北工大 电磁场与电磁波期末试题B——答案
电磁场与电磁波期末考试复习试题4套(部分含答案)
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
电磁场与电磁波期末试卷B卷答案
.;.淮 海 工 学 院10 - 11 学年 第 2 学期 电磁场与电磁波期末试卷(B 闭卷)答案及评分标准一、判断题(本大题共10小题,每题1分,共10分)1.导体或介质所受到的静电力可以由能量的空间变化率计算得出。
(√ )2.在恒定电流场中,电流密度通过任一闭合面的通量一定为零。
(√ )3.均匀导体中没有净电荷,在导体面上,也没有电荷分布。
(× )4. 标量场梯度的方向沿其等值面的切线方向。
(× )5.在理想导电体的表面上电场强度的切向分量等于零。
(√ )6.在无限大理想介质中传播的平面电磁波不衰减。
(√ )7.复能流密度矢量的实部代表能量的流动,虚部代表能量交换。
(√ ) 8.平面波的频率是由波源决定的。
(√ )9.用单站雷达可以发现隐形飞机。
(× )10.地面雷达存在低空盲区。
(√ )二、单项选择题(本大题共10小题,每题3分,共30分)1.一个点电荷q 位于一无限宽和厚的导电板上方(0,0,d )点,如图1所示,则求解上半空间p(x,y,z)点的电场时,导体板上的感应电荷可用位于[ B ]的像电荷q -代替。
A 、(0,0,-z );B 、(0,0,-d );C 、(x ,y ,-z );D 、(x ,y ,-d )。
2. 设在无源的自由空间中,电场强度复矢量的表达式为 j 0(34e )e kz x y E e E -=-则以下说法正确的是[ A ] 。
A 、此电磁波沿z 轴正向传播; B 、该电磁波为椭圆极化波; C 、该电磁波沿z 轴方向衰减;D 、该电磁波为右旋椭圆极化波。
3.当平面波在介质中传播时,其传播特性与比值σωε有关。
此比值实际上反映了[ A ] 。
A 、介质中传导电流与位移电流的幅度之比; B 、复介电常数的实部与虚部之比; C 、电场能量密度与磁场能量密度之比; D 、介质中位移电流与传导电流的幅度之比。
4.已知一电磁波电场强度复矢量表达式为 由此可知它的极化特性为[ C ] 。
电磁场与电磁波期末试题
电磁场与电磁波期末试题一、选择题(10×2=20分)1.产生电场的源为( C )A 位移电流和传导电流;B 电荷和传导电流;C 电荷和变化的磁场;D 位移电流和变化的磁场。
2.在有源区,静电场电位函数满足的方程是( A )A 泊松方程;B 亥姆霍兹方程;C 高斯方程;D 拉普拉斯方程。
3. 如果真空中有一个点电荷q 放在直角坐标系的原点,则坐标),,(z y x 处的电位=Φ( D )A 22241z y xq++πε; B 222041z y x q++πε; C 22241zy x q ++πε; D 22241zy x q ++πε。
4. 某金属在频率为1MHz 时的穿透深度为60m μ,当频率提高到4 MHz 时,其穿透深度为( B )A 15m μ;B 30m μ;C 120m μ;D 240m μ。
5. 在正弦电磁场中,位移电流应与该处电场的方向一致,其相位( C ) A 与电场相同; B 与电场相反; C 超前电场90°; D 滞后电场90°。
6. 一个半径为a 的导体球,球外为非均匀电介质,介电常数为a r 0εε=,设导体球的球心与坐标原点重合,则导体球与无穷远点的电容为( B )A a 04πε; B a 08πε; C a 012πε; D a 02πε。
7.对于非磁性介质,平行极化的均匀平面斜入射到介质分界面上,发生全透射的条件为( B )A 反射波平行极化;B 入射角等于布儒斯特角;C 入射角等于临界角;D 入射波为左旋园极化。
8.麦克思韦提出的( D )的概念,使在任何状态下的全电流都可保持连续A 传导电流;B 时变电流;C 运流电流;D 位移电流。
9. 如图所示的一个电量为q 的点电荷放在060导体内坐标),(d a 处,为求解导体包围空间的电位,需要( C )个镜像电荷A 1个;B 3个;C 5个;D 8个。
10. 已知良导体的电导率磁导率和介电常数分别为σμ和ε,则频率为ω的平面电磁波入射到该导体上时的集肤深度为( A ) Aωμσ2; B 2ωμσ; Cωμσ21;D σωμ2。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁波与电磁场期末复习题(试题+答案)
