2008年新课标人教A版集合单元测试题
人教A版 必修1 第1章 集合的概念、集合间的基本关系、集合的基本运算 单元测试卷(解析版)
第1单元集合的概念、集合间的基本关系、集合的基本运算单元测试卷一、选择题(共12小题).1.(5分)下列关系中正确的是()A.0∈∅B.∈Q C.0∈N D.1∈{(0,1)} 2.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)把“2021”中的四个数字拆开,可构成集合{2,0,1},则该集合的真子集的个数为()A.7B.8C.15D.164.(5分)已知全集U=R,集合A={x||x|≤1,x∈Z},B={x|x2﹣2x=0},则图中的阴影部分表示的集合为()A.{﹣1}B.{2}C.{1,2}D.{0,2}5.(5分)设集合A={a,a2,0},B={2,4},若A∩B={2},则实数a的值为()A.2B.±2C.D.±6.(5分)已知集合M={x|x2﹣x﹣6=0},N={x|x<a},若N∩M≠∅,则a的取值范围是()A.{a|a>﹣2}B.{a|a≥﹣2}C.{a|a>3}D.{a|a≥3}7.(5分)设集合A={y|y=},B={x|y=},则下列结论中正确的是()A.A=B B.A⊆B C.B⊆A D.A∩B={x|x≥1} 8.(5分)设全集U={x∈N*|x≤9},若∁U(A∪B)={1,3},A∩(∁U B)={2,4},则集合B=()A.{5,6,7,8,9}B.{2,4,5,6,7,8,9}C.{5,6,7,8}D.{4,5,6,7,8,9}9.(5分)对于非空集合P,Q,定义集合间的一种运算“★”:P★Q={x|x∈P∪Q且x∉P ∩Q}.如果P={x|﹣1≤x﹣1≤1},Q={x|y=},则P★Q=()A.{x|1≤x≤2}B.{x|0≤x≤1或x≥2}C.{x|0≤x≤1或x>2}D.{x|0≤x<1或x>2}10.(5分)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4},A∩B=∅;(2)A的元素个数不是A中的元素.B的元素个数不是B中元素.则有序集合对(A,B)的个数为()A.1B.2C.4D.611.(5分)给出下列四个集合,其中为空集的是()A.{∅}B.{x∈R|x2+x+1=0}C.{(x,y)|,x,y∈R}D.{x∈R||x|<0}12.(5分)当一个非空数集F满足条件“若a,b∈F,则a+b,a﹣b,ab∈F,且当b≠0时,∈F”时,称F为一个数域,以下说法正确的是()A.0是任何数域的元素B.若数域F有非零元素,则2020∈FC.集合P={x|x=3k,k∈Z}为数域D.有理数集为数域二、填空题(本题共4小题,每小题5分,共20分)13.(5分)若集合A={1,2},B={1,2,4},C={1,4,6},则(A∩B)∪C=.14.(5分)已知集合A={x|x=(2k+1),k∈Z},B={x|x=k±,k∈Z},则集合A,B之间的关系为.15.(5分)已知集合M={x|x2+x﹣6=0},N={y|ay+2=0,a∈R},若满足M∩N=N的所有实数a构成集合A,则A=,A的子集有个.16.(5分)非空有限数集S满足:若a,b∈S,则必有a2,b2,ab∈S.则满足条件且含有两个元素的数集S=.(写出一个即可)三、解答题(本题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤)17.(8分)已知集合A={x|﹣2<x≤3},B={x|x<a}.(1)若A∩B=A,求实数a的取值范围;(2)若全集U={x|x≤4},a=﹣1,求A∩(∁U B)及(∁U A)∪(∁U B).18.(10分)已知A={2,﹣1,x2﹣x+1},B={2y,﹣4,x+4},C={﹣1,7},且A∩B =C,求x,y的值及A∪B.19.(10分)已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax﹣3=0},且B⊆A,求实数a的取值集合.20.(12分)设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x﹣6=0}.(Ⅰ)求(∁I M)∩N;(Ⅱ)记集合A=(∁I M)∩N,已知集合B={x|a﹣1≤x≤5﹣a,a∈R},若B∪A=A,求实数a的取值范围.附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤)21.(10分)已知全集U=R,集合A={x|x2+px+q=0},B={x|qx2+px+1=0},满足①A ∩B≠∅,②A∩(∁U B)={﹣2},其中p,q均为不等于零的实数,求p,q的值.22.(10分)我们知道,如果集合A⊆U,那么子集A在U中的补集为∁U A={x|x∈U,且x∉A}.类似地,对于集合A,B,我们把集合{x|x∈A,且x∉B}叫做A与B的差集,记作A﹣B.例如,A={1,2,3,5,8},B={4,5,6,7,8},则A﹣B={1,2,3},B﹣A={4,6,7}.据此,回答以下问题:(1)若U是高一(1)班全体同学的集合,A是高一(1)班女同学组成的集合,求U ﹣A及∁U A;(2)在图中,分别用阴影表示集合A﹣B;(3)如果A﹣B=∅,那么A与B之间具有怎样的关系?参考答案一、选择题(共12小题).1.(5分)下列关系中正确的是()A.0∈∅B.∈Q C.0∈N D.1∈{(0,1)}【分析】由0∉∅,可得A错误;由是无理数,可判断B错误;由于{(0,1)}的元素为(0,1),可得D错误;根据0是自然数,可得C正确.解:因为0∉∅,故A错误;因为是无理数,所以Q,故B错误;0是自然数,故C正确.故选:C.2.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【分析】先求出∁U A,然后再求B∩∁U A即可求解解:∵U={1,2,3,4,5,8,7},A={2,3,4,5},B={3,3,6,7},∴∁U A={1,6,7},故选:C.3.(5分)把“2021”中的四个数字拆开,可构成集合{2,0,1},则该集合的真子集的个数为()A.7B.8C.15D.16【分析】根据集合真子集个数的计算公式即可求出集合{2,0,1}的真子集的个数.解:集合{2,0,1}中共3个元素,子集的个数为23=8,真子集的个数为5﹣1=7.故选:A.4.(5分)已知全集U=R,集合A={x||x|≤1,x∈Z},B={x|x2﹣2x=0},则图中的阴影部分表示的集合为()A.{﹣1}B.{2}C.{1,2}D.{0,2}【分析】阴影部分为∁U A∩B,需解出集合A和B,在进行集合运算即可.解:阴影部分为∁U A∩B,∵A={x||x|≤1,x∈Z}={x|﹣1≤x≤1},∁U A={x|x>1或x<﹣3},∴∁U A∩B={2},故选:B.5.(5分)设集合A={a,a2,0},B={2,4},若A∩B={2},则实数a的值为()A.2B.±2C.D.±【分析】根据A∩B={2}即可得出2∈A,并且B={2,4},从而得出a2=2,解出a即可.解:∵A∩B={2},B={2,4},A={a,a2,0};∴2∈A;∴.故选:D.6.(5分)已知集合M={x|x2﹣x﹣6=0},N={x|x<a},若N∩M≠∅,则a的取值范围是()A.{a|a>﹣2}B.{a|a≥﹣2}C.{a|a>3}D.{a|a≥3}【分析】先求出N∩M=∅时a的取值范围,再取补集即可求出求出N∩M≠∅时a的取值范围.解:∵集合M={x|x2﹣x﹣6=0}={﹣5,3},N={x|x<a},当N∩M=∅时:a≤﹣2,故选:A.7.(5分)设集合A={y|y=},B={x|y=},则下列结论中正确的是()A.A=B B.A⊆B C.B⊆A D.A∩B={x|x≥1}【分析】求解y=的值域可得集合A,求解y=的定义域可得集合B,根据集合与集合的关系判断即可.解:由题意,y=的值域为[0,+∞)∴集合A=[0,+∞)故得A∩B={x|x≥1}.故选:D.8.(5分)设全集U={x∈N*|x≤9},若∁U(A∪B)={1,3},A∩(∁U B)={2,4},则集合B=()A.{5,6,7,8,9}B.{2,4,5,6,7,8,9}C.{5,6,7,8}D.{4,5,6,7,8,9}【分析】根据集合的交集、并集和补集的定义,计算即可.解:全集U={x∈N*|x≤9}={1,2,3,4,7,6,7,8,9},由∁U(A∪B)={2,3},所以A∪B={2,4,5,6,8,8,9};所以集合B={5,6,5,8,9}.故选:A.9.(5分)对于非空集合P,Q,定义集合间的一种运算“★”:P★Q={x|x∈P∪Q且x∉P ∩Q}.如果P={x|﹣1≤x﹣1≤1},Q={x|y=},则P★Q=()A.{x|1≤x≤2}B.{x|0≤x≤1或x≥2}C.{x|0≤x≤1或x>2}D.{x|0≤x<1或x>2}【分析】根据已知得到P、Q中的元素x的取值范围,然后根据P★Q={x|x∈P∪Q,且x∉P∩Q}求出即可.解:P={x|﹣1≤x﹣1≤1}={x|0≤x≤2},Q={x|y=}={x|x≥5},∴P★Q=[0,1)∪(2,+∞)故选:D.10.(5分)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4},A∩B=∅;(2)A的元素个数不是A中的元素.B的元素个数不是B中元素.则有序集合对(A,B)的个数为()A.1B.2C.4D.6【分析】结合已知分类讨论:讨论A,B中集合的元素个数分别进行求解.解:若A中只有1个元素,则B中有3个元素,则1∉A,3∉B,即3∈A,4∈B,此时有1个,若A中有2个元素,则B中有2个元素,则2∉A,2∉B,不符合题意;综上,有序集合对(A,B)的个数2个.故选:B.11.(5分)给出下列四个集合,其中为空集的是()A.{∅}B.{x∈R|x2+x+1=0}C.{(x,y)|,x,y∈R}D.{x∈R||x|<0}【分析】利用空集的定义、一元二次方程、方程组、不等式的性质直接求解.解:对于A,表示由空集构成的集合,故A不是空集;对于B,集合中的元素为方程x2+x+1=0的实根,∴方程x2+x+1=0无实根,故B为空集;对于D,不等式|x|<6的解集是空集,故D为空集.故选:BCD.12.(5分)当一个非空数集F满足条件“若a,b∈F,则a+b,a﹣b,ab∈F,且当b≠0时,∈F”时,称F为一个数域,以下说法正确的是()A.0是任何数域的元素B.若数域F有非零元素,则2020∈FC.集合P={x|x=3k,k∈Z}为数域D.有理数集为数域【分析】根据数域的定义分别进行判断即可.解:对于A,当a=b时,a﹣b=0属于数域,故正确,对于B,若a∈F且a≠0,则1=∈F,2=1+1∈F,6=1+2∈F,依此类推,可得2020∈F,故正确,对于D,若F是有理数,则当a,b∈F,则a+b,a﹣b,ab∈F,且当b≠0时,∈F都成立,故正确,故选:ABD.二、填空题(本题共4小题,每小题5分,共20分)13.(5分)若集合A={1,2},B={1,2,4},C={1,4,6},则(A∩B)∪C={1,2,4,6}.【分析】根据交集和并集的定义,计算即可.解:集合A={1,2},B={1,2,4},所以A∩B={1,2};所以(A∩B)∪C={1,2,4,6}.故答案为:{1,4,4,6}.14.(5分)已知集合A={x|x=(2k+1),k∈Z},B={x|x=k±,k∈Z},则集合A,B之间的关系为A=B.【分析】首先,将给定的集合化简,然后作出判断.解:由集合A得:A={x|x=},B={x|x=},∴A=B,故答案为:A=B.15.(5分)已知集合M={x|x2+x﹣6=0},N={y|ay+2=0,a∈R},若满足M∩N=N的所有实数a构成集合A,则A={0,﹣1,},A的子集有8个.【分析】可以求出M={﹣3,2},根据M∩N=N可得出N⊆M,然后讨论a是否为0:a =0显然满足题意;a≠0时,可得出或2,然后解出a即可,从而得出集合A,得出集合A的子集个数.解:M={﹣3,2},M∩N=N,∴N⊆M,①a=0时,N=∅,符合题意;②a≠0时,,∴或2,解得或﹣1,故答案为:.16.(5分)非空有限数集S满足:若a,b∈S,则必有a2,b2,ab∈S.则满足条件且含有两个元素的数集S={0,1},或{﹣1,1}..(写出一个即可)【分析】由题意,不妨设S={a,b},根据题意有a2,ab,b2∈S,可得a2,ab,b2必有两个是相等的,分类讨论即可求解.解:由题意,不妨设S={a,b},根据题意有a2,ab,b2∈S,所以a2,ab,b2必有两个是相等的,所以a=0(舍去)或a=5或a=﹣1,此时S={﹣1,1};若b2=ab,则b=5,此时a2=a,故a=1,此时S={0,7},故答案为:{0,1},或{﹣1,1}.三、解答题(本题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤)17.(8分)已知集合A={x|﹣2<x≤3},B={x|x<a}.(1)若A∩B=A,求实数a的取值范围;(2)若全集U={x|x≤4},a=﹣1,求A∩(∁U B)及(∁U A)∪(∁U B).【分析】(1)由A∩B=A知A⊆B,由此得出a的取值范围;(2)根据补集、并集和交集的定义,计算即可.解:(1)集合A={x|﹣2<x≤3},B={x|x<a},若A∩B=A,则A⊆B;所以实数a的取值范围是{a|a>3};所以B={x|x<﹣7},所以A∩(∁U B)={x|﹣1≤x≤4};所以(∁U A)∪(∁U B)={x|x≤﹣2或﹣1≤x≤4}.18.(10分)已知A={2,﹣1,x2﹣x+1},B={2y,﹣4,x+4},C={﹣1,7},且A∩B =C,求x,y的值及A∪B.【分析】根据已知集合A={2,﹣1,x2﹣x+1},B={2y,﹣4,x+4},C={﹣1,7},A ∩B=C,可得x2﹣x+1=7,分类讨论可求出满足条件的实数x、y的值,进而求出集合A,B,结合集合并集的定义,得到答案.解:∵集合A={2,﹣1,x2﹣x+5},B={2y,﹣4,x+4},C={﹣1,7},A∩B=C,∴x3﹣x+1=7,解得:x=﹣2,或x=3,当x=3时,x+5=7,此时2y=﹣1,满足要求;集合A={2,﹣1,7},B={﹣5,﹣4,7},A∪B={2,﹣1,﹣6,7}.19.(10分)已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax﹣3=0},且B⊆A,求实数a的取值集合.【分析】(1)根据题目的条件,把满足条件的集合一一列举出来,即可求出所求集合的个数.(2)由题意,集合B有两种可能:B=∅,B≠∅,分类讨论即可求解.解:(1)由M⊆A,且M中至少有一个偶数,得满足条件的集合M为{2},{1,2},{1,7,3},{4},{1,4},{3,7},{1,3,4},{2,4},{7,2,4},{2,3,4},{8,2,3,4}共12个.(2)因为B⊆A,当B=∅时,显然a=3;解得a=3,或a=,或a=1,或a=,综上,实数a的取值集合是{0,,1,,3}.20.(12分)设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x﹣6=0}.(Ⅰ)求(∁I M)∩N;(Ⅱ)记集合A=(∁I M)∩N,已知集合B={x|a﹣1≤x≤5﹣a,a∈R},若B∪A=A,求实数a的取值范围.【分析】(I)通过解不等式和方程求集合M、N,再进行集合的补集、交集运算;(II)由(I)知集合A={2},根据集合关系B∪A=A,得B=∅或B={2},利用分类讨论求出a的范围.解:(Ⅰ)∵M={x|(x+3)2≤0}={﹣3},N={x|x2+x﹣5=0}={﹣3,2},∴∁I M={x|x∈R且x≠﹣3},(Ⅱ)A=(∁I M)∩N={2},当B=∅时,a﹣1>5﹣a,∴a>3;综上所述,所求a的取值范围为{a|a≥3}.附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤)21.(10分)已知全集U=R,集合A={x|x2+px+q=0},B={x|qx2+px+1=0},满足①A ∩B≠∅,②A∩(∁U B)={﹣2},其中p,q均为不等于零的实数,求p,q的值.【分析】条件①是说集合A、B有相同的元素,条件②是说﹣2∈A但﹣2∉B,A、B是两个方程的解集,方程x2+px+q=0和qx2+px+1=0的根的关系的确定是该题的突破口,求p、q的值.解:设x0∈A,则x0≠0,否则将有q=0与题设矛盾.于是由,两边同除以,得,由①知存在x0∈A,得x0=1或x0=﹣1.若A={1,﹣2},同理,若A={﹣1,﹣2},则,综上,p=1,q=﹣2或p=6,q=2.22.(10分)我们知道,如果集合A⊆U,那么子集A在U中的补集为∁U A={x|x∈U,且x∉A}.类似地,对于集合A,B,我们把集合{x|x∈A,且x∉B}叫做A与B的差集,记作A﹣B.例如,A={1,2,3,5,8},B={4,5,6,7,8},则A﹣B={1,2,3},B﹣A={4,6,7}.据此,回答以下问题:(1)若U是高一(1)班全体同学的集合,A是高一(1)班女同学组成的集合,求U ﹣A及∁U A;(2)在图中,分别用阴影表示集合A﹣B;(3)如果A﹣B=∅,那么A与B之间具有怎样的关系?【分析】(1)根据差集与补集的定义,即可写出差集与补集的异同点;(2)根据差集与补集的定义,写出差集U﹣A与补集∁U A;(3)根据差集的定义知以及图形,标出属于集合A但不属于B的部分即可;(4)根据差集与补集的定义知A﹣B=∅时,A⊆B.解:(1)根据差集的定义知,差集中的元素是集合A中的元素并且不能属于集合B,即A中去掉B中的元素;共同特点是:差集与补集都是全集的子集;∴U﹣A={高一(1)班全体男同学},(3)用阴影表示集合A﹣B,如图所示;(4)如果A﹣B=∅,那么A⊆B.。
高中人教A版数学必修1单元测试:第一章 集合与函数概念(二)及解析
A 卷 数 学班级:________ 姓名:________ 得分:________第一章 集合与函数概念(二) (函数的概念与基本性质) (时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=12x -3的定义域是( ) A. 0,32 B. 32,+∞ C. -∞,32 D.32,+∞ 2.函数y =f (x )的图象与直线x =2的公共点有( ) A .0个 B .1个 C .0个或1个 D .不能确定 3.函数y =x 2-4x +1,x ∈2,5]的值域是( ) A .1,6] B .-3,1] C .-3,6] D .-3,+∞)4.已知函数f (x )=x (x ≥0),x 2 (x <0),则f (f (-2))的值是( )A .2B .-2C .4D .-45.已知函数f (x )=(a -x )|3a -x |,a 是常数且a >0,下列结论正确的是( )A .当x =2a 时,有最小值0B .当x =3a 时,有最大值0C .无最大值也无最小值D .有最小值,但无最大值6.定义域为R 的函数y =f (x )的值域为a ,b ],则函数y =f (x +a )的值域为( )A .2a ,a +b ]B .a ,b ]C.0,b-a] D.-a,a+b]7.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x+2 B.3x+1 C.3x-1 D.3x+48.设f(x)是R上的偶函数,且在(-∞,0)上为减函数,若x1<0,且x1+x2>0,则()A.f(x1)>f(x2) B.f(x1)=f(x2)C.f(x1)<f(x2) D.无法比较f(x1)与f(x2)的大小9.已知反比例函数y=kx的图象如图所示,则二次函数y=2kx2-4x+k2的图象大致为()10.若φ(x),g(x)都是奇函数,f(x)=aφ(x)+bg(x)+2在(0,+∞)上有最大值5,则f(x)在(-∞,0)上有()A.最小值-5 B.最大值-5C.最小值-1 D.最大值-311.已知f(x)为奇函数,在区间3,6]上是增函数,且在此区间上的最大值为8,最小值为-1,则2f(-6)+f(-3)=()A.-15 B.-13 C.-5 D.512.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式f (x )-f (-x )x<0的解集为( ) A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为________.14.已知函数f (x )满足f (x +y )=f (x )+f (y )(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f12=12f (1);④f (-x )·f (x )<0.15.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为______________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知二次函数f (x )=x 2+2(m -2)x +m -m 2.(1)若函数的图象经过原点,且满足f (2)=0,求实数m 的值; (2)若函数在区间2,+∞)上为增函数,求m 的取值范围.18.(本小题满分12分) 已知函数f (x )=1+x 21-x 2. (1)求f (x )的定义域; (2)判断并证明f (x )的奇偶性;(3)求证:f1x =-f (x ).19.(本小题满分12分)已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ). (1)求函数g (x )的定义域;(2)若f (x )是奇函数,且在定义域上单调递减,求不等式g (x )≤0的解集.20.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x . (1)当x <0时,求f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间.21.(本小题满分12分)已知函数f (x )的定义域为(0,+∞),且f (x )为增函数,f (x ·y )=f (x )+f (y ).(1)求证:fx y =f (x )-f (y );(2)若f (3)=1,且f (a )>f (a -1)+2,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+2x +ax ,x ∈1,+∞). (1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈1,+∞),f (x )>0恒成立,试求实数a 的取值范围.详解答案第一章 集合与函数概念(二) (函数的概念与基本性质) 名师原创·基础卷]1.D 解析:由2x -3>0得x >32.2.C 解析:如果x =2与函数y =f (x )有公共点,则只有一个公共点,因为自变量取一个值只对应一个函数值;若无交点,则没有公共点,此时的x =2不在y =f (x )的定义域内.3.C 解析:函数y =(x -2)2-3在2,+∞)上是增函数,所以最小值为f (2)=-3,又x ∈2,5],故最大值为f (5)=6.4.C 解析:∵x =-2<0,∴f (-2)=(-2)2=4. 又4>0,∴f (f (-2))=f (4)=4.5.C 解析:由f (x )=(x -2a )2-a 2,x ≤3a ,-(x -2a )2+a 2,x >3a ,可画出简图.分析知C 正确.6.B 解析:y =f (x +a )可由y =f (x )的图象向左或向右平移|a |个单位得到,因此,函数y =f (x +a )的值域与y =f (x )的值域相同.7.C 解析:设x +1=t ,则x =t -1,∴f (t )=3(t -1)+2=3t -1, ∴f (x )=3x -1,故选C.解题技巧:采用换元法求函数解析式是常用方法.换元时,一定注意自变量的取值范围的变化情况.8.C 解析:x 1<0,且x 1+x 2>0,∴x 1>-x 2. 又f (x )在(-∞,0)上为减函数,∴f (x 1)<f (-x 2). 又f (x )是偶函数,∴f (x 1)<f (x 2).9.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k <0,排除C.10.C 解析:由已知对任意x ∈(0,+∞),f (x )=aφ(x )+bg (x )+2≤5. 