《材料力学》课后习题答案 详细
材料力学课后习题答案
3
cos 45o 0 , N 3 0
由对称性可知, CH 0 , N1 N 2 0.5F 0.5 20 10(kN) (2)求 C 点的水平位移与铅垂位移。 A 点的铅垂位移: l1
N1l 10000 N 1000mm 0.476mm EA1 210000 N / mm2 100mm 2 N 2l 10000 N 1000mm 0.476mm EA2 210000 N / mm 2 100mm 2
2 Fl 2 Fl 1 1 d E (d1 d 2 ) u 0 E (d1 d 2 ) d 2 d 1 x 1 2 2l 0
l
l
2 Fl 1 1 d d1 E (d1 d 2 ) d 2 d 1 l 1 2 2 2l
A1 0.25 3.14 12 2 113mm2 ; A2 0.25 3.14 152 177mm2
故: A
1 18117 2 1414 256212 1600 ( ) 1.366(mm) 35000 210000 113 210000 177
2求弹性模量nlea习题2101试证明受轴向拉伸压缩的圆截面杆横截面沿圆周方向的线应变等于直径方向的线应变2一根直径为的圆截面杆在轴向力作用下直径减小了00025mm
[习题 2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力 f=kx**2,试做木桩的后力 图。 解:由题意可得:
l
0
1 fdx F , 有 kl 3 F , k 3F / l 3 3
[习题 2-17] 简单桁架及其受力如图所示,水平杆 BC 的长度 l 保持不变,斜杆 AB 的长度 可随夹角 的变化而改变。 两杆由同一种材料制造, 且材料的许用拉应力和许用压应力相等。 要求两杆内的应力同时达到许用应力,且结构的总重量为最小时,试求: (1)两杆的夹角;
章习题参考答案材料力学课后习题题解
C
C
FAC
FCB
FA
FAC BF FA
FCB
FAB
F
FAD FAB
FBD
D (a)
FAD
FBD
D
解 (a)受力分析如图,由C点平衡可知:F’AC=F’CB=0; 由D点平衡可知: F’AD=F’BD=0;再由A点的平衡:
F x=0:F A B=F因此
LAB
FABl EA
Fl EA
(b)受力分析如图, 由C点平衡可知:
1.5m 1m
①
F A
a 2m
② B
解:受力分析如图
FN1
F
FN2
M A
0:
2FN2
Fa
0
A
a
B
FN2
1 2
Fa
2m
M B 0 :F 2 a 2 F N 1 0 ,F N 1 2 2 a F
L1
L2
FN1l1 E1 A1
FN2l2 E2 A2
F 2 - a l1 Fal2
2E1 A1
载[F]。
解:受力分析如图
C
A
Fy 0:
FBC sin60o FBA sin30o 0 (1)
Fx 0:
FBA cos30o FBC cos60o F 0 (2)
o
F60
FBC
o
F60
B
FBA
B
联立(1)和(2)解得:FBC=25kN;FBA=43.3kN。查型钢表 可得:ABC=6.928cm2,
FN
α
pαcos 30o
FN0 4
b
a
sα
pα
bτ α
τ α p α s in 3 0 o F A N 0c o s3 0 o s in 3 0 o 2 0 5 0 1 0 0 34 3 1 7 .3 2 M P a
材料力学课后答案
材料力学课后答案材料力学是一门研究材料的结构和性质以及力学行为的学科。
以下是材料力学课后习题的答案。
1. 对于一个材料试验样品的拉伸测试,如何计算应力和应变?答:应力是试样受到的外部力除以其截面积,应变是试样的长度变化除以其原始长度。
2. 当一根钢条受到拉伸力时,它的截面积会变大还是变小?为什么?答:当钢条受到拉伸力时,它的截面积会减小。
这是因为外部力导致钢条内部发生塑性变形,使其截面积减小。
3. 什么是杨氏模量?如何计算?答:杨氏模量是表征材料在受到应力时的变形能力的物理量。
