值;(3)当n S 是正数时,求n 的最大值.14.设d a ,1为实数,首项为、1a 公差为d 的等差数列}{n a 的前n 项和为n S ,满足.01565=+S S(1)若,55=S 求6S 及;1a(2)求d 的取值范围.15.已知数列}{n a 的首项n S a a ,1=是数列}{n a 的前n 项和,且满足,0,32122=/+=-n n n n a S a n S (1)若数列}{n a 是等差数列,求a的值;(2)确定a 的取值集合M ,使M a 时,数列}{n a 是递增数列.16.已知}{n a 为递增的等比数列,且}.16,4,3,1,0,2,6,10{},,{531---⊆a a a(1)求数列}{n a 的通项公式; (2)是否存在等差数列},{n b 使得221123121--=+++++--n b a b a b a b a n n n n n 对一切*N n ∈都成立?若存在,求出n b ;若不存在,说明理由. 17.等差数列}{n a 各项均为正整数,,31=a 前n 项和为n S ,等比数列}{n b 中,,11=b 且,6422=S b }{n a b 是公比为64的等比数列. (1)求n a 与;n b(2)证明:⋅<+++4311121n S S S 18.已知数列},{n a n S 为其前n 项的和,,9+-=n n a n S .*N n ∈(1)证明数列}{n a 不是等比数列;(2)令,1-=n n a b 求数列}{n b 的通项公式n b ;(3)已知用数列}{n b 可以构造新数列.例如:},3{n b },12{+n b },{2nb },1{nb },2{n b },{sin n b …,请写出用数列}{n b 构造出的新数列}{n p 的通项公式,使数列}{n p 满足以下两个条件,并说明理由.①数列}{n p 为等差数列;②数列}{n p 的前n 项和有最大值.高三数学(理科)专题训练三<概率>一、选择题1.对满足B A ⊆的非空集合B A 、有下列四个命题:其中正确命题的个数为()①若任取,A x ∈则B x ∈是必然事件②若,A x ∉则B x ∈是不可能事件③若任取,B x ∈则A x ∈是随机事件④若,B x ∉则A x ∉是必然事件 A .4B .3C .2D .12.从1,2,…,9中任取两个数,其中在下列事件中,是对立事件的是()①恰有一个是偶数和恰有一个是奇数②至少有一个是奇数和两个都是奇数③至少有一个是奇数和两个都是偶数④至少有一个奇数和至少有一个偶数A .①B .②④C .③D .①③ 3.如图所示,设D 是图中边长为4的正方形区域,E 是D 内函数2x y =图象下方的点构成的区域,向D 中随机投一点,则该点落入E 中的概率为() A .21B .31C .41D .51 4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是() A .125B .21C .127D .43 5.如图所示,圆C 内切于扇形,3,π=∠AOB AOB 若在扇形AOB内任取一点,则该点在圆C 内的概率为() A .21B .31C .32D .43 6.已知随机变量ξ服从正态分布),,0(2σN 若,023.0)2(=>ξP 则)22(≤≤-ξP 的值为()A ....7.把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投一点,此点落在星形内的概率为() A .14-πB .π2C .214-πD .218.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布)10,80(~2N ξ,则下列命题中不正确的是()A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10 二、填空题9.盒子里共有大小相同的三只白球、一只黑球,若从中随机摸出两只球,则它们颜色不同的概率是__________. 10.在集合}10,,3,2,1,6|{ ==n n x x π中任取1个元素,所取元素恰好满足方程21cos =x 的概率是__________.11.在区间]3,3[-上随机取一个数x ,使得1|2||1|≤--+x x 成立的概率为______.12.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为,209则参加联欢会的教师共有____人. 13.已知,4|),{(},0,0,6|),{(≤=≥≥≤+=Ωx y x A y x y x y x 若向区域Ω上随机投一点P ,则P 落入区域A 的概率是________. 三、解答题14.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是,31得到黑球或黄球的概率是,125得到黄球或绿球的概率也是,125试求得到黑球、黄球、绿球的概率分别是多少?15.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别是32和53.现安排甲组研发新产品A ,乙组研发新产品B.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获得利润100万元.求该企业可获利润的分布列和数学期望. 16.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率; (2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X . 17设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望. 18乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,落点在D 上记1分,其它情况记0分,落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(I )小明两次回球的落点中恰有一次的落点在乙上的概率;(II )两次回球结束后,小明得分之和 的分布列与数学期望.高三数学(理科)专题训练四《立体几何初步》一、选择题1.已知ABC ∆的三个顶点为、、)7,3,4()2,3,3(-B A ),1,5,0(C 则BC 边上的中线长为() A .5B .4C .3D .22.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .6B .9C .12D .183.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可能是()A .球B .三棱锥C .正方体D .圆柱4.已知n m 、表示两条不同直线,α表示平面,下列说法中正确的是()A .若αα//,//n m ,则n m //B .若,,//n m m ⊥α,则α⊥nC .若,,n m m ⊥⊥α,则α//nD .若,,αα⊂⊥n m ,则n m ⊥ 5.已知一个几何体的三视图如图所示(单位:cm ),则该几何体的体积为() A .310cm πB .320cm πC .3310cm πD .3320cm π6.已知过球面上C B A ,,三点的截面和球心的距离等于球半径的一半,且,2===CA BC AB 则球的半径是()A .32B .34C .36D .17.用c b a ,,表示三条不同的直线,α表示平面,给出下列命题:其中正确的命题是()①若,//,//c b b a 则;//c a ②若,,c b b a ⊥⊥则;c a ⊥③若,//,//ααb a 则;//b a ④若,,αα⊥⊥b a 则.//b aA .①②B .②③C .①④D .③④ 8.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥的轴截面顶角的余弦值是() A .43B .54C .53D .53-二、填空题9.已知三棱柱111C B A ABC -的6个顶点都在球O 的球面上,若,4,3==AC AB,AC AB ⊥,121=AA 则球O 的半径为_______.10.在三棱锥ABC P -中,,1====BC PC PB PA 且,2π=∠BAC 则PA 与底面ABC 所成角为______.11.在长方体1111D C B A ABCD -中,,2,31cm AA cm AD AB ===则四棱锥D D BB A 11-的体积为____cm 3. 三、解答题12.如图所示,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,求切削掉部分的体积与原来毛坯体积的比值.ABCD P -与ABCD Q -的高都是2,.4=AB(1)求证:⊥PQ 平面;ABCD (2)求四面体QAD P -的体积. 14.如图所示,在直三棱柱111C B A ABC -中,,,901CC BC AC ACB o ===∠点M 为AB 的中点,点D 在11B A 上,且.311DB D A =(1)求证:平面⊥CMD 平面;11A ABB(2)求二面角M BD C --的余弦值.中,底面ABCD 为矩形,,ABCD PA 平面⊥E 为PD 的中点. (1)证明:AEC PB 平面//;(2)设二面角C AE D --为60°,,3,1==AD AP求三棱锥ACD E -的体积.16.如图所示,直二面角E AB D --中,四边形ABCD 是边长为2的正方形,,EB AE =点F 为CE 上的点,且⊥BF 平面.ACE (1)求证:⊥AE 平面;BCE (2)求二面角E AC B --的余弦值;(3)求点D 到平面ACE 的距离. 17.如图所示,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(1)求证:平面PAC ⊥平面PBC . (2)若,1,1,2===PA AC AB 求二面角A PB C --的余弦值.18.如图所示,平行四边形ABCD中,.4,2,60===∠AD AB DAB 将CBD ∆沿BD 折起到EBD ∆的位置,使平面⊥EDB 平面ABD. (1)求证:⊥AB 平面;EBD (2)求三棱锥ABD E -的侧面积.高三数学(理科)专题训练五《圆锥曲线方程》一、选择题 1.已知双曲线)0,0(1:2222>>=-b a by a x C 的离心率为,25则C 的渐近线方程为()A .x y 41±=B .x y 31±=C .x y 21±=D .x y ±=2.已知,40πθ<<则双曲线1cos sin :22221=-θθy x C 与1sin cos :22222=-θθx y C ()A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等 3.椭圆1422=+y x的两个焦点为,,21F F 过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则=||2PF ()A .23B .3C .27D .4 4.已知双曲线14222=-b y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于() A .5B .24C .3D .5 5.设1F 和2F 为双曲线)0,0(12222>>=-b a b y a x 的两个焦点,若)2,0(,,21b P F F 是正三角形的三个顶点,则双曲线的离心率为() A .23B .2C .25D .36.已知双曲线1222=-y x 的焦点为,,21F F 点M 在双曲线上,且,021=⋅则点M 到x 轴的距离为() A .34B .35C .332D .37.设双曲线的左焦点为F ,虚轴的一个端点为B ,右顶点为A ,如果直线FB 与BA 垂直,那么此双曲线的离心率为()A .2B .3C .213+D .215+ 8.已知F 是抛物线x y =2的焦点,点A 、B 在该抛物线上,且位于x 轴的两侧,2=⋅(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是() A .2B .3C .8217D .10 二、填空题9.已知抛物线x y 82=的准线过双曲线)0,0(12222>>=-b a by a x 的一个焦点,双曲线的离心率为2,则该双曲线的方程为_________. 10.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的两个焦点,P 为椭圆C 上一点,且.21PF ⊥若21F PF ∆的面积为9,则=b _________.11.抛物线)0(22>=p py x 的焦点为F ,其准线与双曲线13322=-y x 相交于A ,B 两点,若ABF ∆为等边三角形,则=p _________. 12.椭圆12222=+by a x 的四个顶点为,,,,D C B A 若菱形ABCD 的内切圆恰好经过它的焦点,则此椭圆的离心率是____. 三、解答题13.如图所示,动圆)31(:2221<<=+t t y x C 与椭圆19:222=+y x C 相交于DC B A ,,,四点,点21,A A 分别为2C 的左、右顶点,当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积.14.已知双曲线)0,0(12222>>=-b a b y a x 的两条渐近线方程为,33x y ±=若顶点到渐近线的距离为1,求双曲线方程.15.如图,在平面直角坐标系xOy中,21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,顶点B 的坐标是),,0(b 连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结.1C F(1)若点C 的坐标为),31,34(且,2||2=BF 求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.16.椭圆)0(1:2222>>=+b a by a x C 的两个焦点分别为,,21F F 点P 在椭圆C 上,且,211F F PF ⊥ (1)求椭圆C 的方程;(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程.17.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点,求FP OP ⋅的最大值.18.已知抛物线C 的顶点为原点,其焦点)0)(,0(>c c F 到直线02:=--y x l 的距离为.223设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点),(00y x P 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求||||BF AF ⋅的最小值.高三数学(理科)专题训练六《导数及其应用》一、选择题1.若,)(3x x f =,6)('0=x f 则=0x () A .2B .2-C .2±D .1± 2.函数133+-=x x y 的单调递减区间是()A .)2,1(B .)1,1(-C .)1,(--∞D .),1(+∞3.与直线052=+-y x 平行的抛物线2x y =的切线方程是()A .032=+-y xB .032=--y x C .012=+-y x D .012=--y x4.已知曲线x x y ln 342-=的一条切线的斜率为,21则切点的横坐标为()A .3B .2C .1D .215.曲线x y cos =与x 轴在区间]23,2[ππ-上所围成的图形的面积是()A .1B .2C .3D .46.设)(),(x g x f 是定义域为R 的恒大于零的可导函数,且,0)(')()()('<-x g x f x g x f 则当x a <b <时,有()A .)()()()(b g b f x g x f >B .)()()()(x g a f a g x f >C .)()()()(x g b f b g x f >D .)()()()(a g a f x g x f >7.若)2ln(21)(2++-=x b x x f 在区间),1(+∞-内是减函数,则实数b 的取值范围是()A .),1[+∞-B .),1(+∞-C .]1,(--∞D .)1,(--∞8.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图象的一部分,则函数的解析式为()A .x x y 5312513-=B .x x y 5412523-= C .x x y -=31253D .x x y 5112533+-=二、填空题9.若曲线)1ln(+-=x ax y 在点)0,0(处的切线方程为,2x y =则=a ______. 10.若曲线xbax y +=2(a 、b 为常数)过点),5,2(-P 且该曲线在点P 处的切线与直线++y x 2703=平行,则=+b a ______. 11.若,)(2)(12dx x f x x f ⎰+=则=⎰dx x f )(1______.12.设,R a ∈若函数)(3R x x e y ax ∈+=有大于零的极值点,则a 的取值范围是______. 三、解答题13.设函数)0()(=/=k xe x f kx .(1)求曲线)(x f y =在点))0(,0(f 处的切线方程;(2)求函数)(x f 的单调区间.14.已知函数x=xxxf-+ln.1()1)(+(1)若,1xxf求实数ax)('2++≤ax的取值范围;(2)证明:.0f-xx)()1(≥15.设,12321ln )(+++=x x x a x f 其中,R a ∈曲线)(x f y =在点))1(,1(f 处的切线垂直于y 轴. (1)求a 的值;(2)求函数)(x f 的极值.16.如图所示,已知曲线21:x y C =与曲线)1(2:22>+-=a ax x y C 交于点O 、A ,直线)10(≤<=t t x 与曲线21C C 、分别相交于点D 、B ,联结.AB DA OD 、、(1)写出曲边四边形ABOD (阴影部分)的面积S 与t 的函数关系式);(t f S =(2)求函数)(t f S =在区间]1,0(上的最大值.17.某村庄拟修建一个无盖圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为π12000(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.18.已知函数.)2(ln )(2x a ax x x f -+-=(1)讨论)(x f 的单调性;(2)设,0>a 证明:当ax 10<<时,);1()1(x ax a f ->+(3)若函数)(x f y =的图象与x 轴交于A 、B 两点,线段AB 中点的横坐标为,0x证明:.0)('0<x f高三数学(理科)专题训练一《三角函数、三角恒等变换与解三角形》参考答案9.2cm 210.311.2,)3,2(12.1 三、解答题13.(1)因)(x f 的图象上相邻两个最高点的距离为,π所以)(x f 的最小正周期,π=T 从而.22==Tπω又因)(x f 的图象关于直线3π=x 对称,所以,,2,1,0,232 ±±=+=+⋅k k ππϕπ因≤-2π2πϕ≤得,0=k 所以⋅-=-=6322πππϕ(2)由(1)得=-⋅=)622sin(3)2(πααf ,43所以⋅=-41)6sin(πα由326παπ<<得,260ππα<-< 所以=--=-)6(sin 1)6cos(2παπα⋅=-415)41(12 因此+-==+)6sin[(sin )23cos(πααπα6sin )6cos(6cos )6sin(]6ππαππαπ-+-= 14.(1)π=T (2)21)(,1)(min max -==x f x f15.