随机过程课程第三章 马尔可夫过程

合集下载

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程
k
∑ = Pi j (t) ⋅ Pj j (Δt) + Pik (t) ⋅ Pk j (Δt) k≠ j
∑ = Pi j (t)[1 + q j j ⋅ Δt + o(Δt)] + Pik (t) ⋅[qk j ⋅ Δt + o(Δt)] k≠ j
∑ = Pi j (t) + Pik (t) ⋅[qk j ⋅ Δt + o(.1 福克-普朗克方程
设 t 时刻系统状态概率记为: w(t) ,初始概率为 w(0)
若已知初始概率和转移率矩阵 Q :如何求 w(t) ?
根据全概率公式,有
∑ w j (t + Δt) = wk (t) ⋅ Pk j (Δt)
k
∑ = w j (t) ⋅ Pj j (Δt) + wk (t) ⋅ Pk j (Δt) k≠ j
马尔可夫过程
¾ 1 马尔可夫过程概论 6 1.1 马尔可夫过程处于某个状态的概率 6 1.2 马尔可夫过程的状态转移概率 6 1.3 参数连续状态离散马尔可夫过程的状态转移的切普曼-柯尔莫哥洛夫方程 切普曼-柯尔莫哥洛夫方程 齐次切普曼-柯尔莫哥洛夫方程 转移概率分布函数、转移概率密度函数 6 1.4 马尔可夫过程状态瞬时转移的跳跃率函数和跳跃条件分布函数 瞬时转移概率分布函数 6 1.5 确定马尔可夫过程 Q 矩阵 跳跃强度、转移概率 Q 矩阵
渐进分析:确定当 t → ∞ 时,在各个状态上的概率分布;
典型问题:机器维修问题
设某机器的正常工作时间是一负指数分布的随机变量,平均正常工作时间为 1/λ,它损 坏后的修复时间也是一个负指数分布的随机变量,它的平均修复时间为 1/μ。 如机器在 t=0 时是正常工作的,问在 t=10 时机器正常工作的概率如何?

