化工原理课程设计℃时水吸收二氧化硫填料塔的设计
(完整版)水吸收二氧化硫填料塔课程设计..
《化工原理课程设计》报告设计任务书(一)设计题目试设计一座填料吸收塔,用于脱除混于空气中的SO2,混合气体的处理为2500m3/h,其中SO2(体积分数)8﹪。
要求塔板排放气体中含SO2低于0.4%,采用清水进行吸收。
(二)操作条件常压,20℃(三)填料类型选用塑料鲍尔环、陶瓷拉西环填料规格自选(四)设计内容1、吸收塔的物料衡算2、吸收塔的工艺尺寸计算3、填料层压降的计算4、吸收塔接管尺寸的计算5、绘制吸收塔的结构图6、对设计过程的评述和有关问题的讨论7、参考文献8、附表目录一、概述 (4)二、计算过程 (4)1. 操作条件的确定 (4)1.1吸收剂的选择 (4)1.2装置流程的确定 (4)1.3填料的类型与选择 (4)1.4操作温度与压力的确定 (4)2. 有关的工艺计算 (5)2.1基础物性数据 (5)2.2物料衡算 (6)2.3填料塔的工艺尺寸的计算 (6)2.4填料层降压计算 (11)2.5吸收塔接管尺寸的计算 (12)2.6附属设备……………………………………………… ..12三、评价 (13)四、参考文献 (13)五、附表 (14)一、概述填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
二、设计方案的确定(一) 操作条件的确定1.1吸收剂的选择因为用水作吸收剂,同时SO2不作为产品,故采用纯溶剂。
1.2装置流程的确定用水吸收SO2属于中等溶解度的吸收过程,故为提高传质效率,选择用逆流吸收流程。
1.3填料的类型与选择用不吸收SO2的过程,操作温度低,但操作压力高,因为工业上通常选用塑料散堆填料,在塑料散堆填料中,塑料鲍尔环填料的综合性能较好。
水吸收二氧化硫填料吸收塔_课程设计完整版
吉林化工学院化工原理课程设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计教学院化工与材料工程学院专业班级化学工程与工艺0804班学生姓名学生学号 08110430指导教师徐洪军2010 年 12 月 15 日化工原理课程设计任务书专业化学工程与工艺班级化工0804 设计人郑大朋一.设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计二.原始数据及条件生产能力:年处理空气—二氧化硫混合气2.3万吨(开工率300天/年)。
原料:二氧化硫含量为5%(摩尔分率,下同)的常温气体。
分离要求:塔顶二氧化硫含量不高于0.26% 。
塔底二氧化硫含量不低于0.1% 。
建厂地址:河南省永城市。
三.设计要求(一)编制一份设计说明书,主要内容包括:1. 摘要;2. 流程的确定和说明(附流程简图);3. 生产条件的确定和说明;4. 吸收塔的设计计算;5. 附属设备的选型和计算;6. 设计结果列表;7. 设计结果的讨论和说明;8. 主要符号说明;9. 注明参考和使用过的文献资料;10. 结束语(二) 绘制一个带控制点的工艺流程图。
(三)绘制吸收塔的工艺条件图]1[。
四.设计日期: 2010 年 11 月 22 日至 2010 年 12 月 15 日目录摘要 (IV)第一章绪论 (1)1.1 吸收技术概况 (1)1.2 吸收设备发展 (1)1.3 吸收在工业生产中的应用 (3)第二章吸收塔的设计方案 (4)2.1 吸收剂的选择 (4)2.2 吸收流程选择 (5)2.2.1 吸收工艺流程的确定 (5)2.2.2 吸收工艺流程图及工艺过程说明 (6)2.3 吸收塔设备及填料的选择 (7)2.3.1 吸收塔设备的选择 (7)2.3.2 填料的选择 (8)2.4 吸收剂再生方法的选择 (10)2.5 操作参数的选择 (11)2.5.1 操作温度的确定 (11)2.5.2 操作压强的确定 (11)第三章吸收塔工艺条件的计算 (12)3.1 基础物性数据 (12)3.1.1 液相物性数据 (12)3.1.2 气相物性数据 (12)3.1.3 气液两相平衡时的数据 (12)3.2 物料衡算 (12)3.3 填料塔的工艺尺寸计算 (13)3.3.1 塔径的计算 (13)3.3.2 泛点率校核和填料规格 (14)3.3.3 液体喷淋密度校核 (15)3.4 填料层高度计算 (15)3.4.1 传质单元数的计算 (15)3.4.2 传质单元高度的计算 (16)3.4.3 填料层高度的计算 (17)3.5 填料塔附属高度的计算 (18)3.6 液体分布器的简要设计 (18)3.6.1 液体分布器的选型 (18)3.6.2 分布点密度及布液孔数的计算 (19)3.6.3 塔底液体保持管高度的计算 (20)3.7 其他附属塔内件的选择 (21)3.7.1 填料支撑板 (21)3.7.2 填料压紧装置与床层限制板 (21)3.7.3 气体进出口装置与排液装置 (21)3.8 流体力学参数计算 (22)3.8.1 填料层压力降的计算 (22)3.8.2 泛点率 (23)3.8.3 气体动能因子 (23)3.9 附属设备的计算与选择 (23)3.9.1 吸收塔主要接管的尺寸计算 (23)3.9.2 离心泵的计算与选择 (24)工艺设计计算结果汇总与主要符号说明 (26)设计方案讨论 (31)附录(计算程序及有关图表) (32)参考文献 (34)结束语 (35)带控制点的工艺流程图 (36)设备条件图 (37)化工原理课程设计教师评分表 (38)摘要吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
化工原理课程设计---水吸收二氧化硫 填料吸收塔设计
化学与环境工程学院化工原理课程设计SO过程填料吸收塔的设计题目:处理量为31⋅的水吸收22000m h-专业班级:化学工程与工艺0409402班学生学号: *************:**指导老师:谭志斗、石新雨化工原理—化工设备机械基础课程设计任务书-2 专业化工班级 0409402 设计人一、设计题目:水吸收二氧化硫填料吸收塔设计二、设计任务及操作条件1、设计任务:)处理量: 2000Nm3/h 混合气(空气、SO2进塔混合气中含SO: 5%(V%)操作温度: 303 K2回收率: 95%SO22、操作条件操作压强: 100kPa(绝)3、设备型式自选4、厂址武汉地区三、设计内容:1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔径的确定(2)填料层高度计算(3)总塔高、总压降及接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、工艺流程图及换热器工艺条件图7、设计评述四. 设计日期:2011年 12月01日至 2011年12 月16日五. 