浙江专用版2020版高考物理二轮复习新考点全排查考点5万有引力定律讲义

合集下载

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点2

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点2

考点2 相互作用考试标准知识内容考试要求重力、基本相互作用c弹力c摩擦力c力的合成c力的分解c共点力平衡条件及应用c弹力1.弹力(1)定义:发生形变的物体由于要恢复原状而对与它接触的物体产生的作用力.(2)产生条件:①物体间直接接触;②接触处发生形变.(3)弹力方向:(4)弹力有无的判断2.胡克定律(1)内容:在弹性限度内,弹力的大小和弹簧形变大小(伸长或缩短的量)成正比.(2)表达式:F =kx .①k 是弹簧的劲度系数,单位是牛顿每米,用符号N/m 表示;k 的大小由弹簧自身性质决定.②x 是弹簧长度的变化量,不是弹簧形变以后的长度.摩擦力1.静摩擦力与滑动摩擦力名称项目静摩擦力滑动摩擦力定义两相对静止的物体间的摩擦力两相对运动的物体间的摩擦力产生条件①接触面粗糙②接触处有压力③两物体间有相对运动趋势①接触面粗糙②接触处有压力③两物体间有相对运动大小0<F f ≤F fmF f =μF N方向与受力物体相对运动趋势的方向相反与受力物体相对运动的方向相反作用效果总是阻碍物体间的相对运动趋势总是阻碍物体间的相对运动2.动摩擦因数(1)定义:彼此接触的物体发生相对运动时,摩擦力和正压力的比值.μ=.F fF N (2)决定因素:接触面的材料和粗糙程度.力的合成与分解1.合力与分力(1)定义:如果几个力共同作用产生的效果与一个力的作用效果相同,这一个力就叫做那几个力的合力,那几个力叫做这一个力的分力.(2)关系:合力与分力是等效替代关系.2.共点力作用在物体的同一点,或作用线交于一点的几个力.如图中各组力均为共点力.3.力的合成(1)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.如图甲所示,F 1、F 2为分力,F为合力.②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量.如图乙,F 1、F 2为分力,F 为合力.(2)两个力的合力范围:|F 1-F 2|≤F ≤F 1+F 2;合力可以大于分力,也可以小于分力,还可以等于分力.(3)几种特殊情况的共点力的合成类型作图合力的计算互相垂直F =F 12+F 22tan θ=F 1F 2两力等大,夹角为θF =2F 1cos θ2F 与F 1夹角为θ2两力等大夹角为120°合力与分力等大F ′与F 夹角为60°4.力的分解方法(1)效果分解法:由力的作用效果确定分力的方向,根据平行四边形定则作出平行四边形,然后用数学知识求解.(2)正交分解法①定义:将已知力按互相垂直的两个方向进行分解的方法.②建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(使尽量多的力分布在坐标轴上);在动力学中,往往以加速度方向和垂直加速度方向为坐标轴建立坐标系.受力分析1.把指定物体(研究对象)在特定的物理环境中受到的所有外力都找出来,并画出受力示意图的过程.2.一般步骤共点力的平衡1.平衡状态物体处于静止状态或匀速直线运动状态.2.平衡条件F合=0或者Error!.3.平衡条件的推论(1)二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,方向相反.(2)三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任何一个力与另外两个力的合力大小相等,方向相反,并且这三个力的矢量可以形成一个封闭的矢量三角形.(3)多力平衡:如果物体在多个共点力的作用下处于平衡状态,其中任意一个力与其余几个力的合力大小相等,方向相反.。

2020高考物理浙江专用版大二轮课件:新选考考点全排查 考点3

2020高考物理浙江专用版大二轮课件:新选考考点全排查 考点3

考点3 牛顿运动定律第二部分 新选考考点全排查考试标准知识内容考试要求牛顿第一定律c牛顿第二定律c力学单位制b牛顿第三定律c牛顿运动定律应用d超重与失重b1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)意义:①揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律;②揭示了力与运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.2.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.(2)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.(3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受力情况无关.牛顿第一定律 惯性一1.牛顿第二定律(1)内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同.(2)表达式:F =ma .(3)适用范围①牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.②牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.牛顿第二定律 力学单位制二2.力学单位制(1)单位制:由基本单位和导出单位一起组成了单位制.(2)基本单位:基本物理量的单位.国际单位制中基本物理量共七个,其中力学有三个,是长度、质量、时间,单位分别是米、千克、秒.(3)导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.1.作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体同时对前一个物体也施加力.2.内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.3.表达式:F =-F ′.牛顿第三定律三1.牛顿第二定律的表达式为:F 合=ma ,加速度由物体所受合外力决定,加速度的方向与物体所受合外力的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别:(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将突变为0.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力不能发生突变.瞬时问题四1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.(2)产生条件:物体的加速度a =g ,方向竖直向下.超重和失重五4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.5.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,物体处于超重状态②物体向下加速或向上减速时,物体处于失重状态1.连接体的运动特点轻绳连接——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆连接——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧连接——在弹簧发生形变的过程中,两端物体的速度不一定相等;在弹簧形变最大时,两端物体的速度相等.连接体问题六2.处理连接体问题的方法整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”。

2020高考物理浙江专用版大二轮 课件 讲义 专题二 能量与动量第5讲

2020高考物理浙江专用版大二轮 课件 讲义 专题二 能量与动量第5讲
答案 1.0 m/s 2 J
解析 当两物体速度相等时,弹簧压缩量最大,系统损失的动能最大.以v0的方向为 正方向, 由动量守恒定律知 mv0=2mv,所以 v=v20=1.0 m/s 损失的动能为 ΔEk=12mv02-12×2m×v2=2 J.
拓展训练4 (多选)(2019·福建厦门市上学期期末质检)如图所示,一质量M=2.0 kg的
第一部分 专题二 能量与动量
内容索引
NEIRONGSUOYIN
题型1 动量和动量定理的应用 题型2 碰撞类问题 题型3 动力学、动量和能量观点的应用
题型1
动量和动量定理的应用
1.公式:Ft=p′-p 2.理解 (1)等式左边是过程量Ft,右边是两个状态量之差,是矢量式.v1、v2是以同一惯性参 考系为参照的. (2)Δp的方向可与mv1一致、相反或成某一角度,但是Δp的方向一定与F一致. 3.应用 (1)恒力,求Δp时,用Δp=Ft (2)变力,求I时,用I=Δp=mv2-mv1 (3)当 Δp 一定时,Ft 为确定值:F=Δtp t小F大——如碰撞;t大F小——如缓冲.
规律方法提炼
1.基本思路 (1)弄清有几个物体参与运动,并划分清楚物体的运动过程. (2)进行正确的受力分析,明确各过程的运动特点. (3)碰撞过程、子弹打木块、不受其他外力作用的两物体相互作用问题,一般考虑用 动量守恒定律分析. 2.三类碰撞的特点
例3 (2019·山东日照市3月模拟)A、B两小球静止在光滑水平面上,用轻弹簧相连接,
射的气体质量约为 A.1.6×102 kg
√B.1.6×103 kg
C.1.6×105 kg
D.1.6×106 kg
解析 根据动量定理有 FΔt=Δmv-0,解得 Δm=FvΔt=1.6×103 kg,所以选项 B 正确.

2020版物理浙江高考选考一轮复习讲义:必修2第四章第3讲万有引力与航天含解析.doc

2020版物理浙江高考选考一轮复习讲义:必修2第四章第3讲万有引力与航天含解析.doc

第3讲万有引力与航夭双基过关紧抓教材自主落实知识排查知识点一开普勒三定律1 •开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。

2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等。

3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公传周期的二次方的比值都相等。

知识点二万有引力定律及其应用1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量mi和m2的乘积成正比,与它们之间距离r的平方成反比。

2.表达式:F=鏗严G 为引力常量:G=6.67X10_,1 N-m2/kg2o3.适用条件(1)公式适用于质点间的相互作用。

当两个物体间的距离远远大于物体本身的大小吋,物体可视为质点。

(2)质量分布均匀的球体可视为质点,厂是两球心间的距离。

知识点三环绕速度1.第一宇宙速度又叫环绕速度,其数值为7.9 km/s。

2.特点(1)第一宇宙速度是人造卫星的最小发射速度。

(2)第一宇宙速度是人造卫星的最人坯绕速度。

3.第一宇宙速度的计算方法(1)由得0=寸^^=7.9 km/s(2)由加g=r■得v=y[gR=1.9 km/sMl识点四第二、三宇宙速度时空观1.第二宇宙速度:^2=11-2 km/s,是卫星挣脱地球引力束缚的最小发射速度。

2.第三宇宙速度:I;3=16.7 km/s,是卫星挣脱太阳引力束缚的最小发射速度。

3.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的。

(2)在经典力学屮,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。

4.相对论时空观在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。

小题速练1.思考判断(1)行星离太阳较近时,运行速率较快,行星离太阳较远时运行速率较慢()(2)只有天体之间才存在万有引力()(3)牛顿利用扭秤实验装置测出了引力常量()(4)当两物体间距趋近于零时,万有引力趋近无穷大()(5)人造卫星的运行速度都要大于7.9 km/s()(6)人造地球同步卫星运行轨道只能在赤道上空( )(7)发射探月卫星的速度必须大于第二宇宙速度()答案(1)7 ⑵ X ⑶ X (4)X (5)X (6) V (7)X2.关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律解析在天文观测数据的基础上总结出了开普勒天体运动三定律,找出了行星运动的规律,而牛顿发现了万有引力定律。

2020版高考物理二轮复习考点全排查讲义浙江专用版

2020版高考物理二轮复习考点全排查讲义浙江专用版

2020版高考物理二轮复习考点全排查讲义浙江专用版考点1匀变速直线运动考点2相互作用考点3牛顿运动定律考点4曲线运动考点5万有引力定律考点6机械能考点7静电场考点8恒定电流考点9磁场考点10电磁感应考点11交变电流考点12选修3-4 考点13选修3-5 考点14力学实验考点15电学实验考点1 匀变速直线运动考试标准质点和参考系1.质点(1)用来代替物体的有质量的点叫做质点.(2)研究一个物体的运动时,如果物体的形状和大小对所研究问题的影响可以忽略,就可以看做质点.(3)质点是一种理想化模型,实际并不存在.2.参考系(1)参考系可以是运动的物体,也可以是静止的物体,但被选为参考系的物体,我们都假定它是静止的.(2)比较两物体的运动情况时,必须选同一参考系.(3)选取不同的物体作为参考系,对同一物体运动的描述可能不同.通常以地面为参考系.位移和速度1.位移和路程2.速度与速率(1)平均速度:物体发生的位移与发生这段位移所用时间的比值,即v=ΔxΔt,是矢量,其方向就是对应位移的方向.(2)瞬时速度:运动物体在某一时刻或经过某一位置的速度,是矢量,其方向是物体的运动方向或运动轨迹的切线方向.(3)速率:瞬时速度的大小,是标量.加速度1.物理意义:描述物体速度变化快慢和方向的物理量. 2.定义式:a =Δv Δt =v -v 0Δt.3.决定因素:a 不是由v 、Δt 、Δv 来决定,而是由Fm来决定.4.方向:与Δv 的方向一致,由合外力的方向决定,而与v 0、v 的方向无关.匀变速直线运动的规律 1.匀变速直线运动沿着一条直线,且加速度不变的运动. 2.匀变速直线运动的基本规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)速度位移关系式:v 2-v 02=2ax .匀变速直线运动的三个推论1.连续相等的相邻时间间隔T 内的位移差相等, 即x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.2.做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度. 平均速度公式:v =v 0+v2=2t v .3.位移中点速度2x v =v 02+v 22.自由落体运动1.条件:物体只受重力,从静止开始下落. 2.基本规律 (1)速度公式:v =gt . (2)位移公式:x =12gt 2.(3)速度位移关系式:v 2=2gx . 3.伽利略对自由落体运动的研究(1)伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论. (2)伽利略对自由落体运动的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)结合起来.运动学图象 1.运动学图象的识别根据图象中横、纵坐标轴所代表的物理量,明确该图象是位移—时间图象(xt 图象),还是速度—时间图象(vt 图象),或是加速度—时间图象(at 图象),这是解读运动学图象信息的前提. 2.图象信息的解读考点2 相互作用考试标准弹力1.弹力(1)定义:发生形变的物体由于要恢复原状而对与它接触的物体产生的作用力.(2)产生条件:①物体间直接接触;②接触处发生形变.(3)弹力方向:(4)弹力有无的判断2.胡克定律(1)内容:在弹性限度内,弹力的大小和弹簧形变大小(伸长或缩短的量)成正比.(2)表达式:F=kx.①k是弹簧的劲度系数,单位是牛顿每米,用符号N/m表示;k的大小由弹簧自身性质决定.②x是弹簧长度的变化量,不是弹簧形变以后的长度.摩擦力1.静摩擦力与滑动摩擦力2.动摩擦因数(1)定义:彼此接触的物体发生相对运动时,摩擦力和正压力的比值.μ=F fF N.(2)决定因素:接触面的材料和粗糙程度.力的合成与分解1.合力与分力(1)定义:如果几个力共同作用产生的效果与一个力的作用效果相同,这一个力就叫做那几个力的合力,那几个力叫做这一个力的分力.(2)关系:合力与分力是等效替代关系.2.共点力作用在物体的同一点,或作用线交于一点的几个力.如图中各组力均为共点力.3.力的合成(1)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.如图甲所示,F1、F2为分力,F为合力.②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量.如图乙,F1、F2为分力,F为合力.(2)两个力的合力范围:|F1-F2|≤F≤F1+F2;合力可以大于分力,也可以小于分力,还可以等于分力.(3)几种特殊情况的共点力的合成两力等大夹F4.力的分解方法(1)效果分解法:由力的作用效果确定分力的方向,根据平行四边形定则作出平行四边形,然后用数学知识求解.(2)正交分解法①定义:将已知力按互相垂直的两个方向进行分解的方法.②建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(使尽量多的力分布在坐标轴上);在动力学中,往往以加速度方向和垂直加速度方向为坐标轴建立坐标系.受力分析1.把指定物体(研究对象)在特定的物理环境中受到的所有外力都找出来,并画出受力示意图的过程. 2.一般步骤共点力的平衡 1.平衡状态物体处于静止状态或匀速直线运动状态. 2.平衡条件F 合=0或者⎩⎪⎨⎪⎧F x =0F y =0.3.平衡条件的推论(1)二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,方向相反.(2)三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任何一个力与另外两个力的合力大小相等,方向相反,并且这三个力的矢量可以形成一个封闭的矢量三角形. (3)多力平衡:如果物体在多个共点力的作用下处于平衡状态,其中任意一个力与其余几个力的合力大小相等,方向相反.考点3 牛顿运动定律考试标准知识内容考试要求牛顿第一定律惯性1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)意义:①揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律;②揭示了力与运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.2.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.(2)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.(3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受力情况无关.牛顿第二定律力学单位制1.牛顿第二定律(1)内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同.(2)表达式:F=ma.(3)适用范围①牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.②牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.2.力学单位制(1)单位制:由基本单位和导出单位一起组成了单位制.(2)基本单位:基本物理量的单位.国际单位制中基本物理量共七个,其中力学有三个,是长度、质量、时间,单位分别是米、千克、秒.(3)导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.牛顿第三定律1.作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体同时对前一个物体也施加力.2.内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.3.表达式:F=-F′.瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受合外力决定,加速度的方向与物体所受合外力的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别:(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将突变为0.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力不能发生突变.超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.5.判断超重和失重的方法连接体问题1.连接体的运动特点轻绳连接——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆连接——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧连接——在弹簧发生形变的过程中,两端物体的速度不一定相等;在弹簧形变最大时,两端物体的速度相等.2.处理连接体问题的方法考点4 曲线运动考试标准曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.3.运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.4.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.5.合外力对运动的影响合外力在垂直于速度方向上的分力改变物体速度的方向,合外力在沿速度方向上的分力改变物体速度的大小.(1)当合外力方向与速度方向的夹角为锐角时,物体的速度大小增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速度大小减小;(3)当合外力方向与速度方向垂直时,物体的速度大小不变.运动的合成与分解1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.2.合运动与分运动的关系(1)等时性:合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止.(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响.(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果.3.两个直线运动的合运动性质的判断标准:看合初速度方向与合加速度方向是否共线.4.小船渡河问题(1)船的实际运动:是水流的运动和船相对静水的运动的合运动.(2)三种速度:船在静水中的速度v 船、水的流速v 水、船的实际速度v ,遵循平行四边形定则.平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动. 2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线. 3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律(如图)(1)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v x 2+v y 2=v 02+g 2t 2设合速度的方向与水平方向的夹角为θ,有tan θ=v y v x =gtv 0. (2)位移⎩⎪⎨⎪⎧水平方向:x =v 0t 竖直方向:y =12gt 2设合位移的大小s =x 2+y 2=(v 0t )2+(12gt 2)2合位移的方向与水平方向的夹角为α,有 tan α=y x =gt2v 0. (3)结论:①合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.所以做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点.②时间:由y =12gt 2,得t =2yg,平抛物体在空中运动的时间t 只由物体抛出时离地的高度y 决定,而与抛出时的初速度v 0无关.③速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(ΔvΔt =g )相等,且必沿竖直方向,如图所示.任意两时刻的速度与速度的变化量Δv 构成三角形,Δv 沿竖直方向.④与斜面结合的平抛运动,分解速度,如图甲所示,分解位移,如图乙所示.如图乙所示,小球抛出落到斜面上的时间t =2v 0tan θg;落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;经过t ′=v 0tan θg,小球距斜面最远,最大距离为(v 0sin θ)22g cos θ.斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动. 2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线. 3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动. 4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0; (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .匀速圆周运动及描述 1.匀速圆周运动(1)定义:做圆周运动的物体,若在任意相等的时间内通过的圆弧长相等,该运动就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心. 2.运动参量匀速圆周运动的向心力 1.作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小. 2.大小F =m v 2r =mr ω2=m 4π2T2r =m ωv =4π2mf 2r .3.方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供. 5.几种典型运动模型离心运动和近心运动1.离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.受力特点(如图)(1)当F=0时,物体沿切线方向飞出;(2)当0<F<mrω2时,物体逐渐远离圆心;(3)当F>mrω2时,物体逐渐向圆心靠近,做近心运动.3.本质:离心运动的本质并不是受到离心力的作用,而是提供的指向圆心方向的合力小于做匀速圆周运动需要的向心力.考点5 万有引力定律考试标准知识内容 考试要求开普勒三定律a 31.行星绕太阳的运动通常按圆轨道处理.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律a 3T2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.该定律只能用在同一中心天体的两星体之间.万有引力定律 1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r2,G 为引力常量,G =6.67×10-11N·m 2/kg 2.3.适用条件(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 4.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体间相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =GM ′mr 2. 万有引力与重力的关系 1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F向.(1)在赤道上:G MmR 2=mg 1+m ω2R . (2)在两极上:G Mm R2=mg 0.(3)在一般位置:万有引力G Mm R2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR 2=mg . 2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2,得g ′=GM(R +h )2.所以g g ′=(R +h )2R 2.天体质量和密度常用的估算方法宇宙速度 1.第一宇宙速度(1)第一宇宙速度又叫环绕速度,其数值为7.9km/s.(2)第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度. (3)第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度. (4)第一宇宙速度的计算方法.由G Mm R 2=m v 2R 得v =GMR; 由mg =m v 2R得v =gR .2.第二宇宙速度使物体挣脱地球引力束缚的最小发射速度,其数值为11.2km/s. 3.第三宇宙速度使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7km/s.卫星运行参量的分析卫星运行参量相关方程结论考点6 机械能考试标准功1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功.2.必要因素:力和物体在力的方向上发生的位移.3.物理意义:功是能量转化的量度.4.计算公式(1)恒力F的方向与位移l的方向一致时:W=Fl.(2)恒力F 的方向与位移l 的方向成某一夹角α时:W =Fl cos α. 5.功的正负(1)当0≤α<π2时,W >0,力对物体做正功.(2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功.(3)当α=π2时,W =0,力对物体不做功.变力功的分析与计算用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F -mgL (1-cos θ)=0,得W F =mgL (1-cos θ)质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ·Δx 1+F f ·Δx 2+F f ·Δx 3+…=F f (Δx 1+Δx 2+Δx 3+…)=F f ·2πR恒力F 把物块从A 拉到B ,绳子对物块做功W =F ·(hsin α-hsin β)功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式:(1)P =W t,描述时间t 内力对物体做功的快慢. (2)P =Fv①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率.③当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解.动能定理1.内容:在一个过程中合力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式:W =ΔE k =E k2-E k1=12mv 22-12mv 12.3.物理意义:合力的功是物体动能变化的量度. 4.适用条件:(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.如图所示,物块沿粗糙斜面下滑至水平面;小球由内壁粗糙的圆弧轨道底端运动至顶端(轨道半径为R ).对物块有W G +W f1+W f2=12mv 2-12mv 02对小球有-2mgR +W f =12mv 2-12mv 02机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.2.机械能守恒的判断(1)只有重力做功时,只发生动能和重力势能的相互转化.如自由落体运动、抛体运动等. (2)只有系统内弹力做功,只发生动能和弹性势能的相互转化.如在光滑水平面上运动的物体碰到一个弹簧,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒. (3)只有重力和系统内弹力做功,只发生动能、弹性势能、重力势能的相互转化.如自由下落的物体落到竖直的弹簧上,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒.(4)除受重力(或系统内弹力)外,还受其他力,但其他力不做功,或其他力做功的代数和为零.如物体在沿斜面向下的拉力F 的作用下沿斜面向下运动,其拉力的大小与摩擦力的大小相等,在此运动过程中,其机械能守恒. 3.机械能守恒表达式几种常见的功能关系及其表达式能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.功能关系的理解和应用1.只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析.考点7 静电场考试标准知识内容考试要求电荷电荷守恒定律1.元电荷、点电荷(1)元电荷:e=1.60×10-19C,所有带电体的电荷量都是元电荷的整数倍.(2)点电荷:代表带电体的有一定电荷量的点,忽略带电体的大小、形状及电荷分布状况的理想化模型.2.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变.(2)三种起电方式:摩擦起电、感应起电、接触起电.(3)带电实质:物体得失电子.(4)电荷的分配原则:两个形状、大小相同且带同种电荷的同种导体,接触后再分开,二者带等量同种电荷,若两导体原来带异种电荷,则电荷先中和,余下的电荷再平分.库仑定律1.内容真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.表达式F =k q 1q 2r2,式中k =9.0×109N·m 2/C 2,叫做静电力常量.3.适用条件真空中的静止点电荷.(1)在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式. (2)当两个带电体间的距离远大于其本身的大小时,可以把带电体看成点电荷.电场、电场强度 1.电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质. (2)基本性质:对放入其中的电荷有力的作用. 2.电场强度(1)定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值. (2)定义式:E =F q;单位:N/C 或V/m.(3)矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向. 3.三个计算公式静电力做功和电势能 1.静电力做功(1)特点:静电力做功与路径无关,只与电荷量和电荷移动过程始、末位置间的电势差有关. (2)计算方法①W =qEd ,只适用于匀强电场,其中d 为带电体在沿电场方向的位移. ②W AB =qU AB ,适用于任何电场. 2.电势能(1)定义:电荷在电场中具有的势能,称为电势能.(2)说明:电势能具有相对性,通常把无穷远处或大地的电势能规定为零.。