对任意x ∈(-∞,0),则-x ∈(0,+∞),且φ(x ),g (x )都是奇函数,有f (-x )=aφ(-x )+bg (-x )+2≤5.即-aφ(x )-bg (x )+2≤5, ∴aφ(x )+bg (x )≥-3.∴f (x )=aφ(x )+bg (x )+2≥-3+2=-1.11.A 解析:因为函数在3,6]上是增函数,所以f (6)=8,f (3)=-1,又函数f (x )为奇函数,所以2f (-6)+f (-3)=-2f (6)-f (3)=-2×8+1=-15,故选A.12.D 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),∴f (x )-f (-x )x =2f (x )x <0,即f (x )<0,x >0或f (x )>0,x <0.因为f (x )是奇函数且在(0,+∞)上是增函数,故f (x )在(-∞,0)上是增函数.由f (1)=0知f (-1)=0,∴f (x )<0,x >0可化为f (x )<f (-1),x >0,∴0<x <1;f (x )>0,x <0可化为f (x )>f (1),x <0,∴-1<x <0.13.-1,-12 解析:由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为-1,-12. 解题技巧:已知f (x )的定义域为a ,b ],求f (g (x ))的定义域,可从a ≤g (x )≤b 中解得x 的取值范围,即为f (g (x ))的定义域.14.①②③ 解析:令x =y =0,得f (0)=0;令x =2,y =1,得f (3)=f (2)+f (1)=3f (1);令x =y =12,得f (1)=2f 12,∴f12=12f (1); 令y =-x ,得f (0)=f (x )+f (-x ),即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.15.-2x 2+4 解析:f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2为偶函数,则2a +ab =0,∴a =0或b =-2.又f (x )的值域为(-∞,4],∴a ≠0,b =-2,∴2a 2=4. ∴f (x )=-2x 2+4.16.a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调,∴a -12≥2或a -12≤1,即a ≥52或a ≤32.17.解:(1)∵f (0)=0,f (2)=0,∴m 2-5m +4=0,m -m 2=0,∴m =1. (2)∵y =f (x )在2,+∞)为增函数, ∴对称轴x =-2(m -2)2≤2, ∴m ≥0.18.(1)解:由1-x 2≠0得x ≠±1, ∴f (x )的定义域为{x |x ≠±1,x ∈R }.(2)解:f (x )是偶函数,证明如下:设x ∈{x |x ≠±1,x ∈R },则-x ∈{x |x ≠±1,x ∈R }. ∵f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ), ∴f (x )是偶函数.(3)证明:∵f1x =1+1x 21-1x 2=1+1x 21-1x 2=x 2+1x 2-1=-1+x 21-x 2= -f (x ),∴f1x =-f (x )成立.19.解:(1)由题意可知-2<x -1<2,-2<3-2x <2,∴-1<x <3,12<x <52.解得12<x <52.故函数f (x )的定义域为12,52.(2)由g (x )≤0,得f (x -1)+f (3-2x )≤0, ∴f (x -1)≤-f (3-2x ).∵f (x )为奇函数,∴f (x -1)≤f (2x -3). 而f (x )在(-2,2)上单调递减,∴x -1≥2x -3,12<x <52.解得12<x ≤2.∴g (x )≤0的解集为12,2.20.解:(1)当x <0时,-x >0, ∴f (-x )=(-x )2-2(-x )=x 2+2x .又f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ).∴当x <0时,f (x )=x 2+2x .(2)由(1)知,f (x )=x 2-2x (x ≥0),x 2+2x (x <0).作出f (x )的图象如图所示.由图得函数f (x )的递减区间是(-∞,-1],0,1]. f (x )的递增区间是-1,0],1,+∞).21.(1)证明:∵f (x )=fx y ·y =fx y +f (y )(y ≠0),∴fx y =f (x )-f (y ). (2)解:∵f (3)=1,∴f (9)=f (3·3)=f (3)+f (3)=2. ∴f (a )>f (a -1)+2=f (a -1)+f (9)=f 9(a -1)]. 又f (x )在定义域(0,+∞)上为增函数, ∴a >0,a -1>0,a >9(a -1),∴1<a <98.22.解:(1)当a =12时,f (x )=x +12x +2,设x 2>x 1>1,则f (x 2)-f (x 1)=x 2+12x 2+2- x 1+12x 1+2 =(x 2-x 1)+x 1-x 22x 1x 2=(x 2-x 1)1-12x 1x 2. ∵x 2>x 1>1,∴x 2-x 1>0,12x 1x 2<12,1-12x 1x 2>0,∴f (x 2)-f (x 1)>0,∴f (x )在1,+∞]上单调递增.∴f (x )在区间1,+∞)上的最小值为f (1)=72. (2)在区间1,+∞)上,f (x )=x 2+2x +ax>0恒成立, 等价于x 2+2x +a >0恒成立. 设y =x 2+2x +a ,x ∈1,+∞).∵y =x 2+2x +a =(x +1)2+a -1在1,+∞)上单调递增, ∴当x =1时,y min =3+a .于是,当且仅当y min =3+a >0时,f (x )>0恒成立. ∴a >-3.解题技巧:不等式的恒成立问题常转化为函数的最值问题,分离参数法是求解此类问题的常用方法.B 卷数学班级:________姓名:________得分:________第一章集合与函数概念(二)(函数的概念与基本性质)(时间:120分钟 满分:150分)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四组函数中,表示同一函数的是()A.y=x-1与y=(x-1)2B.y=x-1与y=x-1 x-1C.y=4lg x与y=2lg x2D.y=lg x-2与y=lgx 1002.已知f:x→x2是集合A到集合B={0,1,4}的一个映射,则集合A中的元素个数最多有()A.3个B.4个C.5个D.6个3.函数f(x)=x+1x-1的定义域是()A.-1,1) B.-1,1)∪(1,+∞) C.-1,+∞) D.(1,+∞)4.函数y=2--x2+4x的值域是()A.-2,2] B.1,2]C.0,2] D.-2,2]5.已知f (x )的图象如图,则f (x )的解析式为( )A .f (x )=1,0≤x ≤1-x -2,1<x ≤2B .f (x )=-1,0≤x ≤1x +2,1<x ≤2C .f (x )=-1,0≤x ≤1x -2,1<x ≤2 D .f (x )=-1,0≤x ≤1-x +2,1<x ≤26.定义两种运算:a ⊕b =a 2-b 2,a b =(a -b )2,则函数f (x )=2⊕x (x 2)-2的解析式为( )A .f (x )=4-x 2x ,x ∈-2,0)∪(0,2]B .f (x )=x 2-4x ,x ∈(-∞,-2]∪2,+∞)C .f (x )=-x 2-4x ,x ∈(-∞,-2]∪2,+∞)D .f (x )=-4-x 2x ,x ∈-2,0)∪(0,2]7.函数f (x )=1x -x 的图象关于( )A .坐标原点对称B .x 轴对称C .y 轴对称D .直线y =x 对称8.设f (x )是定义在-6,6]上的偶函数,且f (4)>f (1),则下列各式一定成立的是( )A .f (0)<f (6)B .f (4)>f (3)C .f (2)>f (0)D .f (-1)<f (4)9.若奇函数f (x )在1,3]上为增函数,且有最小值0,则它在-3,-1]上( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值010.已知函数f (x )=a x (x <0),(a -3)x +4a (x ≥0),满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( ) A.0,14 B .(0,1) C.14,1 D .(0,3)11.若f (x )是R 上的减函数,且f (x )的图象经过点A (0,4)和点B (3,-2),则当不等式|f (x +t )-1|<3的解集为(-1,2)时,t 的值为( )A .0B .-1C .1D .212.已知函数y =f (x )满足:①y =f (x +1)是偶函数;②在1,+∞)上为增函数.若x 1<0,x 2>0,且x 1+x 2<-2,则f (-x 1)与f (-x 2)的大小关系是( )A .f (-x 1)>f (-x 2)B .f (-x 1)<f (-x 2)C .f (-x 1)=f (-x 2)D .无法确定第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若函数f (x )=ax 7+bx -2,且f (2 014)=10,则f (-2 014)的值为________.14.若函数f (x )=ax +1x +2在x ∈(-2,+∞)上单调递减,则实数a 的取值范围是________.15.已知函数f (x )=x +3x +1,记f (1)+f (2)+f (4)+f (8)+f (16)=m ,f12+f 14+f 18+f116=n ,则m +n =________. 16.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x -2.若f (x )≥a 2-1对一切x ≥0都成立,则a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)已知f (x -2)=3x -5,求f (x );(2)若f (f (f (x )))=27x +26,求一次函数f (x )的解析式.18.(本小题满分12分) 已知f (x )=1x -1,x ∈2,6].(1)证明:f (x )是定义域上的减函数; (2)求f (x )的最大值和最小值.19.(本小题满分12分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=400x -12x 2,0≤x ≤400,80 000,x >400,其中x 是仪器的月产量.(1)将利润f (x )表示为月产量x 的函数;(2)当月产量x为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)20.(本小题满分12分)已知函数f(x)=x2+2ax+2,x∈-5,5].(1)当a=-1时,求函数的最大值和最小值;(2)若y=f(x)在区间-5,5]上是单调函数,求实数a的取值范围.21.(本小题满分12分)已知二次函数f(x)=ax2+bx(a,b∈R),若f(1)=-1且函数f(x)的图象关于直线x=1对称.(1)求a,b的值;(2)若函数f(x)在k,k+1](k≥1)上的最大值为8,求实数k的值.22.(本小题满分12分)已知二次函数f(x)的图象过点(0,4),对任意x满足f(3-x)=f(x),且有最小值7 4.(1)求f(x)的解析式;(2)求函数h(x)=f(x)-(2t-3)x在区间0,1]上的最小值,其中t∈R;(3)在区间-1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.详解答案第一章集合与函数概念(二)(函数的概念与基本性质)名校好题·能力卷]1.D 解析:∵y =x -1与y =(x -1)2=|x -1|的对应关系不同,∴它们不是同一函数;y =x -1(x ≥1)与y =x -1x -1(x >1)的定义域不同,∴它们不是同一函数;又y =4lg x (x >0)与y =2lg x 2(x ≠0)的定义域不同,因此它们也不是同一函数,而y =lg x -2(x >0)与y =lg x 100=lg x -2(x >0)有相同的定义域、值域与对应关系,因此它们是同一函数.2.C 解析:令x 2=0,1,4,解得x =0,±1,±2.故选C.3.B 解析:由x +1≥0,x -1≠0,解得x ≥-1,且x ≠1.4.C 解析:令t =-x 2+4x ,x ∈0,4],∴t ∈0,4].又∵y 1=x ,x∈0,+∞)是增函数∴ t ∈0,2],-t ∈-2,0],∴y ∈0,2].故选C.5.C 解析:当0≤x ≤1时,f (x )=-1;当1<x ≤2时,设f (x )=kx +b (k ≠0),把点(1,-1),(2,0)代入f (x )=kx +b (k ≠0),则f (x )=x -2.所以f (x )=-1,0≤x ≤1,x -2,1<x ≤2.故选C.6.D 解析:f (x )=2⊕x (x 2)-2=22-x 2(x -2)2-2=4-x 2|x -2|-2.由4-x 2≥0,|x -2|-2≠0,得-2≤x ≤2且x ≠0.∴f (x )=-4-x 2x . 7.A 解析:函数f (x )的定义域关于原点对称,又∵f (-x )=1-x+x =-1x -x =-f (x ),∴f (x )为奇函数,其图象关于坐标原点对称. 8.D 解析:∵f (x )是定义在-6,6]上的偶函数,∴f (-1)=f (1).又f (4)>f (1),f (4)>f (-1).9.D 解析:因为奇函数f (x )在1,3]上为增函数,且有最小值0,所以f (x )在-3,-1]上是增函数,且有最大值0.10.A 解析:由于函数f (x )=a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,所以该函数为R 上的减函数,所以0<a <1,a -3<0,4a ≤a 0,解得0<a ≤14.解题技巧:本题主要考查了分段函数的单调性,解决本题的关键是利用好该函数为R 上的减函数这一条件.应特别注意隐含条件“a 0≥4a ”.11.C 解析:由不等式|f (x +t )-1|<3,得-3<f (x +t )-1<3,即-2<f (x +t )<4.又因为f (x )的图象经过点A (0,4)和点B (3,-2),所以f (0)=4,f (3)=-2,所以f (3)<f (x +t )<f (0).又f (x )在R 上为减函数,则3>x +t >0,即-t <x <3-t ,解集为(-t,3-t ).∵不等式的解集为(-1,2),∴-t =-1,3-t =2,解得t =1.故选C.12.A 解析:由y =f (x +1)是偶函数且把y =f (x +1)的图象向右平移1个单位可得函数y =f (x )的图象,所以函数y =f (x )的图象关于x =1对称,即f (2+x )=f (-x ).因为x 1<0,x 2>0,且x 1+x 2<-2,所以2<2+x 2<-x 1.因为函数在1,+∞)上为增函数,所以f (2+x 2)<f (-x 1),即f (-x 1)>f (-x 2),故选A.13.-14 解析:设g (x )=ax 7+bx ,则g (x )是奇函数,g (-2 014)=-g (2 014).∵f (2 014)=10且f (2 014)=g (2 014)-2,∴g (2 014)=12,∴g (-2 014)=-12,∴f (-2 014)=g (-2 014)-2,∴f (-2 014)=-14.14.a <12 解析:f (x )=ax +1x +2=a +1-2a x +2.∵y =1x +2在x ∈(-2,+∞)上是减函数,∴1-2a >0,∴a <12.15.18 解析:因为函数f (x )=x +3x +1,所以f 1x =1+3x x +1. 又因为f (x )+f 1x =4(x +1)x +1=4, f (1)+f (2)+f (4)+f (8)+f (16)+f 12+f 14+f 18+f116 =f (1)+f (2)+f 12+f (4)+f 14+f (8)+f 18+f (16)+f116=f (1)+4×4=18,所以m +n =18.解题技巧:本题主要考查了学生的观察、归纳、推理的能力,解决本题的关键是挖掘出题目中隐含的规律f (x )+f1x =4. 16.-1≤a <0 解析:当x =0时,f (x )=0,则0≥a 2-1,解得-1≤a ≤1,所以-1≤a <0.当x >0时,-x <0,f (-x )=-x +a 2-x-2,则f (x )=-f (-x )=x +a 2x +2.由对数函数的图象可知,当x =a 2=|a |=-a 时,有f (x )min =-2a +2,所以-2a +2≥a 2-1,即a 2+2a -3≤0,解得-3≤a ≤1.又a <0, 所以-3≤a <0.综上所述,-1≤a <0.17.解:(1)令t =x -2,则x =t +2,t ∈R ,由已知有f (t )=3(t +2)-5=3t +1,故f (x )=3x +1.(2)设f (x )=ax +b (a ≠0),f (f (x ))=a 2x +ab +b ,f (f (f (x )))=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b ,∴a 3=27,a 2b +ab +b =26, 解得a =3,b =2.则f (x )=3x +2.18.(1)证明:设2≤x 1<x 2≤6,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1), 因为x 1-1>0,x 2-1>0,x 2-x 1>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以f (x )是定义域上的减函数.(2)由(1)的结论可得,f (x )min =f (6)=15,f (x )max =f (2)=1.19.解:(1)当0≤x ≤400时,f (x )=400x -12x 2-100x -20 000=-12x 2+300x -20 000.当x >400时,f (x )=80 000-100x -20 000=60 000-100x ,所以f (x )= -12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时, f (x )=-12x 2+300x -20 000=-12(x -300)2+25 000;当x =300时,f (x )max =25 000;当x >400时,f (x )=60 000-100x <f (400)=20 000<25 000;所以当x =300时,f (x )max =25 000.故当月产量x 为300台时,公司获利润最大,最大利润为25 000元.20.解:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1.又因为x ∈-5,5].所以函数的最大值为37,最小值为1.(2)若y =f (x )在区间-5,5]上是单调函数,则有-a ≤-5或-a ≥5解得a ≤-5或a ≥5.解题技巧:本题主要考查了二次函数在给定区间上的最值与单调性.解决本题的关键是确定对称轴和区间端点的关系.注意分类讨论.21.解:(1)由题意可得f (1)=a +b =-1且-b 2a =1,解得a =1,b =-2.(2)f (x )=x 2-2x =(x -1)2-1.因为k ≥1,所以f (x )在k ,k +1]上单调递增,所以f (x )max =f (k +1)=(k +1)2-2(k +1)=8,解得k =±3.又k ≥1,所以k =3.22.解:(1)由题知二次函数图象的对称轴为x =32,又最小值是74,则可设f (x )=ax -322+74(a ≠0), 又图象过点(0,4),则a0-322+74=4,解得a =1. ∴f (x )=x -322+74=x 2-3x +4. (2)h (x )=f (x )-(2t -3)x =x 2-2tx +4=(x -t )2+4-t 2,其对称轴x =t .①t ≤0时,函数h (x )在0,1]上单调递增,最小值为h (0)=4; ②当0<t <1时,函数h (x )的最小值为h (t )=4-t 2;③当t ≥1时,函数h (x )在0,1]上单调递减,最小值为h (1)=5-2t ,所以h (x )min = 4,t ≤0,4-t 2,0<t <1,5-2t ,t ≥1.(3)由已知:f (x )>2x +m 对x ∈-1,3]恒成立, ∴m <x 2-5x +4对x ∈-1,3]恒成立. ∴m <(x 2-5x +4)min (x ∈-1,3]).∵g (x )=x 2-5x +4在x ∈-1,3]上的最小值为-94, ∴m <-94.。
人教A版新课标高中数学必修二第二章单元测试题(含答案)