它可以通过应力与应变之间的比率来计算,即杨氏模量=应力/应变。
4. 什么是泊松比?如何计算?答:泊松比是一个无量纲的物理量,它描述了材料在拉伸或压缩时的横向收缩量与纵向伸长量之间的比例关系。
它可以通过横向应变与纵向应变之间的比率来计算,即泊松比=横向应变/纵向应变。
5. 什么是屈服强度?如何确定屈服强度?答:屈服强度是材料在受到应力时开始产生塑性变形的应力值。
它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,屈服强度对应于曲线上的屈服点。
6. 材料的断裂强度是什么?如何计算?答:材料的断裂强度是指材料在受到拉伸或压缩的最大应力值。
它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,断裂强度对应于曲线上的断裂点。
7. 什么是韧性?如何评价材料的韧性?答:韧性是材料在受力过程中吸收能量的能力。
可以通过材料的断裂能量来评价韧性,断裂能量是在材料断裂前吸收的总能量。
8. 什么是冷加工和热加工?它们对材料性能有何影响?答:冷加工是在室温下对材料进行塑性变形,而热加工是在高温下对材料进行塑性变形。
冷加工会使材料变硬和脆化,而热加工则会使材料变软和韧性增加。
以上是材料力学课后习题的答案,希望对你的学习有所帮助。
如果有任何疑问,请随时向我提问。
材料力学课后作业
和弯矩方程绘制剪力图和弯矩图。
32、如图示,设q、a均为己知。求:梁的剪力方程和弯矩方程并根据剪力方程
和弯矩方程绘制剪力图和弯矩图。
33、如图示,设q、a均为己知。求:梁的剪力方程和弯矩方程并根据剪力方程
和弯矩方程绘制剪力图和弯矩图。
《材料力学》课后作业
1、试作图示各杆的轴力图。
2、求图示各杆 和 横截面上的轴力,并作轴力图。
答案:
3、 求图示阶梯状直杆横截面 、 和 上的轴力,并作轴力图。如横截面面积 , , ,求各横截面上的应力。
答案:
4、 图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制成。下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个 的等边角钢。已知屋面承受集度为 的竖直均布荷载。求拉杆 和 横截面上的应力。
40、割刀在切割工件时,受到F=1KN的切削力作用,割刀尺寸如图所示,若割刀的许用弯曲正应力〔σ〕=200MPa。试校核割刀的弯曲正应力强度。
答案:σmax=200MPa
41、图示为一承受纯弯曲的铸铁梁,其截面为⊥形,材料的拉伸和压缩许用应力之比
〔σ+〕/〔σ-〕=1/4。求水平翼板的合理宽度b。
答案:b=510mm
答案:σA=σD=-163.5MPaσB=38.8 MPaσC=58.8 MPa
38、矩形截面的悬臂梁受集中力和集中力偶作用,如图所示。试求Ⅰ-Ⅰ截面和固定端Ⅱ-Ⅱ截面上A、B、C、D四点处的正应力。
答案:I-I截面:σA=-7.41MPaσB=4.94MPaσC=0σD=7.41MPa
I-I截面:σA=9.26MPaσB=-6.18MPaσC=0σD=-9.26MPa
材料力学课后习题答案
27.5mm
取: h 48.3mm b 2h 32.2mm 3
三、图示杆件由Q235钢制成,该材料的弹性极限σp=200MPa,屈服极限σs= 235MPa ,弹 性模量E=200GPa,中长杆经验公式σcr=304 -1.12λ ,其中σcr单位为MPa, λ为压杆的柔度。 (1)试画临界应力总图并在图中标出特征点。(2)图中杆为d=35mm的实心圆杆,稳定安 全系数nst=2.4,试校核该杆的稳定性。
1 2
l
l
2 3
l)
5l 3 3EI
1F
1 EI
(ml l
ml
l) 2
3l 2 2EI
X1
1F
11
9m 10l
m
M MF M 0 X1
MF :
9m /10
m /10
1 M0 : m /10
M max
MD
m
M: m
知识回顾 Knowledge Review
祝您成功!