电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n 由理想导体2指向介质1,则磁场满足的边界条件:01=⋅B n ,s J H n =⨯1 。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数ϕ满足的关系式n ∂∂=ϕεσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ⋅-∇=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q)E =24rQπε;无限长线电荷(电荷线密度为λ)E =rπελ2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ= 的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场与电磁波波试卷3套含答案
《电磁场与电磁波》试卷1一. 填空题〔每空2分,共40分〕1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。
另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。
2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。
第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是12()0n B B ⋅-=,12()s n H H J ⨯-=。
6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
二.简述和计算题〔60分〕1.简述均匀导波系统上传播的电磁波的模式。
〔10分〕答:〔1〕在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波。
〔2〕在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。
因为它只有纵向电场分量,又成为电波或E 波。
〔3〕在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。
因为它只有纵向磁场分量,又成为磁波或M 波。
电磁场与电磁波考试题答案参考资料
第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。
《电磁场与电磁波》期末考试参考题
1、一半径为a 的均匀带电圆环,电荷总量为q ,求圆环轴线上离环中心o 点为z 处的电场强度E。
解:设圆环电荷线密度为λ,再在圆环上任取微元dl ,则dl dq λ=∴圆环上点电荷元dq 在p 处产生的电场强度为204RdqE d πε=根据对称性原理可,整个圆环在p 点产生的场强为沿轴线方向分量之和,即()232202044cos za dl z RzR dq E d E d z +===πελπεθ∴ ()⎰+=lz dl za z E 232204πελ又a dl lπ2=⎰ λπa q 2=∴ ()232204za zq E z +=πε2、在介电常数为ε的无限大约均匀介质中,有一半径为a 的带电q 的导体球,求储存在介质中的静电能量。
解:导体在空间各点产生的电场为)(4)0(02a r r q E a r E r w >=<<=πε故静电能量为a q dr r r q dV E dV E D W V V πεππεεε844212121202222=⎪⎭⎫ ⎝⎛==•=⎰⎰⎰∞ 3、一电荷面密度为σ的“无限大”平面,在距离平面a 的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生。
圆半径的大小。
解:电荷面密度为σ的“无限大”平面,在其周围任意点的场强为:2εσ=E 以图中O 点为圆心,取半径为r 的环形圆,其电量为:rdr dq πσ2=它在距离平面为a 的一点处产生的场强为:()2/32202ra ardrdE +=εσ则半径为R 的圆面积内的电荷在该点的场强为:()⎪⎪⎭⎫⎝⎛+-=+=⎰22002/322122R a a r ardra E Rεσεσ 0220412εσεσ=⎪⎪⎭⎫ ⎝⎛+-R a a∴ a R 3=4、已知两半径分别为a 和)(a b b >的同轴圆柱构成的电容器,其电位差为V 。
试证:将半径分别为a 和b ,介电常数为ε的介质管拉进电容器时,拉力为abV F ln )(20εεπ-=证明:内外导体间的电场为ab r V E r ln=插入介质管后的能量变化为a b zV dz dr r a b r B dV E W z b a v ln )(ln 2)(21)(21200222020εεππεεεε-=⎪⎭⎫ ⎝⎛-=-=⎰⎰⎰ 式中z 为介质管拉进电容器内的长度。