随机过程课件-马尔可夫链

随机过程课件-马尔可夫链
定理二
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。

随机过程中的马尔可夫过程

随机过程中的马尔可夫过程

随机过程中的马尔可夫过程在随机过程中的马尔可夫过程马尔可夫过程是在随机过程中常见且重要的一种形式。

它具有一定的数学特性和模型结构,能够描述在离散或连续时间段内状态的转移以及相关的概率。

本文将对马尔可夫过程的基本概念、特性和应用进行详细介绍。

一、概述马尔可夫过程是一种随机过程,其状态转移满足马尔可夫性质。

马尔可夫性质是指在给定当前状态下,未来和过去的转移概率仅与当前状态有关,与过去状态无关。

这种性质使得马尔可夫过程具有简化模型和简单计算的优势,被广泛应用于各个领域。

二、基本概念1. 状态空间:马尔可夫过程的状态空间是指所有可能取值的集合。

例如,一个骰子的状态空间为{1, 2, 3, 4, 5, 6}。

2. 转移概率:马尔可夫过程中的状态转移概率描述了从一个状态到另一个状态的概率。

用P(Xt+1 = j | Xt = i)表示从状态i转移到状态j的概率。

3. 转移矩阵:将所有状态之间的转移概率整合到一个矩阵中,称为转移矩阵。

转移矩阵是一个方阵,大小为n×n,其中n是状态空间的数量。

4. 平稳分布:在马尔可夫过程中,如果某个状态的概率分布在经过无限次转移后保持不变,那么该概率分布称为平稳分布。

平稳分布可以通过解线性方程组来计算。

三、特性1. 马尔可夫链:马尔可夫过程可以看作是离散时间的马尔可夫链。

马尔可夫链是指具有无记忆性质的随机序列,即未来状态只依赖于当前状态。

2. 齐次马尔可夫过程:如果马尔可夫过程的转移概率与时间无关,那么称为齐次马尔可夫过程。

齐次马尔可夫过程的转移概率矩阵在时间上保持不变。

3. 连续时间马尔可夫过程:如果马尔可夫过程的时间是连续的,则称为连续时间马尔可夫过程。

连续时间的马尔可夫过程可以用微分方程来描述。

四、应用领域1. 金融学:马尔可夫过程常用于金融市场的建模和分析,例如股票价格的预测和风险管理。

2. 信号处理:马尔可夫过程可以用于信号和图像的分析与处理,包括语音识别和图像识别等领域。

随机过程中的马尔可夫过程理论

随机过程中的马尔可夫过程理论

随机过程中的马尔可夫过程理论马尔可夫过程理论是随机过程中的一种重要理论,它描述了一类具有马尔可夫性质的随机过程。

在随机过程中,马尔可夫过程是指一个系统在给定当前状态下,其未来状态的概率分布只依赖于当前状态,而与过去的状态无关。

马尔可夫过程在实际应用中具有广泛的应用,尤其在可靠性分析、排队论和金融领域等方面发挥重要作用。

一、马尔可夫过程的基本概念马尔可夫过程由状态空间、转移概率矩阵和初始概率分布三要素构成。

1. 状态空间状态空间是指一个马尔可夫过程中可能出现的所有状态的集合。

通常用S表示,状态空间可以是有限的,也可以是无限的。

2. 转移概率矩阵转移概率矩阵描述了一个当前状态到下一个状态的转移概率。

假设状态空间S有n个状态,转移概率矩阵P的元素P(i, j)表示从状态i转移到状态j的概率。

转移概率矩阵满足非负性和归一性条件,即每个元素都大于等于零,每行元素之和等于1。

3. 初始概率分布初始概率分布是指系统在初始状态下各个状态出现的概率分布。

假设初始状态概率分布为π,其中π(i)表示系统初始状态为i的概率。

二、马尔可夫链马尔可夫过程中的马尔可夫链是指一个没有时间限制的马尔可夫过程,也就是说,它在任意时刻都遵循马尔可夫性质。

马尔可夫链可以是有限的,也可以是无限的。

1. 不可约性不可约性是指一个马尔可夫链中的所有状态都可以通过一系列转移概率到达任何其他状态。

具有不可约性的马尔可夫链被称为不可约马尔可夫链。

2. 遍历性遍历性是指一个不可约马尔可夫链中的任意状态都能在有限步内返回到自身。

具有遍历性的马尔可夫链被称为遍历马尔可夫链。

3. 非周期性非周期性是指一个马尔可夫链中不存在周期性循环。

如果一个状态经过若干步后又返回到自身的最小步数是1,则称该状态为非周期状态。

具有非周期性的马尔可夫链被称为非周期马尔可夫链。

三、马尔可夫过程的稳定性马尔可夫过程的稳定性是指在经过一段时间后,随机过程的状态分布不再发生显著变化。

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程
渐进分析:确定当 t → ∞ 时,在各个状态上的概率分布;
典型问题:机器维修问题
设某机器的正常工作时间是一负指数分布的随机变量,平均正常工作时间为 1/λ,它损 坏后的修复时间也是一个负指数分布的随机变量,它的平均修复时间为 1/μ。 如机器在 t=0 时是正常工作的,问在 t=10 时机器正常工作的概率如何?
∑ = Pi j (t) + [qik ⋅ Δt + o(Δt)] ⋅ Pk j (t) k
由此得到关于状态转移概率的一个方程:
柯尔莫哥洛夫-费勒后退方程:
∑ dPij (t) = dt
k
qik Pk j (t)
初始条件是
Pij
(0)
=
⎧1 ⎨⎩ 0
(i = j) (i ≠ j)
考虑矩阵柯尔莫哥洛夫-费勒后退方程中的第 j 列,将矩阵 P(t) 的第 j 列记作 s j (t)
初始条件: w(0)
由此,可以根据初始概率和转移率矩阵得到 w(t) 。
若已知初始概率和转移概率矩阵 P:如何求 w(t) ?
根据全概率公式:
w(t) = w(0)P(t)
求解机器维修问题
2.2 切普曼-柯尔莫哥洛夫方程
P{ξ (t3 ) = j /ξ (t1) = i}
= ∑ P{ξ (t2 ) = k /ξ (t1) = i}⋅ P{ξ (t3 ) = j /ξ (t2 ) = k} k∈I (t1 < t2 < t3 , i, j ∈ I )
对于 t1 < t2 < " < tm < tm+1 ∈ T ,若在 t1 < t2 < " < tm ∈ T 这些时刻观察到随机过程 的值是 i1,i2 ,"im ,则 tm+1 > tm ∈ T 时刻的条件概率满足:

随机过程-正态马尔可夫过程

随机过程-正态马尔可夫过程

所以, 是马尔可夫过程。 所以, ξ(t) 是马尔可夫过程。
例3.6
图示电路,输入为零均值平稳正态白噪声, 图示电路, 输入为零均值平稳正态白噪声,求
输出过程的特性。 输出过程的特性。
R
ξ(t)
C
η(t)
解:系统传递函数的模平方为
α2 H( jf ) = 2 α + (2π f )2
2
1 α 其中, 输入平稳正态白噪声, 1。 其中, = 。输入平稳正态白噪声,即Sξ ( f ) = 1。于 RC
2 n
设 a= C(1)/C(0),由于 C(1) ≤C(0),故|a|≤1 ,因此 , ,
C(n) = anC(0)(n ≥ 0)
充分性:如果 C(n)/C(0)=an,设n=n1+n2,则 充分性:
C(n1) C(n2 ) C(n1)C(n2 ) C(n) = an1 an2 = ⇒ C(n) = C(0) C(0) C(0) C(0)
C(τ ) = eaτ C(0)
因为|C(τ)|<C(0),故τ >0 时,a<0 , 因为 充分性:如果 充分性:如果C(τ)=eaτC(0) ,则
C(τ + s) C(τ ) C(s) = ea(τ +s) = eaτ eas = C(0) C(0) C(0)

C(τ )C(s) C(τ + s) = C(0)
是输出为
α2 Sη ( f ) = H( jf ) Sξ ( f ) = 2 α + (2π f )2
2
由此可得
Rη (τ ) =
α
2
e
−α τ
由E{ξ(t)}=0得E{η(t)}=0 ,因此 得

