ANSYS专题.
ANSYS使用问答精华之三
ANSYS使用问答精华之三ANSYS使用问答精华之三1.什么是ANSYS?ANSYS是一个集结了多种工程分析工具的通用有限元分析软件。
它被广泛应用于各种工程领域,如机械、航空航天、汽车、电子、能源等。
ANSYS提供了强大的模拟和分析功能,可以帮助工程师优化产品设计、预测产品性能、减少试验成本等。
2.ANSYS有哪些主要功能?-结构分析:用于预测和模拟结构的受力和变形行为,评估材料的性能和结构的可靠性。
可以进行静态分析、动态分析、疲劳分析等。
-流体分析:用于预测和模拟流体的流动行为、压力分布、热传输等。
可以进行稳态分析、非稳态分析、传热分析等。
-电磁场分析:用于预测和模拟电磁场的分布、电场、磁场等。
可以进行静电分析、电磁感应分析等。
-热传导分析:用于预测和模拟物体的热传导行为、温度分布等。
可以进行稳态分析、非稳态分析、辐射传热分析等。
3.如何进行模型建立和网格划分?在ANSYS中,可以通过几种方式进行模型建立和网格划分。
-直接建模:可以使用ANSYS内置的几何建模工具直接创建几何模型。
可以使用基本的几何构造操作,如绘制线条、创建面域等。
- 导入模型:可以导入其他CAD软件(如Solidworks、CATIA等)中创建的模型,然后在ANSYS中进行进一步的处理。
-网格划分:ANSYS提供了不同的网格划分工具,如自动网格划分、手动网格划分、区域网格划分等。
可以根据需要选择合适的网格划分方式。
4.如何进行分析和求解?在建立完模型和划分好网格之后,可以进行分析和求解。
-设置边界条件:为模型设置合适的约束条件和加载条件,如固支条件、受力条件等。
-配置分析类型:根据需要选择合适的分析类型,如静态分析、动态分析、热传导分析等。
-求解模型:通过点击求解按钮,可以开始进行求解。
ANSYS会根据所选择的分析类型和设置的边界条件自动进行求解,并给出相应的结果。
-后处理:求解完成后,可以进行后处理操作,如结果可视化、数据分析等。
ansys workbench建模仿真技术及实例详解 -回复
ansys workbench建模仿真技术及实例详解-回复题目:ANSYS Workbench建模仿真技术及实例详解引言:ANSYS Workbench是一种强大的工程仿真软件,广泛应用于各个领域的工程设计和分析中。
本文将以ANSYS Workbench建模仿真技术为主题,详细介绍其基本原理、建模方法和实例应用,帮助读者更好地了解和掌握这一工具的使用。
第一部分:ANSYS Workbench基本原理1. ANSYS Workbench简介:介绍ANSYS Workbench的功能和应用领域。
2. ANSYS Workbench的工作流程:详细解释ANSYS Workbench的工作流程和各个模块的作用。
第二部分:ANSYS Workbench建模技术1. 几何建模:介绍ANSYS Workbench中的几何建模工具,包括创建基本几何图形、引入外部几何文件和几何修剪等操作。
2. 材料属性定义:讲解如何设置材料属性,并介绍常用的材料模型和参数的选取。
3. 网格划分:介绍ANSYS Workbench中的网格划分方法,包括自动划分和手动划分两种方式,并讲解网格质量的评估和改善方法。
4. 边界条件设置:讨论各种边界条件的设置方法,如固定边界条件、加载边界条件和对称边界条件等。
5. 求解器选择与设置:介绍ANSYS Workbench中常用的求解器选择和设置方法,包括静态求解和动态求解两种模拟方法,并讨论参数对求解结果的影响。
6. 后处理与结果分析:讲解ANSYS Workbench中的后处理工具的使用方法,包括结果显示、变量提取和结果比较等。
第三部分:ANSYS Workbench建模仿真实例1. 结构力学仿真实例:以某一结构件为例,详细介绍ANSYS Workbench 如何进行结构力学仿真分析,并分析结果。
2. 流体力学仿真实例:以某一管道流体流动为例,介绍ANSYS Workbench如何进行流体力学仿真分析,分析流体流动特性。
ANSYS各类型单元连接专题讲解(一)之连接总则
ANSYS各类型单元连接专题讲解(一)之连接总则一直以来,有不少同学咨询水哥关于ANSYS中杆单元、梁单元、壳单元、实体单元的连接问题。
之所以要用到各单元的连接,主要是由于我们在实际项目中,常常需要各种单元组合模拟,例如框架结构计算中的框架柱、框架梁采用梁单元模拟,楼板采用壳单元模拟,如此便会产生各类型单元之间的连接问题。
为解决部分朋友们的疑问,水哥依自己的理解将从以下几个方面系统讲解下ANSYS中杆单元、梁单元、壳单元、实体单元的连接,其中若有不合理之处,还望各位朋友批评指正。
本系列讲解目录如下:1、单元连接总原则。
2、杆与梁、壳、体单元的连接。
3、梁单元与实体单元铰接。
4、2D梁单元与2D实体单元刚接。
5、3D梁单元与3D实体单元刚接。
6、壳单元与实体单元连接。
7、单元连接综合实例。
本篇推文为该系列文章的首篇,主要说下ANSYS中单元连接总的原则以及简单介绍两个概念。
一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约束方程。
例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。
(2)梁与壳有公共节点即可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。
(3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。
(4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。
从上述也可见,ANSYS无非是通过三种方法来实现单元之间的连接:共用节点、耦合、约束方程。
这里简单介绍下耦合与约束方程的基本概念。
一、耦合所谓耦合,其实是一种比较特殊的约束方程,只不过为了区别于普通一般的约束方程,方便用户操作,特定提出来的一个概念。
