不等式的性质2.1.2
中职数学不等式
2.1不等式的性质一、知识要点:性质1(传递性)如果a>b,b>c,则a>c.性质2(加法法则) 不等式的两边都加上(或减去)同一个数,不等号的方向不变.如果a>b,则a+c>b+c.不等式中任何一项,变号后可以从一边移到另一边.例1(1)在-6<2 的两边都加上9,得;(2)在4>-3 的两边都减去6,得;(3)如果a<b,那么a-3 b-3;(4)如果x>3,那么x+2 5;(5)如果x+7>9,那么两边都,得x>2.性质3(乘法法则) 如果不等式两边都乘同一个正数,则不等号的方向不变,如果都乘同一个负数,则不等号的方向改变.如果a>b,c>0,那么a c>b c;如果a>b,c<0,那么a c<b c.练习2(1)在-3<-2的两边都乘以2,得;(2)在1>-2的两边都乘以-3,得;(3)如果a>b,那么-3 a-3 b;(4)如果a<0,那么 3 a 5 a;(5)如果 3 x>-9,那么x-3;(6)如果-3 x>9,那么x-3.练习3 判断下列不等式是否成立,并说明理由.(1)若a<b,则a c<b c. ( )(2)若a c>b c,则a>b. ( )(3)若a>b,则a c2>b c2. ( )(4)若a c2>b c2,则a>b. ( )(5)若a>b,则a(c2+1)>b(c2+1) . ( )2.2区间的概念一、知识要点:设a,b 是实数,且a<b.满足a≤x≤b 的实数x 的全体,叫做闭区间,记作 [a,b],如图.a,b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端点,则端点用实心点表示;若区间不包括端点,则端点用空心点表示.全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”.例1 用区间记法表示下列不等式的解集:(1) 9≤x≤10; (2) x≤0.4.练习1 用区间记法表示下列不等式的解集,并在数轴上表示这些区间:(1) -2≤x≤3; (2) -3<x≤4;(3) -2≤x<3; (4) -3<x<4;(5) x>3; (6) x≤4.例2 用集合的性质描述法表示下列区间:(1) (-4,0); (2) (-8,7].练习2 用集合的性质描述法表示下列区间,并在数轴上表示这些区间:(1) [-1,2); (2) [3,1].例3 在数轴上表示集合{x|x<-2或x≥1}.练习3已知数轴上的三个区间:(-∞,-3),(-3,4),(4,+∞).当x 在每个区间上取值时,试确定代数式x+3的值的符号.填制表格:2.3 一元二次不等式1.一元二次不等式的概念.只含有一个未知数,未知数的最高次项的次数是2,且系数不为0的整式不等式叫做一元二次不等式.它的一般形式是ax2+bx+c>0 或ax2+bx+c<0(a≠0).a x2+b x+c>0或a x2+b x+c<0 (a≠0)中,当b2-4 a c>0时进行求解:(1) 两边同除以a,得到二次项系数为1的不等式;(2) 分解因式变为(x+x1)(x+x2)>0或(x+x1)(x+x2)<0的形式.练习1 判断下列不等式是否是一元二次不等式:(1) x2-3x+5≤0; (2) x2-9≥0;(3) 3x2-2 x>0; (4) x2+5<0;(5) x2-2 x≤3; (6) 3 x+5>0;(7) (x-2)2≤4; (8) x2<4.2.解一元二次不等式.例1 解下列不等式:(1) x2-x-12>0; (2) x2-x-12<0.练习2 解一元二次不等式:(1) (x+1)(x-2)<0; 2) (x+2)(x-3)>0;(3)x2-2x-3>0;(4)x2-2x-3<0.(5) x2+8x+15>0 (6)-x2-3x+4>0例2 解下列不等式:(1) x2-4 x+4>0; (2) x2-4 x+4<0.例3 解不等式:(1) x2-2 x+3>0; (2) x2-2 x+3<0.练习1 解下列不等式:(1) x2-2x+3≤0; (2) x2+4x+5>0;解一元二次不等式的步骤:S1 求出方程ax2+bx+c=0的判别式∆=b2-4ac的值.S2 (1)∆>0,则二次方程ax2+bx+c=0(a>0)有两个不等的根x1,x2(设x1<x2),则ax2+bx+c=a(x-x)(x-x2) .1不等式a(x-x1)(x-x2)>0的解集是(-∞,x1)∪(x2,+∞);不等式a(x-x1)(x-x2)<0的解集是(x1,x2) .(2)∆=0,通过配方得a( x+b2a)2+4ac-b24a=a( x+b2a)2.由此可知,ax2+bx+c>0的解集是(-∞,-b2a)∪(-b2a,+∞);ax2+bx+c<0的解集是∅.(3)∆<0,通过配方得a(x+b2a)2+4ac-b24a(4ac-b24a>0).由此可知,ax2+bx+c>0的解集是R;ax2+bx+c<0的解集是∅.练习2 解下列不等式:(1) 4 x2+4 x-3 <0;(2) 3 x≥5-2 x2;(3) 9 x2-5 x-4≤0;(4)x2-4 x+5>0.五、基础知识训练:(一)选择题:1.(97高职-1)不等式x2+2x+1>0的解集是( )A.ΦB.RC.{x|x= -1}D.{x|x ≠-1,x∈R}2. 不等式(x 2-4x-5)(x 2+8)<0的解集是( )A.{x|-1<x <5}B.{x|x <-1或x >5}C.{x|0<x <5}D.{x|-1<x <0}3. 不等式ax 2+2x+c >0(a ≠0)的解集是空集的充要条件是( )A.a <0且b 2-4ac >0B.a <0且b 2-4ac <0C.a <0且b 2-4ac ≥0D.a <0且b 2-4ac ≤04. 下列不等式中,解集是空集的不等式是( )A.4x 2-20x+25>0B.2x 2-34x+6≤0C.3x 2-3x+1>0D.2x 2-2x+1<05. 若x 2-mx+1<0,则实系数m 的取值范围为( )A.m >2或m <-2B.-2<m <2C.m ≠±2D.m ∈R 6. 若ax 2+5x+c >0的解集是}2131{<<x x,则a+c 的值为( ) A.7 B.5 C.-5 D.-7 (二)填空题:7. 已知不等式x 2+bx+c >0的解集为{x|x <3-或x >2},则b= ,c= .8. 已知(m+3)x 2+(2m-1)x+2(m-1)<0对任意x ∈R 都成立,则实系数m 的取值范围为 . (三)解答题:9. 设集合A={x|x 2-2x-8≥0, x ∈R},B={x|1-|x-a|>0, x,a ∈R},A ∩B=Φ,求a的取值范围.2.4 含有绝对值的不等式1. | a |= ⎩⎪⎨⎪⎧ (a >0)(a =0) (a <0)一、|a |的几何意义数 a 的绝对值|a |,在数轴上等于对应实数a 的点到原点的距离. 例如,|-3|=3,|3|=3.二、|x |>a 与|x |<a 的几何意义 问题1(1)解方程|x |=3,并说明|x |=3的几何意义是什么?(2)试叙述|x |>3,|x |<3的几何意义,你能写出其解集吗? 结论:|x |>a 的几何意义是到原点的距离大于a 的点,其解集是{x |x >a 或x <-a }. |x |<a 的几何意义是到原点的距离小于a 的点,其解集是{x |-a <x <a }. 三、解含有绝对值的不等式 练习1 解下列不等式(1)|x |<5; (2)|x |-3>0; (3)3|x |>12.例1 解不等式|2x -3|<5例2 解不等式|2 x -3|≥5.四、含有绝对值的不等式的解法总结|a x +b |<c (c >0) 的解法是先化不等式组 -c <a x +b <c ,再由不等式的性质求出原不等式的解集.|a x +b |>c (c >0)的解法是先化不等式组a x +b >c 或a x +b <-c ,再由不等式的性质求出原不等式的解集.练习2 解下列不等式(1)|x +5|≤7 ; (2)|5 x -3|>2五、基础知识训练: (一)选择题:1. 不等式|x-2|>1的解集是( )A.(1,3)B.(3,+∞)C.(-∞,1)D.(-∞,1)∪(3,+∞)2. 不等式|2-3x|>5的解集是( )A.(-1,37)B.(37,+∞) C.(-1,+∞) D.(-∞,-1)∪(37,+∞) 3. 不等式|2-3x|≤21的解集是( )A.{x|21<x <65}B. {x|x <21或x >65}C. {x|x ≤21或x ≥65}D. {x|21≤x ≤65}4. 已知A={x 2+x ≥5},B={x x -3<2},则A ∪B 等于( )A.{x|x ≤7或x >1}B.{x| -7≤x <1}C.{x|x ∈R}D.{x|x ≤7或x ≥3}5. 已知A={x 2-x <3},B={x 1-x >1},则A ∩B 等于( ) A.{x|x <0或x >2} B.{x| -1<x <5} C.{x|-1<x <0} D.{x|-1<x <0或2<x <5} (二)填空题:6. 若不等式|x-a|<b 的解集为{x|-3<x <9},则ba2log = . 7. 若{x||a-2x|>b,b >0}={x|x <-5或x >4},则a 2+b= .8. 若x ∈Z,则不等式382<-x 的解集是 .不等式作业一、选择题(1)不等式123>-x 的解集为( ) A.()+∞⎪⎭⎫ ⎝⎛-∞-,131, B.⎪⎭⎫ ⎝⎛-1,31 C.()+∞⎪⎭⎫ ⎝⎛∞-,131, D.⎪⎭⎫⎝⎛1,31(2)、设集合(,1),(0,),A B =-∞=+∞则A B =_______A .R B.(),1O C.(),0-∞ D.()1,+∞(3)、不等式21≤≤x 用区间表示为: ( )A (1,2)B (1,2]C [1,2)D [1,2](4)、不等式22--x x <0的解集是 ( )A .(-2,1)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-∞,-1)∪(2,+∞)(5)、()2,5A =,[)3,6B =,则A B =( ).A 、()2,5B 、[)3,6C 、()3,5D 、[)3,5(6)、设()(]0,,2,3,A B =+∞=-则A B =_______A.()2,-+∞ B.()2,0- C.(]0,3 D.()0,3(7)、已知全集U={0,1,2,3},A={1,2},则C U A=( )A 、{0}B 、{3}C 、{0,3}D 、{0,1,3}(8)、不等式2232x x --≥0的解集为 ( )A. (12,-⎤-∞⎦∪[)2,+∞ B. 12,2⎡⎤-⎣⎦C. (12,⎤-∞⎦∪[)2,-+∞ D. 12,2⎡⎤-⎣⎦(9)、已知全集U R =,(]1,2A =,则C U A=( )A. ()(),12,-∞+∞B. ()[),12,-∞+∞C. (](),12,-∞+∞D. (][),12,-∞+∞(10)、一元二次方程042=+-mx x 有实数解的条件是m ∈( )A.]()[∞+-∞-,44,B.()4,4-C.()()+∞-∞-,44,D.[]4,4-二.填空题⑴ 不等式352>-x 的解集为(2)设(][]1,3,3,6,A B =-=,则A B .(3)24x >的解集(4).已知全集U={0,1,2,3},A={1,2},则C U A=( )A 、{0}B 、{3}C 、{0,3}D 、{0,1,3}(5)不等式组⎩⎨⎧<->-0201x x 的解集为 ; (6)不等式∣2x -1∣<3的解集是 ;(7)集合{}2x x ≥-用区间表示为 .(8)设全集(),3,R A ==+∞,则CA = .(9) 当x 时,代数式x x 42-有意义(10)不等式()()021>+-x x 的解集为2.解下列各不等式⑴ 22>0x x - ⑵ 052≤+-x x⑶ 02322>++x x ⑷ 2212x -≤(5)4130x +->。
2.1.2等式性质与不等式的性质【试题版】
2.1.2等式性质与不等式的性质1. 已知a>b,c>d,且c,d均不为0,那么下列不等式一定成立的是() A.ad>bc B.ac>bdC.a-c>b-d D.a+c>b+d2. 给出下列命题:①a>b⇒a2>b2;②a2>b2⇒a>b;③a>b⇒ba<1;④a>b⇒1a<1b.其中正确的命题个数是()A.0B.1C.2 D.33. 若-1<α<β<1,则下列各式中恒成立的是()A.-2<α-β<0B.-2<α-β<-1 C.-1<α-β<0 D.-1<α-β<1 4. 若a>b>0,c<d<0,则一定有()A.ac>bd B.ac<bdC.ad>bc D.ad<bc5.若a,b,c∈R,a>b,则下列不等式恒成立的是()A.1a<1b B.a2>b2C.ac2+1>bc2+1D.a|c|>b|c|6.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )A .d >b >a >cB .b >c >d >aC .d >b >c >aD .c >a >d >b 7.已知a >0,b >0,c >0,若c a +b <a b +c <b c +a ,则有( ) A .c <a <bB .b <c <aC .a <b <cD .c <b <a8.已知10,0a b -<<<,则2,,b a a b 的大小关系是( )A .2b ab a b <<B .2a b ab b <<C .2a b b ab <<D .2b a b ab <<9.已知实数0,0b a m >><,则mb _____ma ,b m a m --_____b a (用>,<填空). 10.已知若a >b >c ,且a +b +c =0,则b 2-4ac 0.(填“>”“<”或“=”)11.已知12,36a b ≤≤≤≤,则32a b -的取值范围为_____.12.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是 .13.对于实数a ,b ,c ,有下列说法:①若a >b ,则ac <bc ;②若ac 2>bc 2,则a >b ;③若a <b <0,则a 2>ab >b 2; 其中正确的是________(填序号).14.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;③若|a-b|=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.其中正确的命题为(写出所有正确命题的序号).15.已知三个不等式:①ab>0;②ca>db;③bc>ad.若以其中两个作为条件,余下的一个作为结论,请写出两个正确的命题,并写出推理过程.16.若bc-ad≥0,bd>0,求证:a+bb≤c+dd.17.已知a>b>c>0,求证:ba-b>ba-c>ca-c.18.已知a>b>0,c>d>0,求证:(1)ad>b c;(2)aca+c>bdb+d.。
人教版高中数学必修第一册第二章2.1.2等式性质与不等式性质(2)【课件】
【活动4】初步了解不等式的性质的应用
【问题5】“若a>b,则ac2>bc2”,此命题是否正确?