指导教师:谭志斗、石新雨目录摘要 .............................................................................................................................................. - 5 - 第一章绪论 ................................................................................................................................ - 6 -1.1吸收技术概况.................................................................................................................- 6 -1.2吸收设备发展.................................................................................................................- 6 -1.3吸收在工业生产中的应用.............................................................................................- 8 - 第二章吸收塔的设计方案 ........................................................................................................ - 9 -2.1吸收剂的选择.................................................................................................................- 9 -2.2 吸收流程选择........................................................................................................... - 10 -2.2.1吸收工艺流程的确定....................................................................................... - 10 -2.2.2吸收工艺流程图及工艺过程说明................................................................... - 11 -2.3吸收塔设备及填料的选择.......................................................................................... - 12 -2.3.1吸收塔设备的选择........................................................................................... - 12 -2.3.2填料的选择....................................................................................................... - 13 -2.4吸收剂再生方法的选择.............................................................................................. - 16 -2.5 操作参数的选择....................................................................................................... - 16 -2.5.1操作温度的确定............................................................................................... - 16 -2.5.2操作压力的确定............................................................................................... - 17 - 第三章吸收塔工艺条件的计算 .............................................................................................. - 18 -3.1基础物性数据.............................................................................................................. - 18 -3.1.1液相物性数据................................................................................................... - 18 -3.1.2气相物性数据................................................................................................... - 18 -3.1.3气液两相平衡时的数据................................................................................... - 18 -3.2物料衡算...................................................................................................................... - 19 -3.3填料塔的工艺尺寸计算.............................................................................................. - 20 -3.3.1塔径的计算....................................................................................................... - 20 -3.3.2泛点率校核和填料规格................................................................................... - 21 -3.3.3液体喷淋密度校核........................................................................................... - 22 -3.4填料层高度计算.......................................................................................................... - 22 -3.4.1传质单元数的计算........................................................................................... - 22 -3.4.2传质单元高度的计算....................................................................................... - 22 -3.4.3填料层高度的计算........................................................................................... - 24 -3.5填料塔附属高度的计算.............................................................................................. - 24 -3.6液体分布器的简要设计.............................................................................................. - 25 -3.6.1液体分布器的选型........................................................................................... - 25 -3.6.2分布点密度及布液孔数的计算....................................................................... - 26 -3.6.3塔底液体保持管高度的计算........................................................................... - 28 -3.7其它附属塔内件的选择.............................................................................................. - 28 -3.7.1 填料支撑板...................................................................................................... - 28 -3.7.2 填料压紧装置与床层限制板.......................................................................... - 29 -3.7.3气体进出口装置与排液装置........................................................................... - 29 -3.8流体力学参数计算...................................................................................................... - 30 -3.8.1填料层压力降的计算....................................................................................... - 30 -3.8.2泛点率............................................................................................................... - 31 -3.8.3气体动能因子................................................................................................... - 31 -3.9附属设备的计算与选择.............................................................................................. - 31 -3.9.1吸收塔主要接管的尺寸计算........................................................................... - 31 -3.9.2离心泵的计算与选择....................................................................................... - 32 - 工艺设计计算结果汇总与主要符号说明 ................................................................................ - 34 - 设计方案讨论 ............................................................................................................................ - 39 - 附录 ............................................................................................................................................ - 39 - 参考文献 .................................................................................................................................... - 41 - 结束语 ........................................................................................................................................ - 42 -摘要吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