电磁波与电磁场期末复习题(试题+答案)汇编
电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n 由理想导体2指向介质1,则磁场满足的边界条件:01=⋅B n,s J H n =⨯1 。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数ϕ满足的关系式n ∂∂=ϕεσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ⋅-∇=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E =24rQπε;无限长线电荷(电荷线密度为λ)E =rπελ2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ= 的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场与电磁波复习试卷答案
《电磁场与电磁波》试题(1)参考答案二、简答题 (每小题5分,共20分)11.答:意义:随时间变化的磁场可以产生电场。
(3分)其积分形式为:S d t Bl d E C S⋅∂∂-=⋅⎰⎰ (2分) 12.答:在静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为唯一性定理。
(3分)它的意义:给出了定解的充要条件:既满足方程又满足边界条件的解是正确的。
13.答:电磁波包络或能量的传播速度称为群速。
(3分)群速g v 与相速p v 的关系式为: ωωd dvv v v pp pg -=1 (2分)14.答:位移电流:tDJ d ∂∂=位移电流产生磁效应代表了变化的电场能够产生磁场,使麦克斯韦能够预言电磁场以波的形式传播,为现代通信打下理论基础。
三、计算题 (每小题10 分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz ey B ˆˆ2+-= 是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。
解:(1)根据散度的表达式zB y B x B B zy x ∂∂+∂∂+∂∂=⋅∇ (3分) 将矢量函数B代入,显然有0=⋅∇B(1分)故:该矢量函数为某区域的磁通量密度。
(1分) (2)电流分布为:()[]分)(分)(分)(1ˆ2ˆ120ˆˆˆ2102z x z y x ez y e x xzy z yx e e e BJ ++-=-∂∂∂∂∂∂=⨯∇=μμ16.矢量z y x e ˆe ˆe ˆA 32-+=,z y x e e e B ˆˆ3ˆ5--= ,求 (1)B A+ (2)B A⋅解:(1)z y x e ˆe ˆeˆB A 427--=+(5分) (2)103310=+-=⋅B A(5分) 17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E eE --=004ˆ3ˆ(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;解:(1)该电场的时间表达式为:()()tj eE t z E ωRe ,= (3分)()()()kz t E e E et z E y x --=ωcos 4ˆ3ˆ,00(2分) (2)由于相位因子为jkze-,其等相位面在xoy 平面,传播方向为z 轴方向。
北工大电子技术实验12014-2015电磁场与电磁波期末试题
北京工业大学 2014 —2015 学年第一 学期《
电磁场与电磁波 》 期末考试试卷
为正常色散;此时群速度
(填写大于、小于或等于)相速度。
5、时谐电磁场是指场源以一定的角频率随时间呈正弦/余弦或时谐变化的电磁场。 对时谐电磁场,为简化分析引入了复矢量的概念。矢量瞬时表达式 ( ,t)与复矢量 表达式
m(
)的关系是
。 用来表征电磁波的趋肤程度,趋肤深度的表达
6、趋肤深度或穿透深度 式 。
7、矩形波导中(a>2b) ,当工作波长 λ 在 一的电磁波模式模。当工作波长 λ 满足 电磁波。
得 分
范围时,只能传播单 时,矩形波导中不能传播任何
二、计算题(70 分)
基本物理公式和常数: , H/m
1、 (本题 10 分) 已知矢量 (1) (2) 求矢量 E 的散度(4 分) 。 若 E 为无源场,试确定常数 a、b 和 c 的值(6 分) 。 。
第 3 页 共 10 页
北京工业大学 2014 —2015 学年第一 学期《
电磁场与电磁波 》 期末考试试卷