2020高考物理浙江专用版大二轮课件:新选考考点全排查 考点5

2020高考物理浙江专用版大二轮课件:新选考考点全排查 考点5
第二部分 新选考考点全排查
考点5 万有引力定律
考试标准
知识内容 行星的运动 太阳与行星间的引力 万有引力定律 万有引力理论的成就 宇宙航行 经典力学的局限性
考试要求 a a c c c a
一 开普勒三定律
定律
内容
开普勒第一定 所有行星绕太阳运动的轨道都是椭圆, 律(轨道定律) 太阳处在椭圆的一个焦点上
2.第二宇宙速度 使物体挣脱地球引力束缚的最小发射速度,其数值为11.2 km/s. 3.第三宇宙速度 使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7 km/s.
六 卫星运行参量的分析
卫星运行参量 线速度v 角速度ω 周期T
向心加速度an
相关方程
结论
r越大,v、ω、an越小, T越大
二 万有引力定律
1.内容 自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物 体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比. 2.表达式
3.适用条件 (1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时, 物体可视为质点. (2)质量分布均匀的球体可视为质点,r是两球心间的距离.
只能得到 中心天体 的质量
密 利用运行天体 r、T、R


计 利用天体表面
算 重力加速度
g、R
利用近地 卫星只需 测出其运 行周期
五 宇宙速度
1.第一宇宙速度 (1)第一宇宙速度又叫环绕速度,其数值为7.9 km/s. (2)第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度. (3)第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度. (4)第一宇宙速度的计算方法.

2020高考物理浙江专用版大二轮复习 课件 讲义 新选考考点全排查:第二部分 考点15

2020高考物理浙江专用版大二轮复习 课件 讲义 新选考考点全排查:第二部分 考点15

1.基本仪器的使用
电学
电阻(粗测)
欧姆表
①选择合适挡位;②换挡位需要重新欧姆调零;③指针示数乘以倍率,不估读
电阻箱
不估读
电流(电压)
电流表(电压表)
根据实验需要选择合适的量程,并要注意估读
2.电流表和电压表
量程
精确度
读数规则
电流表0~3A
0.1A
与刻度尺一样,采用 估读,读数规则较简单,只需在精确值后加一估读数即可
电压表0~3V
0.1V
电流表0~0.6A
0.02A
估读位与最小刻度在同一位,采用 估读
电压表0~15V
0.5V
估读位与最小刻度在同一位,采用 估读
3.实验要点
名称
装置图
常考要点
探究导体电阻与其影响因素(包括材料)的关系
①考读数:U、I、L及d(待测金属丝直径)
②考电路:电路设计或选择(限流、外接),实物连线或改错,器材选择
练习使用多用电表
①考读数:电压、电流、电阻挡的读数
②考使用:欧姆表选挡、调零、规范操作等
③考黑箱:多用电表探测黑箱内的元件
4.两种测量电路
内接法
外接法
电路结构
误差原因
电流表分压U测=Ux+UA
电压表分流I测=Ix+IV
测量数值
R测= >Rx
R测= <Rx
误差分析
测量值大于真实值
测量值小于真实值
适用条件
Rx≫RA
RV≫Rx
适用测量
大电阻
小电阻
5.两种控制电路
限流式接法
分压式接法
电路图
滑片P开始位置b端a端 Nhomakorabea电压调节范围

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点7

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点7

考点7 静电场考试标准知识内容考试要求电荷及其守恒定律c 库仑定律c 电场强度c 电势能和电势c 电势差c 电势差与电场强度的关系c 静电现象的应用b 电容器的电容c 带电粒子在电场中的运动d电荷 电荷守恒定律1.元电荷、点电荷(1)元电荷:e =1.60×10-19 C ,所有带电体的电荷量都是元电荷的整数倍.(2)点电荷:代表带电体的有一定电荷量的点,忽略带电体的大小、形状及电荷分布状况的理想化模型.2.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变.(2)三种起电方式:摩擦起电、感应起电、接触起电.(3)带电实质:物体得失电子.(4)电荷的分配原则:两个形状、大小相同且带同种电荷的同种导体,接触后再分开,二者带等量同种电荷,若两导体原来带异种电荷,则电荷先中和,余下的电荷再平分.库仑定律1.内容真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.表达式F =k ,式中k =9.0×109 N·m 2/C 2,叫做静电力常量.q 1q 2r 23.适用条件真空中的静止点电荷.(1)在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式.(2)当两个带电体间的距离远大于其本身的大小时,可以把带电体看成点电荷.电场、电场强度1.电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质.(2)基本性质:对放入其中的电荷有力的作用.2.电场强度(1)定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值.(2)定义式:E =;单位:N /C 或V/m.Fq (3)矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向.3.三个计算公式公式适用条件说明定义式E =Fq任何电场某点的场强为确定值,大小及方向与q 无关决定式E =k Qr 2真空中点电荷的电场E 由场源电荷Q 和场源电荷到某点的距离r 决定关系式E =U d匀强电场d 是沿电场方向的距离静电力做功和电势能1.静电力做功(1)特点:静电力做功与路径无关,只与电荷量和电荷移动过程始、末位置间的电势差有关.(2)计算方法①W =qEd ,只适用于匀强电场,其中d 为带电体在沿电场方向的位移.②W AB =qU AB ,适用于任何电场.2.电势能(1)定义:电荷在电场中具有的势能,称为电势能.(2)说明:电势能具有相对性,通常把无穷远处或大地的电势能规定为零.3.静电力做功与电势能变化的关系(1)静电力做的功等于电荷电势能的减少量,即W AB =E p A -E p B .(2)通过W AB =E p A -E p B 可知:静电力对电荷做多少正功,电荷电势能就减少多少;电荷克服静电力做多少功,电荷电势能就增加多少.(3)电势能的大小:由W AB =E p A -E p B 可知,若令E p B =0,则E p A =W AB ,即一个电荷在电场中某点具有的电势能,数值上等于将其从该点移到零势能位置过程中静电力所做的功.电势、电势差1.电势(1)定义式:φ=.E pq (2)相对性:通常选无穷远为电势零点;其正(负)表示该点电势比零电势高(低).2.电势差(1)定义式:U AB =φA -φB ,U AB =-U BA .(2)静电力做功与电势差的关系:W AB =qU AB .3.匀强电场中电势差与电场强度的关系(1)电势差与电场强度的关系式:U AB =E ·d ,其中d 为电场中两点间沿电场方向的距离.(2)电场强度的方向和大小与电势差的关系:E =.电场强度在数值上等于沿电场强度方向每Ud 单位距离上降低的电势,电场强度方向指向电势降低最快的方向.4.电势高低的四种判断方法(1)依据电场线方向:沿电场线方向电势逐渐降低.(2)依据电场力做功:根据U AB =,将W AB 、q 的正负号代入,由U AB 的正负判断φA 、φB WABq 的高低.(3)电荷的正负:取无穷远处电势为零,正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.(4)依据电势能的高低:正电荷在电势能大处电势较高,负电荷在电势能大处电势较低.常见电场的电场线和等势面分布电场线(虚线)和等势面(实线)图样电场线特点等势面特点 匀强电场疏密相同的平行直线垂直于电场线的一簇等间距平面正点电荷的电场(1)离点电荷越近,电场线越密集,场强越强,方向由正点电荷指向无穷远,或由无穷远指向负点电荷(2)在正(负)点电荷形成的电场中,不存在场强相同的点(3)若以点电荷为球心作一个球面,电场线处处与球面垂直,在此球面上场强大小处处相等,方向各不相同以点电荷为球心的一簇球面等量异种点电荷的电场(1)两点电荷连线上各点的场强方向从正电荷指向负电荷,沿电场线方向场强先变小再变大(2)两点电荷连线的中垂线上,电场线的方向均相同,即场强方向相同,且与中垂线垂直(3)两点电荷连线上关于中点对称的两点的场强等大,同向连线的中垂面为等势面且与无穷远处电势相等等量同种点电荷的电场(1)两点电荷连线中点O 的场强为零,此处无电场线(2)从两点电荷连线中点沿中垂线到无限远,电场线先变密后变疏,即场强先变大后变小(3)两点电荷连线中垂线上各点的场强方向和该直线平行,关于中点对称的两点场强等大、反向两点电荷连线上中点处电势最低,而在中垂线上,中点处电势最高电容器及电容1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成.(2)带电荷量:一个极板所带电荷量的绝对值.(3)电容器的充、放电:①充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能.2.电容(1)定义:电容器所带的电荷量与电容器两极板间的电势差的比值.(2)定义式:C =.QU (3)单位:法拉(F)、微法(μF)、皮法(pF).1 F =106 μF =1012 pF.(4)意义:表示电容器容纳电荷本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、相对位置及电介质)决定,与电容器是否带电及电压无关.3.平行板电容器的电容(1)决定因素:正对面积,相对介电常数,两板间的距离.(2)决定式:C =.εr S4πkd 4.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变.(2)电容器充电后与电源断开,电容器两极板所带的电荷量Q保持不变.带电粒子在电场中的运动1.加速(1)在匀强电场中,W =qEd =qU =m v 2-m v .121202(2)在非匀强电场中,W =qU =m v 2-m v .1212022.偏转(1)运动情况:如果带电粒子以初速度v 0垂直场强方向进入匀强电场中,则带电粒子在电场中做类平抛运动,如图所示.(2)处理方法:将粒子的运动分解为沿初速度方向的匀速直线运动和沿电场力方向的匀加速直线运动.根据运动的合成与分解的知识解决有关问题.(3)基本关系式:运动时间t =,加速度a ===,偏转量y =at 2=,偏转lv 0Fm qEm qUmd 12qUl 22md v 02角θ的正切值:tan θ===.v yv 0atv 0qUlmd v 023.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =m v 2-m v ,其中121202U y =y ,指初、末位置间的电势差.Ud。