【问题6】已知a>b,c>d,要使① a+c>b+d;② ac>bd成立,a,
b,c,d需满足的条件是否一致?
【问题7】若a>b,c>d,则a+c>b+d成立吗?a-c>b-d呢?
【问题8】若a>b,c>d,则ac>bd成立吗?
【证明】 (1) 由bc-ad≥0可得bc≥ad,又bd>0,两边同除以bd
+ +
+ +
可得 ≥ ,即 ≥ .两边同时加1可得 ≥ ,即 ≤ .
+ + +
++ ++ ++
(2) 由 < < ,各式同时加1可得
<
<
,由
运用不等式的性质解决有关问题
学科核心素养
通过对不等式性质的研究,提升
数学抽象、数学运算及逻辑推理
素养
运用不等式的性质解决问题,培
养数学抽象及数学运算素养
情境导学
在日常生活中,我们知道对于糖水来说,如果再往糖水中加入
一些糖,糖水会变得更甜.设糖水为b g,含糖a g,再加入c g糖.
你能用不等式表示出糖水变甜这一现象吗?
(2)
已知a<b<0,求证: < .
【证明】
(1) 因为a>b,c>0,所以ac>bc,即-ac<-bc.又e>f,即f<e,所以f-ac<e-bc.
2.1.2不等式的基本性质
2.1.2不等式的基本性质与相等关系一样,不等关系也是现实世界普遍存在的一类关系.在现实生活中,人们经常遇到长与短、多与少、高与矮、轻与重、远与近、强与弱、亮与暗、快与慢等各种现象,实际上,这些都属于数学中要研究的客观事物在数量上存在的不等关系。
在数学中,描述相等关系用等式,描述不等关系则用不等式.与相等关系一样,不等关系也是数学研究的重要内容.研究不等关系和不等式,都是我们认识世界的重要途径.下面先看一个实际问题。
自来水管的横截面一般总制成圆形,而不是正方形,这在数学上怎样说明道理呢?实际上,当周长相等的时候,圆的面积比正方形的面积大,所以用同样的一块材料制成截面是圆形的水管,水流量大,也就是说,制成横截面是圆形的水管比较节省材料。
我们知道,周长为C 的正方形的每边的长是4C ,它的面积为()24C ;周长为C 的圆的半径是2C π,圆的面积是()22C ππ ,要说明圆形截面水管的水流量大,就是要说明以下的不等式成立: ()22C ππ>()24.C从以上实际问题看到,在现实世界中,与不等式有关的问题是非常普遍的。
应该怎样去论证以上的不等关系呢?为了利用不等式研究不等关系,需要对不等式的性质有必要的了解.研究不等式的出发点是实数的大小关系。
我们知道,数轴上的点与实数一一对应,因此可以利用数轴上点的左右位置关系来规定实数的大小关系。
设a ,b 是两个实数,它们在数轴上所对应的点分别是A ,B .那么,当点A 在点B 的左边时,a <b ;当点A 在点B 的右边时,a >b (图x ).图x关于实数a ,b 大小的比较,有以下的基本事实:如果a -b 是正数,那么a >b ;如果a -b 等于零,那么a=b ;如果a -b 是负数,那么a <b .反过来也对.这个基本事实可以表示为:a -b >0 ⟺ a >b;a -b = 0⟺a =b ;a -b <0⟺a <b .以上基本事实是证明不等式的最基本的依据。
必修一数学第二章2.1不等式与不等式性质2
•
2x-3
3
> 3x-2 2
9.1.2.3不等式的性质(3)
• 例2:某长方体形状的容器长5cm,宽3cm, 高10cm。容器内原有水的高度为3cm,现准 备向它继续注水。用Vcm3表示水的体积,写 出V的取值范围。
9.1.2.3不等式的性质(3)
• 例3:三角形任意两边之差与第三边有着怎 样的大小关系?
(3)根据不等式的性质1, 两边都除以3,得
x<-3.
将下列不等式化成“x>a”或“x<a”的形
式:
(1)x - 5>-1
x>4
(2)-2x>3
x<-1.5
(3)2x- 1<2 (4)-x < 5
6
x <1.5
x >- 5
6
将下列不等式化成“x>a”或“x<a”的形式:
(1) 3x 2 2x 3
(3)3a___<___ 0;
(4) a ___>___0;
4
(5)a2__>___0;
(6)a3____<__0
(7)a-1__<____0; (8)|a|__>____0.
将下列不等式化成“x>a”或“x<a”的形式:
(1)x-5>-1; 解:
(2)-2x>3; (3)3x<-9.
(1)根据不等式的性质1, 两边都加上5,得
(3)若 a > -1, 4
则 a___>___ -10; 则 a __>____-4 ;
(4)若 2 a > 0, 则 a ___<____ 0 ;
3
1.(口答)已知a<b,用“<”或“>”号
填空:
(1)a-3_<__b-3
(2) 6a_<___6b (3) –a_>__-b
(4) a-b_<___0
第2章 不等式
第2章 不等式考点解读1.不等式的性质(1)实数的大小比较与实数运算性质之间的关系0a b a b >⇔->;0a b a b <⇔-<;0a b a b =⇔-=(2)不等式的基本性质性质1.(传递性)如果,a b b c >>,那么a c > 性质2.(加法性质)如果a b >,那么a c b c +>+性质3.(乘法性质)如果a b >,0c >,那么ac bc >;如果a b >,0,c <那么ac bc < (3)从不等式的基本性质出发,还可以得到哪些有用的推论?推论1. ,a b c d a c b d >>+>+如果那么; 推论2. ,a b c d a c b d ><->-如果那么 推论3. 0,0a b c d ac bd >>>>>如果那么; 推论4. 110,a b a b>><如果那么 推论5. 0,0a ba b d c c d>>>>>如果那么; 推论6. *0,()n n a b a b n N >>>∈如果那么 推论7. 110,nna b a b >>>如果那么*(,1)n N n ∈>(4)如何比较不等式的大小?①作差法 ②作商法2. 解不等式 (1)一元一次不等式的解集的讨论: 2.不等式的性质(1)不等式ax b >的解集:当0a >时,解集为{|}bx x a >;当0a <时,解集为{|}b x x a<; 当0a =且0b <时,解集为R ;当0a =且0b ≥时,解集为∅. (2)一元二次不等式的解集的讨论:一元二次不等式解集如表所示:(当方程方程2+0ax bx c +=的两个不相等的实根时,不妨设为12,x x ,且12x x <)判别式24b ac ∆=-0∆> 0∆= 0∆<2y ax bx c =++()0a >的图像20ax bx c ++=()0a >的根有两相异实根12,x x ()12x x <有两相等实根122bx x a==-没有实根20ax bx c ++>()0a >的解集{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >的解集{}12x xx x <<∅ ∅【总结】 不等式证明的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商(常用于分数指数幂的代数式); (3)分析法; (4)平方法;(5)分子(或分母)有理化; (6)利用函数的单调性; (7)寻找中间量或放缩法 ; (8)图象法.其中比较法(作差、作商)是最基本的方法.(3)分式不等式的解法同解变形法(分式不等式⇔整式不等式⇔一次、二次不等式)①() ()()()()()()()()0000f x f xf xg x f x g xg x g x><><(或)与·或·同解;②()()()()00f x f xg x g x⎛⎫⎪⎪⎝⎭≥或≤与不等式组()()()()()()0000f xg x f x g xg x g x⎛⎫⎧⎧⎪⎪⎪⎨⎨⎪≠≠⎪⎪⎩⎩⎝⎭·≥·≤或同解.(4)一元高次不等式的解法——标根法其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x的符号变化规律,写出不等式的解集.若naaaa<<<<Λ321,则不等式0)())((21>---naxaxaxΛ或0)())((21<---naxaxaxΛ的解法如下图(即“数轴标根法”):(5)绝对值不等式的解法方法一:应用分类讨论思想去绝对值(最后结果应取各段的并集);方法二:应用数形结合思想;方法三:应用化归思想等价转化.①最简单的绝对值不等式的同解变形,x a a x a<⇔-<<;,ax b c c ax b c+<⇔-<+<;x a x a>⇔<-或,x a>;cbaxcbax-<+⇔>+或,ax b c+>.②关于绝对值不等式的常见类型有下列的同解变形()()()()()f xg x g x f x g x≤⇔-≤≤;()()()()f xg x f x g x≥⇔≤-或()()f xg x≥;22()()()()f xg x f x g x≤⇔≤.【提醒】标根法主要用于简单的一元高次不等式题型,因为上海高考不作要求,可以简单的了解.(5)含参不等式的解法求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”3.常用的基本不等式(1)如果,a b R ∈,那么222a b ab +≥(当且仅当a =b 时等号成立); (2)如果,a b R +∈,那么ba +≥ab (当且仅当a =b 时等号成立).(1)比较法 ①作差比较法 A.理论依据0a b a b ->⇔> 0a b a b -=⇔= 0a b a b -<⇔<B.证明步骤:I:作差:对要比较大小的两个数(或式)作差;II :变形:对差进行因式分解或配方成几个数(或式)的完全平方和; III :判断:结合变形的结果及题设条件判断差的符号.②作商比较法 A.理论依据当a b R +∈,时, 1,1,1a a aa b a b a b b b b>⇔><⇔<=⇔=. B.证明步骤:I:判断(判断能否作商);II :作商;III :变形;IV: 下结论. (2)综合法证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法(由因导果). (3)分析法从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆(执果索因).2.1不等式的基本性质例题精讲【例1】(1)设x 、y 是不全为零的实数,试比较222y x +与xy x +2的大小;(2)设c b a ,,为正数,且1222=++c b a ,求证:3)(2111333222≥++-++abc c b a cb a . 【参考答案】(1)解法1:222222243)2()(2y y x xy y x xy x y x +-=-+=+-+ 因为x 、y 是不全为零的实数,所以043)2(22>+-y y x ,即xy x y x +>+2222 解法2:当0<xy 时, 22222y x x xy x +<<+;当0>xy 时,作差:02)(222222>=-≥-+=+-+xy xy xy xy y x xy x y x ; 因为x 、y 是不全为零的实数,所以当0xy >时,xy x y x +>+2222. 综上,xy x y x +>+2222(2)证明:当c b a ==时,取得等号3. 作差比较:3)(2111333222-++-++abc c b a c b a =3)(2333222222222222-++-++++++++abc c b a c c b a b c b a a c b a=222222222222111111()()()2()a b c a b c b c a c a b bc ac ab+++++-++ =0)11()11()11(222222>-+-+-ba c ac b cb a所以,3)(2111333222≥++-++abc c b a cb a 【例2】已知41,145ac a c -≤-≤--≤-≤,试求9a c -的取值范围. 【参考答案】把9a c -用a c -,4a c -来表示,再利用a c -,4a c -的范围得出9a c -的取值范围.1[(4)()]3a a c a c =---1[(4)4()]3c a c a c =---∴9a c -=3[(4)()]a c a c ----1[(4)4()]3a c a c ---85(4)()33a c a c =---由已知得8840-(4)333a c ≤-≤,5520()333a c ≤--≤∴85-1(4)()2033a c a c ≤---≤,即1920a c -≤-≤注意:这类题的常见错误是,由41441a c a c -≤-≤-⎧⎨-≤-≤⎩,从而得: 03a ≤≤,17c ≤≤,所以: 7926a c -≤-≤,即: 7(3)26f -≤≤,错误根源在于,a b c d ≥≥是a b b c -≥-充分但不是必要条件,因此必须从考虑9a c -与a c -,4a c -的关系去解此题.过关演练1. 若c b a >>,则一定成立的不等式是( ).A c b c a > .B ac ab > .C c b c a ->- .D cb a 111<< 2. 已知:,,0a b e f c >>>,求证:bc e ac f --<. 3. 已知11a -<<,比较1a -和11a+的大小. 4. 对于实数c b a ,,,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若; ⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦bc ba c ab ac ->->>>则若,0; 其中正确的命题是 .5. 已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是 .6. 若11αβ-<<<,则下面各式中成立的是( ).A 20αβ-<-< .B 21αβ-<-<- .C 10αβ-<-< .D 11αβ-<-<7. 设a 和b 都是非零实数,求不等式b a >和ba 11>同时成立的充要条件.8. 下列几个不等式中(1)22a b a a b b +>+ (2)222211b b a a +>+ (3)11a b a b+>+ (4)a b a a > 其中恒成立的不等式个数是( ).A 0 .B 1 .C 2 .D 39. 若a < b <0,则下列结论中正确的是 ( ).A 不等式||1||111b a b a >>和均不成立 .B 不等式||1||111b a a b a >>-和均不成立 .C 不等式22)1()1(11a b b a a b a +>+>-和均不成立 .D 不等式22)1()1(||1||1ab b a b a +>+>和均不成立 10. 若二次函数)(x f 的图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围. 11. 