(1)==+=32sin )4125sin()125(ππππA A f ,23233sin )3sin(===-A A A πππ所以=A ,3所以).4sin(3)(π+=x x f(2))()(θθ-+f f )4sin(3)4sin(3πθπθ+-++=,23cos 6==θ所以,46cos =θ因为,0sin ),2,0(>∈θπθ则=θsin ,410)46(1cos 122=-=-θ 故=+-=-]4)43sin[(3)43(πθπθπf ⋅=⨯==-4304103sin 3)sin(3θθπ16.(1)1=ω)](3,6[Z k k k ∈+-ππππ(2)13=a17.(1)因),32sin(22cos 32sin)(π+=+=x x x x f 故)(x f 的最小正周期.4212ππ==T当1)32sin(-=+πx 时,)(x f 取得最小值;2-当1)32sin(=+πx 时,)(x f 取得最大值2.(2)由(1)知⋅+=)32sin(2)(πx x f 又⋅+=)3()(πx f x g故]3)3(21sin[2)(ππ++=x x g ⋅=+=2cos 2)22sin(2xx π故).(2cos 2)2cos(2)(x g xx x g ==-=-所以函数)(x g 是偶函数. 18.(1)由题意得,=+-+22cos 122cos 1BA ,2sin 232sin 23B A - 即=-A A 2cos 212sin 23-=--B A B B 2sin()62sin(,2cos 212sin 23π),6π 由b a =/得,,B A =/又),,0(π∈+B A 得,6262πππ=-+-B A 即,32π=+B A 所以⋅=3πC(2)由,3=c Cc A a A sin sin ,54sin ==得58=a ,由,c a <得,C A <从而,53cos =A故=+=+=C A C A C A B sin cos cos sin )sin(sin ,10334+ 所以ABC ∆的面积为==B ac S sin 21⋅+251838高三数学(理科)专题训练二《数列》参考答案9.133-n 10.3711.4;7;11;222++n n 12.63 三、解答题13.(1)由已知,0076⎩⎨⎧<>a a 得,06230523⎩⎨⎧<+>+d d 解得,623523-<<-d 又d 为整数,故.4-=d (2)nn n n n S n 252)4(2)1(232+-=-⨯-+=,8625)425(22+--=n当6=n 时,;78=n S 当7=n 时,.77=n S 取最大值为78. (3)令,0>n S 得,02522>+-n n 解得<<n 0*),(225N n ∈ 故n 的最大值为12. 14.(1)由题意知:.31556-=-=S S .8566-=-=S S a所以,85510511⎩⎨⎧-=+=+d a d a 解得,71=a 所以.7,316=-=a S(2)因为,01565=+S S 所以,015)156)(105(11=+++d a d a即.0110922121=+++d da a 故.8)94(221-=+d d a 所以.82≥d故d 的取值范围为22-≤d 或.22≥d15.(1)在21223-+=n n n S a n S 中分别令,2=n 3=n 及,1a a =得++=+a a a a a (,12)(2222.)(27)223232a a a a a ++=+因为,0=/n a 所以2a ,212a -=.233a a +=因为数列}{n a 是等差数列,所以+1a ,223a a =即,23)212(2a a a ++=-解得.3=a经检验3=a 时,,2)1(3,3+==n n S n a n n ,2)1(31-=-n n S n 满足.32122-+=n n n S a n S(2)由,32122-+=n n n S a n S 得,32212n n n a n S S =--即,3))((211n n n n n a n S S S S =-+--因为,0=/n a ,2≥n 所以,321n S S n n =+-①所以,)1(321+=++n S S n n ② ②-①得,361+=++n a a n n 所以=+-1n n a a ,3)1(6+-n两式相减得:).2(611≥=--+n a a n n即数列 642,,a a a 及数列 ,,,753a a a 都是公差为6的等差数列,因为,23,21232a a a a +=-=所以⎪⎩⎪⎨⎧+-≥-+==.,623,3,623,1,为偶数为奇数且n a n n n a n n a a n要使数列}{n a 是递增数列,须有,21a a <且当n 为大于或等于3的奇数时,1+<n n a a且当n 为偶数时,1+<n n a a 即⎪⎩⎪⎨⎧-++<+-≥+-+<-+-<为偶数为奇数且n a n a n n n a n a n a a ,62)1(36233,62)1(3623,212 解得⋅<<41549a所以M 为),415,49(当Ma ∈时,数列}{n a 是递增数列.16.(1)12-n (2)存在17.(1)设}{n a 公差为d ,由题意易知,0>d 且∈d *,N则,)1(3d n a n -+=.2)1(3d n n n S n -+=设}{n b 公比为q ,则.1-=n n q b 由,6422=S b 可得64)6(=+d q …①又}{n a b 是公比为64的等比数列,所以6411111====---+++d a a a a a a q q qq b b n n n n n n …② 由①②,且*,N d >,0>d 可解得.2,8==d q所以,12+=n a n .*,81N n b n n ∈=- (2)由(1)知),2(22)1(3+=⨯-+=n n n n n S n .*N n ∈所以),211(21)2(11+-=+=n n n n S n 所以+-=+++)311[(2111121n S S S )]211()5131()4121(+-++-+-n n 18.(1)略(2)1)21(4-=n n b (3)=n p )1(log >a b n a高三数学(理科)专题训练三《概率》参考答案一、选择题BCBCCCAB 二、填空题9.2110.5111.3212.120人13.278三、解答题14.设得到黑球、黄球的概率分别为,y x 、由题意得⎪⎪⎩⎪⎪⎨⎧=---+=+,125)311(,125y x y y x 解得⎪⎪⎩⎪⎪⎨⎧==,61,41y x 故41)6141311(=---,所以得到黑球、黄球、绿球的概率分别是⋅416141、、15解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题可知32)(=E P ,31)(=E P ,53)(=F P ,52)(=F P .且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则F E H =,于是1525231)()()(=⨯==F P E P H P ,故所求概率为15131521)(1)(=-=-=H P H P .(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.又因1525231)()0(=⨯===F E P X P ,1535331)()100(=⨯===F E P X P ,1545232)()120(=⨯===F E P X P ,1565332)()220(=⨯===EF P X P .11521001562201541201531001520)(==⨯+⨯+⨯+⨯=X E .16(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯=.2()0.003500.15P A =⨯=.()0.60.60.1520.108P B =⨯⨯⨯=. (Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,=,方差D (X )=3××()= 17解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =B 表示事件:甲需使用设备C 表示事件:丁需使用设备D 表示事件:同一工作日至少3人需使用设备(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅ 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅ (2)X 的可能取值为0,1,2,3,40(0)()P X P B C A ==⋅⋅0()()()P B P C P A =2(10.6)(10.4)0.50.06=-⨯-⨯=. 0.25=,2(4)()P X P B C A ==⋅⋅2()()()P B P C P A =20.50.60.40.06=⨯⨯=,(3)()(4)0.25P X P D P X ==-==, 所以(X)(2)0(0)1(1)2(3)3(3)4(4)E P X P X P X P X P X P X ===⨯=+⨯=+⨯=+⨯=+⨯=0.2520.3830.2540.06=+⨯+⨯+⨯2=.18解:(I )设恰有一次的落点在乙上这一事件为A高三数学(理科)专题训练四《立体几何初步》参考答案9.21310.3π11.6三、解答题12.底面半径为3cm ,高为6cm 的圆柱体的体积为:1211h R V ⋅=π632⋅⋅=π.54π=从某零件的三视图可知:该几何体为左边是一个底面半径为2cm 、高为4cm 的圆柱体,右边是一个底面半径为3cm 、高为2cm 的圆柱体.其中左边的圆柱体的体积为:所以切削掉部分的体积为:.204322ππ=-⋅⋅=V V因此切削掉部分的体积与原来毛坯体积的比值为:⋅==271054201ππV V 13.(1)如图所示,取AD 的中点M ,连接.,QM PM因为ABCD P -与ABCDQ -都是正四棱锥,所以,,QM AD PM AD ⊥⊥ 从而.PQM AD 平面⊥又,PQM PQ 平面⊂所以.AD PQ ⊥同理,AB PQ ⊥所以.ABCD PQ 平面⊥(2)连接OM ,则,21221PQ AB OM ===所以,90o PMQ =∠即⋅⊥MQ PM由(1)知,PM AD ⊥所以,QAD PM 平面⊥从而PM 就是四面体QAD P -的高,在直角PMO ∆中,.22222222=+=+=OM PO PM又,242242121=⋅⋅=⋅=∆QM AD S QAD故⋅=⋅⋅=⋅=∆-31622243131PM S V QAD QAD P14.(1)在ABC ∆中,,BC AC =点M 为AB 的中点,故.AB CM ⊥又因三棱柱111C B A ABC -是直三棱柱,故,11ABC A ABB 平面平面⊥又,ABC CM 平面⊂故11A ABB CM 平面⊥,而,CMD CM 平面⊂故11A ABB CMD 平面平面⊥ (2)以点C 为原点,分别以1,,CC CB CA 所在直线为z y x ,,轴,建立如图所示的空间直角坐标系,令,11===CC BC AC则),0,0,0(C ),0,0,1(A ),1,0,1(1A ),0,1,0(B ),1,1,0(1B故),0,1,0(=CB )1,43,41(=CD设平面CBD 的法向量为),,,(z y x n =则⎪⎩⎪⎨⎧=⋅=⋅00CD n CB n ⇒⎪⎩⎪⎨⎧=++=043410z y x y ⇒⎩⎨⎧=+=040z x y ,取,1-=z 则,4=x ,0=y 故)1,0,4(-=n ,而平面MBD 的法向量是),0,21,21(=CM故>=<n ,cos 1722)1,0,4()0,21,21(⨯-⋅⋅=17342 即二面角M BD C --的余弦值为⋅17342 15.(1)连结BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以.//PB EO又,AEC EO 平面⊂,AEC PB 平面⊂/所以.//AEC PB 平面(2)因为,ABCD PA 平面⊥ABCD 为矩形,所以AP AD AB ,,两两垂直.如图所示,以A 为坐标原点,的方向为x 轴的正方向,||AP 为单位长,建立空间直角坐标系,xyz A -则),21,23,0(),0,3,0(E D ⋅=)21,23,0( 设),0)(0,0,(>m m B 则),0,3,(m C ).0,3,(m =设),,(1z y x n =为平面ACE 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅011n n ,即⎪⎩⎪⎨⎧=+=+.02123,03z y y mx 可取),3,1,3(1-=m n 又)0,0,1(2=n 为平面DAE 的法向量,由题设,21|,cos |21=><n n 即=+2433m ,21解得⋅=23m因为E 为PD 的中点,所以三棱锥ACD E -的高为⋅21所以三棱锥ACD E -的体积为:⋅=⨯⨯⨯⨯=83212332131V16.(1)因⊥BF 平面.ACE 故.AE BF ⊥又因二面角E AB D --为直二面角,且,AB CB ⊥故⊥CB 平面.ABE故.AE CB ⊥⊥AE 平面.BCE (2)以点A 为原点,建立如图所示的空间直角坐标系.因⊥AE 面,BCE ⊂BE 面,BCE故.BE AE ⊥则),0,0,0(A ),0,1,1(E ,2,0(C ).2),0,1,1(=AE ⋅=)2,2,0(AC设平面AEC 的法向量为),,,(z y x n =则⎪⎩⎪⎨⎧=⋅=⋅00AC n AE n ,即,0220⎩⎨⎧=+=+z y y x 解得⋅⎩⎨⎧=-=xz x y令,1=x 得=n )1,1,1(-是平面AEC 的一个法向量,又平面BAC 的一个法向量为),0,0,1(=m且n m ,所成的角就是二面角E AC B --的平面角,因>=<n m ,cos ||||n m n m ⋅⋅,3331==故二面角E AC B --的余弦值为⋅33 (3)因),2,0,0(=AD 故点D 到平面ACE 的距离=d .33232||||==⋅n n 17.(1)略(2)4618.(1)证明:如图所示,在ABD ∆中,因,60,4,2o DAB AD AB =∠==故=∠⋅-+=DAB AD AB AD AB BD cos 2222,32故,222AD BD AB =+故.BD AB ⊥又因,ABD EBD 平面平面⊥,BD ABD EBD =平面平面,ABD AB 平面⊂故.EBD AB 平面⊥(2)解:由(1)知,//,AB CD BD AB ⊥故,BD CD ⊥从而.DB DE ⊥在DBE Rt ∆中, 因,2,32====AB DC DE DB 故.3221=⋅=∆DE DB s BDE又因,EBD AB 平面⊥,EBD BE 平面⊂故.BE AB ⊥因,4===AD BC BE 故.421=⋅=∆BE AB S ABE 因,BD DE ⊥平面EBD ⊥平面ABD ,故.ABD ED 平面⊥而,ABD AD 平面⊂故,AD ED ⊥故.421=⋅=∆DE AD S ADE 综上得三棱锥ABDE -的侧面积为.328+=S高三数学(理科)专题训练五《圆锥曲线方程》参考答案9.1322=-y x 10.3=b 11.612.215-三、解答题13.设),,(00y x A 则矩形ABCD 的面积||40x S =.||0y由192020=+y x 得,,912020x y -=故202020x y x =,49)29(91)91(22020---=-x x当21,292020==y x 时,,6max =S故当5=t 时,矩形ABCD 的面积最大,最大面积为6.14.根据几何性质有.1=cab又因,33=a b 解得⎪⎩⎪⎨⎧==34422b a 故双曲线的方程为.143422=-y x15.(1)由题意,),,0(),0,(2b B c F =||2BF ,222==+a c b又)31,34(C 在椭圆上,所以,1)31(2)34(222=+b 解得.1=b 所以椭圆方程为.1222=+y x(2)直线2BF 方程为,1=+byc x 与椭圆方程12222=+by a x 联立方程组,解得A 点坐标为),,2(223222c a b c a c a +-+则C 点坐标为,2(222c a c a +),223ca b + 又,c bk AB -=由AB C F ⊥1得⋅+3233c c a b ,1)(-=-cb 即,34224c c a b += 所以=-222)(c a ,3422c c a +化简得.55==ac e 16.(1)由于点P 在椭圆上,故.3,6||||221==+=a PF PF a 在21F PF Rt ∆中,.52||||||212221=-=PF PF F F 解得,5=c 从而.4222=-=c a b因此椭圆C 的方程为.14922=+y x (2)设A ,B 的坐标分别为).,(),,(22]1y x y x已知圆的方程为,5)1()2(22=-++y x 圆心).1,2(-设直线l 方程为,1)2(++=x k y代入椭圆C 的方程得273636)1836()94(2222-+++++k k x k k x k 0=由于A ,B 关于点M 对称,所以,29491822221-=++-=+k kk x x 解得98=k因此直线l 的方程为,1)2(98++=x y 即.02598=+-y x 17.由题意,),0,1(-F 设点),,(00y x P 则有,1342020=+y x 解得)41(32020x y -=因为),,1(00y x +=),,(00y x =所以200)1(y x x ++=⋅,34)41(3)1(0202000++=-++=x x x x x此二次函数对应的抛物线的对称轴为.20-=x因为,220≤≤-x 所以当20=x 时,⋅取得最大值.632422=++ 18.(1)y x 42=(2)02200=--y y x x (3)29高三数学(理科)专题训练六《导数及其应用》参考答案9.310.-311.31-12.)3,(--∞三、解答题13.(1),)1()('kx e kx x f +=,1)0('=f ,0)0(=f故曲线)(x f y =在点))0(,0(f 处的切线方程为.x y =(2)由0)1()('=+=kx e kx x f 得).0(1=/-=k kx ①若,0>k 则当)1,(kx --∞∈时,,0)('<x f 函数)(x f 单调递减;当),1(+∞-∈kx 时,,0)('>x f 函数)(x f 单调递增,②若,0<k 则当)1,(kx --∞∈时,,0)('>x f 函数)(x f 单调递增;当),1(+∞-∈kx 时,,0)('<x f 函数)(x f 单调递减.14.(1)因为),0(1ln 1ln 1)('>+=-++=x xx x x x x f 所以.1ln )('+=x x x xf 由,1)('2++≤ax x x xf 得.ln x x a -≥令,ln )(x x x g -=则11)('-=xx g 当10<<x 时,;0)('>x g 当1>x 时,.0)('<x g所以1=x 是最大值点,.1)1()(max -==g x g 故,1-≥a即a 的取值范围是).,1[+∞- (2)由(1)知,1)1(ln )(-=≤-=g x x x g 故.01ln ≤+-x x当10<<x 时,x x x x x x f ln 1ln )1()(=+-+=;01ln ≤+-+x x当1≥x 时,+=+-+=x x x x x f ln 1ln )1()(.0)111(ln ln 1ln ≥-+-=+-xx x x x x x综上,.0)()1(≥-x f x15.(1)因为,12321ln )(+++=x x x a x f 故⋅+-=2321)('2x x a x f由于曲线)(x f y =在点))1(,1(f 处的切线垂直于y 轴,故该切线斜率为0,即,0)1('=f 从而,02321=+-a 解得.1-=a(2)由(1)知)0(12321ln )(>+++-=x x x x x f 令,0)('=x f 解得,11=x 312-=x (因312-=x 不在定义域内,舍去).