例、图示矩形截面钢杆受偏心拉伸,用应变片测得上、下表面的轴向线应变分别为
εa=0.62×10-3, εb=0.18×10-3 ,材料的 E=200GPa,[σ]=120MPa 。试校核其强度并 求 F 和偏心距 e 。
a
F
解:图示偏心拉伸钢杆危险点为各截面上 边缘处,杆内各点均为单向应力状态 F
e
解: 一次拉压超静定问题,设构件长为 l ,由题
F
意钢筋比 l 短 δ :
A-A
钢筋
F0l
Egj Agj
A
A
混凝土
取静定基,将钢筋截断,以钢筋的内力为基本未知量
11 X1 1F
1
F0l Egj Agj
材料力学课后习题答案
材料力学课后习题答案1. 弹性力学。
1.1 问题描述,一根钢丝的弹性模量为200GPa,其截面积为0.01m²。
现在对这根钢丝施加一个拉力,使其产生弹性变形。
如果拉力为2000N,求钢丝的弹性变形量。
解答:根据胡克定律,弹性变形量与拉力成正比,与材料的弹性模量和截面积成反比。
弹性变形量可以用以下公式计算:$$。
\delta = \frac{F}{AE}。
$$。
其中,$\delta$表示弹性变形量,F表示拉力,A表示截面积,E表示弹性模量。
代入已知数据,可得:$$。
\delta = \frac{2000N}{0.01m² \times 200GPa} = 0.001m。
$$。
所以,钢丝的弹性变形量为0.001m。
1.2 问题描述,一根长为1m,截面积为$10mm^2$的钢棒,两端受到拉力为1000N的作用。
求钢棒的伸长量。
解答:根据胡克定律,钢棒的伸长量可以用以下公式计算:$$。
\delta = \frac{F \cdot L}{AE}。
$$。
其中,$\delta$表示伸长量,F表示拉力,L表示长度,A表示截面积,E表示弹性模量。
代入已知数据,可得:$$。
\delta = \frac{1000N \times 1m}{10mm² \times 200GPa} = 0.005m。
$$。
所以,钢棒的伸长量为0.005m。
2. 塑性力学。
2.1 问题描述,一块金属材料的屈服强度为300MPa,现在对其施加一个拉力,使其产生塑性变形。
如果拉力为500MPa,求金属材料的塑性变形量。
解答:塑性变形量与拉力成正比,与材料的屈服强度无关。
塑性变形量可以用以下公式计算:$$。
\delta = \frac{F}{A}。
$$。
其中,$\delta$表示塑性变形量,F表示拉力,A表示截面积。
代入已知数据,可得:$$。
\delta = \frac{500MPa}{300MPa} = 1.67。
华科材料力学课后答案
华科材料力学课后答案1. 弹性力学。
1.1 问题一。
根据胡克定律,弹簧的伸长量与所受外力成正比。
即伸长量ΔL与外力F满足ΔL=kF,其中k为弹簧的弹性系数。
根据题意,当外力为100N时,弹簧的伸长量为5mm,求弹簧的弹性系数k。
解,根据胡克定律,伸长量ΔL与外力F成正比,即ΔL=kF。
代入已知条件ΔL=5mm,F=100N,解得k=0.05N/mm。
1.2 问题二。
一根钢棒的长度为2m,横截面积为2cm²,弹性模量为2×10^11N/m²。
当外力作用在钢棒上时,钢棒的伸长量为多少?解,根据胡克定律,伸长量ΔL与外力F成正比,即ΔL=FL/AE,其中F为外力,L为长度,A为横截面积,E为弹性模量。
代入已知条件F=100N,L=2m,A=2cm²=2×10^-4m²,E=2×10^11N/m²,解得ΔL=0.1mm。
2. 塑性力学。
2.1 问题一。
一块材料的屈服强度为200MPa,抗拉强度为400MPa。
求这种材料的屈服应力和极限应力。
解,屈服应力即屈服强度,为200MPa;极限应力即抗拉强度,为400MPa。
2.2 问题二。
一块材料在拉伸过程中,当外力达到1000N时发生塑性变形,而当外力继续增加到1500N时,材料发生断裂。
求这种材料的屈服强度和极限强度。
解,屈服强度为1000N,极限强度为1500N。
3. 疲劳力学。
3.1 问题一。
一根钢材在交变应力作用下,发生疲劳破坏,其疲劳极限为200MPa。
求该钢材在交变应力为150MPa时的寿命。
解,根据疲劳极限的定义,当交变应力小于疲劳极限时,材料不会发生疲劳破坏,因此寿命为无穷大。
3.2 问题二。
一根铝材在交变应力为100MPa时,其寿命为1000次循环。
求该铝材的疲劳极限。
解,根据题意,当交变应力为100MPa时,寿命为1000次循环,代入疲劳极限的定义,得到疲劳极限为100MPa。
材料力学课后习题答案
2 2 Fl 2 4 Fl E (d1 d 2 ) d 2 d1 Ed 1 d 2