他具体指当我们需要迫使两个或多个自由度取得相同值(值未知)时,可以将这类自由耦合在一起。
Ansys命令流大全
Ansys命令流大全ANSYS是一款广泛应用于工程领域的仿真软件,它能够对复杂工程问题进行建模、分析和优化。
本文将提供一个包含常用ANSYS命令的大全,帮助读者快速了解和掌握ANSYS软件的使用。
一、前言ANSYS是一款功能强大的工程仿真软件,它提供了丰富的建模和分析工具,适用于多个领域的工程问题。
掌握ANSYS的命令流能够有效提高工程师的工作效率,快速完成复杂问题的仿真和分析。
二、ANSYS常用命令1. 创建几何模型由于ANSYS提供了多种创建几何模型的工具,我们可以使用命令流来进行几何模型的创建和编辑。
以下是一些常用的几何模型命令:(1)BLOCK:创建矩形或立方体体素模型。
(2)CYLIND:创建圆柱体模型。
(3)SWEEP:创建沿路径扫掠的模型。
2. 定义材料属性在进行仿真分析之前,需要定义材料的物理属性。
以下是一些常用的材料属性命令:(1)MP: 定义材料的参数,如密度、弹性模量、泊松比等。
(2)EX: 定义材料的弹性模量。
(3)DENS: 定义材料的密度。
3. 设定网格划分网格划分对于仿真分析的准确性和计算效率非常重要。
以下是一些常用的网格划分命令:(1)SIZE:设定初始网格尺寸。
(2)MESH:进行自动的网格划分。
(3)ESIZE:设定特定区域的网格尺寸。
4. 定义边界条件在进行仿真分析之前,需要定义边界条件以模拟实际工程环境。
以下是一些常用的边界条件命令:(1)D:定义位移边界条件。
(2)S:定义约束条件。
(3)F:定义外部力或施加力。
5. 设置分析类型ANSYS提供了多种分析类型,如结构分析、热分析、流体分析等。
以下是一些常用的分析类型命令:(1)SOLVE:执行数值分析求解。
(2)ANTYPE:设定分析类型。
(3)FILE:设置解算文件名和保存路径。
6. 查看和后处理结果分析完成后,我们需要查看和后处理结果。
以下是一些常用的结果查看和后处理命令:(1)PLOT:绘制结果曲线或图像。
ANSYS基本操作精讲
ANSYS基本操作精讲
1. 新建项目:启动ANSYS后,点击“File -> New -> Project…”,输入项目名称和存储路径,选择适当的单位系统和求解器类型,然后点击“OK”按钮。
3.定义材料属性:在材料模块中,可以定义各种材料的物理特性。
选
择合适的材料模型并输入相应的参数。
可以通过导入材料库或自定义材料
属性来定义材料。
4.设置边界条件:在加载模块中,设置边界条件是非常重要的。
可以
设置约束条件(如固定支撑和约束)和荷载条件(如力、压力和热源)。
通过选择几何模型的面、边或节点,然后定义相应的边界条件。
5.网格划分:网格划分模块(或称为前处理模块)用于将几何模型离
散化为有限元网格。
可以选择适当的网格类型,如三角形网格或四边形网格,并选择合适的网格密度。
6. 运行求解器:在求解模块中,选择适当的求解器和求解方法。
通
过点击“Solve”按钮,ANSYS将自动进行求解,并输出结果。
可以通过
设置收敛准则、调整步长和监控求解过程来改进求解性能。
7.结果后处理:在后处理模块中,可以对求解结果进行可视化和分析。
可以使用绘图工具绘制各种图表和图形,并对结果进行剪切、比较和动态
显示。
以上是ANSYS的一些基本操作。
除了这些基本操作外,ANSYS还提供
了许多高级功能和工具来解决复杂的工程问题。
为了更好地使用ANSYS,
建议深入学习ANSYS的使用手册和相关教程,并进行实际的案例分析和实
践操作。
ANSYS模态分析教程及实例讲解解析
ANSYS模态分析教程及实例讲解解析ANSYS是一个广泛应用于工程领域的有限元分析软件,可以用于各种结构的模态分析,包括机械结构、建筑结构、航空航天结构等。
模态分析是通过计算结构的固有频率和振动模态,用于评估结构的动力特性和振动响应。
以下是一个ANSYS模态分析的教程及实例讲解解析。
一、教程:ANSYS模态分析步骤步骤1:建立模型首先,需要使用设计软件绘制或导入一个几何模型。
然后,在ANSYS中选择适当的单元类型和材料属性,并创建适当的网格。
确保模型的几何形状和尺寸准确无误。
步骤2:约束条件在进行模态分析之前,需要定义适当的约束条件。
这些条件包括固定支持的边界条件、约束点的约束类型、约束方向等。
约束条件的选择应该与实际情况相符。
步骤3:施加载荷根据实际情况,在模型上施加适当的载荷。
这些载荷可以是静态载荷、动态载荷或谐振载荷,具体取决于所要分析的问题。
步骤4:设置分析类型在ANSYS中,可以选择多种不同的分析类型,包括静态分析、模态分析、动态响应分析等。
在进行模态分析时,需要选择模态分析类型,并设置相应的参数。
步骤5:运行分析设置好分析类型和参数后,可以运行分析。
ANSYS将计算结构的固有频率和振动模态。
运行时间取决于模型的大小和复杂性。
步骤6:结果分析完成分析后,可以查看和分析计算结果。
ANSYS将生成包括固有频率、振动模态形态、振动模态形状等在内的结果信息。
可以使用不同的后处理技术,如模态形态分析、频谱分析等,对结果进行更详细的分析。
二、实例讲解:ANSYS模态分析以下是一个机械结构的ANSYS模态分析的实例讲解:实例:机械结构的模态分析1.建立模型:使用设计软件绘制机械结构模型,并导入ANSYS。
2.约束条件:根据实际情况,将结构的一些部分设置为固定支持的边界条件。
3.施加载荷:根据实际应用,施加恰当的静态载荷。
4.设置分析类型:在ANSYS中选择模态分析类型,并设置相应的参数,如求解方法、迭代次数等。
Ansys基础教程
Create > -Lines- Lines
Create > -Lines- Arcs
Create > -Lines- Splines
L,k1,k2
L,k1,k2,k3,radius
面
• 用由下向上的方法生成面时, 需要的关键点或线必须已经定义。 (A——关键点〔顺序〕、AL——线)
可以根据模型形状选择最佳建模途径.