2、 (本题 10 分) 求下列情况下的位移电流密度的幅度。 (1) 某移动天线发射的电磁波的磁场强度为: (2) 一大功率电容器在填充的油中产生的电场为: 设油的相对介电常数 εr=5
3、 (本题 10 分) 两块无限大导体平板分别置于 x=0 和 x=d 处,板间充满电荷,其电荷密度为 ,极板的电位分别为 0 和 U0,如图题 3 所示。求导体板之间的电位和电场 强度。
第 7 页 共 10 页
北京工业大学 2014 —2015 学年第一 学期《
电磁场与电磁波 》 期末考试试卷
7、 (本题 10 分) 已知矩形波导的横截面尺寸为 ,其中 b<a<2b。 (1)试写出截止频率的表达式(4 分) ; (2)假设材料用紫铜(视为理想导体) ,内充空气。欲设计一工作波长 λ =10cm 的矩形波导, 要求 TE10 的工作频率至少有 30%的安全因子, 即 , 其中 和 分别为 TE10 波和相邻高阶模式的截止频率表达式。 试确定 a 和 b 的尺 寸(6 分) 。
电磁场与电磁波期末B卷+答案+评分标准
武夷学院期末考试试卷 ( 2011 级 通信 专业2012~2013 学年 第 一 学期) 课程名称 电磁场与电磁波 B 卷 考试形式 闭卷 考核类型 考试 本试卷共 四 大题,卷面满分100分,答题时间120分钟。
一、选择题:(本大题共6题,每题3分,共18分) (注:请将选项填在下面表格里。
) 1、边界条件0)(21=-⋅B B n 仅在下列边界上成立( ) A 在两种非导电媒质的分界面上 B 在任何两种介质的分界面上 C 在理想介质与理想导电媒质的分界面上 D 在真空中的导体表面上 2、介质和边界的形状完全相同的两个均匀区域内,若静电场分布相同,则有( )A 区域内自由电荷分布相同B 区域内和区域外自由电荷分布均相同C 区域内自由电荷分布相同并且边界条件相同D 区域内自由电荷分布相同并且束缚电荷分布相同 3、恒定电场中的导电媒质必满足边界条件( ) A n n D D 21 = B n n J J 21 = C t tE E 21 = D 同时选择B 和C 4、电场中试验电荷受到的作用力与试验电荷电量为( )关系 A 正比 B 反比 C 平方 D 平方根5、单位时间通过某面积S 的电荷量,定义为穿过该面积的( )A 通量B 电流C 电阻D 环流6、用磁场矢量B 、H 表示的磁场能量密度计算公式为( )。
A H B ∙21 B H B ⨯21 C dV B v ⎰⨯ H 21 D →→∙H B二、填空题:(本大题共11个空,每空2分,共22分)1、只有大小没有方向的量称 标量 ,既有大小又有方向的量称 矢量 。
2、泊松方程 ,拉普拉斯方程 。
3、设23242),,(z y y x z y x -=ϕ,求点M (1,-2,1)的ϕ∇= _。
4、电场强度的方向是 运动的方向。
磁场强度的单位是 。
5、两个矢量的点积是是 量,两个矢量的叉积是 量。
6、电位参考点就是指定电位值恒为 的点,电位参考点选定后,电场中各点的电位值是 。
北工大电磁场与电磁波期末试题B答案
北京工业大学 2014——2015学年第一学期《电磁场与电磁波》期末考试试卷 B 卷考试说明:考试时间:95分钟考试形式(开卷/闭卷/其它):闭卷适用专业:电子信息工程、通信工程承诺:本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。
若有违反,愿接受相应的处分。
承诺人:学号:班号:。
注:本试卷共三大题,共十页,满分100分,考试时必须使用卷后附加的统一答题纸和草稿纸。
请将答案统一写在试题下方或指定位置,如因答案写在其他位置而造成的成绩缺失由考生自己负责。
卷面成绩汇总表(阅卷教师填写)一、单选题(每题3分,共15分)1.下列关于梯度、散度和旋度描述中,错误的是:(B)A.梯度的旋度恒等于0;B.梯度的散度恒等于0;C.旋度的散度恒等于0;D.常矢量的散度恒等于0。
2.下列电磁场边界条件中,适用于理想导体的是:(C)A.()()()()12121212SSρ⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩n H H Jn E En B Bn D DB.()()()()12121212⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩n H Hn E En B Bn D DC.1111SSρ⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩n H Jn En Bn D3. 下列均匀平面波中,是右旋圆极化的为:(B)A.B.C.D.4. 当电磁波以布儒斯特角入射到两种非磁性煤质分界面上时,哪个是正确的: ( A )A . 平行极化分量全部透射;B . 垂直极化分量全部透射;C . 平行极化分量全部反射;D . 垂直极化分量全部反射。