随机过程第三章课件

随机过程第三章课件

2
状态转移概率
Байду номын сангаас
通过定义状态转移矩阵,可以计算出不同状态之间的转移概率。
3
状态分布
简单随机过程可以有稳定的状态分布,在长期运行时呈现固定的概率分布。
泊松过程介绍
定义和特征
泊松过程是一种连续时间的计数过 程,具有独立增量和固定的平均速 率。
概率分布
应用领域
泊松过程的计数分布服从泊松分布, 可以用于模拟和预测稀有事件的发 生。
平稳分布
如果马尔可夫链的状态分布不随时间变化,称之为 平稳分布。
应用领域
马尔可夫链在金融、生物学、通信等领域有广泛的 应用。
离散时间马尔可夫链
状态空间
离散时间马尔可夫链的状态空间可 以是有限的或无限的。
转移图
状态之间的转移关系可以用转移图 来可视化,更易理解和分析。
平稳分布
离散时间马尔可夫链存在唯一平稳 分布,可以用数值方法求解。
连续时间马尔可夫链
1 指数分布
2 充分条件
3 应用领域
连续时间马尔可夫链的时间 间隔服从指数分布,可以描 述事件发生的间隔时间。
连续时间马尔可夫链需要满 足无记忆性和马尔可夫性才 能成立。
连续时间马尔可夫链常用于 排队论、信号处理和可靠性 分析等领域。
简单随机过程定义
1
定义
简单随机过程是指在离散或连续时间内,随机事件按固定概率发生,无记忆性,且状态空间是有限 的。
泊松过程在交通流量、通信网络和 排队论等领域有广泛的应用。
布朗运动原理解析
1
定义和特征
布朗运动是一种连续时间和连续状态的随机过程,具有随机性和连续性。
2
随机漫步
布朗运动可以看作是随机漫步的连续极限,可以用随机微分方程描述。

工程随机过程_3_马尔可夫过程(Markov)

工程随机过程_3_马尔可夫过程(Markov)

College of Science, Hohai University
Stochastic Processes
定理2 若随机变量序列{X(n),n0}对任何n 均满足下式,则该序列为马氏链。
P{ X (0) i0 , X (1) i1 ,, X ( n) in }
P { X ( 0) i 0 } P{ X (1) i1 | X (0) i0 } P{ X ( 2) i2 | X (1) i1 } P { X ( 3 ) i 3 | X ( 2) i 2 } P{ X ( n) in | X ( n 1) in1 }
Pn ( P1 )
n
College of Science, Hohai University
Stochastic Processes
初始概率分布: 马氏链在初始时刻(即零时刻)取各状态 的概率分布 p0 ( i0 ) P{ X (0) i0 } i E 0 称为它的初始概率分布。 绝对概率分布: 马氏链在第n时刻(n 0)取各状态的概 率分布 p ( j ) P{ X (n) j } j E
第三章
马尔可夫过程 (Markov)
College of Science, Hohai University
Stochastic Processes
Markov过程是一个具有无后效性的随机过程. 无后效性: 当过程在时刻tm所处的状态为已知时, 过程在 大于tm的时刻t所处状态的概率特性只与过程在 tm时刻所处的状态有关, 而与过程在tm时刻之前 的状态无关. (1)参数和状态都离散 -----马氏链 (2)参数离散, 状态连续 -----马氏序列 (3)其余皆为马氏过程.

随机过程第三章课件

随机过程第三章课件

(3)该过程为平稳增量过程;
(4)在 t , t t 内出现一个事件的概率为t ot(当 t 0 时)
为 ot ,即 P N t t N t 2 ot
则称该计数过程为泊松过程。
为一常数;在 t , t t 内出现事件二次以及二次以上的概率
st
,则 N s N t
3.2 泊松过程
【二】泊松过程:
【定义一】泊松过程 设 N t , t 0 为计数过程,其状态取非负整数,并满 足下列假设:
(1)从 t 0 起开始观察事件,即 N 0 0
和 N t4 N t3 是相互统计独立的;
(2)该过程是独立增量过程,即当 0 t1 t2 t3 t4 时,N t2 N t1
FSn
t k et t 0 t PSn t PN t n

f Sn t
dFSn t dt
t n1 t 0 e t n 1!
k n
k!
3.3 有关泊松过程的几个问题
【三】到达时间的条件分布:
设泊松过程 N t , t 0 ,如果已知在 0, t 内有一个 A 事件出现,问这 一事件到达时间的分布如何?
PT1 s, N t 1 PN s 1, N t N s 0 PN t 1 PN t 1 PN s 1PN t N s 0 PN t 1
(1)从 t 0 起开始观察事件,即 N 0 0
和 N t4 N t3 是相互统计独立的;
(2)该过程是独立增量过程,即当 0 t1 t2 t3 t4 时,N t2 N t1

随机过程中的马尔可夫决策过程

随机过程中的马尔可夫决策过程

随机过程中的马尔可夫决策过程马尔可夫决策过程(Markov Decision Process,MDP)是研究随机过程中最常用的一种方法。

它是一个数学框架,用于描述一个决策问题的动态过程,其中包含了决策者、状态和决策时的不确定性。

一、马尔可夫决策过程的基本概念马尔可夫决策过程由以下几个要素组成:1. 状态(State):表示系统在某一时刻的条件或属性,可以用来描述决策问题的各个可能的情况。