已知c b a >>,且,0=++c b a 求ac的取值范围.2.2一元二次不等式的解法 例题精讲【例1】解关于x 的不等式2(2)20mx m x +-->,并写出解集【参考答案】m =0时,不等式为-2x-2>0,不等式的解集为--1∞(,); m ≠0时,可得2)(1)0,m x x m +>(-若m>0,则201m >>-, 此时不等式的解集为2--1+m∞⋃∞(,)(,) 若m<0,则不等式同解于不等式2)(1)0x x m+<(- 当-2<m<0时,不等式的解集为2-1m (,);当m<-2时不等式的解集为2-m (1,); 当m=-2时,不等式的解集为∅.注意:对字母m 分类讨论时,先要讨论二次项的系数,以区分是一次不等式还是二次不等式,还要注意化简后不等式的同解形式.【例2】有一批影碟机(DVD)原售价为800元,在甲,乙两家商场均有销售,甲商场用如下方法促销,买一台单价为国为780元,买两台单价为760元,依此类推,每多买一台,则所买各台单价均减少20元,但每台最低不能低于440元,乙商场一律都按原价75%销售,某单位需购买一批此类影碟机,应去哪家商场购买?【参考答案】设此单位需购买x 台影碟机,在甲商场购买共需花费1y 元,在乙商场购买共需花费2y ,由题意, 80020440,18x x -≥∴≤*1*(80020),118,440,18,x x x x N y x x x N⎧-≤≤∈⎪=⎨>∈⎪⎩ *280075%600,1,y x x x x N =⨯=≥∈,设此单位在甲,乙两家商场购货的差价为y,则2*21*(80020)60020020,118,440600,18,x x x x x x x N y y y x x x x N⎧--=-≤≤∈⎪=-=⎨->∈⎪⎩ 当118x ≤≤时,由220020y x x =->0得:0<x<10, 所以*110,x x N ≤<∈;由220020y x x =-=0得x=10,由220020y x x =->0得x>10, 所以*1018,x x N <≤∈;当x >18时,y <0答:若购买少于10台影碟机,则应去乙商场购买,若买10台,去甲乙均可,若购买超过计划10台,则应去甲商场购买.过关演练1. 若不等式022<+-a bx x 的解集为}51|{<<x x ,则a 为 .2. 求下列不等式的解集:⑴解不等式22350x x -++>;⑵解不等式24410x x -+>;⑶解不等式2230x x -+->.3.已知关于x 的不等式(1)(1)0ax x -+<的解集是()1,1,a ⎛⎫-∞⋃-+∞ ⎪⎝⎭,求实数a 的取值范围. 4. 解关于x 的不等式0)(322>++-a x a a x .5. 关于x 的不等式20ax bx c ++>的解集为(1,2)-,则不等式20cx bx a ++<的解集为 .6. 已知关于x 的不等式组2122kx x k ≤++≤有唯一实数解,则实数k 的取值集合是 .7. 对于任意实数x ,不等式22(2)0ax ax a +-+<恒成立,则实数a 的取值范围是( ) .A 10a -≤≤.B 10a -≤< .C 10a -<≤ .D 10a -<<8. a 为实数,关于x 的二次方程27(13)220x a x a -+++=有两个实数根分别介于0与1之间以及1与2之间,求a 的取值范围.9. 解不等式: ()()220x ax --> .10. 如果集合2{|10}A x ax ax =-+<=∅,则实数a 的取值范围是 .11. 111222,,,,,a b c a b c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为集合M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) .A 充分非必要条件.B 必要非充分条件 .C 充要条件 .D 既非充分又非必要条件12. 函数()2(2)2(2)4f x a x a x =-+--,若()1,3x ∈时,()7f x mx <-恰成立,求,a m 的值.13. 关于x 的方程2(1)10x m x +-+=在区间()0,2上有实根,求实数m 的取值范围. 14. 若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,求x 的取值范围.15. 某公园举办雕塑展览吸引着四方宾客,旅游人数x 与人均消费t (元)的关系如下: 121600(1050,)61300(50200,)t t t x t t t -+≤≤∈⎧=⎨-+<≤∈⎩N N , (1)若游客客源充足,那么当天接待游客多少人时,公园的旅游收入最多?(2)若公园每天运营成本为5万元(不含工作人员的工资),还要上缴占旅游收入20%的税收,其余自负盈亏.目前公园的工作人员维持在40人.要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在怎样的合理范围内?(注:旅游收入=旅游人数×人均消费)2.3其他不等式的解法 例题精讲【例1】k 为何值时,下式恒成立:13642222<++++x x k kx x 【参考答案】原不等式可化为:0364)3()26(222>++-+-+x x k x k x ,而03642>++x x ∴原不等式等价于0)3()26(22>-+-+k x k x由0)3(24)26(2<-⨯⨯--=∆k k 得1< k <3【例2】解不等式210.122x x --< 【参考答案】这个绝对值不等式的绝对值符号内是一个分式,若先去绝对值符号,就变成一个形式上是分式的不等式:210.10.122x x --<-<,这样就为解题制造了障碍,但是如果我们不急于去绝对值符号,而是先将绝对值符号内的表达式进行化简,就可以得到212212222x x x x x x x -----===-. 所比不等式的解集为{}1010x x x ><-或【例3】若不等式()11m x x ≤++-的解集为全集,求实数m 的求值范围.【参考答案】利用绝对值和的几何意义求解简捷、快速.2m ≤本题是一道恒成立问题,分离常数后,转化为求最小值问题.过关演练1. 若x R ∈,则()()110x x -+>的解集是( ).A {}01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠- 2. 不等式2601x x x --->的解集为 ( ) .A {}23x x x <->或 .B {}23x x x <-<<或1.C {}213x x x -<<>或 .D {}213x x x -<<<<或1 3. 求下列不等式的解集:⑴解不等式4321x x ->+;⑵解不等式22xxx x >++;⑶解不等式4|23|7x <-≤; ⑷解不等式123x x ->-; ⑸解不等式125x x -++<.4. 若不等式|32||2|x x a +≥+对x R ∈恒成立,求实数a 的取值范围.5. 解关于x 的不等式:242mx m x +<+.6. 不等式242+<-x x 的解集为 .7. 已知关于x 的不等式23x x m -+-<的解集为非空集合,则实数m 的取值范围是().A 1m < .B 1m ≤ .C 1m > .D 1m ≥8. 若不等式102x m x m -+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是( ) .A 14,,43⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U .B 14,43⎡⎤⎢⎥⎣⎦ .C 13,62⎡⎤⎢⎥⎣⎦ .D 以上结论都不对 9. 已知关于x 的不等式21<++ax x 的解集为P ,若P ∉1,则实数a 的取值范围为( ) .A ),0[]1,(+∞--∞Y .B ]0,1[- .C ),0()1,(+∞--∞Y .D ]0,1(-10. 设全集U R =,解关于x 的不等式: 110x a -+->()x R ∈.11. 解不等式2(1)(2)0x x -+≥.12. 设关于x 的不等式4|4|2+≤+-x m x x 的解集为A ,且A A ∉∈2,0,则实数m 的取值范围是 . 13. 不等式组⎪⎩⎪⎨⎧+->+->|22|330xx x x x 的解集是( ) .A {|02}x x <<.B {|0 2.5}x x << .C {|0x x <<.D {|03}x x << 14. 对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为( ).A 3k < .B 3k <- .C 3k ≤ .D 3k ≤-15.2x <+.16. 解关于x 的不等式(1)1(1)2a x a x ->≠-. 17. 已知关于x 的不等式052<--ax ax 的解集为M . (1) 当1=a 时,求集合M ;(2) 当M M ∉∈53且时,求实数a 的范围.2.4基本不等式及其应用例题精讲【例1】已知54x <,求541-+x x 的最大值. 【参考答案】45)45(41)45(541+-+-=-+x x x x ,由于54x <,045<-x , 所以1)45(41)45(-≤-+-x x ,4145)45(41)45(≤+-+-x x , 当且仅当)45(4145-=-x x 即43=x 时取等号. 【例2】求2710(1)1x x y x x ++=>-+的最小值. 【参考答案】方法一:当1->x 时,9514114)1(5)1(110722≥++++=+++++=+++x x x x x x x x , 当且仅当111+=+x x 即1=x 时取等号. 方法二:设)0(1>+=t x t ,则1-=t x ,原式9544510)1(7)1(22≥++=++=+-+-=tt t t t t t t 当且仅当tt 4=即1,2==x t 时取等号.【例3】某村计划建造一个室内面积为2800m 的矩形蔬菜温室,在温室内,沿左右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地,当矩形室的变长各为多少时,蔬菜的种植面积最大,最大种植面积时多少?【参考答案】温室左侧变长2max 40,20,648a m b m S m ===过关演练1. 已知3>x ,则6211-++x x 的最小值是 . 2. 已知,,9a b R ab +∈=,则a b +的最小值是 .3. 下列不等式一定成立的是 ( ).A xy y x 2≥+ .B 21≥+x x .C xy y x 222≥+ .D xyxy y x 12≥+ 4. 已知,,,a b c R ∈求证222a b c ab bc ca ++≥++.5. 为了提高产品的年产量,某企业拟在2010年进行技术改革.经调查测算,产品当年的产量x 万件与投入技术改革费用m 万元(m ≥0)满足31k x m =-+ (k 为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去.厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金).(1)将2010年该产品的利润y 万元(利润=销售金额-生产成本-技术改革费用)表示为技术改革费用m 万元的函数;(2)该企业2010年的技术改革费用投入多少万元时,厂家的利润最大?6. 已知0,0x y >>,且191x y+=,则x y +的最小值为 . 7. 已知0,0a b >>,以下三个结论:①22ab a b a b +≤+,②2222a b a b ++≤ ③22b a a b a b+≥+,其中正确的个数是( ) .A 0 .B 1.C 2 .D 38. 已知b a ,为正实数,302=++a ab b ,求函数ab y 1=的最小值.9. 已知关于x 的不等式227x x a+≥-在(),x a ∈+∞上恒成立,求实数a 的最小值.10. 某单位用木料制作如图所示的框架,框架的下部是边长分别为x 、y (单位:m )的矩形,上部是等腰直角三角形,要求框架围成的总面积为8 m 2,问x 、y 分别为多少时用料最省?(精确到0.001m )x y11. 已知1,0>>y x ,且2)1(=-y x , 则y x +2的最小值为 . 12. xzy z y x R z y x 2,032*,,,=+-∈的最小值为 . 13. 1,0,=+>y x y x ,且a y x ≤+恒成立, 则a 的最小值为( )A .22 B .22 C .2 D .2 14. 已知a 、b 、()0,c ∈+∞且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭. 15. 三个同学对问题“关于x 的不等式232255x x x ++-ax ≥在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值”.乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”.丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,求出a 的取值范围.2.5不等式的证明例题精讲【例1】设,,a b R ∈求证:221a b ab a b +++>+.【参考答案】()22222211()221212a b ab a b a ab b a a b b +++-+=+++-++-+Q ()()()22211102a b a b ⎡⎤=++-+->⎣⎦ 221a b ab a b ∴+++>+【例2】已知0,0a b >>,求证:1111222222a b a b b a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭ . 【参考答案】(分析法)要证明1111222222a b a b b a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,由于0,0a b >>所以11220a b > 只需要证明111122221122a b a b a b b a ⎛⎫⎛⎫ ⎪+≥+ ⎪ ⎪⎝⎭⎝⎭.即证 331111222222a b a b a b ⎛⎫+≥+ ⎪⎝⎭即证 1111111122222222a b a a b b a b a b ⎛⎫⎛⎫⎛⎫+-+≥+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即证1122a a b b -+1122a b ≥,即证211220a b ⎛⎫+≥ ⎪⎝⎭ 211220a b ⎛⎫+≥ ⎪⎝⎭显然成立,所以原不等式成立.过关演练1. 