5. 下列关于均匀波导的假设,哪个是错误的:( D )A . 波导的横截面沿z 方向是均匀的,即波导内的电场和磁场分布只与坐标x 、y 有关,与坐标z 无关;B . 构成波导壁的导体是理想导体;C . 波导内填充的媒质为理想媒质,且各向同性;D . 所讨论的区域内只有自由电荷;E . 波导内的电磁场是时谐场。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
《电磁场与电磁波》(B卷)考试试卷答案及评分标准
《电磁场与电磁波》(B 卷)考试试卷答案及评分标准一.填空(20分,每空2分) 1. 12916x y z --+e e e 2.54,1516± 3. =53x y z --R e e e,0=53)x y z R =--R R e e e 4. -2,336x y z ---e e e5. 21()s ρ-=n D D ,21()⨯-0n E E =,21()s ⨯-n H H =J6. ()()()t t t =⨯S E H二、判断题:(每题2分,共16分)1. B2. A3. D4. C5. A6. C7. A8. B 三、证明题(共2题,每题8分,总计16分) 1.证明:(1)=()+()+()=xy zx y z z y x z y xx y z y z z x x y xyz∂∂∂∂∂∂∂∂∂∇⨯---∂∂∂∂∂∂∂∂∂0e e e R =e e e (4分)(2)设常矢A 为=x x y y z z A A A ++A e e e 则=()()=x x y y z z x y z x y z A A A x y z A x A y A z++++++A R e e e e e e (2分)所以()=()()()=xx y x z z x x y y z zA x A y A z x y z A A A ∂∂∂∇++∂∂∂++A R e e e e e e (2分) 2. 根据已知可以得到(1)证明:三个顶点的位置矢量分别为12y z -r =e e ,243x y z -r =e +e e ,3625x y z +r =e +e e (2分)则12214x z-=-R =r r e e ,233228x y z-=++R =r r e e e ,311367x y z -=---R =r r e e e (2分)由此可见,1223(4)(28)=0x z x y z -++R R =e e e e e (2分)所以,123PP P ∆是直角三角形。
电磁场与电磁波_西北工业大学中国大学mooc课后章节答案期末考试题库2023年
电磁场与电磁波_西北工业大学中国大学mooc课后章节答案期末考试题库2023年1.矢量场中某点的散度是标量,其大小是该点的()答案:通量密度2.矢量场中某点的旋度是一个矢量,其大小等于该点的(),其方向为()答案:最大环量密度,取得最大环量的环面的法线方向。
3.三个非零矢量相加为零,说明这三个矢量()答案:共面_构成三角形4.在静电场中的导体达到静电平衡状态,下列说法错误的是答案:导体内部电场处处不等。
5.矢量是既有大小又有方向的量。
答案:正确6.电磁场是矢量场。
答案:正确7.空间某点梯度的大小是该点的最大的方向导数,梯度的方向是该点等值面的法线方向。
答案:正确8.若入射波的传播方向与分界面的法线平行时,这种入射方式称为()。
答案:垂直入射9.当电磁波的入射方向与分界面的法线有一定夹角时,这种入射方式称为()。
答案:斜入射10.在分界面上,透射波电场强度与入射波电场强度之比称为()。
答案:透射系数11.镜像法的理论依据有()答案:唯一性定理12.一点电荷q放置在接地导体球(半径为【图片】)外,与球心的距离为d,则镜像电荷的位置和电量为()答案:13.静态场是指电磁场中的源量和场量都不随时间发生变化的场,其包括()答案:恒定电场_恒定磁场_静电场14.静态场的位函数满足的方程有()答案:无源区,满足拉普拉斯方程_有源区,满足泊松方程15.对于镜像法下列描述正确的是()答案:实际电荷和镜像电荷作用在边界处保持原有边界条件不变。
_镜像电荷必须在待求场域的边界以外。
_待求场域的场由实际电荷和所有镜像电荷产生的场叠加得到。
_将有边界的不均匀空间处理成和待求场域媒质特性一致的无限大均匀空间。
16.在直角坐标系下,拉普拉斯方程的解中的本征函数有()答案:三角函数_常数或线性函数_双曲函数或指数函数17.对偶原理的含义是:如果描述两种物理现象的数学方程具有相同的形式,并具有对应的边界条件,那么方程中具有同等地位的量的解的数学形式也将是相同的。
(完整word版)电磁场与电磁波试题及答案(word文档良心出品)