下面详细讨论建模途径。
实体建模 B. 自顶向下建模
• 自顶向下建模: 首先建立高级图元(体或 面),对这些高级图元(体或面)按一定规 则组合得到最终需要的形状.
• 开始建立的体或面称为图元。 • 生成一种体素时会自动生成所有的从属于
该体素的较低级图元。 • 对几何图元进行组合计算形成最终形状的
ANSYS教程
ANSYS 结构分析
第一章 ANSYS主要功能与模块
• ANSYS是世界上著名的大型通用有 限元计算软件, 它包括热、电、磁、流体和 结构等诸多模块, 具有强大的求解器和前、 后处理功能, 为我们解决复杂、庞大的工程 项目和致力于高水平的科研攻关提供了一 个优良的工作环境, 是一个开放的软件, 支 持进行二次开发。 • 目前主流版本12.0,13.0,14.0,14.5
一、主要功能简介
• 1. 结构分析
• 1) 静力分析 – 求解静力载荷作用下结 构的位移和应力等. 可以考虑结构的线性及 非线性行为。
• ● 线性结构静力分析 (linear)
• ● 非线性结构静力分析 (nonlinear)
•
♦ 几何非线性: 大变形、大应变、
应力强化、旋转软化
•
♦ 材料非线性: 塑性、粘弹性、粘
ANSYS经典案例分析
ANSYS经典案例分析ANSYS(Analysis System)是世界上应用广泛的有限元分析软件之一、它在数值仿真领域拥有广泛的应用,可以解决多种工程问题,包括结构力学、流体动力学、电磁学、热传导等。
本文将分析ANSYS的经典案例,并介绍其在不同领域的应用。
一、结构力学领域1.案例一:汽车碰撞分析汽车碰撞是一个重要的安全问题,对车辆和乘客都有很大的影响。
利用ANSYS进行碰撞分析可以模拟不同类型车辆的碰撞过程,并预测车辆结构的变形情况以及乘客的安全性能。
通过这些分析结果,可以指导汽车制造商改进车辆结构,提高车辆的碰撞安全性能。
2.案例二:建筑结构分析建筑结构的合理性和稳定性对于保证建筑物的安全和耐久性至关重要。
ANSYS可以对建筑结构进行强度和刚度的分析,评估结构的稳定性和安全性能。
例如,可以通过ANSYS分析大楼的地震响应,预测结构的位移和变形情况,以及评估建筑物在地震中的安全性。
二、流体动力学领域1.案例一:空气动力学分析空气动力学分析对于飞行器设计和改进具有重要意义。
利用ANSYS可以模拟飞机在不同速度下的气动性能,预测飞机的升阻比、空气动力学力矩等参数。
通过这些分析结果,可以优化飞机的设计,提高飞行性能和燃油效率。
2.案例二:水动力学分析水动力学分析对于船舶和海洋工程设计至关重要。
利用ANSYS可以模拟船舶在不同海况下的运动特性,预测船舶的速度、稳定性和抗浪性能。
通过这些分析结果,可以优化船舶的设计,提高船舶的性能和安全性能。
三、电磁学领域1.案例一:电力设备分析电力设备的稳定性和运行性能对电力系统的正常运行至关重要。
利用ANSYS可以模拟电力设备的电磁特性,预测电磁场分布、电磁场强度和电流密度等参数。
通过这些分析结果,可以评估电力设备的稳定性和运行性能,并指导电力系统的设计和改进。
2.案例二:电磁干扰分析电磁干扰是电子设备设计中常见的问题,特别是在通信和雷达系统中。
利用ANSYS可以模拟电磁干扰的传播路径和强度,预测设备的抗干扰能力。
ansys分析入门基础篇
边界条件
02
03
材料属性
设置边界条件,如固定约束、自 由约束等,以限制物体的自由度。
设置材料属性,如弹性模量、泊 松比、密度等,以模拟实际材料 的特性。
求解过程
建立模型
根据分析需求,建立相应的模型。
加载和求解
根据分析需求,加载相应的载荷和边界条件,然 后进行求解。
ansys分析入门基础篇
目录
• ANSYS软件简介 • 建立模型 • 加载与求解 • 结果后处理 • 案例分析
01 ANSYS软件简介
什么是ANSYS
综合性仿真软件
ANSYS是一款集结构、流体、电 磁、热、声等多物理场于一体的 综合性仿真软件,广泛应用于航 空航天、汽车、船舶、电子、能 源等领域。
电子
ANSYS在电子领域应用于集成电路、电子 元器件、PCB板等的设计和优化,提高产 品性能和可靠性。
船舶
ANSYS在船舶领域应用于船体结构、推进 系统、船舶设备等的设计和优化,提高船 舶性能和安全性。
ANSYS的基本功能
结构分析
流体动力学分析
ANSYS提供了强大的结构分析功能,可以 对各种材料进行静力、动力、疲劳等分析 ,模拟结构的变形、应力、应变等。
ANSYS的流体动力学分析功能可以对流体 进行稳态和瞬态分析,模拟流体流动、传 热、燃烧等过程。
电磁场分析
声场分析
ANSYS的电磁场分析功能可以对电磁设备 进行磁场、电场、电磁力的分析和优化, 提高设备的性能和效率。
ANSYS的声场分析功能可以对声音传播、 噪声产生等进行模拟和分析,优化产品的 声学性能。
02 建立模型
ansys机械工程应用精华30例
ansys机械工程应用精华30例1. 结构分析:使用ANSYS进行结构分析,包括静力学分析、动力学分析、热分析等。
可以分析各种结构的强度、刚度、稳定性等性能。
2. 振动分析:使用ANSYS进行振动分析,可以预测结构在振动载荷下的响应,包括自由振动、强迫振动、模态分析等。
3. 疲劳分析:使用ANSYS进行疲劳分析,可以评估结构在循环载荷下的寿命,预测结构的疲劳失效。