求证:(1)()()221x x x +<+;(2)设0>>b a ,求证:a b b a b a b a >.2. 已知0=++c b a ,求证: 0ab bc ca ++≤.3. 3725<.4. 已知,,a b m 都是正数,并且a b <,求证:a m ab m b +>+. 5. 设,,,,a b x y R ∈且22221,1,a b x y +=+=试证:||1ax by +≤.6. 实数,,x y z 满足1xy yz zx ++=-,求证:222584x y z ++≥.7. 已知正数a 、b 、c 满足2a b c +<,求证:22c c ab a c c ab -<<-8. 设a >0,b >0,求证: 111122222a b a b b a 2⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭.9. 已知a 、b 、c 为正实数,1a b c ++=.求证:(1) 22213a b c ++≥; (2)232323+++++c b a ≤6.10. 若,0x y >,且2x y +>,求证:1y x +和1x y +中至少有一个小于2.11. 证明不等式n n2131211<++++Λ ()n N *∈.直击高考一、填空题1.(2009年高考理文3)若行列式4513789x x 中,元素4的代数余子式大于0,则x 满足的条件是 .2. (2010年春季高考4)已知集合1{|||2},{|0}1A x x B x x =<=>+,则A B ⋂= . 3.(2010年高考理2文1)不等式204x x ->+的解集是 . 4.(2012年春季高考12)若不等式210x kx k -+->对()1,2x ∈恒成立,则实数k 的取值范围是 .5.(2012年春季高考13)已知等差数列{}n a 的首项及公差均为正数,令n b n a =2012n a -+(,2012)n N n *∈<,当k b 是数列{}n b 的最大项时,k = .6.(2013年高考理12)设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为 . 7.(2013年高考文13)设常数0a >,若291a x a x+≥+对一切正实数x 成立,则a 的取值范围为 . 二、选择题8.(2010年春季高考16)已知)1,0(,21∈a a ,记1,2121-+==a a N a a M ,则M 与N的大小关系是( ).A N M < .B N M >; .C N M = .D 不确定9.(2011年高考理15文16)若,a b R ∈,且0ab >,下列不等式中,恒成立的是( ).A 222a b ab +> .B 2a b ab +≥ .C 11a b ab+> .D 2b a a b +≥ 10.(2013年春季高考17)如果0a b <<,那么下列不等式成立的是( ).A 11a b < .B 2ab b < .C 2ab a -<- .D 11a b-<- 11.(2013年高考理15文16)设常数a R ∈,集合{|A x =(1)(x x -)a -0}≥,{|1}B x x a =≥-.若A B R =U ,则a 的取值范围为( ).A (,2)-∞ .B (,2]-∞ .C (2,)+∞ .D [2,)+∞三、解答题12.(2009年高考文19)已知复数z a bi =+(,a b R +∈)(i 是虚数单位)是方程2450x x -+=的根 ,复数3w u i =+(u R ∈)满足25w z -<,求u 的取值范围.13.(2010年高考理文22)若实数x 、y 、m 满足m y m x ->-,则称x 比y 远离m .(1)若21x -比1远离0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:33a b +比22a b ab +远离2ab 14.(2011年春季高考22)定义域为R ,且对任意实数1x 、2x 都满足不等式()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭的所有函数()f x 组成的集合记为M .例如,函数()f x kx b M =+∈.(1)已知函数()0102x x f x x x ⎧≥⎪=⎨<⎪⎩.证明:()f x M ∈;(2)写出一个函数()f x ,使得()f x M ∉,并说明理由.15.(2011年春季高考23)对于给定首项)300x a a >>,由递推式()112n n n a x x n N x +⎛=+∈ ⎝得到数列{}n x ,且对于任意的n N ∈,都有3n x a >{}n x 3a 的近似值.(1)取05,100x a ==,计算123,,x x x 的值(精确到0.01);归纳出1,n n x x +的大小关系;(2)当n≥l 时,证明:()1112n n n n x x x x +--<-.16.(2012年春季高考20)某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?17.(2012年高考理文21)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),A 处,如图.现假设:①失事船的移动路径可视为抛物线21249y x =; ②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当0.5t =时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?18.(2013年高考理20)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每一小时可获得的利润是310051x x ⎛⎫+- ⎪⎝⎭元. (1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.。
2.1(2)不等式的基本性质Ⅱ
n 1
n 1
iff = b时 号 立 a 等 成
ax>b
例4
ax<b
( 解:移项整理得: m 1) x < m ( )当m 1 = 0 即m = 1时, 0 x < 1 x ∈ φ Ⅰ
解关于 x的不等式 (1) m ( x + 2) < x + m
m (Ⅱ )当m 1 > 0 即m > 1时, x < 1 m m (Ⅲ )当m 1 < 0即m < 1时, x > 1 m 综上: m =1 , 等 解 为 当 时 不 式 集 φ
3,预习2.2节
�
b (2)a > 0 x > a b (3)a < 0 x < a
小结 1,掌握比较两个实数大小的基本方法——作差法. 2,会利用不等式的基本性质比较两实数的大小或 证明简单的不等式. 3,解带有参数的不等式(或方程),要对系数进行 分类讨论. 作业
1,习题2.1 A组ex6 ex8,B组(做在习题册上) 2,《一课一练》 1(2) 2.
性质7. 性质 . a > b > 0, 那么(0 < ) 1 < 1 如果 a b
证明: 证明:
1 1 ba = a b ab
∵ b a < 0, ab > 0 1 1 ∴ <0 a b
1 1 ∴ 0< < a b
1 1 如果a < b < 0, 那么 ____ (< 0) a b
(同号倒数性质 同号倒数性质) 同号倒数性质
性质1.如果 性质 如果 性质2.如果 性质 如果
1 性质3. 性质 . 2
(传递性 传递性) 传递性 (加法性质 加法性质) 加法性质 (乘法性质 乘法性质) 乘法性质 (同向相加 同向相加) 同向相加 (正数同向相乘) (正数同向相乘) 正数同向相乘 1) (乘方性质 乘方性质) 乘方性质 2) (开方性质 开方性质) 开方性质
2.1.2等式性质与不等式性质
b b+m
①③
一、利用不等式的性质比较大小
例3 已知 a > b >0, c <0, 求证: c
c
>
.
证明:因为a > b >0,
a 所以 ab >0,
1b
>0.
性质1 如果a>b,那么b<a;如果b<a,那 么a>b.
abba
性质1表明,把不等式的左边和右边交 换位置,所得不等式与原不等式异向,我 们把这种性质称为不等式的对称性.
性质2 如果a>b,b>c,那么a>c.(传递性)
a b,b c a c
这个性质也可以表示为c<b,b<a,则c<a. 这个性质是不等式的传递性.
于是 a 1 b 1 ,
ab
ab ab
即
1 1.
ba
思考?
由 c<0 , 得
c b
c a
,
能否用 作差法
即
c c. ab
证明 ?
二、利用不等式的性质求范围
例3
已知12<a<60,15<b<36.求a-b和
b a
的取值
范围.
解 ∵15<b<36, ∴-36<-b<-15,
又 1 <1< 1 36 b 15
∴12-36<a-b<60-15, ∴12<a<60
即-24<a-b<45.
高一数学讲义 第二章 不等式
高一数学讲义 第二章 不等式§2.1不等式的性质1.两个实数a 与b 之间的大小关系 ().a b a b a b a b a b a b 1->⇔>⎧⎪2-=0⇔=⎨⎪3->0⇔<⎩();(); 若a 、b +∈R ,则()()().aa b b aa b b aa b b ⎧4>1⇔>⎪⎪⎪5=1⇔=⎨⎪⎪6<1⇔<⎪⎩;;2.不等式的性质 (1)(对称性或反身性)a b b a >⇔<; (2)(传递性)a b b c a c >>⇒>,;(3)(可加性)a b a c b c >⇒+>+,此法则又称为移项法则; (同向可相加)a b c d a c b d >>⇒+>+,; (4)(可乘性)a b c ac bc >>0⇒>,;a b >,c ac bc <0⇒<; (正数同向可相乘)a b c d ac bd >>0>>0⇒>,; (5)(乘方法则)()n n a b n a b >>0∈⇔>>0N ; (6)(开方法则)()a b o n n >>∈2⇔>0N ,≥;(7)(倒数法则)a b ab a b11>>0⇒<,. 我们证明性质(4)如果a b >,且c >0,那么ac bc >;如果a b >,且c <0,那么ac bc <. 证明:()ac bc a b c -=-. .a b a b >∴->0,根据同号相乘得正,异号相乘得负,得 当c >0时,()a b c ->0,即ac bc >; 当c <0时,()a b c -<0,即ac bc <.由性质(4),又可以得到:推论:如果a b >>0,且c d >>0,那么ac bd >.(同学们可以自己证明)很明显,这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘,这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向,由此,我们还可以得到:如果a b >>0,那么()n n a b n n >∈2N ,且≥. 例1.设()f x ax bx 2=+,且()()f f 1-12214,≤≤≤≤,求()f -2的取值范围.解:因()()f a b f a b 1-1=-221=+4,,≤≤≤≤为 所以()()f f a 3-1+1=26,≤≤ 又()f a b a b a -2=4-2=2-2+2, 所以()f 5-210≤≤.例2.已知二次函数()f x ax bx c 2=++的图像过点()-10,,问是否存在常数a b c ,,,使不等式()()x f x x 21+1≤≤2对一切x ∈R 都成立? 解:假设存在常数a b c ,,,满足题意, ()f x 的图像过点()-10,, ()f a b c ∴-1=-+=0又不等式()()x f x x 211+2≤≤对一切x ∈R 都成立, ∴当x =1时,()()f 21111+12≤≤,即a b c 1++1≤≤, a b c ∴++=1由①②可得:a c b 11+==22,,()f x ax x a 211⎛⎫∴=++- ⎪22⎝⎭,由()()x f x x 211+2≤≤对一切x ∈R 都成立得:()x ax x a x 22111⎛⎫++-1+ ⎪222⎝⎭≤≤恒成立, ()ax x a a x x a 22⎧11⎛⎫-+-0 ⎪⎪22∴⎝⎭⎨⎪2-1+-20⎩≥≤的解集为R , a a a >0⎧⎪∴11⎨⎛⎫-4-0 ⎪⎪42⎝⎭⎩≤且()a a a 2-1<0⎧⎪⎨1+82-10⎪⎩≤, 即()a a 2>0⎧⎪⎨1-40⎪⎩≤且()a a 21⎧<⎪2⎨⎪1-40⎩≤, a c 11∴=∴=44,,∴存在常数a b c 111===424,,使不等式()()x f x x 211+2≤≤对一切x ∈R 都成立. 例3.已知()()f x x a x 2=+2-2+4,(1)如果对一切()x f x ∈>0R ,恒成立,求实数a 的取值范围; (2)如果对[]()x f x ∈-31>0,,恒成立,求实数a 的取值范围. 解:(1)()a a 2∆=4-2-16<0⇒0<<4;(2)()()a f ⎧--2<-3⎪⎨-3>0⎪⎩或()a ⎧-3--21⎪⎨∆<0⎪⎩≤≤或()()a f ⎧--2>1⎪⎨1>0⎪⎩,解得a ∈∅或a 1<4≤或a 1-<<12,∴a 的取值范围为1⎛⎫-4 ⎪2⎝⎭,.基础练习1.判断下列命题是否成立,并说明理由. (1)如果a b c d ><,,那么a c b d +>+; (2)如果a b c d >>,,那么a c b d -2>-2; (3)如果a b c d >>,,那么ac bd >. 2.对于实数a b c ,,中,判断下列命题的真假: ①若a b >,则ac bc 22>; ②若ac bc 22>,则a b >;③若a b <<0,则a ab b 22>>;④若a b <<0,则a b 11<;⑤若a b <<0,则b a a b>; ⑥若a b <<0,则a b >; ⑦若c a b >>>0,则a bc a c b>--; ⑧若a b a b11>>,,则a b >0<0,.3.设n >-1,且n ≠1,则n 3+1与n n 2+的大小关系是________. 4.比较下列两个数的大小:(1与2(2)2(3)从以上两小题的结论中,你能否得出更一般的结论?并加以证明. 5.已知()()()f x ax c f f 2=--41-1-125,,≤≤≤≤,求()f 3的取值范围. 能力提高6.若不等式()()a x a x 2-2+2-2-4<0对一切x ∈R 成立,求a 的取值范围. 7.若关于x 的方程x ax a 22++-1=0有一正根和一负根,求a 的取值范围.8.关于x 的方程()m x m x 2-3+3=的解为不大于2的实数,求m 的取值范围.9.