2020高考物理浙江专用版大二轮讲义:专题五 方法专题 第11讲 Word版含解析

2020高考物理浙江专用版大二轮讲义:专题五 方法专题 第11讲 Word版含解析

第 1 页 共 22页专题定位 1.物理科目选考能力考核要求就包括数学应用能力,即“能根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;必要时运用几何图形、函数图象进行表达和分析”.2.应用数学方法处理物理问题的能力具体要求为:(1)能根据具体的物理问题列出物理量之间的关系,能把有关的物理条件用数学方程表示出来.(2)在解决物理问题时,往往需要经过数学推导和求解,或进行数值计算;求得结果后,有时还要用图象或函数关系把它表示出来;必要时还应对数学运算的结果做出物理上的结论或解释.(3)能够运用几何图形、函数图象解决物理问题,要能够对物理规律、状态和过程在理解的基础上用合适的图象表示出来,会用图象来处理物理问题.3.高中物理解题常见的数学思想方法包括估算法、几何法、函数法、比值法、图解法、极值法、微元法、归纳法、特殊值法、极限分析、分类讨论等,经常要用到的数学知识包括平面几何、函数图象、三角函数、不等式、数列等.第11讲 物理图象问题1.v -t 图象的应用技巧(1)图象意义:在v -t 图象中,图象上某点的斜率表示对应时刻的加速度,斜率的正负表示加第 2 页 共 22 页速度的方向.(2)注意:加速度沿正方向不表示物体做加速运动,加速度和速度同向时做加速运动.2.x -t 图象的应用技巧(1)图象意义:在x -t 图象上,图象上某点的斜率表示对应时刻的速度,斜率的正负表示速度的方向.(2)注意:在x -t 图象中,斜率绝对值的变化反映加速度的方向.斜率的绝对值逐渐增大则物体加速度与速度同向,物体做加速运动;反之,做减速运动.例1 (2019·湖南永州市第二次模拟)一个篮球从某一高度由静止下落,并与坚硬的地面碰撞后以原速率反弹,最后运动到最高点(假设篮球运动过程中所受空气阻力大小恒定,设竖直向下为正方向).下列描述该运动过程的图象正确的是( )答案 C解析 篮球从静止开始下落的过程中,做匀加速直线运动,x -t 图象应是抛物线,反弹后上升的过程,做匀减速运动,x -t 图象也是抛物线,故A 、B 错误;篮球先向下做匀加速直线运动,速度为正,加速度大小为a =g -,较小,图象较缓;后向上做匀减速运动,速度为F f m负,加速度大小为a ′=g +,较大,图象较陡,故C 正确,D 错误.F f m拓展训练1 (2019·宁波市 “十校联考”)利用速度传感器与计算机结合,可以自动作出物体运动的图象.某同学在一次实验中得到的运动小车的速度—时间图象如图所示,以下说法正确的是( )第 3 页 共 22 页A .小车的加速度先增加,后减小B .小车运动的最大速度约为0.9 m/sC .小车的位移一定大于8 mD .小车做曲线运动答案 C解析 小车的速度一直为正值,可知小车一直向前运动,且速度-时间图象只能反映直线运动的规律,可知小车做直线运动,故D 错误.在v -t 图象中,图象斜率的大小表示加速度的大小,根据图象可知图线切线的斜率先减小后为零再增大,则小车的加速度先减小后不变再增大,而小车加速到最大速度时为图象的最高点,读得0.8 m/s ,故A 、B 均错误;在v -t 图中,图线与时间轴所围的面积在数值上表示位移的大小,图中每小格的面积表示的位移大小为0.1 m ,总格数约为86格(大于半格计为一格,小于半格忽略不计),总位移为8.6 m ,故C 正确.拓展训练2 (多选)(2018·全国卷Ⅲ·18)甲、乙两车在同一平直公路上同向运动,甲做匀加速直线运动,乙做匀速直线运动.甲、乙两车的位置x 随时间t 的变化如图所示.下列说法正确的是( )A.在t 1时刻两车速度相等B .从0到t 1时间内,两车走过的路程相等C .从t 1到t 2时间内,两车走过的路程相等第 4 页 共 22 页D .在t 1到t 2时间内的某时刻,两车速度相等答案 CD解析 x -t 图象斜率表示两车速度,则可知t 1时刻乙车速度大于甲车速度,A 项错误;由两图线的纵截距知,出发时甲在乙前面,t 1时刻图线相交表示两车相遇,可得0到t 1时间内乙车比甲车多走了一段距离,B 项错误;t 1和t 2时刻两图线相交,表明两车均在同一位置,从t 1到t 2时间内,两车走过的路程相等;在t 1到t 2时间内,两图线有斜率相等的一个时刻,即该时刻两车速度相等,C 、D项正确.1.基本思路(1)解读图象的坐标轴,理清横轴和纵轴代表的物理量和坐标点的意义.(2)解读图象的形状、斜率、截距和面积信息.2.解题技巧(1)应用解析法和排除法,两者结合提高选择题图象类题型的解题准确率和速度.(2)分析转折点、两图线的交点、与坐标轴交点等特殊点和该点前后两段图线.(3)分析图象的形状变化、斜率变化、相关性等.例2 (2019·超级全能生2月联考)如图甲所示,在倾角为θ的粗糙斜面上,有一个质量为m 的物体在沿斜面方向的力F 的作用下由静止开始向下运动,物体与斜面之间的动摩擦因数为μ,物体的机械能E 随位移x 的变化关系如图乙所示.其中0~x 1过程的图线是曲线,x 1~x 2过程的图线为平行于x 轴的直线,重力加速度为g ,则下列说法中正确的是( )A .在0~x 2过程中,物体先加速后匀速第 5 页 共 22 页B .在0~x 1过程中,物体的加速度一直减小C .在x 1~x 2过程中,物体的加速度为g sin θD .在0~x 2过程中,拉力F 做的功为W F =E 1-E 2+μmgx 2答案 C解析 物体受力分析如图所示,物体由静止开始向下运动,根据牛顿第二定律有mg sin θ+F -F f =ma ,且F f =μmg cos θ,由题图乙知,在0~x 1过程中物体的机械能减少,即ΔE =(F -μmg cos θ)x <0,由E -x 图象斜率减小知F 增大,所以物体做加速度变大的加速运动,在x 1~x 2过程中,由题图乙知斜率为零,则F =μmg cos θ,此时加速度为g sin θ,最大,A 、B 错误,C 正确;在0~x 2过程中,拉力做的功为W F =E 2-E 1+μmg cos θ·x 2,D 错误.拓展训练3 (2019·绍兴市3月选考)某玩具汽车从t =0时刻出发,由静止开始沿直线行驶,其a -t 图象如图所示.下列说法正确的是( )A .6 s 末的加速度比1 s 末的大B .1 s 末加速度方向与速度方向相同C .第4 s 内速度变化量大于零D .第6 s 内速度在不断变大答案 B解析 由题图知,6 s 末的加速度比1 s 末的小,故A 错误.0~1 s 内汽车从静止开始做变加速直线运动,加速度方向与速度方向相同,故B 正确.根据图象a -t 与时间轴所围成的面积表第 6 页 共 22 页示速度变化量,知第4 s 内速度变化量为零,故C 错误.根据a -t 图象与时间轴所围的面积表示速度变化量,图象在时间轴上方速度变化量为正,图象在时间轴下方速度变化量为负,知第6 s 内速度变化量为负,速度在不断变小,故D 错误.拓展训练4 (2018·全国卷Ⅰ·15)如图所示,轻弹簧的下端固定在水平桌面上,上端放有物块P ,系统处于静止状态.现用一竖直向上的力F 作用在P 上,使其向上做匀加速直线运动.以x 表示P 离开静止位置的位移,在弹簧恢复原长前,下列表示F 和x 之间关系的图象可能正确的是( )答案 A解析 设物块P 静止时,弹簧的长度为x 0,原长为l,则k (l -x 0)=mg ,物块P 匀加速直线运动时受重力mg 、弹簧弹力k (l -x 0-x )及力F ,根据牛顿第二定律,得F +k (l -x 0-x )-mg =ma故F =kx +ma .根据数学知识知F -x 图象是截距为ma 的一次函数图象.第 7 页 共 22页1.φ-x 图象(如图所示)(1)电场强度的大小等于φ-x 图线的斜率的绝对值,电场强度为零处φ-x 图线存在极值,其切线的斜率为零.(2)在φ-x 图象中可以直接判断各点电势的大小,并可根据电势大小关系确定电场强度的方向.(3)在φ-x 图象中分析电荷移动时电势能的变化,可用W AB =qU AB ,进而分析W AB 的正负,然后作出判断.(4)在φ-x 图象中可以判断电场类型,如图所示,如果图线是曲线,则表示电场强度的大小是变化的,电场为非匀强电场;如果图线是倾斜的直线,则表示电场强度的大小是不变的,电场为匀强电场.(5)在φ-x 图象中可知电场强度的方向,进而可以判断电荷在电场中的受力方向.2.E -x 图象(1)E -x 图象反映了电场强度随位移变化的规律,E >0表示电场强度沿x 轴正方向;E <0表示电场强度沿x 轴负方向.第 8 页 共 22 页(2)在给定了电场的E -x 图象后,可以由图线确定电场强度、电势的变化情况,E -x 图线与x 轴所围图形“面积”表示电势差(如图所示),两点的电势高低根据电场方向判定.在与粒子运动相结合的题目中,可进一步确定粒子的电性、动能变化、电势能变化等情况.(3)在这类题目中,还可以由E -x 图象画出对应的电场,利用这种已知电场的电场线分布、等势面分布或场源电荷来处理相关问题.例3 (多选)(2019·河南省普通高中高考物理模拟)真空中有一球心为O 的均匀带电球壳,其球壳外的电场与将球壳上的全部电荷集中于O 点时在壳外产生的电场一样.沿某一半径方向上任一点的电势φ与该点到O 的距离r 的关系如图所示,此半径上有a 、b 、c 、d 四个点,b 、d 处的场强大小分别为E b 和E d .现将一带电的试探电荷由b 点经c 点移动到d 点,电场力所做的功分别为W bc 和W cd .则下列有关说法中正确的是( )A .球壳的半径为2 dmB .球壳内的场强恒为30 V/mC .E b ∶E d =4∶1D .W bc ∶W cd =1∶2答案 AC解析 由题图可知,在2 dm 内,电势不变,则说明球壳的半径为2 dm ,故A 正确;根据静电平衡,球壳内部的电场强度为零,即0~2 dm 间电场强度为零,故B 错误;由点电荷场强第 9 页 共 22 页公式E =可得:E b ∶E d =∶=4∶1,故C 正确;从c 到d 电场力做功为:W cd =qU cd =q (φc -φd )kQ r 2kQ 42kQ 82=q (2 V -1.5 V)=0.5q ,从b 到c 电场力做功为:W bc =qU bc =q (φb -φc )=q (3 V -2 V)=q ,所以有:W bc ∶W cd =2∶1,故D 错误.拓展训练5 (多选)(2019·四川省综合能力提升卷)空间有一沿x 轴分布的电场,其电场强度E 随x 变化的图象如图所示.-x 1、x 1、x 2、x 3是x 轴上的四个点,下列说法中正确的是( )A. -x 1处的电势比x 1的电势高B .将正电荷由-x 1移到x 2,电势能先增大,后减小C .将一负电荷由-x 1处由静止释放,若只受电场力作用,它将在-x 1和x 1之间往复运动D .负电荷在4个点中位于x 2处电势能最大答案 BC解析 根据题意,电场关于x 轴对称分布,作出电场线,根据顺着电场线电势降低,则O 电势最高,从图线看出,电场强度关于原点O 对称,则x 轴上关于O 点对称位置的电势相等.则-x 1处的电势与x 1处的电势相等,故A 错误;将正电荷由-x 1移到x 2,电势能先增大,后减小,选项B 正确;-x 1和x 1之间的电场是对称的,将一负电荷由-x 1处由静止释放,负电荷先向O 做加速运动,经过O 点之后做减速运动,到x 1处速度减为零,则它将在-x 1和x 1之间往复运动,选项C 正确;4个点中,x 3点的电势最低,则负电荷在4个点中位于x 3处电势能最大,选项D 错误.拓展训练6 (2019·江西省重点中学协作体第一次联考)将两个点电荷A 、B 分别固定在水平面上x 轴的两个不同位置上,将一带负电的试探电荷在水平面内由A 点的附近沿x 轴的正方向移动到B 点附近的过程中,该试探电荷的电势能随位置变化的图象如图所示,已知x AC >x CB ,图中的水平虚线在C 点与图线相切,两固定点电荷带电量的多少分别用q A 、q B 表示.则下列分析正确的是( )第 10 页 共 22页A .两固定点电荷都带正电,且q A >q BB .在AB 连线内,C 点的电场强度最小但不等于零C .因试探电荷的电势能始终为正值,可知AB 两点间沿x 轴方向的电场强度始终向右D .如果将试探电荷的电性改为正电,则该电荷在C 点的电势能最大答案 D解析 负试探电荷从A 运动到C ,电势能降低,则从A 到C 电势逐渐升高,电场方向从C 到A ;负电荷从C 到B 电势能增加,则电势逐渐降低,则电场方向从C 到B .即电场方向先沿x 轴负方向,后沿x 轴正方向,则q A 和q B 均为负电荷.因为在q A 和q B 连线中点处的合场强沿x 轴负方向,故q A >q B ,故A 、C 均错误;E p -x 图象的斜率大小代表电场力,而C 点的切线斜率为零,说明该试探电荷在C 点处受到的电场力为零,C 点的电场强度为零,B 错误;在C 点负电荷的电势能最低,则正电荷在C 点的电势能最大,故D正确.1. 三点关注(1)关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向.(2)关注变化过程,看电磁感应发生的过程分为几个阶段,这几个阶段是否和图象变化相对应.(3)关注大小、方向的变化趋势,看图线斜率的大小、图线的曲直是否和物理过程对应.2.两个方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图第 11 页 共 22 页象作出分析和判断,这未必是最简捷的方法,但却是最有效的办法.例4 (2018·全国卷Ⅱ·18)如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l ,磁感应强度大小相等、方向交替向上向下.一边长为l 的正方形金属线框在导轨上向左匀速运动.线框中感应电流i 随时间t 变化的正确图线32可能是( )答案 D解析 设线框中只有一边切割磁感线时产生的感应电流为i .线框位移等效电路的连接电流0~l2I =2i (顺时针)~l l 2I =0l ~3l 2I =2i (逆时针)~2l 3l 2I =0第 12 页 共 22 页分析知,只有选项D 符合要求.拓展训练7 (2019·河北张家口市上学期期末)四个均匀导线分别制成两个正方形、两个直角扇形线框,分别放在方向垂直纸面向里的匀强磁场边界上,由图示位置开始按箭头方向绕垂直纸面轴O 在纸面内匀速转动.若以在OP 边上从P 点指向O 点的方向为感应电流i 的正方向,四个选项中符合如图所示i 随时间t 的变化规律的是( )答案 C解析 题图中正方形线框绕O 转动时,有效切割长度不断变化,因此产生感应电流大小是变化的,因此A 、B 错误;C 、D 图中,有效切割长度为半径不变,因此产生的感应电流大小不变,根据右手定则,进入磁场时,C 图中产生电流方向从P 到O ,电流为正方向,而D 图中产生电流方向从O 到P ,电流为负方向;离开磁场时,刚好相反,故C 正确,D 错误.拓展训练8 (2019·陕西榆林市第二次模拟)如图所示,单匝线圈abcd 固定于分布均匀的磁场中,磁场方向垂直线圈平面.当磁场的磁感应强度B 随时间t 变化时,ab 边受到的安培力恒定不变.则下列磁感应强度B 随时间t 变化的图象中可能正确的是( )答案 C第 13 页 共 22 页解析 设线圈ab 边长为L ,ad 边长为l ,当磁感应强度发生变化时,线圈内产生感应电动势为:E ===;感应电流为:I =;安培力为:F =BIL ,得:F =,由ΔΦΔt ΔB ·S Δt ΔB ·Ll Δt E R B ·ΔB ·L 2l Δt ·R公式可知,若磁感应强度B 增大,则减小;若B 减小,则增大.所以四个图象中只有C ΔB Δt ΔB Δt正确.专题强化练基础题组1.(2019·嘉、丽3月联考)如图所示是小张运动过程的x -t 图象,x 表示它对于出发点的位移,则( )A .10~20 s 做匀速直线运动B .第6 s 末的速度为3 m/sC .第30 s 末的加速度为-1.5 m/s 2D .距离出发点最远为60 m答案 B解析 由题图可知,10~20 s 小张的位移不变,则静止不动,故A 错误;位移图象的斜率表示速度,则在第6 s 末的速度:v == m /s =3 m/s ,故B 正确;由题图可知,小张在20~40 x t 3010s 内做匀速直线运动,则加速度为0,故C 错误;由题图可知,小张距离出发点最远为30 m ,故D 错误.2.(2019·辽宁沈阳市第一次质检)如图为一个质点做直线运动的v -t 图象,该质点在前2 s 内向西运动,则该质点( )第 14 页 共 22页A .在前2 s 内加速度方向也向西B .在前4 s 内加速度方向始终向东C .在后2 s 内加速度方向始终向东D .在6 s 内加速度方向始终不变答案 B解析 由题图知向西为负方向,而向东为正方向,该质点在前2 s 内向西减速运动,则该段时间加速度向东,2~4 s 向东做加速运动,则加速度方向仍然向东,故选项A 错误,B 正确;由题图可知在4~5 s 内向东做减速运动,5~6 s 内向西做加速运动,所以在4~6 s 这段时间内加速度方向一直向西,故选项C 错误;由上面分析可知,在0~4 s 内加速度方向向东,在4~6 s 内加速度方向向西,即在6 s 内加速度方向发生变化,故选项D 错误.3.(2019·台州3月一模)利用传感器与计算器结合,可以绘制出物体运动的v -t 图象,某同学在一次实验中得到小车的v -t 图象如图所示,由此图象可知( )A .第13 s 末小车距离出发点最远B .小车先正向运动,后负向运动C .18 s 时的加速度大小大于12 s 时的加速度大小D .小车前10 s 内的平均速度与后10 s 内的平均速度相等答案 C第 15 页 共 22 页4.(2019·河北张家口市上学期期末)如图所示是M 、N 两个物体做直线运动的位移—时间图象,由图可知,下列说法中正确的是( )A .M 物体做匀加速直线运动B .N 物体做曲线运动C .t 0秒内M 、N 两物体的平均速度相等D .t 0秒内M 、N 两物体的平均速度不相等答案 C解析 x -t 图象的斜率表示速度,可知M 物体做匀速直线运动,选项A 错误;x -t 图象只能描述直线运动,则N 物体做直线运动,选项B 错误;t 0秒内M 、N 两物体的位移相等,根据= 可知,两物体的平均速度相等,选项C 正确,D 错误.v x t5.(2019·嘉兴一中高三期末)近年来,一些高级轿车的设计师在关注轿车的加速性能的同时,提出了“加速度的变化率”的概念,用这一新的概念来描述轿车加速度随时间变化的快慢,轿车的加速度变化率越小,乘坐轿车的人感觉越舒适.图示是一辆汽车在水平公路上行驶时加速度随时间变化的关系图象,取t=0时速度方向为正方向,则关于加速度变化率以及汽车的运动,下列说法正确的是( )A .依据运动学定义方法,“加速度的变化率”的单位是m/s 2B .在2秒内,汽车做匀减速直线运动C .在2秒内,汽车的速度减小了3 m/s第 16 页 共 22 页D .若汽车在t =0时速度为5 m /s ,则汽车在2秒末速度的大小为8 m/s答案 D解析 加速度的变化率为,a 的单位是m/s 2,所以,“加速度的变化率”的单位应该是m/s 3,Δa Δt 故A 错误;在2秒内,汽车的加速度在减小,但2 s 内加速度一直为正,加速度与速度同向,则汽车做加速运动,所以汽车做加速度减小的变加速直线运动,故B 错误;由Δv =a Δt ,知在a -t 图象中,图象与时间轴所围图形的面积表示物体速度的变化量Δv ,则得:在2秒内,汽车的速度增加Δv = m/s =3 m/s ,故C 错误;若汽车在t =0时速度为5 m /s ,在23×22秒内,汽车的速度增加3 m/s ,则汽车在2秒末速度的大小为8 m/s ,故D 正确.6.(2019·浙南名校联盟期末)空中花样跳伞是一项流行于全世界的极限运动.假设某跳伞运动员从静止在空中的飞机上无初速度跳下,沿竖直方向下落. 运动过程中,运动员受到的空气阻力随着速度的增大而增大,运动员的机械能与位移的关系图象如图所示,其中0~x 1过程为曲线,x 1~x 2过程为直线.根据该图象,下列判断正确的是( )A .0~x 1过程中运动员所受阻力一定是变力且不断减小B .x 1~x 2过程中运动员可能在做匀加速直线运动C .x 1~x 2过程中运动员可能在做变加速直线运动D .0~x 1过程中运动员的动能在不断增大答案 D解析 因为除重力以外其他力做功等于机械能的增量,有ΔE =-F f Δx ,知E -x 图线的斜率绝对值表示阻力的大小,0~x 1过程中,图线切线的斜率逐渐变大,知阻力不断增大,故A 错误.x 1~x 2过程,图线的斜率不变,知阻力不变,因为阻力随着速度的增大而增大,所以该段运动员做匀速直线运动,故B 、C 错误.0~x 1过程中,阻力逐渐增大,速度逐渐增大,动能不断增大,故D 正确.7.(2019·吉林省“五地六校”合作体联考)在平面直角坐标系的x轴上关于原点O对称的P、Q 两点各放一个等量点电荷后,x轴上各点电场强度E随坐标x的变化曲线如图所示,规定沿x轴正方向为场强的正方向,则关于这两个点电荷所激发电场的有关描述中正确的有( )A.将一个正试探电荷从P点沿x轴移向Q点的过程中电场力一直做正功B.x轴上从P点到Q点的电势先升高后降低C.若将一个正试探电荷从两点电荷连线的垂直平分线上的一侧移至另一侧对称点的过程中一定是电场力先做正功后做负功D.若将一个正试探电荷从两点电荷连线的垂直平分线上的一侧移至另一侧对称点的过程中受到的电场力可能先减小后增大答案 D解析 由题图知PO之间的电场强度为正,而OQ之间的电场强度为负,将一个正试探电荷从P点沿x轴移向Q点的过程中电场力先做正功,后做负功,A错误;PO之间的电场强度为正,而OQ之间的电场强度为负,所以x轴上从P点到Q点的电势先降低后升高,B错误;由题图可知,E轴两侧的电场强度是对称的,可知该电场可能是两个等量同种正点电荷形成的静电场,则在两个等量同种正点电荷形成的静电场中,将一个正试探电荷从两点电荷连线的垂直平分线上的一侧移至另一侧对称点的过程中一定是电场力先做负功后做正功,C错误;在两个等量同种正点电荷形成的静电场中,将一个正试探电荷从两点电荷连线的垂直平分线上的一侧移至另一侧对称点的过程中受到的电场力可能先减小后增大,D正确.8.(2019·福建宁德市上学期期末质量检测)如图所示,边长为2L的正方形区域内存在方向垂直于纸面向外的匀强磁场.一个边长为L的正三角形闭合金属框水平匀速穿过该磁场.取金属框刚到达磁场左边界为零时刻,规定逆时针方向为电流的正方向,下列选项中能正确描述金属框中电流与时间关系图象的是( )第17 页共22 页第 18 页 共 22页答案 B解析 三角形线框匀速进入磁场的过程,由电流表达式I =可知,有效长度先增大后减小,BL v R则电流先增大后减小,而方向由楞次定律知为顺时针(负向);三角形线框完全进入磁场后,磁通量不变,则无感应电流;三角形线框匀速出磁场的过程,由I =同理可知电流先增大BL v R后减小,方向为逆时针(正向);综合三个过程可知选B.9.(2019·山东日照市上学期期末)如图甲所示,线圈ab 、cd 绕在同一软铁芯上,若线圈ab 中电流i 与时间t 的关系图线如图乙所示,则在这段时间内,下列关于线圈cd 中产生的感应电流i cd 与时间t 的关系图线,可能正确的是( )答案 D解析 由题图乙可知,在t =0时刻,图线的斜率最大,即电流变化最快,电流产生的磁场变第 19 页 共 22 页化最快,cd 线圈中的磁通量变化最快,所以此时在cd 线圈中产生的感应电流最大,由于漏磁现象,此时的最大电流比ab 中的电流更小.综上所述,选项D 正确.10.(2019·广东广州市下学期一模)如图甲所示,梯形硬导线框abcd 固定在磁场中,磁场方向与线框平面垂直,图乙表示该磁场的磁感应强度B 随时间t 变化的关系,t =0时刻磁场方向垂直纸面向里.在0~5t 0时间内,设垂直ab 边向上为安培力的正方向,线框ab 边受到该磁场对它的安培力F 随时间t 变化的关系图为( )答案 D解析 0~2t 0,感应电动势为:E 1=S =S ,为定值,3t 0~5t 0,感应电动势为:E 2=S =S ΔB Δt B 0t 0ΔB Δt,也为定值,因此感应电流也为定值,那么安培力F =BIL ∝B 由于0~t 0,B 逐渐减小到零,B 0t 0故安培力逐渐减小到零,根据楞次定律,可知,线框中感应电流方向为顺时针,依据左手定则,可知,线框ab 边受到安培力方向向上,即为正;同理,t 0~2t 0,安培力方向向下,为负,大小增大,而在2t 0~3t 0,没有安培力;在3t 0~4t 0,安培力方向向上,为正,大小减小;在4t 0~5t 0,安培力方向向下,为负,大小增大,故D 正确,A 、B 、C 错误.能力题组11.(多选)(2019·广东肇庆市第二次统一检测)如图甲所示,矩形导线框abcd 固定在匀强磁场中,磁场的方向与导线框所在的平面垂直,磁感应强度B 随时间变化的规律如图乙所示,规。