4. 热传导分析:使用ANSYS进行热传导分析,可以分析结构在热载荷下的温度分布、热流分布等。
5. 流体力学分析:使用ANSYS进行流体力学分析,包括流体流动分析、气动分析、水动力学分析等。
6. 电磁场分析:使用ANSYS进行电磁场分析,可以分析电磁场的分布、电磁场与结构的相互作用等。
7. 多物理场耦合分析:使用ANSYS进行多物理场耦合分析,可以考虑多个物理场的相互作用,如结构与热场的耦合、结构与流体场的耦合等。
8. 优化设计:使用ANSYS进行优化设计,可以通过参数化建模、设计变量的优化搜索等方法,寻找最优的设计方案。
9. 拓扑优化:使用ANSYS进行拓扑优化,可以通过改变结构的拓扑形态,实现结构的轻量化、刚度优化等。
10. 模态分析:使用ANSYS进行模态分析,可以确定结构的固有频率、振型等。
11. 稳定性分析:使用ANSYS进行稳定性分析,可以评估结构在压缩载荷下的稳定性,预测结构的屈曲失稳。
12. 接触分析:使用ANSYS进行接触分析,可以模拟结构中不同部件之间的接触行为,包括摩擦、滑动、接触面积等。
13. 材料特性分析:使用ANSYS进行材料特性分析,可以确定材料的力学性能、热学性能等。
14. 焊接分析:使用ANSYS进行焊接分析,可以评估焊接接头的强度、应力分布等。
15. 大变形分析:使用ANSYS进行大变形分析,可以模拟结构在大变形条件下的力学行为,如塑性变形、弹性变形等。
16. 高温分析:使用ANSYS进行高温分析,可以模拟结构在高温环境下的热应力、热膨胀等。
ANSYS模态分析教程及实例讲解
任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
频率分析的相关知识
• 静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。
要点:振动的形式(振形)称为振动模态。 一般从低频开始,称为1阶、2阶、3阶……固有频率,并且具
有与各个固有频率对应的振动模态。
频率分析的相关知识
• 共振(以荡秋千为例) –荡得好的人荡几下马上就能荡得很高
–这是因为与秋千摆动的节拍和时间配合起来的原因。 –换句话说,与秋千的固有频率(固有周期)相配合,这
– 小变形 – 弹性范围内的应变和应力 – 没有诸如两物体接触或分离时的刚度突变。
应力
弹性模量 (EX)
应变
准备工作
A. 哪种分析类型?
• 如果加载引起结构刚度的显著变化,必须进行 非线性分析。引起结构刚度显著变化的典型因 素有: – 应变超过弹性范围(塑性) – 大变形,例如承载的鱼竿 – 两体之间的接触
• 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
上式为典型的在有阻尼的交迫振动方程。当缺少阻尼及外力 时,该缺少阻尼及外力时(自由振动),该方程式简化为
频率分析的相关知识
• 固有振动模态(以弦的振动为例)
– 两端被固定住的弦,以手指弹一下张紧的弦,弦则振动 起来,振动在空气中传播发出声音。弦以下图所示的各
第三讲模态分析
• 在开始ANSYS分析之前,您需要作一些决定, 诸如分析类型及所要创建模型的类型。
• 标题如下:
ANSYS刚柔混合多体动力学分析专题培训
Slot joint Fx = 0.76 N My = 0 Nm
Joint Features—DOF Checker
• 接触的 Worksheet 可以显示 “Joint DOF Checker.” • 如果总自由度数小于1,则可能有过约束问题,表格会给出提示信息:
柔性体或者刚柔混合多体动力学
• 包含柔性体和刚体 • 求解时间长 • 允许所有的非线性效应 • 不仅可以求解系统当中刚体的动力学特性;同时还可以输出柔性体
的动力学特性:包括柔体的应力、应变、变形、接触压力等等。 • 通过“Transient Structural” 模块求解
大纲
• 多体动力学分析组成 • 多体动力学分析流程
Flexible Dynamics
Modal Superposition
Linear Transient Dynamic
Spectrum
Harmonic Response
Response Spectrum
Random Vibration
A. 多体动力学简介
Ansys中有两种多体动力学分析:
多刚体系统运动分析
• 多体运动学是研究多体系统 (一般由若干个柔性和刚性物体相互连接所组成)运动规律的科学。
A. 多体动力学简介
• ‘刚体动力学’ 是ANSYS 动力学分析中的一个分支
ANSYS Dynamics
Nonlinear Transient Dynamics
Modal
Harmonic Response
Rigid Dynamics
Lock则是锁定在固定
• SECSTOP • SECLOCK
ansys机械工程应用精华30例
ANSYS机械工程应用精华30例本文将介绍30个关于ANSYS机械工程应用的精华案例,包括结构分析、流体动力学、传热分析等多个方面。
结构分析1.案例1:汽车车身的弯曲性能分析使用ANSYS进行车身的有限元分析,确定车身在道路上行驶过程中的弯曲程度和扭曲情况。
2.案例2:飞机机翼的应力和变形分析使用ANSYS对飞机机翼进行有限元分析,以评估其在不同飞行条件下的应力和变形情况。