水吸收二氧化硫填料塔的设计课程设计-19页精选文档
化工原理课程设计题目水吸收二氧化硫填料塔的设计教学院化工与材料工程学院专业班级材化0901学生姓名学生学号指导教师2019年 7月5 日课程设计任务书1、设计题目:处理量为2750m3/h水吸收二氧化硫过程填料吸收塔的设计;矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO2。
入塔的炉气流量为2750m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。
吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。
吸收剂的用量为最小用量的1.5倍。
2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=20℃(3)选用填料类型及规格自选。
3、设计任务:完成干燥器的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。
化工原理教研室 2019年5月目录第1章设计方案 ............................................................ 错误!未定义书签。
1.1吸收剂的选择 (4)1.2吸收流程的选择 (IV)1.3吸收塔设备及填料的选择 (V)1.4吸收剂再生方法的选择 (VI)1.5操作参数的选择 (VII)第2章吸收塔的工艺计算.............................................. 错误!未定义书签。
2.1基础物性数据....................................................................................................... V III2.2物料衡算 ................................................................................................................ V III2.3填料塔的工艺尺寸的计算 (IX)2.4填料塔填料高度计算 (X)2.5填料塔附属高度计算 (XI)2.6液体分布器计算............................................................................................................ X I2.7其他附属塔内件的选择..................................................................................... X III2.8吸收塔的流体力学参数的计算 (XV)2.9附属设备的计算与选择 (XVI)工艺设计主要符号说明 .................................................................................... X VIII设计总结 ........................................................................................ 错误!未定义书签。
水吸收二氧化硫填料吸收塔课程设计完整版
水吸收二氧化硫填料吸收塔--课程设计完整版水吸收二氧化硫填料吸收塔课程设计一、设计背景随着工业化的快速发展,大量的二氧化硫排放进入大气中,严重污染了环境。
为了降低二氧化硫的排放,采用填料吸收塔进行二氧化硫吸收是一种经济有效的技术。
本次课程设计旨在设计一座水吸收二氧化硫填料吸收塔,以控制工业二氧化硫排放。
二、设计要求1.设计一座水吸收二氧化硫填料吸收塔,要求能够有效地吸收工业排放的二氧化硫。
2.考虑填料吸收塔的经济性、可靠性和环保性。
3.确定最佳的操作条件,包括吸收液的流量、喷淋密度、填料高度等。
4.对填料吸收塔的设计进行优化,以提高吸收效率。
三、设计原理填料吸收塔是利用填料作为两相接触的表面,使二氧化硫气体能够与水充分接触。
在填料塔内,气相和液相逆流接触,二氧化硫气体通过填料表面的液膜扩散进入水中,从而降低气相中的二氧化硫浓度。
四、设计方案1.填料选择考虑到二氧化硫吸收的效率和经济的因素,选择聚丙烯鲍尔环作为填料。
聚丙烯鲍尔环具有高的比表面积和通量,可以增加气液接触面积,提高二氧化硫吸收效率。
2.结构设计填料吸收塔的结构包括塔体、进气管、出水管、填料支撑板和聚丙烯鲍尔环填料。
塔体采用圆形结构,直径为1.2m,高度为12m;进气管安装在塔顶部,用于引入二氧化硫气体;出水管位于塔底部,用于排出吸收后的废水;填料支撑板位于塔体中部,用于支撑聚丙烯鲍尔环填料。
3.操作条件在填料吸收塔的操作过程中,需要控制以下条件:(1)吸收液的流量:通过调整水泵的流量来控制吸收液的流量,使其保持在一个最佳值,以提高吸收效率。
(2)喷淋密度:通过调整喷嘴的数量和喷射角度来控制喷淋密度,使水能够均匀地分布在填料上,增加气液接触机会。
(3)填料高度:选择合适的填料高度,以确保气液充分接触,提高吸收效率。
五、设计优化1.增加填料层数:通过增加填料的层数,可以增加气液接触的机会,提高吸收效率。
但是填料层数过多会增加压降和塔的能耗,因此需要综合考虑。
水吸收二氧化硫过程填料吸收塔的设计
吉林化工学院化工原理课程设计江苏大学环境工程课程设计题目教学院环境学院专业班级环境0901学生姓名杨华学生学号 3090903017指导教师郭仁惠2012年 12 月 19日设计任务书1、设计题目:年处理量为 21720.96吨二氧化硫混合气的填料吸收塔设计;矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO2。
入塔的炉气流量为1000m3/h~2000 m3/h,其中进塔SO2的摩尔分率为0.02~0.03,要求SO2的排放含量0.3%~0.5%。
吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。
吸收剂的用量为最小用量的1.3倍。
2、工艺操作条件:(1)操作平均压力:常压(2)操作温度:t=20℃(3)每年生产时间:7200h。
(4)填料类型及规格自选。
3、设计任务:完成吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。