高二周末检测题一、选择题1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2 .垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 3.若三个平面两两相交,有三条交线,则下列命题中正确的是( )A .三条交线为异面直线B .三条交线两两平行C .三条交线交于一点D .三条交线两两平行或交于一点4. 在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、 能相交于点P ,那么 ( )A 、点P 必在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面BCD 内 D 、点P 必在平面ABC 外5.若平面α⊥平面β,α∩β=l ,且点P ∈α,P ∉l ,则下列命题中的假命题是( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的直线在α内C .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的平面垂直于β 6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A .若a ,b 与α所成的角相等,则a ∥bB .若a ∥α,b ∥β,α∥β,则a ∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 7.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:①EF ⊥AA 1; ②EF ∥AC ; ③EF 与AC 异面; ④EF ∥平面ABCD . 其中一定正确的有( )A .①②B .②③C .②④D .①④8.如图,在△ABC 中,∠BAC =90°,P A ⊥面ABC ,AB =AC ,D 是BC 的中点,则图中直角三角形的个数是( ) A .5 B .8 C .10D .69.如右图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM ( ) A .与AC 、MN 均垂直相交 B .与AC 垂直,与MN 不垂直 C .与MN 垂直,与AC 不垂直 D .与AC 、MN 均不垂直10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A 、2V B 、3V C 、4V D 、5V 11.(2009·海南、宁夏高考)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角是60°. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 二、填空题13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ,平行则四边形ABCD 一定是 .14.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的平面角大小为 .QP C'B'A'CBA15.如下图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________.(2)∠BAC=________.16.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形.②四边形BFD′E有可能是正方形.③四边形BFD′E在底面ABCD内的投影一定是正方形.④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)三、解答题17、如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.18.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M 为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1. 20.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.高二周末检测题答一、选择题 1-5 BDDAB 6-10 DDBAB 11-12 DC 二、填空题13、菱形 14、90° 15、(1)BD ⊥CD (2)60° 16、①③④ 三、解答题17、证明:(1)∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD , ∴EF ⊥BD .在△BCD 中,∵CD =CB ,F 为BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面EFC , 又∵BD ⊂平面BCD , ∴平面EFC ⊥平面BCD .18、[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA , ∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3. ∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM . ∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM . (2)解:由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.19[分析] 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件. [证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.20.(1)证明:因为P ,Q 分别为AE ,AB 的中点, 所以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , 又PQ ⊄平面ACD , 从而PQ ∥平面ACD .(2)如图,连接CQ ,DP ,因为Q 为AB 的中点,且AC =BC ,所以CQ ⊥AB .因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC ,因此CQ ⊥EB . 故CQ ⊥平面ABE .由(1)有PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形,故DP ∥CQ , 因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt △DP A 中,AD =5,DP =1, sin ∠DAP =55, 因此AD 和平面ABE 所成角的正弦值为55.21[分析] (1)转化为证明GF 平行于平面ABC 内的直线AC ;(2)转化为证明AC 垂直于平面EBC 内的两条相交直线BC 和BE ;(3)几何体ADEBC 是四棱锥C -ABED . [解] (1)证明:连接AE ,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED , ∴BE ⊥平面ABC ,∴BE ⊥AC . 又∵AC =BC =22AB , ∴CA 2+CB 2=AB 2, ∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE . (3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22, ∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.。
人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)
人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。
(人教A版)高中数学必修一(全套)课时练习+单元测试卷全集
(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总第1课时集合的含义第2课时集合的表示(2)当M中只含两个元素时, 其元素只能是x和8-x,所以元素个数为2的所有的集合M为{0,8}, {1,7}, {2,6}, {3,5}.(3)满足条件的集合M是由集合{4}, {0,8}, {1,7}, {2,6}, {3,5}中的元素组成, 它包括以下情况:①{4}, {0,8}, {1,7}, {2,6}, {3,5}, 共5个;②{4,0,8}, {4,1,7}, {4,2,6}, {4,3,5}, {0,8,1,7}, {0,8,2,6}, {0,8,3,5}, {1,7,2,6}, {1,7,3,5}, {2,6,3,5}, 共10个;③{4,0,8,1,7}, {4,0,8,2,6}, {4,0,8,3,5}, {4,1,7,2,6}, {4,1,7,3,5}, {4,2,6,3,5}, {0,8,1,7,2,6}, {0,8,1,7,3,5}, {1,7,2,6,3,5}, {0,8,2,6,3,5}, 共10个;④{4,0,8,1,7,2,6}, {4,0,8,1,7,3,5}, {4,0,8,2,6,3,5}, {4,1,7,2,6,3,5}, {0,8,1,7,2,6,3,5}, 共5个;⑤{4,0,8,1,7,2,6,3,5}, 共1个.于是满足题设条件的集合M共有5+10+10+5+1=31(个).A BB A且空集的子集只有一个A{3,4,9},A⊆B A=BA B A BZ), 当A B答案:D解析:因为N ={x |x ≤k }, 又M ={x |-1≤x <2}, 所以当M ⊆N 时, k ≥2.6.已知集合P ={x |x 2=1}, 集合Q ={x |ax =1}, 若Q ⊆P , 则a 的值为( ) A .1 B .-1C .1或-1D .0,1或-1 答案:D解析:P ={-1,1}, 当a =0时, Q =∅, 当a ≠0时, Q ={x |x =1a }, ∵Q ⊆P , ∴a =0或a =±1.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.用适当的符号填空. (1)0________{x |x 2=0};(2)∅________{x ∈R |x 2+1=0}; (3){0,1}________N ;(4){0}________{x |x 2=x };(5){2,1}________{x |x 2-3x +2=0}. 答案:(1)∈ (2)= (3) (4) (5)=8.已知集合P ={x |0<x -a ≤2}, Q ={x |-3<x ≤4}, 若P ⊆Q , 则a 的取值范围是________.答案:{a |-3≤a ≤2}解析:依题意, 知P ={x |a <x ≤a +2}, 又Q ={x |-3<x ≤4}, 若P ⊆Q , 则⎩⎪⎨⎪⎧a ≥-3a +2≤4, 解得-3≤a ≤2.9.已知集合M ={-1,3,2m -1}, 集合N ={3, m 2}, 若N ⊆M , 则实数m =________. 答案:1解析:依题意, 知当N ⊆M 时, 只能有m 2=2m -1, 解得m =1, 经检验知满足题意. 三、解答题(本大题共6小题, 共45分)10.(5分)以下各组中两个对象是什么关系, 用适当的符号表示出来: (1)0与{0}; (2)0与∅; (3)∅与{0};(4){0,1}与{(0,1)}; (5){(a , b )}与{(b , a )}. 解:(1)0∈{0}; (2)0∉∅(3)∅与{0}都是集合, 两者的关系是“包含与不包含”的关系, 所以∅{0}; (4){0,1}是含两个无素0,1的集合;而{(0,1)}是以有序数对为元素的集合, 它只含一个元素.所以{0,1}⊆{(0,1)};且{0,1}⊉{(0,1)};(5)当a =b 时, {(a , b )}={(b , a )};当a ≠b 时, {(a , b )} ⊆{(b , a )}, 且{(a , b )}⊉{(b , a )}. 11.(13分)设集合A ={x , x 2, xy }, 集合B ={1, x , y }, 且集合A 与集合B 相等, 求实数x 、y 的值.解:由题意得⎩⎪⎨⎪⎧ x 2=1,xy =y ,①或⎩⎪⎨⎪⎧x 2=y ,xy =1.②解①, 得⎩⎪⎨⎪⎧ x =1,y ∈R ,或⎩⎪⎨⎪⎧ x =-1,y =0.经检验⎩⎪⎨⎪⎧ x =1,y ∈R ,不合题意, 舍去, 则⎩⎪⎨⎪⎧x =-1,y =0.解②, 得⎩⎪⎨⎪⎧x =1,y =1.经检验⎩⎪⎨⎪⎧x =1,y =1,不合题意, 舍去.∅∅12.(9分)已知M ={(x , y )|y =x 2+2x +5}, N ={(x , y )|y =ax +1}. (1)若M ∩N 有两个元素, 求实数a 的取值范围;(2)若M ∩N 至多有一个元素, 求实数a 的取值范围.解:(1)因为M ∩N 有两个元素, 所以方程组⎩⎪⎨⎪⎧ y =x 2+2x +5y =ax +1有两组解,即一元二次方程x 2+(2-a )x +4=0有两个不等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12>0,结合二次函数y =a 2-4a -12的图象, 可得a >6或a <-2. 所以实数a 的取值范围为{a |a >6或a <-2}.(2)因为M ∩N 至多有一个元素, 所以方程组⎩⎪⎨⎪⎧y =x 2+2x +5y =ax +1无解或只有一组解,即一元二次方程x 2+(2-a )x +4=0无实数根或有两个相等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12≤0,结合二次函数y =a 2-4a -12的图象, 可得-2≤a ≤6. 所以实数a 的取值范围为{a |-2≤a ≤6}.能力提升13.(5分)对于集合A , B , 我们把集合{x |x ∈A , 且x ∉B }叫做集合A 与B 的差集, 记作A -B .若A ={1,2,3,4}, B ={3,4,5,6}, 则A -B =________.答案:{1,2}解:A -B ={x |x ∈A 且x ∉B } ={1,2,3,4}-{3,4,5,6} = {1,2 }.14.(13分)已知集合A ={x |x 2-ax +a 2-19=0}, 集合B ={x |x 2-5x +6=0}, 是否存在实数a , 使得集合A , B 同时满足下列三个条件?①A ≠B ;②A ∪B =B ;③∅ (A ∩B ).若存在, 求出这样的实数a 的值;若不存在, 说明理由.解:由已知条件可得B ={2,3}, 因为A ∪B =B , 且A ≠B , 所以A ⊆B , 又A ≠∅, 所以A ={2}或A ={3}.当A ={2}时, 将2代入A 中方程, 得a 2-2a -15=0, 所以a =-3或a =5, 但此时集合A 分别为{2, -5}和{2,3}, 与A ={2}矛盾.所以a ≠-3, 且a ≠5.当A ={3}时, 同上也能导出矛盾.综上所述, 满足题设要求的实数a 不存在.第5课时 补集1.已知全集U={0,1,3,5,6,8}, 集合A={1,5,8}, B={2}, 则集合(∁U A)∪B=()A.{0,2,3,6} B.{0,3,6}C.{1,2,5,8} D.∅答案:A解析:依题意, 知∁U A={0,3,6}, 又B={2}, 所以(∁U A)∪B={0,2,3,6}.故选A.2.设集合U={1,2,3,4,5}, A={1,3,5}, B={2,3,5}, 则∁U(A∩B)等于()A.{1,2,4} B.{4}C.{3,5} D.{∅}答案:A解析:易知:A∩B={3,5}, 则∁U(A∩B)={1,2,4}, 故选A.3.设全集U={1,2,3,4,5,6,7}, 集合A={1,3,5,7}, B={3,5}, 则下列各式正确的是() A.U=A∪B B.U=(∁U A)∪BC.U=A∪(∁U B) D.U=(∁U A)∪(∁U B)答案:C解析:∵∁U B={1,2,4,6,7},∴A∪(∁U B)={1,2,3,4,5,6,7}=U.故选C.4.已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩(∁I M)=∅, 则M∪N=() A.M B.NC.I D.∅答案:A解析:由N∩(∁I M)=∅, 可知N与∁I M没有公共元素, 则N⊆M, 又M≠N, 所以N M, 所以M∪N=M.故选A.5.已知集合A={x|x<a}, B={x|1<x<2}, 且A∪(∁R B)=R, 则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}答案:C解析:由于A∪(∁R B)=R, 则B⊆A, 可知a≥2.故选C.6.如图所示, I是全集, M, P, S是I的3个子集, 则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S答案:C解析:阴影部分是M与P的公共部分, 且在S的外部, 故选C.7.设集合M ={3,4,7,9}, N ={4,5,7,8,9}, 全集U =M ∪N , 则集合∁U (M ∩N )中的元素共有________个.答案:3解析:因为U =M ∪N ={3,4,5,7,8,9}, M ∩N ={4,7,9}, 则∁U (M ∩N )={3,5,8}, 可知其中的元素有3个.8.已知集合A ={x |-2≤x <3}, B ={x |x <-1}, 则A ∩(∁R B )=________. 答案:{x |-1≤x <3} 解析:因为B ={x |x <-1}, 则∁R B ={x |x ≥-1}, 所以A ∩(∁R B )={x |-2≤x <3}∩{x |x ≥-1}={x |-1≤x <3}.9.高一(1)班共有学生50人, 其中参加诗歌鉴赏兴趣小组的有30人, 参加书法练习兴趣小组的有26人, 同时参加两个兴趣小组的有15人, 则两个兴趣小组都没有参加的学生有________人.答案:9解析:设参加诗歌鉴赏兴趣小组的学生组成集合A , 参加书法练习兴趣小组的学生组成集合B , 如图所示, 依题意card(A )=30, card(B )=26, card(A ∩B )=15, 则card(A ∪B )=30+26-15=41.所以两个兴趣小组都没有参加的学生有50-41=9(人).三、解答题(本大题共4小题, 共45分)10.(12分)已知全集U ={3, a 2-3a -2,2}, A ={3, |a -1|}, ∁U A ={-2}, 求实数a 的值. 解:因为A ∪(∁U A )=U ,所以{3, -2, |a -1|}={3, a 2-3a -2,2},从而⎩⎪⎨⎪⎧a 2-3a -2=-2|a -1|=2, 解得a =3.11.(13分)已知全集U ={x |x ≤4}, 集合A ={x |-2<x <3}, B ={x |-3≤x ≤2}. (1)求(∁U A )∪B ; (2)求A ∩(∁U B ).解:易知∁U A ={x |x ≤-2或3≤x ≤4}, ∁U B ={x |x <-3或2<x ≤4}. 则(1)(∁U A )∪B ={x |x ≤2或3≤x ≤4}. (2)A ∩(∁U B )={x |2<x <3}.能力提升12.(5分)已知全集U ={1,2,3,4,5}, A ={1,5}, B ∁U A , 则集合B 的个数是( ) A .5 B .6 C .7 D .8B∁A.M=N B.M⊆NC.M⊇N D.M, N无公共元素答案:D解析:因为M={(x, y)|(x+3)2+(y-1)2=0}={(-3,1)}是点集, 而N={-3,1}是数集, 所以两个集合没有公共元素, 故选D.6.已知全集U=R, 集合A={x|1<x≤3}, B={x|x>2}, 则A∩(∁U B)等于()A.{x|1<x≤2} B.{x|1≤x<2}C.{x|1≤x≤2} D.{x|1≤x≤3}答案:A解析:U=R, ∴∁U B={x|x≤2}, A∩∁U B={x|1<x≤3}∩{x|x≤2}={x|1<x≤2}.选A.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.已知集合U=R, A={x|-2<x≤5}, B={x|4≤x<6}, 则∁U(A∪B)=________.答案:{x|x≤-2或x≥6}解析:(A∪B)={x|-2<x<6}又U=R, 所以可得∁U(A∪B)={x|x≤-2或x≥6}.8.如图所示, 阴影部分表示的集合为________.答案:∁U(A∪B)∪(A∩B)解析:阴影部分有两类:(1)∁U(A∪B);(2)A∩B.9.设集合M={x|x>1, x∈R}, N={y|y=2x2, x∈R}, P={(x, y)|y=x-1, x∈R, y∈R}, 则(∁R M)∩N=________, M∩P=________.答案:{x|0≤x≤1}∅解析:因为M={x|x>1, x∈R}, 所以∁R M={x|x≤1, x∈R}, 又N={y|y=2x2, x∈R}={y|y≥0}, 所以(∁R M)∩N={x|0≤x≤1}.因为M={x|x>1, x∈R}表达数集, 而P={(x, y)|y=x -1, x∈R, y∈R}表示点集, 所以M∩P=∅.三、解答题(本大题共4小题, 共45分)10.(12分)某班有50名学生, 有36名同学参加学校组织的数学竞赛, 有23名同学参加物理竞赛, 有3名学生两科竞赛均未参加, 问该班有多少同学同时参加了数学、物理两科竞赛?解:全集为U, 其中含有50名学生, 设集合A表示参加数学竞赛的学生, B表示参加物理竞赛的学生, 则U中元素个数为50, A中元素个数为36, B中元素个数为23, 全集中A、B 之外的学生有3名, 设数学、物理均参加的学生为x名, 则有(36-x)+(23-x)+x+3=50, 解得x=12.所以, 本班有12名学生同时参加了数学、物理两科竞赛.11.(13分)已知集合A={x|2<x<7}, B={x|2<x<10}, C={x|5-a<x<a}.(1)求A∪B, (∁R A)∩B;(2)若C⊆B, 求实数a的取值范围.={x|∅满足题设条件, 易知A BA B∅第7课时函数的有关概念第9课时映射与分段函数答案:B解析:因为|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x (x ≤0或x ≥2),-x 2+2x (0<x <2),所以所求的图象为B 选项.5.设集合A ={a , b }, B ={0,1}, 从A 到B 的映射共有______个( )A .2B .3C .4D .5 答案:C解析:如图:(2)y =x 2-2|x |-1=⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图所示.11.(13分)已知函数f (x )=⎩⎪⎨⎪⎧-2x +1,x <1x 2-2x ,x ≥1.(1)试比较f (f (-3))与f (f (3))的大小;(2)画出函数f (x )的图象; (3)若f (x )=1, 求x 的值.解:(1)因为-3<1, 所以f (-3)=-2×(-3)+1=7, 又因为7>1, 所以f (f (-3))=f (7)=72-2×7=35. 因为3>1, 所以f (3)=32-2×3=3, 所以f (f (3))=3. 所以f (f (-3))>f (f (3)).(2)函数图象如图实线部分所示.而f(x1)<0, f(x2)<0, ∴f(x1)f(x2)>0. ∴F(x2)-F(x1)<0, 即F(x2)<F(x1).∴F(x)在(0, +∞)上为减函数.。
最新人教A版高一数学必修一单元测试题全套及答案
最新人教A 版高一数学必修一单元测试题全套及答案第一章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知全集U =R ,集合P ={x ∈N *|x <7},Q ={x |x -3>0},那么图中阴影部分表示的集合是( )A .{1,2,3,4,5,6}B .{x |x >3}C .{4,5,6}D .{x |3<x <7}2.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a 等于( ) A .4 B .2 C .0D .0或43.下表给出函数y =f (x )的部分对应值,则f (1)=( )x -1 0 1 478y2π1 -3 1A. π C .8D .04.下列四个函数中,在(-∞,0)上是增函数的为( ) A .f (x )=x 2+1B .f (x )=1-1xC .f (x )=x 2-5x -6D .f (x )=3-x5.函数f (x )=1+x +x 2+11-x 的定义域为( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)6.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π7.已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值等于( )A.23 B .2 C .4D .68.已知函数y =k (x +2)-1的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f ⎝ ⎛⎭⎪⎫-3727等于( )A.89 B.79 C.59D.299.已知函数y =f (x )在(0,2)上为增函数,函数y =f (x +2)为偶函数,则f (1),f ⎝ ⎛⎭⎪⎫52,f ⎝ ⎛⎭⎪⎫72的大小关系是( ) A .f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72B .f (1)>f ⎝ ⎛⎭⎪⎫52>f ⎝ ⎛⎭⎪⎫72C .f ⎝ ⎛⎭⎪⎫72>f ⎝ ⎛⎭⎪⎫52>f (1)D .f ⎝ ⎛⎭⎪⎫72>f (1)>f ⎝ ⎛⎭⎪⎫5210.定义运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,则函数f (x )=x 2|x |的图象是( )11.若函数y =f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则f (x )+f (-x )2x<0的解集为( ) A .(-3,3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)12.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( )A .0B .1或2C .1D .2二、填空题(每小题5分,共20分)13.已知f (x +2)=x 2-4x ,则f (x )=________.14.设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)=________.15.已知二次函数f (x )=x 2+2ax -4,当a ________时,f (x )在[1,+∞)上是增函数,当a ________时,函数f (x )的单调递增区间是[1,+∞).答案1.C P ={1,2,3,4,5,6},Q ={x |x >3},则阴影部分表示的集合是P ∩Q ={4,5,6}.2.A 当a =0时,方程ax 2+ax +1=0无解, 这时集合A 为空集,故排除C 、D.