3.案例3:建筑结构的地震响应分析使用ANSYS进行地震响应分析,预测建筑结构在地震中的位移、速度和加速度等动态响应。
4.案例4:管道支架的疲劳寿命分析使用ANSYS进行管道支架的疲劳寿命分析,以确定其可靠性和寿命。
5.案例5:导轨系统的刚度和振动分析使用ANSYS对导轨系统进行刚度和振动分析,以提高导轨系统的性能和稳定性。
流体动力学6.案例6:风力发电机叶片的气动性能分析使用ANSYS进行风力发电机叶片的流动分析,以确定其气动性能和发电效率。
7.案例7:涡轮机的流动特性分析使用ANSYS对涡轮机的流动特性进行数值模拟,以改进其效率和性能。
8.案例8:水泵系统的压力分布和流量分析使用ANSYS对水泵系统进行压力和流量分析,以优化其设计和性能。
9.案例9:船舶的航行阻力和流场分析使用ANSYS对船舶进行流体动力学分析,研究其航行阻力和流场特性。
10.案例10:油气管道的流量和压力损失分析使用ANSYS对油气管道进行流体分析,以评估管道系统中的压力损失和流量分布。
传热分析11.案例11:电子器件的热管理分析使用ANSYS进行电子器件的传热分析,以提高散热效率并防止温度过高。
12.案例12:热交换器的传热性能分析使用ANSYS对热交换器进行传热分析,以评估其传热性能和热效率。
13.案例13:混凝土结构的温度变化分析使用ANSYS对混凝土结构进行传热分析,以预测其温度变化情况。
14.案例14:玻璃窗的热传导和辐射分析使用ANSYS对玻璃窗进行热传导和辐射分析,以改善建筑的保温性能。
ansys结构参数优化和拓扑优化专题
响应面优化
Kriging (克里格法 ): 多项式F(x)与Z(X)的组合。Z(x)为对平均值为零,方差和非 零方差的正态分布高斯 由于克里格法通过所有设计点拟合响应面,因此拟合优度指 标总是好的 变量变化剧烈,或非线xing时,结果优于标准响应面拟合方 法
响应面优化
Kriging (克里格法 )修正设计点,会出现曲线振荡 可以通过在响应面上插入Refinement Point(改进点) 来修正响应面
拓扑优化
结构材料不同,设计方案不同,优化结果也不同 结构质量分布一致时,质量和体积的优化结果一样
拓扑优化
其余约束条件: 全局等效应力约束
对优化区域的zui da等效应力进行约束,可以对单个或所有工况
位移约束
对所选几何、节点的三个方向的zui da位移进行约束
局部等效应力约束
对所选的几何(面,线或体)、网格的zui da等效应力进行约束
Excel表格数据优化
添加Microsoft Office Excel模块,导入做好参数定 义的Excel表格,定义输入、输出参数
Excel表格数据优化
在Excel表格,输出参数可以定义为输入参数的函数表达式,添加DOE模块 在DOE中生成输入设计点,WB会根据Excel表格中定义的函数表达式求解出对应的输出参数
拓扑优化
挤出(extrusion): 类似于扫略
Without With
NLPQL (二次拉格朗日非线xing规划)
支持单目标,多约束,要求参数保持连续,适合于局部优化
MISQP(混合整数序列二次规划)
支持连续或离散的输入参数 只支持单目标,只生成一个最优解,适合局部优化
Excel表格数据优化
基于DX可以对Excel表格中的数据进行优化分析 在Excel中做好参数定义
ansys结构仿真案例
ansys结构仿真案例ANSYS是一款常用的结构仿真软件,可以对各种结构进行静力学、动力学、热力学等仿真分析。
下面列举10个以ANSYS结构仿真为题的案例,以展示其在不同领域的应用。
1. 桥梁结构分析:使用ANSYS对桥梁结构进行有限元分析,评估其受力性能和安全性,为工程设计提供依据。
可以对桥梁主要构件进行应力、变形、疲劳寿命等分析。
2. 建筑结构分析:通过ANSYS对建筑结构进行静力学分析,确定结构的承载能力和稳定性。
例如,可以分析高层建筑的抗震性能,优化结构设计,提高抗震安全性。
3. 飞机机翼结构分析:使用ANSYS对飞机机翼进行有限元分析,评估其受力性能和结构强度。
可以分析机翼的振动模态、应力分布等,优化结构设计,提高飞行安全性。
4. 汽车车身结构分析:通过ANSYS对汽车车身进行有限元分析,评估其受力性能和刚度。
可以分析车身的应力分布、变形情况,优化结构设计,提高车辆性能和安全性。
5. 器械设备结构分析:使用ANSYS对器械设备进行有限元分析,评估其受力性能和可靠性。
可以分析设备的应力分布、振动模态等,优化结构设计,提高设备性能和使用寿命。
6. 钢结构建筑分析:通过ANSYS对钢结构建筑进行有限元分析,评估其受力性能和稳定性。
可以分析结构的应力、变形、破坏模式等,优化结构设计,提高建筑的安全性和经济性。
7. 水力发电机组分析:使用ANSYS对水力发电机组进行有限元分析,评估其受力性能和效率。
可以分析机组的应力、变形、振动等,优化结构设计,提高发电机组的性能和可靠性。
8. 船舶结构分析:通过ANSYS对船舶结构进行有限元分析,评估其受力性能和强度。
可以分析船体的应力分布、变形情况,优化结构设计,提高船舶的航行性能和安全性。
9. 油井套管结构分析:使用ANSYS对油井套管进行有限元分析,评估其受力性能和耐久性。
可以分析套管的应力、变形、破坏模式等,优化结构设计,提高油井的开采效率和安全性。