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点4 Word版含解析

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点4 Word版含解析

考点4 曲线运动考试标准知识内容考试要求曲线运动b运动的合成与分解c平抛运动d圆周运动、向心加速度、向心力d生活中的圆周运动c曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.3.运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.4.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.5.合外力对运动的影响合外力在垂直于速度方向上的分力改变物体速度的方向,合外力在沿速度方向上的分力改变物体速度的大小.(1)当合外力方向与速度方向的夹角为锐角时,物体的速度大小增大;第 1 页共7 页第 2 页 共 7 页(2)当合外力方向与速度方向的夹角为钝角时,物体的速度大小减小;(3)当合外力方向与速度方向垂直时,物体的速度大小不变.运动的合成与分解1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.2.合运动与分运动的关系(1)等时性:合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止.(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响.(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果.3.两个直线运动的合运动性质的判断标准:看合初速度方向与合加速度方向是否共线.两个互成角度的分运动合运动的性质两个匀速直线运动匀速直线运动一个匀速直线运动、一个匀变速直线运动匀变速曲线运动两个初速度为零的匀加速直线运动匀加速直线运动如果v 合与a 合共线,为匀变速直线运动两个初速度不为零的匀变速直线运动如果v 合与a 合不共线,为匀变速曲线运动4.小船渡河问题(1)船的实际运动:是水流的运动和船相对静水的运动的合运动.(2)三种速度:船在静水中的速度v 船、水的流速v 水、船的实际速度v ,遵循平行四边形定则.第 3 页 共 7 页平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:自由落体运动.4.基本规律(如图)(1)速度Error!合速度的大小v ==v x 2+v y 2v 02+g 2t 2设合速度的方向与水平方向的夹角为θ,有tan θ==.v y v x gtv 0(2)位移Error!设合位移的大小s ==x 2+y 2(v 0t )2+(12gt 2)2合位移的方向与水平方向的夹角为α,有tan α==.y x gt 2v0(3)结论:①合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.所以做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点.第 4 页 共 7 页②时间:由y =gt 2,得t =,平抛物体在空中运动的时间t 只由物体抛出时离地的高度y122yg 决定,而与抛出时的初速度v 0无关.③速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(=g )相等,ΔvΔt且必沿竖直方向,如图所示.任意两时刻的速度与速度的变化量Δv 构成三角形,Δv 沿竖直方向.④与斜面结合的平抛运动,分解速度,如图甲所示,分解位移,如图乙所示.如图乙所示,小球抛出落到斜面上的时间t =;落到斜面上时,速度的方向与水平方2v 0tan θg 向的夹角α恒定,且tan α=2tan θ,与初速度无关;经过t ′=,小球距斜面最远,最v 0tan θg 大距离为.(v 0sin θ)22g cos θ斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.4.基本规律(以斜上抛运动为例,如图所示)第 5 页 共 7页(1)水平方向:v 0x =v 0cos θ,F 合x =0;(2)竖直方向:v 0y =v 0sin θ,F 合y =mg.匀速圆周运动及描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在任意相等的时间内通过的圆弧长相等,该运动就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.运动参量定义、意义公式、单位线速度描述做圆周运动的物体沿圆弧运动快慢的物理量(v )(1)v ==Δs Δt 2πr T(2)单位:m/s 角速度描述物体绕圆心转动快慢的物理量(ω)(1)ω==ΔθΔt 2πT(2)单位:rad/s 周期物体沿圆周运动一圈的时间(T )(1)T ==,单位:s 2πr v2πω(2)f =,单位:Hz1T向心加速度(1)描述速度变化快慢的物理量(a n)(2)方向指向圆心(1)a n==rω2v2r(2)单位:m/s2匀速圆周运动的向心力1.作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小F=m=mrω2=m r=mωv=4π2mf2r.v2r4π2T23.方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力.4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.5.几种典型运动模型运动模型向心力的来源图示飞机水平转弯火车转弯第 6 页共7 页第 7 页 共 7 页圆锥摆飞车走壁汽车在水平路面转弯水平转台(光滑)离心运动和近心运动1.离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.受力特点(如图)(1)当F =0时,物体沿切线方向飞出;(2)当0<F <mrω2时,物体逐渐远离圆心;(3)当F >mrω2时,物体逐渐向圆心靠近,做近心运动.3.本质:离心运动的本质并不是受到离心力的作用,而是提供的指向圆心方向的合力小于做匀速圆周运动需要的向心力.。