状态可以是离散的,也可以是连续的。

2. 决策(Decision):表示决策者在每个状态下可以采取的行为或策略。

决策可以是确定性的,也可以是随机性的。

3. 反馈(Feedback):表示决策者在采取某个行为后,系统转移到下一个状态的概率。

这个概率可以是确定性的,也可以是随机性的。

4. 收益(Reward):表示决策者在每个状态下采取某个行为后获得的收益或效用。

收益可以是实数值,也可以是离散值。

5. 转移概率(Transition Probability):表示系统从当前状态转移到下一个状态的概率。

这个概率通常是通过观测历史数据来估计得到的。

二、马尔可夫决策过程的求解方法马尔可夫决策过程的求解方法主要包括以下几种:1. 基于价值函数的方法:通过定义状态的价值函数或动作的价值函数来确定最优决策。

常用的方法有价值迭代和策略迭代。

2. 基于策略梯度的方法:通过直接优化策略的参数来确定最优决策。

这种方法可以应用于连续动作空间的问题。

3. 基于模型的方法:通过建立系统的动态模型,预测不同决策下的状态转移和收益,然后进行优化。

三、马尔可夫决策过程的应用马尔可夫决策过程在实际应用中具有广泛的应用领域,包括但不限于以下几个方面:1. 机器人路径规划:马尔可夫决策过程可以用来描述机器人在不同状态下的移动和决策过程,从而实现自主路径规划和导航。

2. 股票交易决策:马尔可夫决策过程可以用来描述股票市场的波动和交易决策,从而实现基于历史数据的股票交易策略。

马尔科夫过程

马尔科夫过程
马尔可夫过程
一、马尔可夫过程的概念
当已知随机过程在时刻 ti 所处的状态的条件下,过程在时刻 t ( ti ) 所 处的状态与过程在时刻 ti 以前的状态无关,而仅与过程在 ti 所处的状态 有关,则称该过程为马尔可夫过程。这种特性称为随机过程的“无后效 性”或马尔可夫性。
分为四类: 1 T和E都取连续集时,称为马尔可夫过程。 2 若T取连续集而E取离散集时,称为可列马尔可夫过程。 3 若T取离散集而E取连续集时,称为马尔可夫序列。 4 若T和E都取离散集时,称为马尔可夫链。状态可列的马尔可夫链称
为可列马尔可夫链;状态有限的马尔可夫链称为有限马尔可夫链。
马尔可夫序列
一、马尔可夫序列的定义
设 X1, X 2 , , X n , 表示随机过程X (t)在 t 为整数时刻的取样的随机序
列,记为 {X (n), n 1,2,, n (} 简记为 X (n)或 X n ),则可按以下方式定义马 尔可夫序列。
p11 p12 p1N
P


p21
p22

p2N



p
N1
pN2

p NN

称为一步转移概率矩阵,简称转移概率矩阵。
(1) 0 pij 1
N
(2)
pij 1
j 1
(二)n步转移概率
在齐次条件下, k n 时,可得到 n 步转移概率
P{Xn1 j | Xn in}
(i 1,2, , N)
则称 {X n} 为马尔可夫链(简称马氏链)。
2、马尔可夫链的转移概率及性质
(一)
k 1 时,有
pij (1) pij (m, m 1) pij

随机过程-马尔可夫过程应用

随机过程-马尔可夫过程应用
2 马尔可夫过程的应用
2.1 马氏过程理论在教学质量评估中的应用 马尔可夫链在教学评价中的应用是基于两次测验成绩基础上的,并假设教
学效果稳定,通过分析学生两次测验在不同成绩等级间的变化,构建转移概率 矩阵,以其稳定分布来衡量学生最终达到的成绩分布。根据教学规律与教学质 量评估的需要,马尔可夫链评估法较好地体现其在教学质量评估中的实用性与 有效性。
进入“决标阶段”,或以r3的概率不去投标而“退出”。决定投标后,或 以q4的概率中标,或以r4的概率失标而“退出”。
由于某承包公司在各阶段能否进入下一阶段,只与本阶段的决策依据有 关,而与本阶段前各阶段的决策依据无关,故研究的问题满足后无效性,是一 个有限状态的马尔可夫链。
记为{Xn,n≥0},条件概率P与n无关,故这一马氏链还是时齐的,其一步转 移概率可表示为Pil,由此可得,系统的状态转移矩阵为
从马氏链的理论及图1可知 ,状态空间I可分解为N+C1+C2,由于C1和C2为两 个互不相交的基本常返闭集,N为非常返态,且状态5和状态6分别为正常返、非 周期的吸收态.即系统的状态转移一旦进入
状态5(中标)或状态6(退出)两阶段,就永远处于这两个状态,不会再转移 到其它状态.所以国际工程投标的风险问题,可由一个带有2个吸收状态和4个 非常返状态的可约马氏链来表示。
战时装备的维修是一个动态的随机过程,要求在一系列时间点做出决策。 对于一个状态随机转移系统,在每一个观察时刻要分析系统当时所处的状态, 从可供选择的多种方案中选择一种最佳方案。由于系统下一次出现什么样的状
态具有随机性,事先无法确定,就需按实际出现的状态再作决策,这样继续下 去形成的多重决策就是序贯决策。对于具有马氏性的随机系统,其状态转移概 率已知,因此不必在状态实际出现的每一时间点去根据状态选取方案,可预先 根据分析结果决定出控制系统进一步发展的最佳方案。系统状态的马氏性和所 选择的行动方案的相互作用决定系统的进一步发展方向,运用马氏决策对战时 装备维修进行系统分析时,可降低问题分析的复杂程度。