[习题 2-10] 受轴向拉力 F 作用的箱形薄壁杆如图所示。已知该材料的弹性常数为 E , ,试 求 C 与 D 两点间的距离改变量 CD 。
解:
'
(2)由变形能原理求 A 点的铅垂方向的位移
2 N12 l1 N 2 l2 1 F A 2 2 EA1 2 EA2 2 l2 1 N12 l1 N 2 ( ) F EA1 EA2
A
式中, l1 1000 / sin 45o 1414(mm) ; l 2 800 / sin 30 o 1600(mm)
解:墩身底面的轴力为:
N ( F G) F Alg
2-3 图
1000 (3 2 3.14 12 ) 10 2.35 9.8 3104.942(kN)
墩身底面积: A (3 2 3.14 12 ) 9.14(m 2 ) 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
FN 2l 40 107 0.15 l2 4.76 EA2 210 109 12 106 从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
( 2)
V F Ay F1 l1 +F2 l2 0 Ay 20.33 ()
F 35kN 。已知杆 AB 和 AC 的直径分别为 d1 12mm 和 d 2 15mm ,钢的弹性模量
E 210GPa 。试求 A 点在铅垂方向的位移。 解: (1)求 AB、AC 杆的轴力 以节点 A 为研究对象,其受力图如图所示。 由平衡条件得出:
材料力学全部习题解答
弹性模量
b
E 2 2 0 M P a 2 2 0 1 0 9P a 2 2 0 G P a 0 .1 0 0 0
s
屈服极限 s 240MPa
强度极限 b 445MPa
伸长率 ll010000m ax2800
由于 280;故0该50 材0料属于塑性材料;
13
解:1由图得
弹性模量 E0 3.550110063700GPa
A x l10.938m m
节点A铅直位移
A ytan 4 l150co sl4 2503.589m m
23
解:1 建立平衡方程 由平衡方程
MB 0 FN1aFN22aF2a
FN 2 FN1
得: FN12F1N22F
l1
l2
2.建立补充方程
3 强度计算 联立方程1和方
程(2);得
从变形图中可以看出;变形几何关
l
l0
断面收缩率
AAA110000d22d22d2121000065.1900
由于 2故.4 属6 % 于 塑5 性% 材料;
15
解:杆件上的正应力为
F A
4F D2 -d2
材料的许用应力为
要求
s
ns
由此得
D 4Fns d2 19.87mm
s
取杆的外径为
D19.87m m
16
FN1 FN 2
Iz= I( za) I( zR ) =1 a2 4
2R4 a4 R 4 =
64 12 4
27
Z
解 a沿截面顶端建立坐标轴z;,y轴不变; 图示截面对z,轴的形心及惯性矩为
0 .1
0 .5
y d A 0 .3 5 y d y2 0 .0 5 y d y
《材料力学》课后题答案(第1-3章)
(2)CD和AB一样长时,计算总的伸长量(复合杆)
PL /(E1A1 E2 A2 )
4PL
/[E1πd12
E2π(d
2 2
d12
)]
1.7mm
(3)没有套管时,计算总的伸长量
' PL / E1A1 4PL / E1πd12
3.42mm
比较3种情况下的 变形,能得到什
么结论?
解:(1)由已知条件得,
应变 0.001
由胡克定律,得
铜 E铜 100GPa 0.001 100MPa 铝 E铝 72GPa 0.001 72MPa
计算轴力
FN,铝 铝 A铝
FN,铜 铜 A铜
72MPa 100MPa
π 4π 4
[(40mm)2 (25mm)2 (25mm)2 49.1kN
0
则可得: 29.1
如图所示总长L0=1.25m的柔性弦线栓在A、B两个支座上,A、 B高度不同,A比B高。弦线上放置无摩擦滚轮,滚轮上承受 力P。图中C点为平衡后滚轮停留的位置。设A、B间水平距离 L=1.0m,弦线拉断力为200N,设计安全因数为3.0,试确定许
用载荷P。
解:对C处进行受力分析, 列出平衡方程:
ε l / l (1mm)/(5103 mm) 2 104
(2)计算横截面上的正应力
c FN / A 6 106 N / m2 6MPa
(3)计算混凝土的弹性模量
E c / 6MPa / 2 104 30GPa
如图所示构件上一点 A处的两个线段AB和 AC,变形前夹角为 60°,变形后夹角为 59°。试计算A点处的 切应变。