2020版高考物理复习专题讲义浙江专用版

2020版高考物理复习专题讲义浙江专用版

2020版高考物理复习专题讲义浙江专用版专题一力与运动第1讲力与物体的平衡第2讲力与直线运动第3讲力与曲线运动专题二能量与动量第4讲功和功率功能关系第5讲力学中的动量与能量问题专题三电场与磁场第6讲电场与磁场的理解第7讲带电粒子在复合场中的运动专题四电路与电磁感应第8讲直流电路与交流电路第9讲电磁感应的综合应用第10讲电学中的动量和能量问题专题五方法专题第11讲物理图象问题第12讲应用数学知识和方法处理物理问题专题六选修第13讲机械振动和机械波电磁波第14讲光的折射全反射第15讲波粒二象性原子与原子核专题七实验题题型强化第16讲力学和光学实验第17讲电学实验力与物体的平衡专题定位 1.深刻理解各种性质力的特点,熟练掌握分析共点力平衡问题的各种方法;2.掌握匀变速直线运动的规律及运动图象问题;3.综合应用牛顿运动定律和运动学公式解决问题;4.熟练掌握平抛、圆周运动的规律,熟悉解决天体运动问题的两条思路.第1讲力与物体的平衡[相关知识链接]1.受力分析的步骤明确研究对象→隔离物体分析→画受力示意图→验证受力合理性.2.分析受力的思路(1)先数研究对象有几个接触处,每个接触处最多有两个力(弹力和摩擦力).(2)同时注意对场力的分析.(3)假设法是判断弹力、摩擦力是否存在及其方向的基本方法.3.注意(1)只分析研究对象受到的力.(2)只分析性质力,不分析效果力.(3)善于变换研究对象,分析不能直接判断的力.[规律方法提炼]1.整体法与隔离法在分析两个或两个以上的物体间的相互作用时,一般采用整体法与隔离法进行分析;采用整体法进行受力分析时,要注意各个物体的运动状态必须相同.2.共点力平衡的常用处理方法(1)合成法:物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反.(2)效果分解法:物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件.(3)正交分解法:物体受到三个或三个以上共点力的作用而平衡,通过建立平面直角坐标系将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件.(4)力的三角形法:对受三个共点力作用而平衡的物体,将力的矢量图平移使三力组成一个首尾依次相接的矢量三角形,根据数学知识求解未知力.例1 (2019·浙南名校联盟期末)如图所示,一个质量为4kg 的半球形物体A 放在倾角为θ=37°的斜面B 上静止不动.若用通过球心的水平推力F =10N 作用在物体上,物体仍静止在斜面上,斜面仍相对地面静止.已知sin37°=0.6,cos37°=0.8,取g =10m/s 2,则( )A .地面对斜面B 的弹力不变 B .地面对斜面B 的摩擦力增加8NC .物体A 受到斜面B 的摩擦力增加8ND .物体A 对斜面B 的作用力增加10N 答案 A解析 对A 、B 整体分析,力F 是水平的,竖直方向地面对B 的弹力不变,地面对B 的摩擦力增加10N,故A 项正确,B 项错误;对物体A 分析,加力F 前,斜面B 对物体A 的摩擦力F f =mg sin θ=24N,加力F 后,F f ′+F cos θ=mg sin θ,F f ′=16N,故减小8N,选项C 错误;加F 前A 对B 的作用力大小等于A 的重力,即40N,加F 后,A 对B 的作用力大小为F 2+G 2=102+402N =1017N,故D 项错误.拓展训练1 (2019·绍兴市3月选考)如图所示,攀岩者仅凭借鞋底和背部的摩擦停留在竖直的岩壁间,鞋子、背部与岩壁间的动摩擦因数分别为0.80和0.60.为了节省体力,他尽可能减小身体与岩壁间的正压力,使自己刚好不下滑.假设最大静摩擦力等于滑动摩擦力,下列判断正确的是( )A .攀岩者受到三个力的作用B .鞋子受到的静摩擦力方向竖直向下C .岩壁对鞋子的支持力大于岩壁对背部的支持力D .攀岩者背部受到的静摩擦力支撑了体重的37答案 D解析 对攀岩者分析,受重力、鞋与岩壁间弹力和摩擦力、背部与岩壁间弹力和摩擦力共五个力作用;重力方向竖直向下,鞋子和背部受到的静摩擦力方向竖直向上,故水平方向上两支持力大小相等,方向相反,F N1=F N2,又据平衡μ1F N1+μ2F N2=G ,可得F f2=μ2F N2=37G .拓展训练2 (多选)(2019·全国卷Ⅰ·19)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N ,另一端与斜面上的物块M 相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N ,直至悬挂N 的细绳与竖直方向成45°.已知M 始终保持静止,则在此过程中( )A .水平拉力的大小可能保持不变B .M 所受细绳的拉力大小一定一直增加C .M 所受斜面的摩擦力大小一定一直增加D .M 所受斜面的摩擦力大小可能先减小后增加 答案 BD解析 对N 进行受力分析如图所示,因为N 的重力与水平拉力F 的合力和细绳的拉力F T 是一对平衡力,从图中可以看出水平拉力F 的大小逐渐增大,细绳的拉力F T 也一直增大,选项A 错误,B 正确;M 的质量与N 的质量的大小关系不确定,设斜面倾角为θ,由分析可知F Tmin =m N g ,故若m N g ≥m M g sin θ,则M 所受斜面的摩擦力大小会一直增大,若m N g <m M g sin θ,则M 所受斜面的摩擦力大小可能先减小后增大,选项D 正确,C 错误.1.基本思路化“动”为“静”,“静”中求“动”. 2.两种方法(1)解析法:物体受到三个以上的力,且某一夹角发生变化时,将力进行正交分解,两个方向上列平衡方程,用三角函数表示各个作用力与变化角之间的关系,从而判断各力的变化. (2)图解法:物体一般受三个共点力作用;其中有一个大小、方向都不变的力;还有一个方向不变的力.画受力分析图,作出力的平行四边形或矢量三角形,依据某一参数的变化,分析各边变化从而确定力的大小及方向的变化情况.例2 (2019·江苏省模拟)如图所示,在粗糙的水平地面上放着一左侧截面是半圆的柱状物体B ,在B 与竖直墙之间放置一光滑小球A ,整个装置处于静止状态.现用水平力F 拉动B 缓慢向右移动一小段距离后,它们仍处于静止状态,在此过程中,下列判断正确的是( )A .小球A 对物体B 的压力逐渐增大 B .小球A 对物体B 的压力逐渐减小C .墙面对小球A 的支持力逐渐减小D .墙面对小球A 的支持力先增大后减小 答案 A解析 解法1 以A 球为研究对象,分析受力情况:受重力G 、墙面支持力F N 、B 的弹力F N B ,由平衡条件知F N 与F N B 的合力与G 大小相等,方向相反,将B 缓慢向右移动,F N 方向不变,F N B 沿逆时针方向缓慢转动,作出转动过程三个位置力的合成图如图甲所示,由图可知,F N 逐渐增大,F N B 逐渐增大,由牛顿第三定律知小球A 对物体B 的压力逐渐增大,故A 正确,B 、C 、D 错误.解法2 对A 球受力分析如图乙,得:竖直方向:F N B cos θ=G水平方向:F N =F N B sin θ 解得:F N B =Gcos θF N =G tan θB 缓慢向右移动一小段距离,A 缓慢下落,则θ增大,所以F N B 增大,F N 增大,由牛顿第三定律知小球A 对物体B 的压力逐渐增大,故A 正确,B 、C 、D 错误.拓展训练3 (2019·广东省“六校”第三次联考)为迎接新年,小明同学给家里墙壁粉刷涂料,涂料滚由滚筒与轻杆组成,示意图如图所示.小明同学缓缓向上推涂料滚(轻杆与墙壁夹角变小),不计轻杆的重力以及滚筒与墙壁的摩擦力.轻杆对涂料滚筒的推力为F 1,墙壁对涂料滚筒的支持力为F 2,以下说法中正确的是( )A .F 1增大B .F 1先减小后增大C .F 2增大D .F 2减小答案 D解析 以涂料滚为研究对象,分析受力情况,如图,F 1与F 2的合力与重力G 总是大小相等、方向相反.小明缓缓向上推涂料滚,F 1与竖直方向夹角减小,由图可知F 1逐渐减小,F 2逐渐减小,故选D.拓展训练4 (2019·温州市联考)2018年9月2号的亚运会中,中国队包揽了跳水项目的全部10金.图示为跳水运动员在走板时,从跳板的a 端缓慢地走到b 端,跳板逐渐向下弯曲,在此过程中,该运动员对跳板的( )A .摩擦力不断增大B .作用力不断减小C .作用力不断增大D .压力不断增大答案 A解析 运动员对跳板的作用力等于重力,故大小不变;摩擦力等于重力沿跳板面方向的分力,不断增大,压力等于重力垂直于跳板方向的分力,不断减小,故A 正确.[相关知识链接] 电场力(1)大小:F =Eq ,F =kq 1q 2r 2. (2)方向:正电荷受电场力的方向与电场强度的方向相同;负电荷受电场力的方向与电场强度的方向相反.[规律方法提炼]1.方法:与纯力学问题的分析方法一样,学会把电学问题力学化. 2.步骤(1)选取研究对象(整体法或隔离法).(2)受力分析,多了个电场力.(3)列平衡方程. 例3 (2018·嘉、丽3月联考)如图所示,水平地面上固定一个绝缘直角三角形框架ABC ,其中∠ACB =θ.质量为m 、带电荷量为q 的小圆环a 套在竖直边AB 上,AB 与圆环的动摩擦因数为μ,质量为M 、带电荷量为+Q 的小滑块b 位于斜边AC 上,a 、b 静止在同一高度上且相距L .圆环、滑块均视为质点,AC 光滑,则( )A .圆环a 带正电B .圆环a 受到的摩擦力为μk Qq L2 C .小球b 受到的库仑力为Mgtan θD .斜面对小球b 的支持力为Mgcos θ答案 D解析 a 、b 静止在同一高度上,故b 受到重力G b 、斜面的支持力F N b 及a 对b 的库仑引力F ,从而处于平衡状态,由于b 带正电,因此环a 带负电,故A 错误;环a 处于静止状态,受到的是静摩擦力,那么其大小为F f =mg ,并不是滑动摩擦力,因此不可能为F f =μk Qq L2,故B 错误;对b 受力分析有:库仑引力F =k Qq L 2,或F =Mg tan θ,而斜面对b 的支持力为F N b =Mgcos θ,故C 错误,D正确.拓展训练5 (2019·全国卷Ⅰ·15)如图,空间存在一方向水平向右的匀强电场,两个带电小球P 和Q 用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则( )A .P 和Q 都带正电荷B .P 和Q 都带负电荷C .P 带正电荷,Q 带负电荷D.P带负电荷,Q带正电荷答案 D解析对P、Q整体进行受力分析可知,在水平方向上整体所受电场力为零,所以P、Q必带等量异种电荷,选项A、B错误;对P进行受力分析可知,匀强电场对它的电场力应水平向左,与Q对它的库仑力平衡,所以P带负电荷,Q带正电荷,选项D正确,C错误.拓展训练6(2019·浙江新高考研究联盟二次联考)如图所示,两个带电荷量分别为Q1与Q2的小球固定于相距为5d的光滑水平面上,另有一个带电小球A,悬浮于空中不动,此时A离Q1的距离为4d,离Q2的距离为3d.现将带电小球A置于水平面上某一位置,发现A刚好静止,则此时小球A到Q1、Q2的距离之比为( )A.3∶2B.2∶3C.3∶4D.4∶3答案 B解析小球A悬浮于空中时,Q1对其库仑力F1=k Q1q(4d)2,Q2对其库仑力F2=kQ2q(3d)2,由平衡条件F1=35mg,F2=45mg,得Q1Q2=43.将A置于水平面上Q1、Q2之间静止,则kQ1·qr12=kQ2·qr22,得r1r2=23,故选B.[相关知识链接]1.安培力(1)大小:F=BIL,此式只适用于B⊥I的情况,且L是导线的有效长度,当B∥I时F=0.(2)方向:用左手定则判断,安培力垂直于B、I决定的平面.2.洛伦兹力(1)大小:F洛=qvB,此式只适用于B⊥v的情况.当B∥v时F洛=0.(2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力永不做功.[规律方法提炼]1.立体平面化该模型一般由倾斜导轨、导体棒、电源和电阻等组成.这类题目的难点是题图具有立体性,各力的方向不易确定.因此解题时一定要先把立体图转化成平面图,通过受力分析建立各力的平衡关系. 2.带电体的平衡如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动.例4 (2019·台州3月一模)如图所示,在水平绝缘杆上用两条等长的平行绝缘丝线悬挂一质量为m 的通电导体棒.将导体棒放置在蹄形磁铁的磁场中,由于安培力的作用,当两条丝线与竖直方向均成30°角时,导体棒处于平衡状态,若重力加速度为g .则关于导体棒在平衡状态时的说法正确的是( )A .导体棒所在处的磁感应强度处处相等B .导体棒受到的安培力大小一定是12mgC .每条丝线对导体棒的拉力大小一定是33mg D .导体棒受到的安培力与拉力的合力大小一定是mg 答案 D解析 蹄形磁铁靠近两极处的两个磁铁之间才近似可以看作匀强磁场,其余部分不是匀强磁场,所以可知导体棒所在处的磁感应强度不会处处相等,故A 错误;当安培力的方向与细线垂直时,安培力最小,F =mg sin30°=12mg ,所以导体棒受到的安培力大小不一定是0.5mg ,故B 错误;安培力等于0.5mg 时,两条丝线的拉力的和等于32mg ,每条丝线对导体棒的拉力大小都是34mg ,故C 错误;导体棒受到的安培力与拉力的合力大小一定与重力大小相等,方向相反,故D 正确.拓展训练7 均匀带正电的薄圆盘的右侧,用绝缘细线A 、B 悬挂一根水平通电直导线ab ,电流方向由a 到b ,导线平行于圆盘平面.现圆盘绕过圆心的水平轴沿如图所示方向匀速转动,细线仍然竖直,与圆盘静止时相比,下列说法正确的是( )A .细线所受弹力变小B .细线所受弹力不变C .细线所受弹力变大D .若改变圆盘转动方向,细线所受弹力变大 答案 C解析 圆盘静止时,通电直导线受到竖直向上的弹力和竖直向下的重力,两者等大反向,合力为零.当圆盘匀速转动时,根据右手螺旋定则,圆盘产生水平向右的磁场,根据左手定则,通电直导线受到方向向下的安培力,故细线所受的弹力变大,选项A 、B 错误,C 正确;若改变圆盘转动方向,通电直导线受到的安培力方向向上,细线所受的弹力变小,选项D 错误. 拓展训练8 (多选)长方形区域内存在有正交的匀强电场和匀强磁场,其方向如图所示,一个质量为m 且带电荷量为q 的小球以初速度v 0竖直向下进入该区域.若小球恰好沿直线下降,则下列判断正确的是( )A .小球带正电B .电场强度E =mgqC .小球做匀速直线运动D .磁感应强度B =mg qv 0答案 CD解析 小球在复合场内受到自身重力、电场力和洛伦兹力,其中电场力和重力都是恒力,若速度变化则洛伦兹力变化,合力变化,小球必不能沿直线下降,所以合力等于0,小球做匀速直线运动,选项C 正确.若小球带正电,则电场力斜向下,洛伦兹力水平向左,和重力的合力不可能等于0,所以小球不可能带正电,选项A 错误.小球带负电,受到斜向上的电场力和水平向右的洛伦兹力,根据力的合成可得qE =2mg ,电场强度E =2mgq,选项B 错误.洛伦兹力qv 0B =mg ,磁感应强度B =mgqv 0,选项D 正确.专题强化练基础题组1.(2019·福建厦门市上学期期末质检)如图所示,在水平晾衣杆上晾晒床单时,为了使床单尽快晾干,可在床单间支撑轻质小木棍.小木棍的位置不同,两侧床单间夹角θ将不同,设床单重力为G,晾衣杆对床单的作用力大小为F,下列说法正确的是( )A.θ越大,F越大B.θ越大,F越小C.无论θ取何值,都有F=GD.只有当θ=120°时,才有F=G答案 C解析以床单和小木棍整体为研究对象,整体受到重力G和晾衣杆的支持力F,由平衡条件知F =G,与θ取何值无关,故A、B、D错误,C正确.2.(2019·广东珠海市质量监测)区伯伯在海边钓获一尾鱼,当鱼线拉着大头鱼在水中向左上方匀速运动时,鱼受到水的作用力方向可能是( )A.竖直向上B.竖直向下C.水平向左D.水平向右答案 D解析鱼处于平衡状态,受到竖直向下的重力、斜向左上的拉力、水的作用力,根据受力平衡的条件,结合力的合成可知,鱼受到的水的作用力的方向一定是与拉力和重力的合力的方向相反,故D正确,A、B、C错误.3.(2019·金华十校期末)体操运动员在进行自由体操比赛时,有如图所示的比赛动作:运动员两手臂对称支撑,竖直倒立保持静止状态.当运动员两手间距离缓慢增大时,每只手臂对人体的作用力T及它们的合力F的大小变化情况为( )A.T增大,F不变B.T增大,F减小C.T增大,F增大D.T减小,F不变答案 A4.(2019·超级全能生2月联考)打印机是现代办公不可或缺的设备,正常情况下,进纸系统能做到“每次只进一张纸”,进纸系统的结构如图所示.设图中刚好有10张相同的纸,每张纸的质量均为m,搓纸轮按图示方向转动时带动最上面的第1张纸向右运动,搓纸轮与纸张之间的动摩擦因数为μ1,纸张与纸张之间、纸张与底部摩擦片之间的动摩擦因数均为μ2,下列说法正确的是( )A.第1张纸受到搓纸轮的摩擦力方向向左B.第2张与第3张纸之间的摩擦力大小为2μ2mgC.第10张纸与摩擦片之间的摩擦力为0D.要做到“每次只进一张纸”,应要求μ1>μ2答案 D解析第1张纸上表面受到搓纸轮施加的静摩擦力F f0,方向向右,第1张纸下表面受到第2张纸施加的滑动摩擦力F f,方向向左,F f=μ2(mg+F),F为搓纸轮对第1张纸的压力,F f0=F f<μ1F,正常情况F≫mg,故μ1>μ2,A错误,D正确.第2张与第3张纸之间的摩擦力及第10张纸与摩擦片之间的摩擦力都是静摩擦力,根据受力平衡知,大小均为F f,B、C错误.5.(2019·广东深圳市4月第二次调研)如图所示,用缆绳将沉在海底的球形钢件先从a处竖直吊起到b,再水平移到c,最后竖直下移到d.全过程钢件受到水的阻力大小不变,方向与运动方向相反,所受浮力恒定.则上升、平移、下降过程中的匀速运动阶段,缆绳对钢件拉力F1、F2、F3的大小关系是( )A.F1>F2>F3B.F1>F3>F2C.F2>F1>F3D.F3>F2>F1答案 A解析钢件从a匀速运动到b,对钢件受力分析得到:F1=mg+F f;从b匀速运动到c,有:F2=F f 2+(mg)2;从c匀速运动到d,有:F3=mg-F f;由于F2=F f 2+(mg)2=(F f+mg)2-2mgF f,故F 1>F 2>F 3,故A 正确,B 、C 、D 错误.6.(2019·绍兴诸暨市期末)如图所示为复印机工作原理图:正电荷根据复印图案排列在鼓表面,带负电的墨粉颗粒由于电场作用被吸附到鼓表面,随后转移到纸面上“融化”产生复印图案.假设每个墨粉颗粒质量为8.0×10-16kg,带20个多余电子,已知墨粉颗粒受到的电场力必须超过它自身重力的2倍才能被吸附,则鼓表面电场强度至少为(g 取10m/s 2)( )A .2.5×103N/C B .5.0×103N/C C .5.0×104N/C D .1.0×105N/C答案 B解析 由题意知:qE =2mg ,E =2mg q =2×8×10-16×1020×1.6×10-19N/C =5.0×103 N/C,故选项B 正确.7.(2019·金华十校高三期末)如图所示,a 、b 、c 为真空中三个带电小球,b 球带正电且带电荷量为+Q ,用绝缘支架固定,a 、c 两个小球用绝缘细线悬挂,处于平衡状态时三个小球球心等高,且a 、b 和b 、c 间距离相等,悬挂a 小球的细线向左倾斜,悬挂c 小球的细线竖直,则以下判断正确的是( )A .a 小球带负电且带电荷量为-4QB .c 小球带正电且带电荷量为+4QC .a 、b 、c 三个小球带同种电荷D .a 、c 两小球带异种电荷 答案 A解析 根据受力平衡条件可知,因b 球带正电,要使a 、c 两球平衡,所以a 、c 两球一定带负电,对c 小球进行分析,a 、c 间的距离是b 、c 间的两倍,由库仑定律,则有:k |QQ c |r 2=k |Q a Q c |(2r )2,因a 球带负电,可得:Q a =-4Q ,故A 正确.8.(2019·山东济南市模拟)如图甲所示,用电流天平测量匀强磁场的磁感应强度.若挂在天平右臂下方的为单匝矩形线圈且通入如图乙所示的电流,此时天平处于平衡状态.现保持边长MN 和电流大小、方向不变,将该矩形线圈改为三角形线圈,挂在天平的右臂下方,如图丙所示.则( )A.天平将向左倾斜B.天平将向右倾斜C.天平仍处于平衡状态D.无法判断天平是否平衡答案 B解析由左手定则分析可知,线圈受到的安培力方向向上,矩形线圈改成三角形线圈,安培力变小,故天平将向右倾斜.9.如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.整个装置处于沿竖直方向的匀强磁场中.金属杆ab垂直导轨放置,当金属杆ab中通有从a到b的恒定电流I时,金属杆ab刚好静止.则( )A.磁场方向竖直向上B.磁场方向竖直向下C.金属杆ab受安培力的方向平行导轨向上D.金属杆ab受安培力的方向平行导轨向下答案 A解析受力分析如图所示,当磁场方向竖直向上时,由左手定则可知安培力水平向右,金属杆ab受力可以平衡,若磁场方向竖直向下,由左手定则可知安培力水平向左,则金属杆ab受力无法平衡,A正确,B、C、D错误.10.(2019·陕西汉中市3月联考)如图所示,固定的木板与竖直墙面的夹角为θ,重为G的物块静止在木板与墙面之间,不计一切摩擦,则( )A .物块对墙面的压力大小为G tan θB .物块对墙面的压力大小为G sin θcos θC .物块对木板的压力大小为G cos θD .物块对木板的压力大小为Gsin θ答案 D解析 对物块受力分析,根据平行四边形定则可知:物块对墙面的压力大小为F 1′=F 1=G tan θ;物块对木板的压力大小为F 2′=F 2=Gsin θ,故选项A 、B 、C 错误,D 正确. 能力题组11.(2019·河南普通高中高考物理模拟)如图所示,六根原长均为l 的轻质细弹簧两两相连,在同一平面内六个大小相等、互成60°的恒定拉力F 作用下,形成一个稳定的正六边形.已知正六边形外接圆的半径为R ,每根弹簧的劲度系数均为k ,弹簧在弹性限度内,则F 的大小为( )A.k2(R -l )B .k (R -l )C .k (R -2l )D .2k (R -l )答案 B解析 正六边形外接圆的半径为R ,则弹簧的长度为R ,弹簧的伸长量为:Δx =R -l 由胡克定律可知,每根弹簧的弹力为:F 弹=k Δx =k (R -l ),两相邻弹簧夹角为120°,两相邻弹簧弹力的合力为:F 合=F 弹=k (R -l ), 弹簧静止处于平衡状态,由平衡条件可知,F 的大小为:F =F 合=k (R -l ),故B 正确,A 、C 、D 错误.12.(2019·山东烟台市下学期高考诊断)如图所示,质量为M 的斜劈静止在粗糙水平地面上,质量为m 的小物块正在斜面上匀速下滑.现在m 上施加一个水平推力F ,则在m 的速度减小为零之前,下列说法正确的是( )A .加力F 之后,m 与M 之间的摩擦力变小B .加力F 之后,m 与M 之间的作用力不变C .加力F 之后,M 与地面之间产生静摩擦力D .加力F 前后,M 与地面间都没有摩擦力 答案 D解析 加力F 前,m 匀速下滑,则垂直斜面方向:F N =mg cos θ, 滑动摩擦力为F f =μmg cos θ;在m 上加一水平向右的力F ,垂直斜面方向:F N ′=mg cos θ+F sin θ, 滑动摩擦力为F f ′=μF N ′=μ(mg cos θ+F sin θ);对物块,所受支持力增加了F sin θ,摩擦力增加了μF sin θ,即支持力与摩擦力成比例的增加,其合力方向还是竖直向上,大小增大,m 与M 之间的作用力即为其合力,也是增大的,如图所示:则斜面所受的摩擦力与压力的合力方向还是竖直向下,水平方向仍无运动趋势,则不受地面的摩擦力,故A 、B 、C 错误,D 正确.13.(2019·宁波市3月模拟)在光滑的水平面上建立如图所示的直角坐标系xOy ,现在O 点固定一个带电荷量为Q 的正电荷,在x 轴正半轴上的点N (d,0)固定有带电荷量为8Q 的负电荷,y 轴正半轴位置固定有一根光滑绝缘细杆,细杆上套有带电荷量为+q 的轻质小球,当小球置于M 点时,恰好保持静止,则M 的纵坐标为( )A.12dB.33dC.32d D .d 答案 B解析 设OM 为y ,由平衡条件及数学知识可知kQq y 2=8kQq d 2+y 2·y d 2+y 2,得d 2+y 2=2y ,即y =33d ,故B 正确.14.(2019·广东肇庆市第二次统一检测)如图所示,质量分别为m A 和m B 的物体A 、B 用细绳连接后跨过滑轮,A 静止在倾角为45°的斜面上,B 悬挂着.已知m A =2m B ,不计滑轮摩擦,现将斜面倾角由45°增大到50°,系统仍保持静止.下列说法中正确的是( )A .绳子对A 的拉力将增大B .物体A 对斜面的压力将增大C .物体A 受到的静摩擦力增大D .物体A 受到的静摩擦力减小 答案 C解析 设m A =2m B =2m ,对物体B 受力分析,受重力和拉力,由二力平衡得到:F T ′=mg ;再对物体A 受力分析,受重力、支持力、拉力F T 和静摩擦力,F T =F T ′,如图,根据平衡条件得到:F f +F T -2mg sin θ=0,F N -2mg cos θ=0,解得:F f =2mg sin θ-F T =2mg sin θ-mg ,F N =2mg cos θ,当θ由45°增大到50°时,F T 不变,F f 不断变大,F N 不断变小,故C 正确,A 、B 、D 错误.。