目录摘要 (1)第1章绪论 (2)1.1吸收技术概况 (2)1.2吸收设备的发展 (2)1.3吸收在工业生产中的应用 (3)第2章设计方案 (5)2.1吸收剂的选择 (5)2.2吸收流程的选择 (6)2.2.1吸收工艺流程的确定 (6)2.2.2吸收工艺流程图及工艺过程说明 (7)2.3吸收塔设备及填料的选择 (7)2.3.1吸收塔的设备选择 (7)2.3.2填料的选择 (7)2.4吸收剂再生方法的选择 (8)2.5操作参数的选择 (9)2.5.1操作温度的选择 (9)2.5.2操作压力的选择 (9)2.5.3吸收因子的选择 (9)第3章吸收塔的工艺计算 (11)3.1基础物性数据 (11)3.1.1液相物性数据 (11)3.1.2气相物性数据 (11)3.1.3气液平衡数据....................................................................................... 错误!未定义书签。
【课程设计】水吸收二氧化硫填料吸收塔的设计
【课程设计】水吸收二氧化硫填料吸收塔的设计【综述】水吸收二氧化硫(SO2)填料吸收塔是一种重要的排放控制设备,它能够将工业废气中的SO2转换为亚硫酸盐,有效地净化空气污染。
水吸收二氧化硫填料吸收塔包括三部分:溶液填料,水池和水壶。
溶液填料一般由碳酸钙或膨润土组成,其中的小孔可以增加二氧化硫在填料表面的吸附。
水池前面的水壶可以源源不断地向填料供水,从而对工业废气中的SO2进行吸附和吸收。
【填料的选择】传统的水吸收二氧化硫填料吸收塔一般选用碳酸钙或膨润土作为溶液填料。
碳酸钙具有较强的吸附SO2的性能,但它容易受到H2SO4(硫酸)的影响,使得机器变得不稳定。
膨润土则有着较低的吸附性能,但具有更高的耐硫酸性,因此在高浓度的硫酸环境中,可以得到更优的效果。
【塔体的选择】水吸收二氧化硫填料吸收塔一般采用圆塔、矩形塔或多面塔这三种不同形式的塔体。
圆塔具有完整的弧形外观,适合一些低浓度的环境条件;矩形塔具有狭长的视窗,适合那些对空间和安装有较高要求的地方使用;多面塔具有多种多样的表面处理,能够满足不同空间要求。
【控制系统的设计】为了确保填料处于正常的吸收状态,在水吸收二氧化硫填料吸收塔中还要安装有一套控制系统。
比如安装湿度传感器、温度传感器、液位传感器等,用来实时监测水壶中的水位和湿度,从而保证吸收效果。
此外,还可以安装一个消防报警系统和一个紧急报警系统,以便及时处理应急事件。
【结论】水吸收二氧化硫填料吸收塔是重要的污染控制设备,它可以有效地将工业废气中的二氧化硫转换为亚硫酸盐,从而净化空气。
在设计水吸收二氧化硫填料吸收塔时,要按照工艺要求合理选择填料、塔体和控制系统,以确保吸收塔的良好性能和可靠运行。
水吸收二氧化硫填料塔的设计
化工原理课程设计题目水吸收二氧化硫填料塔得设计教学院化工与材料工程学院专业班级材化0901学生姓名学生学号指导教师2011年 7月5 日课程设计任务书1、设计题目:处理量为2750m3/h水吸收二氧化硫过程填料吸收塔得设计;矿石焙烧炉送出得气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中得SO2。
入塔得炉气流量为2750m3/h,其中进塔SO2得摩尔分率为0、05,要求SO2得吸收率为95%。
吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水得温度。
吸收剂得用量为最小用量得1、5倍。
2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=20℃(3)选用填料类型及规格自选。
3、设计任务:完成干燥器得工艺设计与计算,有关附属设备得设计与选型,绘制吸收系统得工艺流程图与吸收塔得工艺条件图,编写设计说明书。
化工原理教研室 2011年5月目录第1章绪论 (1)1、1吸收技术概况 (1)1、2吸收设备得发展 (1)1、3吸收在工业生产中得应用 (2)第2章设计方案 (2)2、1吸收剂得选择 (4)2、2吸收流程得选择 (4)2、2、1吸收工艺流程得确定 (4)2、3吸收塔设备及填料得选择 (4)2、3、1吸收塔得设备选择 (4)2、3、2填料得选择 (5)2、4吸收剂再生方法得选择 (6)2、5操作参数得选择 (7)第3章吸收塔得工艺计算 (9)3、1基础物性数据 (9)3、1、1液相物性数据 (9)3、1、2气相物性数据 (9)3、1、3气液相平衡数据 (9)3、2物料衡算 (10)3、3填料塔得工艺尺寸得计算 (11)3、3、1塔径得计算 (11)3、3、2泛点率校核 (11)3、3、3填料规格校核: (11)3、3、4液体喷淋密度校核 (11)3、4填料塔填料高度计算 (12)3、4、1传质单元高度计算 (12)3、4、2传质单元数得计算 (14)3、5填料塔附属高度计算 (14)3、6液体分布器计算 (15)3、6、1液体分布器 (15)3、6、2布液孔数 (17)3、6、3 液体保持管高度 (17)3、7其她附属塔内件得选择 (17)3、7、1填料支承板 (17)3、7、2除沫器(除雾器) (17)3、7、3管口结构 (18)3、8吸收塔得流体力学参数得计算 (19)3、8、1吸收塔得压力降 (19)3、8、2吸收塔得泛点率 (20)3、8、3气体动能因子 (20)3、9附属设备得计算与选择 (20)3、9、1离心泵得选择与计算 (20)3、9、2吸收塔得主要接管尺寸得计算 (21)工艺设计主要符号说明 (22)评述与讨论 (24)结束语 (25)参考文献 (26)第1章绪论1、1吸收技术概况在化学工业中,经常需将气体混合物中得个各组分加以分离。
化工原理课程设计---用水吸收二氧化硫常压填料塔
摘要在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,实现气液混合物的分离。
在化学工业中,经常需将气体混合物中的各个组分加以分离,其目的是:① 回收或捕获气体混合物中的有用物质,以制取产品;② 除去工艺气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物,以免污染大气。
吸收操作仅为分离方法之一,它利用混合物中各组分在液体中溶解度或化学反应活性的差异,实现气液混合物的分离。
一般说来,完整的吸收过程应包括吸收和解吸两部分。
在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。
填料塔作为主要设备之一。
二氧化硫填料吸收塔,以水为溶剂,经济合理,净化度高,污染小。
此外,由于水和二氧化硫反应生成硫酸,具有很大的利用。
本次化工原理课程设计,我设计的题目是:炉气处理量为h m 34200炉气吸过程填料吸收塔设计。
本次任务为用水吸收二氧化硫常压填料塔。