当)1,0(∈x 时,,0)('<x f 故)(x f 在)1,0(上为减函数;当),1(+∞∈x 时,,0)('>x f 故)(x f 在,1()∞+上为增函数.故)(x f 在1=x 处取得极小值.3)1(=f16.(1)由⎩⎨⎧+-==axx y x y 222得点).,(),0,0(2a a A O又由已知得).,(),2,(22t t D at t t B +-故)(t f S =+⋅⋅-+-=⎰2221)2(t t dx ax x t)()2(2122t a t at t -⋅-+-(2).221)('22a at t t f +-=令,0)('=t f即,022122=+-a at t 解得a t )22(-=或.)22(a t +=因为,10≤<t ,1>a 所以a t )22(+=舍去.若,1)22(≥-a 即222221+=-≥a 时,对,10≤<t 有.0)('≥t f故)(t f 在区间]1,0(上单调递增,S 的最大值是⋅+-=61)1(2a a f若,1)22(<-a 即2221+<<a 时,对,)22(0a t -<<有;0)('>t f当t a <+)22(1≤时,有.0)('<t f 故)(t f 在))22(,0(a -上单调递增,在]1,)22((a +上单调递减,)(t f 的最大值是.3222))22((3a a f -=- 综上所述,=max)]([t f ⎪⎪⎩⎪⎪⎨⎧+<<-+≥+-222132222226132a a a a a 17.(1)),4300(5)(3r r r V -=π定义域为);35,0((2))(r V 在区间)5,0(上单调递增,在区间)35,5(上单调递减;当,5=r 8=h 时,蓄水池的体积最大18.(1))(x f 的定义域为-=+∞xx f 1)('),,0(⋅-+-=-+xax x a ax )1)(12()2(2若,0≤a 则,0)('>x f 所以)(x f 在),0(+∞单调递增.若,0>a 则由0)('=x f 得,1ax =且当∈x )1,0(a时,,0)('>x f 当ax 1>时,.0)('<x f 所以)(x f 在)1,0(a单调递增,在),1(+∞a单调递减.(2)设函数),1()1()(x af x a f xg --+=则,2)1ln()1ln()(ax ax ax x g ---+=.12211)('2223x a x a a axa ax a x g -=--++=当ax 10<<时,,0)('>x g 而,0)0(=g 所以.0)(>x g故当ax 10<<时,⋅->+)1()1(x af x a f (3)由(1)可得,当0≤a 时,函数)(x f y =的图象与x 轴至多有一个交点,故,0>a 从而)(x f 的最大值为),1(a f 且.0)1(>af 不妨设,0),0,(),0,(2121x x x B x A <<则⋅<<<2110x ax 由(2)得=>-+=-)()11()2(111x f x a a f x a f ).(02x f =又,1,1221ax a x a >>-从而,212x ax ->于是⋅>+=ax x x 12210由(1)知,.0)('0<x f。
高三数学专题训练《数列》解析版
一、选择题(每小题5分,共60分)1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10可得d =3,a 1=-4,所以S 10=-4×10+10×92×3=95.答案:C2.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列解析:设{a n }的公差为d ,则d =1,设c n =a 2n -1+2a 2n ,则c n +1=a 2n +1+2a 2n +2,c n +1-c n =a 2n +1+2a 2n +2-a 2n -1-2a 2n =6d =6,选择C.答案:C3.在等差数列{a n }中,已知a 1=13,a 1+a 2+a 3+a 4+a 5=20,那么a 3等于( )A .4B .5C .6D .7解析:a 1+a 2+a 3+a 4+a 5=5a 3=20,a 3=4.答案:A4.等差数列{a n }的公差d ≠0,a 1≠d ,若这个数列的前40项和是20m ,则m 等于( )A .a 1+a 20B .a 5+a 17C .a 27+a 35D .a 15+a 26解析:S 40=40(a 1+a 40)2=20(a 1+a 40)=20m ,m =a 1+a 40=a 15+a 26.答案:D5.在等比数列{a n }中,若a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是( )A.b aB.b 2a2C.b 2aD.ba2解析:记等比数列{a n }的公比为q ,依题意得a 15+a 16=a 5q 10+a 6q 10=(a 5+a 6)q 10,q 10=a 15+a 16a 5+a 6=b a,a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)q 20=a ×(b a)2=b 2a,选C. 答案:C6.在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4=( )A.53B.35 C .-53D .-35解析:依题意,设公比为q ,则q ≠1,因此⎩⎪⎨⎪⎧a 1(1-q 4)1-q =158①a 21q 3=-98 ②,又1a 1,1a 2,1a 3,1a 4构成以1a 1为首项,以1q 为公比的等比数列,所以1a 1+1a 2+1a 3+1a 4=1a 1[1-(1q)4]1-1q=(1-q 4)a 1q 3(1-q ),①÷②得(1-q 4)a 1q 3(1-q )=-53,即1a 1+1a 2+1a 3+1a 4=-53,选择C.答案:C7.(2010·江西九校联考)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101=( )A .200B .2C .-2D .0解析:设等比数列{a n }的公比为q ,因为对任意正整数,有a n +2a n +1+a n+2=0,a n +2a nq +a n q 2=0,因为a n ≠0,所以1+2q +q 2=0,q =-1,S 101=2×(1+1)1+1=2,选择B.答案:B8.(2010·西安八校二联)已知等比数列{a n }的公比q <0,其前n 项和为S n ,则a 9S 8与a 8S 9的大小关系是( )A .a 9S 8>a 8S 9B .a 9S 8<a 8S 9C .a 9S 8=a 8S 9D .a 9S 8与a 8S 9的大小关系与a 1的值有关 解析:依题意得,a 9S 8-a 8S 9=a 1q 8·a 1(1-q 8)1-q-a 1q 7·a 1(1-q 9)1-q=-a 21q 7>0,因此a 9S 8>a 8S 9,选A.答案:A9.已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( )A .126B .130C .132D .134解析:∵{a n }是各项不为0的正项等比数列, ∴b n =ln a n 是等差数列.又∵b 3=18,b 6=12,∴b 1=22,d =-2, ∴S n =22n +n (n -1)2×(-2)=-n 2+23n ,∴(S n )max =-112+23×11=132. 答案:C10.(2009·安徽蚌埠测验)数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项等于( )A .42B .45C .48D .51解析:将数列分段,第1段1个数,第2段2个数,…,第n 段n 个数,设a 1000=k ,则a 1000在第k 个数段,由于第k 个数段共有k 个数,则由题意k 应满足1+2+…+(k -1)<1000≤1+2+…+k ,解得k =45.答案:B11.(2010·湖北八校联考)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0②等差数列一定是等差比数列 ③等比数列一定是等差比数列 ④等差比数列中可以有无数项为0 其中正确的判断是( )A .①②B .②③C .③④D .①④解析:依题意,∵a n +2-a n +1a n +1-a n=k (n ∈N *),∴k ≠0,①正确,排除B ,C 选项,又由于公差是0的等差数列不是等差比数列,②错误,排除A ,选择D.答案:D12.(2009·湖北高考)设x ∈R ,记不超过x 的最大整数为[x ],令{x }=x -[x ],则{5+12},[5+12],5+12( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列也不是等比数列 解析:由题意,记a 1={5+12}=5+12-[5+12]=5+12-1=5-12,a 2=[5+12]=1,a 3=5+12,若为等差数列,则2a 2=a 1+a 3,不满足;若为等比数列,则(a 2)2=a 1a 3,有12=5-12×5+12,∴是等比数列但非等差数列,选B.答案:B二、填空题(每小题4分,共16分)13.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差d =__________.解析:由a 4+a 6=6,得a 5=3,又S 5=5(a 1+a 5)2=10,∴a 1=1.∴4d =a 5-a 1=2,d =12.答案:1214.(2009·重庆一诊)已知数列{a n }是等比数列,且a 4·a 5·a 6·a 7·a 8·a 9·a 10=128,则a 15·a 2a 10=__________.解析:设等比数列{a n }的公比为q ,则依题意得a 71·q 42=128,a 1·q 6=2,a 7=2,a 15·a 2a 10=a 2·q 5=a 7=2.答案:215.把100个面包分给5个人,使每人所得的面包数成等差数列,且使较多的三份之和的13等于较少的两份之和,则最少的一份面包个数是__________.解析:设构成等差数列的五个数为a -2d ,a -d ,a ,a +d ,a +2d ,则⎩⎨⎧5a =1003(a +d )=3(2a -3d )解得⎩⎨⎧a =20d =5,则最少的一份为a -2d =10.答案:1016.数列{a n }中,a 1=3,a n -a n a n +1=1(n =1,2,…),A n 表示数列{a n }的前n 项之积,则A 2005=__________.解析:可求出a 1=3,a 2=23,a 3=-12,a 4=3,a 5=23,a 6=-12,…,数列{a n }每3项重复一次,可以理解为周期数列,由2005=668×3+1且a 1×a 2×a 3=-1,则A 2005=(a 1×a 2×a 3)…(a 2002×a 2003×a 2004)×a 2005=(a 1×a 2×a 3)668a 1=3. 答案:3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)S n 是无穷等比数列{a n }的前n 项和,公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S 2和3S 3的等比中项. (1)求S 2和S 3的值; (2)求此数列的通项公式; (3)求此数列的各项和S . 解:(1)由题意知⎩⎨⎧12S 2+13S 3=22S 2·3S 3=36,解得S 2=2,S 3=3.(2)⎩⎨⎧a 1+a 1q =2a 1+a 1q +a 1q 2=3,解得⎩⎨⎧a 1=4q =-12或⎩⎨⎧a 1=1q =1(舍去).∴a n =4·(-12)n -1.(3)∵|q |=|-12|=12<1.∴S =41-(-12)=83.18.(12分)已知函数f (x )=x3x +1,数列{a n }满足a 1=1,a n +1=f (a n )(n ∈N *).(1)求证:数列{1a n}是等差数列;(2)记S n (x )=x a 1+x 2a 2+…+eq \f(x n ,a n ),求S n (x ).(1)证明:∵a n +1=f (a n ),∴a n +1=a n3a n +1.∴1a n +1=1a n +3,即1a n +1-1a n=3.∴{1a n}是以1a 1=1为首项,3为公差的等差数列.∴1a n=1+3(n -1)=3n -2.(2)解:S n (x )=x +4x 2+7x 3+…+(3n -2)x n ,① 当x =1时,S n (x )=1+4+7+…+(3n -2)=n (1+3n -2)2=n (3n -1)2.当x ≠1时,xS n (x )=x 2+4x 3+…+(3n -5)x n +(3n -2)x n +1,②①-②,得(1-x )S n (x )=x +3x 2+3x 3+…+3x n -(3n -2)x n +1=3(x +x 2+…+x n )-2x -(3n -2)x n +1=3x (1-x n )1-x-2x -(3n -2)x n +1,S n (x )=3x -3x n +1(1-x )2-2x +(3n -2)x n +11-x.19.(12分)(2010·东城一模)已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2、a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =log 2a n +1,S n 是数列{b n }的前n 项和,求使S n >42+4n 成立的n 的最小值.解:(1)设等比数列{a n }的公比为q ,依题意有2(a 3+2)=a 2+a 4,① 又a 2+a 3+a 4=28,将①代入得a 3=8.所以a 2+a 4=20.于是有⎩⎨⎧a 1q +a 1q3=20,a 1q 2=8,解得⎩⎨⎧a 1=2,q =2,或⎩⎨⎧a 1=32,q =12.又{a n }是递增的,故a 1=2,q =2. 所以a n =2n .(2)b n =log 22n +1=n +1,S n =n 2+3n2.故由题意可得n 2+3n2>42+4n ,解得n >12或n <-7.又n ∈N *,所以满足条件的n 的最小值为13.20.(12分)商学院为推进后勤社会化改革,与桃园新区商定:由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2002年初动工,年底竣工并交付使用,公寓管理处采用收费还建行贷款(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元,其余部分全部在年底还建行贷款.(1)若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款?(2)若公寓管理处要在2010年底把贷款全部还清,则每生每年的最低收费标准是多少元?(精确到元)(参考数据:lg1.7343=0.2391,lg1.05=0.0212,1.058=1.4774)解:依题意,公寓2002年底建成,2003年开始使用.(1)设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1000×800元=800000元=80万元,扣除18万元,可偿还贷款62万元.依题意有62[1+(1+5%)+(1+5%)2+…+(1+5%)n -1]≥500(1+5%)n +1. 化简得62(1.05n -1)≥25×1.05n +1, ∴1.05n ≥1.7343.两边取对数整理得n ≥lg1.7343lg1.05=0.23910.0212=11.28,∴取n =12(年).∴到2014年底可全部还清贷款. (2)设每生每年的最低收费标准为x 元, ∵到2010年底公寓共使用了8年,依题意有(1000x10000-18)[1+(1+5%)+(1+5%)2+…+(1+5%)7]≥500(1+5%)9.化简得(0.1x -18)1.058-11.05-1≥500×1.059.∴x ≥10(18+25×1.0591.058-1)=10(18+25×1.05×1.47741.4774-1)=10×(18+81.2)=992(元)故每生每年的最低收费标准为992元.21.(12分)若公比为c 的等比数列{a n }的首项a 1=1,且a n =a n -1+a n -22(n=3,4,…).(1)求c 的值.(2)求数列{na n }的前n 项和S n .解:(1)由题设,当n ≥3时,a n =c 2a n -2, a n -1=ca n -2,a n =a n -1+a n -22=1+c 2a n -2, ∴c 2=1+c 2. 解得c =1或c =-12. (2)当c =1时{a n }是一个常数数列,a n =1.此时S n =1+2+3+…+n =n (n +1)2.当c =-12时,a n =(-12)n -1(n ∈N *). 此时S n =1+2(-12)+3(-12)2+…+n (-12)n -1.① -12S n =-12+2(-12)2+3(-12)3+…+(n -1)(-12)n -1+n (-12)n .② ①-②,得(1+12)S n =1+(-12)+(-12)2+…+(-12)n -1-n (-12)n =1-(-12)n 1+12-n (-12)n .∴S n =19[4-(-1)n 3n +22n -1]. 22.(14分)(2009·陕西高考)(理)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.(1)猜想数列{x 2n }的单调性,并证明你的结论;(2)证明:|x n +1-x n |≤16(25)n -1. (文)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.解:(理)(1)由x 1=12及x n +1=11+x n得x 2=23,x 4=58,x 6=1321. 由x 2>x 4>x 6猜想,数列{x 2n }是递减数列.下面用数学归纳法证明:①当n =1时,已证命题成立.②假设当n =k 时命题成立,即x 2k >x 2k +2,易知x n >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3)=x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0,即x 2(k +1)>x 2(k +1)+2, 也就是说,当n =k +1时命题也成立.结合①和②知,命题成立.(2)当n =1时,|x n +1-x n |=|x 2-x 1|=16,结论成立; 当n ≥2时,易知0<x n -1<1,∴1+x n -1<2,x n =11+x n -1>12, ∴(1+x n )(1+x n -1)=(1+11+x n -1)(1+x n -1) =2+x n -1≥52, ∴|x n +1-x n |=|11+x n -11+x n -1|=|x n -x n -1|(1+x n )(1+x n -1)≤25|x n -x n -1|≤(25)2|x n -1-x n -2|≤…≤(25)n -1|x 2-x 1|=16(25)n -1. (文)(1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1, ∴{b n }是以1为首项,-12为公比的等比数列. (2)由(1)知b n =a n +1-a n =(-12)n -1, 当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+(-12)+…+(-12)n -2 =1+1-(-12)n -11-(-12)=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).。