当a =4时,方程4x 2+4x +1=0只有一个解x =-12,这时集合A 只有一个元素,故选A. 3.A4.B A ,C ,D 选项中的三个函数在(-∞,0)上都是减函数,只有B 正确.5.D 要使函数有意义,则有⎩⎪⎨⎪⎧1+x ≥0,1-x >0,解得-1≤x <1,所以函数的定义域为[-1,1). 6.B 因为π是无理数,所以g (π)=0, 所以f (g (π))=f (0)=0.故选B.7.B 因为函数f (x +1)为偶函数,所以f (-x +1)=f (x +1),即函数f (x )关于x =1对称,所以区间(3-2a ,a +1)关于x =1对称,所以3-2a +a +12=1,即a =2,所以选B.8.A 由题知A (-2,-1).又由A 在f (x )的图象上得3×(-2)+b =-1,b =5,则f (x )=3x +5,则f ⎝ ⎛⎭⎪⎫-3727=89.故选A.9.A y =f (x +2)关于x =0对称,则y =f (x )关于x =2对称,因为函数f (x )在(0,2)上单调递增,所以函数f (x )在(2,+∞)上单调递减,所以f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72. 10.B 根据运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,得f (x )=x 2|x |=⎩⎪⎨⎪⎧x 2,x <-1或x >1,|x |,-1≤x ≤1,由此可得图象如图所示. 11.C ∵f (x )为偶函数,∴f (-x )=f (x ),故f (x )+f (-x )2x <0可化为f (x )x <0.又f (x )在(0,+∞)上是减函数,且f (3)=0,结合图象知,当x >3时,f (x )<0,当-3<x <0时,f (x )>0,故f (x )x <0的解集为(-3,0)∪(3,+∞).12.C 二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.13.x 2-8x +12解析:设t =x +2,则x =t -2, ∴f (t )=(t -2)2-4(t -2)=t 2-8t +12. 故f (x )=x 2-8x +12. 14.-0.5解析:由题意,得f (x )=-f (x +2)=f (x +4),则f (7.5)=f (3.5)=f (-0.5)=-f (0.5)=-0.5.15.≥-1 =-1解析:∵f (x )=x 2+2ax -4=(x +a )2-4-a 2, ∴f (x )的单调递增区间是[-a ,+∞),∴当-a ≤1时,f (x )在[1,+∞)上是增函数,即a ≥-1; 当a =-1时,f (x )的单调递增区间是[1,+∞).16.定义在R 上的偶函数f (x ),当x ∈[1,2]时,f (x )<0,且f (x )为增函数,给出下列四个结论:①f (x )在[-2,-1]上单调递增; ②当x ∈[-2,-1]时,有f (x )<0; ③f (x )在[-2,-1]上单调递减; ④|f (x )|在[-2,-1]上单调递减.其中正确的结论是________(填上所有正确的序号).三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设全集为实数集R ,集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }.(1)求A ∪B 及(∁R A )∩B ;(2)若A ∩C =A ,求a 的取值范围; (3)如果A ∩C ≠∅,求a 的取值范围. 18.(12分)已知函数f (x )=1+x -|x |4. (1)用分段函数的形式表示函数f (x ); (2)在平面直角坐标系中画出函数f (x )的图象;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图象(不用列表),观察图象直接写出当x >0时,不等式f (x )>1x 的解集.——————————————————————————答案16.②③解析:因为f (x )为定义在R 上的偶函数,且当x ∈[1,2]时,f (x )<0,f (x )为增函数,由偶函数图象的对称性知,f (x )在[-2,-1]上为减函数,且当x ∈[-2,-1]时,f (x )<0.17.解:(1)A ∪B ={x |3≤x <7}∪{x |2<x <10}={x |2<x <10},∁R A ={x |x <3或x ≥7},所以(∁R A )∩B ={x |2<x <3,或7≤x <10}.(2)由A ∩C =A 知A ⊆C ,借助数轴可知a 的取值范围为[7,+∞). (3)由A ∩C ≠∅可知a 的取值范围为(3,+∞). 18.解:(1)当x ≥0时,f (x )=1+x -x4=1; 当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )=⎩⎨⎧1,x ≥0,12x +1,x <0.(2)函数f (x )的图象如图所示.(3)函数g (x )=1x (x >0)的图象如图所示,由图象知f (x )>1x 的解集是{x |x >1}.19.(12分)已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0,且f (x )在(1,+∞)内单调递减,求a 的取值范围.20.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=2.(1)求函数f (x )和g (x );(2)判断函数f (x )+g (x )的奇偶性;(3)求函数f (x )+g (x )在(0,2]上的最小值.答案19.(1)证明:任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2).故f (x )在(-∞,-2)内单调递增.(2)解:任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1].20.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2, ∴k 1=1,k 2=2,∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-⎝ ⎛⎭⎪⎫x +2x =-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数. (3)由(2)知h (x )=x +2x .设x 1,x 2是(0,2]上的任意两个不相等的实数,且x 1<x 2,则h (x 1)-h (x 2)=⎝ ⎛⎭⎪⎫x 1+2x 1-⎝ ⎛⎭⎪⎫x 2+2x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫2x 1-2x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-2x 1x 2=(x 1-x 2)(x 1x 2-2)x 1x 2. ∵x 1,x 2∈(0,2],且x 1<x 2, ∴x 1-x 2<0,0<x 1x 2<2.∴x 1x 2-2<0,∴(x 1-x 2)(x 1x 2-2)>0.∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=22,即函数f (x )+g (x )在(0,2]上的最小值是2 2.——————————————————————————21.(12分)若定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,且当x >0时,f (x )>1.(1)求证:y =f (x )-1为奇函数; (2)求证:f (x )是R 上的增函数; (3)若f (4)=5,解不等式f (3m -2)<3.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +mx 2+nx +1.(1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a3对x ∈⎣⎢⎡⎦⎥⎤-13,13恒成立,求a 的取值范围.答案21.(1)证明:因为定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,所以令x 1=x 2=0,则f (0+0)=f (0)+f (0)-1, 即f (0)=1.令x 1=x ,x 2=-x ,则f (x -x )=f (x )+f (-x )-1, 所以[f (x )-1]+[f (-x )-1]=0, 故y =f (x )-1为奇函数.(2)证明:由(1)知y =f (x )-1为奇函数, 所以f (x )-1=-[f (-x )-1].任取x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0, 所以f (x 2-x 1)=f (x 2)+f (-x 1)-1 =f (x 2)-[f (x 1)-1]=f (x 2)-f (x 1)+1. 因为当x >0时,f (x )>1,所以f (x 2-x 1)=f (x 2)-f (x 1)+1>1, 即f (x 1)<f (x 2),故f (x )是R 上的增函数.(3)解:因为f (x 1+x 2)=f (x 1)+f (x 2)-1,且f (4)=5,所以f (4)=f (2)+f (2)-1=5,即f (2)=3,由不等式f (3m -2)<3,得f (3m -2)<f (2). 由(2)知f (x )是R 上的增函数,所以3m -2<2,即3m -4<0,即m <43, 故不等式f (3m -2)<3的解集为⎝⎛⎭⎪⎫-∞,43. 22.(1)解:因为奇函数f (x )的定义域为R ,所以f (0)=0. 故有f (0)=0+m02+n ×0+1=0,解得m =0.所以f (x )=xx 2+nx +1.由f (-1)=-f (1),即-1(-1)2+n ×(-1)+1=-112+n ×1+1,解得n =0.所以m =n =0. (2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1.则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1).因为-1<x 1<1,-1<x 2<1,所以-1<x 1x 2<1,故1-x 1x 2>0,又因为x 1<x 2,所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在(-1,1)上为增函数. (3)解:由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎢⎡⎦⎥⎤-13,13上为增函数,故最大值为f ⎝ ⎛⎭⎪⎫13=310.由题意可得a 3≥310,解得a ≥910.故a 的取值范围为⎣⎢⎡⎭⎪⎫910,+∞.第二章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分) 1.(lg9-1)2的值等于( ) A .lg9-1 B .1-lg9 C .8D .2 22.下列函数中,在区间(0,+∞)上不是增函数的是( ) A .y =2x B .y =log2xC .y =2xD .y =2x 2+x +13.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,log 2x ,x >0,那么f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18的值为( )A .27 B.127 C .-27D .-1274.函数f (x )=ln(x 2+1)的图象大致是( )5.已知a =212,b =⎝ ⎛⎭⎪⎫12-0.5,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a6.在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )7.一种放射性元素,每年的衰减率是8%,那么a kg 的这种物质的半衰期(剩余量为原来的一半所需的时间)t 等于( )A .lg 0.50.92B .lg 0.920.5 C.lg0.5lg0.92D.lg0.92lg0.58.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln xD .y =|x |9.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =adD .d =a +c10.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫110,1B.⎝ ⎛⎭⎪⎫0,110∪(1,+∞)C.⎝⎛⎭⎪⎫110,10 D .(0,1)∪(1,+∞)11.函数f (x )=log 2|2x -1|的图象大致是( )12.已知f (x )是定义在R 上的偶函数,且在(-∞,0]上是减函数,设a =f (log 26),b =f (log 123),c =f ⎝ ⎛⎭⎪⎫13,则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c二、填空题(每小题5分,共20分) 13.已知4a =2,lg x =a ,则x =________.14.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.15.函数y =log a (2x -3)+4的图象恒过定点M ,且点M 在幂函数f (x )的图象上,则f (3)=________.16.已知0<x <y <1,且有以下关系:①3y>3x;②log x 3>log y 3;③⎝ ⎛⎭⎪⎫13y >⎝ ⎛⎭⎪⎫13x;④log 4x <log 4y ;⑤log 14x <log 4y .其中正确的关系式的序号是________.答案1.B 因为lg9<lg10=1,所以(lg9-1)2=|lg9-1|=1-lg9.故选B.2.C 函数y =2x 为(0,+∞)上的减函数.故选C.3.B f ⎝ ⎛⎭⎪⎫18=log 218=-3,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18=f (-3)=3-3=127. 4.A 函数过定点(0,0),排除选项B 、D ,又f (-x )=ln(x 2+1)=f (x ),所以f (x )为偶函数,排除选项C.故选A.5.A ∵a =212,b =⎝ ⎛⎭⎪⎫12-0.5=2 12=2>1.∴a >b >1.又c =2log 52=log 54<1, 因此a >b >c .6.D 若a >1,则函数g (x )=log a x 的图象过点(1,0),且单调递增,但当x ∈[0,1)时,y =x a 的图象应在直线y =x 的下方,故C 选项错误;若0<a <1,则函数g (x )=log a x 的图象过点(1,0),且单调递减,函数y =x a (x ≥0)的图象应单调递增,且当x ∈[0,1)时图象应在直线y =x 的上方,因此A ,B 均错,只有D 项正确.7.C 设t 年后剩余量为y kg ,则y =(1-8%)ta =0.92ta .当y =12a 时,12a =0.92t a ,所以0.92t =0.5,则t =log 0.920.5=lg0.5lg0.92.8.B A 项,函数y =e -x 为R 上的减函数; B 项,函数y =x 3为R 上的增函数; C 项,函数y =ln x 为(0,+∞)上的增函数;D 项,函数y =|x |在(-∞,0)上为减函数,在(0,+∞)上为增函数. 故只有B 项符合题意,应选B. 9.B 由log 5b =a ,得lg blg5=a ; 由5d =10,得d =log 510=lg10lg5=1lg5,又lg b =c ,所以cd =a .故选B.10.C 由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.选C. 11.C 当0<x <1时,f (x )=log 2(2x -1)为增函数,排除A.当x <0时,f (x )=log 2(-2x +1)<0且为减函数.故选C.12.A 由f (x )是R 上的偶函数,且在(-∞,0]上是减函数,则f (x )在[0,+∞)上是增函数,由b =f ⎝⎛⎭⎪⎫log 12 3=f (-log 23)=f (log 23),由0<13<log 23<log 26,得f ⎝ ⎛⎭⎪⎫13<f (log 23)<f (log 26),即c <b <a .故选A.13.10解析:由4a =2,可得a =log 42=12.所以lg x =12,即x =10 12=10.14.2解析:由已知可得,lg(ab )=1,故f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2×1=2.15.9解析:当2x -3=1时y =4.即函数y =log a (2x -3)+4图象恒过定点M (2,4),又M 在幂函数f (x )图象上,设f (x )=x m ,则4=2m ,解得m =2,即f (x )=x 2,则f (3)=32=9.16.①②④解析:∵3>1,y >x ,∴3y >3x ,故①正确. 由对数函数的图象知②正确; 由①正确知③不正确; ∵4>1,x <y ,∴log 4x <log 4y ,故④正确;log 14x >0,log 4y <0,∴log 12x >log 4y ,故⑤不正确.————————————————————————————三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)计算: (1)⎝⎛⎭⎪⎫21412 -(-0.96)0-⎝ ⎛⎭⎪⎫338- 23 +1.5-2+[(-32)-4]- 34 ;(2)⎝ ⎛⎭⎪⎫lg 14-lg25÷100- 12+7log 72+1.18.(12分)已知函数f (x )=x m -2x 且f (4)=72. (1)求m 的值; (2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.答案17.解:(1)原式=⎝ ⎛⎭⎪⎫94 12 -1-⎝ ⎛⎭⎪⎫278- 23 +⎝ ⎛⎭⎪⎫32-2+[(32)-4]- 34=32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫32-2+(32)3=12+2=52.(2)原式=-(lg4+lg25)÷100- 12+14=-2÷10-1+14=-20+14=-6. 18.解:(1)因为f (4)=72, 所以4m-24=72,所以m =1.(2)由(1)知f (x )=x -2x ,所以函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又f (-x )=-x +2x =-⎝ ⎛⎭⎪⎫x -2x =-f (x ).所以函数f (x )是奇函数.(3)函数f (x )在(0,+∞)上是单调增函数,证明如下: 设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-⎝ ⎛⎭⎪⎫x 2-2x 2 =(x 1-x 2)⎝ ⎛⎭⎪⎫1+2x 1x 2, 因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0.所以f (x 1)>f (x 2).所以函数f (x )在(0,+∞)上为单调增函数.———————————————————————————— 19.(12分)设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值和最小值.20.(12分)若函数y =f (x )=a ·3x -1-a3x -1为奇函数.(1)求a 的值; (2)求函数的定义域; (3)求函数的值域.答案19.解:(1)∵f (1)=2,∴log a 4=2, ∵a >0,且a ≠1,∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3). 故函数f (x )的定义域为(-1,3).(2)∵由(1)知,f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数.∴函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.∵函数y =-(x -1)2+4的图象的对称轴是x =1,∴f (0)=f (2)<f ⎝ ⎛⎭⎪⎫32,∴函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最小值为f (0)=log 23.20.解:∵函数y =f (x )=a ·3x -1-a 3x -1=a -13x -1.(1)由奇函数的定义,可得f (-x )+f (x )=0, 即2a -13x -1-13-x -1=0,∴a =-12.(2)∵y =-12-13x -1,∴3x -1≠0,即x ≠0.∴函数y =-12-13x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴3x -1>-1.∵3x -1≠0,∴-1<3x -1<0或3x -1>0, ∴-12-13x -1>12或-12-13x -1<-12.故函数的值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y >12或y <-12. ———————————————————————————— 21.(12分)已知函数f (x )=2x 2-4x +a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[-1,2m ]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1). ①求实数a 的值;②设t 1=12f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.(12分)设函数f (x )=log 2⎝⎛⎭⎪⎫1+x 1-ax (a ∈R ),若f ⎝ ⎛⎭⎪⎫-13=-1. (1)求f (x )的解析式;(2)g (x )=log 21+x k ,若x ∈⎣⎢⎡⎦⎥⎤12,23时,f (x )≤g (x )有解,求实数k 的取值集合.答案21.解:(1)因为抛物线y =2x 2-4x +a 开口向上,对称轴为x =1, 所以函数f (x )在(-∞,1]上单调递减,在[1,+∞)上单调递增, 因为函数f (x )在[-1,2m ]上不单调, 所以2m >1,得m >12,所以实数m 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.(2)①因为f (1)=g (1),所以-2+a =0, 所以实数a 的值为2.②因为t 1=12f (x )=x 2-2x +1=(x -1)2, t 2=g (x )=log 2x , t 3=2x ,所以当x ∈(0,1)时,t 1∈(0,1),t 2∈(-∞,0),t 3∈(1,2),所以t 2<t 1<t 3. 22.解:(1)f ⎝ ⎛⎭⎪⎫-13=log 21-131+a 3=-1,∴231+a 3=12,即43=1+a3,解得a =1. ∴f (x )=log 21+x1-x .(2)∵log 21+x1-x≤log21+x k=2log 21+xk =log 2⎝ ⎛⎭⎪⎫1+x k 2, ∴1+x 1-x ≤⎝ ⎛⎭⎪⎫1+x k 2. 易知f (x )的定义域为(-1,1),∴1+x >0,1-x >0,∴k 2≤1-x 2.令h (x )=1-x 2,则h (x )在⎣⎢⎡⎦⎥⎤12,23上单调递减,∴ h (x )max =h ⎝ ⎛⎭⎪⎫12=34.∴只需k 2≤34.又由题意知k >0,∴0<k ≤32.第三章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.若函数y =f (x )在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( )A .