浙江省2020高考物理二轮复习 专题一 第五讲 万有引力与航天讲义(含解析)

浙江省2020高考物理二轮复习 专题一 第五讲 万有引力与航天讲义(含解析)

第五讲 万有引力与航天知识内容考试要求备考指津1。

行星的运动a 1。

万有引力定律在天体中的应用,主要体现在分析人造卫星的运行规律、计算天体的质量和密度等,一般以选择题的形式出现。

2。

本讲的考查要求以理解和简单应用为主,难度中等.2.太阳与行星间的引力 a 3。

万有引力定律c 4。

万有引力理论的成就 c 5.宇宙航行c6。

经典力学的局限性 a万有引力定律及其应用【题组过关】1.(2019·温州一模)地球公转轨道的半径在天文学上常用来作为长度单位,叫做天文单位,用来量度太阳系内天体与太阳的距离.已知木星公转的轨道半径约5。

0天文单位,请估算木星公转的周期约为( )A .3年B .5年C.11年D.25年解析:选C。

根据开普勒第三定律,木星与地球的轨道半径的三次方与公转周期的平方的比值相等,据此列式分析即可.根据开普勒第三定律,有:错误!=错误!,故T木=错误!T地=错误!×1年≈11年,选项A、B、D错误,C正确.2.(2019·绍兴高三期中)宇航员王亚平在“天宫1号"飞船内太空授课时,指令长聂海胜悬浮在太空舱内“太空打坐”的情景如图.若聂海胜的质量为m,距离地球表面的高度为h,地球质量为M,半径为R,引力常量为G,地球表面的重力加速度为g,则聂海胜在太空舱内受到重力的大小为()A.0 B.mgC。

错误! D.错误!答案:D3.(2019·湖州高三模拟)随着我国登月计划的实施,我国宇航员登上月球已不是梦想;假如我国宇航员登上月球并在月球表面附近以初速度v0竖直向上抛出一个小球,经时间t后回到出发点.已知月球的半径为R,引力常量为G,则下列说法正确的是( )A .月球表面的重力加速度为错误!B .月球的质量为错误!C .宇航员在月球表面获得 错误!的速度就可能逃脱月球吸引D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为错误!解析:选B.小球在月球表面做竖直上抛运动,根据匀变速运动规律得t =2v 0g 月,解得g 月=2v 0t,故A 项错误;物体在月球表面上时,由重力等于地、月球的万有引力得G 错误!=mg 月,解得M =错误!,故B 项正确;根据G 错误!=m 错误!,解得月球的第一宇宙速度大小v =错误!,逃离月球引力,速度要大于第二宇宙速度,故C 项错误;宇航员乘坐飞船在月球表面附近绕月球做匀速圆周运动,由重力提供向心力得mg 月=m 错误!=m 错误!,解得T =π错误!,故D 项错误.天体质量和密度的计算方法 已知量 利用公式 表达式 备注 质 量 的利用运 行天体r 、T G 错误!=mr错误!M =4π2r 3GT2只能得 到中心 天体的r 、vG 错误!=m错误!M =错误!。

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点9

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点9

考点9 磁场考试标准知识内容考试要求磁现象和磁场b 磁感应强度c 几种常见的磁场b 通电导线在磁场中受到的力d 运动电荷在磁场中受到的力c 带电粒子在匀强磁场中的运动d磁场与磁感线1.磁感应强度(1)物理意义:描述磁场的强弱和方向.(2)定义式:B =(通电导线垂直于磁场).FIL (3)方向:小磁针静止时N 极的指向.(4)单位:特斯拉,符号为T.2.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密程度定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.①磁感线是闭合曲线,没有起点和终点,在磁体外部,从N 极指向S 极;在磁体内部,由S 极指向N 极.②同一磁场的磁感线不中断、不相交、不相切.③磁感线是假想的曲线,客观上并不存在.3.几种常见的磁场(1)条形磁铁和蹄形磁铁的磁场(如图所示)(2)电流的磁场直线电流的磁场通电螺线管的磁场环形电流的磁场特点无磁极、非匀强,且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场环形电流的两 侧是N 极和S 极,且离圆环中心越远,磁场越弱安培定则安培力的大小和方向1.大小若I ∥B ,F =0;若I ⊥B ,F =BIL .2.方向总垂直于B 、I 所决定的平面,即一定垂直于B 和I ,但B 与I 不一定垂直.可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把手放入磁场中,让磁感线从掌心进入,使伸开的四指指向电流的方向,那么,拇指所指的方向就是通电导线在磁场中的受力方向.3.两平行通电导线间的作用同向电流相互吸引,反向电流相互排斥.洛伦兹力的大小和方向1.定义:磁场对运动电荷的作用力.2.大小(1)v ∥B 时,F =0;(2)v ⊥B 时,F =q v B ;(3)v 与B 的夹角为θ时,F =q v B sin θ.3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向;(2)方向特点:F ⊥B ,F ⊥v .即F 垂直于B 、v 决定的平面.(注意B 和v 可以有任意夹角)4.做功:洛伦兹力不做功.带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以入射速度v 做匀速直线运动.2.若v ⊥B 时,带电粒子在垂直于磁感线的平面内,以入射速度v 做匀速圆周运动.3.基本公式(1)向心力公式:q v B =m ;v 2r (2)轨道半径公式:r =;m vqB (3)周期公式:T =.2πmqB 注意:带电粒子在匀强磁场中运动的周期与速率无关.4.带电粒子在有界磁场中的运动(1)直线边界磁场直线边界,粒子进出磁场具有对称性(如图所示)(2)平行边界磁场平行边界存在临界条件(如图所示)。

2020高考物理浙江专用版大二轮复习 课件 讲义 新选考考点全排查:第二部分 考点11

2020高考物理浙江专用版大二轮复习 课件 讲义 新选考考点全排查:第二部分 考点11

考点11 交变电流
考试标准
正弦式交变电流 1.产生
线圈绕垂直于磁场方向的轴匀速转动. 2.两个特殊位置的特点
(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦ
Δt =0,e =0,i =0,电流方向将发生改变.
(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦ
Δt 最大,e
最大,i 最大,电流方向不改变.
3.电流方向的改变
一个周期内线圈中电流的方向改变两次. 4.交变电动势的最大值
E m =nBSω,与转轴位置无关,与线圈形状无关. 5.交变电动势随时间的变化规律(中性面开始计时) e =nBSωsin ωt .
6.磁通量随时间变化(从中性面开始计时) Φ=BS cos ωt =Φm cos ωt
交变电流“四值”的区别与联系
电感、电容对交流电的阻碍作用
1.电感:通直流,阻交流;通低频,阻高频. 2.电容:通交流,隔直流;通高频,阻低频.
理想变压器
1.(1)理想变压器原、副线圈基本量的关系
2.原、副线圈中各物理量的因果关系 (1)电压关系:输入电压U 1决定输出电压U 2. (2)电流关系:输出电流I 2决定输入电流I 1. (3)功率关系:P 出决定P 入.
远距离输电相关的问题 1.输电电路图
2.基本关系
电流关系:n 1I 1=n 2I 2,n 3I 3=n 4I 4,I 2=I 3. 电压关系:U 1n 1=U 2n 2,U 3n 3=U 4
n 4,U 2=U 3+ΔU .
功率关系:P 1=P 2,P 3=P 4,P 2=P 3+ΔP .。

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点8

2020高考物理浙江专用版大二轮讲义:新选考考点全排查 考点8

考点8 恒定电流考试标准知识内容考试要求电源和电流c 电动势c 欧姆定律、U -I 图象及I -U 图象c 焦耳定律c 导体的电阻c 串联电路和并联电路c 闭合电路的欧姆定律d 多用电表的原理a电流 欧姆定律1.电流(1)定义式:I =,q 为在时间t 内通过导体横截面的电荷量.qt (2)微观表达式:I =nqS v ,其中n 为导体中单位体积内自由电荷的个数,q 为每个自由电荷的电荷量,S 为导体的横截面积,v 为自由电荷定向移动的速率.(3)方向:电流是标量,为研究问题方便,规定正电荷定向移动的方向为电流的方向.在外电路中电流由电源正极到负极,在内电路中电流由电源负极到正极.2.部分电路欧姆定律(1)内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比.(2)表达式:I =.UR (3)适用范围:金属导电和电解质溶液导电,不适用于气体导电或半导体元件.(4)导体的伏安特性曲线(I -U )图线①电阻的大小:图线上某点与坐标原点的连线的斜率k =tan θ==;IU 1R ②线性元件:伏安特性曲线是直线的电学元件,适用于欧姆定律;③非线性元件:伏安特性曲线是曲线的电学元件,不适用于欧姆定律.电阻 电阻定律1.电阻的决定式和定义式的比较公式R =ρl S R =U I 电阻的决定式电阻的定义式说明了导体的电阻由哪些因素决定,R 由ρ、l 、S 共同决定提供了一种测电阻的方法——伏安法,R 与U 、I 均无关区别只适用于粗细均匀的金属导体和浓度均匀的电解质溶液适用于任何纯电阻导体2.电阻率(1)计算式:ρ=R .Sl (2)物理意义:反映导体的导电性能,是导体材料本身的属性.(3)电阻率与温度的关系金属:电阻率随温度升高而增大;负温度系数半导体:电阻率随温度升高而减小.电功和电热、电功率和热功率的区别与联系意义公式联系电功电流在一段电路中所做的功W =UIt 电热电流通过导体产生的热量Q =I 2Rt 对纯电阻电路,电功等于电热,W =Q =UIt =I 2Rt ;对非纯电阻电路,电功大于电热,W >Q电功率单位时间内电流所做的功P =UI热功率单位时间内导体产生的热量P =I 2R对纯电阻电路,电功率等于热功率,P 电=P 热=UI =I 2R ;对非纯电阻电路,电功率大于热功率,P 电>P 热串、并联电路的特点1.特点对比串联并联电流I =I 1=I 2=…=I n I =I 1+I 2+…+I n 电压U =U 1+U 2+…+U n U =U 1=U 2=…=U n 电阻R =R 1+R 2+…+R n=++…+1R 1R 11R 21Rn2.几个常用的推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.(3)无论电阻怎样连接,每一段电路的总耗电功率P 总是等于各个电阻耗电功率之和.(4)无论电路是串联还是并联,电路中任意一个电阻变大时,电路的总电阻变大.闭合电路欧姆定律1.公式:Error!2.路端电压U 与电流I 的关系U =E -Ir ,U -I图象如图所示,由图象可以看出:(1)电源电动势E :当电路断路即I =0时,纵轴的截距为电源电动势E .(2)短路电流I 0:当外电路电压U =0时,横轴的截距为短路电流I 0.(3)电源内阻r :图线斜率的绝对值为电源的内阻.三个功率1.电源的总功率P 总=EI =U 外I +U 内I =P 出+P 内.若外电路是纯电阻电路,则有P 总=I 2(R +r )=.E 2R +r 2.电源内部消耗的功率P 内=I 2r =U 内I =P 总-P 出.3.电源的输出功率P 出=UI =EI -I 2r =P 总-P 内.若外电路是纯电阻电路,则有P 出=I 2R ==.E 2R(R +r )2E 2(R -r )2R+4rP 出-R图象如图所示,从图中可以看出:(1)当R =r 时,电源的输出功率最大,最大值P m =.E 24r(2)当R>r时,随着R的增大,输出功率越来越小.(3)当R<r时,随着R的增大,输出功率越来越大.(4)当P出<P m时,每个输出功率对应两个可能的外电阻R1和R2,且R1·R2=r2.。