已知6枝玫瑰花与3枝康乃馨的价格之和大于24元,4枝玫瑰花与5枝康乃馨的价格和小于22元,则2枝玫瑰花的价格和3枝康乃馨的价格比较结果是( ) A .2枝玫瑰花价格高; B .3枝康乃馨价格高; C .价格相同; D .不确定.§2.2一元二次不等式及其解法求不等式的解集叫做解不等式,如果两个不等式的解集相等,那么这两个不等式就叫做同解不等式,一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形叫做不等式的同解变形.像x x 2-5<0这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式. 下面,我们来探究一元二次不等式x x 2-5<0的解集: (1)探究二次方程的根与二次函数的零点的关系: 容易知道:二次方程有两个实数根:x x 12=0=5, 二次函数有两个零点:x x 12=0=5,于是,我们得到:二次方程的根就是二次函数的零点. (2)观察图像,获得解集画出二次函数y x x 2=-5的图像,如图2-1,观察函数图像,可知:x图2-1当x <0,或x >5时,函数图像位于x 轴上方,此时,y >0,即x x 2-5>0; 当x 0<<5时,函数图像位于x 轴下方,此时,y <0,即x x 2-5<0; 所以,不等式x x 2-5<0的解集是{}|x x 0<<5. 探究一般的一元二次不筹式的解法任意的一元二次不等式,总可以化为以下两种形式: ()ax bx c a 2++>0>0,或()ax bx c a 2++<0>0,一般地,怎样确定一元二次不等式ax bx c 2++>0与ax bx c 2++<0的解集呢?从上面的例子出发,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线y ax bx c 2=++与x 轴的相关位置的情况,也就是一元二次方程ax bx c 2++=0的根的情况;(2)抛物线y ax bx c 2=++的开口方向,也就是a 的符号. 总结结果:(1)抛物线()y ax bx c a 2=++>0与x 轴的相关位置,分为三种情况,这可以由一元二次方程ax bx c 2++=0的判别式b ac 2∆=-4三种取值情况(∆>0∆=0∆<0,,)来确定.因此,要分二种情况讨论;(2)a <0可以转化为a >0,分∆>0∆=0∆<0,,三种情况,得到一元二次不等式ax bx c 2++>0与ax bx c 2++<0的解集.一元二次不等式ax bx c 2++>0或()ax bx c a 2++<0≠0的解集;设相就的一元二次方程()ax bx c a 2++=0≠0的两根为x 1、x 2且x x 12≤,b ac 2∆=-4,则不等式的解不等式的解集经常用区间来表示.区间是指介于某两个实数之间的全体实数,这两个实数叫做区间的端点. a b ∀∈R ,,且a b <.{}|x a x b <<称为开区间,记为;()a b ,; {}|x a x b ≤≤称为闭区间,记为[]a b ,; {}|x a x b <≤称为左闭右开区间,记为[)a b ,;{}|x a x b <≤,称为左开右闭区间,记为(]a b ,.以上都是有限区间,以下是无限区间:[){}|a x x a +∞=,≥、(){}|a x x a +∞=>,、(]{}|a x x a -∞=,≤、(){}|b x x b -∞=<,、实数集()=-∞+∞R ,,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.区间长度的定义:两端点间的距离(线段的长度)称为区间的长度. 例1.解不等式x x 2-+2-3>0.解:整理,得x x 2-2+3<0.因为∆<0,方程x x 2-2+3=0无实数解, 所以不等式x x 2-2+3<0的解集是∅.从而,原不等式的解集是∅. 例2.已知{}|A x x x 2=-3+20≤,(){}|B x x a x a 2=-+1+0≤, (1)若AB ,求a 的取值范围;(2)若B A ⊆,求a 的取值范围. 解:{}|A x x =12,≤≤当a >1时,{}|B x x a =1≤≤;当a =1时,{}B =1;当a <1时,{}|B x a x =1≤≤.(1)若AB ,则a a a >1⎧⇒>2⎨>2⎩;(2)若B A ⊆,当a =1时,满足题意;当a >1时,a 2≤,此时a 1<2≤;当a <1时,不合题意. 所以,a 的取值范围为[)12,.例3.已知关于x 的不等式()()kx k x 2--4-4>0,其中k ∈R .(1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A Z B =(其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由. 解:(1)当k =0时,()A =-∞4,;当k >0且k ≠2时,()A k k 4⎛⎫=-∞4++∞ ⎪⎝⎭,,;当k =2时,()()A =-∞44+∞,,;(不单独分析k =2时的情况不扣分) 当k <0时,A k k 4⎛⎫=+4 ⎪⎝⎭,.(2)由(1)知:当k ≥0时,集合B 中的元素的个数无限; 当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集.因为k k4+-4≤时取等号当且仅当k =-2时取等号,所以当k =-2时,集合B 的元素个数最少. 此时()A =-44,,故集合()B =-3-2-10123,,,,,,.例4,已知a 为实数,关于x 的二次方程()()x a x a a 227-+13+--2=0有两个实根分布在()()0112,,,上,求a 的取值范围.解:令()()()f x x a x a a 22=7-+13+--2,由二次函数图像知 ()()().f f f 0>0⎧⎪1<0⎨⎪2>0⎩,,即.a a a a a 222⎧--2>0⎪-2-8<0⎨⎪-3>0⎩,,解得a -2<<-1或a 3<<4. 所以a 范围是()()-2-134,,.基础练习1.设a b c a b c 111222,,,,,均为非零实数,不等式a x b x c 2111++>0,a x b x c 2222++>0的解集分别是集合M N ,,则a b c a b c 111222==是“M N =”的充要条件对吗? 2.已知不等式ax bx c 2++>0的解集为{}|x x 2<<4,求不等式cx bx a 2++<0的解集. 3.不等式()ax ab x b 2++1+>0的解是x 1<<2,求a b ,的值. 4.若不等式x kx 2-+-4<0的解集为R ,求实数k 的取值范围. 5.已知不等式ax x 2-3+6>4的解集为{}|x x x b <1>或. (1)求a 、b ; (2)解不等式x cax b->0-(c 为常数). 能力提高6.若关于m 的不等式()mx m x m 2-2+1+-10≥的解集为空集,求m 的取值范围. 7.已知不等式组x x a a x a 22⎧-+-<0⎨+2>1⎩的整数解恰好有两个,求a 的取值范围.8.已知()f x ax bx c 2=++在[]01,上满足()f x 1≤,试求a b c ++最大值.§2.3分式不等式像x x 16<-1-1这样,只含有一个未知数,并且分母含未知数的不等式,称为分式不等式,解分式不等式,关键是将它变为整式不等式去解,其一般特征为: 分式不等式()()f xg x >0(或0≥)或()()f xg x <0(或0≤)要正确运用以下同解原理.(1)()()f xg x ≥0(或<0)与()()f x g x ⋅>0(或<0)同解.(2)()()f x g x 0≥(或0≤)与不等式组()()()f x g x g x ⎧⋅0⎪⎨≠0⎪⎩≥()()()f x g x g x ⎛⎫⎧⋅0⎪ ⎪⎨ ⎪≠0⎪⎩⎝⎭或≤同解. 例1.解不等式x x x x 22-9+117-2+1≥.解:移项,通分得x x x x 22-6+5+40-2+1≥,()()()x x x 22+13-4∴0-1≤ 转化为()()()()x x x x 22⎧2+13-4-10⎪⎨-1≠0⎪⎩,,≤ ()()x x x ⎧2+13-40⎪∴⎨-1≠0⎪⎩,,≤ 则所求不等式的解集为x x x ⎧14⎫-<11<⎨⎬23⎩⎭或≤≤.例2.解关于x 的不等式()x a x x ax222+-1+3>1+.解:原不等式等价于x x x ax22-+3>0+.由于x x 2-+3>0对x ∈R 恒成立, ∴x ax 2+>0,即()x x a +>0当a >0时,{}|x x a x <->0或; 当a =0,{}|x x x ∈≠0R 且; 当a <0时,{}|x x x a <0>-或.例3.k 为何值时,下式恒成立:x kx kx x 322+2+<14+6+3.解:原不等式可化为:()()x k x k x x 222+6-2+3->04+6+3,而x x 24+6+3>0,∴原不等式等价于()()x k x k 22+6-2+3->0,由()()k k 2∆=6-2-4⨯2⨯3-<0得k 1<<3. 基础练习1.解下列不等式: (1)x x x x 22-3+2<0-2-3;(2)x x -30-2≥; (3)x x1>; (4)()()x x x x 232-2≥+1>0++1;(5)x x x x 2215-11+2<0-2+3+2.2.已知关于x 的不等式k x bx a x c++<0++的解集为()()-2-123,,,求关于x 的不等式kx bx ax cx -1+<0-1-1的解集. 3.若a b c >>,a 、b 、c 为常数,求关于x 的不等式()()()x a x c x b 2-->0-的解集. 4.解不等式x x x x 1111+>++4+5+6+3. 5.若不等式x ax x 2+0+4+3≥的解集为{}|x x x -3<<-12或≥,求实数a 的值.6.若m n >>0,求关于x 的不等式()()mx n x x --20-1≥解集.§2.4 高次不等式像x x x 22+3>2+6这样,只含有一个未知数,并且未知数的次数高于两次的不等式称为高次不等式. 我们研究()()()()x x x x -1+1-2-3<0的解,此不等式的左端是关于x 的高次不等式,已不能用一元二次不等式解法求解,首先解方程()()()()x x x x -1+1-2-3=0得x 的四个解分别为1,-1,2,3.然后将x 的取值分成5段,使得四个因式x x x x -1+1-2-3,,,的积为负的范围就是所求的解集. 列表:借助于数轴并根据积的符号法则表示为图2-2.图2-2由图可知:原不等式的解集为()()23-11,,. 此方法为“数轴标根法”也可以叫“串线法”,高次不等式常常用“数轴标根法”来解,其步骤是: ①等价变形后的不等式一边是零,一边是各因式的积.(未知数系数一定为正数) ②把各因式的根标在数轴上. ③用曲线穿根,(奇次根穿透,偶次根不穿透)看图像写出解集. 例1.解不等式x x x 32+3>2+6.解:原不等式化为()(x x x +3>0∴原不等式的解为x x -3<<例2.解不等式:()()()()x x x x x 2+1-20-3-5≤.解:原不等式等价于()()()x x x x -20-3-5≤或x =-1.标根(见图2-3);图2-3解集为[](){}0235-1,,.基础练习1.解不等式x x x 32+3>2+6.2.解不等式()()x x x x 22-4-5++2<0. 3.解不等式()()()()x x x x 23+2-1+1-2<0. 能力提高4.对于一切x 1⎡⎤∈-2⎢⎥2⎣⎦,,不等式ax x x 32-++10≥恒成立,求实数a 的取值范围.5.设P x x x x 432=+6+11+3+31,求使P 为完全平方数的整数x 的值.6.已知x y a x y b c >0>0=+=,,,m 使得对于任意正数x y ,可使a b c ,,为三角形的三边构成三角形,如果存在,求出m 的值,如果不存在,请说明理由. 7.已知函数()()x k k x f x x x 42242++2-4+4=+2+4的最小值是0,求非零实数k 的值.§2.5无理不等式像x3-不等式,关键是把它同解变形为有理不等式组.无理不等式一般有如下几种形式:()()()()f xg xf xg x⎧0⎫⎪⇒⎪⎬⎪⇔0⎨⎪⎭⎪>⎪⎩定义域≥≥例1>0.解:根式有意义∴必须有:xxx3-40⎧⇒3⎨-30⎩≥≥≥又有x-3x-3解之:x1>2∴{}{}|x x x x x x⎧1⎫>3>=>3⎨⎬2⎩⎭()()()()f xg xf xg x2⎧0⎪⎪⇔0⎨⎪>⎡⎤⎪⎣⎦⎩≥≥或()()fxg x⎧0⎪⎨<0⎪⎩≥例2x>4-3.解:原不等式等价于下列两个不等式组得解集的并集:Ⅰ:()xx xx x x222⎧4-30⎪⎪-+3-20⎨⎪-+3-2>4-3⎪⎩≥≥Ⅱ:x xx2⎧-+3-20⎨4-3<0⎩≥解Ⅰ:xx xx4⎧⎪3⎪64⎪12⇒<⎨53⎪⎪63<<⎪52⎩≤≤≤≤解Ⅱ:x4<23≤∴原不等式的解集为xx⎧6⎫<2⎨⎬5⎩⎭≤.()()()()()f xg x g xf xg x2⎧0⎪⎪⇔>0⎨⎪<⎡⎤⎪⎣⎦⎩型≥例3x +2. 解:原不等式等价于()x x x x x x 222⎧2-6+4⎪⎪+2>0⎨⎪2-6+4<+2⎪⎩≥0x x x x 21⎧⎪⇒>-2⎨⎪0<<10⎩或≥≤{}|x x x ⇒2<100<1或≤≤ 例4>.解:要使不等式有意义必须:x x x x x 1⎧2+10-⎧1⎪⇒⇒-2⎨⎨+102⎩⎪-1⎩≥≥≥≥≥.>)22∴>,即()x >-+1.x +10≥,∴不等式的解为x 2+10≥ 即x 1≥-2.基础练习1.解下列不等式:(1> (2)x x 3-3+3 (3> (4)(x -10. 2>3. 3>. 4>1.5.满足x 3-x 的集合为A ;满足()x a x a 2-+1+0≤的x 的集合为B . (1)若A B ⊂,求a 的取值范围; (2)若A B ⊇,求a 的取值范围;(3)若A B 为仅含一个元素的集合,求a 的值. 6.求不等式()x x 224<2+9的解集.7.求使关于x k 有解的实数k 的最大值. §2.6 绝对值不等式1.含有绝对值不等式有以下两种基本形式:(1)()x a a a x a <>0⇔-≤≤(()x a a a x a >0⇔-≤≤≤), (2)()x a a x a x a >>0⇔><-或(()x a a x a x a >0⇔-或≥≥≤). 2.解绝对值不等式的关键在于去掉绝对值的符号,一般有以下方法: (1)定义法;(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()f x g x <); (4)图像法或数形结合法. 