10. 桩基础结构分析:通过ANSYS对桩基础结构进行有限元分析,评估其受力性能和稳定性。
ANSYS使用问答精华
ANSYS使用问答精华问:ANSYS是什么?为什么要使用它?答:ANSYS是一款广泛应用于工程领域的有限元分析软件。
它可用于模拟和分析各种工程问题,诸如结构力学、热传导、电磁场、振动分析以及流体力学等。
ANSYS具有强大的模拟和分析功能,可以帮助工程师优化设计、提高产品性能、减少试验成本,并加速产品开发周期。
问:在ANSYS中如何建模?答:在ANSYS中,建模可以通过几种方式进行:手动建模、导入CAD模型和几何建模。
手动建模是指通过ANSYS提供的工具手动绘制几何形状,并定义材料属性和约束条件。
导入CAD模型是将已经在其他CAD软件中建立的模型直接导入到ANSYS中进行分析。
几何建模则是使用ANSYS的几何建模工具创建复杂的几何形状。
问:在ANSYS中如何进行分析?答:在ANSYS中,分析是通过定义边界条件、加载条件和所需分析类型来进行的。
边界条件包括约束和外部加载,约束定义物体的固定边界,而外部加载是对物体施加的力、压力或温度等。
加载条件是指物体承受的外部力或温度梯度。
分析类型包括静态、动态、热传导、流固耦合等。
问:如何解释ANSYS中的网格?答:网格是ANSYS中的一种离散化方法,将模型分成小的单元,再对每个单元进行分析。
网格质量对于分析结果的准确性至关重要。
ANSYS提供了多种网格生成方法,如结构网格、非结构网格和前后处理网格。
在生成网格之后,可以进行网格质量评估并进行必要的修复和优化。
问:如何解释ANSYS中的后处理?答:后处理是ANSYS中对分析结果进行可视化和解释的过程。
后处理包括生成结果图像、动画、报告和数据导出等。
ANSYS提供了强大的后处理工具,可以展示分析结果的细节和变化,帮助工程师更好地理解模型行为,优化设计和做出决策。
问:如何进行ANSYS的参数化分析?答:ANSYS中的参数化分析是指通过改变模型参数来评估模型对这些参数的敏感性。
ANSYS提供了DesignXplorer工具,可以自动化进行参数化分析。
《有限元教程》20例ANSYS经典实例
《有限元教程》20例ANSYS经典实例有限元方法在工程领域中有着广泛的应用,能够对各种结构进行高效精确的分析和设计。
其中,ANSYS作为一种强大的有限元分析软件,被广泛应用于各个工程领域。
下面将介绍《有限元教程》中的20个ANSYS经典实例。
1.悬臂梁的静力分析:通过加载和边界条件,研究悬臂梁的变形和应力分布。
2.弯曲梁的非线性分析:通过加载和边界条件,研究受弯曲梁的非线性变形和破坏。
3.柱体的压缩分析:研究柱体在压缩载荷作用下的变形和应力分布。
4.钢筋混凝土梁的受弯分析:通过添加混凝土和钢筋材料属性,研究梁的受弯变形和应力分布。
5.圆盘的热传导分析:根据热传导方程,研究圆盘内部的温度分布。
6.输电线杆的静力分析:研究输电线杆在风载荷和重力作用下的变形和应力分布。
7.轮胎的动力学分析:通过加载和边界条件,研究轮胎在不同路面条件下的变形和应力分布。
8.支架的模态分析:通过模态分析,研究支架的固有频率和振型。
9.汽车车身的碰撞分析:通过加载和边界条件,研究汽车车身在碰撞中的变形和应力分布。
10.飞机翼的气动分析:根据飞机翼的气动特性,研究翼面上的气压分布和升力。
11.汽车车身的优化设计:通过参数化建模和优化算法,寻找最佳的车身结构设计。
12.轮毂的疲劳分析:根据材料疲劳寿命曲线,研究轮毂在不同载荷下的寿命。
13.薄膜材料的热应力分析:根据热应力理论,研究薄膜材料在不同温度下的应变和应力。
14.壳体结构的模态分析:通过模态分析,研究壳体结构的固有频率和振型。
15.地基基础的承载力分析:通过加载和边界条件,研究地基基础的变形和应力分布。
16.水坝的稳定性分析:根据水力和结构力学,研究水坝的稳定性和安全性。
17.风机叶片的动态分析:通过加载和边界条件,研究风机叶片在不同风速下的变形和应力分布。
18.圆筒容器的蠕变分析:根据蠕变理论,研究圆筒容器在持续加载下的变形和应力。
19.桥梁结构的振动分析:通过模态分析,研究桥梁结构的固有频率和振型。
Ansys-Workbench详解教程
2
有限元基本概念
概念
把一个原来是连续的物体划分为有限个单元,这些单元通过有
限个节点相互连接,承受与实际载荷等效的节点载荷,并根据力的 平衡条件进行分析,然后根据变形协调条件把这些单元重新组合成能
够进行综合求解的整体。 有限元法的基本思想—离散化。
节点 单元 载荷 约束 分析类型
2024/8/6
3
有限元模型
2024/8/6
30
定义材料属性
4、在线性静力结构分析当中,材料属性只需要定义杨氏模量以及泊松比。
– 假如有任何惯性载荷,密度是必须要定义的;模态分析中同样需要定义材 料密度。
2024/8/6
31
3 网格控制
目的:实现几何模型
原则:整体网格控制
有限元模型的转化 局部网格细化
2024/8/6
32
网格控制
整体网格: Relevance(-100~100) 、 Relevance Center(coarse~ fine)
局部细化: 支撑处、载荷施加位置、应力变化较大的地方。
2024/8/6
33
网格控制