随机过程的连续时间马尔可夫过程与转移概率

随机过程的连续时间马尔可夫过程与转移概率

随机过程的连续时间马尔可夫过程与转移概率随机过程是概率论中研究的重要课题,它描述了随机事件在时间上的演化规律。

马尔可夫过程是一类常见的随机过程,它具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关。

本文将重点讨论随机过程中的连续时间马尔可夫过程以及与之相关的转移概率。

一、连续时间马尔可夫过程的定义连续时间马尔可夫过程是指在时间上呈连续变化的随机过程,它的状态空间和状态转移概率在时间的任意一段内都保持不变。

具体而言,对于一个连续时间马尔可夫过程,其状态空间可以用S表示,状态转移概率可以用P(t)表示,其中t表示时间。

二、连续时间马尔可夫过程的特点1. 马尔可夫性质:连续时间马尔可夫过程具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关. 这一性质使得马尔可夫过程具有很好的简化性和计算性.2. 独立增量性质:连续时间马尔可夫过程具有独立增量性质,即在不重叠的时间间隔上的状态变量是相互独立的.3. 示性函数的连续性:连续时间马尔可夫过程中,随机变量状态的转移概率是连续函数,这也是它与离散时间马尔可夫过程的一个重要区别。

三、连续时间马尔可夫链与转移概率对于连续时间马尔可夫过程,其状态转移概率可以由转移概率矩阵来表示。

转移概率矩阵是一个关于时间t的函数,记作P(t)。

它的元素Pij(t)表示在时间t内从状态i转移到状态j的概率。

转移概率矩阵满足以下性质:1. Pij(t) ≥ 0,对于所有的i、j和t都成立。

2. 对于任意固定的i和t,有ΣjPij(t) = 1,即在固定时间t内,从状态i出发转移到所有可能状态j的概率之和为1。

3. 转移概率矩阵P(t)的乘积P(s+t)等于P(s)乘以P(t),即P(s+t) =P(s)P(t),其中s和t为任意的正实数。

根据转移概率矩阵P(t)的性质,我们可以得出连续时间马尔可夫过程的转移概率随时间的推移而改变,但在任意一段时间内始终保持一致。

随机过程的马尔可夫跳过程与转移概率

随机过程的马尔可夫跳过程与转移概率

随机过程的马尔可夫跳过程与转移概率马尔可夫跳过程与转移概率在随机过程中扮演着重要角色。

本文将从理论和应用两个方面探讨马尔可夫跳过程以及与之相关的转移概率。

一、马尔可夫跳过程的定义与性质马尔可夫跳过程是随机过程的一种特殊形式,其主要特点是状态之间的转移概率仅依赖于当前状态,而与过去的状态无关。

这种特性被称为马尔可夫性质,也称为无记忆性质。

马尔可夫跳过程可以用状态空间和状态转移概率矩阵来描述。

状态空间是所有可能的状态的集合,转移概率矩阵包含了从一个状态到另一个状态的概率。

通过转移概率矩阵,我们可以计算出从某个状态经过若干步转移到另一个状态的概率。

二、马尔可夫跳过程的应用马尔可夫跳过程在实际问题中有着广泛的应用,下面将分别介绍在自然语言处理和金融领域中的两个应用案例。

1. 自然语言处理中的应用在自然语言处理领域,马尔可夫跳过程常用于文本生成和语言模型的建立。

通过分析大量文本数据,我们可以构建一个马尔可夫模型,用来预测下一个词或者短语的可能性。

这种方法可以应用于机器翻译、自动摘要、文本生成等任务。

2. 金融领域中的应用在金融领域,马尔可夫跳过程可以用于建立股票价格的预测模型。

通过分析股票的历史价格数据,我们可以构建一个马尔可夫模型,用来预测未来的价格走势和风险。

这种方法可以帮助投资者进行决策,降低投资风险。

三、转移概率的计算方法转移概率是马尔可夫跳过程中一个关键的概念,它描述了从一个状态转移到另一个状态的概率。

在实际计算中,我们可以使用最大似然估计或者贝叶斯估计等方法来估计转移概率。

最大似然估计是一种常用的参数估计方法,通过已知的观测数据来计算参数的估计值。

在马尔可夫跳过程中,最大似然估计可以用于计算转移概率矩阵的估计值。

贝叶斯估计是一种基于贝叶斯定理的统计方法,它将先验知识和观测数据相结合来计算参数的估计值。

在马尔可夫跳过程中,贝叶斯估计可以用于计算转移概率矩阵的后验概率分布。

四、总结本文主要介绍了马尔可夫跳过程和转移概率在随机过程中的重要性以及在自然语言处理和金融领域中的应用。

随机过程 第三章 马尔科夫连

随机过程 第三章 马尔科夫连

1 2
,
pi,i1
1 2
,
pi0
1 2
,i
I , 分析其遍历性.
27
状态空间的分解
定义: 状态空间I的子集C称为闭集,如果对任意 i C 及 k C 都有 pik 0
定义: 闭集C称为不可约的,如果C的状态互通。 定义: 马尔可夫链称为不可约的,如果其状态空间不可约。
28
例:设马氏链{X n}的状态空间I {1, 2,3, 4,5},转移矩阵为
P{X1 i1, , X n in} pi pii1 pin1in iI
证明
14
例:某计算机机房的一台计算机经常出故障,研究者每隔15分钟观察一次计 算机的运行状态,收集了24个小时的数(共作97次观察),用1表示正常状态, 用0表示不正常状态,所得的数据序列如下: 11100100111111100111101111110011111111100011 01101111011011010111101110111101111110011011 111100111
ij
jj
f p (nk ) ( k )
ij
jj
k 1