例1.解不等式x x 2-5+5<1.解法一:利用不等式()x a a <>0的解集是{}|x a x a -<<和整体的思想()()f x f x <1⇔-1<<1,因此,这个不等式可化为x x x x 22⎧-5+5<1⎪⎨-5+5>-1⎪⎩ ①②解不等式①得解集{}|x x 1<<4 解不等式②得解集{}|x x x <2>3或∴原不等式的解集是不等式①和不等式②的解集的交集,即解集为{}|x x x 1<<23<<4或解法二:平方去绝对值.原不等式可化为:()()xx x x 22-5+6-5+4<0,即()()()()x x x x -2-3-4-1<0 利用“数轴标根法”(见图2-4),图2-4∴原不等式的解集是{}|x x x 1<<23<<4或.例2.解关于x 的不等式()x m m 2-1<2-1∈R .解:若m 2-10≤,即m 12≤,则x m 2-1<2-1恒不成立,此时原不等式无解;若m 2-1>0,即m 1>2,则()m x m -2-1<2-1<2-1,所以m x m 1-<<. 综上,当m 12≤时,原不等式的解集为∅;当m 1>2时,原不等式解集为{}|x m x m 1-<<. 例3.解下列不等式: (1)x 4<2-37≤; (2)x x -2<+1; (3)x x 2+1+-2>4.解:(1)原不等式可化为x 4<2-3≤7或x 2-3<-4-7≤,∴原不等式解集为17⎡⎫⎛⎤-2-5⎪ ⎢⎥22⎣⎭⎝⎦,,.(2)原不等式可化为()()x x 22-2<+1,即x 1>2, ∴原不等式解集为1⎛⎫+∞ ⎪2⎝⎭,.(3)当x 1-2≤时,原不等式可化为x x -2-1+2->4,x ∴<-1,此时x ∴<-1;当x 1-<<22时,原不等式可化为x x 2+1+2->4,∴x >1,此时x 1<<2;当x 2≥时,原不等式可化为x x 2+1+-2>4, ∴x 5>3,此时x 2≥. 综上可得:原不等式的解集为()()-∞-11+∞,,.例4.某段城铁线路上依次有A 、B 、C 三站,km AB =5,km BC =3,在列车运行时刻表上,规定列车8时整从A 站发车,8时07分到达B 站并停车1分钟,8时12分到达C 站,在实际运行中,假设列车从A 站正点发车,在B 站停留1分钟,并在行驶时以同一速度km/h v 匀速行驶,列车从A 站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差. (1)分别写出列车在B 、C 两站的运行误差;(2)若要求列车在B 、C 两站的运行误差之和不超过2分钟,求v 的取值范围. 解:(1)列车在B 、C 两站的运行误差(单位:分钟)分别是 v 300-7和v 480-11 (2)由于列车在B 、C 两站的运行误差之和不超过2分钟,所以 v v 300480-7+-112≤ 当v 3000<7≤时,①式变形为v v300480-7+-112≤,解得v 300397≤≤. 当v 300480<711≤时,①式变形为v v 3004807-+-112≤,解得v 300480<711≤. 当v 480>11时,①式变形为v v3004807-+11-2≤, 解得v 480195<114≤. 综上所述,v 的取值范围是195⎡⎤39⎢⎥4⎣⎦,.基础练习1.解不等式x x x 2-1<++1.2.已知{}|A x x a =2-3<,{}|B x x =10≤,且A B ,求实数a 的取值范围.3.求不等式x x 3+14+2>5的解集. 4.求不等式x x -1+-5<7的解集.5.(1)对任意实数x x x a +1+-2>,恒成立,求a 的取值范围. (2)对任意实数x x x a -1-+3<,恒成立,求a 的取值范围.能力提高6.在一条公路上,每隔km 100有个仓库(如图2-5),共有5个仓库,一号仓库存有10t 货物,二号仓库存20t ,五号仓库存40t ,其余两个仓库是空的.现在想把所有的货物放在一个仓库里,如果每吨货物运输1km 需要0.5元运输费,那么最少要多少运费才行?五四三二一图2-57.若关于x 的不等式x x a -4++3<的解集不是空集,求a 的范围.§2.7绝对值的不等式的性质定理:a b a b a b -++≤≤证明:()a a a a b a b a b b b b ⎫-⎪⇒-+++⎬-⎪⎭≤≤≤≤≤≤a b a b ⇒++≤ ①又a a b b =+- b b -=由①a a b b a b b =+-++-≤ 即 a b a b -+≤ ② 综合①②:a b a b a b -++≤≤.注意:1︒左边可以“加强”同样成立,即a b a b a b -++≤≤.2︒这个不等式俗称“三角不等式”——三角形中两边之和大于第三边,两边之差小于第三边.3︒a b ,同号时右边取“=”,a b ,异号时左边取“=”. 推论1.n n a a a a a a 1212++++++……≤. 推论2.a b a b a b --+≤≤. 证明:在定理中以b -代b 得:()()a b a b a b a b --+-+-+-≤≤≤,即a b a b a b --+≤≤.例1.设a b <1<1,,求证a b a b ++-<2.证明:当a b +与a b -同号时,a b a b a b a b a ++-=++-=2<2; 当a b +与a b -异号时,()a b a b a b a b b ++-=+--=2<2. a b a b ∴++-<2.例2.已知()f x a b ≠时,求证:()()f a f b a b -<-. 证明:()()f a f b -===()()a b a b a b a b a ba b+-+-=++≤a b =-.基础练习1.ab >0,则①a b a +> ②a b b +< ③a b a b +<- ④a b a b +>-四个式中正确的是( ) A.①②B.②③C.①④D.②④2.x 为实数,且x x m -5+-3<有解,则m 的取值范围是( )A.m >1B.m 1≥C.m >2D.m 2≥ 3.不等式a b a b+1+≤成立的充要条件是( )A.ab ≠0B.a b 22+≠0C.ab >0D.ab <04.已知a b ≠,a b a b m n a ba b-+==-+,,那么m 、n 之间的大小关系为( )A.m n >B.m n <C.m n =D.m n ≤能力提高5.已知()()f x x ax b a b 2=++∈R ,,求证:()()()f f f 1+22+32≥. 6.实数x 1、x 2、…、x 2007∈R ,满足x x x x x x 213220072008-+-++-=2007…,设kk x x x y k12+++=…,k =123,,…,2007.求y y y y y y 213220072006-+-++-…的最大值.§2.8 含字母系数的不等式像()ax a x 2-+1+1<0这样,只含有两个或两个以上的未知数的不等式,称为含字母系数的不等式.解不等式时,对字母的取值要进行恰当的分类,分类时要不重、不漏,然后根据分类进行求解. 例1.解关于x 的不等式()ax a x 2-+1+1<0其中a >0 解:由一元二次方程()ax a x 2-+1+1<0的根为x x a121-1=,知 (1)当a1>1,即a 0<<1时二次函数()y ax a x 2=-+1+1的草图为图2-6: 故原不等式的解为a 1⎛⎫1 ⎪⎝⎭,.图2-6(2)a10<<1,即a >1时二次函数()y ax a x 2=-+1+1的草图为图2-7:图2-7故原不等式的解为a 1⎛⎫1 ⎪⎝⎭,. (3)a1=1,即a =1时二次函数()y ax a x 2=-+1+1的草图为图2-8:故原不等式的解为∅.图2-8综上,当a 0<<1时原不等式的解集为a 1⎛⎫1 ⎪⎝⎭,;当a >1时原不等式解集为a 1⎛⎫1 ⎪⎝⎭,;当a =1时原不等式解集∅.例2.解关于x 的不等式()x x a a 2---1>0. 解:原不等式可以化为:()()x a x a +-1->0. 若()a a >--1即a 1>2,则x a >或x a <1-. 若()a a =--1即a 1=2,则x x x 211⎛⎫->0⇒≠∈ ⎪22⎝⎭R ,.若()a a <--1即a 1<2,则x a <或x a >1-. 例3.关于x 的不等式()ax a x a 2+-1+-1<0对于x ∈R 恒成立,求a 的取值范围. 解:当a >0时不合题意,a =0也不合题意,必有:()()a a a a a a a 22<0⎧<0⎧⎪⇒⎨⎨3-2-1>0∆=-1-4-1<0⎪⎩⎩()()a a a a <0⎧1⎪⇒⇒<-⎨3+1-1>03⎪⎩.例4.解不等式:aa x >1--2. 解:原不等式可化为:()()a x a x -1+2->0-2,即()()()a x a x -1+2--2>0⎡⎤⎣⎦.当a >1时,原不等式与()a x x a -2⎛⎫--2>0 ⎪-1⎝⎭同解.若a a -22-1≥,即a 0<1≤时,原不等式无解:若a a -2<2-1,即a <0或a >1, 于是a >1时,原不等式的解为()a a -2⎛⎫-∞2+∞ ⎪-1⎝⎭,,.当a <1时,若a <0,解集为a a -2⎛⎫2 ⎪-1⎝⎭,;若a 0<<1,解集为a a -2⎛⎫2 ⎪-1⎝⎭,. 综上所述:当a >1时,解集为()a a -2⎛⎫-∞2+∞ ⎪-1⎝⎭,,;当a 0<<1时,解集为a a -2⎛⎫2 ⎪-1⎝⎭,; 当a =0时,解集为∅;当a <0时,解集为a a -2⎛⎫2 ⎪-1⎝⎭,.基础练习1.设a b >0>0,,解关于x 的不等式ax bx -2≥.2.解关于x 的不等式:()()x a x x x 22-+1+1>1-1(其中a >1).3.解关于x 的不等式:()m x x 2+1-4+10≤()m ∈R . 4.解关于x 的不等式:ax x x 2-1>0--2.5.关于x 的不等式()()()m x m x m 2+1-2-1+3-1<0的解是一切实数,求实数m 的取值范围. 能力提高6.设m m ∈≠0R ,,解关于x 的不等式x m x m m m 211⎛⎫-++-<0 ⎪⎝⎭.7.设不等式()()x m x 22-1>-1对满足m 2≤的一切实数m 的值都成立,求x 的取值范围. 8.若关于x 的不等式ax +2<6的解休是()-12,,求不等式xax 1+2≤的解集. 9.设不等式x ax a 2-2++20≤的解集为M ,如果[]M ⊆14,,求实数a 的取值范围. 10.已知不等式xy ax y 22+2≤对于[][]x y ∈12∈23,,,恒成立,求a 的取值范围. §2.9基本不等式及其应用图2-9是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图案中找出一些相等关系或不等关系吗?图2-9将图中的“风车”抽象成如图2-10,在正方形ABCD 中有个全等的直角三角形.设直角三角形的两条直角边长为a b ,.这样,4个直角三角形的面积的和是ab 2,正方形的面积为a b 22+.由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:a b ab 22+2≥.当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有a b ab 22+=2. 定理1(基本不等式1):C图2-10一般的,如果a b ∈R ,,那么a b ab 22+2≥(当且仅当a b =时取“=”号) 证明:因为()a b ab a b 222+-2=-当a b ≠时,()a b 2->0,当a b =时,()a b 2-=0, 所以,()a b 2-0≥,即a b ab 22+2≥.特别的,如果a b >0>0,,我们用分别代替a 、b,可得a b +≥()a ba b +>0>02, 通常我们称a b+2为a 、ba 、b 的几何平均数. 例1.已知x 、y 都是正数,求证: (1)y xx y+2≥; (2)()()()x y x y xy x y 223333+++8≥.证明:x y ,都是正数x yx y x y y x2233∴>0>0>0>0>0>0,,,,, (1)x y y x +=2≥即x yy x+2≥. (2)x y x y x y 2233+0+>0+0,,≥≥≥()()()x y x y x y x y 223333∴+++=8≥ 即()()()x y x y xy x y 223333+++8≥.说明:在运用定理:a b+2时,注意条件a 、b 均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形. 例2.(1)用篱笆围成一个面积为2m 100的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)段长为m 36的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解:(1)设矩形菜园的长为m x ,宽为m y ,则xy =100,篱笆的长为()m x y 2+.由x y+2x y +≥()x y 2+40≥.等号当且仅当x y =时成立,此时x y ==10.因此,这个矩形的长、宽都为m 10时,所用的篱笆最短,最短的篱笆是40m .(2)设矩形菜园的宽为m x ,则长为()m x 36-2,其中0x <<18, 其面积()()x x S x x x x 22112+36-236⎛⎫=36-2=⋅236-2=⎪2228⎝⎭≤ 当且仅当x x 2=36-2,即x =9时菜园面积最大,即菜园长m 18,宽为9m 时菜园面积最大为2162m . 归纳:1.两个正数的和为定值时,它们的积有最大值,即若a b +∈R ,,且a b M +=,M 为定值,则M ab 24≤,等号当且仅当a b =时成立.2.两个正数的积为定值时,它们的和有最小值,即若a b +∈R ,,且ab P =,P 为定值,则a b +≥,等号当且仅当a b =时成立.定理2(基本不等式2):如果a b c +∈R ,,,那么a b c abc 333++3≥(当且仅当a b c ==时取“=”)证明: ()a b c abc a b c a b ab abc 3333322++-3=++-3-3-3 ()()()()a b c a b a b c c ab a b c 22⎡⎤=+++-++-3++⎣⎦()a b c a ab b ac bc c ab 222⎡⎤=+++2+--+-3⎣⎦()()a b c a b c ab bc ca 222=++++---()()()()a b c a b b c c a 2221⎡⎤=++-+-+-⎣⎦2. a b c ∈+R ,,, ∴上式0≥.