解:(1)计算AC段与BC段的伸长量
AC BD Pb / E1A1 4Pb / E1πd12 0.685mm
《材料力学》课后习题答案(详细)
第二章轴向拉(压)变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力FN 211=-02222=+-=-F F N (2)作轴力图FF F F N =+-=-2233轴力图如图所示。
(c)解:(1)求指定截面上的轴力FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=-轴力图如图所示。
(d)解:(1)求指定截面上的轴力FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图中间段的轴力方程为:x aF F x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001020231111-=⨯-==--σMPamm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ[习题2-3]试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σMPa mmN A N 3.3330010102322222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-4]图示一混合屋架结构的计算简图。
材料力学课后习题答案(孙训方版)
材料力学课后习题答案(孙训方版)第一题题目一个长方形木框架,水平放置在水平地面上。
长框架的外尺寸为$30cm \\times 50cm$,它的截面尺寸为$3cm \\times 5cm$。
假设木框架的密度为0.8g/gg3。
求木框架的质量和总体积。
解答1.首先计算木框架的质量。
木框架的质量可以通过密度和体积来计算,即$质量 = 密度 \\times 体积$。
–密度:0.8g/gg3–体积:$30cm \\times 50cm \\times (3cm \\times 5cm)$2.接下来计算木框架的总体积。
木框架的总体积可以通过长方体的体积公式来计算,即$总体积 = 长 \\times 宽\\times 高$。
–长:30gg–宽:50gg–高:$3cm \\times 5cm$第二题题目一根长度为g的不可拉伸绳子的一端固定在墙上,另一端悬挂着一个长度为g的细杆。
绳子与杆之间的接触点到杆的一端的距离为g。
当绳子受到的拉力为g时,细杆的上升高度为多少?解答1.首先计算杆的上升高度。
当绳子受到拉力g时,杆会上升一定的高度。
杆的上升高度可以通过应变和材料的形变关系来计算,即$上升高度 = \\frac{F}{EA}$。
–F:绳子受到的拉力–E:材料的弹性模量–A:杆的截面积2.接下来计算杆的截面积。
杆的截面积可以通过杆的形状和尺寸计算,即$截面积 = \\pi r^2$。
–r:杆的半径–杆的形状为圆柱体,半径可以通过细杆的长度g和绳子与杆之间的距离g计算,即$r = \\sqrt{l^2 -a^2}$。
第三题题目一根长为g的不可拉伸绳子的一端固定,另一端挂着一个重物。
当重物受到的重力为g g时,绳子的张力为多少?解答1.首先计算绳子的张力。
绳子的张力可以通过平衡条件来计算,即g g=g g。
–F_t:绳子的张力–F_g:重物受到的重力第四题题目一根长为g的绳子悬挂在两个固定点之间,中间有一个重物。
当重物悬挂在中间位置时,绳子受到的张力为g。
材料力学习题大全及答案
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
材料力学课后答案
第三张(1)静应力:静应力:人小和方向不随转移而产生变化或变化较缓慢的应力,其作用下零件可能产生静断裂或过大的塑性变形,即应按静强度进行计算。
⑵变应力:犬小和方向均可能随时间转移产生变化者,它可以是由变载荷引起的,也可能因静载荷产生(如电动机重量给梁带来的弯曲应力)变应力作用的零件主要发生疲劳失效。
(3)工作应力:用计算载荷按材料力学基本公式求得作用在零件剖面上的内力Qp, CT c, O-,r, G等。
F(4)计算应力:根据零件危险断面的复杂应力状态,按适当的强度理论确定的,有相当破坏作用的应力。
(5)极限应力:根据材料性质及应力种类用试件试验得到的机械性能失效时应力极限值,常分为用光滑试件进行试验得到的材料极限应力及用零件试验得到的零件的极限应力。
(6)许用应力:设计零件时,按相应强度准则、计算应力允许达到的最大值[6 = % /[S] >刁.“。