k 0
fij
f
(n) ij
n1
表示质点由i出发,经有限步终于到达j 的概率。
称状态i为常返的,如fii=1;称状态i为非常返的,如fii<1。
对于常返态i,由定义知{fii(n),n≥1}构成一概率分布
i nfii(n) n 1
表示由i出发再返回i的平均返回时间。
马尔可夫链的状态分类
❖ 周期、非周期 ❖ 常返、非常返 ❖ 正常返、零常返 ❖ 遍历状态
20
设马尔可夫链的状态空间I={1,2,3,4,5,6,7,8,9},状态间的概率转移图如下 图

随机过程作业和答案第三章

随机过程作业和答案第三章

第三章 马尔科夫过程1、将一颗筛子扔多次。

记X n 为第n 次扔正面出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

又记Y n 为前n 次扔出正面出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

解:1)由已知可得,每次扔筛子正面出现的点数与以前的状态无关。

故X(n)是马尔科夫链。

E={1,2,3,4,5,6} ,其一步转移概率为:P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为2)由已知可得,每前n 次扔正面出现点数的总和是相互独立的。

即每次n 次扔正面出现点数的总和与以前状态无关,故Y(n)为马尔科夫链。

其一步转移概率为其中2、一个质点在直线上做随机游动,一步向右的概率为p , (0<p<1),一步向左的概率为 q , q =1-p 。

在x = 0 和x = a 出放置吸收壁。

记X(n)为第n 步质点的位置,它的可能值是0,1,2,···,a 。

试写出一步转移概率矩阵。

解:由已知可得, 其一步转移概率如下:故一步转移概率为3、做一系列独立的贝努里试验,其中每一次出现“成功”的概率为p ( 0<p<1 ) ,出现“失败”的概率为q , q = 1-p 。

如果第n 次试验出现“失败”认为 X(n) 取得数值为零;如果第n 次试验出现“成功”,且接连着前面k 次试验都出现“成功”,而第 n-k 次试验出现“失败”,认为X(n)取值k ,问{X(n) , n =1,2,···}是马尔科夫链吗?试写出其一步转移概率。

解:由已知得:故为马尔科夫链,其一步转移概率为616161616161616161616161616161616161P ={6,,2,1,6/1,,8,7,,0)1,(+++=<++==+i i i j i j i i i j ij n n P 或)1(6,,2,1;6,,2,1,+++=++=n n n j n n n n i {}α,,2,1,0 =E )(0,1;)0(0,1)1,1(0,,1,,2,1101,1,ααααα≠==≠==+-≠===-=-+j P P j P P i i j P q P P P x j j ij i i i i 而时,当 10000000000000001Pp q p q p q ={}{}m m m m m m i n X l n X i n X i n X i n X l n X P ==+=====+)(0)()(,,)(,)(0)(2211 {}{}mm m m m m in X k l n X i n X i n X i n X k l n X P ==+=====+)()()(,,)(,)()(22114、在一个罐子中放入50个红球和50个蓝球。

第三章-马尔科夫过程

第三章-马尔科夫过程

第三章 马尔科夫过程第一节 随机过程的概念1、 随机系数必然事件自然界中出现的事件分为 不可能事件随机事件事物的变化过程 必然过程随机过程(1) 必然过程:有确定的变化形式,可以用精确的数学关系式来描述。

如()()sin m u t U t ω= ()()sin m i t I t ωϕ=+(2) 随机过程:没有确定的变化形式,只能用随机函数来描述。

例如:在24h 内对某电网的负荷进行几天的观测,如下图所示:随机系数:观测对象随时间的变化时不确定的,用()x t 表示。

现实:每次观测得到一个具体的系数,称为随机系数的一个“现实”。

如:()()()12,...............n x t x t x t 参数。

t 是随机变量,称为过程的参数,其所有可能的集合为“参数空间”或“时间空间”。

状态:随机函数()x t 在1t 时刻的值()1x t ,称为()x t 在1t t =时的状态。

则所有可能的集合称为“状态空间”。

2、 随机系数的分类(1) 时间(分数)离散,状态空间离散 (2) 时间(分数)连续,状态空间连续 (3) 时间(分数)离散,状态空间连续 (4) 时间(分数)连续,状态空间离散 其中(1)与(4)研究的较多 3、 随机系数的概率分布当,n t t =时,()n t X 的分布与历史i t t =时()()11i t i n X ≤≤-的关系,即根据过程的历史来确定()n t X 的分布:用条件概率来描述:(()i x t 简化成i x )()112211/,............n n n n P x x x x --X =X =X =X = (1)若在特定的情况下,n X 的分布与过去的历史无关,则()()112211/,............n n n n n n P x x x x P x --X =X =X =X ==X =称为过程独立(无记忆过程)。