从而a b c abc 333++3≥.推论:如果a b c ∈+R ,,,那么a b c ++3a b c ==时取“=”)证明:a b c 333++++≥≥a b c++⇒3由此推出:a b c abc 3++⎛⎫⎪3⎝⎭≥.例3.求证:(1)()a b c a b c 111⎛⎫++++ ⎪⎝⎭≥9;(2)a b c b c a b c a a b c ⎛⎫⎛⎫++++9 ⎪⎪⎝⎭⎝⎭≥.证明:(1) a b c ,,都是正数a b c a b c ++111∴>0++>03,≥ ()a b c a b c 111⎛⎫∴++++=9 ⎪⎝⎭≥.(2)a b c ,,都是正数a b c b c a ∴++3≥,b c a a b c ++3≥. a b c b c a b c a a b c ⎛⎫⎛⎫∴++++9 ⎪⎪⎝⎭⎝⎭≥. 例4.一根水平放置的长方体形枕木的安全负荷与它的宽度a 成正比,与它的厚度d 的平正比,与它的长度l 的平方成反比,见图2-11.lda图2-11(1)将此枕木翻转90︒(即宽度变为了厚度),枕木的安全负荷变大吗?为什么?(2)现有一根横断面为半圆(半圆的半径为R )的木材,用它来成长方体形的枕木,木材长度即为枕木规定的长度,问如何截取,可使安全负荷最大?解:(1)由题可设安全负荷ad y k l 212=⋅(k 为正常数),则翻转90︒后,安全负荷da y k l 222=⋅.因为y dy a 12=,所以,当d a 0<<时,y y 12<,安全负荷变大;当a d 0<<时,y y 12>,安全负荷变小.(2)如图2-12,设截取的枕木宽为a ,高为d ,则图2-12a d R 222⎛⎫+= ⎪2⎝⎭即a d R 222+4=4 枕木长度不变,u ad 2∴=最大时,安全负荷最大.u d d ∴====当且仅当d R d 222=-2,即取d a ==,时,u 最大,即安全负荷最大. 定理3(基本不等式3)*ni a a a n a R i n n+12+++∈∈1N …,,≤≤.这个结论最终可用数学归纳法,二项式定理证明(这里从略).这里涉及到“平均数”的概念.如果n a a a n +12∈>1R ,,…,,且n +∈N ,则na a a n12+++…叫做这n 做这n 个正数的几何平均数.定理3的语言表述为:n 个正数的算术平均数不小于它们的几何平均数. 基础练习1.已知a 、b 、c 都是正数,求证:()()()a b b c c a abc +++8≥. 2.设a b c +∈R ,,,且ab bc ca ++=108,求ab bc cac a b++的最小值. 3.(1)若x >0,求()f x x x9=4+的最小值; (2)若x <0,求()f x x x9=4+的最大值. 4.(1)若x ≠0,求x x1+的取值范围; (2)若ab =1,求a b +的取值范围; (3)若x 5<4,求x x 14-2+4-5的最大值; (4)若x >2,求x x x 2-3+3-2的最小值;(5)若x y >0,,且x y 19+=1,求x y +的最小值;(6)若x y >0,,x y +=1,求x y41+的最小值;(7)求y 2y 2=(8)若a b >0,,且ab a b =++3,求ab 的取值范围.5.某工厂要建造一个长方体无盖贮水池,其容积为3m 4800,深为m 3,如果池底每21m 的造价为150元,池壁每2m 1的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?6.某房屋开发公司用100万元购得一块土地,该地可以建造每层m 21000的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层,整幢楼房每平方米建筑费用提高%5.已知建筑5层楼房时,每平方米建筑费用为400元,公司打算造一幢高于5层的楼房,为了使该楼房每平方米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成几层? 能力提高7.用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次....的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的12,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上,设用x 单位量的水清冼一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x . (1)试规定()f 0的值,并解释其实际意义;(2)试根据假定写出函数()f x 应该满足的条件和具有的性质;(3)设()f x x 21=1+,现有()a a >0单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.8.设a a a a 11211>-1≠=1+1+,.(1a a 12,之间; (2)a a 12,;(3.9.设常数a b +∈R ,,试探求不等式()ax a b b 2=+-1+>0对任意x >1成立的充要条件. 10.已知集合(){}|D x x x x x x k 121212=>0>0+=,,,(其中k 为正常数). (1)设u x x 12=,求u 的取值范围;(2)求证:当k 1≥时,不等式k x x x x k 22212⎛⎫⎛⎫112⎛⎫--- ⎪⎪ ⎪2⎝⎭⎝⎭⎝⎭≤对任意()x x D 12∈,恒成立;(3)求使不等式k x x x x k 22212⎛⎫⎛⎫112⎛⎫--- ⎪⎪ ⎪2⎝⎭⎝⎭⎝⎭≥对任意()x x D 12∈,恒成立誓k 2的范围.11.已知a b c +∈R ,,,且满足()()kabc a b a b c a b c22++++4++≥,求k 的最小值.§2.10 不等式的证明证明不等式不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容方方面面.如与数列、三角函数、函数等相结合,解答时需要综合运用这些知识.不等式的证明,由于题型多变,技巧性强加上无固定程序可循,因此常有一定的难度,解决个困难的出路在于深刻理解不等式证明中应用的数学思维方法和数学思想方法,熟练掌握等式的性质和一些基本不等式.不等式的证明常用方法有:比较法、分析法、综合性、反证法. 1,比较法比较法是证明不等式的常用方法,它有两种基本形式: ①求差比较法,步骤是:作差——变形——判断.变形方向:变为一个常数;或变为平方和形式;或变为因式之积的形式. 这种比较法是普遍适用的,是无条件的.它的理论依据是实数大小关系:a b a b a b a b a b a b ->0⇔>⎧⎪-=0⇔=⎨⎪-<0⇔<⎩应用范围:常用于指(对)数式的比较.这种比较法是有条件的,这个条件就是“除式”的符号一定. 例1.若a b n >0>1,,,则n n n n a b a b ab -1-1++≥ 证明:()()()()n n n n n n a b a b ab a a b b a b -1-1-1-1++=---()()n n a b a b A -1-1=--=.若a b >,则n n a b -1-1>,则A >0; 若a b <,则n n a b -1-1<,则A <0; 若a b =,则A =0. ∴原不等式成立.②求商比较法,步骤是:作商——变形——判断. 做商法是依据当b >0,且ab>1时,则a b >,反之则亦然. 例2.设a b c ,,为正数,证明()a b c a n ca b c abc ++3≥.证明:易知上式是轮换的,不妨设a b c ≥≥. 上式即()a b ca b c a b c abc ++333≥a bb ca ca b c b c a c a b a b c a b a a b c b c c ---222+++⎛⎫⎛⎫⎛⎫=1 ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥.∴原不等式成立.比较法是证明不等式最基本,也是最常用的方法之一,它主要有作差或作商,变形,判断三个步骤. 基础练习1.(1)若x >1,求证:x x x31>+-1; (2)若a b ∈R ,,求证:a b ab a b 22+++-1≥;(3)若a b <<0,求证:a b a b a b a b2222++<--;(4)若a b >0>0,,求证:a b b a a b a b ≥. 2.若x y z a b c +∈∈R R ,,,,,,则()b c c a a b x y z xy yz zx a b c222+++++2++≥. 3.若a b c ,,为不全相等的正数,则a b ab b c a c ac abc 22222++++>6. 4.已知ab R +∈,且a b ≠,求证:()()()a b a ab b a b 222222--+<-.2.分析法证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法,分析法也称逆推法.例3>1+(22>即12+>16+2即35>19+,即4,即15<16(22>即12+>16+35>19+即35>19+,即4,即15<16例4.已知n ∈N ,求证:n n n n 111111111⎛⎫⎛⎫1++++++++ ⎪ ⎪+1352-12462⎝⎭⎝⎭……≥① 证明:要证明不等式(1),只须证()n n n n 1111111⎛⎫⎛⎫1+++++1++++ ⎪ ⎪352-12462⎝⎭⎝⎭……≥②②式左边即n n n n 111⎛⎫+++++ ⎪22352-1⎝⎭…③ ②式右边即n n n 11111111⎛⎫⎛⎫+++++++++ ⎪ ⎪24622462⎝⎭⎝⎭……④n n n n 1111111⎛⎫⎛⎫=+++++++++ ⎪ ⎪22462462⎝⎭⎝⎭…… 比较③和④可知要证②式成立,只须证明 n n 1111⎛⎫++++ ⎪22462⎝⎭…≥⑤ n n111111++++++352-1462……≥⑥ ⑤,⑥两式显然成立,故不等式①成立.用分析法证明不等式时,应注意每一步推理都要保证能够反推回来.分析法的优点就是比较符合探索题解的思路,缺点就是叙述往往比较冗长,因此,思路一旦打通,可改用综合法解答,它适用于条件简单而求证复杂或从条件无从下手的题. 基础练习1<2.设,x y >0>0,证明不等式:()()x yxy11223323+>+.3.已知,,a b c 分别为一个三角形的三边之长,求证c a b a b b c c a++<2+++. 4.若,,x y z +∈R ,且x y z xyz ++=,证明不等式y z z x x yx y z x y z 2⎛⎫+++111++2++ ⎪⎝⎭≥.5,已知,,x y z ∈+R ,且x y z 222++=1,求证:x y z x y z 222++1-1-1-6.已知,,a b c 01≤≤,求证:a b cbc ca ab ++2+1+1+1≤. 3.综合法综合法是“由因导果”,即从已知条件出发,依据不等式性质,函数性质或熟知的基本不等式,逐步推导出要证明的不等式.例5.已知△的三边长为,,a b c ,且a b c s ++=2,求证:()()()abcs a s b s c ---8≤. 证明:由条件得:,,s a s b s c ->0->0->0 ()()()s a s b c s a s c s a b 222-+-1⎛⎫∴--=2--= ⎪244⎝⎭≤.同理:()()()(),a b s b s c s c s a 22----44≤≤.三式相乘再开方得()()()abcs a s b s c ---8≤.在实际应用中,常常用分析法寻找思路,用综合法表述,即所谓的综合分析法,这样使得叙述不会太过于冗长,请看下例:例6.设,,,a b x y R ∈,且,a b x y 2222+=1+=1,试证:ax by +1≤. 证法1:用分析法。
中职教育-数学(基础模块)上册 第2章 不等式.ppt
(3)单击选中左侧的交点,然后选择“度量”>“横 坐标”菜单,标记出左侧交点A的横坐标;再选择“度 量”>“纵坐标”菜单,标记出左侧交点A的纵坐标.
(4)用同样的方法标记出右侧交点B的横、纵坐标.
例2 k为何值时,方程2x2-kx+x+8=0无实数解.
设a、b为任意实数,且a<b,则有
(1)开区间:数集 x | a x b 区间 ( a ,b ) ;
(2)闭区间:数集x | a 剟x b 区间 [ a ,b ] ; (3)右半开区间:数集x | a „ x b 区间 [ a ,b ) ;
(4)左半开区间:数集x | a x „ b 区间 ( a ,b ].
图2-3
2.2.2 无限区间
集合x | x 3可以用数轴上位于3右侧的一条射线(不包
括端点)来表示,如图2-4所示.
图2-4
由图可以看出,集合x | x 3所表示的区间的左端点为3,
没有右端点,这时可以将其记作 (3,﹢∞),其中符号 “﹢∞ ”读作“正无穷大”,表示右端点可以任意大,而并 非某个具体的数.
(5)实数集R如果用区间来表示,可以记作(-∞,﹢∞).
图2-5
图2-6
2.3 一元二次不等式
只含有一个未知数,并且未知数的最高次数是二次的不等式, 称为一元二次不等式.其一般形式为
ax2 bx c (…) 0或ax2 bx c („ ) 0 ( a 0)
若求一元二次不等式ax2 bx c 0 或 ax2 bx c 0 ( a 0) 的解集,可以先解其对应的一元二次方程 ax2 bx c 0 ( a 0) , 然后再根据解的情况,并结合一元二次函数y ax2 bx c ( a 0) 的图像进行求解.
2.1.2等式性质与不等式性质-【新教材】人教A版(2019)高中数学必修第一册课件 (共28张PPT)
ba
改变方向
由c < 0,得 c > c .
ab
还可以利用作差法证明吗? 证明:
已知b克糖水中含有a克糖 (b>a>0),再添加m克 糖 (m>0)(假设全部溶 解),糖水变甜了.
请将这一事实表示为一个不 等式,并证明这个不等式成 立.
(1)当0≤a<8时0≤ a <4;
b
(2)当-6<a<0时-3< a <0.
21.0.已知三个不等式:①ab>0;②ac>db;③bc>ad.若以其中两 个作为条件,余下的一个作为结论,请写出两个正确的命题,并 写出推理过程.
解:答案不唯一. 命题一:若 ab>0,且ac>db,则 bc>ad. 证明:因为ac>db,且 ab>0, 所以ac·ab>db·ab,即 bc>ad. 命题二:若 ab>0,且 bc>ad,则ac>db. 证明:因为 ab>0,所以a1b>0,又 bc>ad, 所以 bc·a1b>ad·a1b,即ac>db.