(7)计算安全系数:零件(材料)的极限应力与计算应力的比值S ca=(y^l(y ca,以衡量安全程度。
(8)安全系数许用值:根据零件重要程度及计算方法精确度给岀设计零件安全程度的许用范围[S],力求S“>[S]。
第五章(1)图5-12所示为一个托架的边板用6个饺制孔用螺栓与相邻机架联接。
托架受一大小为60WN的载荷乍用,该载荷与边板螺栓组的对称轴线)少相平行,距离为250mm. 试确定螺栓组中受力最人的螺栓。
解:如答图2所示,将载荷向螺栓组形心O简化,得横向力F. = 60kN答图2图5-12扭矩 T = 6X 104 X 250 = 15X 106 N ・mm=125/cos 30c = 144.3imiGin = 125tan30° =0・兀云故尸心=T /max /[3^ax + 3 x (O.5r max )2 卜 T/(3r_ + 3 z_/4)= 47/(15心 J= 4xl5x 10 6/(15 x 144.3)= 27720 N F 与合成:F ; = F max srn30c = F max /2=13860 NF ; =^00530° =24006^故螺栓3受力最大为F 3max = JC+(Ff=J13860,+(24006 +10000 )' = 36772 N(2)图5-13所示为一个托架的边板用6个较制孔用螺栓与相邻机架联接。
《材料力学》第二章课后习题及参考答案
在材料力学中,应力和应变是描述材料受力状态的基本物理量。应力表示单位面积上的 力,而应变则表示材料的变形程度。
简答题3答案
弹性力学和塑性力学是材料力学的重要分支。弹性力学主要研究材料在弹性范围内的应 力、应变和位移,而塑性力学则研究材料在塑性变形阶段的力学行为。
选择题答案
80%
选择题1答案
选择题3解析
这道题考察了学生对材料力学中 弯曲应力的理解,学生需要理解 弯曲应力的概念和计算方法,并 能够根据实际情况进行选择和应 用。
计算题解析
01
计算题1解析
这道题主要考察了学生对材料力学中拉压杆的计算能力,学生需要掌握
拉压杆的应力、应变计算方法,并能够根据实际情况进行选择和应用。
02
计算题2解析
计算题2答案
根据题意,先求出梁的剪力和弯矩,然后根据剪力和弯矩的关系 求出梁的位移分布,最后根据位移和应力的关系求出应力分布。
03
习题解析Biblioteka 简答题解析简答题1解析这道题考查了学生对材料力学 基本概念的理解,需要明确应 力和应变的概念及关系,并能 够解释在材料力学中如何应用 。
简答题2解析
这道题主要考察了学生对材料 力学中弹性模量的理解,以及 如何利用弹性模量进行相关计 算。学生需要理解弹性模量的 物理意义,掌握其计算方法。
C. 材料力学的任务之一是研究材 料的各种力学性能,包括强度、 刚度和稳定性等。
100%
选择题2答案
D. 在材料力学中,应力和应变是 描述材料受力状态的基本物理量 。
80%
选择题3答案
B. 材料力学主要研究材料的力学 性能和内部结构的关系,包括弹 性、塑性和韧性等。
计算题答案
材料力学课后习题答案
有
AA
l AC cos 30
AA
tan
30
AA
tan
45
l AB cos 45
AA
整理得
Ay
AA
l AC cos 30
l AB cos 45
tan 30
1 tan 30 1.366 mm
2-5 图示为打入土中的混凝土地桩,顶端承受载荷F,并由作用于地桩的摩擦力所支持。设沿 地桩单位长度的摩擦力为 f,且 f =k y2,式中,k为常数。试求地桩的缩短量δ。已知地桩的 横截面面积为A,弹性模量为E,埋入土中的长度为l。
cos2
2
sin 2
由题义,要求: 2
则有: cos2 2 sin 2 tan 1
2
2
即粘接面法向的角度为: tan1 1 26.6
2
2-4图示实心圆钢杆AB和AC在A点作用有铅垂向下的力F=35kN。已知杆AB和AC的直径分别 为d1=12mm和d2=15mm,钢的弹性模量E=210GPa。试求A点在铅垂方向的位移。
解:混凝土柱各段轴力分别为:
FN1 F gA1x FN 2 F gA1l1 gA2 (x l1)
混凝土柱各段危险截面分别为柱中截面和柱底截面,其轴力分别为:
FN1max F gA1l1
FN 2max F g( A1l1 A2l2 ) ( 受压 )
由强度条件: FN max [ ]
bs
Fb Abs
(D2
F d2)/4
d 2 (D2
F /d2
1) / 4
FN A
F
d 2 / 4
则有:
d 3 hd
4h 4
3
D 2 1 1 D 6 d 1.225d
(完整版)材料力学习题册答案..