2020浙江高考物理二轮讲义:专题五第二

2020浙江高考物理二轮讲义:专题五第二

第二讲 光与电磁波知识内容考试要求备考指津1.光的反射与折射 c 1.本讲主要在不定项选择题中考查,考查难度不大.2.光的反射、折射、全反射是考查的重点,平时应加强练习.2.全反射 c3.光的干涉 c4.光的衍射 b5.光的偏振 b6.光的颜色、色散 b7.激光 a8.电磁波的发现 a9.电磁振荡c 10.电磁波的发射和接收 b 11.电磁波与信息化社会 a 12.电磁波谱a光的折射与全反射【重难提炼】1.光的折射(1)折射率:由介质本身性质决定,与入射角的大小无关. (2)折射率与介质的密度无关,光密介质不是指密度大的介质. (3)同一种介质中,频率越大的色光折射率越大,传播速度越小.(4)公式n =sin θ1sin θ2中,不论光从真空射入介质,还是从介质射入真空,θ1总是真空中的光线与法线间的夹角,θ2总是介质中的光线与法线间的夹角.2.光的全反射(1)在光的反射和全反射现象中,均遵循光的反射定律;光路均是可逆的.(2)当光射到两种介质的界面上时,往往同时发生光的折射和反射现象,但在全反射现象中,只发生反射,不发生折射.当折射角等于90°时,实际上就已经没有折射光了.(3)全反射现象可以从能量的角度去理解:当光由光密介质射向光疏介质时,在入射角逐渐增大的过程中,反射光的能量逐渐增强,折射光的能量逐渐减弱,当入射角等于临界角时,折射光的能量已经减弱为零,这时就发生了全反射.半圆形玻璃砖横截面如图,AB为直径,O点为圆心.在该截面内有a、b两束单色可见光从空气垂直于AB射入玻璃砖,两入射点到O的距离相等.两束光在半圆边界上反射和折射的情况如图所示,则a、b 两束光()A.在同种均匀介质中传播,a光的传播速度较大B.以相同的入射角从空气斜射入水中,b光的折射角大C.在真空中,a光的波长小于b光波长D.让a光向A端逐渐平移,将发生全反射[解析]由题图可知,b光发生了全反射,a光没有发生全反射,即a光发生全反射的临界角C a大于b光发生全反射的临界角C b,根据sin C=1n,知a光的折射率小,即n a<n b,根据n=cv,知v a>v b,选项A正确;根据n=sin isin r,当i相等时,r a>r b,选项B错误;a光束向A 端平移,射到圆面的入射角增大到大于临界角,发生全反射,故选项D正确.[答案]AD【题组过关】考向一折射定律的理解和应用1.如图所示,一束单色光从空气入射到棱镜的AB面上,经AB和AC两个面折射后从AC面进入空气.当出射角i′和入射角i相等时,出射光线相对于入射光线偏转的角度为θ.已知棱镜顶角为α,则计算棱镜对该色光的折射率表达式为( )A.sinα+θ2sin α2B.sinα+θ2sin θ2C.sin θsin ⎝⎛⎭⎫θ-α2D.sin αsin ⎝⎛⎭⎫α-θ2解析:选A.当出射角i ′和入射角i 相等时,由几何知识,作角A 的平分线,角平分线过入射光线的延长线和出射光线的反向延长线的交点、两法线的交点,如图所示可知∠1=∠2=θ2,∠4=∠3=α2而i =∠1+∠4=θ2+α2由折射率公式n =sin isin ∠4=sinα+θ2sin α2选项A 正确.2.如图所示,实线为空气和水的分界面,一束蓝光从空气中的A 点沿AO 1方向(O 1点在分界面上,图中O 1点和入射光线都未画出)射向水中,折射后通过水中的B 点.图中O 点为A 、B 连线与分界面的交点.下列说法正确的是( )A.O1点在O点的右侧B.蓝光从空气中射入水中时,速度变小C.若沿AO1方向射向水中的是一束紫光,则折射光线有可能通过B点正下方的C点D.若沿AO1方向射向水中的是一束红光,则折射光线有可能通过B点正上方的D点解析:选BCD.据折射定律,知光由空气斜射入水中时入射角大于折射角,则画出光路图如图所示,知O1点应在O点的左侧,故A错.光从光疏介质(空气)进入光密介质(水)中时,速度变小,故B对.紫光的折射率大于蓝光,所以折射角要小于蓝光的,则可能通过B点正下方的C点,故C对.若是红光,折射率小于蓝光,折射角大于蓝光的,则可能通过B点正上方的D点,故D对.考向二全反射现象的理解与应用3.如图,一个三棱镜的截面为等腰直角△ABC,∠A为直角.此截面所在平面内的光线沿平行于BC边的方向射到AB边,进入棱镜后直接射到AC边上,并刚好能发生全反射.该棱镜材料的折射率为()A.62B. 2C.32D. 3解析:选A.如图所示,由θ2+θ3=π2,n =sin θ1sin θ2与n =1sin θ3,解得n=62. 4.固定的半圆形玻璃砖的横截面如图,O 点为圆心,OO ′为直径MN 的垂线.足够大的光屏PQ 紧靠玻璃砖右侧且垂直于MN .由A 、B 两种单色光组成的一束光沿半径方向射向O 点,入射光线与OO ′夹角θ较小时,光屏NQ 区域出现两个光斑,逐渐增大θ角,当θ=α时,光屏NQ 区域A 光的光斑消失,继续增大θ角,当θ=β时,光屏NQ 区域B 光的光斑消失,则( )A .玻璃砖对A 光的折射率比对B 光的大B .A 光在玻璃砖中的传播速度比B 光的大C .α<θ<β时,光屏上只有1个光斑D .β<θ<π2时,光屏上只有1个光斑解析:选AD.当A 光光斑消失时,sin α=1n A ;当B 光光斑消失时,sin β=1n B.由于β>α,故n A >n B ,选项A 正确;根据n =cv ,得v A <v B ,选项B 错误;当α<θ<β时,A 光发生全反射,B 光发生折射和反射,在光屏PQ 上有两个光斑,选项C 错误;当β<θ<π2时,A 、B 两光都发生全反射,光屏PQ 上有一个光斑,选项D 正确.平行玻璃砖、三棱镜和圆柱体(球)对光路的控制平行玻璃砖 三棱镜圆柱体(球) 结构玻璃砖上下表面是平行的横截面为三角形的三棱镜横截面是圆对光 线的 作用通过平行玻璃砖的光线不改变传播方向,但要发生侧移通过三棱镜的光线经两次折射后,出射光线向棱镜底边偏折圆界面的法线是过圆心的直线,经过两次折射后向圆心偏折应用测定玻璃的折射率改变光的传播方向光的波动性【重难提炼】以下说法中正确的是()A.对于同一障碍物,波长越大的光波越容易绕过去B.白光通过三棱镜在屏上出现彩色条纹是光的一种干涉现象C.红光由空气进入水中,波长变长、颜色不变D.用透明的标准样板和单色光检查平面的平整度是利用了光的干涉[解析]对于同一障碍物,它的尺寸d不变,波长λ越长的光越容易满足d≤λ,会产生明显的衍射现象,越容易绕过障碍物,所以A项正确.白光通过三棱镜出现彩色条纹是光的色散现象,B项错误.波的频率由波源决定,波速由介质决定,所以红光从空气进入水中,频率f不变,波速v变小,由v=λf得,波长λ变小,所以C项错误.检查平面的平整度是利用了光的干涉,所以D项正确.[答案]AD【题组过关】考向一光的干涉1.如图所示的双缝干涉实验,用绿光照射单缝S时,在光屏P上观察到干涉条纹.要得到相邻条纹间距更大的干涉图样,可以()A.增大S1与S2的间距B.减小双缝到光屏的距离C.将绿光换为红光D.将绿光换为紫光解析:选C.由Δx=ldλ知,增大S1与S2的间距d或减小双缝到光屏的距离l时,条纹间距变小,选项A、B错误;将绿光换为红光,波长变大,条纹间距变大,选项C正确;将绿光换为紫光,波长变小,条纹间距变小,选项D错误.2.波长为λ1和λ2的两束可见光入射到双缝,在光屏上观察到干涉条纹,其中波长为λ1的光的条纹间距大于波长为λ2的条纹间距.则(下列表述中,脚标“1”和“2”分别代表波长为λ1和λ2的光所对应的物理量)()A.这两束光的光子动量p1>p2B.这两束光从玻璃射向真空时,其临界角C1>C2C.这两束光都能使某种金属发生光电效应,则遏止电压U c1>U c2D.这两束光由氢原子从不同激发态跃迁到n=2能级时产生,则相应激发态的电离能ΔE1>ΔE2答案:BD考向二光的衍射3.如图所示,a、b、c、d四个图是不同的单色光形成的双缝干涉或单缝衍射图样.分析各图样的特点可以得出的正确结论是()A.a、b是光的干涉图样B.c、d是光的干涉图样C.形成a图样的光的波长比形成b图样光的波长短D.形成c图样的光的波长比形成d图样光的波长短解析:选A.干涉条纹是等距离的条纹,因此,a、b图是干涉图样,c、d图是衍射图样,故A项正确,B项错误;由公式Δx=ldλ可知,条纹宽的入射光的波长长,所以a图样的光的波长比b图样的光的波长长,故C项错误;c图样的光的波长比d图样的光的波长长,故D 项错误.4.抽制高强度纤维细丝可用激光监控其粗细,如图所示,观察光束经过细丝后在光屏上所产生的条纹即可以判断细丝粗细的变化()A.这里应用的是光的衍射现象B.这里应用的是光的干涉现象C.如果屏上条纹变宽,表明抽制的丝变粗D.如果屏上条纹变宽,表明抽制的丝变细解析:选AD.本题为光的衍射现象在工业生产中的实际应用,考查光的衍射现象,若障碍物的尺寸与光的波长相比差不多或更小,衍射现象较明显.通过观察屏上条纹的变化情况,从而监测抽制的丝的情况,故选A、D.考向三光的偏振5.如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P处迎着入射光方向,看不到光亮,则()A.图中a光为偏振光B.图中b光为偏振光C.以SP为轴将B转过180°后,在P处将看到光亮D.以SP为轴将B转过90°后,在P处将看到光亮解析:选BD.自然光沿各个方向发散是均匀分布的,通过偏振片后,透射光是只沿着某一特定方向振动的光.从电灯直接发出的光为自然光,则A错;它通过偏振片A后,即变为偏振光,则B对;设通过偏振片A的光沿竖直方向振动,P点无光亮,则偏振片B只能通过沿水平方向振动的偏振光,将偏振片B转过180°后,P处仍无光亮,C错;若将B转过90°,则该偏振片将变为能通过竖直方向上振动的光的偏振片,则偏振光能通过B,即在P处有光亮,D对.6.假设所有的汽车前窗玻璃和前灯玻璃均按同一要求设置,使司机不仅可以防止对方汽车强光的刺激,也能看清自己车灯发出的光所照亮的物体.以下措施中可行的是() A.前窗玻璃的透振方向是竖直的,车灯玻璃的透振方向是水平的B.前窗玻璃的透振方向是竖直的,车灯玻璃的透振方向也是竖直的C.前窗玻璃的透振方向是斜向右上45°,车灯玻璃的透振方向是斜向左上45°D.前窗玻璃的透振方向是斜向右上45°,车灯玻璃的透振方向也是斜向右上45°解析:选D.首先,司机要能够看清楚自己车灯发出的经对面物体反射回来的光线,所以他自己车灯的偏振片的透振方向和前窗玻璃的透振方向一定要平行;其次,他不能看到对面车灯发出的强光,所以对面车灯玻璃的透振方向与他自己车窗玻璃的透振方向一定要垂直.满足上述要求的只有D.1.单缝衍射与双缝干涉的比较单缝衍射双缝干涉不同点条纹宽度条纹宽度不等,中央最宽条纹宽度相等条纹间距各相邻条纹间距不等各相邻条纹等间距亮度情况中央条纹最亮,两边变暗条纹清晰,亮度基本相等相同点干涉、衍射都是波特有的现象,属于波的叠加;干涉、衍射都有明暗相间的条纹射条纹的形成有相似的原理,都可认为是从单缝通过两列或多列频率相同的光波,在屏上叠加形成的.电磁振荡与电磁波【题组过关】1.关于电磁场和电磁波,下列说法中不正确的是()A.变化的电场周围产生变化的磁场,变化的磁场周围产生变化的电场,两者相互联系,统称为电磁场B.电磁场从发生区域由近及远地传播就形成了电磁波C.电磁波是一种物质,可在真空中传播,所以说真空中没有实物粒子,但有“场”这种特殊物质D.电磁波在真空中的传播速度是3.0×108 m/s解析:选A.根据麦克斯韦电磁理论,均匀变化的电场产生稳定的磁场,A错误.电磁波的传播不需要介质,各种频率的电磁波在真空中的传播速度都等于光速,D正确.2.关于电磁波谱,下列说法正确的是()A.电磁波中最容易表现出干涉、衍射现象的是无线电波B.紫外线的频率比可见光低,长时间照射可以促进钙的吸收,改善身体健康C.X射线和γ射线的波长比较短,穿透力比较强D.红外线的显著作用是热作用,温度较低的物体不能辐射红外线解析:选AC.无线电波的波长长,易发生衍射现象,A正确.紫外线的频率比可见光高,B错误.任何物体都能辐射红外线,D错误.3.根据麦克斯韦的电磁场理论,下列说法中正确的是()A.在电场周围一定产生磁场,磁场周围一定产生电场B.在变化的电场周围一定产生变化的磁场,在均匀变化的磁场周围一定产生稳定的电场C.均匀变化的电场周围一定产生均匀变化的磁场D.振荡的电场在周围空间一定产生同频率振荡的磁场答案:D电磁波谱频率/Hz真空中波长/m特性应用递变规律无线电波<3×1011>10-3波动性强,易发生衍射无线电技术衍射能力减弱直线传播能力增强红外线1011~101510-3~10-7热效应红外线遥感可见光101510-7引起视觉照明、摄影紫外线1015~101710-7~10-9化学效应、荧光效应、能杀菌医用消毒、防伪X射线1016~101910-8~10-11贯穿性强检查、医用透视γ射线>1019<10-11贯穿本领最强工业探伤、医用治疗(建议用时:30分钟)1.关于光的传播现象及应用,下列说法正确的是()A.一束白光通过三棱镜后形成了彩色光带是光的色散现象B.光导纤维丝内芯材料的折射率比外套材料的折射率大C.海面上的海市蜃楼将呈现倒立的像,位置在实物的上方,又称上现蜃景D.一束色光从空气进入水中,波长将变短,色光的颜色也将发生变化解析:选AB.一束白光通过三棱镜后形成了彩色光带是光的色散现象,A正确;由全反射的条件可知,内芯材料的折射率比外套材料的折射率要大,故B正确;海市蜃楼将呈现正立的像,位置在实物的上方,又称上现蜃景,C错误;色光进入水中,光的频率不变,颜色不变,D错误.2.(2018·高考江苏卷Ⅱ)梳子在梳头后带上电荷,摇动这把梳子在空中产生电磁波.该电磁波()A.是横波B.不能在真空中传播C.只能沿着梳子摇动的方向传播D.在空气中的传播速度约为3×108 m/s解析:选AD.电磁波传播方向与电磁场方向垂直,是横波,A项正确;电磁波传播不需要介质,可以在真空中传播,B项错误;电磁波可以朝任意方向传播,C项错误;电磁波在空气中的传播速度接近光速,D项正确.3.关于生活中遇到的各种波,下列说法正确的是()A.电磁波可以传递信息,声波不能传递信息B.手机在通话时涉及的波既有电磁波又有声波C.太阳光中的可见光和医院“B超”中的超声波传播速度相同D.遥控器发出的红外线波长和医院“CT”中的X射线波长相同解析:选B.声波、电磁波都能传递能量和信息,A项错误;在手机通话过程中,既涉及电磁波又涉及声波,B项正确;可见光属于电磁波,“B超”中的超声波是声波,波速不同,C项错误;红外线波长比X射线波长长,故D项错误.4.电磁波已广泛运用于很多领域.下列关于电磁波的说法符合实际的是()A.电磁波不能产生衍射现象B.常用的遥控器通过发出紫外线脉冲信号来遥控电视机C.根据多普勒效应可以判断遥远天体相对于地球的运动速度D.光在真空中运动的速度在不同惯性系中测得的数值可能不同解析:选C.干涉、衍射是波所特有的现象,所以电磁波能产生衍射现象,选项A错误;常用的遥控器是通过发出红外线来遥控电视机的,选项B错误;利用多普勒效应可以判断遥远天体相对于地球的速度,选项C正确;根据光速不变原理,在不同的惯性系中,光速是相同的,选项D错误.5.如图所示是双缝干涉实验,使用波长为600 nm的橙色光照射时,在光屏上的P0点和P0点上方的P1点恰好形成两列相邻的亮条纹;若用波长为400 nm的紫光重复上述实验,则P0点和P1点形成的明暗条纹情况是()A .P 0点和P 1点都是亮条纹B .P 0点是亮条纹,P 1点是暗条纹C .P 0点是暗条纹,P 1点是亮条纹D .P 0点和P 1点都是暗条纹解析:选B.无论光的波长多大,P 0点总是亮条纹.对波长为600 nm 的橙光,P 1点与P 0点为相邻的亮条纹,则S 2P 1-S 1P 1=λ1=600 nm ,该距离之差是波长为400 nm 紫光半波长的奇数倍,因此用λ2=400 nm 的紫光做实验,P 1处出现暗条纹,选项B 正确.6.在双缝干涉实验中,一钠灯发出的波长为589 nm 的光,在距双缝1.00 m 的屏上形成干涉图样.图样上相邻两明纹中心间距为0.350 cm ,则双缝的间距为( )A .2.06×10-7 m B .2.06×10-4 m C .1.68×10-4 m D .1.68×10-3 m解析:选C.在双缝干涉实验中,相邻明条纹间距Δx 、双缝间距d 与双缝到屏的距离L 间的关系为Δx =L d λ,则双缝间距d =L λΔx =1.00×589×10-90.350×10-2m ≈1.68×10-4 m. 7.光的偏振现象说明光是横波.下列现象中不能反映光的偏振特性的是( )A .一束自然光相继通过两个偏振片,以光束为轴旋转其中一个偏振片,透射光的强度发生变化B .一束自然光入射到两种介质的分界面上,当反射光线与折射光线之间的夹角恰好是90°时,反射光是偏振光C .日落时分,拍摄水面下的景物,在照相机镜头前装上偏振滤光片可以使景象更清晰D .通过手指间的缝隙观察日光灯,可以看到彩色条纹解析:选D.通过手指间的缝隙观察日光灯,可看到彩色条纹,这是光的衍射现象,D不符合题意.8.如图所示为条纹总宽度相同的4种明暗相间的条纹,其中有两种是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样,还有两种是黄光、紫光各自通过同一个单缝形成的衍射图样(灰黑色部分表示亮纹).则图中从左向右排列,亮条纹的颜色依次是()A.红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫解析:选B.由双缝干涉条纹间距公式可知,左侧第一个是红光通过双缝干涉仪器形成的干涉图样,第三个是蓝光通过双缝干涉仪器形成的干涉图样;由单缝衍射可知,左侧第二个是紫光通过单缝形成的衍射图样,左侧第四个是黄光通过单缝形成的衍射图样,所以选项B 正确.9.关于电磁场和电磁波,下列说法中正确的是()A.在麦克斯电磁场理论中,振荡的电场产生同频率振荡的电场B.电磁波中每一处的电场强度和磁感应强度总是互相垂直的,且都与波的传播方向垂直C.电磁波和机械波一样依赖于介质传播D.只要空间中某个区域有振荡的电场或磁场,就能产生电磁波解析:选ABD.机械波的传播依赖于介质,电磁波的传播不需要介质,C错.10.关于γ射线,以下说法中正确的是()A.γ射线比伦琴射线频率更高,穿透能力更强B.γ射线可用来检测金属材料内部伤痕、裂缝、气孔等C.利用γ射线穿透力强可制成金属测厚计来检测金属板的厚度D.γ射线是一种波长很长的电磁波答案:ABC11.用激光做单缝衍射实验和双缝干涉实验,比普通光源效果更好,图象更清晰.如果将感光元件置于光屏上,则不仅能在光屏上看到彩色条纹,还能通过感光元件中的信号转换,在电脑上看到光强的分布情况.下列说法正确的是()A.当做单缝实验时,光强分布如图乙所示B.当做单缝实验时,光强分布如图丙所示C.当做双缝实验时,光强分布如图乙所示D.当做双缝实验时,光强分布如图丙所示解析:选AD.当做单缝实验时,中间是亮条纹,往两侧条纹亮度逐渐降低,且亮条纹的宽度不等,所以其光强分布图如乙所示,A项正确,B项错误;当做双缝实验时,在屏上呈现的是宽度相等的亮条纹,所以其光强分布图如丙所示,C项错误,D项正确.12.如图所示,一玻璃柱体的横截面为半圆形,让太阳光或白炽灯光通过狭缝S形成细光束从空气射向柱体的O点(半圆的圆心),产生反射光束1和透射光束2.现保持入射光不变,将半圆柱绕通过O点垂直于纸面的轴线转动,使反射光束1和透射光束2恰好垂直,在入射光线的方向上加偏振片P,偏振片与入射光线垂直,其透振方向在纸面内,这时看到的现象是()A.反射光束1消失B.透射光束2消失C.反射光束1和透射光束2都消失D.偏振片P以入射光线为轴旋转90°角,透射光束2消失解析:选AD.自然光射到界面上,当反射光与折射光垂直时,反射光和折射光的偏振方向相互垂直,且反射光的偏振方向与纸面垂直,折射光的偏振方向与纸面平行.因此当在入射光线方向垂直放上透振方向在纸面内的偏振片P时,因反射光垂直于纸面,则反射光束1消失,透射光束2不消失,A正确,B、C均错误.偏振片P转动90°,平行于纸面内的光消失,则透射光束2消失,D正确.13.如图所示,一束复色光从长方体玻璃砖上表面射入玻璃,穿过玻璃后从侧面射出,变为a、b两束单色光,则以下说法正确的是()A.玻璃对a光的折射率较大B.在玻璃中b光的波长比a光短C.在玻璃中b光传播速度比a光大D.减小入射角i,a、b光线有可能消失解析:选BD.由图可知折射率n a<n b,则νa<νb,又由n=cv得,v a>v b,综上得λb<λa,故A、C错误,B正确.减小入射角i,由几何关系可知在玻璃内的入射角变大,可能发生全反射,a、b都可能消失,D正确.14.如图所示,口径较大、充满水的薄壁圆柱形浅玻璃缸底有一发光小球,则()A.小球必须位于缸底中心才能从侧面看到小球B.小球所发的光能从水面任何区域射出C.小球所发的光从水中进入空气后频率变大D.小球所发的光从水中进入空气后传播速度变大解析:选D.发光小球沿水平方向发出的光,均能射出玻璃缸,不发生全反射,选项A错误;小球发出的光射到水面上时,当入射角大于等于临界角时,会发生全反射,选项B错误;光的频率由光源决定,光由一种介质进入另一种介质时,光的频率不变,选项C错误;根据n=cv,光在水中的传播速度较小,选项D正确.15.打磨某剖面如图所示的宝石时,必须将OP、OQ边与轴线的夹角θ切磨在θ1<θ<θ2的范围内,才能使从MN边垂直入射的光线,在OP边和OQ边都发生全反射(仅考虑如图所示的光线第一次射到OP边并反射到OQ边后射向MN边的情况),则下列判断正确的是()A.若θ>θ2,光线一定在OP边发生全反射B.若θ>θ2,光线会从OQ边射出C.若θ<θ1,光线会从OP边射出D.若θ<θ1,光线会在OP边发生全反射解析:选D.题图中,要使光线可在OP边发生全反射,图中光线在OP边上的入射角大于90°-θ2.从OP边上反射到OQ边的光线,入射角大于90°-(180°-3θ1)=3θ1-90°可使光线在OQ边上发生全反射.若θ>θ2,光线不能在OP边上发生全反射;若θ<θ1,光线不能在OQ边上发生全反射,综上所述,选项D正确.16.如图所示,AOB为透明扇形玻璃砖,圆心角∠AOB=60°,OM为∠AOB的角平分线,平行于OM的单色光在空气中由OA边射入玻璃砖,经OA面折射后的光线恰平行于OB.则下列说法中正确的是()A.该玻璃的折射率为2B.经OA面折射后的光线射到AMB面都将发生全反射C.该入射光在空气中的波长与玻璃砖中的波长相等D.该入射光在空气中的频率与玻璃砖中的频率相等解析:选D.依题意作出光路图(图略),由几何知识得:入射角i=60°,折射角r=30°,由折射定律n=sin isin r得n=3,A错误;由sin C=1n可知,光在此介质中发生全反射的临界角C大于30°,经OA面折射后照射到AM︵面这一范围的光线可能发生全反射,经OA面折射后照射到MB︵范围的光线不能发生全反射,B错误;光在不同介质中传播的过程中频率不变,D 正确;若光在真空中的传播速度为c,则光在玻璃砖中的传播速度为v=cn=33c,由v=λf可知,该入射光在空气和玻璃砖中的波长不同,C错误.。