若f (a )f (b )>0,则不存在实数c ∈(a ,b )使得f (c )=0B .若f (a )f (b )<0,则只存在一个实数c ∈(a ,b ),使得f (c )=0C .若f (a )f (b )>0,则有可能存在实数c ∈(a ,b )使得f (c )=0D .若f (a )f (b )<0,则有可能不存在实数c ∈(a ,b )使得f (c )=02.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定3.若函数f (x )在[a ,b ]上的图象为连续不断的一条曲线,且同时满足f (a )f (b )<0,f (a )·f (a +b 2)>0,则( )A .f (x )在[a ,a +b2]上有零点B .f (x )在[a +b2,b ]上有零点 C .f (x )在[a ,a +b2]上无零点 D .f (x )在[a +b2,b ]上无零点4.函数f (x )=1-x ln x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,2)D .(2,3)5.设f (x )=3x +3x -8,若用二分法求方程3x +3x -8=0在区间(1,2)内的近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根所在的区间为( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定6.若函数f (x )=x 2+3x +2,且f (a )>f (b )>0,则函数f (x )的区间(a ,b )内( ) A .一定无零点 B .一定有零点 C .可能有两个零点D .至多有一个零点7.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗中盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的高度,则H 与下落时间t (分钟)的函数关系表示的图象可能是( )8.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累 计里程(千米) 2015年5月1日 12 35 000 2015年5月15日4835 600在这段时间内,该车每100千米平均耗油量为( ) A .6升 B .8升 C .10升D .12升9.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-110.设a 是函数f (x )=2x -log 12x 的零点,若x 0>a ,则( ) A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定11.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2,-7,1,3}D .{-2-7,1,3}12.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A .(74,+∞) B .(-∞,74) C .(0,74)D .(74,2) 答案1.C 当零点在区间(a ,b )内时,f (a )f (b )>0也可能成立,因此A 不正确,C 正确;若y =f (x )满足零点存在性定理的两个条件,则在该区间内必存在零点,但个数不能确定,故B ,D 都不正确.2.D 由题意,知f (x )在(-1,1)上有零点0,该零点可能是变号零点,也可能是不变号零点,∴f (-1)·f (1)的符号不确定,如f (x )=x 2,f (x )=x .3.B 由f (a )f (b )<0,f (a )f (a +b 2)>0可知f (a +b2)f (b )<0,根据零点存在性定理可知f (x )在[a +b2,b ]上有零点.4.C 由于f (1)=1-ln1=1>0,f (2)=1-2ln2=lne -ln4<0,由零点存在性定理可知所求区间为(1,2).5.B ∵f (1)<0,f (1.5)>0,f (1.25)<0,∴f (1.5)·f (1.25)<0,因此方程的根所在的区间为(1.25,1.5).6.C 根据二次函数的图象可知选项C 正确.7.B 由于所给的圆锥形漏斗上口大于下口,当时间取12t 时,漏斗中液面下落的高度不会达到漏斗高度的12,对比四个选项的图象可知选B.8.B 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升,选B.9.D 设年平均增长率为x ,原生产总值为a ,则(1+p )(1+q )a =a (1+x )2,解得x =(1+p )(1+q )-1,故选D.10.B 如图所示,画出函数y =2x 与y =log 12x 的图象,可知当x 0>a 时,2x0>log 12x 0,故f (x 0)>0.11.D 当x ≥0时,函数g (x )的零点即方程f (x )=x -3的根,由x 2-3x =x -3,解得x =1或3.当x <0时,由f (x )是奇函数得-f (x )=f (-x )=x 2-3(-x ),即f (x )=-x 2-3x .由f (x )=x -3得x =-2-7(正根舍去).故选D.12.D 函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同的实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点.又y =f (x )+f (2-x )=⎩⎪⎨⎪⎧x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,作出该函数的图象如图所示,由图可得,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,故函数y =f (x )-g (x )恰有4个零点时,b 的取值范围是(74,2).———————————————————————————— 二、填空题(每小题5分,共20分)13.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下部分对应值表:x 1 23456f (x )136.13515.552 -3.92 10.88 -52.488 -232.06414.用二分法求函数f (x )的一个零点,其参考数据如下:f (1.600 0)≈0.200 f (1.587 5)≈0.133 f (1.575 0)≈0.067 f (1.562 5)≈0.003f (1.556 25)≈-0.029f (1.550 0)≈-0.060. 15.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.16.设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.若f (x )恰有2个零点,则实数a的取值范围是________.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)(1)判断函数f (x )=x 3-x -1在区间[-1,2]上是否存在零点; (2)求函数y =x +2x -3的零点.18.(12分)若函数f (x )为定义在R 上的奇函数,且当x >0时,f (x )=ln x +2x -6,试判断函数f (x )的零点个数.答案13.3解析:由已知数据可知f (2)f (3)<0,f (3)f (4)<0,f (4)f (5)<0,所以函数在区间(2,3),(3,4),(4,5)内各至少有1个零点,则函数至少有3个零点.14.1.562 5(答案不唯一)解析:由参考数据知,f (1.562 5)≈0.003>0,f (1.556 25)≈-0.029<0,即f (1.556 25)·f (1.562 5)<0,又1.562 5-1.556 25=0.006 25<0.01,∴f (x )的一个零点的近似值可取为1.562 5.15.24解析:由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b =48,即⎩⎨⎧e b=192,e 11k =12,所以该食品在33℃的保鲜时间是y =e 33k +b =(e 11k )3·e b =(12)3×192=24(小时).16.[12,1)∪[2,+∞)解析:当a ≥1时,要使f (x )恰有2个零点,需满足21-a ≤0,即a ≥2,所以a ≥2;当a <1时,要使f (x )恰有2个零点,需满足⎩⎪⎨⎪⎧a <1≤2a ,21-a >0,解得12≤a <1.综上,实数a 的取值范围为[12,1)∪[2,+∞).17.解:(1)∵f (-1)=-1<0,f (2)=5>0,f (-1)f (2)<0.∴f (x )在[-1,2]上存在零点.(2)x +2x -3=x 2-3x +2x =(x -1)(x -2)x ,解方程x +2x -3=0,即(x -1)(x -2)x =0,可得x =1或x =2.∴函数y =x +2x -3的零点为1,2.18.解:方法一:当x <0时,-x >0,f (-x )=ln(-x )-2x -6,又f (x )为奇函数,所以f (x )=-f (-x )=-ln(-x )+2x +6. 故函数f (x )的解析式为 f (x )=⎩⎪⎨⎪⎧ln x +2x -6,x >00,x =0-ln (-x )+2x +6,x <0令f (x )=0易得函数f (x )有3个零点.方法二:当x >0时,在同一坐标系中作出函数y =ln x 和y =6-2x 的图象如图所示,易知两函数图象只有1个交点,即当x >0时,函数f (x )有1个零点.由f(x)为定义在R上的奇函数,可知f(0)=0,且图象关于原点对称,则当x<0时,函数f(x)有1个零点.综上可知,f(x)在R上有3个零点.————————————————————————————19.(12分)已知二次函数f(x)=x2+bx+c,且方程f(x)+4=0有唯一解x=1.(1)求函数f(x)的解析式;(2)若函数f(x)在区间[a,a+4]上存在零点,求实数a的取值范围.(12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(mg)与时间t(h)之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25 mg时,对治疗疾病有效,求服药一次治疗疾病有效的时间.答案19.解:(1)方程f (x )+4=0有唯一解x =1,即一元二次方程x 2+bx +c +4=0有唯一解x =1,则⎩⎪⎨⎪⎧ b 2-4(c +4)=0,b +c +5=0,⇒⎩⎪⎨⎪⎧b =-2,c =-3,所以f (x )=x 2-2x -3.(2)结合(1)易知函数f (x )的零点为-1,3. 当-1∈[a ,a +4]时,-5≤a ≤-1; 当3∈[a ,a +4]时,-1≤a ≤3. 故实数a 的取值范围为[-5,3]. 20.解:(1)当0≤t <1时 ,y =4t ;当t ≥1时,y =⎝ ⎛⎭⎪⎫12t -a 此时M (1,4)在曲线上,故4=⎝ ⎛⎭⎪⎫121-a ,解得a =3,即y =⎝ ⎛⎭⎪⎫12t -3.故y =f (t )=⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1.(1)因为f (t )≥0.25,则⎩⎨⎧4t ≥0.25,⎝ ⎛⎭⎪⎫12t -3≥0.25.解得⎩⎨⎧t ≥116,t ≤5,所以116≤t ≤5,因此服药一次治疗疾病有效的时间为 5-116=41516(h).————————————————————————————21.(12分)设f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=-(x -2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,求实数k的取值范围.22.(12分)人们对声音有不同的感觉,这与它的强度I(单位:W/m2)有关系.但在实际测量时,常用声音的强度水平L1(单位:dB)表示,它满足公式:L1=10×lg II0 (L1≥0,其中I0=1×10-12W/m2,这是人们平均能听到的最小强度,是听觉的开端).根据以上材料,回答下列问题:(1)树叶沙沙声的强度是1×10-12W/m2,耳语声的强度是1×10-10W/m2,恬静的无线电广播声的强度是1×10-8W/m2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50 dB以下,试求声音的强度I的范围是多少?答案21.解:(1)由于f (x )为定义在R 上的偶函数,则f (-x )=f (x ),若x <0,则-x >0,f (x )=f (-x )=-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-(x -2)2+2,x ≥0,-(x +2)2+2,x <0. (2)图象如图所示:(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )的图象可知,当-2<k <2时,函数y =f (x )的图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.22.解:(1)由题意可知,树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,所以LI 1=10×lg1=0,即树叶沙沙声的强度水平为0 dB.耳语声的强度是I 2=1×10-10W/m 2,则I 2I 0=102,所以LI 2=10×lg102=20,即耳语声的强度水平为20 dB.恬静的无线电广播声的强度是I 3=1×10-8W/m 2,则I 3I 0=104,所以LI 3=10×lg104=40,即恬静的无线电广播声的强度水平为40 dB.(2)由题意知,0≤L 1<50,即0≤10×lg I I 0<50,所以1≤II 0<105,即10-12≤I <10-7.所以小区内公共场所的声音的强度I 的范围为大于或等于10-12W/m 2,同时应小于10-7W/m 2.模块综合评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N 等于( ) A .∅ B .{x |0<x <3} C .{x |1<x <3}D .{x |2<x <3}2.设U 是全集,集合A ,B 满足A B ,则下列式子中不成立的是( )A .A ∪(∁UB )=U B .A ∪B =BC .(∁U A )∪B =UD .A ∩B =A3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f [f (2)]等于( ) A .0 B .1 C .2D .34.下列函数中,随x 增大而增大速度最快的是( ) A .y =2 006ln x B .y =x 2 006 C .y =e x2 006 D .y =2 006·2x5.设a =0.7 12 ,b =0.8 12,c =log 30.7,则()A .c <b <aB .c <a <bC .a <b <cD .b <a <c6.函数y =a x -2+log a (x -1)+1(a >0,a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,1)D .(2,2)7.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是( )A .(-∞,2]B .(-∞,2)C .[2,+∞)D .(2,+∞)8.已知x 2+y 2=1,x >0,y >0,且log a (1+x )=m ,log a 11-x =n ,则log a y 等于( )A .m +nB .m -n C.12(m +n )D.12(m -n )9.函数y =x 2-3在区间(1,2)内的零点的近似值(精确度0.1)是( ) A .1.55 B .1.65 C .1.75D .1.8510.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,那么f (x )与g (x )在同一坐标系内的图象可能是( )11.设函数F (x )=f (x )-1f (x ),其中x -log 2f (x )=0,则函数F (x )是( )A .奇函数且在(-∞,+∞)上是增函数B .奇函数且在(-∞,+∞)上是减函数C .偶函数且在(-∞,+∞)上是增函数D .偶函数且在(-∞,+∞)上是减函数12.已知函数f (x )的定义域为(-∞,0)∪(0,+∞),f (x )是奇函数,且当x >0时,f (x )=x 2-x +a ,若函数g (x )=f (x )-x 的零点恰有两个,则实数a 的取值范围是( )A .a <0B .a ≤0C .a ≤1D .a ≤0或a =1二、填空题(每小题5分,共20分)13.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________.14.若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是________. 15.对于函数f (x )=ln x 的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0.上述结论中正确结论的序号是________. 16.已知函数f (x )=log 0.5(x +1x ),下列说法①f (x )的定义域为(0,+∞);②f (x )的值域为[-1,+∞);③f (x )是奇函数;④f (x )在(0,1)上单调递增.其中正确的是________.答案1.D N ={x |x >2},∴用数轴表示集合可得M ∩N ={x |2<x <3},选D. 2.A 依题意作出Venn 图,易知A 不成立.3.C ∵f (2)=log 3(22-1)=1,∴f [f (2)]=f (1)=2e 1-1=2.4.C 根据幂函数、指数函数、对数函数的变化趋势即得答案. 5.B ∵幂函数y =x12在[0,+∞)上是增函数,又∵0.7<0.8,∴0<0.7 12 <0.8 12. 又log 30.7<0,∴log 30.7<0.712 <0.812,即c <a <b ,选B.6.D 由指数与对数函数的图象性质即得答案.7.A 本题考查函数的定义域、函数的单调性及参数取值范围的探求.因为f (x )=m +2log 2x 在[1,2]是增函数,且由f (x )≤4,得f (2)=m +2≤4,得m ≤2,故选A.8.D 由m -n =log a (1+x )-log a 11-x =log a (1-x 2)=log a y 2=2log a y ,所以log a y =12(m -n ).故选D.9.C 经计算知函数零点的近似值可取为1.75.10.C f (x )=a x 与g (x )=log a x 有相同的单调性,排除A ,D ;又当a >1时,f (3)g (3)>0,排除B ,当0<a <1时,f (3)g (3)<0,选C.11.A 由x -log 2f (x )=0,得f (x )=2x , ∴F (x )=2x -12x =2x -2-x .∴F (-x )=2-x -2x =-F (x ),∴F (x )为奇函数,易知F (x )=2x -2-x 在(-∞,+∞)上是增函数.12.D 由于f (x )为奇函数,且y =x 是奇函数,所以g (x )=f (x )-x 也应为奇函数,所以由函数g (x )=f (x )-x 的零点恰有两个,可得两零点必定分别在(-∞,0)和(0,+∞)上,由此得到函数g (x )=x 2-2x +a 在(0,+∞)上仅有一个零点,即函数y =-(x -1)2+1与直线y =a 在(0,+∞)上仅有一个公共点,数形结合易知应为a ≤0或a =1,选D.13.-3解析:∵∁U A ={1,2},∴A ={0,3}.∴0,3是方程x 2+mx =0的两根,∴m =-3.14.0或13解析:由题意得m =0或Δ=4-12m =0,即m =0或m =13.15.②③解析:本题考查对数函数的性质.函数f (x )=ln x 满足ln(x 1·x 2)=ln(x 1)+ln(x 2);由函数f (x )=ln x 是增函数,知ln x 1-ln x 2x 1-x 2,即f (x 1)-f (x 2)x 1-x 2>0成立.故②③正确. 16.①④解析:f (x )=log 0.5(x 2+1x );∴x >0,即定义域为(0,+∞);又∵f (x )=log 0.5(x +1x ),定义域不关于原点对称,则f (x )为非奇非偶函数;又∵x +1x ≥2,∴log 0.5(x +1x )≤log 0.52=-1.∴值域为(-∞,-1],②错;又∵x +1x 在(0,1)上为递减函数,∴log 0.5(x +1x )在(0,1)上为递增函数.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设A ={-3,4},B ={x |x 2-2ax +b =0},B ≠∅且B ⊆A ,求a ,b .(12分)已知f (x )是R 上的奇函数,且当x >0时,f (x )=-x 2+2x +2.(1)求f (x )的表达式;(2)画出f (x )的图象,并指出f (x )的单调区间.答案17.解:由B ≠∅,B ⊆A 知B ={-3}或{4}或B ={-3,4}.当B ={-3}时,a =-3,b =9;当B ={4}时,a =4,b =16;当B ={-3,4}时,a =12,b =-12.18.解:(1)设x <0,则-x >0,∴f (-x )=-(-x )2-2x +2=-x 2-2x +2.又∵f (x )为奇函数,∴f (-x )=-f (x ).∴f (x )=x 2+2x -2.又f (0)=0,∴f (x )=⎩⎪⎨⎪⎧ x 2+2x -2, x <0,0, x =0,-x 2+2x +2, x >0.(2)先画出y =f (x )(x >0)的图象,利用奇函数的对称性可得到相应y =f (x )(x <0)的图象,其图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).————————————————————————————19.(12分)已知二次函数f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),且满足f (-2+x )=f (-2-x )(x ∈R ).(1)求该二次函数的解析式及函数的零点;(2)已知函数在(t -1,+∞)上为增函数,求实数t 的取值范围.20.(12分)已知函数f (x )=2x 2+2x +a (-2≤x ≤2).(1)写出函数f (x )的单调区间;(2)若f (x )的最大值为64,求f (x )的最小值.答案19.解:(1)因为二次函数为f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),故c =1.①又因为函数f (x )满足f (-2+x )=f (-2-x )(x ∈R ),故x =-22a =-2.②由①②得:a =12,c =1.故二次函数的解析式为:f (x )=12x 2+2x +1.由f (x )=0,可得函数的零点为:-2+2,-2- 2.(2)因为函数在(t -1,+∞)上为增函数,且函数图象的对称轴为x =-2,由二次函数的图象可知:t -1≥-2,故t ≥-1.20.解:(1)f (x )=2(x +1)2+a -1(-2≤x ≤2),∴在[-2,-1]上,f (x )为减函数;在[-1,2]上,f (x )为增函数.即f (x )的减区间是[-2,-1],f (x )的增区间是[-1,2].(2)设U (x )=(x +1)2+a -1(-2≤x ≤2),则U (x )的最大值为U (2)=8+a ,最小值为U (-1)=a -1.故f (x )的最大值为f (2)=28+a ,最小值为f (-1)=2a -1.∵28+a =64,∴a =-2.∴f (x )的最小值为f (-1)=2-2-1=18.————————————————————————————21.(12分)已知函数f (x )=log a ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a -2x +1在区间[1,2]上恒为正,求实数a 的取值范围.22.(12分)定义在(0,+∞)上的函数f (x ),对于任意的m ,n ∈(0,+∞),都有f (mn )=f (m )+f (n )成立,当x >1时,f (x )<0.(1)求证:1是函数f (x )的零点;(2)求证:f (x )是(0,+∞)上的减函数;(3)当f (2)=12时,解不等式f (ax +4)>1.答案21.解:当a >1时,y =⎝ ⎛⎭⎪⎫1a -2x +1是减函数,故⎝ ⎛⎭⎪⎫1a -2·2+1>1,则a <12,矛盾.当0<a <1时,0<⎝ ⎛⎭⎪⎫1a -2x +1<1,设y =⎝ ⎛⎭⎪⎫1a -2x +1,分类讨论1a -2的取值,得12<a <23.22.解:(1)证明:对于任意的正实数m ,n 都有f (mn )=f (m )+f (n )成立,所以令m =n =1,则f (1)=2f (1).∴f (1)=0,即1是函数f (x )的零点.(2)证明:设0<x 1<x 2,∵f (mn )=f (m )+f (n ),∴f (mn )-f (m )=f (n ).∴f (x 2)-f (x 1)=f (x 2x 1).因0<x 1<x 2,则x 2x 1>1. 而当x >1时,f (x )<0,从而f (x 2)<f (x 1).所以f (x )在(0,+∞)上是减函数.(3)因为f (4)=f (2)+f (2)=1,所以不等式f (ax +4)>1可以转化为f (ax +4)>f (4).因为f (x )在(0,+∞)上是减函数,所以0<ax +4<4.当a =0时,解集为∅;当a >0时,-4<ax <0,即-4a <x <0,。