2017年高考数学—立体几何(选择+填空+答案)
2017年高考数学—立体几何(选择+填空+答案)1.(17全国1理7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .162.(17全国1文6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是3.(17全国2理4) 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π4.(17全国3文9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .34πC .2πD .4π 5.(17全国2理10) 已知直三棱柱111ABC A B C -中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A .32B .155C .105D .33 6.(17全国3文10)在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥7.(17北京理(7))某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )28.(17北京文(6))某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60(B )30(C )20(D )109.(17浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+B .32π+C .312π+ D .332π+ 10.(17浙江9)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA ==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为,,αβγ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α11.(17全国1文16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
普通高中2017高考高三数学第一次模拟试题精选:圆锥曲线04含答案
圆锥曲线044、设点1F ,2F 分别是椭圆12:22=+y x C 的左、右焦点,P 为椭圆C 上任意一点. (1)求数量积21PF PF ⋅的取值范围;(2)设过点1F 且不与坐标轴垂直的直线交椭圆C 于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 【答案】解:(1)由题意,可求得)0,1(1-F ,)0,1(2F . (1分) 设),(y x P ,则有),1(1y x F +=,),1(2y x F -= (3分)[]2,2,21122221-∈=-+=⋅x x y x PF PF (2分) 所以,[]1,021∈⋅PF PF . (1分) (2)设直线AB 的方程为)0)(1(≠+=k x k y , (1分)代入1222=+y x ,整理得0224)21(2222=-+++k x k x k ,(*) (2分) 因为直线AB 过椭圆的左焦点1F ,所以方程*有两个不相等的实根. 设),(11y x A ,),(22y x B ,AB 中点为),(00y x M ,则1242221+-=+k k x x ,122220+-=k k x ,1220+=k ky . (2分) 线段AB 的垂直平分线NG 的方程为)(100x x ky y --=-. (1分)令0=y ,则241211212122222222200++-=+-=+++-=+=k k k k k k k ky x x G .(2分)因为0≠k ,所以021<<-G x .即点G 横坐标的取值范围为⎪⎭⎫⎝⎛-0,21. (1分)5、已知椭圆E 的方程为22143x y +=,右焦点为F ,直线l 的倾斜角为4π,直线l 与圆223x y +=相切于点Q ,且Q 在y 轴的右侧,设直线l 交椭圆E 于两个不同点,A B . (1)求直线l 的方程;(2)求ABF ∆的面积.【答案】(1)设直线l的方程为y x m =+,=,得m =……………………………………3分 又切点Q 在y 轴的右侧,所以m =2分 所以直线l 的方程为y x =…………………………………2分(2)设1122(,),(,)A x y B x y由22143y x x y ⎧=-⎪⎨+=⎪⎩得27120x -+= …………………………2分121212 7x x x x +==12|||7AB x x=-==……………2分又(1,0)F,所以F到直线l的距离12d==……2分所以ABF∆的面积为12||27AB d=……………1分6、如图,已知椭圆171622=+yx的左、右顶点分别为A、B,右焦点为F.设过点),(mtT的直线TA、TB与椭圆分别交于点),(11yxM、),(22yxN,其中0>m,01>y,02<y.(1)设动点P满足3||||22=-PBPF,求点P的轨迹;(2)若31=x,212=x,求点T的坐标.【答案】(1)由已知,)0,4(B ,)0,3(F ,…………(1分)设),(y x P ,……(2分) 由3||||22=-PB PF ,得3])4[(])3[(2222=+--+-y x y x ,…(5分) 化简得,5=x .所以动点P 的轨迹是直线5=x .……(6分)(2)将),3(1y M 和⎪⎭⎫⎝⎛2,21y N 代入171622=+y x 得,⎪⎪⎩⎪⎪⎨⎧=+=+17641171692221y y ,……(1分) 解得⎪⎪⎩⎪⎪⎨⎧==6444116492221y y ,……(2分)因为01>y ,02<y ,所以471=y ,8212-=y .…………(3分) 所以⎪⎭⎫ ⎝⎛47,3M ,⎪⎭⎫ ⎝⎛-821,21N .…………(4分) 又因为)0,4(-A ,)0,4(B , 所以直线MA 的方程为)4(41+=x y ,直线NB 的方程为)4(43-=x y .……(5分) 由⎪⎪⎩⎪⎪⎨⎧-=+=)4(43)4(41x y x y ,…………(6分)解得⎩⎨⎧==38y x .…………(7分)所以点T 的坐标为)3,8(.……(8分)7、某海域有A 、B 两个岛屿,B 岛在A 岛正东4海里处。
中学数学 数列 练习题(含答案)
高三一轮复习理科数学专题卷专题九 数列考点24:数列的概念与简单表示法(1,2题,13题,17题) 考点25:等差数列及其前n 项和(3-6题,18-21题)考点26:等比数列及其前n 项和(7,8题,14题,18-21题) 考点27:数列求和(9,10题,18-21题)考点28:数列的综合问题及其应用(11,12题,15,16题,22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
) 1.【来源】2016-2017学年福建晋江季延中学高二上期中 考点24 易 已知数列{}n a 的前n 项和21n S n n =++,则19a a +等于 A.19 B.20 C.21 D.22 2.【来源】2017届湖南五市十校高三文12月联考 考点24 易已知n S 是数列{}n a 的前n 项和,且1453,23n n n S S a a a +=+++=,则8S =( ). A .72 B .88 C .92 D .98 3.【2017课标1,理4】 考点25 易记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .84.【2017课标3,理9】考点25 易等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( )A .24-B .3-C .3D .85.【来源】2016-2017学年山东曲阜师大附中高二上学期期中 考点25 中难 数列{}n a 是等差数列,若11101a a <-,且它的前n 项和n S 有最大值,那么当n S 取得最小正值时,n =( )A .11B .17C .19D .21 6.【来源】2017届山西山西大学附中高三理上学期期中 考点25 中难 设等差数列{}n a 的前n 项和为n S ,且满足170S >,180S <,则11S a ,22S a ,…,1515S a 中最大的项为( ) A.77S a B.88S a C.99S a D.1010Sa7.【2017课标II ,理3】考点26 易我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 8.【来源】2017届辽宁盘锦高级中学高三11月月 考点26 中难等比数列{}n a 中,已知对任意正整数n ,1232nn a a a a m ++++=+…,则22212n a a a +++…等于( )A .1(4)3n m +B .1(21)3n - C .41n- D .2(2)n m +9.【来源】2017届广东顺德李兆基中学高三理上月考二 考点27 中难在数列{}n a 中,若对任意的*n N ∈均有12n n n a a a ++++为定值,且79982,3,4a a a ===,则数列{}n a 的前100项的和100S =( )A .132B .299C .68D .99 10.【2017课标1,理12】 考点27 难几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .11011.【来源】2017届天津市六校高三理上学期期中联考 考点28 难 已知数列{}n a 满足:11a =,12n n n a a a +=+()n N *∈.若11(2)(1)n nb n a λ+=-⋅+()n N *∈,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A.23λ>B.32λ>C.32λ<D.23λ< 12.【来源】2017届黑吉两省八校高三上学期期中 考点28 难 已知数列{}n a 的前n 项和为n S ,且11a =,12n n a S +=+,则满足2110n n S S <的n 的最小值为( )A .4B .5C .6D .7第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13.【来源】2017届宁夏育才中学高三上第二次月考 考点24 易 数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 14.【2017课标3,理14】 考点26 易设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 15.【来源】2016届福建福州市高三上学期期末 考点28 中难 已知()12n n n a +=,删除数列{}n a 中所有能被2整除的数,剩下的数从小到大排成数列{}n b ,则51b =_________.16.【来源】2017届江西抚州七校高三上期联考 考点28 难在数列{}n a 及{}n b中,1n n n a a b +=++1n n n b a b +=+11a =,11b =.设112()n n n nc a b =+,则数列{}n c 的前n 项和为 . 三.解答题(共70分) 17.(本小题满分10分)【来源】2017届河北沧州一中高三11月月考 考点24 易 设数列{}n a 的前n 项和为n S ,已知11a =,()*121n n S S n n N +=++∈. (1)求数列{}n a 的通项公式;(2)若11n n n n a b a a ++=⋅,求数列{}n b 的前n 项和n T .18.(本小题满分12分)【来源】2017届河北沧州一中高三11月月考 考点25 考点26考点27易 已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =. (1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.19.(本小题满分12分)【来源】2017届湖北孝感市高三文上学期第一次统考试 考点25考点26考点27中难 设正项等比数列{}n a 的前n 项和为n S ,且满足33232S a a =+,48a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列2log n n b a =,求{}n b 的前n 项和n T .20.(本小题满分12分)【来源】2017届河南中原名校高三理上质检三 考点25 考点26考点27中难 已知数列{}n a 满足137a =,1341n n n a a a +=+,n N *∈.(1)求证:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列,并且求出数列{}n a 的通项公式;(2)求数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 21.(本小题满分12分)【来源】2017届湖北荆州市高三上质检一 考点25考点26 考点27中难 已知等差数列{}n a 的前n 项和为n S ,55S =-,且346,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()*21231n n n b n N a a ++=∈,求数列{}n b 的前n 项和n T .22.(本小题满分12分)【来源】2017届天津市六校高三理上学期期中联考 考点28 难已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,n N *∈ (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ,求证:2n T <;(3)若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围.参考答案1.C【解析】()()11998193,8196481821a S a S S a a ===-=+-+=∴+= 2.C【解析】1133n n n n n S S a a a ++=++⇒-=⇒{}n a 为等差数列,公差为3,所以由4523a a +=得118127231,8873922a d a S +=⇒==+⨯⨯⨯=,选C.3.【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 4.【答案】A 【解析】5.C【解析】∵Sn 有最大值,∴d <0则a 10>a 11,又11101a a <-,∴a 11<0<a 10∴a 10+a 11<0, ()()20120101110100S a a a a ∴=+=+<,1910190S a =>又121011120a a a a a >>>>>>∴109210S S S S >>>>>,10111920210S S S S S >>>>>>又()1912319101190S S a a a a a -=+++=+<∴19S 为最小正值6.C 【解析】117917917()17(2)000022a a a S a +>⇒>⇒>⇒>11889181091018()18()0000022a a a a S a a a ++<⇒<⇒<⇒+<⇒<,因此8910121289100,0,0,0,0,S S SS S a a a a a >>>><而1291289,S S S a a a a <<<>>>>,所以89121289S S S S a a a a <<<<,选C. 7.【答案】B 【解析】8.A【解析】∵等比数列{}n a 中,对任意正整数n ,1232nn a a a a m ++++=+…,∴m a +=21,m a a +=+421,m a a a +=++8321,∴m a +=21,22=a ,43=a ,∴1-=m ,11=a ,∴121=a ,422=a ,1623=a ,∴{}2n a 是首项为1,公比为4的等比数列,∴()()m a a a a n n n n+=-=--=++++431143141412232221.故选:A . 9.B【解析】12n n n a a a ++++为定值,所以3n n a a +=,所以数列的周期为3,故29817394,2,3a a a a a a ======,所以()10012310033299S a a a a =⋅+++=.10.【答案】A11.D 【解析】 因为11111121111112(1)1(1)222n n n n n n n n n n a a a a a a a a a -+++=⇒=+⇒+=+⇒+=+=+,所以1(2)2nn b n λ+=-⋅,因为数列{}n b 是单调递增数列,所以当2n ≥时113(2)2(12)2212212n n n n b b n n n λλλλλ-+>⇒-⋅>--⋅⇒>-⇒>-⇒<;当1n =时,213(12)22b b λλλ>⇒-⋅>-⇒<,因此23λ<,选D. 12.A【解析】由12n n a S +=+得12n n n S S S +-=+,即122(2)n n S S ++=+,又11223S a +=+=,所以1232n n S -+=⨯,即1322n n S -=⨯-,所以1212322132210n n n n S S --⨯-=<⨯-,即12130220322n n --⨯-<⨯-, ()2113215290n n --⨯-⨯+>,令12n t -=,则231590t t -+>,函数2()3159h t t t =-+的对称轴为156t =,又t 的可能值为11,2,4,8,,2n -,所以1(1)(2)(4)(8)(2)n h h h h h -><<<<,(1)315930,(2)1230990h h =-+=-<=-+=-<,(4)4860930,(8)1921209810h h =-+=-<=-+=>,这时4n =,所以从第四项起以后各项均满足2110n n S S <,故选A. 13.12【解析】117651111112111212112222n n n n n a a a a a a a a a +++---=⇒=⇒==⇒==-⇒=⇒=-. 14.【答案】8-【解析】设等比数列的公比为q ,很明显1q ≠- ,结合等比数列的通项公式和题意可得方程组:()()12121311113a a a q a a a q ⎧+=+=-⎪⎨-=-=-⎪⎩,①,②,由 ②① 可得:2q =- ,代入①可得11a =, 由等比数列的通项公式可得:3418a a q ==- .15.5151【解析】由题意,得,∵2)1(+=n n a n ,10,6,3,14321====∴a a a a ,⋅⋅⋅,∵2)1(+=n n a n ,删除数列{}n a 中所有能被2整除的数,剩下的数从小到大排成数列{}n b ,∴515110151==a b .16.224n +-【解析】由221n n n n n a a b a b +=+++,221n n n n nb a b a b +=+-+,两式相加可得:()n n n n b a b a +=+++211,故数列{}n n b a +是以2为首项,2为公比的等比数列,得n n n b a 2=+;两式相乘可得:()()n n n n n n n n b a b a b a b a ⋅=+-+=⋅++222211,故数列{}n n b a ⋅是以1为首项,2为公比的等比数列,得12-=⋅n n n b a ,故122112+=⋅+⋅=⎪⎪⎭⎫ ⎝⎛+=n n n n n n n n nn b a b a b a c ,故其前n 项和为()42212142-=--=+n n n S . 17.(1)()*21n n a n N =-∈;(2)12111--=-n n T . 