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
(完整版)材料力学课后习题答案
xx8-1 试求图示各杆的轴力,并指出轴力的最大值。
取 1-1 截面的左段;(2) (3) F N1取 2-2 截面的右段;F R用截面法求内力,取1-1、2-2、 3-3 截面;(1) (2) (3) (4)(5)(d)(1)取 1-1 截面的左段2;kN 取 2-2 截面的左段;取 3-3 截面的右段;轴力最大值: 用截面法求内力,取13kN 2 2kN33kN12 3F N11 31kN 21 32 F N33kN1-1、 2-2 截面;38-2 解:8-5 (2) (2) 取 1-1 截面的右段; 取 2-2 截面的右段F ;N112kN 22kN(5) 轴力最大值: 试画出 8-1所示各杆的轴力图。
(a) (b) (c) (d)F NF FN N(+)F图示阶梯形圆截面杆,承受F 轴N 向载荷(+) F 1=50 kN 与3kNF 2作用, 1kN (+) 1kN(-)(+) Fx AB 与 BC 段的直径分别为 x (-)1kN2kNd 1=20 mm 和 d 2=30 mm ,如欲使 AB 与 BC 段横截面上的正应力相同,试求载荷 F 2 之值。
(2) 求 1-1、 2-2 截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷 F=10 kN 作用,杆的横截面面积 A=1000 mm 2,粘接面的方位 角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
l 1l 2解: (1) 用截面法求 AB 、 BC 段的轴力;(2) 分段计F 算个杆向变形;FAC 杆缩短。
2F8-22 图示桁架,杆 1与A 杆 2的横截面面积与材料均相B 同,在节点 A 处承受C 载荷 F 作用。
从解: 8-6 解: (1) 用截面法求出 F 11-1、2-2 截面的轴力;(2) 求 1-1、 2-2 截面的正应A 力 ,利用正应力相B 同 ;题 8-5 图所示圆截面杆,已知载荷 1F 1=200 kN ,F 2=1020 kN ,CAB 段的直径 d 1=40 mm ,如 欲使 AB 与 BC 段横截面上的正应力相同,试求 BC 段的直径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章轴向拉(压)变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力FN 211=-02222=+-=-F F N (2)作轴力图FF F F N =+-=-2233轴力图如图所示。
(c)解:(1)求指定截面上的轴力FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=-轴力图如图所示。
(d)解:(1)求指定截面上的轴力FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图中间段的轴力方程为:x aF F x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001020231111-=⨯-==--σMPamm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ[习题2-3]试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σMPa mmN A N 3.3330010102322222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-4]图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个mm mm 875⨯的等边角钢。
已知屋面承受集度为m kN q /20=的竖直均布荷载。
试求拉杆AE 和EC 横截面上的应力。
解:(1)求支座反力由结构的对称性可知:)(4.177)937.42(205.021kN ql R R B A =+⨯⨯⨯===(2)求AE 和EG 杆的轴力①用假想的垂直截面把C 铰和EG 杆同时切断,取左部分为研究对象,其受力图如图所示。
由平衡条件可知:)(=∑F MC087.84.177287.8)5.437.4(20)2.11(=⨯-⨯+⨯++⋅EG N )(62.357]87.84.177287.8)5.437.4(20[2.21kN N EG=⨯+⨯+⨯-⨯=②以C 节点为研究对象,其受力图如图所示。
由平平衡条件可得:=∑X 0cos =-αEA EG N N )(86.366137.437.462.357cos 22kN N N EGEA =+==α(3)求拉杆AE 和EG 横截面上的应力查型钢表得单个mm mm 875⨯等边角钢的面积为:2213.1150503.11mm cm A ==MPa mm N A N EA AE5.1593.115021086.36623=⨯⨯==σMPa mmN A N EG EG5.1553.115021062.35723=⨯⨯==σ[习题2-5]石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:gAl F G F N ρ--=+-=)((942.31048.935.210)114.323(10002kN-=⨯⨯⨯⨯+⨯--=8.935.210)114.323(10002⨯⨯⨯⨯+⨯--=)(942.3104kN -=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-6]图示拉杆承受轴向拉力kN F 10=,杆的横截面面积2100mm A =。
如以α表示斜截面与横截面的夹角,试求当o o o o o 90,60,45,30,0=α时各斜截面上的正应力和切应力,并用图表示其方向。