人教新课标版(A)高二选修1-1 第一章常用逻辑用语单元测试
人教新课标版(A )高二选修1-1 第一章 常用逻辑用语单元测试(时间:120分钟 分值:100分)一、选择题(每小题5分,共60分)1. 命题“若B A ⊆,则A=B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是A. 0B. 2C. 3D. 42. 若非空集合N M ⊆,则“M a ∈或N a ∈”是“()N M a ⋂∈”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知命题p :3y x ≠+,命题1x :q ≠或2y ≠,则命题p 是q 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 对下列命题的否定说法错误的是A. p :能被3整除的整数是奇数;⌝p :存在一个能被3整除的整数不是奇数B. p :每一个四边形的四个顶点共圆;p ⌝:存在一个四边形的四个顶点不共圆C. p :有的三角形为正三角形;p ⌝:所有的三角形都不是正三角形D. p :R x ∈∃,02x 2x 2≤++;p ⌝:当02x 2x 2>++时,R x ∈5. 命题甲:α是第二象限的角,命题乙:0tan sin <α⋅α,则命题甲是命题乙成立的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. “1a =”是“函数ax sin ax cos y 22-=的最小正周期为π”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 下列全称命题为真命题的是A. 所有的素数是奇数B. R x ∈∀,11x 2≥+C. 对每一个无理数x ,2x 也是无理数D. 所有的平行向量均相等8. 命题p :存在实数m ,使方程01mx x 2=++有实数根,则“非p ”形式的命题是A. 存在实数m ,使方程01mx x 2=++无实根B. 不存在实数m ,使方程01mx x 2=++无实根C. 对任意的实数m ,方程01mx x 2=++无实根D. 至多有一个实数m ,使方程01mx x 2=++有实根9. 用反证法证明命题:若整数系数一元二次方程0c bx ax 2=++(0a ≠)有有理数根,那么a 、b 、c 中至少有一个是偶数时,下列假设中正确的是A. 假设a 、b 、c 都是偶数B. 假设a 、b 、c 至多有一个是偶数C. 假设a 、b 、c 都不是偶数D. 假设a 、b 、c 至多有两个是偶数10. 在下列结论中,正确的结论为①“q p ∧”为真是“q p ∨”为真的充分不必要条件;②“q p ∧”为假是“q p ∨”为真的充分不必要条件;③“q p ∨”为真是“p ⌝”为假的必要不充分条件;④“p ⌝”为真是“q p ∧”为假的必要不充分条件。
2008年普通高等学校招生全国统一考试数学试卷分类汇编1.1集合
第一章 集合与简易逻辑一 集合【考点阐述】集合.子集.补集.交集.并集. 【考试要求】(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 【考题分类】(一)选择题(共20题)1、(安徽卷理2)集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--解: }{0A y Ry =∈>,R (){|0}A y y =≤ð,又{2,1,1,2}B =--∴ }{()2,1R A B =-- ð,选D 。
2、(安徽卷文1)若A 为全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--解:R A ð是全体非正数的集合即负数和0,所以}{()2,1R A B =-- ð3、(北京卷理1)已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合A ∩(C U B )等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤ D .{}|13x x -≤≤【标准答案】: D【试题分析】: C U B=[-1, 4],()U A B ð={}|13x x -≤≤ 【高考考点】:集合【易错提醒】: 补集求错【备考提示】: 高考基本得分点4、(北京卷文1)若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于( )A .{}|34x x x >或≤ B .{}|13x x -<≤ C .{}|34x x <≤D .{}|21x x --<≤【答案】D【解析】{}|21A B x x =-≤-<5、(福建卷文1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于( )A.{x |0<x <1}B.{x |0<x <3}C.{x |1<x <3}D. Φ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} 6、(广东卷文1)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员}。
高中数学 第一章 集合与常用逻辑用语单元测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一
第一章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知集合A ={-1,0,1,2},B ={x |0≤x <2},则A ∩B =( ) A .{-1,0,1} B .{0,1,2} C .{0,1} D .{1,2}2.已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( ) A .{1} B .{4} C .{1,3} D .{1,4}3.命题“∃x 0∈(0,+∞),x 20+1≤2x 0”的否定为( ) A .∀x ∈(0,+∞),x 2+1>2x B .∀x ∈(0,+∞),x 2+1≤2x C .∀x ∈(-∞,0],x 2+1≤2x D .∀x ∈(-∞,0],x 2+1>2x4.集合A ={(x ,y )|y =3x -2},B ={(x ,y )|y =x +4},则A ∩B =( ) A .{3,7} B .{(3,7)} C .(3,7) D .{x =3,y =7}5.已知全集U ={0,1,2,3},∁U A ={0,2},则集合A 的真子集共有( ) A .3个 B .4个 C .5个 D .6个6.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值X 围是( ) A .{a |a ≤-1} B .{a |a ≥1}C .{a |-1≤a ≤1} D.{a |a ≤-1或a ≥1}8.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019的值为( )A .1B .0C .-1D .±1二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面四个说法中错误的是( )18.(本小题满分12分)已知集合A={x|-2<x<4},B={x|-1<x≤5},U=R.(1)求A∩B,A∪B;(2)求(∁R A)∩B.19.(本小题满分12分)设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若A={x∈Z|-2≤x≤5},求A的非空真子集的个数;(2)若A∩B=B,某某数m的取值X围.20.(本小题满分12分)设集合A={x|x2-3x+2=0},B={x|ax=1}.“x∈B”是“x∈A”的充分不必要条件,试求满足条件的实数a组成的集合.21.(本小题满分12分)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值X围.22.(本小题满分12分)设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若-1∈B,求a的值;(2)若B⊆A,求a的值.第一章单元测试卷1.解析:A ={-1,0,1,2},B ={x |0≤x <2},∴A ∩B ={0,1}.故选C. 答案:C2.解析:由题意得,B ={1,4,7,10},所以A ∩B ={1,4}. 答案:D3.解析:由存在量词命题的否定为全称量词命题,可得命题“∃x 0∈(0,+∞),x 20+1≤2x 0”的否定为“∀x ∈(0,+∞),x 2+1>2x ”,故选A.答案:A4.解析:联立A 与B 中方程得:⎩⎪⎨⎪⎧y =3x -2,y =x +4,消去y 得:3x -2=x +4,解得:x =3, 把x =3代入得:y =9-2=7,∴方程组的解为⎩⎪⎨⎪⎧x =3,y =7,∵A ={(x ,y )|y =3x -2},B ={(x ,y )|y =x +4}, ∴A ∩B ={(3,7)},故选B. 答案:B5.解析:全集U ={0,1,2,3},∁U A ={0,2},则A ={1,3},故集合A 的真子集共有22-1=3个.故选A.答案:A6.解析:∵x >1,∴x 3>1.又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件,故选C.答案:C7.解析:由P ∪M =P ,可知M ⊆P ,即a ∈P ,因为集合P ={x |-1≤x ≤1},所以-1≤a ≤1. 答案:C8.解析:∵ba为分式,∴a ≠0,∵⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},∴b a=0,即b =0,∴{a,0,1}={a 2,a,0},∴当⎩⎪⎨⎪⎧a 2=1,a =a 时,a =-1或a =1,当a =1时,即得集合{1,0,1},不符合元素的互异性,故舍去,当a =-1时,即得集合{-1,0,1},满足.当⎩⎪⎨⎪⎧a =1a 2=a 时,a =1,即得集合{1,0,1},不符合元素的互异性,故舍去,综上,a =-1, b =0.∴a2 019+b2 019=(-1)2 019+02 019=-1,故选C.答案:C9.解析:10以内的质数组成的集合是{2,3,5,7},故A 正确;由集合中元素的无序性知{1,2,3}和{3,1,2}表示同一集合,故B 正确;方程x 2-2x +1=0的所有解组成的集合是{1},故C 错误;由集合的表示方法知0不是集合,故D 错误.故选CD.答案:CD10.解析:∵A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8}, ∴B ∩C ={1,8}∴A ⊆(B ∩C )⇒A ⊆(1,8),故选AC. 答案:AC11.解析:根据venn 图,可直接得出结果.由venn 图可知,ABCD 都是充要条件.故选ABCD. 答案:ABCD12.解析:A 中,-1∈B,1∈B ,但是-1-1=-2∉B ,B 不是“完美集”,故A 说法不正确;B 中,有理数集满足“完美集”的定义,故B 说法正确;C 中,0∈A ,x 、y ∈A ,∴0-y =-y ∈A ,那么x -(-y )=x +y ∈A ,故C 说法正确;D 中,对任意一个“完美集”A ,任取x 、y ∈A ,若x 、y 中有0或1时,显然xy ∈A ,若x 、y 均不为0、1,而1xy =12xy +12xy=1x +y2-x 2-y2+1x +y2-x 2-y2,x 、x -1∈A ,那么1x -1-1x =1x x -1∈A ,∴x (x -1)∈A ,进而x (x -1)+x =x 2∈A .同理,y 2∈A ,则x 2+y 2∈A ,(x +y )2∈A , ∴2xy =(x +y )2-(x 2+y 2)∈A .∴1x +y2-x 2-y2∈A ,结合前面的算式,知xy ∈A ,故D 说法正确;故选:BCD. 答案:BCD13.解析:因为A ={x |-1<x <2},B ={x |x >0},所以A ∩B ={x |0<x <2},(∁R B )∪A ={x |x <2}.答案:{x |0<x <2} {x |x <2} 14.答案:必要不充分15.解析:因为集合A ={m +2,2m 2+m },且3∈A ,所以⎩⎪⎨⎪⎧m +2=3,2m 2+m ≠3,或⎩⎪⎨⎪⎧2m 2+m =3,m +2≠3.解得m =-32.答案:-3216.解析:由M ∪N =M 得N ⊆M ,当N =∅时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立.当N ≠∅时,由下图可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,实数t 的取值X 围是{t |t ≤2}. 答案:{t |t ≤2}17.解析:(1)由于命题中含有全称量词“任意的”,因而是全称量词命题;又由于“任意的”的否定为“存在一个”,因此,綈p :存在一个x ∈R ,使x 2+x +1≠0成立,即“∃x ∈R ,使x 2+x +1≠0成立”;(2)由于“∃x ∈R ”表示存在一个实数x ,即命题中含有存在量词“存在一个”,因而是存在量词命题;又由于“存在一个”的否定为“任意一个”,因此,綈p :对任意一个x 都有x 2+2x +5≤0,即“∀x ∈R ,x 2+2x +5≤0”. 18.解析:(1)由题意,集合A ={x |-2<x <4},B ={x |-1<x ≤5}, 所以A ∩B ={x |-1<x <4},A ∪B ={x |-2<x ≤5}.(2)由题意,可得∁R A ={x |x ≤-2或x ≥4},所以(∁R A )∩B ={x |4≤x ≤5}.19.解析:(1)∵A ={-2,-1,0,1,2,3,4,5},∴A 的非空真子集有28-2=254(个). (2)∵A ∩B =B ,∴B ⊆A .当B =∅时,m +1>2m -1,∴m <2;当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,∴⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.综上可知,实数m 的取值X 围是{m |m ≤3}. 20.解析:∵A ={x |x 2-3x +2=0}={1,2}, 又“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}. 则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.21.解析:x 2-x -2>0的解集是{x |x >2或x <-1}, 由4x +p <0得x <-p4.要想使x <-p4时,x >2或x <-1成立,必须有-p4≤-1,即p ≥4.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.22.解析:(1)由题意,因为-1∈B ,即x =-1是方程x 2+2(a +1)x +a 2-1=0的根, 可得1-2(a +1)+a 2-1=0,即a 2-2a -2=0,解得a =1±3; (2)由题意,集合A ={x |x 2+4x =0}={0,-4},因为B ⊆A ,可得①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1; ②当B ={0}或{-4}时,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1, 此时B ={x |x 2=0}={0}满足题意;③当B ={0,-4}时,则⎩⎪⎨⎪⎧-2a +1=-4a 2-1=0,解得a =1,综上可得,a =1或a ≤-1.。
人教A版高一数学必修2第一章单元测试题含详细答案
1高一数学必修2第一章单元测试题1.如下图所示,观察四个几何体,其中判断正确的是( )A.①是棱台 B.②是圆台 C.③是棱锥 D.④不是棱柱2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.12倍 B.2倍 C.24倍 D.22倍 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()4.已知某几何体的三视图如右图所示,那么这个几何体是( )A.长方体 B.圆柱 C.四棱锥 D.四棱台5.正方体的体积是64,则其表面积是( ) A.64 B.16 C.96 D.无法确定6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A.缩小到原来的一半 B.扩大到原来的2倍C.不变 D.缩小到原来的167.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )2A.1倍 B.2倍 C.95倍 D.74倍 8.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A.12πcm 2B.15πcm 2C.24πcm 2 D.36πcm 29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A.7 B.6 C.5 D.310.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A.32,1B.23,1C.32,32D.23,3211.某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )3A.24 B.80C.64D.24012.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是()4姓名:座位号:一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.14.一个几何体的三视图如图所示,则这个几何体的体积为___________________。
(完整版)高中数学必修1第一章集合测试题
新课标人教 A 版会集单元测试题一、选择题:〔每题〔时间4 分,共计80 分钟,总分值40 分〕100 分〕1、若是会集U1,2,3,4,5,6,7,8, A2,5,8, B1,3,5,7,那么 (U A)B等于〔〕(A)5(B)1,3,4,5,6,7,8(C)2,8(D)1,3,72、若是 U是全集, M,P,S 是U 的三个子集,那么阴影局部所表示的会集为〔〕〔A〕〔 M∩P〕∩ S;〔B〕〔 M∩P〕∪ S;〔C〕〔M∩P〕∩〔 C U S〕〔D〕〔M∩P〕∪〔 C U S〕3、会集M {( x, y) | x y2},N{( x, y) | x y 4} ,那么会集M I N 为〔〕A、x3, y1B、(3,1)C、 {3,1}D、 {(3,1)}4.A{4, 2a1, a2} ,B= { a5,1a,9},且 A B {9} ,那么 a 的值是()A. a 3B.a3C.a3D. a 5或 a35.假设会集A{ x kx24x 40, x R} 中只有一个元素 , 那么实数 k 的值为 ()B. 1C. 0或 1D.k16.会集 A{ y y x24, x N , y N} 的真子集的个数为()A. 9B. 8C. 7D. 67.符号 { a}P { a,b,c} 的会集P的个数是()A. 2B. 3C. 4D. 58. M{ y y x21, x R}, P{ x x a 1, a R} , 那么会集 M与 P 的关系是()A. M=PB.P R C .M P D.M P9.设 U为全集 , 会集 A、B、C满足条件 A B A C ,那么以下各式中必然成立的是(〕A.A B A CB.B CC.A(C U B)A(C U C)D.(C U A) B (C U A) C10.A{ x x 2x60}, B{ x mx10} ,且A B A ,那么的取值范围是( )mA.{ 1,1} B.{0, 1 ,1} C.{0,1,1} D.{1,1}323232 3 2二、选择题:〔每题 4 分,总分值 20 分〕11.设会集 M { 小于5的质数 } ,那么M的真子集的个数为.12. 设U{1,2,3,4,5,6,7,8} , A {3,4,5}, B {4,7,8}. 那么: (C U A) (C U B) ,(C U A)(C U B) .13 . 某班有学生 55 人, 其中音乐爱好者34 人 , 体育爱好者 43 人, 还有 4 人既不爱好体育也不爱好音乐 , 那么班级中即爱好体育又爱好音乐的有人.14.A{ x x1或x 5}, B{ x a x a4} ,假设A B, 那么实数a 的取值范围是.15.会集P{ x x m23m1}, T{ x x n23n1} , 有以下判断:① P T { y y 5}②P4T { y y5}③P4T④ P T其中正确的选项是 .三、解答题16. 〔此题总分值 10 分〕含有三个元素的会集 { a, b,1}{ a2 , a b,0}, 求a2007b 2021 a的值 .17.〔此题总分值 10 分〕假设会集S {小于10的正整数},A S,B S ,且 (C S A) B {1,9}, A B { 2}, (C S A) (C S B) {4,6,8} ,求A和B。
高中人教A版数学必修1单元测试:第一章单元测评卷及解析
所以两函数解析式不同;D 中两个函数解析式不同,故选 C.
解题技巧:判定两个函数是否相同时,就看定义域和对应法则是
否完全一致,完全一致的两个函数才算相同.
3.C 解析:A 选项中,元素 3 在 N 中有两个元素与之对应,故
不正确;同样 B,D 选项中集合 M 中也有一个元素与集合 N 中两个元
素对应,故不正确;只有 C 选项符合映射的定义.
7 7.D 解析:∵f(x)在(-∞,-2]上是增函数,且-4<-2A A<-3,
E
∴f(4)=f(-4)<f-72<f(-3),故选 D. 8.D 解析:由反比例函数的图象知 k<0,∴二次函数开口向下,
1 排除 A,B,又对称轴为 x=k<0,排除 C.
9.D
2x-1≥0,
解析:根据题意,得
1
A
-E2E A<f(-3)
8.已知反比例函数
k
y= A
xA
的图象如图所示,则二次函数
y=2kx2-
E
4x+k2 的图象大致为( )
1 9.函数 f(x)是定义在 0,+∞)上的增函数,则满足 f(2x-1)<fAE3EA
的 x 的取值范围是( )
1 2
A.
A
E3,3E
A
1 2
C.AE2,3E
A
1 2 B.A3,E3E
1
1 1
5π+1
∵0<π<1,∴fπ=π+5= π .
∵-1<0,∴f(-1)=-3+5=2.