【解析】(1)121++=+n S S n n ,当2n ≥时,12n n S S n -=+,∴121n n a a +=+,()1121n n a a +∴+=+,即1121n n a a ++=+, 12n n a +=,即()*21n n a n N =-∈……………………………(5分)(2)12-=nn a ,()()1121121212121n n n n n n b ++∴==----⋅-, 2231111111111212121212121n n n n T --∴=-+-++-=-------.……………………(10分) 18.(1)21n a n =-;(2)2132-+=n n n T . 【解析】(1)等比数列{}n b 的公比32933b q b ===,所以211b b q==,4327b b q ==, 设等差数列{}n a 的公差为d , 因为111a b ==,14427a b ==,所以11327d +=,即2d =,所以21n a n =- ……………………………(6分)(2)由(1)知,21n a n =-,13n n b -=,因此1213n n n c a b n -=+=-+,从而数列{}n c 的前n 项和()()1221133113211332132n n n n n n S n n ----=+++-++++=+=+-……………(12分) 19.(Ⅰ)7)21(-=n n a ;(Ⅱ)⎪⎪⎩⎪⎪⎨⎧>+-≤+-=7,4221327,213222n n n n n n T n . 【解析】(Ⅰ) 设正项等比数列}{n a 的公比为q ,则0>q由已知23323a a S +=有02123=-+a a a ,即021121=-+a q a q a 0122=-+∴q q 故21=q 或1-=q (舍) 74421--⎪⎭⎫ ⎝⎛=⨯=∴n n n q a a ……………………………(6分) (Ⅱ)由(Ⅰ)知:n b n -=7 故当7≤n 时,0≥n b∴当7≤n 时,21322)(2121n n b b n b b b T n n n +-=+=+++= 当7>n 时,)(98721n n b b b b b b T ++-+++=422132)()(2221721+-=+++-+++=n n b b b b b b n ⎪⎪⎩⎪⎪⎨⎧>+-≤+-=∴7,4221327,213222n n n n n n T n . ……………………………(12分) 20.(1)证明见解析,3,231n n n a n N *=∈⨯+;(2)2323434n n n S n n +=-+++⨯. 【解析】(1)由137a =,13,41n n n a a n N a *+=∈+ 所以141114333n n n n a a a a ++==+ 即1111223n n a a +⎛⎫-=- ⎪⎝⎭所以数列12n a -是以13为首项,13为公比的等比数列 111112333n nn a -⎛⎫⎛⎫∴-== ⎪ ⎪⎝⎭⎝⎭ 所以数列{}n a 的通项公式为3,231nn n a n N *=∈⨯+ ……………………………(4分)(2)23n n n n n a =+ 设231123133333n n n n n T --=+++++ 则234111231333333n n n n n T +-=+++++ 两式相减得231121111111333333233n n n n n n n T ++⎛⎫=++++-=-- ⎪⎝⎭ 所以332443n n n T +=-⨯ ……………………………(8分) 又22462n n n ++++=+ ……………………………(10分) 所以2323434n n n S n n +=-+++⨯. ……………………………(12分) 21.(Ⅰ)1n a =-或2n a n =-; (Ⅱ)21n n + 【解析】 (1)由等差数列性质,5355S a =-=,所以31a =-设公差为d ,则()()()21113d d -+=-⋅-+,解得0d =或1d =- 1n a =-或2n a n =- ……………………………(4分)(2)①当1n a =-时,n T n = ……………………………(6分)②当2n a n =-时,()()212311111212122121n n a a n n n n ++⎛⎫==- ⎪-+-+⎝⎭11111111112335212122121n n T n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭………………………(12分)22.(Ⅰ)12n a n =(Ⅱ)详见解析(Ⅲ)29λ≥【解析】(1)时,当时,2≥n是以为首项,为公差的等差数列……………………………(4分)(2),,即T ……………………………(8分)2n(3)由得,当且仅当时,有最大值,……………………………(12分)。
高三数学数列专题训练题
高三数学数列专题训练题一.选择题:1.lg x ,lgy ,lg z 成等差数列是x ,y ,z 成等比数列的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2.(文)在等比数列{}n a 中,则7a ·11a =6,4145a a +=,则2010a a =( ) A.23 B.32 C.23或32 D.23-或32- (理)若{}n a 是等比数列,其中37,a a 是方程22350x kx -+=的两根,且23728()41a a a a +=+,则k 的值为( )A.23±D.83 3.数列{}n a 满足n a <1n a +,n n a n λ+=2,则实数λ的取值范围是( )A.λ>0B.λ<0C.λ=0D.λ>-3 4.设数列1,(1+2),(1+2+22)…(1+2+22+…+12n -)的前n 项和为n S ,则n S 等于( )A.2nB.2n -nC.12n +-nD.12n +-n-2 5.某工厂月生产总值平均增长率为p,则年平均增长率为( )A.12PB.12pC.12(1)1p +-D.12(1)p +6.在数列{}n a 中,已知11a =,25a =,21()n n n a a a n N +++=-∈,则2006a 等于( )A.5B.4C.-1D.-47.(理)给出一系列碳氢化合物的分子式:66C H ,108C H ,1410C H …,则该系列化合物的分子中含碳元素的质量分数最大可无限接近于( )A.95%B.96%C.97%D.98% (文)若数列{}n x 的前n 项和为n S ,且log (1)a n s n +=,则数列{}n x ( )A.只能是递增的等比数列B.只能是递减的等差数列C.只能是递减的等比数列D.可能是常数列 8.已知1是2a 与2b 的等比中项,又是1a 与1b 的等差中项,则22a b a b++的值为( ) A.1或-12- B.1或-13 C.1或13 D.1或129.若方程250x x m -+=与2100x x n -+=的四个实根适当排列后,恰好组成一个首项为1的等比数列,则m :n 的值为( )A.4B.2C.12 D.1410.等比数列{}n a 的首项为52-,其前11项的几何平均数为52,若在这前11项中抽取一项后的几何平均数为52,则抽出的是( )A.第6项B. 第7项C. 第9项D. 第11项11.如图所示,在杨辉三角中,斜线AB 上方箭头所示的数组成的一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n 项的和为S(n),则S(16)等于( )A.128B.144C.155D.164 12.(理)在等比数列{}n a 中,1sec a θ=(θ为锐角),且前n 项和n S 满足11lim a S n n =∞→,那么θ的取值范围是( ) A.(0,6π) B.(0,4π) C.(0,3π) D.(0,2π) (文)根据调查,预测某家电商品从年初开始的n 个月内累积的需求量n S (万件)近似的满足()()22151,2,3,,1290n nS n n n =--=,按此预测,在本年度需求量超过1.5万件的月份是( )A .5月和6月B .6月和7月C .7月和8月D .8月和9月 二.填空题:13.已知210lg lg ...lg 110x x x+++=,则x x x 102lg lg lg +⋯⋯++=_____________14. 设数列{}n a 的前n 项和为n S (*N ∈n ). 关于数列{}n a 有下列三个命题: (1)若{}n a 既是等差数列又是等比数列,则)N*(1∈=+n a a n n ;(2)若()R ∈+=b a n b n a S n 、2,则{}n a 是等差数列; (3)若()nn S 11--=,则{}n a 是等比数列.这些命题中,真命题的序号是 .15.已知等差数列有一性质:若{}n a 是等差数列.则通项为12...nn a a a b n++=的数列{}n b 也是等差数列,类似上述命题,相应的等比数列有性质:若{}n a 是等比数列(0)n a >,则通项为n b =_____________的数列{}n b 也是等比数列16.依次写出数11=a ,2a ,3a ,…法则如下:如果2-n a 为自然数且未写出过,则写21-=+n n a a ,否则就写31+=+n n a a ,那么=6a三.解答题:17.设数列{a n }的前n 项和为S n ,已知a n =5S n -3 (n ∈N +),{b n }是{a n }的奇数项构成的数列,求数列{b n } 的通项公式.18.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++19.已知数列{}n a 是等差数列,其前项和为34,7,24n s a s ==。
2020年6月2020届江苏省盐城一中2017级高三6月三模考试数学试卷及答案(含附加题)
2020年6月2020届江苏省盐城一中2017级高三6月三模考试数学试卷★祝考试顺利★(含答案)2020.06.29第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........) 1.已知集合}31|{<<=x x A ,}42|{<<=x x B ,则A∪B=________.2.若复数满足(2)5i z +=,则在复平面内与复数z 对应的点Z 位于第______象限.3.袋中共有大小相同的4只小球,编号为1,2,3,4.现从中任取2只小球,则取出的2只球的编号之和是奇数的概率为 .4.某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组的人数为________.5.如图是某算法的伪代码,输出的结果S 的值为________.6.设向量a =(1,-1),a -2b =(k -1,2k +2),且a ⊥b ,则k = _______.7.已知等比数列{}n a 满足82=a ,144453-=a a a ,则=3a _______.8.已知双曲线2214x y m -=的渐近线方程为2y x =±,则m = . 9.我国古代劳动人民在筑城、筑堤、挖沟、挖渠、建仓、建囤等工程中,积累了丰富的经验,总结出了一套有关体积、容积计算的方法,这些方法以实际问题的形式被收入我国古代数学名著《九章算术》中.《九章算术商功》:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”下图解释了这段话中由一个长方体,得到“堑堵”、“阳马”、“鳖臑”的过程.已知如图堑堵的棱长1,1,2===c b a ,则鳖臑的外接球的体积为 .10.已知函数2)(x x f =,则不等式2(2)()f x f x ->的解集是 .11.函数x x y 2cos 2sin +=的图像向右平移6π得到函数()y f x =的图像,则()f x 在⎥⎦⎤⎢⎣⎡2,0π上的增区间为 .12.已知函数f (x )是定义在R 上的奇函数,当x >0时,x x x f e 1)(-=.若关于x 的方程f (x )=m有解,则实数m 的取值范围是 .13.在△ABC中,cos cos A B AB +==当sin sin A B +取最大值时,△ABC 内切圆的半径为___.14.已知函数)(x f y =是定义域为R 的偶函数,当0≥x 时,⎪⎪⎩⎪⎪⎨⎧>-⎪⎭⎫ ⎝⎛-≤≤-=,2,4321,20,41)(2x x x x f x 若关于x 的方程[]R a a x af x f ∈=++,0167)()(2有且仅有8个不同的实数根,则实数a 的取值范围 . 二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本题满分14分)在锐角ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量2(2sin(),3),cos 2,2cos 12B m A C n B ⎛⎫=+=-⎪ ⎭⎝,且向量m ,n 共线. (1)求角B 的大小; (2)如果1b =,求ABC ∆的面积ABC S ∆的最大值.。
50道填空题精选
检)若 命 题 p:“∃x0∈R,2x0 -2≤a2-3a”是
假命题,则实数a 的取值范围是
。
2.(2017年 第 二 次 全 国 大 联 考 新 课 标 卷
Ⅲ)若函数 f(x)=tee xx-- t1-2+x3 是奇函数,
则常数t 等于
。
3.(2017届安徽六安一中高三 一 模)某 公
司为激励创新,计划逐年 加 大 研 发 奖 金 投 入。
知定义在 R 上 的 可 导 函 数 f(x)的 导 函 数 为
f'(x),满足 f'(x)<f(x),且 f(x+3)为 偶
函数,f(6)=1,则 不 等 式 f(x)>ex 的 解 集
为
。
16.(2017 年 江 西 临 川 实 验 学 校 高 三 一
模)设函数 f(x)=x2-2ex-lnxx+a(其 中
次 幂 之 和 。 如 6=21 +22,28=22 +23 +24,
… ,按 此 规 律 ,8128 可 表 示 为
。
12.(2017届广东湛江市高三 下 学 期 第 二 次模拟 )一 名 法 官 在 审 理 一 起 珍 宝 盗 窃 案
时,四名嫌 疑 人 甲、乙、丙、丁 的 供 词 如 下:甲
说:“罪犯在乙、丙、丁三人之 中”;乙 说:“我 没
且a1>0,a1 +a2 + … +a10 =30,则 a5 ·a6
的最大值为
。
(λ>3),都有h(x)≥g(x),则 实 数λ 的 最 大
值为
。
11.(2017 年 广 东 佛 山 检 测 )所 有 真 约 数 (除本身之外的正约数)的 和 等 于 它 本 身 的 正
高三数学问题:1.3-含参数的常用逻辑用语问题(含答案)
2017届高三数学跨越一本线问题三 含参数的常用逻辑用语问题通过多年的高考试卷看,求参数的取值范围问题一直是高考考查的重点和热点,同时也是一个难点.考生有时会感到难度较大,与简易逻辑问题有关的参数问题,需要正确理解充分条件和必要条件的定义,弄懂逻辑联接词的含义以及全称量词、特称量词包含的数学理论,本文从各方面多角度地阐述与简易逻辑有关的问题,以飨读者.一、与充分条件、必要条件有关的参数问题充分条件和必要条件的理解,可以翻译成“若p 则”命题的真假,或者集合与集合之间的包含关系,尤其转化为集合间的关系后,利用集合知识处理.【例1】【2017湖南省郴州市上学期第一次质量监测】设集合2{|21,03}A y y x x x ==-+≤≤,集合2{|(21)(1)0}B x x m x m m =--+-≤.已知命题:p x A ∈,命题:q x B ∈,且命题p 是命题的必要不充分条件,求实数m 的取值范围.【分析】先化简给定集合,再利用p 是的必要不充分条件⇔⊂B A ≠解题 【解析】由已知得{|04}A y y =≤≤,{|1}B x m x m =-≤≤. ∵p 是的必要不充分条件,∴A B ⊂≠.则有104m m -≥⎧⎨≤⎩.∴14m -≤≤,故m 的取值范围为[1,4].【点评】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.【小试牛刀】设p :114≤-x ;:2(21)(1)0x a x a a -+++≤.若p ⌝是q ⌝的必要而不充分条件,求实数的取值范围. 【答案】⎥⎦⎤⎢⎣⎡-0,21. 【解析】由114≤-x 得,1141≤-≤-x , 故210≤≤x 由2(21)(1)0x a x a a -+++≤()()10x a x a ⇔--+≤⎡⎤⎣⎦1a x a ⇔≤≤+若p ⌝是q ⌝的必要而不充分条件,∴p 是q 的必要而不充分条件,即[]1,21,0+⊂⎥⎦⎤⎢⎣⎡a a ⎪⎩⎪⎨⎧≥+≤⇒2110a a 021≤≤-⇒a ,故所求的取值范围是⎥⎦⎤⎢⎣⎡-0,21. 二、与逻辑联接词有关的参数问题逻辑联接词“或”“且”“非”与集合运算的并集、交集、补集有关,由逻辑联接词组成的复合命题的真假与组成它的简单命题真假有关,其中往往会涉及参数的取值范围问题.根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)然后再求出每个命题是真命题时参数的取值范围;(3)最后根据每个命题的真假情况,求出参数的取值范围.【例2】【2017宁夏育才中学月考】已知命题函数321()3f x mx x x =++在区间(1,2)上单调递增;命题:q 函数C 的图象上任意一点处的切线斜率恒大于1,若“()p q ∨⌝”为真命题,“()p q ⌝∨”也为真命题,求实数m 的取值范围.【分析】先确定p 真值相同.再根据p ,同真时或同假确定实数m 的取值范围.【点评】含逻辑联结词的命题的真假要转化为简单命题的真假,解题时要首先考虑简单命题为真时参数的范围.然后再根据复合命题的真假列不等式(组)求参数范围【小试牛刀】已知命题:p 方程2222220x y mx m m +-+-=表示圆;命题q :双曲线2215y x m-=的离心率(1,2)e ∈,若命题“p q ∧”为假命题,“p q ∨”为真命题,求实数m 的取值范围.【答案】215m ≤<【解析】若命题p 为真命题 ,则2240D E F +->,即22(2)4(22)0m m m --->整理得220m m -<,解得02m <<.若命题为真命题,则25(1,4)5me +=∈,解得015m << 因为命题p q ∧为假命题,p q ∨为真命题,所以p q 、中一真一假,若p 真假,则m ∈∅ ; 若p 假真,则215m ≤<,所以实数m 的取值范围为215m ≤<.三、与全称命题、特称命题真假有关的参数问题全称命题和特称命题从逻辑结构而言,是含义相反的两种命题,利用正难则反的思想互相转化,达到解题的目的.【例3】若命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则实数m 的取值范围是( )(A )[10,6]- (B )(6,2]- (C )[2,10]- (D )(2,10)-【分析】命题“0,R ∃∈x 使得2002+50++<x mx m ”的否定是真命题,故将本题转化为恒成立问题求解.【解析】由命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则命题“x R ∀∈使得22+50x mx m ++≥”为真命题.所以24(25)0,210m m m =-+≤∴-≤≤ .故选(C ). 【点评】已知命题为假命题,则其否定是真命题,故将该题转化为恒成立问题处理.【小试牛刀】【2017山东潍坊2017届高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,()212log 11x mx -+<-成立,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【答案】12m <或32m =. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立,设()222f x x x =--,配方得()()213f x x =--,∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,解得1322m ≤≤,∴p 为真时:1322m ≤≤;若为真:[]1 2x ∃≤,,212x mx -+>成立,∴21x m x -<成立.设()211x g x x x x-==-,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为()322g =,∴32m <,∴为真时,32m <, ∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩,∴32m =,当p 假真时132232m m m ⎧<>⎪⎪⎨⎪<⎪⎩或,∴12m <,综上所述,m 的取值范围是12m <或32m =.四、与全称量词、特称量词有关的参数问题全称量词“∀”表示对于任意一个,指的是在指定范围内的恒成立问题,而特称量词“”表示存在一个,指的是在指定范围内的有解问题,上述两个问题都利用参变分离法求参数取值范围.【例3】已知命题p :“0],2,1[2≥-∈∀a x x ”,命题:“022,2=-++∈∃a ax x R x ”. 若命题“p 且”是真命题,则实数的取值范围为( ) A .2-≤a 或1=a B .2-≤a 或21≤≤a C .1≥a D .12≤≤-a【分析】若命题“p 且”是真命题,则命题,p q 都是真命题,首先将命题,p q 对应的参数范围求出来,求交集即可.【点评】命题p 是恒成立问题,命题是有解问题.【小试牛刀】已知2:(0,),1p x x mx ∀∈+∞+≥-恒成立,:q 方程222128x y m m +=+表示焦点在轴上的椭圆,若命题“p 且”为假,求实数m 的取值范围. 【答案】(,4]-∞.【解析】由题意:若p 为真,则有1()m x x ≥-+对(0,)x ∈+∞恒成立.12(1x x x+≥= 取“=”)2m ∴≥-若为真,则有2280m m >+>,即42m -<<-或4m >,由p 且为假,则p 、中至少一个为假.若p 、均为真,则4m >,∴p 且为假,实数m 的取值范围是(,4]-∞【迁移运用】1.【2017四川双流中学高三模拟】已知命题p ⌝:存在()2,1∈x 使得0>-a e x,若p 是真命题,则实数a 的取值范围为( )A .()e ,∞-B .(]e ,∞-C .()+∞,2e D .[)+∞,2e 【答案】D【解析】若存在)2,1(∈x ,使得0>-a e x ,则2max ()x a e e <=,若p 为真命题,则p ⌝为假命题,实数a 的取值范围为),[2+∞e .故本题正确答案为D . 2.【2017河南南阳一中高三上学期月考】已知“x k >”是“,则的取值范围是( )A .[2,)+∞B .[1,)+∞C .(2,)+∞D .(,1]-∞- 【答案】A 可得1x <-或2x >,因为“x k >”是“条件,所以“x k >”是“1x <-或2x >”的真子集,所以2k ≥,故选A.3.【2017使得0122<+-x x λ成立”是假命题,则实数λ的取值范围为( )A .3=λ【答案】A4.函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数的必要不充分条件是( )A .2≥aB .6=aC .3≥aD .0≥a 【答案】D .【解析】函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数则2≥a ;选项A 是充要条件;选项B 、C 是充分不必要条件;故选D .5.命题“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”为真命题的一个必要不充分条件是( )A .4a ≥B .4a ≤C .3a ≥D .3a ≤ 【答案】C【解析】即由“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”可推出选项,但由选项推不出“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”.因为x [1,2]∈,所以2[1,4]x ∈,20x a -≤恒成立,即2x a ≤, 因此4a ≥;反之亦然.故选C .6.已知2()(ln )f x x x a a =-+,则下列结论中错误的是( ) A .0,0,()0a x f x ∃>∀>≥ B .000,0,()0a x f x ∃>∃>≤. C .0,0,()0a x f x ∀>∀>≥ D .000,0,()0a x f x ∃>∃>≥ 【答案】C .7.【2017广东郴州高三第二次教学质量监测】若命题:p “020223x x R a a ∃∈-≤-,”是假命题,则实数的取值范围是________. 【答案】[1,2]【解析】“020223x x R a a ∃∈-≤-,”是假命题等价于2223x x R a a ∀∈->-,,即223a a -≥-,解之得12a ≤≤,即实数的取值范围是[1,2].8.已知关于的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数的取值范围是__________.. 【答案】-2,0].【解析】由“x A ∈”是“x B ∈”的充分不必要条件,可知A B,因此a≥-2且a +2≤2 解得a∈-2,0]9.已知命题:p R x ∈∃,0122≤++ax ax .若命题⌝p 是真命题,则实数的取值范围是 .【答案】)1,0[【解析】若命题⌝p 是假命题,即对于012,2>++∈∀ax ax R x ,当0=a 时,显然成立,当0≠a 时,则100<<⇒⎩⎨⎧<∆>a a ,综上)1,0[∈a .10.由命题“x∈R,x 2+2x +m≤0”是假命题,求得实数m 的取值范围是(a,+∞),则实数a =. 【答案】1.【解析】由题意得命题“∀x∈ R,x 2+2x +m>0”是真命题,所以Δ=4-4m<0,即m>1,故实数m 的取值范围是(1,+∞),从而实数a 的值为1.11.【2015学年江苏省涟水中学高三12月月考数学试卷】已知命题:“2(1,4),0x x ax a ∃∈-+<”为真命题,则实数的取值范围是. 【答案】a>4.【解析】2(1,4),0x x ax a ∃∈-+<⇔当(1,4)x ∈时,20x ax a -+<有解⇔(1,4)x ∃∈,使得21x a x >-,设2(x)1x f x =-,则222(x 1)(x)0(1)x x f x --'==-解得x=0,2,当(1,2)x ∈(x)0,(x)f f '<单调递减,当(2,4)x ∈(x)0,(x)f f '>单调递赠,所以2(x)1x f x =-的最小值为(2)4f =,所以a>4.12.【2015届江苏省如东高中高三上学期第8周周练理科数学试卷】若不等式102x m x m-+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是. 【答案】3441≤≤m . 【解析】因为不等式的102x m x m -+<-成立的充分非必要条件是1132x <<,所以111||0322x m x x x x m -+⎧⎫⎧⎫<<⊂<⎨⎬⎨⎬-⎩⎭⎩⎭,当12m m -<即1m >-时,不等式的102x m x m -+<-解集为{|12}x m x m -<<, 由11|{|12}32x x x m x m ⎧⎫<<⊂-<<⎨⎬⎩⎭得:1131221m m m ⎧-≤⎪⎪⎪≥⎨⎪>-⎪⎪⎩,解之得:3441≤≤m ,当12m m -=即1m =-时,不等式102x m x m-+<-解集为∅;当12m m ->即1m <-时,不等式102x m x m-+<-解集为{|21}x m x m <<-由11|{|21}}32x x x m x m ⎧⎫<<⊂<<-⎨⎬⎩⎭得:1231121m m m ⎧≤⎪⎪⎪-≥⎨⎪<-⎪⎪⎩,此时m 无解,所以m 的取值范围为3441≤≤m . 13.设命题p :实数满足22430x ax a -+<,其中0a >;命题:实数满足2560x x -+≤. (1)若1a =,且p q ∧为真,求实数的取值范围; (2)若p 是成立的必要不充分条件,求实数的取值范围. 【答案】(1) [)2,3(2)()1,214.已知命题P :在R 上定义运算⊗:.)1(y x y x -=⊗不等式1)1(<-⊗x a x 对任意实数恒成立;命题Q :若不等式2162≥+++x ax x 对任意的*N x ∈恒成立.若P Q ∧为假命题,P Q ∨为真命题,求实数的取值范围. 【答案】123>-<<-∴a a 或.【解析】由题意知,x a x x a x )1)(1()1(--=-⊗若命题P 为真,01)1()1(2>+---x a x a 对任意实数恒成立,∴①当01=-a 即1=a 时,01>恒成立,1=∴a ;②当01≠-a 时,⎩⎨⎧<---=∆>-0)1(4)1(012a a a ,13<<-∴a , 综合①②得,13≤<-a若命题Q 为真,0>x ,01>+∴x ,则有)1(2)6(2+≥++x ax x 对任意的*N x ∈恒成立 , 即2)4(++-≥x x a 对任意的*N x ∈恒成立,令2)4()(++-=xx x f ,只需max )(x f a ≥, 224242)(-=+-=+⋅-≤xx x f ,当且仅当)(4*N x x x ∈=即2=x 时取“=”,2-≥∴aP Q ∧为假命题,P Q ∨为真命题,Q P ,∴中必有一个真命题,一个假命题,(1)若P 为真Q 为假,则⎩⎨⎧-<≤<-213a a ,23-<<-a ,(2)若P 为假Q 为真,则⎩⎨⎧-≥>-≤213a a a 或,1>∴a ,综上:123>-<<-∴a a 或.15.设命题p :实数满足22430x ax a -+<,其中0a >,命题:实数满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.(1)若1,a =且p q ∧为真,求实数的取值范围; (2)若p ⌝是⌝的充分不必要条件,求实数的取值范围. 【答案】(1) (2,3) (2) (]1,2【解析】(1)当1a =时,{}:13p x x <<,{}:23q x x <≤, 又p q ∧为真,所以p 真且真, 由1323x x <<⎧⎨<≤⎩,得23x <<所以实数的取值范围为(2,3)(2) 因为p ⌝是⌝的充分不必要条件, 所以是p 的充分不必要条件, 又{}:3p x a x a <<,{}:23q x x <≤,所以0233a a a >⎧⎪≤⎨⎪>⎩,解得12a <≤所以实数的取值范围为(]1,216.【2016湖北省襄阳市四校高三上学期期中联考】设:p 实数满足:03422<+-a ax x (0>a ),:q 实数满足:121-⎪⎭⎫⎝⎛=m x ,()2,1∈m()I 若41=a ,且q p ∧为真,求实数的取值范围; ()II 是p 的充分不必要条件,求实数的取值范围.【答案】(Ⅰ)⎭⎬⎫⎩⎨⎧<<4321x x;(Ⅱ)11[,]32.()II 是p 的充分不必要条件,记⎭⎬⎫⎩⎨⎧<<=121x x A ,{}0,3><<=a a x a x B则A 是B 的真子集 ⎪⎩⎪⎨⎧>=∴1321a a 或⎪⎩⎪⎨⎧≥<1321a a … 得2131≤≤a ,即的取值范围为1132⎡⎤⎢⎥⎣⎦,… 17. 【2017河北省冀州中学上学期第二次阶段考试】设命题:p 实数满足22430x ax a -+<,0a ≠;命题:q 实数满足302x x-≥-. (Ⅰ)若1a =,p q ∧为真命题,求的取值范围;(Ⅱ)若p ⌝是q ⌝的充分不必要条件,求实数的取值范围.18.已知命题p :“方程230x ax a -++=有解”,q:“11042x xa +->∞在[1,+)上恒成立”,若p 或q 为真命题,p 且q 为假命题,求实数的取值范围.【答案】206a a -<≤≥或【解析】:26p a a ≤-≥或.令21,2xt t t a =+> 02t <≤ ,:0q a ∴≤.∵pq 一真一假,∴260a a a ≤-≥⎧⎨>⎩或 或260a a -<<⎧⎨≤⎩ 得:206a a -<≤≥或19.命题p 实数满足03422<+a ax -x (其中0a >),命题实数满足⎪⎩⎪⎨⎧>+≤02321x-x x- (1)若1a =,且p q ∧为真,求实数的取值范围;(2)若p ⌝是⌝的充分不必要条件,求实数的取值范围.【答案】(1)()2,3.;(2)(1,2].【解析】由:03422<+a ax -x (其中0a >),解得3a x a <<, 记(,3)A a a = 由⎪⎩⎪⎨⎧>+≤02321x-x x-,得132,3或x x x -≤≤⎧⎨><-⎩,即23x <≤,记(]2,3B =. (1)若1a =,且p q ∧为真,则(1,3)A =,(]2,3B =,又p q ∧为真,则1323x x <<⎧⎨<≤⎩,所以23x <<,因此实数的取值范围是()2,3.(2)∵p ⌝是q ⌝的充分不必要条件,∴p 是的必要不充分条件,即B A ≠⊂,(]2,3(,3)a a ≠⊂,则只需3302a a >⎧⎨<≤⎩,解得12a <≤,故实数a 的取值范围是(1,2].20.【2017届山东潍坊市高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--, ∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,∴p 为真时: 若为真:[]1 2x ∃≤,,212x mx -+>成立,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为∴为真时∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时当p 假真时综上所述,m 的取值范围是21.【2017届山东潍坊市高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--, ∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,∴p 为真时: 若为真:[]1 2x ∃≤,,212x mx -+>成立,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为∴为真时∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时当p 假真时综上所述,m 的取值范围是。
2017届高三一模数学试题(解析版)(可编辑附答案精品)-物理小金刚系列
2017年高三“一模”数学试卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数满足:(是虚数单位),则复数的虚部是()A. B. C. D.【答案】B【解析】,所以复数的虚部是,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2. 已知集合,,那么()A. B. C. D.【答案】D【解析】,=,所以,选D.3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要【答案】D【解析】因为但;但,所以“”是“”的既不充分也不必要条件,选D.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.4. 已知平面和共面的两条不同的直线,下列命题是真命题的是()A. 若与所成的角相等,则B. 若,,则C. 若,,则D. 若,,则【答案】D【解析】本题考查空间直线与直线的位置关系如图甲示,直线与平面均成角,但与不平行,故错;如图乙示,,直线,且,但与不平行,故错;如图丙示,,且但,故错;如图丁示,,由知;又,则;又共面,则故正确答案为略5. 函数的图像大致是()A. B.C. D.【答案】B【解析】,所以舍去A,C;,所以即函数在上存在减区间,因此舍去D,选B.6. 已知满足条件,若取得最大值的最优解不唯一,则实数的值为()A. 1或-2B. 1或C. -1或-2D. -2或【答案】A【解析】由题意得直线与或或,即当时,取得最小值的最优解不唯一,所以实数的值为1或-2,选A.7. 袋子里有大小、形状相同的红球个,黑球个(),从中任取1个球是红球的概率记为,若将红球、黑球个数各增加1个,此时从中任取1个球是红球的概率记为;若将红球、黑球个数各减少1个,此时从中任取1个球是红球的概率记为,则()A. B. C. D.【答案】D【解析】因为所以选D.8. 设点是椭圆上异于长轴端点上的任意一点,分别是其左右焦点,为中心,,则此椭圆的离心率为()A. B. C. D.【答案】C【解析】设,则因此,选C.9. 如图,半径为1的扇形中,,是弧上的一点,且满足,分别是线段上的动点,则的最大值为()A. B. C. 1 D.【答案】C【解析】,选C.点睛:(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.(3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.10. 已知是实数,关于的方程有4个不同的实数根,则的取值范围为()A. B. C. D.【答案】A【解析】由题意得在上有两个正根,且在上有两个负根,所以,选A.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,满分36分,将答案填在答题纸上)11. 已知是等比数列,且,,则__________,的最大值为__________.【答案】(1). 5(2).【解析】,即的最大值为12. 某几何体的三视图如图所示(单位:),该几何体的表面积为__________,体积为__________.【答案】(1). (2).【解析】几何体为一个四棱锥,高为2,底面为边长为2的正方形,所以表面积为,体积为点睛:(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.13. 已知,,则__________,__________.【答案】(1). (2).【解析】因为,,所以因为,所以,因此14. 若实数且,则__________,__________.【答案】(1). (2). 1【解析】,因为,所以15. 教育装备中心新到7台同型号的电脑,共有5所学校提出申请,鉴于甲、乙两校原来电脑较少,决定给这两校每家至少2台,其余学校协商确定,允许有的学校1台都没有,则不同的分配方案有__________种(用数字作答).【答案】35【解析】即剩下3台分给5个学校,有三种分法,一是都给一个学校,有5种分法;二是分给两个学校,一个2台另一个1台,有种,三是分给三个学校,每校一台,有种,共种16. 已知曲线及点,若曲线上存在相异两点,其到直线的距离分别为和,则__________.【答案】14【解析】曲线即为半圆M:,由题意得为半圆M与抛物线两个交点,由与联立方程组得,所以学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...17. 已知等腰中,,分别为的中点,沿将折成直二面角(如图),则四棱锥的外接球的表面积为__________.【答案】【解析】由题意得四点共圆,设圆心为O,则半径为,O到直线DE距离为因为,所以O为外接球的球心,半径为,因此外接球的表面积为三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18. 在中,角所对的边分别为,已知. (1)求角的大小;(2)若,求面积的最大值.【答案】(1)(2)【解析】试题分析:(1)根据三角形内角关系及诱导公式得,再根据两角和与差的正余弦公式展开化简得,即得.(2)先由余弦定理得,再根据基本不等式得,最后根据三角形面积公式得最大值.试题解析:(1)在中,,则,化简得:由于,,则,解得.(2)由余弦定理,,从而,当且仅当时取到最大值.19. 如图,已知四棱锥的底面是菱形,,,.(1)求证:平面平面;(2)求直线与平面所成角的正弦值.。