具体操作:选中结构树的Mesh项,点击鼠标右键,选择Insert,弹出 对网格进行控制的各分项,一般只需设置网格的形式(Method)和单元的 大小(Sizing)。
2024/8/6
29
2 定义材料属性
1、双击Component Systems中的Engineering Data。 2、 右击Engineering Data----edit 3、选择view中outline、properties,把General Materials等中的材料添加到
Engineering Data中,修改Density密度、Young’s modulus杨氏模量、 Poisson’s Ratio泊松比、热膨胀系数等参数。 4、点击Return to Project 5、右击Model----Update 6、右击Model-----edit 7、在模型的Material----Assignment右面的箭头可选择材料 注:软件默认的材料是Structural Steel。
ANSYS有限元教程经典20例
ANSYS有限元教程经典20例ANSYS有限元分析软件是一种常用的工程仿真软件,被广泛应用于各个领域,包括机械工程、航空航天、建筑工程、汽车工程等。
在学习和使用ANSYS软件时,经典的有限元教程是必不可少的参考资料。
下面将介绍ANSYS有限元教程的经典20例。
1.梁的静力分析:通过建立一个简单的梁模型,了解如何在ANSYS软件中进行静力分析,包括加载、边界条件和求解结果。
2.杆件的稳定性分析:通过建立一个杆件模型,学习如何进行稳定性分析,包括杆件的屈曲载荷计算和临界挤压载荷的求解。
3.圆盘的热传导分析:掌握如何对圆盘进行热传导分析,了解温度场分布和热流量传递的计算方法。
4.圆环的热膨胀分析:学习如何对圆环进行热膨胀分析,包括热应变场的计算和应力分布的求解。
5.空气透镜的光学分析:了解如何对空气透镜进行光学分析,包括折射率的计算和光线传播路径的模拟。
6.齿轮的接触应力分析:学习如何对齿轮进行接触应力分析,包括齿轮接触区域的模拟和接触应力的计算。
7.悬臂梁的模态分析:了解如何对悬臂梁进行模态分析,包括固有频率的计算和振型的确定。
8.悬臂梁的谐响应分析:学习如何对悬臂梁进行谐响应分析,包括外加振动载荷的模拟和悬臂梁的振动响应的计算。
9.悬臂梁的动力响应分析:掌握如何对悬臂梁进行动力响应分析,包括外加冲击载荷的模拟和悬臂梁的冲击响应的计算。
10.矩形板的模态分析:了解如何对矩形板进行模态分析,包括固有频率的计算和振型的确定。
11.矩形板的振动响应分析:学习如何对矩形板进行振动响应分析,包括外加振动载荷的模拟和矩形板的振动响应的计算。
12.矩形板的冲击响应分析:掌握如何对矩形板进行冲击响应分析,包括外加冲击载荷的模拟和矩形板的冲击响应的计算。
13.圆管的热传导分析:了解如何对圆管进行热传导分析,包括温度分布和热流量传递的计算。
14.圆管的热对流分析:学习如何对圆管进行热对流分析,包括对流换热系数的计算和热流量传递的模拟。
ansys机械振动例题
ansys机械振动例题
以下是一个使用ANSYS进行机械振动分析的例子:
考虑一个简单的弹簧质量系统,其中一个质量为m的物体通
过一个刚度为k的弹簧与固定物体相连。
这个系统受到一个力
F的作用,力的方向与弹簧运动方向相同。
我们希望使用ANSYS分析系统的振动行为。
1. 创建几何模型:在ANSYS的几何建模界面中,创建一个固
定点(约束)和一个质量点。
将它们连接起来的弹簧也在这个界面中创建。
2. 设定材料属性:选择适当的材料属性,如弹簧的刚度系数k。
3. 定义加载和约束条件:定义适当的约束条件,使得固定点处的位移为零。
在这个例子中,我们可以固定质量点的x和y方向的位移,只允许它在z方向上自由运动。
4. 设置分析类型:选择机械振动分析类型。
5. 设置边界条件:定义加载条件,即外部力F的大小和方向。
在这个例子中,可以将F定义为一个对质量点施加的载荷。
6. 网格生成:生成适当的网格,以便进行仿真分析。
7. 求解模型:通过ANSYS的求解器求解模型,并获取振动响应。
8. 分析结果:根据需要,可以查看和分析模型的振动响应。
这可能包括位移、速度和加速度等结果。
以上是一个简单的使用ANSYS进行机械振动分析的例子。
实际的问题可能会更加复杂,并且需要更多的步骤和设置。
在实际应用中,还需要根据具体情况调整参数和模型设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构静力学分析
结构静力学分析用于计算由不包括惯性和阻尼效应的载荷作用于结构或部件引起的位移、应力、应变和力。
其特点是不考虑惯性和阻尼的影响。
结构力学中,结构的统一方程式为:
[M]{x’’}+[C]{x’}+[K]{x}={F}
M:质量矩阵C:阻尼矩阵K:刚度系数矩阵
线性静力学的方程简化为:
[K]{x}={F}
接触行为
经典ANSYS提供7种接触行为:
1.标准接触行为:包括了法向接触闭合和分开行为,在该接触模型中既考虑粘
着摩擦同时也考虑了滑动摩擦。
2.粗糙接触行为:包括了法向接触闭合和分开行为,但滑动行为在此是不会发
生的。
原因是所有参与接触的表面都被假定为非常粗糙,以至于可以认为摩擦力无穷大而不能产生相对滑动。
在这种接触行为中,接触的两个物体或部分之间,除了存在正压力外,还有切向摩擦力,但是接触部分之间不可以产生相对滑动。