(2)如图:
在函数 y=3x+5 的图象上截取 x≤0 的部分,在函数 y=x+5 的图
象上截取 0<x≤1 的部分,在函数 y=-2x+8 的图象上截取 x>1 的部
最新人教A版高一数学必修一单元测试题全册带答案解析
最新人教A版高一数学必修一单元测试题全册带答案解析章末综合测评(一)集合与函数的概念(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={x|x∈N*,x<6},集合A={1,3},B={3,5},则∁U(A∪B)等于()A.{1,4}B.{1,5}C.{2,5}D.{2,4}【解析】由题意得A∪B={1,3}∪{3,5}={1,3,5}.又U={1,2,3,4,5},∴∁U(A∪B)={2,4}.【答案】 D2.下列各式:①1∈{0,1,2};②∅⊆{0,1,2};③{1}∈{0,1,2};④{0,1,2}={2,0,1},其中错误的个数是()A.1个B.2个C.3个D.4个【解析】①1∈{0,1,2},正确;②空集是任何集合的子集,正确;③因为{1}⊆{0,1,2},故不正确;④根据集合的无序性可知正确.故选A.【答案】A3.下列各图形中,是函数的图象的是()【解析】函数y=f(x)的图象与平行于y轴的直线最多只能有一个交点,故A,B,C均不正确,故选D.【答案】 D4.集合A={x|y=x-1},B={y|y=x2+2},则如图1阴影部分表示的集合为()图1A .{x |x ≥1}B .{x |x ≥2}C .{x |1≤x ≤2}D .{x |1≤x <2}【解析】 易得A =[1,+∞),B =[2,+∞),则题图中阴影部分表示的集合是∁A B =[1,2).故选D.【答案】 D5.已知函数f (2x +1)=3x +2,则f (1)的值等于( ) A .2 B .11 C .5D .-1【解析】 由2x +1=1得x =0,故f (1)=f (2×0+1)=3×0+2=2,故选A . 【答案】 A6.下列四个函数:①y =x +1;②y =x -1;③y =x 2-1; ④y =1x ,其中定义域与值域相同的是( ) A .①②③ B .①②④ C .②③D .②③④【解析】 ①y =x +1,定义域R ,值域R ;②y =x -1,定义域R ,值域R ;③y =x 2-1,定义域R ,值域[-1,+∞);④y =1x ,定义域(-∞,0)∪(0,+∞),值域(-∞,0)∪(0,+∞).∴①②④定义域与值域相同,故选B .【答案】 B7.若函数f (x )=⎩⎨⎧x +1,(x ≥0),f (x +2),(x<0),则f (-3)的值为( )A .5B .-1C .-7D .2【解析】 依题意,f (-3)=f (-3+2)=f (-1) =f (-1+2)=f (1)=1+1=2,故选D. 【答案】 D8.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3)B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)【解析】 因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3.【答案】 C9.定义在R 上的奇函数f (x ),当x >0时,f (x )=3,则奇函数f (x )的值域是( ) A .(-∞,-3] B .[-3,3] C .[-3,3]D .{-3,0,3}【解析】 ∵f (x )是定义在R 上的奇函数, ∴f (-x )=-f (x ),f (0)=0,设x <0,则-x >0,f (-x )=-f (x )=3, ∴f (x )=-3,∴f (x )=⎩⎨⎧3,x >0,0,x =0,-3,x <0,∴奇函数f (x )的值域是{-3,0,3}.【答案】 D10.已知f (x )=x 5-ax 3+bx +2且f (-5)=17,则f (5)的值为( ) A .-13 B .13 C .-19D .19【解析】 ∵g (x )=x 5-ax 3+bx 是奇函数,∴g (-x )=-g (x ).∵f (-5)=17=g (-5)+2,∴g (5)=-15,∴f (5)=g (5)+2=-15+2=-13. 【答案】 A11.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4【解析】 ∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎨⎧ a 2-4a =-2,b 2-4b +1=-1,即⎩⎨⎧a 2-4a +2=0,b 2-4b +2=0,∴a ,b 为方程x 2-4x +2=0的两根, ∴a +b =4. 【答案】 D12.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)【解析】 任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上单调递减.又f (x )是偶函数,故f (x )在(-∞,0]上单调递增.且满足n ∈N *时,f (-2)=f (2),3>2>1>0,由此知,此函数具有性质:自变量的绝对值越小,函数值越大,∴f (3)<f (-2)<f (1),故选A .【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. 【解析】 由A ={-2,2,3,4},B ={x |x =t 2,t ∈A },得B ={4,9,16}. 【答案】 {4,9,16}14.若函数f (x )=(a -2)x 2+(a -1)x +3是偶函数,则f (x )的增区间是________. 【解析】 ∵函数f (x )=(a -2)x 2+(a -1)x +3是偶函数,∴a -1=0,∴f (x )=-x 2+3,其图象是开口方向朝下,以y 轴为对称轴的抛物线.故f (x )的增区间为(-∞,0].【答案】 (-∞,0]15.已知函数f (x )=⎩⎨⎧2x ,x>0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.【解析】 ∵f (1)=2×1=2, 若a >0,则f (a )=2a ,由2a +2=0,得a =-1舍去, 若a ≤0,则f (a )=a +1,由a +1+2=0得a =-3,符合题意. ∴a =-3. 【答案】 -316.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数,例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数; ②函数f (x )=xx -1是单函数; ③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中的真命题是________.(写出所有真命题的序号)【解析】 ①函数f (x )=x 2(x ∈R )不是单函数,例如f (1)=f (-1),显然不会有1和-1相等,故为假命题;②函数f (x )=x x -1是单函数,因为若x 1x 1-1=x 2x 2-1,可推出x 1x 2-x 2=x 1x 2-x 1,即x 1=x 2,故为真命题;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2)为真,可用反证法证明:假设f (x 1)=f (x 2),则按定义应有x 1=x 2,与已知中的x 1≠x 2矛盾; ④在定义域上具有单调性的函数一定是单函数为真,因为单函数的实质是一对一的映射,而单调的函数也是一对一的映射,故为真.【答案】 ②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设全集U =R ,集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求∁U (A ∩B );(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.【解】 (1)由集合B 中的不等式2x -4≥x -2,解得x ≥2,∴B ={x |x ≥2},又A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3},又全集U =R ,∴∁U (A ∩B )={x |x <2或x ≥3}. (2)由集合C 中的不等式2x +a >0,解得x >-a2,∴C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-a 2. ∵B ∪C =C ,∴B ⊆C ,∴-a2<2,解得a >-4.18.(本小题满分12分)设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B );(3)写出(∁U A )∪(∁U B )的所有子集.【解】 (1)由交集的概念易得2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={-5,2}. (2)由并集的概念易得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2.由补集的概念易得∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12,所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.(3)(∁U A )∪(∁U B )的所有子集即为集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:∅,⎩⎨⎧⎭⎬⎫12,{-5},⎩⎨⎧⎭⎬⎫-5,12. 19.(本小题满分12分)已知f (x )是R 上的奇函数,当x >0时,解析式为f (x )=2x +3x +1. (1)求f (x )在R 上的解析式;(2)用定义证明f (x )在(0,+∞)上为减函数. 【解】 (1)设x <0,则-x >0,∴f (-x )=-2x +3-x +1.又∵f (x )是R 上的奇函数,∴f (-x )=-f (x )=-2x +3-x +1,∴f (x )=-2x +3x -1.又∵奇函数在0点有意义,∴f (0)=0,∴函数的解析式为f (x )=⎩⎪⎨⎪⎧-2x +3x -1,x <0,0,x =0,2x +3x +1,x >0.(2)证明:设∀x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=2x 1+3x 1+1-2x 2+3x 2+1=(2x 1+3)(x 2+1)-(2x 2+3)(x 1+1)(x 1+1)(x 2+1)=-x 1+x 2(x 1+1)(x 2+1).∵x 1,x 2∈(0,+∞),x 1<x 2,∴x 1+1>0,x 2+1>0,x 2-x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 1)>f (x 2),∴函数f (x )在(0,+∞)上为减函数.20.(本小题满分12分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,其中x 是仪器的月产量.当月产量为何值时,公司所获得利润最大?最大利润是多少?【解】 由于月产量为x 台,则总成本为20 000+100x , 从而利润f (x )=R (x )=⎩⎪⎨⎪⎧300x -12x 2-20 000,0≤x ≤400,60 000-100x ,x >400,当0≤x ≤400时,f (x )=-12(x -300)2+25 000, 所以当x =300时,有最大值25 000; 当x >400时,f (x )=60 000-100x 是减函数, 所以f (x )=60 000-100×400<25 000. 所以当x =300时,有最大值25 000,即当月产量为300台时,公司所获利润最大,最大利润是25 000元.21.(本小题满分12分)已知f (x )在R 上是单调递减的一次函数,且f (f (x ))=4x -1. (1)求f (x );(2)求函数y =f (x )+x 2-x 在x ∈[-1,2]上的最大值与最小值.【解】 (1)由题意可设f (x )=ax +b ,(a <0),由于f (f (x ))=4x -1,则a 2x +ab +b =4x -1,故⎩⎨⎧a 2=4,ab +b =-1,解得a =-2,b =1.故f (x )=-2x +1. (2)由(1)知,函数y =f (x )+x 2-x =-2x +1+x 2-x =x 2-3x +1,故函数y =x 2-3x +1的图象开口向上,对称轴为x =32,则函数y =f (x )+x 2-x 在⎣⎢⎡⎦⎥⎤-1,32上为减函数,在⎣⎢⎡⎦⎥⎤32,2上为增函数.又由f ⎝ ⎛⎭⎪⎫32=-54,f (-1)=5,f (2)=-1,则函数y =f (x )+x 2-x 在x ∈[-1,2]上的最大值为5,最小值为-54. 22.(本小题满分12分)已知函数f (x )=x +b1+x 2为奇函数. (1)求b 的值;(2)证明:函数f (x )在区间(1,+∞)上是减函数; (3)解关于x 的不等式f (1+x 2)+f (-x 2+2x -4)>0.【解】 (1)∵函数f (x )=x +b1+x 2为定义在R 上的奇函数,∴f (0)=b =0.(2)由(1)可得f (x )=x1+x 2,下面证明函数f (x )在区间(1,+∞)上是减函数. 证明:设x 2>x 1>1,则有f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1+x 1x 22-x 2-x 2x 21(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). 再根据x 2>x 1>1,可得1+x 21>0,1+x 22>0,x 1-x 2<0,1-x 1x 2<0,∴(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)>0, 即f (x 1)>f (x 2),∴函数f (x )在区间(1,+∞)上是减函数. (3)由不等式f (1+x 2)+f (-x 2+2x -4)>0, 可得f (1+x 2)>-f (-x 2+2x -4)=f (x 2-2x +4),再根据函数f (x )在区间(1,+∞)上是减函数,可得1+x 2<x 2-2x +4,且x >1, 求得1<x <32,故不等式的解集为(1,32).章末综合测评(二) 第二章 基本初等函数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=1log 0.5(2x +1),则函数f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .(0,+∞)C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎦⎥⎤-12,0 【解析】 要使函数有意义,只需⎩⎨⎧2x +1>0,log 0.5(2x +1)>0,即⎩⎪⎨⎪⎧x >-12,2x +1<1,解得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <0.故选C.【答案】 C2.已知函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 100的图象可表示打字任务的“学习曲线”,其中t(小时)表示达到打字水平N (字/分钟)所需的学习时间,N 表示打字速度(字/分),则按此曲线要达到90字/分钟的水平,所需的学习时间是( )A .144小时B .90小时C .60小时D .40小时【解析】 t =-144lg ⎝ ⎛⎭⎪⎫1-N 100=-144lg 110=144.【答案】 A3.下列函数中,在区间(0,1)上为增函数的是( ) A .y =2x 2-x +3 B .y =⎝ ⎛⎭⎪⎫13xC .y =x 23D .y =log 12x【解析】 ∵y =2x 2-x +3的对称轴x =14,∴在区间(0,1)上不是增函数,故A 错; 又y =⎝ ⎛⎭⎪⎫13x及y =log 12x 为减函数,故B ,D 错;y =x 23中,指数23>0,在[0,+∞)上单调递增,故C 正确.【答案】 C4.如图1为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是( )图1A .m <0,n >1B .m >0,n >1C .m >0,0<n <1D .m <0,0<n <1【解析】 当x =1时,y =m ,由图形易知m<0,又函数是减函数,所以0<n <1. 【答案】 D5.已知f (x )=a -x (a >0且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .a >0 B .a >1 C .a <1D .0<a <1【解析】 ∵f (-2)>f (-3),∴f (x )=a -x =⎝ ⎛⎭⎪⎫1a x 是增函数,∴1a >1,∴0<a <1,则a 的取值范围是0<a <1,故选D.【答案】 D6.(2015·山东高考)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c<b C .b <a <cD .b <c<a【解析】 因为函数y =0.6x 是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b <a <1.因为函数y =x 0.6在(0,+∞)上是增函数,1<1.5,所以1.50.6>10.6=1,即c >1.综上,b <a <c .【答案】 C7.已知函数f (x )=lg (1-x )的值域为(-∞,1],则函数f (x )的定义域为( ) A .[-9,+∞) B .[0,+∞) C .(-9,1)D .[-9,1)【解析】 因为函数f (x )=lg (1-x )的值域为(-∞,1],所以lg (1-x )≤1,即0<1-x ≤10,解得-9≤x <1,所以函数f (x )的定义域为[-9,1).【答案】 D8.已知函数f (x )是奇函数,当x >0时,f (x )=a x(a >0且a ≠1),且f (log 124)=-3,则a的值为( )A.3 B .3 C .9D.32【解析】 ∵f (log 124)=f ⎝ ⎛⎭⎪⎫log 214=f (-2)=-f (2)=-a 2=-3,∴a 2=3,解得a =±3,又a >0,∴a = 3.【答案】 A9.已知f (x )=a x ,g(x )=log a x (a >0且a ≠1),若f (3)·g(3)<0,则f (x )与g(x )在同一坐标系里的图象是( )【解析】 ∵a >0且a ≠1,∴f (3)=a 3>0,又f (3)·g(3)<0,∴g(3)=log a 3<0,∴0<a <1,∴f (x )=a x 在R 上是减函数,g (x )=log a x 在(0,+∞)上是减函数,故选C.【答案】 C10.设偶函数f (x )=log a |x +b |在(0,+∞)上具有单调性,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)=f (a +1)B .f (b -2)>f (a +1)C .f (b -2)<f (a +1)D .不能确定【解析】 ∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |.当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数,∴f (a +1)>f (2)=f (b -2);当0<a <1时,函数f (x )=log a |x |在(0,+∞)上是减函数,∴f (a +1)>f (2)=f (b -2).综上可知f (b -2)<f (a +1).【答案】 C11.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2]D.⎣⎢⎡⎭⎪⎫138,2 【解析】 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,138,选B .【答案】 B12.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2【解析】 令g (x )=x 2-ax +1(a >0,且a ≠1),①当a >1时,g (x )在R 上单调递增,∴Δ<0,∴1<a <2;②当0<a <1时,g (x )=x 2-ax +1没有最大值,从而函数y =log a (x 2-ax +1)没有最小值,不符合题意.综上所述:1<a <2.故选C.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知lg 2=a ,lg 3=b ,则用a ,b 表示log 125的值为________. 【解析】 ∵lg 2=a ,lg 3=b ,∴log 125=lg 5lg 12=1-lg 22lg 2+lg 3=1-a 2a +b .【答案】1-a2a +b14.方程log 2(9x -1-5)=log 2(3x -1-2)+2的解为________.【解析】 依题意log 2(9x -1-5)=log 2(4·3x -1-8),所以9x -1-5=4·3x -1-8, 令3x -1=t (t >0),则t 2-4t +3=0,解得t =1或t =3,当t =1时,3x -1=1,所以x =1,而91-1-5<0,所以x =1不合题意,舍去; 当t =3时,3x -1=3,所以x =2,92-1-5=4>0,32-1-2=1>0,所以x =2满足条件. 所以x =2是原方程的解. 【答案】 215.已知当x >0时,函数f (x )=(2a -1)x ⎝ ⎛⎭⎪⎫a >0,且a ≠12的值总大于1,则函数y =a 2x -x 2的单调增区间是________.【解析】 由题意知:2a -1>1,解得a >1,设t =2x -x 2,则函数y =a t 为增函数,∵函数t =2x -x 2的增区间为(-∞,1),∴函数y =a 2x -x 2的单调增区间是(-∞,1).【答案】 (-∞,1)(或(-∞,1]) 16.给出下列结论:①4(-2)4=±2; ②y =x 2+1,x ∈[-1,2],y 的值域是[2,5]; ③幂函数图象一定不过第四象限;④函数f (x )=a x +1-2(a >0,且a ≠1)的图象过定点(-1,-1); ⑤若ln a <1成立,则a 的取值范围是(-∞,e ).其中正确的序号是________.【解析】 ①4(-2)4=2,因此不正确;②y =x 2+1,x ∈[-1,2],y 的值域是[1,5],因此不正确;③幂函数图象一定不过第四象限,正确;④当x =-1时,f (-1)=a 0-2=-1,∴函数f (x )=a x +1-2(a >0,a ≠1)的图象过定点(-1,-1),正确;⑤若l n a <1成立,则a 的取值范围是(0,e),因此不正确.综上所述:只有③④正确.【答案】 ③④三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求值: (1)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2;(2)log 2512·log 45-log 133-log 24+5log 52. 【解】 (1)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2=⎝ ⎛⎭⎪⎫9412-1-⎝ ⎛⎭⎪⎫278-23+⎝ ⎛⎭⎪⎫32-2 =32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫232=32-1-49+49=12.(2)log 2512·log 45-log 133-log 24+5log 52=-14+1-2+2=34.18.(本小题满分12分)已知函数f (x )=a 2x +2a x -1(a >1,且a 为常数)在区间[-1,1]上的最大值为14.(1)求f (x )的表达式;(2)求满足f (x )=7时,x 的值.【解】 (1)令t =a x >0.∵x ∈[-1,1],a >1,∴t ∈⎣⎢⎡⎦⎥⎤1a ,a ,f (x )=t 2+2t -1=(t +1)2-2,故当t =a 时,函数f (x )取得最大值为a 2+2a -1=14,解得a =3,∴f (x )=32x +2×3x -1. (2)由f (x )=7,可得32x +2×3x -1=7,即(3x +4)·(3x -2)=0,求得3x =2,∴x =log 32. 19.已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=⎝ ⎛⎭⎪⎫12x .图2(1)画出函数f (x )的图象;(2)根据图象写出f (x )的单调区间,并写出函数的值域.【解】 (1)先作出当x ≥0时,f (x )=⎝ ⎛⎭⎪⎫12x 的图象,利用偶函数的图象关于y 轴对称,再作出f (x )在x ∈(-∞,0)时的图象.(2)函数f (x )的单调递增区间为(-∞,0),单调递减区间为[0,+∞),值域为(0,1]. 20.(本小题满分12分)已知函数f (x )=log a (x -1),g (x )=log a (3-x )(a >0且a ≠1). (1)求函数h (x )=f (x )-g (x )的定义域;(2)利用对数函数的单调性,讨论不等式f (x )≥g (x )中x 的取值范围. 【解】 (1)由⎩⎨⎧x -1>0,3-x >0,得1<x <3.∴函数h (x )的定义域为(1,3). (2)不等式f (x )≥g (x ),即为log a (x -1)≥log a (3-x ).(*)①当0<a <1时,不等式(*)等价于⎩⎨⎧1<x <3,x -1≤3-x ,解得1<x ≤2.②当a >1时,不等式(*)等价于⎩⎨⎧1<x <3,x -1≥3-x ,解得2≤x <3.综上,当0<a <1时,原不等式解集为(1,2]; 当a >1时,原不等式解集为[2,3).21.(本小题满分12分)若函数y =f (x )=a ·3x -1-a3x -1为奇函数.(1)求a 的值; (2)求函数的定义域; (3)求函数的值域.【解】 ∵函数y =f (x )=a ·3x -1-a 3x -1=a -13x -1,(1)由奇函数的定义,可得f (-x )+f (x )=0, 即2a -13x-1-13-x -1=0,∴a =-12. (2)∵y =-12-13x -1,∴3x -1≠0,即x ≠0.∴函数y =-12-13x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴3x -1>-1.∵3x -1≠0,∴0>3x -1>-1或3x -1>0. ∴-12-13x -1>12或-12-13x -1<-12.即函数的值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y >12或y <-12. 22.(本小题满分12分)已知函数f (x )=lg ⎝⎛⎭⎪⎫1-x 1+x . (1)求证:f (x )是奇函数; (2)求证:f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ; (3)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f ⎝ ⎛⎭⎪⎫a -b 1-ab =2,求f (a ),f (b )的值. 【解】 (1)证明:由函数f (x )=lg ⎝ ⎛⎭⎪⎫1-x 1+x ,可得1-x 1+x >0,即x -11+x <0,解得-1<x <1,故函数的定义域为(-1,1),关于原点对称.再根据f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),可得f (x )是奇函数.(2)证明:f (x )+f (y )=lg1-x 1+x +lg 1-y 1+y =lg (1-x )(1-y )(1+x )(1+y ), 而f ⎝ ⎛⎭⎪⎫x +y 1+xy =lg 1-x +y 1+xy 1+x +y 1+xy=lg 1+xy -x -y 1+xy +x +y =lg (1-x )(1-y )(1+x )(1+y ),∴f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy 成立. (3)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f ⎝ ⎛⎭⎪⎫a -b 1-ab =2, 则由(2)可得f (a )+f (b )=1,f (a )-f (b )=2, 解得f (a )=32,f (b )=-12.章末综合测评(三) -第三章 函数的应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则函数f (x )的图象与x 轴在区间[a ,b ]内( )A .至多有一个交点B .必有唯一一个交点C .至少有一个交点D .没有交点【解析】 ∵f (a )f (b )<0,∴f (x )在[a ,b ]内有零点, 又f (x )在区间[a ,b ]上单调,所以这样的点只有一个,故选B . 【答案】 B2.若方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图象是( )【解析】 要使方程f (x )-2=0在(-∞,0)内有解,只需y =f (x )与直线y =2在(-∞,0)上有交点,故D 正确.故选D.【答案】 D3.已知下列四个函数图象,其中能用“二分法”求出函数零点的是( )【解析】 由二分法的定义与原理知A 选项正确. 【答案】 A 4.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )A .1个B .2个C .3个D .4个【解析】 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1,∵⎩⎨⎧-x >0,x -3≠0,解得x <0,∵函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1个.故选A .【答案】 A5.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图1所示,则下列说法正确的是 ( )图1A .甲比乙先出发B .乙比甲跑的路程多C .甲、乙两人的速度相同D .甲比乙先到达终点【解析】 由题图可知,甲到达终点用时短,故选D.【答案】 D6.拟定从甲地到乙地通话m 分钟的电话费由f (m )=1.06(0.50×[m ]+1)给出,其中m >0,[m ]是大于或等于m 的最小整数(例如[2.72]=3,[3.8]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的电话费为多少元.( )A .3.71B .3.97C .4.24D .4.77【解析】 由[m ]是大于或等于m 的最小整数,可得[5.5]=6,所以f (5.5)=1.06×(0.50×6+1)=1.06×4=4.24.故选C .【答案】 C7.函数f (x )=3x +12x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)【解析】 由已知可知,函数f (x )=3x +12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数的零点判定定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C .