2017届高三 第一次模拟考试(数学理)(含答案)word版
临川二中2017届高考第一次模拟考试试卷(理科数学)考试时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求)1.设A 、B 为非空集合,定义集合A*B 为如图非阴影部分表示的集合,若{|A x y =={|3,0},x B y y x ==>则A*B= ( )A .(0,2)B .[0,1]∪[2,+∞)C .(1,2]D .[0,1]∪(2,+∞) 2.“非空集合M 不是P 的子集”的充要条件是( )A .P x M x ∉∈∀,B .M x P x ∈∈∀,C .P x M x ∈∈∃11,又P x M x ∉∈∃22,D .P x M x ∉∈∃00,3.若将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”下列四个命题,其中是“可换命题”的是( )①垂直于同一平面的两直线平行; ②垂直于同一平面的两平面平行; ③平行于同一直线的两直线平行; ④平行于同一平面的两直线平行. A .①② B .①④ C .①③ D .③④ 4.阴影部分面积s 不可用()()[]⎰-=badxx g x f s 求出的是( )5.在ABC AB ABC ∆=+⋅∆则中,若,02的形状是( )A .∠C 为钝角的三角形B .∠B 为直角的直角三角形C .锐角三角形D .∠A 为直角的直角三角形6.若复数1a i =-,则1019228101010222a C a C a -+-+= ( ) A .32i - B . 32 C .32i D .32-7.临川二中的某教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足有且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种 A .81 B .27 C .54 D .1088.如图:已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点.如果一只蜜蜂在正方体ABC -A 1B 1C 1D 1内部任意飞,则它飞入三棱锥A 1-BDE 内部的概率为( )A .41B .31C .21D .529.椭圆)0(1:22221>>=+b a b y a x C 的左准线为l ,左、右焦点分别为21,F F ,抛物线2C 的准线也为l ,焦点为2F ,记1C 与2C 的一个交点为P ,则=-||||||||21121PF PF PF F F ( ) A .12 B .1 C .2 D .与a ,b 的取值有关10.已知函数32()31,f x x x =-+21,0()468,0x x g x xx x x ⎧+>⎪=⎨⎪---≤⎩,关于方程[()]0g f x a -= (a 为正实数)的根的叙述有下列四个命题①存在实数a ,使得方程恰有3个不同的实根; ②存在实数a ,使得方程恰有4个不同的实根;③存在实数a ,使得方程恰有5个不同的实根; ④存在实数a ,使得方程恰有6个不同的实根; 其中真命题的个数是( )A .0B .1C .2D .3二、填空题(每题5分,共25分)11. 在样本的频率分布直方图中,一共有n 个小矩形,若中间一个小矩形的面积等于其余(n-1)个小矩形面积之和的15,且样本容量为240,则中间一组的频数是12.观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101++=; ②tan13tan 35tan 35tan 42tan 42tan131++=;③tan 5tan100tan100tan(15)tan(15)tan 51+-+-=④tan(160)tan(22)tan(22)tan 272tan 272tan(160)1--+-+-= 一般地,若tan ,tan ,tan αβγ都有意义,你从这四个恒等式中猜想得到的一个结论为 .13.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横纵坐标分别对应数列{}*()n a n N ∈的前12项,如下表所示:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 1x 1y 2x 2y 3x 3y 4x 4y 5x 5y 6x 6y按如此规律下去,则200920102011a a a ++= .14.已知正四面体ABCD 的棱长为1,若以的方向为左视方向,则该正四面体的左视图与俯视图面积和的取值范围为 .15.选做题(请考生在两个小题中任选一题做答,如果多做,则按所做的第一题评阅记分).(1)在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程为 .(2)若对于任意角θ,都有1sin cos =+b a θθ,则下列不等式中恒成立的是 A. 122≤+b a B. 122≥+b a C. 11122≤+b a D . 11122≥+b a三、解答题(本大题共6小题,计75分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卷的指定区域内)16.(本小题满分12分)已知向量(2cos ,1),m x = 向量(cos 2)n x x =,2220102010()1cot 1tan f x m n x x =⋅++++(1)化简()f x 的解析式,并求函数的单调递减区间;(2)在△ABC 中,c b a ,,分别是角A,B,C 的对边,已知ABC b A f ∆==,1,2012)(的面积为23,求C A c a sin sin )(1005++.17.(本小题满分12分)为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是本市雷电天气高峰期,在31天中平均发生雷电14.57天如图.如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01); (2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为X ,求X 的数学期望和方差.18.(本小题满分12分)一个几何体是由圆柱11ADD A 和三棱锥E ABC -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA ABC ⊥平面, AB AC ⊥,AB AC =,2AE =.(1)求证:AC BD ⊥;(2)求二面角A BD C --的平面角的大小.19.(本小题满分12分)a a -=λ1执行下面框图所描述的算法程序,记输出的一列数依次为1a ,2a ,…,n a ,*N ∈n ,2011≤n .(1)若输入2=λ,写出输出结果;(2)若输入2=λ,求数列}{n a 的通项公式;(3)若输入2>λ,令1--=n n n pa pa c ,求常数p (1±≠p ),使得}{n c 是等比数列.20.(本小题满分13分)已知抛物线C :y x 42=的焦点为F ,过点F 作直线l 交抛物线C 于A 、B 两点;椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率23=e .(1)求椭圆E 的方程;(2)经过A 、B 两点分别作抛物线C 的切线1l 、2l ,切线1l 与2l 相交于点M .证明:MF AB ⊥; (3) 椭圆E 上是否存在一点M ',经过点M '作抛物线C 的两条切线M A ''、M B ''(A '、B '为切点),使得直线A B ''过点F ?若存在,求出抛物线C 与切线M A ''、M B ''所围成图形的面积;若不存在,试说明理由.21.(本小题满分14分)已知函数x b ax x f sin )(+=,当3π=x 时,)(x f 取得极小值33-π.(1)求a ,b 的值;(2)设直线)(:x g y l =,曲线)(:x F y S =.若直线l 与曲线S 同时满足下列两个条件:①直线l 与曲线S 相切且至少有两个切点;②对任意R x ∈都有)()(x F x g ≥.则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”.(3)记)](5[81)(x f x x h -=,设1x 是方程0)(=-x x h 的实数根,若对于)(x h 定义域中任意的2x 、3x ,当1||12<-x x ,且1||13<-x x 时,问是否存在一个最小的正整数M ,使得32|()()|h x h x M -≤恒成立,若存在请求出M 的值;若不存在请说明理由.第一次模拟考试(理科数学)参考答案1~10 DDCDD CAABD11.40 12.90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时13.1005 14. ]422,22[+ 15.(1)3cos =θρ (2)D16.(1)()f x 的单调递减区间为:2,,()6223k k k k k Z ππππππππ⎡⎫⎛⎤++++∈⎪ ⎢⎥⎣⎭⎝⎦ 6分(2)由()2012,1,f A b ABC ==∆的面积为可得:,2,3A c a π===…9分∴1005()2010sin sin a c A C +==+……………………………………………12分17(1)设8月份一天中发生雷电天气的概率为p ,由已知47.03157.14==p .…2分)47.01(47.0223-⨯⨯=C P 351231.0=35.0≈. ……………6分(2)由已知X ~)47.0,12(B . …………………8分所以,X 的数学期望64.547.012)(=⨯=X E . …………………………10分X 的方差9892.247.0147.012)()=-(⨯⨯=X D . …………………………12分 18.(1)BD 在平面上的射影为AB ,而AC AB ⊥,由三垂线定理得,BD AC ⊥…4分 (2)由已知得:2=AD ,2=O A , 22=AB , 32=BD ………………6分过A 点作BD AH ⊥于H ,连结CH ,由AC BD ⊥,故AH C ∠为所求二面角的平面角22=AC ∴3tan ==∠AH AC AHC 故3π=∠AHC ,所求二面角平面角的大小为3π…12分 19. 解 (1)输出结果是:0,22,2.……3分(2)(法一)由程序框图知,01=a ,n n a a -λ=+11,*N ∈n ,2010≤n .所2=λn n a a -=+211,… 5分nnn n a a a a --=--=-+2112111,而}{n a 中的任意一项均不为1, (否则的话,由11=+n a 可以得到1=n a ,…,与101≠=a 矛盾),所以,11112111--=--=-+n n n n a a a a ,111111-=---+n n a a (常数),*N ∈n ,2010≤n .故⎭⎬⎫⎩⎨⎧-11na 是首项为1-,公差为1-的等差数列, ……………………7分所以,n a n -=-11,数列}{n a 的通项公式为n a n 11-=,*N ∈n ,2011≤n .…8分 (3)当2>λ时,)(11111222111p p pa p p p a p p a p pa a p p a pa p a c n n n n nn n n n -λ-⎪⎪⎭⎫ ⎝⎛-λ-⋅=+λ-+λ-=--λ--λ=--=+++,令112=-λp p ,则p p 1+=λ,012=+λ-p p ,242-λ±λ=p . ………10分此时,1122=-⎪⎪⎭⎫ ⎝⎛+=-λp p p p p p , 所以n n c p c 21=+,*N ∈n ,2011≤n ,又01≠=p c , 故存在常数242-λ±λ=p (2>λ),使得}{n c 是以p 为首项,2p 为公比的等比数列. (12)分20. 解:(1)设椭圆E 的方程为 22221(0)x y a b a b +=>>,半焦距为c .由已知条件得)1,0(F ,∴⎪⎪⎩⎪⎪⎨⎧+===222231c b a a c b 解得E 1422=+y x. ……………… ……………4分(2)显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不合题意,故可设直线l 的方程为 1+=kx y ,112212(,),(,)()A x y B x y x x ≠, 由⎩⎨⎧=+=y x kx y 412消去y 并整理得 2440x kx --=,∴421-=x x . ∵241x y =,得12y x '=,………5分∴过抛物线C 上A 、B 两点的切线方程分别是)(21111x x x y y -=-, )(21222x x x y y -=-,即2114121x x x y -=, 2224121x x x y -=,解得两条切线1l 、2l 的交点M 的坐标为)4,2(2121x x x x +,即)1,2(21-+x x M ,……7分∴122121(,2)(,)2x x FM AB x x y y +⋅=-⋅-- 0)4141(2)(2121222122=---=x x x x ∴MF AB ⊥. (8)分(3)假设存在点M '满足题意,由(2)知点M '必在直线1-=y 上,又直线1-=y 与椭圆E 有唯一交点,故M '的坐标为)1,0(-'M ,设过点M '且与抛物线C 相切的切线方程为:)(21000x x x y y -=-,其中点),(00y x 为切点.令1,0-==y x 得,)0(214110020x x x -=--, 解得20=x 或20-=x , ………10分 故不妨取)1,2(),1,2(B A '-',即直线B A ''过点F .综上所述,椭圆E 上存在一点)1,0(-'M ,经过点M '作抛物线C 的两条切线A M ''、B M '' (A '、B '为切点),能使直线B A ''过点F . 此时,两切线的方程分别为1y x =--和1-=x y . …………11分222320011142(1)2()41223S x x dx x x x ⎡⎤=--=-+=⎢⎥⎣⎦⎰ . …………13分21.(1)1=a ,2-=b …………………………………………3分(2)由1c o s 21)(=-='x x f ,得0c o s =x ,当2π-=x 时,0cos =x 此时221+-=πy ,222+-=πy ,21y y =所以)22,2(+--ππ是直线l 与曲线S 的一个切点,当23π=x 时,0cos =x ,2231+=πy ,2232+=πy ,21y y =所以)223,23(+ππ是直线l 与曲线S 的一个切点 所以直线l 与曲线S 相切且至少有两个切点……6分对任意R x ∈,0sin 22)sin 2()2()()(≥+=--+=-x x x x x F x g所以)()(x F x g ≥,因此直线l :2+=x y 是曲线S :x b ax y sin +=的“上夹线” …9分(3)方法一:4sin 2)(x x x h +=,1x 为04sin 2=+-x x 的根,即01=x ,也即1||3<x ,1||2<x ………10分而04cos 2)(>+='x x x h ∴4sin 21)1()(max x h x h +==,4sin 21)1()(min xh x h --=-= ∴221sin 1|)1()1(||)()(|max 23<+=--=-h h x h x h ………………………………13分所以存在这样最小正整数2=M 使得M x h x h ≤-|)()(|23恒成立.………………14分方法二:不妨设32x x <,因为0)(>'x h ,所以)(x h 为增函数,所以)()(32x h x h <又因为01)(<-'x h ,所以x x h -)(为减函数,所以3322)()(x x h x x h ->-所以2323)()(0x x x h x h -<-<,………………………………………………………………11分即2|||||)(||||)()(|121312132323<-+-≤---=-<-x x x x x x x x x x x h x h ………13分故存在最小正整数2=M,使得M x h x h ≤-|)()(|23恒成立………………………14分。
2016-2017高三数学一模(理科)(模拟一)详解答案
— 高三理科数学 (模拟一)答案第1页 —NCS20170607项目第一次模拟测试卷理科数学参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一1所以()(0,1)U A C B ⋂=,故答案选C .2、C 【解析】i i211z ==+-,故答案选C . 3、D 【解析】不妨设390,60αβ=︒=︒,有sin sin αβ<,则αβ>不可推出sin sin αβ>;反之,因为sin 60sin 390︒>︒此时αβ<,则sin sin αβ>也不可推出αβ>,故答案选D .4、D 【解析】由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本中心点(,)x y ,因此B 正确.由线性回归方程中系数的意义知,x 每增加1cm ,其体重约增加0.85kg ,故C 正确.当某女生的身高为160cm 时,其体重估计值是50.29kg ,而不是具体值,因此D 不正确.故答案选D .5、C 【解析】因为圆锥曲线22:1C x my +=方程可化为221(0)1y x m m-=<-, 123m ⇒=-,故答案选C.6、B 【解析】由2221log [log (1)log ]2i i +-,7i =进入循环,得2123[log 21S =++ 222222223819log log ]3[(log 2log 1)(log 3log2)(log 8log 7)]2722++=+-+-++-= ,当8i =退出循环,输出229log 2log 312S ==-,故答案选B .7、B【解析】因为函数的周期22T ππωω==⇒=,有()s i n (2)f x A x ϕ=+,则()s i n (2)1f A ααϕ=+=所以33()sin 2()sin(32)sin(2)122f A A A ππααϕπαϕαϕ⎡⎤+=++=++=-+=-⎢⎥⎣⎦,故答案选B . 8、D 【解析】因为圆心到直线21y x =+的距离d ==,则5cos 22AOB d OA ∠===. ∴229cos 2cos 121210AOB AOB ∠∠=-=⨯-=-,故答案选D . 另解:因为圆心到直线21y x =+的距离d ==由垂径定理得:2221()2AB d R +=2221764()4(4)55AB r d ⇒=-=⨯-=∴由余弦定理有764495cos 22210AOB +-∠==-⨯⨯,故答案选D .— 高三理科数学 (模拟一)答案第2页 —9、B 【解析】甲有72钱,乙有32钱,丙有4钱,故答案选B .10、A 【解析】回归到正方体中,该几何体是一个底面为等腰直角三角形 的三棱锥,即如图中的几何体A BCD -,其体积是正方体体积的16,等于323,故答案选A . 11、D【解析】因为124x x AB ++=,124AF BF x x +=++,所以AF BF +=. 在AFB ∆中,由余弦定理得:222cos 2AF BF ABAFB AF BF+-∠=⋅2222241()23311222AB AB AB AF BF AF BF ABAF BF AF BF AF BF-+-⋅-==-=-⋅⋅⋅.又213AF BF AF BF AB +=≥⋅≤. ∴22113cos 11223ABAFB AB ∠≥-=-⨯,∴ AFB ∠的最大值为23π,故答案选D . 