解:斜截面上的正应力与切应力的公式为:ασσα20cos =αστα2sin 2=式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:轴向拉/压杆斜截面上的应力计算题目编号习题2-6100001000100100.00.0100001003010075.043.3100001004510050.050.0100001006010025.043.310000100901000.00.0[习题2-7]一根等直杆受力如图所示。
已知杆的横截面面积A 和材料的弹性模量E。
试作轴力图,并求杆端点D 的位移。
解:(1)作轴力图FN CD =F F F N BC -=+-=2FF F F N AB =+-=22)(0MPa σ)(MPa ασ)(MPa ατ)(o α)(N N )(2mm AAD 杆的轴力图如图所示。
(2)求D 点的位移EAl N EA l N EA l N l CDCD BC BC AB AB AD D ++=∆=∆EA Nl EA Fl EA Fl 3/3/3/+-+=EAFl3=(→)[习题2-8]一木桩受力如图所示。
柱的横。
截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量GPa E 10=。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(1)作轴力图kNN AC 100-=)(260160100kN N CB -=--=轴力图如图所示。
(2)计算各段上的应力MPa mm NA N AC AC 5.22002001010023-=⨯⨯-==σ。
MPa mm N A N CB CB5.62002001026023-=⨯⨯-==σ,(3)计算各段柱的纵向线应变43105.210105.2-⨯-=⨯-==MPa MPa E AC AC σε43105.610105.6-⨯-=⨯-==MPaMPa E CB CB σε(4)计算柱的总变形)(35.110)15005.615005.2(4mm l l l CB CB AC AC AC =⨯⨯-⨯-=⋅+⋅=∆-εε[习题2-9]一根直径mm d 16=、长m l 3=的圆截面杆,承受轴向拉力kN F 30=,其伸长为mm l 2.2=∆。
试求杆横截面上的应力与材料的弹性模量E 。
解:(1)求杆件横截面上的应力MPamm NA N 3.1491614.3411030223=⨯⨯⨯==σ(2)求弹性模量因为:EA Nl l =∆,所以:GPa MPa l l l A l N E 6.203)(9.2035902.230003.149==⨯=∆⋅=∆⋅⋅=σ。
[习题2-10](1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变s ε等于直径方向的线应变d ε。
(2)一根直径为mm d 10=的圆截面杆,在轴向力F 作用下,直径减小了0.0025mm。
如材料的弹性模量GPa E 210=,泊松比3.0=ν,试求该轴向拉力F。
(3)空心圆截面杆,外直径mm D 120=,内直径mm d 60=,材料的泊松比3.0=ν。
当其轴向拉伸时,已知纵向线应变001.0=,试求其变形后的壁厚。
解:(1)证明ds εε=在圆形截面上取一点A,连结圆心O 与A 点,则OA 即代表直径方向。
过A 点作一条直线AC 垂直于OA,则AC 方向代表圆周方向。
νεεε-==AC s (泊松比的定义式),同理,νεεε-==OA d 故有:d s εε=。
(2)求轴向力Fmmd 0025.0-=∆4'105.2100025.0-⨯-=-=∆=d d ενεε-='44'103253.0105.2-⨯=⨯--=-=νεεεσE =εE AF=kN N AE F 74.13)(5.1373710325102101014.325.0432==⨯⨯⨯⨯⨯⨯==-ε(3)求变形后的壁厚4'103001.03.0-⨯-=⨯-=-=νεε4'103)(-⨯-==--∆εrR r R mmr R 009.0)3060()103()(4-=-⨯⨯-=-∆-变形厚的壁厚:)(991.29009.030|)(|)(mm r R r R =-=-∆--=∆[习题2-11]受轴向拉力F 作用的箱形薄壁杆如图所示。
已知该材料的弹性常数为ν,E ,试求C 与D 两点间的距离改变量CD ∆。
解:EAFE AF νννεε-=-=-=/'式中,δδδa a a A 4)()(22=--+=,故:δνεEa F 4'-=δνεEa F a a 4'-==∆δνE F a a a 4'-=-=∆δνE F a a 4'-=a a a CD 12145)()(243232=+='12145)'()'(243232''a a a D C =+=δνδνE F E F a a CD D C CD 4003.1412145)(12145)('''⋅-=⋅-=-=-=∆[习题2-12]图示结构中,AB 为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量GPa E 210=,已知m l 1=,221100mm A A ==,23150mm A =,kN F 20=。
试求C 点的水平位移和铅垂位移。
解:(1)求各杆的轴力以AB 杆为研究对象,其受力图如图所示。
因为AB 平衡,所以=∑X 045cos 3=o N 03=N 由对称性可知,0=∆CH )(10205.05.021kN F N N =⨯===受力图(2)求C 点的水平位移与铅垂位移。
A 点的铅垂位移:mm mm mm N mmN EA l Nl 476.0100/21000010001000022111=⨯⨯==∆B 点的铅垂位移:mm mmmm N mmN EA l N l 476.0100/21000010001000022222=⨯⨯==∆1、2、3杆的变形协(谐)调的情况如图所示。