2020浙江高考物理二轮讲义:专题一第二讲 受力分析与共点力平衡 Word版含解析

2020浙江高考物理二轮讲义:专题一第二讲 受力分析与共点力平衡 Word版含解析

姓名,年级:时间:第二讲受力分析与共点力平衡知识内容考试要求备考指津1。

重力、基本相互作用c1。

本讲内容主要包括重力、弹力、摩擦力、力的合成与分解及物体的平衡等知识.此部分内容常与其他力学规律甚至电学背景相结合。

2.力的合成与分解及物体的平衡是考查频率较高的知识点.2。

弹力c3.摩擦力c4。

力的合成c5.力的分解c物体的受力分析【题组过关】1.(2019·浙江选考4月)如图所示,小明撑杆使船离岸,则下列说法正确的是( )A.小明与船之间存在摩擦力B.杆的弯曲是由于受到杆对小明的力C.杆对岸的力大于岸对杆的力D.小明对杆的力和岸对杆的力是一对相互作用力答案:A2.5个力同时作用于质点O,此5个力大小和方向相当于正六边形的两条边和三条对角线,如图所示,这5个力的合力的大小为F1的()A.3倍B.4倍C.5倍D.6倍解析:选A.法一:巧用对角线特性如图甲所示,根据正六边形的特点及平行四边形定则知:F2与F5的合力恰好与F1重合;F3与F4的合力也恰好与F1重合;故五个力的合力大小为3F1。

法二:利用对称法如图乙所示,由于对称性,F2和F3的夹角为120°,它们的大小相等,合力在其夹角的平分线上,故力F2和F3的合力F23=2F2cos 60°=2(F1 cos 60°)cos 60°=错误!。

同理,F4和F5的合力大小也在其角平分线上,由图中几何关系可知:F=2F4cos 30°=2(F1cos 30°)cos 30°=错误!F1。

45故这五个力的合力F=F1+F23+F45=3F1.3。

如图所示,一个“房子”形状的铁制音乐盒静止在水平面上,一个塑料壳里面装有一个圆柱形强磁铁,吸附在“房子”的顶棚斜面上,保持静止状态.已知顶棚斜面与水平面的夹角为θ,塑料壳和磁铁的总质量为m,塑料壳和顶棚斜面间的动摩擦因数为μ,则以下说法正确的是( )A.塑料壳对顶棚斜面的压力大小为mg cos θB.顶棚斜面对塑料壳的摩擦力大小一定为μmg cos θC.顶棚斜面对塑料壳的支持力和摩擦力的合力大小为mgD.磁铁的磁性若瞬间消失,塑料壳不一定会往下滑动解析:选D.将塑料壳和圆柱形磁铁当成整体受力分析,它受重力、支持力(垂直斜面向上)、沿斜面向上的摩擦力、顶棚对磁铁的吸引力而处于平衡状态,则塑料壳对顶棚斜面的压力大于mg cos θ,A错误;顶棚斜面对塑料壳的摩擦力大小等于mg sin θ,B错误;顶棚斜面对塑料壳的支持力和摩擦力及顶棚对圆柱形磁铁的吸引力三者的合力大小为mg,C错误;当磁铁的磁性消失时,最大静摩擦力大小发生变化,但合力可能为零,可能保持静止状态,则塑料壳不一定会往下滑动,D正确.错误!1.分析受力的思路(1)先数研究对象有几个接触处,每个接触处最多有两个力(弹力和摩擦力).(2)同时注意对场力的分析.(3)假设法是判断弹力、摩擦力的存在及方向的基本方法.2.在分析两个或两个以上的物体间的相互作用时,一般采用整体法与隔离法进行分析;采用整体法进行受力分析时,要注意各个物体的状态应该相同.3.当直接分析一个物体的受力不方便时,可转换研究对象,先分析另一个物体的受力,再根据牛顿第三定律分析该物体的受力,此法叫“转换研究对象法".共点力的静态平衡问题【重难提炼】方法内容合成法物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反效果分解法物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件正交分解法物体受到三个或三个以上力的作用时,将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件力的三角形法对受三力作用而平衡的物体,将力的矢量图平移使三力组成一个首尾依次相接的矢量三角形,根据正弦定理、余弦定理或相似三角形等数学知识求解未知力球心.一质量为m的小滑块,在水平力F的作用下静止于P点,设滑块所受支持力为F N,OP与水平方向的夹角为θ.下列关系正确的是( )A.F=错误!B.F=mg tan θC.F N=错误!D.F N=mg tan θ[解析] 法一:合成法滑块受力如图甲,由平衡条件知:错误!=tan θ,错误!=sin θ⇒F=错误!,F N =mg sin θ.法二:效果分解法将重力按产生的效果分解,如图乙所示,F=G2=错误!,F N=G1=错误!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点5 万有引力定律
考试标准
知识内容 考试要求
行星的运动 a 太阳与行星间的引力 a 万有引力定律 c 万有引力理论的成就
c 宇宙航行 c 经典力学的局限性
a
开普勒三定律
定律 内容
图示或公式
开普勒第一定律(轨道定律)
所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上
开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等
开普勒第三定律(周期定律) 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等
a 3
T 2
=k ,k 是一个与行星无关的常量
1.行星绕太阳的运动通常按圆轨道处理.
2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.
3.开普勒第三定律a 3
T
2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.该
定律只能用在同一中心天体的两星体之间.
万有引力定律 1.内容
自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量
m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.
2.表达式
F =
G m 1m 2
r
2,G 为引力常量,G =6.67×10-11N·m 2/kg 2.
3.适用条件
(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.
(2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 4.万有引力的“两点理解”和“两个推论” (1)两点理解
①两物体间相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)两个推论
①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.
②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =G
M ′m
r 2
. 万有引力与重力的关系 1.万有引力与重力的关系
地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力
F 向.
(1)在赤道上:G Mm R 2=mg 1+mω2
R . (2)在两极上:G Mm R
2=mg 0.
(3)在一般位置:万有引力G Mm R
2等于重力mg 与向心力F 向的矢量和.
越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即
GMm
R 2
=mg . 2.星球上空的重力加速度g ′
星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2,得g ′=GM
(R +h )
2.所
以g g ′=(R +h )2
R 2
.
天体质量和密度常用的估算方法
使用方法
已知量
利用公式
表达式 备注
质量的计算
利用运行天体
r 、T
G Mm r 2=mr 4π2
T
2 M =4π2r
3
GT
2
只能得到中心天体的质量
r 、v
G Mm r 2=m v 2
r M =rv 2
G
v 、T
G Mm r 2=m v 2
r
G Mm r 2=mr 4π2T
2 M =v 3T 2πG
利用天体表面重力加速度 g 、R
mg =GMm R
2
M =gR 2
G
密度的计算
利用运行天体 r 、T 、R
G Mm r 2=mr 4π2
T
2 M =ρ·43
πR 3 ρ=3πr 3
GT 2R
3
当r =R 时ρ=
3πGT
2
利用近地卫星只需测出其运行周期
利用天体表面重力加速度
g 、R mg =GMm R 2
M =ρ·43
πR 3
ρ=
3g
4πGR
宇宙速度 1.第一宇宙速度
(1)第一宇宙速度又叫环绕速度,其数值为7.9km/s.
(2)第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度. (3)第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度. (4)第一宇宙速度的计算方法.
由G Mm R 2=m v 2
R 得v =
GM
R
; 由mg =m v 2
R
得v =gR .
2.第二宇宙速度
使物体挣脱地球引力束缚的最小发射速度,其数值为11.2km/s. 3.第三宇宙速度
使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7km/s.
卫星运行参量的分析 卫星运行参量 相关方程
结论
线速度v G Mm r 2=m v 2
r ⇒v =GM r r 越大,v 、ω、a n 越小,T 越大
角速度ω G Mm
r
2=mω2r ⇒ω=GM r 3
周期T G Mm r 2=m ⎝ ⎛⎭
⎪⎫
2πT 2r ⇒T =2πr 3
GM
向心加速度a n
G Mm r 2=ma n ⇒a n =GM
r
2。

相关文档
最新文档