12、A 【解析】因为函数(2)()f x f x -=可得图像关于直线1x =对称,且函数为偶函数则其周期为2T =,又因为11'()1x f x x x-=-=,当[]1,2x ∈时有'()0f x ≤,则函数在[]1,2x ∈为减函数, 作出其函数图像如图所示:其中ln 21ln 21,68OA OB k k --==,当0x <时,要使符合题意则ln 21ln 21(,)68m --∈ 根据偶函数的对称性,当0x >时,要使符合题意则1ln 21ln 2(,)86m --∈.综上所述,实数m 的取值范围为1ln 21ln 2ln 21ln 21(,)(,)8668----⋃,故答案选A . 二、填空题:本大题共4小题,每小题5分,满分20分.13、120【解析】根据题意65(12)(1)x y ++的展开式中,3xy 的系数为13652120C C ⋅⋅=. 14、32【解析】a 在1e 上的投影为211211123(2)2211cos 32a e e e e e e e π⋅=-⋅=-⋅=-⨯⨯= .15、(3)π【解析】由图中数据可得:122S π=⨯⨯圆锥侧,212S ππ=⨯⨯=圆柱侧,21S ππ=⨯=底面.所以几何体的表面积为(3)S π=表面积.— 高三理科数学 (模拟一)答案第3页 —16,,,,x a b c y ,则2x y a c b +=+=, ∴2,222x yyx y b y b c ++++===. 则等差数列后三项和为3922244x yyx y b c y y x y +++++=++=+3(3)4x y =+. (另解:由等差数列的性质有2x y a c b +=+=,所以2,222x yyx y b y b c ++++===.) 方法一:因为224x y +=,设2cos ,2sin x y αα==,所以3(2cos 6sin ))4b c y αααϕ++=++ 方法二:令3z x y =+,则30x y z +-=,所以当直线30x y z +-=与圆224x y +=相切时z 将有最大值,此时2d z ==⇒=,即max z =,∴max 3()4b c y ++=⨯.三、解答题:本大题共6小题,共70分. 解答应写出文字说明.证明过程或演算步骤.17、【解析】(Ⅰ)设等差数列{}n a 的公差为d ,由345S S S +=可得1235a a a a ++=,------- 2分即253a a =,所以3(1)14d d +=+,解得2d =.------------ 4分∴ 1(1)221n a n n =+-⨯=-.------------ 6分(Ⅱ)由(Ⅰ)可得:112(1)(21)(21)(1)(41)n n n b n n n --=-⋅-+=-⋅-.------------ 7分∴ 22222122(411)(421)(431)(441)(1)4(2)1n n T n -⎡⎤=⨯--⨯-+⨯--⨯-++-⋅⨯-⎣⎦22222241234(21)(2)n n ⎡⎤=-+-++--⎣⎦ ------------ 9分22(21)4(1234212)4842n n n n n n +=-+++++-+=-⨯=-- .------ 12分 18、【解析】(Ⅰ)由直方图可估算2017年(以365天计算)全年空气质量优良的天数为(0.10.2)3650.3365109.5110+⨯=⨯=≈(天).------------ 4分(Ⅱ)由题可知,X 的所有可能取值为:0,10000,20000,30000,40000,50000,60000,------------ 6分则:3464(0)()5125P X ===,1231424(10000)()105125P X C ==⨯⨯=221233141410827(20000)()()()()105105500125P X C C ==⨯⨯+⨯⨯==31132111449(30000)()10101051000P X C C ==+⨯⨯⨯⨯=222233111427(40000)()()10101051000P X C C ==⨯⨯+⨯⨯=223113(50000)()10101000P X C ==⨯⨯=311(60000)()101000P X ===. ∴ X 的分布列为— 高三理科数学 (模拟一)答案第4页 —64482749273101000020000300004000050000600001252501251000100010001000EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯9000=(元).------------ 12分 19、【解析】(Ⅰ)在等腰梯形ABCD 中,过点D 作DE AB ⊥于点E ,如图所示:有1,AE DE BD ===∴在ABD ∆中,有222AB AD BD=+,即AD BD ⊥又因为平面PAD ⊥平面ABCD 且交线为AD ,∴BD ⊥平面PAD .-----5分 (Ⅱ) 由平面PAD ⊥平面ABCD ,且PAD ∆为正三角形,E 为AD 的中点, ∴PE AD ⊥,得PE ⊥平面ABCD .如图所示,以D 为坐标原点,DA 所在直线为x 轴,DB 所在直线为y 轴,过点D 平行于PE 所在直线为z 轴,建立空间直角坐标系.由条件2AD D C BC ===,则1AE DE==,PEBD = 则(0,0,0)D ,(1,0,0)E ,B ,P .------- 6分在等腰梯形ABCD 中,过点C 作BD 的平行线交AD 延长线于点F 如图所示: 则在Rt CDF ∆中,有CF ,1DF =,∴(C -.------- 7分(另解:可不做辅助线,利用2AB DC=求点C 坐标) ∴(1,CD =,(1,0,PD =-,设平面PDC 的法向量1111(,,)n x y z =则11111100n CD x n PD x ⎧⋅==⎪⎨⋅=-=⎪⎩,取1x 11y =,11z =-, ∴面PDC 的法向量11)n =-.------- 9分同理有(0,0,PE = ,(PB =-,设平面PBE 的法向量2222(,,)n x y z =则2222220n PE n PB x ⎧⋅==⎪⎨⋅=-+=⎪⎩ , 取21y =,则2x =20z =,∴面PBE 的法向量2n =.--10分设平面PEB 与平面PDC 所成二面角的平面角为θ,∴12cos cos ,n n θ=<>=. 即平面PEB 与平面PDC .------- 12分 20、【解析】(Ⅰ)设点12(,0),(,0)A a F c -,由题意可知:42a c -+=,即42a c =- ① 又因为椭圆的离心率12c e a ==,即2a c = ② 联立方程①②可得:2,1a c ==,则2223b a c =-=所以椭圆C 的方程为22143y x +=.------- 5分(Ⅱ)方法一:根据椭圆的对称性猜测点G 是与y 轴平行的直线0x x =上.— 高三理科数学 (模拟一)答案第5页 —假设当点M 为椭圆的上顶点时,直线l40y +-,此时点N 8(5,则联立直线120A M l y -+=和直线220A N l y +-=可得点G 据此猜想点G 在直线1x =上,下面对猜想给予证明: ------- 7分设1122(,),(,)M x y N x y ,联立方程22(4143)x y k x y +-==⎧⎪⎨⎪⎩可得:2222(34)3264120,0k x k x k +-+-=∆>由韦达定理可得21223234k x x k +=+,2122641234k x x k -=+ (*)------- 9分 因为直线111:(2)2A M y l y x x =++,222:(2)2A N y l y x x =--, 联立两直线方程得1212(2)(2)22y y x x x x +=-+-(其中x 为G 点的横坐标)即证:1212322y y x x -=+-, 即12213(4)(2)(4)(2)k x x k x x -⋅-=--⋅+,即证1212410()160x x x x -++= ------- 11分 将(*)代入上式可得22222224(6412)1032160163203403434k k k k k k k⋅-⨯-+=⇔--++=++ 此式明显成立,原命题得证.所以点G 在定直线上1x =上.-------12分 方法二:设1(,),(,),(,)M x y N x y G x y ,123,,x x x 两两不等,因为,,B M N 2212222122222212123(1)3(1)444(4)(4)(4)(4)x x y y y x x x x x --=⇒=⇒=-----, 整理得:2x 8分 又1,,A M 112y x =+ ① 又2,,A N 222y x - ② 将①与②两式相除得: 222221233212121222231231212123(1)(2)22(2)(2)(2)(2)4()2(2)2(2)(2)(2)3(1)(2)4x x x x y x y x x x x y x x x x y x x x -+++++++=⇒===-------- 即2321121231212122(2)(2)2()4()2(2)(2)2()4x x x x x x x x x x x x x x ++++++==----++,------- 10分 将121225()80x x x x -++=即12125()402x x x x =+-=代入得:2332()92x x +=- 解得34x =(舍去)或31x =,所以点G 在定直线1x =上.------- 12分方法三:显然l 与x 轴不垂直,设l 的方程为(4)y k x =-,1122(,),(,)M x y N x y .由22(4)143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)3264120,0k x k x k +-+-=∆>.------- 7分设112233(,),(,),(,)M x y Nx y G x y ,123,,x x x 两两不等,则21223234k x x k +=+,2122641234k x x k -=+,12||x x -=— 高三理科数学 (模拟一)答案第6页 —由1,,A M112y x =+ ① 由2,,A N 222y x - ② 32121121212312121212122(2)(4)(2)()3()812(2)(4)(2)3()()83x y x k x x x x x x x x x y x k x x x x x x x x ++-+-++--====------++-+------- 10分 解得34x =(舍去)或31x =,所以点G 在定直线1x =上.------- 12分 21.【解析】(Ⅰ)'()2(24)2(2)(22)2(2)x x x f x e x e a x x e a x =+-++=-++,依题意:当0x >时,函数'()0f x ≥恒成立,即(1)2x x e a x -≥-+恒成立,记(1)()2xx e g x x -=-+,则2(2)(1)'()(2)x x xe x x e g x x +--=-=+22(1)0(2)x x x e x ++-<+, 所以()g x 在(0,)+∞上单调递减,所以1()(0)2g x g <=,所以12a ≥;--- 6分(Ⅱ)因为['()]'220x f x xe a =+>,所以'()y f x =是(0,)+∞上的增函数,又'(0)420f a =-<,'(1)60f a => ,所以存在(0,1)t ∈使得'()0f t =且当0a →时1t →,当12a →时0t →,所以t 的取值范围是(0,1).------- 8分又当(0,)x t ∈,'()0f x <,当(,)x t ∈+∞时,'()0f x >, 所以当x t =时,2min()()(24)(2)tf x f t t e a t ==-++.且有(1)'()02tt e f t a t -=⇒=-+(由(Ⅰ)知(1)()2tt e a g t t -=-=+,在(0,)+∞上单调递减,又1(0)2g =, (1)0g =且1(0,)2a ∈,故(0,1)t ∈)∴2min ()()(24)(1)(2)(2)t t t f x f t t e t t e e t t ==---+=-+-,(0,1)t ∈------- 10分记2()(2)t h t e t t =-+-,则22'()(2)(21)1)t t th t e t t e t et t =-+-+-+=--(-0<, 所以(1)()(0)h h t h <<,即最小值的取值范围是(2,2)e --.------- 12分 22、【解析】(Ⅰ)曲线1C 参数方程为1x a y ⎧=⎪⎨=⎪⎩,∴其普通方程10x y a --+=,------- 2分由曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=,∴222cos 4cos 0ρθρθρ+-= ∴22240x x x y +--=,即曲线2C 的直角坐标方程24y x =.------- 5分— 高三理科数学 (模拟一)答案第7页 —(Ⅱ)设A 、B 两点所对应参数分别为12,t t,联解241y x x a y ===⎧⎪⎪⎨⎪⎪⎩得22140t a -+-=要有两个不同的交点,则242(14)0a ∆=-⨯->,即0a >,由韦达定理有1212142t t a t t +=-⋅=⎧⎪⎨⎪⎩根据参数方程的几何意义可知122,2PA t PB t ==,又由2PA PB =可得12222t t =⨯,即122t t =或122t t =- ------- 7分 ∴当122t t =时,有2122212311036422t t t a t t t a ⎧⎪⇒=>⎨⎪⎩+==-⋅==,符合题意.------- 8分 当122t t =-时,有21222121442902t t t t t a a t ⎧⎪⇒=>⎨⎪+=--⋅=-=⎩,符合题意.------- 9分 综上所述,实数a 的值为136a =或94.------- 10分 23、【解析】(Ⅰ)由题()21f x x ≤--,即为||112ax x -+-≤.而由绝对值的几何意义知||1|1|22a ax x -+-≥-,------- 2分由不等式()21f x x ≤--有解,∴|1|12a-≤,即04a ≤≤.∴实数a 的取值范围[0,4].------- 5分(Ⅱ)函数()21f x x a x =-+-的零点为2a 和1,当2a <时知12a<∴31()2()1(1)231(1)a x a x a f x x a x x a x ⎧-++<⎪⎪⎪=-+≤≤⎨⎪-->⎪⎪⎩------- 7分如图可知()f x 在(,)2a -∞单调递减,在[,)2a+∞单调递增,∴min ()()1322a a f x f ==-+=,得42a =-<(合题意),即4a =-.------- 10分。
2016-2017学年长沙市一中高三数学一模试卷和答案详细解析及备考策略
提升高考备考效率方法有哪些?众所周知高考是一个长期的备考的过程,因此在备考的过程中有一个好的备考习惯和方法对于整场备考当中都是一个非常好的行为,而这些好的习惯和备考方法能够帮助考生能够更高效的掌握所复习的内容和有效提升自己的分数,为了帮助考生能够更好的备考这次的高考,下面就高考复习方法有哪些和各位考生一起说说,让我们来看看吧!对于高三学子来说,题海战术可谓是家常便饭,但是很多高三学子对于题海战术的理解并不是特别透彻,对于每日的题目只是埋头苦干,这样只是徒增每日的题量罢了,并没有真正的理解题海战术的意义,对于题海战术的意义,认为最重要的就是通过一类题型彻底的去掌握这一类题型的做法,而不是每天的日复一日的完成每日题量,这样只是起到了换汤不换药的效果,并没有什么真正的实际作用,这需要各位高三学子注意到的。
对于难题很多考生都有一种深陷其中的执著,对此深表理解,但在考试当中难题毕竟是少数题型,最多的题型还是集中在中等难度的题型和简易难度的题型,这也是符合了试卷出题的初衷,因此高三学子在备考的时候,不应该将目光集中在难题身上,而是多注意身边的中等难度和简易难度的题型,这样有利于快速提升自己的分数,其中一直集中在难题却得不出答案是非常容易产生负面情绪,这对于后面的备考是非常不利的!在考试中考察的题目内容基本都是源自自己所学的课本当中,因此在复习当中考生要多去学会归纳自己课本当中的知识点,特别是在复习的末尾阶段对于知识点的归纳一定要重视起来,尽量做到以点到线再到面的归纳方式慢慢形成的知识体系,这样能够让考生对于知识点的理解更加的透彻。
其次,考生除了需要进行归纳总结,对于查漏补缺一定也不要放过,在高考备考中的尾声阶段想要快速的提升一下自己的分数,对于知识点的查漏补缺千万不要放过,考生可以利用之前考试总结的错题来进行归纳总结,因为以往的错题往往可以代表着考生的薄弱点,而想要快速的提升分数就需要击破这些薄弱点,所以想要快速的提升自己的薄弱点就不要放过自己的错题!高考倒计时刷题办法考生现在相必也进入倒计时的阶段了,复习的日子在一天天减少,眼看着高考的日子就快到了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学小题训练(16) 班级 姓名
1. 若复数z =1+a i (i 是虚数单位)的模不大于2,则实数a 的取值范围是 .
2. 过点(1,0)且倾斜角是直线x -2y -1=0的倾斜角的两倍的直线方程是 .
3. 若椭圆221x my +=(0<m <1,则它的长轴长为 . 4. 将函数()y f x =的图象上的每一点的纵坐标变为原来的4倍,横坐标变为原来的2倍,然后把所得的图象上的所有点沿x 轴向左平移π2
个单位,这样得到的曲线和函数2sin y x =的图象相同,则函数()y f x =的解析式为 .
5. 已知A 、B 、C 是△ABC 的三个内角,向量1(sin
,sin ),(cos ,sin ),222
A B C A B +==⋅=a b a b ,则tan tan A B ⋅= .
6. 在△ABC 中,已知AB =4,AC =3,P 是边BC 的垂直平分线上的一点,则BC AP ⋅ = . 7.若圆锥的高是底面半径和母线的等比中项,则称此圆锥为“黄金圆锥”.已知某黄金圆锥的侧面积为S ,则这个圆锥的高为 .
8.已知函数f (x )=cos ωx (ω>0)在区间π[0]4, 上是单调函数,且f (3π8
)=0,则 ω= .
9.已知数列{} {}n n a b ,
的前n 项和分别为n A ,n B ,且A 100=8,B 100=251.记n n n n n n C a B b A a b =⋅+⋅-⋅ (n ∈N*),则数列{C n }的前100项的和为 .
10.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于A 、B 两点,交准线于点C .若2CB BF =u u r u u u r ,则直线AB 的斜率为 .
11.有一根长为6cm ,底面半径为0.5cm 的圆柱型铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的长度最少为 cm .
12.已知函数f (x )=log a | x |在(0,+∞)上单调递增,则f (-2) f (a +1).(填写“<”,“=”,“>”之一)
13.如图,AB 是半圆O 的直径,D C ,是弧AB 三等分点,N M ,是线段AB 的三等分点,若6=OA ,则⋅的值是 .
14.设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[]2x t t ∈+,,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是 .
15.若不等式组0,22,0,x y x y y x y a
-⎧⎪+⎪⎨⎪⎪+⎩≥≤≥≤ 表示的平面区域是一个三角形及其内部,则a 的取值范围是 .
16.已知△ABC 三边a ,b ,c 的长都是整数,且a b c ≤≤,如果b =m (m ∈N*),则这样的三
角形共有 个(用m 表示).。