3.绑定接触行为:绑定接触行为是指一旦接触关系建立,那么目标面及接触面
就被假定为粘结在一起[不可以分开]。
4.绑定接触行为{始终}:任何初始时在许可接触容差范围内探测到的接触点或
者是那些即将进入接触的点在后续分析中将被绑定在一起。
5.绑定接触行为{初始接触}:绑定仅发生在初始状态下就接触的面上,初始状
态下没有接触的部分将继续保持分开。
典型的例子是通过焊接连接在一起的两个物体,焊接部分始终保持连接,没有焊接的部分始终保持分离状态。
6.不分开型:一旦建立接触关系,目标面及接触面便被约束在一起了,但还是
允许接触面之间有滑动。
7.不分开型{始终}:任何初始时处在允许容差范围内探测到的接触点或者是那
些即将进入接触的点在后续分析中沿法线被约束在一起,但还是允许接触面之间有滑动。
三种接触方式:点-点,点-面,面-面
面-面接触中,刚性面被当做‘目标面’,分别用Targe169和Targe170来模拟2D 和3D目标面,柔性体的表面被当做‘接触面’,用Conta171,Conta172,Conta173和Conta174来模拟。
为了建立一个接触对,给目标单元和接触单元指定相同的实常数号。
接触算法:
1.罚函数法:用一个接触弹簧在接触面间建立关系,弹簧的刚度称为惩罚刚度,
即接触刚度。
当面分开时,弹簧不起作用;当面开始闭合时,弹簧起作用。
在罚函数中,接触刚度k与弹簧穿透x及外力F的关系:F=kx。
为了达到最高的精度,使发生在接触面上的穿透量最小,则就代表非常大的接触刚度,这会引起计算收敛的困难。
因为如果接触刚度非常大,一个微小的穿透将会产生过大的接触力,使得在后续的迭代中将接触面推开。
所以采用大的接触刚度常常导致收敛震荡,且常会发散。
2.接触法向和切向的纯拉格朗日乘子法:拉格朗日乘子法是通过一个附加自由
度{接触压力}来满足不可穿透条件。
FTOLN为拉格朗日乘子法指定的容许的最大穿透,如果程序发现穿透大于此值时,即使不平衡力和位移增量已经满足了收敛准则,总的求解仍将当做不收敛处理。
用户可以指定容差,但是太小的容差将使迭代次数增加或者不收敛。
3.增广拉格朗日法—默认:多数ANSYS单元可以将罚函数方法和拉格朗日法结
合起来强制接触协调。
在迭代的开始,接触协调基于接触刚度来确定,一旦达到平衡,程序检测穿透容差,如果有必要,将增大接触压力,迭代继续。
屈曲分析
◆特征值屈曲分析:
建立模型的过程与其他大多数类似,除了下面两点:
●由前面的推导过程可知,特征值屈曲分析的解是基于线弹性方程而来的,在
求解时只有线性行为才有效。
因此,分析中的非线性单元将被处理为线性,它们的刚度则基于初始状态,且始终不能改变,其他的非线性因素也将全部被忽略。
●必须定义材料的杨氏模量,定义材料特性可能是线性、各向同性或各向异性
的,然而在分析中,所有的材料非线性特性将被忽略。
◆非线性屈曲分析:
目的:得到第一个载荷极限点[即开始变得不稳定前载荷的最大值]。
它是一种逐渐增加载荷的非线性静力分析技术求得使结构变得不稳定时的临界载荷,结构中包括初始缺陷、塑性行为、接触、大变形响应即其他非线性行为。
方法:载荷控制,位移控制,弧长法。
--------------------弧长法--------------
建模:
该任务与大多数其他分析类似,除了下述补充点:
1.为启动弧长法屈曲分析可能需要引入一个小的扰动或结构几何缺陷。
例如在
某些情况下,弧长法求解过程需要初始几何缺陷以启动非线性屈曲模态。
又如,悬臂梁在进行侧向扭转屈曲分析时需要施加几何缺陷,而浅拱的突然折弯分析中既可以施加几何缺陷也可以不施加。
2.特征值屈曲分析所得到的屈曲模态可用于产生初始几何缺陷。
对于悬臂梁的
侧向扭转屈曲分析,可以先使用线性特征值屈曲分析以得到屈曲模态结果,需要注意的是,施加的初始几何缺陷的量级将影响非线性屈曲分析结果的精度,同时初始几何缺陷将去除载荷——变形响应中的明显的不连续性。
应该保证初始几何缺陷的值相对于总体结构的尺寸是很小的,该值应该与实际结构中的缺陷的尺寸相匹配,结构的制造公差可用于估计不完整性的量级。
3.外加载荷值的设定应稍大于特征值屈曲分析预测的临界载荷。
——一般情况
下该值比理论临界载荷大0.1~0.2.
求解:
1.确保激活几何非线性选项。
不要为“time”设定值,因为在弧长分析中“time”
与载荷因子有关。
2.推荐使用求解控制;使用全newton-raphson选项,不打开自适应下降选项。
3.激活自动时间步长。
4.对于外加载荷值,采用比特征值屈曲载荷高0.1~0.2的值通常是比较合适的选
择。
为了便于后处理,可设定“时间”等于外加载荷值。
5.务必写出足够多的子步数结果OUTRES,以便于在通用后处理中能查看载荷—
—位移曲线图。
查看结果
1.由于在弧长分析中时间是与载荷因子有关的,因此在弧长法分析结果后处理
时,不要参照“time”值结果,应该总是参照载荷步和子步数结果。
2.务必画出载荷——位移曲线。
通常在进行结构非线性屈曲分析时,确定结构
在载荷历程中何时变得不稳定是非常有用的,要认识到不收敛的解未必就意味着结构达到了其能承受的最大载荷。
当结构在其临界屈曲载荷附近时,其切线刚度将接近于0,因此可以从载荷——位移曲线的斜率来确定求解不收敛的原因是数值不稳定还是物理不稳定。
材料非线性分析。