反例:不一定,如3>1,-1>-10, 则3-(-1)>1-(-10)不成立.
2.两个不同向不等式的两边可以分别相除吗?
不可以.两个不同向不等式的两 边不能分别相除,在需要商时,可利 用不等式性质转化为同向不等式相 乘.
练习
用不等号 “>”或 “<”填空:
(1)如果a>b,c<d,那么a-c
b-d;
d=-2.
则
a c
=-1,
b d
=-1,排除选项
A B.
又
a d
=-
3 2
2.1不等式的基本性质高中
(1)作差; 常用手段:配方法,因式分
(2)变形;
解法。
常见形式:变形为常数;
(3)定号;
一个常数与几
(4)下结论;
个平方和; 几个因式的积。
作商比较两数大小的依据
若 b0
(1) a 1 a b b
(2) a 1 a b b
(3) a 1 a b b
例1:已知a 0,1 b 0 ,那么在
三、例题分析:
例2:(2)已知2x 4y 1 ,比较 x2 y2
作与差210比的较大法:小__xx2_2_y_y2_2__121_0 _
注:特殊值 法容易漏“=”
20
x2
(1 4
1 2
x)2
1(条件 20
2x
4y=1
的应用)
5 x2 - 1 x+ 1 5(x2 - 1 x+ 1 ) 4 4 80 4 5 100
3b 4
1 1 1(乘法单调性)
4 Q2
a
b
3
3
1
-
a
(1 乘法法则)
2b
1 a 1(乘法单调性)
b2
三、例题分析:
例5:已知 2 a 3, 4 b 3,求 a b, a b, a , ab, b2 的取值范围。
ba
解:(4)Q 4 b 3 3 b 4(乘法单调性)
• 上式中的左边反映的是实数的运算性质, 而右边则是实数的大小顺序,合起来就成 为实数的运算性质与大小顺序之间的关系。 这一性质不仅可以用来比较两个实数的大 小,而且是推导不等式的性质,不等式的 证明,解不等式的主要依据。
中职数学基础模块2.1.2不等式的性质教学设计教案人教版
如果不等式两边都乘冋一个正数,则不等号的方向不变,如
题由学生思考后口
果都乘同一个负数,则不等号的方向改变.
答;后3个小题同桌
课时教学流程
思考:如果a>b,那么一a
—b.
之间讨论,回答.
练习2
⑴在一3v—2的两边都乘以2,
得;
(2)在1>—2的两边都乘以一3,
得;
(3)如果a>b,那么一3a
的知识网络.
课时教学设计尾页
☆补充设计☆
板书设计
不等式的性质
例题与练习:
作业设计
必做题:教材P36,练习A组;
选做题:教材P37,练习B组.
教学后记
教学 重点 与
难点
教学重点:
不等式的二条基本性质及其应用
教学难点:
不等式基本性质3的探索与运用
教学 方法 与
手段
讲练结合法与分组探究教学法
使 用 教 材 的 构 想
通过引导学生回顾玩跷跷板的经验,师生共同探究天平两侧物体的 质量的大小,引导学生理性地认识不等式的一条基本性质,并运用作差
比较法来证明之.通过题组训练,使学生逐步掌握不等式的基本性质, 为后面运用不等式的基本性质解不等式打下理论基础.
第1页(总页)
教师行为
师生行为
设计意图
导入:
创设天平情境问题:
从学生
【课件展示情境1】
观察课件,说出物体a
身边的生活
和c哪个质量更大一
经验出发进
些?
行新知的学
由此判断:
习,有助于调
如果a>b,b>c,
动学生学习
那么a和c的大小关
的积极性.
2.1(2)不等式的基本性质Ⅱppt课件
(C)a c b c
(D)
a c2 1
b c2 1
5
练习 1、下列结论能成立的是:(_1_)_(_3_)_(_4_)_ (1) a b a b
a (2)
c
b
d
ac
bd
a (3)
cபைடு நூலகம்
b
d
a3
d
3
b3
c3
ab (4)
cd
0 0
证明: 1 1 b a a b ab
b a 0, ab 0
1 1 0 ab
0 1 1
ab
如果a b 0,那么1 ____ 1 ( 0) ab
(同号倒数性质)
4
练习
1、如果x y, m n, 那么下列不等式中正确的是( B )
( A)x m y n (B)x m y n
糖水中加 糖变甜
b ab a 0
又b 0, c 0,b c 0
(b a)c 0 b(b c)
ac a bc b
问: b c __<___ b ?
ac
a
7
例2
a, b R ,比较a5 b5与a3b2 a2b3的大小
解:(a5 b5 ) (a3b2 a2b3 ) a3 (a2 b2 ) b3 (b2 a2 )
iff a b时等号成立
8
练习
ex1、比较两数 (a 1)2与a2 a 1的大小. ex2、比较两数 x2 3与3x的大小.
说明:
《2.1.2 不等式的性质》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块上
《不等式的性质》教学设计方案(第一课时)一、教学目标1. 掌握不等式的性质,能正确运用不等式的性质进行简单的不等式变形;2. 能根据不等式的性质正确解简单的不等式;3. 培养学生的观察、分析和解决问题的能力。
二、教学重难点1. 教学重点:不等式的性质1、2、3;2. 教学难点:运用不等式的性质进行简单的不等式变形。
三、教学准备1. 准备教学用具:黑板、粉笔、不等式板演、实物投影仪;2. 准备教学内容:设计适当的不等式变形例题,设计基础题和拓展题;3. 确定教学方法:采用引导发现法结合讲解法进行教学。
四、教学过程:(一)导入新课1. 回顾小学和初中的解不等式的情况,了解不等式的性质。
2. 引出本节课的主题——不等式的性质。
(二)探究新知1. 不等式两边同时加或减去同一个数,不等号的方向不变。
例题:解不等式5-2<7-2。
2. 不等式两边同时乘以或除以同一个负数,不等号的方向改变。
例题:解不等式-3(x+1)>5。
3. 学生分小组进行探究学习,尝试用文字和符号两种形式归纳出不等式的其他性质,并在课堂上进行分享和讨论。
4. 教师对学生的成果进行点评,并补充讲解其他性质。
(三)应用实践1. 设计一些典型的不等式题目,让学生进行解答练习。
2. 引导学生利用不等式的性质解一些复杂的不等式。
(四)小结作业1. 总结本节课的主要内容,强调不等式的性质及应用。
2. 布置课后作业,让学生进一步巩固不等式的性质及应用。
五、教学反思1. 教学效果如何?学生是否掌握了不等式的性质?2. 教学过程中有哪些亮点和不足?如何改进?3. 教学过程中是否关注到了不同层次的学生?是否给予了足够的指导和帮助?4. 本次教学设计中是否包含了足够的探究性和开放性?是否有利于培养学生的思维能力和创造力?通过本次教学设计为学生提供了充足的机会,通过案例研究、项目任务和问题解决等途径,探索新知识,并解决现实生活中的实际问题。
这样开放和活跃的环境鼓励学生对新知识进行探索,并且将学生的想法、质疑和创造力放在中心位置。
2.1等式性质与不等式性质(2)
巩固练习
练习 试判断真假;若假,请再添上一个适当条件,
使结论为真。 (1 )a b a c b c
(√)
(2)aba2 cbc2 (×) c≠0
(3)abca2 cb2 (√) ( 4 ) a b ,c d a d b c(√) (5 )a b ,c d a c b d(×) a>b>0,c>d>0
所以 1 1 0 dc
又因为 a>b>0,所以
a d
b c
0
所以
a d
b c
巩固练习
1
1.ab 0,|a||b|比较 a
与1 b
的大小
1 a
1. b
2已知 ab,ab0.求证 1: 1.
证明:因为 ab>0,所以
1
a
0
b
ab
又因为
a
b
所以
a
பைடு நூலகம்
1 ab
b
1 ab
所以 1 1 即 1 1 ba ab
所以 c b 即 b c ca cb cb ca
例题讲解 例 3 . 如 果 3 0 x 4 2 ,1 6 y 2 4 ,求 x y ,x -2 y ,x 的 范 围 ?
y
(1)解:因为 30 x 42,16 y 24 ,
所以 46<x+y<66
(2) 因为 30 x 42,16 y 24
例题讲解
( 2 ) 如 果 a > b > c > 0 , 那 么 c c ab
练 习 : 已 知 c > a > b > 0 , 试 比 较 b 与 c的 大 小 ? c - bc a
解:因为 c>a>b,所以-b>-a, 所以 c-b>c-a>0
北师大版中职数学基础模块上册:2.1.2作差比较法课件(共14张PPT)
活动 3 巩固练习,提升素养 例2 .已知b>a>0,c>0,比较 a c 与 a 的大小
bc b
活动 3 巩固练习,提升素养
解 作差可得
a b
c c
a b
a b
cb cb
ab c b cb
b b
ac cb
.
因为b>a>0,所以b-a>0.又因为c>0,所以
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
分析理解 例如,我们可以作差比较a2+1与2a的大小(a≠1).
因为(a2+1)-2a=a2-2a+1=(a-1)2,且当a≠1时, (a-1)2>0,所以a2+1>2a.
活动 3 巩固练习,提升素养 例1 .分析本节“问题提出”中的问题.
活动 3 巩固练习,提升素养
解 作差可得 98 98 8 98 106
166 166 8 166 174
98 174 106 166 166 174
544 <0 166 174
,所以
98 166
<106 174
.
又因为 98 0.5904,106 0.6092 ,所以立起脚尖
166
情感目标 通过本节课学习,使学生养成乐于学习、勇于探索的良好品质
核心素养
通过思考、讨论等活动,提升数学运算、直观想象、逻辑推理和数学建模等 核心素养.
创设情境,生成问题 在活初动中1,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
问题提出 我们知道实数可以比较大小,数学中如何比较a,b的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题】2.1.2不等式的基本性质
孟津县教师进修学校吕宏煜
【教学目标】
知识目标:
(1)理解不等式的基本性质;
(2)了解不等式基本性质的应用。
能力目标:
通过不等关系的学习与探究,培养数学思维能力。
【教学重点】
不等式的基本性质及其应用。
【教学难点】
不等式的基本性质3的运用。
【教学设计】
(1)抓住解不等式的知识载体,复习与新知识学习相结合;
(2)加强知识的巩固与练习,培养学生的思维能力。
【教学备品】
教学课件。
【课时安排】
1课时。
(40分钟)
【教学过程】
一、导入新课:
测量三个人的身高,发现小李比小王高,小王比小张高,那么肯定能够得到“小李比小张高” 的结论。
由此我们得到
性质1 如果a b >,且b c >,那么a c >.
(不等式的传递性)
证明 0a b a b >⇒->, 0b c b c >⇒->,于是
()()0a c a b b c -=-+->,因此a c >.
在初中阶段我们还学习过如下的几个不等式性质(a ,b ,c 均为实数)
性质2 如果a b >,那么a c b c +>+.
性质2叫做不等式的加法性质,利用性质2,可以由a+b>c 得到a>c-b,这表明对不等式可以移项。
性质3 如果a b >,0c >,那么ac bc >;
性质3叫做不等式的乘法性质,它表明,不等式俩边同时乘(或除以)同一个正数,不等号的方向不变;不等式俩边同时乘(或除以)同一个负数,不等号的方向改变; 汇报展示 交流巩固
学生小组讨论活动——举例验证上述不等式的性质. 如果a b >,0c <,那么ac bc <.
二、巩固知识 典型例题
例 4 用符号“>”或“<”填空,并说出应用了不等式的哪条性质.
(1) 设a b >,3a - 3b -;
(2) 设a b >,6a 6b ;
(3) 设a b <,4a - 4b -;
(4) 设a b <,52a - 52b -.
解 (1)3a ->3b -,应用不等式性质2;
(2)6a >6b ,应用不等式性质3;
(3)4a ->4b -,应用不等式性质3;
(4)52a ->52b -,应用不等式性质2与性质3. *例5 已知0a b >>,0c d >>,求证ac bd >.
证明 因为,0a b c >>,由不等式的性质3知,ac bc >,
同理由于,0c d b >>,故bc bd >.
因此,由不等式的性质1知ac bd >.
例6服装市场按每套90元的价格购进40套童装,应缴纳的税费为销售额的10%,如果要获得不低于900元的纯利润,每套童装的售价至少是多少?
解: 设每套童装的售价至少是ⅹ元,则
40(ⅹ-90)-40·ⅹ·10%≥900
解得 ⅹ≥125
答:每套童装的价格至少是125元。
三、运用知识 强化练习
教材练习2.1.2
1.填空:
(1)设36x >,则 x > ;
(2)设151x -<-,则
x > . 2. 已知a b >,c d >,求证a c b d +>+.
3.一辆匀速行驶的汽车,在11:20距离学校50 km ,要在12:00之前到达学校,汽车的速度至少是多大?
四、归纳小结 强化思想
本次课学了哪些内容?重点和难点各是什么?
五、自我反思 目标检测
本次课采用了怎样的学习方法?
你是如何进行学习的?
六、继续探索 活动探究
(1)读书部分: 教材章节2.1,
(2)书面作业: 教材习题2.1,必做A 组4,5,选做B 组。