若n X 的分布只与过去的一部分历史有关,如只与最近一次时间的状态有关,而与以前所有时刻的状态都是无关,即()()11221111/,............/n n n n n n n n P x x x x P x x ----X =X =X =X ==X =X =第二节 马尔科夫链1、 概述将参数和状态空间都是系数的马尔科夫过程称为马尔科夫链。

随机过程第3章 Markov过程

随机过程第3章 Markov过程

p, 0 < j = i + 1 ≤ n −1
pij
=
q1, ,
0≤
j = i −1< n −1 i = 0, j = 0

1,
i = n, j = n
0,
其他
1 0 0 0 0 0 0 0

q
0
p
0
00
0
0

0 q 0 p 0 0 0 0

0
0
q
用Xn表示恰好第n个顾客服务完时正在等待 需要服务的顾客数, An表示在第n个顾客服务期 间到达希望服务的顾客数.
用Xn表示恰好第n个顾客服务完时正在等待需要 服务的顾客数, An表示在第n个顾客服务期间到达 希望服务的顾客数. 我们假设顾客的到达与离开
不会同时发生, 并且
P(An = k) = ak , k = 0,1, 2,; n = 1, 2,
0,
k = j +1 k = j −1 其他 k

0 p 0 0 0 0
q 0 p 0 0 0
0 q 0 p 0 0
P = 0 0 q 0 0 0



0 0 0 0 0 p
例3.1 下图为一个迷宫, 其中房间9放有一块
奶酪,而房间7里隐藏着一只猫. 现有一只老
鼠从房间1出发. 假设老鼠没有任何信息,
即: 当老鼠在一个给定房间时, 它进入相邻
房间的概率为
1 k
,
其中k表示与该给定房间
相邻的房间个数. 假设一旦老鼠进入奶酪
或猫所在的房间, 则永远停留在该房间.
设Xn表示老鼠在n次变换房间之后所在房间号, 则随机过程{Xn, n=0,1,2,…}是一个以S={1,2,…,9} 为状态空间的Markov链, 并且初始概率向量为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特别 P{X nm inm | X n in , , X 0 i0}
= P{X nm inm | X n in}
首页
性质5 设{ X n , n 0 }为马氏链,其状态空间为 I, 则 对任意给定的 n 个整数,0 k1 k2 kn ,有
P{X kn ikn | X kn1 ikn1 , , X k1 ik1 }
(2) pij (n) 1 , i I jI
3.一步转移矩阵 如果固定时刻n T
则由一步转移概率为元素构成的矩阵P1 :
称为在时刻n的一步转移矩阵
首页
即 有
p00 (n)
p10
(n)
p01(n)
p11 (n)
P1
pn0 (n)
pn1 (n)
有限马氏链 状态空间I={0,1,2,…,k}
首页
性质3 设{ X n , n 0 }为马氏链,其状态空间为 I,
若 0 s r n ,则在X r ir 的条件下,有 P{X n in , X s is | X r ir }
= P{X n in | X r ir } P{X s is | X r ir }
表明 若已知现在,则过去与未来是独立的。
iI
P{X 0 i}P{X n j | X 0 i}
iI
p0 (i) pi(jn)
iI
注 若对定态分布,则 p( j) p(i) pij
iI
首页
4.切普曼---柯尔莫哥洛夫方程
定理2 设{ X n , n 0 }为一个马氏链,具有初始分布 p0 (i) ,i I
和 n 步转移概率pi(jn) ,i. j I ,n 0 ,
称为n步转移矩阵
规定
P0
(
p(0) ij
)
1,当i 0,当i
j j
P1
(
p(1) ij
)
(
pij
)
首页
3.绝对概率公式
定理1 绝对概率由初始分布和n维转移概率完全确定
即有
pn ( j) p0 (i) pi(jn)
iI
证 P{X n j} P{X n j, X 0 i} P{X n j, X 0 i} i
1
(1)若移动前在2,3,4处,则均以概率 移动一单位;
2
向左或向右
(2)若移动前在1,5处,则以概率1停留在原处。
因为质点在1,5两点被“吸收”,
故称 有两个吸收壁的随机游动
其一步转 移矩阵为
1
1
2
P1
0
0 0 1 2
0 1
2
0
0 0 1 2
0
0
0
0
0
0 0
1
2 0
0 0
1
2 1
首页
例2 赌徒输光问题
称为马氏链的绝对分布或称绝对概率
定态分布 若绝对分布 pn (i) 与 n 无关,
即 p (i) P{X n i} ,i I ,n 0
则称{ pn (i) ,i I }为马氏链{ X n , n 0 }的定态分布 首页
例1 不可越壁的随机游动
设一质点在线段[1,5 ]上随机游动,状态空间I={1,2, 3,4,5},每秒钟发生一次随机游动,移动的规则是:
当r
1
(
q )a p
(
即p q
qp时)c , 甲先1输(光qp)的c 概率为b
c
用同样的方法可以求得乙先输光的概率