一、填空题(每题2分)1 两种不同电介质界面处不带自由电荷,三个场变量在边界处的边界条件分别是:n n D D 21=、 以及21ϕϕ=。
2 关于静电场泊松方程定解的唯一性定理是指:无论用什么方法求得解,只要它满足 泊松方程和 ,该解就是唯一的。
3 在时变电磁场中,产生感应电场的根源是 。
4 金属表面带正的面电荷s ρ,则金属表面处的电场强度方向为 。
5 在无界空间传播的电磁波,电场、磁场方向与波的传播方向_____,所以电磁波为__ _波。
二 选择题(每题4分)电荷体密度为ρ,以速度v定向移动,由此形成的电流密度为=J ____放置于空气中的铁磁体,铁磁体表面外侧磁场方向与铁磁体表面______。
根据磁场的基本过程0=⋅∇B,可以确定磁场在两介质界面的边界条件为_____。
在正常色散情况下,电磁波的相速P V 在数值上 于群速G V 。
平面电磁波从空气一侧垂直入射理想导体表面时,空气一侧的电磁波呈 波,能流密度为 。
一电荷量为q ,质量为m 的小带电体,放置在无限大平面导体下方,与平面相距为h ,导体已接地。
为使带电体受到的重力与静电力相平衡。
求电荷q 应为多少?(15分)解: 点电荷q 的像电荷在平板的上方h 处,像电荷为q -,它们的吸引力为20)2(412h q F πε= 相平衡时,它与重力相等,即:mg h q =20)2(412πε (5分) C h mg q 82120109.5))2(4(-⨯==πε (5分) 海水的电导率为4 s/m ,相对介电常数81=r ε,求当频率为f =108 Hz 时,海水中位移电流密度J d 与传导电流密度J c 之比。
(取)1094/(190⨯⨯=πε)解: 设海水中的电场:E=E 0COS(ωt)位移电流:t E tEt D J d ωωεεsin 0-=∂∂=∂∂=;ωε0E J dm = (4分) 任导电流:t E E J c ωσσcos 0== ;0E J cm σ= (4分)∴比值为:45.041028180=⨯⨯⨯==πεσεωc d J J (2分)在自由空间中,某电磁波的波长为0.2 m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京工业大学 2014——2015学年第一学期
《电磁场与电磁波》期末考试试卷 B 卷
考试说明:考试时间:95分钟考试形式(开卷/闭卷/其它):闭卷
适用专业:电子信息工程、通信工程
承诺:
本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。
若有违反,愿接受相应的处分。
承诺人:学号:班号:。
注:本试卷共三大题,共十页,满分100分,考试时必须使用卷后附加的统一答题纸和草稿纸。
请将答案统一写在试题下方或指定位置,如因答案写在其他位置而造成的成绩缺失由考生自己负责。
卷面成绩汇总表(阅卷教师填写)
一、单选题(每题3分,共15分)
1.下列关于梯度、散度和旋度描述中,错误的是:(B)
A.梯度的旋度恒等于0;
B.梯度的散度恒等于0;
C.旋度的散度恒等于0;
D.常矢量的散度恒等于0。
2.下列电磁场边界条件中,适用于理想导体的是:(C)
A.
()
()
()
()
12
12
12
12
S
S
ρ
⨯-=
⎧
⎪
⨯-=
⎪
⎨
⋅-=
⎪
⎪⋅-=
⎩
n H H J
n E E
n B B
n D D
B.
()
()
()
()
12
12
12
12
⨯-=
⎧
⎪
⨯-=
⎪
⎨
⋅-=
⎪
⎪⋅-=
⎩
n H H
n E E
n B B
n D D
C.
1
1
1
1
S
S
ρ
⨯=
⎧
⎪⨯=
⎪
⎨
⋅=
⎪
⎪⋅=
⎩
n H J
n E
n B
n D
3. 下列均匀平面波中,是右旋圆极化的为:(B)
A.
B.
C.
D.
4. 当电磁波以布儒斯特角入射到两种非磁性煤质分界面上时,哪个是正确的: ( A )
A . 平行极化分量全部透射;
B . 垂直极化分量全部透射;
C . 平行极化分量全部反射;
D . 垂直极化分量全部反射。
5. 下列关于均匀波导的假设,哪个是错误的:( D )
A . 波导的横截面沿z 方向是均匀的,即波导内的电场和磁场分布只与坐标x 、
y 有关,与坐标z 无关;
B . 构成波导壁的导体是理想导体;
C . 波导内填充的媒质为理想媒质,且各向同性;
D . 所讨论的区域内只有自由电荷;
E . 波导内的电磁场是时谐场。
二、 填空题(每空1分,共15分)
1、 麦克斯韦方程组的积分形式
、
、 、 。
2、根据亥姆霍兹定理, 矢量场可以用一个 无旋 场和一个 无散 场之和来表示。
3、当物质被引入电磁场中,它们将和电磁场产生相互作用而改变其状态。