【答案】 C8.函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0,-2+ln x ,x >0,的零点个数为( )A .0B .1C .2D .3【解析】 当x ≤0时,令x 2+2x -3=0,得x =-3;当x >0时,令-2+ln x =0,得x =e 2,所以函数有两个零点.故选C .【答案】 C9.函数f (x )=|x |+k 有两个零点,则( ) A .k =0 B .k >0 C .0≤k <1D .k <0【解析】 在同一平面直角坐标系中画出y 1=|x |和y 2=-k 的图象,如图所示.若f (x )有两个零点,则必有-k >0,即k <0.【答案】 D10.已知f (x )=(x -a )(x -b )-2,并且α,β是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a <α<b <βB .a <α<β<bC .α<a <b <βD .α<a <β<b【解析】 ∵α,β是函数f (x )的两个零点, ∴f (α)=f (β)=0.又f (a )=f (b )=-2<0,结合二次函数的图象(如图所示)可知a ,b 必在α,β之间.故选C .【答案】 C11.已知函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2x ,若实数x 0是函数f (x )的零点,且0<x 1<x 0,则f (x 1)的值为( )A .恒为正值B .等于0C .恒为负值D .不大于0【解析】 ∵函数f (x )在(0,+∞)上为减函数,且f (x 0)=0,∴当x ∈(0,x 0)时,均有f (x )>0,而0<x 1<x 0,∴f (x 1)>0.【答案】 A12.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a 2x (a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )A.5 B .5 C .±5D .- 5【解析】 设投放x 万元经销甲商品,则经销乙商品投放(20-x )万元,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a 2·20-x ≥5.∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x <20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.如果函数f (x )=x 2+mx +m +3的一个零点为0,则另一个零点是________. 【解析】 函数f (x )=x 2+mx +m +3的一个零点为0,则f (0)=0,∴m +3=0,∴m =-3,则f (x )=x 2-3x ,于是另一个零点是3.【答案】 314.用二分法求方程ln x -2+x =0在区间[1,2]上零点的近似值,先取区间中点c =32,则下一个含根的区间是________.【解析】 令f (x )=ln x -2+x ,则f (1)=ln 1-2+1<0, f (2)=ln 2-2+2=ln 2>0,f ⎝ ⎛⎭⎪⎫32=ln 32-2+32=ln 32-12=ln 32-ln e =ln 32e =ln 94e <ln 1=0,∴f ⎝ ⎛⎭⎪⎫32·f (2)<0,∴下一个含根的区间是⎝ ⎛⎭⎪⎫32,2. 【答案】 ⎝ ⎛⎭⎪⎫32,215.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品日销售价应定为每个________元.【解析】 设每个涨价x 元,则实际销售价为10+x 元,销售的个数为100-10x , 则利润为y =(10+x )(100-10x )-8(100-10x )=-10(x -4)2+360(0≤x <10,x ∈N ).因此,当x =4,即售价定为每个14元时,利润最大.【答案】 1416.已知函数f (x )=log ax +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.【解析】 ∵2<a <3<b <4,∴f (2)=log a 2+2-b <1+2-b =3-b <0,f (3)=log a 3+3-b >1+3-b =4-b >0. 即f (2)·f (3)<0,易知f (x )在(0,+∞)上单调递增.∴函数f (x )在(0,+∞)上存在唯一的零点x 0,且x 0∈(2,3),∴n=2.【答案】 2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设函数f(x)=e x-m-x,其中m∈R,当m>1时,判断函数f(x)在区间(0,m)内是否存在零点.【解】f(x)=e x-m-x,所以f(0)=e-m-0=e-m>0,f(m)=e0-m=1-m.又m>1,所以f(m)<0,所以f(0)·f(m)<0.又函数f(x)的图象在区间[0,m]上是一条连续曲线,故函数f(x)=e x-m-x(m>1)在区间(0,m)内存在零点.18.(本小题满分12分)定义在R上的偶函数y=f(x)在(-∞,0]上递增,函数f(x)的一个零点为-12,求满足f(log14x)≥0的x的取值集合.【解】∵-12是函数的一个零点,∴f⎝⎛⎭⎪⎫-12=0.∵y=f(x)是偶函数且在(-∞,0]上递增,∴当log 14x≤0,解得x≥1,当log14x≥-12,解得x≤2,所以1≤x≤2.由对称性可知,当log 14x>0时,12≤x<1.综上所述,x的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(本小题满分12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2Q10,单位是m/s,其中Q表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?【解】(1)由题知,当燕子静止时,它的速度v=0,代入题给公式可得:0=5log2Q 10,解得Q=10.即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q=80代入题给公式得:v=5log28010=5log28=15(m/s).即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.20.(本小题满分12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f (x );(2)当函数f (x )的定义域为[0,1]时,求其值域. 【解】 (1)因为f (x )的两个零点分别是-3,2, 所以⎩⎨⎧f (-3)=0,f (2)=0,即⎩⎨⎧9a -3(b -8)-a -ab =0,4a +2(b -8)-a -ab =0,解得a =-3,b =5,f (x )=-3x 2-3x +18.(2)由(1)知f (x )=-3x 2-3x +18的对称轴x =-12,函数开口向下,所以f (x )在[0,1]上为减函数,f (x )的最大值f (0)=18,最小值f (1)=12,所以值域为[12,18].21.(本小题满分12分)如图2,直角梯形OABC 位于直线x =t 右侧的图形的面积为f (t ).图2(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 【解】 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2, 当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,(0≤t ≤2),10-2t ,(2<t ≤5).(2)函数f (t )图象如图所示.22.(本小题满分12分)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为2.10元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元.已知甲、乙两用户该月用水量分别为5x,3x 吨.(1)求y 关于x 的函数;(2)如甲、乙两户该月共交水费40.8元,分别求出甲、乙两户该月的用水量和水费. 【解】 (1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨, y =(5x +3x )×2.1=16.8x ;当甲的用水量超过4吨,乙的用水量不超过4吨时,即3x ≤4且5x >4, y =4×2.1+3x ×2.1+3×(5x -4)=21.3x -3.6. 当乙的用水量超过4吨时,即3x >4,y =8×2.1+3(8x -8)=24x -7.2,所以y =⎩⎪⎨⎪⎧16.8x ⎝ ⎛⎭⎪⎫0≤x ≤45,21.3x -3.6⎝ ⎛⎭⎪⎫45<x ≤43,24x -7.2⎝ ⎛⎭⎪⎫x >43.(2)由于y =f (x )在各段区间上均为单调递增函数, 当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<40.8;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<40.8; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -7.2=40.8,解得x =2,所以甲用户用水量为5x =10吨,付费S 1=4×2.1+6×3=26.40(元);乙用户用水量为3x =6吨,付费S 2=4×2.1+2×3=14.40(元).模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B =( ) A .{1,2,4} B .{2,3,4} C .{0,2,4}D .{0,2,3,4}【解析】 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C .【答案】 C2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=( ) A .0 B .1 C .2D .3【解析】 ∵f (2)=log 3(22-1)=1, ∴f (f (2))=f (1)=2e 1-1=2. 【答案】 C3.同时满足以下三个条件的函数是( )①图象过点(0,1);②在区间(0,+∞)上单调递减;③是偶函数. A .f (x )=-(x +1)2+2 B .f (x )=3|x | C .f (x )=⎝ ⎛⎭⎪⎫12|x |D .f (x )=x -2【解析】 A .f (x )=-(x +1)2+2关于x =-1对称,不是偶函数,不满足条件③. B .f (x )=3|x |在区间(0,+∞)上单调递增,不满足条件②. C .若f (x )=⎝ ⎛⎭⎪⎫12|x |,则三个条件都满足.D .若f (x )=x -2,则f (0)无意义,不满足条件①.故选C . 【答案】 C4.与函数y =-2x 3有相同图象的一个函数是( ) A .y =-x -2xB .y =x -2xC .y =-2x 3D .y =x2-2x【解析】 函数y =-2x 3的定义域为(-∞,0],故y =-2x 3=|x |-2x =-x -2x ,故选A .【答案】 A5.函数f (x )=2x -1+log 2x 的零点所在区间是( ) A.⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C .⎝ ⎛⎭⎪⎫12,1 D .(1,2)【解析】 ∵函数f (x )=2x -1+log 2x , ∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1, ∴f ⎝ ⎛⎭⎪⎫12f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C . 【答案】 C6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是( )A.13 B .-13 C .3D .-3【解析】 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得α=-3,所以y =x -3,由f (x )=27,得x -3=27,即x =13. 【答案】 A7.函数f (x )=2x 21-x +lg (3x +1)的定义域为( )A.⎝ ⎛⎭⎪⎫-13,1B.⎝ ⎛⎭⎪⎫-13,13 C .⎝ ⎛⎭⎪⎫-13,+∞ D.⎝ ⎛⎭⎪⎫-∞,13 【解析】 要使函数有意义,只需⎩⎨⎧1-x >0,3x +1>0,解得-13<x <1,故函数f (x )=2x 21-x +lg(3x +1)的定义域为⎝ ⎛⎭⎪⎫-13,1.【答案】 A8.设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A .c <a <b B .b <a <c C .c <b <aD .a <b <c【解析】 因为y =x 0.5在(0,+∞)上是增函数,且0.5>0.3,所以0.50.5>0.30.5,即a >b ,c =log 0.30.2>log 0.30.3=1,而1=0.50>0.50.5.所以b <a <c .故选B . 【答案】 B9.若函数f (x )=(k -1)ax -a -x (a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )【解析】 由f (x )=(k -1)ax -a -x (a >0,且a ≠1)在R 上既是奇函数,又是减函数,所以k =2,0<a <1,再由对数的图象可知A 正确.【答案】 A10.已知函数f (x )=1+x 21-x 2,则有( )A .f (x )是奇函数,且f ⎝ ⎛⎭⎪⎫1x =-f (x )B .f (x )是奇函数,且f ⎝ ⎛⎭⎪⎫1x =f (x )C .f (x )是偶函数,且f ⎝ ⎛⎭⎪⎫1x =-f (x )D .f (x )是偶函数,且f ⎝ ⎛⎭⎪⎫1x =f (x )【解析】 ∵f (-x )=f (x ), ∴f (x )是偶函数,排除A ,B .又f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=1+x 2x 2-1=-f (x ),故选C .【答案】 C11.在y =2x ,y =log 2x ,y =x 2这三个函数中,当0<x 1<x 2<1时,使f ⎝⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2恒成立的函数的个数是( )A .0个B .1个C .2个D .3个【解析】 在0<x 1<x 2<1时, y =2x使f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立,y =log 2x 使f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2恒成立,y =x 2使f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立.故选B .【答案】 B12.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解是( ) A .(-3,0)∪(1,+∞) B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-3,0)∪(1,3)【解析】 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴f (x )在(-∞,0)内也是增函数.又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0.∵(x -1)·f (x )<0,∴⎩⎨⎧ x -1<0,f (x )>0或⎩⎨⎧x -1>0,f (x )<0,解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点________.【解析】 因为a 0=1,故f (2)=a 0-3=-2,所以函数f (x )=ax -2-3必过定点(2,-2).【答案】(2,-2)14.设A∪{-1,1}={-1,1},则满足条件的集合A共有________个.【解析】∵A∪{-1,1}={-1,1},∴A⊆{-1,1},满足条件的集合A为:∅,{-1},{1},{-1,1},共4个.【答案】 415.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+3x),则f(-1)=________.【解析】由题意知f(-1)=-f(1)=-1×(1+31)=-2.【答案】-216.下列命题:①偶函数的图象一定与y轴相交;②定义在R上的奇函数f(x)必满足f(0)=0;③f(x)=(2x+1)2-2(2x-1)既不是奇函数也不是偶函数;④A=R,B=R,f:x→y=1x+1,则f为A到B的映射;⑤f(x)=1x在(-∞,0)∪(0,+∞)上是减函数.其中真命题的序号是________.(把你认为正确的命题的序号都填上)【解析】①不正确,如y=lg|x|,其在原点处无定义,其图象不可能与y轴相交;②正确,∵f(-x)=-f(x),∴f(-0)=-f(0)=f(0),∴f(0)=0;③不正确,∵f(x)=(2x+1)2-2(2x-1)=4x2+3,且f(-x)=f(x),∴f(x)为偶函数;④不正确,当x=-1时,在B中没有元素与之对应;⑤不正确,只能说f(x)=1x在(-∞,0)及(0,+∞)上是减函数.【答案】②三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值:(1)1.5-13×⎝⎛⎭⎪⎫-760+80.25×42-;(2)12lg3249-43lg 8+lg 245+10lg 3.【解】 (1)原式=×=2.(2)原式=12(lg 25-lg 72)-+12lg (72×5)+10lg 3=52lg 2-lg 7-2lg 2+lg 7+12lg 5+3=12lg 2+12lg 5+3=12(lg 2+lg 5)+3=72.18.(本小题满分12分)已知集合A ={x |(a -1)x 2+3x -2=0},B ={x |x 2-3x +2=0}. (1)若A ≠∅,求实数a 的取值范围; (2)若A ∩B =A ,求实数a 的取值范围.【解】 (1)①当a =1时,A =⎩⎨⎧⎭⎬⎫23≠∅,合题意;②当a ≠1时,由Δ=9+8(a -1)≥0,得a ≥-18且a ≠1. 综上所述,a 的范围为a ≥-18. (2)由A ∩B =A ,得A ⊆B .①当A =∅时,a <-18,显然合题意;②当A ≠∅时,得到B 中方程的解1和2为A 的元素,即A ={1,2}, 把x =1代入A 中方程,得a =0. 综上所述,a的范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a <-18,或a =0. 19.(本小题满分12分)已知函数f (x )=1-2x . (1)若g (x )=f (x )-a 为奇函数,求a 的值;(2)试判断f (x )在(0,+∞)内的单调性,并用定义证明. 【解】 (1)由已知得g (x )=1-a -2x , ∵g (x )是奇函数,∴g (-x )=-g (x ),即1-a -2-x=-⎝ ⎛⎭⎪⎫1-a -2x ,解得a =1.(2)函数f (x )在(0,+∞)内是单调增函数. 证明如下:任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1-2x 1-⎝ ⎛⎭⎪⎫1-2x 2=2(x 1-x 2)x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0,从而2(x 1-x 2)x 1x 2<0,即f (x 1)<f (x 2).∴函数f (x )在(0,+∞)内是单调增函数.20.(本小题满分12分)已知函数f (x )=x 2-2mx +m 2+4m -2. (1)若函数f (x )在区间[0,1]上是单调递减函数,求实数m 的取值范围; (2)若函数f (x )在区间[0,1]上有最小值-3,求实数m 的值. 【解】 f (x )=(x -m )2+4m -2.(1)由f (x )在区间[0,1]上是单调递减函数得m ≥1.(2)当m ≤0时,f (x )min =f (0)=m 2+4m -2=-3,解得m =-2-3或m =-2+ 3. 当0<m <1时,f (x )min =f (m )=4m -2=-3, 解得m =-14(舍).当m ≥1时,f (x )min =f (1)=m 2+2m -1=-3,无解. 综上可知,实数m 的值是-2±3.21.(本小题满分12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1), (1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0.【解】 (1)要使函数有意义,则有⎩⎨⎧2x +1>0,1-2x >0,解得-12<x <12.∴函数F (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <12. (2)F (x )=f (x )-g (x )=log a (2x +1)-log a (1-2x ),F (-x )=f (-x )-g (-x )=log a (-2x +1)-log a (1+2x )=-F (x ). ∴F (x )为奇函数. (3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0, 即log a (2x +1)>log a (1-2x ).①当0<a <1时,有0<2x +1<1-2x , ∴-12<x <0.②当a >1时,有2x +1>1-2x >0,∴0<x <12.综上所述,当0<a <1时,有x ∈⎝ ⎛⎭⎪⎫-12,0,使得f (x )-g (x )>0; 当a >1时,有x ∈⎝ ⎛⎭⎪⎫0,12,使得f (x )-g (x )>0. 21.(本小题满分12分)甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲,乙两图:甲 乙图1甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条. 乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大了还是缩小了?说明理由;(3)哪一年的规模(即总产量)最大?说明理由.【解】 由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y 甲=0.2x +0.8,图乙图象经过(1,30)和(6,10)两点,从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲×y 乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规划比第1年缩小了.(3)设第m 年的规模最大,总出产量为n ,那么n =y 甲y 乙=(0.2m +0.8)(-4m +34)=-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25,因此,当m =2时,n 最大值为31.2.即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条.。
高中数学 第一章 集合测试同步练习 新人教A版必修1
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( ) A .)}1,1{( B .}1,1{ C .(1,1) D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A Y ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8B. 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )M N A M N B N M C M NDA. A B YB. B A IC. B C A C U U ID. B C A C U U Y11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0 或1 C .1 D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A I ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年新课标人教A 版集合单元测试题
(时间80分钟,满分100分)
一、选择题:(每小题4分,共计40分)
1、如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(
A U
)B 等于( )
(A){}5 (B) {}8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,1
2、如果U 是全集,M ,P ,S 是U 的三个子集,则阴影部分所表示的集合为 ( )
(A )(M ∩P )∩S ;
(B )(M ∩P )∪S ; (C )(M ∩P )∩(C U S ) (D )(M ∩P )∪(C U S )
3、已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为( ) A 、3,1x y ==- B 、(3,1)- C 、{3,1}- D 、{(3,1)}- 4. 2{4,21,}A a a =--,B={5,1,9},a a --且{9}A B ⋂=,则a 的值是 ( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或 5.若集合2{440,}A x kx x x R =++=∈中只有一个元素,则实数k 的值为 ( ) A.0 B. 1 C. 0或1 D. 1k < 6. 集合2{4,,}A y y x x N y N ==-+∈∈的真子集的个数为 ( ) A. 9 B. 8 C. 7 D. 6
7. 符号{}a ⊂≠{,,}P a b c ⊆的集合P 的个数是 ( ) A. 2 B. 3 C. 4 D. 5 8. 已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M 与P 的关系是
( )
A. M=P
B. P R ∈ C . M ⊂≠P D. M ⊃≠P 9. 设U 为全集,集合A 、B 、C 满足条件A B A C ⋃=⋃,那么下列各式中一定成立的
是( )
A.A B A C ⋂=⋂
B.B C =
C. ()()U U A C B A C C ⋂=⋂
D. ()()U U C A B C A C ⋂=⋂
10. 2{60},{10}A x x x B x mx =+-==+=,且A B A ⋃=,则m 的取值范围是( ) A.1
1
{,}3
2
- B. 1
1
{0,,}3
2
-- C. 1
1
{0,,}3
2
- D. 11
{,}32
二、选择题:(每小题4分,满分20分)
11. 设集合{=M 小于5的质数},则M 的真子集的个数为 . 12. 设{1,2,3,4,5,6,7,8}U =,{3,4,5},{4,7,8}.A B ==则:()()U U C A C B ⋂= ,
()()U U C A C B ⋃= .
13 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.
14. 已知{15},{4}A x x x B x a x a =<->=≤<+或,若A ⊃≠B,则实数a 的取值范围是 .
15. 已知集合22{31},{31}P x x m m T x x n n ==++==-+,有下列判断:
①5
{}4
P T y y ⋂=≥- ②5
{}4
P T y y ⋃=≥- ③ P T ⋂=∅ ④P T =
其中正确的是 .
2008年新课标人教A 版集合单元测试答题卷
二、选择题:(每小题4分,满分20分)
11. . 12. . .
13. . 14. . 15. . 三、解答题
16. (本题满分10分)已知含有三个元素的集合2{,,1}{,,0},b
a a a
b a =+求2008
2007b a +的值.
17. (本题满分10分)若集合}10{的正整数小于=S ,
S
B S A ⊆⊆,,且}8,6,4{)()(},2{},9,1{)(=⋂=⋂=⋂B
C A C B A B A C S S S ,求A 和B 。
18. (本题满分10分)已知集合}71{<<
=x x A ,集合}521{+<<+=a x a x B ,若满足
}73{<<=x x B A ,求实数
a 的值.
19. (本题满分10分)
设}01)1(2|{},04|{222=-+++==+=a x a x x B x x x A ,若B B A =⋂,求a 的值
集合单元测试参考答案:
1、D
2、C
3、D 4. B 5.C 6. C 7. B 8. A 9. D 10.C 11. 3 12. {1,2,6},{1,2,3,5,6,7,8} 13.26 14. (,5](5,)-∞-⋃+∞ 15. ①②④ 16. 解析:由题意分析知0a ≠,由两个集合相等得
22
001
1b b a a a a b a a a b a ⎧⎧==⎪⎪⎪⎪
⎪=+=⎨⎨⎪⎪+==⎪⎪⎪⎩
⎩
或
解得01b a =⎧⎧⎨
⎨
=⎩⎩b=0
或a=-1
经检验0,1b a ==不合题意, 0,1,b a ∴==- 所以20082007b a +=1-.
17. 解析:此题可利用Venn 图来辅助解决 如图所示,易得 }7,5,3,2{=A ,B=}9,2,1{ 18. 解析:(1)2A ∈ 112
A ∴
∈-,即1A -∈,11(1)
A ∴
∈--, 12
A
∈即
,
1
{2,1,}.2
A ∴=-
(2)假设A 中仅含一个元素,不妨设为a, 则1,1a A A
a
∈∈-有
又A 中只有一个元素
11a a
∴=
-
即210a a -+=
此方程0∆<即方程无实数根. ∴不存在这样的a.
20. 解析:∵ B B A =⋂ ∴ B ⊆A ,
由A={0,-4},∴B=Φ,或B={0},或B={-4},或B={0,-4} 当B=Φ时,方程01)1(222=-+++a x a x 无实数根,则 △ =0)1(4)1(422<--+a a 整理得 01<+a 解得 1-<a ;
当B={0}时,方程01)1(222=-+++a x a x 有两等根均为0,则
⎩
⎨⎧=-=+-010
)1(22
a a 解得 1-=a ; 当B={-4}时,方程01)1(222=-+++a x a x 有两等根均为-4,则
⎩
⎨⎧=--=+-1618
)1(22
a a 无解; 当B={0,-4}时,方程01)1(222=-+++a x a x 的两根分别为0,-4,则
⎩⎨⎧=--=+-0
14
)1(22
a a 解得 1=a 综上所述:11=-≤a a 或。