p
q
时,乙输光的概率为1
(
q) p
a
当 p q 时,乙先输光的概率为a
c
1
(
q p
)
c
首页
例3 排队问题
顾客到服务台排队等候服务,在每一个服务周期中 只要服务台前有顾客在等待,就要对排在前面的一 位提供服务,若服务台前无顾客时就不能实施服务。
马氏链在时刻n处于状态 i 的条件下, 到时刻n+1转移到状态 j 的条件概率,
即 P{X n1 j | X n i}
称为在时刻n的一步转移概率,记作 pij (n)
首页
注:
由于概率是非负的,且过程从一状态出发,经过一步 转移后,必到达状态空间中的某个状态
一步转移概率满足
(1) pij (n) 0 , i, j I
首页
赌徒甲有资本a元,赌徒乙有资本b元,两人进行 赌博,每赌一局输者给赢者1元,没有和局,直
赌至两人中有一人输光为止。设在每一局中,甲
获胜的概率为p,乙获胜的概率为 q 1 p ,
求甲输光的概率。
分 这个问题实质上是带有两个吸收壁的随机游动。从 析 甲的角度看,他初始时刻处于a,每次移动一格,向
右移(即赢1元)的概率为p,向左移(即输1元)的 概率为q。如果一旦到达0(即甲输光)或a + b(即 乙输光)这个游动就停止。这时的状态空间为{0,1, 2,…,c},c = a + b,。现在的问题是求质点从a出 发到达0状态先于到达c状态的概率。
需讨论 r
首页
当 r 1
c 1
1 u0 uc
(u j u j1)
c 1
j0
j0 c1
d j
c1 j 0
r jd0
1 rc 1 r
d0
而 u j u j uc (ui ui1)
i j
c 1
c 1
di
rid0
i j
i j
r j (1 r r c j1)d0
r j rc 1 r
此时{ X n , n 1 }为一马氏链, 求其转移矩阵

先求出转移概率
p00 P(X1 0 | X0 0) P(Y0 0) p0
p01 P(X1 1| X 0 0) P(Y0 1) p1
p10 P(X n1 0 | X n 1) P(X n 1 Yn 0 | X n 1)
解 设0 j c
设u j 为质点从 j 出发到达 0 状态先于到达 c 状态的概率。
考虑质点从j出发移动一步后的情况
在以概率 p 移到 j 1 的假设下,
到达 0 状态先于到达 c 状态的概率为u j1
同理 以概率 q 移到 j 1 的前提下,
到达 0 状态先于到达 c 状态的概率为u j1 根据全概率公式有 u j u j1 p u j1q
1 (1)若移动前在2,3,4处,则均以概率 3 向左
或向右移动一单位,或停留在原处;
(2)若移动前在1处,则以概率1移到2处;
(3)若移动前在5处,则以概率1移到4处。
用 X n 表示在时刻 n 质点的位置,
则{ X n ,n 0 }是一个有限齐次马氏链,
试写出一步转移矩阵.
首页

12
3
4
5

首页
性质4 设{ X n , n 0 }为马氏链,其状态空间为 I, 则 P{X n1 in1, , X nm inm | X n in , , X 0 i0}
= P{X n1 in1, , X nm inm | X n in}
表明 若已知现在,则过去同时对将来各时刻的状 态都不产生影响。
p0 (i) pii1 pi1i2 pin1in
首页
性质2 设{ X n , n 0 }为马氏链,其状态空间为 I,
则 P{X n in | X n1 in1, , X nm inm}
P{X n in | X n1 in1}
表明 一个马氏链,如果按相反方向的时间排列, 所成的序列也是一个马氏链。
第三章 马尔可夫过程
第一节 马尔可夫链的定义及其性质
第二节 马尔可夫链的状态分类

第三节 平稳分布与遍历性


第四节 时间连续的马尔可夫链
第一节 马尔可夫链的定义及其性质
一、马尔可夫链的定义
1.马尔可夫链 设随机过程{ X (t) ,t T },
其中时间 T={0,1,…},状态空间 I={0,1,2,…},
这一方程实质上是一差分方程,它的边界条件是
u0 1, uc 0
首页
欲求 ua 先求 u j
于是 (p + q)u j pu j1 qu j1
uj
u j1
(
q )(u p
j 1
uj
)

r q p
d j u j u j1
则可得到两个相邻差分间的递推关系
d j rd j1
于是
d j rd j1 r2d j2 r jd0
d0
两式相比
uj
r j rc 1 rc
首页

ua
ra rc 1 rc
(
q )a p
(
q )c p
1
(
q p
)c
当 r 1
u0 uc 1 cd0

u j (c j)d0
c j
因此 故
u j c c a b
ua
c
c
首页
由以上计算结果可知
当 r 1 即 p q 时,甲先输光的概率为
P(Yn 0) p0
p11 P(X n1 1| X n 1) P( X n 1 Yn 1| X n 1) P(Yn 1) p1
p20 P(X n1 0 | X n 2) P( X n 1 Yn 0 | X n 2)
p21
P( X n1
1|
Xn
2)
P(Yn 1)
P(Xn 1
5.初始分布 设 p0 (i) P{X 0 i} ,i I ,
如果对一切i I 都有
p0 (i) 0 p0 (i) 1 iI
称 p0 (i) 为马氏链的初始分布
首页
注 马氏链在初始时刻有可能处于I中任意状态,初始分布 就是马氏链在初始时刻的概率分布。
相关文档
最新文档