从宏观效应看,物质对电磁场的响应可分为 极化 、 磁化 、 传导 三种现象。
4、能流密度矢量用以描述电磁能量的流动状况,其方向表示能量流动方向,与电
m m sin()cos()
x y E e E t kz e E t kz ωω=-+-j j m m e j e kz kz
x y E e E e E --=-m m ππ
sin()cos()
44
x y E e E t kz e E t kz ωω=-++--m m sin()2cos()x y E e E t kz e E t kz ωω=-+-
场方向、 磁场方向 垂直。
5、均匀平面波在导电媒质中传播时,电场和磁场的振幅 呈指数衰减 ,电场和磁场的相位 不同 (相同、不同)。
6、矩形波导中(a >2b ),当工作波长λ
范围
时,只能传播单一的电磁波模式模。
当工作波长λ 时,矩形波
导中不能传播任何电磁波。
二、计算题(70分)
基本物理公式和常数:
ε0=1
36π×10−9=8.85×10−12F/m ,μ0=4π×10−7H/m
1、 (本题10分)
已知矢量E =e x (x 2+axz )+e y (xy 2+by )+e z (z −z 2+czx −2xyz)。
(1) 求矢量E 的散度(4分)。
(2) 若E 为无源场,试确定常数a 、b 和c 的值(6分)。
()
2a a λ<≤2a λ>
2分
2分 2分 1分 1分
1分 1分
2、 (本题10分)
求下列情况下的位移电流密度的大小(每小题5分)。
(1) 一大功率变压器在空气中的磁感应强度为:
B =e y 0.8cos (3.77×102t −1.26×10−6x )T
(2) 一大功率电容器在填充的油中产生的电场为:
E =e x 0.9cos (3.77×102t −2.81×10−6z )MV/m 设油的相对介电常数εr =5
3、 (本题10分)
一个点电荷q 与无限大导体平面的距离为d ,如果把它移到无穷远处,需要做多少功。
利用镜像法求解。
当点电荷移动到距离导体平面为x 的点P(x,0,0)处,其像电荷q q '=-,位于点(-x,0,0)。
像电荷在点P 处产生的电场为:
2
0-()4(2)x
q
E x e x πε=
所以将点电荷移到无穷远处时,电场做的功为:
3分
3分
4、 (本题8分)
已知截面为a ⨯b 的矩形金属波导中电磁场的复矢量为
j 0j 00πj sin()e πππ[j sin()cos()]e πz y z
x z a x
E e H a
a x x
H e H e H a a ββωμ
β--=-=+A/m
式中H0 、ω、β、μ都是常数。
试求:
(1)瞬时坡印廷矢量; (2)平均坡印廷矢量。
j 0π(,,)Re[e ]sin()sin()πt y a x
E x z t E e H t z a
ωωμ
ωβ==- j 0π(,,)Re[e ]sin()sin()πt x a x H x z t H e H t z a ωβωβ==--+0πcos()cos()z x
e H t z a
ωβ- 瞬时坡印廷矢量
202220(,,)(,,)(,,)
2πsin()sin(22)4ππ()sin()sin ()
πx
z x z t E x z t H x z t a x
e H t z a
a x
e H t z a
ωμωβωμβωβ=⨯=-+-S 平均坡印廷矢量*22
2av 0
11πRe[]()sin ()22πz a x E H e H a ωμβ=⨯=S
自由空间的均匀平面波的电场表达式为:
E =(e x +e y 2+e z E z )10cos(ωt +3x −y −z)V /m
试求:
(1)波的传播方向(3分); (2)波的频率和波长(4分); (3)E z (3分);
(4)与H 相伴的电场E (2分);
211
m k πλ=
=
2分
2分
2分
2分
1分
1分
2分
设一电磁波,其电场沿x方向,频率为1GHz,振幅为100V/m,初相位为0,垂直入射到一无损耗媒质表面,其相对介电常数为2.1。
试求:
(1)每一区的波阻抗和相位常数(4分);
(2)媒质1的电场E1(z,t)(3分);
(3)媒质2的电场E2(z,t)(3分)。
2分
2分
1分
2分
已知矩形波导的横截面尺寸为a×b,其中b<a<2b。
(1)试写出截止频率的表达式(4分);
(2)假设材料用紫铜(视为理想导体),内充空气。
欲设计一工作波长λ =10cm 的矩形波导,要求TE10的工作频率至少有30%的安全因子,即0.7f c2≥f≥1.3f c1,其中f c1和f c2分别为TE10波和相邻高阶模式的截止频率表达式。
试确定a和b的尺寸(6分)。
4分
2分
2分
1分
1分
草稿纸姓名:学号:。