具体设计条件如下:1、混合物成分:空气和二氧化硫;2、二氧化硫的含量:08.0(摩尔分率)3、操作压强;常压操作4、进塔炉气流量:h m 342005、二氧化硫气体回收率:%98吸收过程视为等温吸收过程。
关键词:吸收、填料塔、二氧化硫、低浓度。
The AbstractIn the chemical production, gas absorption process is using the mixture of gases, the components in liquid or chemical reaction activity of solubility differences. In the chemical industry, gas absorption purpose is to:(1) recovery or capture gas mixture of the useful materials in order to making products;2) remove the harmful process gas composition, make gas purification, so as to further processing;in order to avoid the atmospheric pollution.Generally speaking, the complete absorption process should include absorption and desorption two parts. In the chemical production process, the raw material of the gas purification, protect the environment, to use gas absorption process. As one of the main equipment packed tower. Sulfur dioxide packing absorption tower, water solvent, reasonable economy, purification degree is high, the pollution is small. In addition, because water and sulfur dioxide reacts sulfuric acid, have a lot of use.The principles of chemical engineering course design,My design task is the sulfur dioxide absorption water atmospheric packed tower. The specific design conditions as follows:1, mixture composition: air and sulfur dioxide;2, sulfur dioxide levels in: (Moore points rate)3, operating pressure; Atmospheric pressure operation4, into the tower furnace gas flow:5, sulfur dioxide gas recovery:The absorption process as the isothermal absorption process.Keywords: absorption, packed tower, sulfur dioxide, low concentration.目录摘要 (I)目录 (III)第一章设计方案的确定 (1)1.1流程方案 (1)1.2设备方案 (1)1.3流程布置 (1)1.4吸收剂的选择 (1)第二章填料的选择 (2)2.1对填料的要求 (2)2.2填料的种类和特性 (3)2.3填料尺寸 (3)2.4填料材质的选择 (4)第三章工艺计算 (4)3.1气液平衡的关系 (4)3.2吸收剂用量及操作线的确定 (4)3.2.1吸收剂用量的确定 (4)3.2.2操作线的确定 (5)3.3塔径计算 (6)3.3.1采用Eckert通用关联图法计算泛点速率 (6)3.3.2操作气速 (8)3.3.3塔径计算 (9)3.3.4喷淋密度U校核 (9)3.3.5单位高度填料层压降的校核 (10)3.4填料层高度计算 (11)3.4.1传质系数的计算 (11)3.4.2填料高度的计算 (15)第四章填料塔内件的类型与设计 (17)4.1 塔内件的类型 (17)第五章辅助设备的选型 (19)5.1管径的选择 (19)5.2泵的选取: (20)5.3风机的选型: (21)5.4除沫装置: (21)5.5人孔和手孔的选择: (22)5.6液面计的选择: (22)5.7测压装置和测使装置: (23)第六章分布器简要计算 (23)第七章填料塔附属高度计算 (24)第八章关于填料塔设计的选材 (24)结语 (26)致谢 (27)设计汇总 (28)参考文献 (29)第一章设计方案的确定1.1流程方案指完成设计任务书所达的任务采用怎样的工艺路线,包括需要哪些装置设备,物料在个设备间的走向,哪些地方需要有观测仪表、调节装置,有哪些取样点以及是否需要有备用支线等。
水吸收二氧化硫填料塔的设计
化工原理课程设计题目水吸收二氧化硫填料塔的设计教学院化工与材料工程学院专业班级材化0901学生姓名学生学号指导教师2011年 7月5 日课程设计任务书1、设计题目:处理量为2750m3/h水吸收二氧化硫过程填料吸收塔的设计;矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO2。
入塔的炉气流量为2750m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。
吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。
吸收剂的用量为最小用量的1.5倍。
2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=20℃(3)选用填料类型及规格自选。
3、设计任务:完成干燥器的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。
化工原理教研室 2011年5月目录第1章绪论 (1)1.1吸收技术概况 (1)1.2吸收设备的发展 (1)1.3吸收在工业生产中的应用 (2)第2章设计方案 (2)2.1吸收剂的选择 (4)2.2吸收流程的选择 (4)2.2.1吸收工艺流程的确定 (4)2.3吸收塔设备及填料的选择 (4)2.3.1吸收塔的设备选择 (4)2.3.2填料的选择 (5)2.4吸收剂再生方法的选择 (6)2.5操作参数的选择 (7)第3章吸收塔的工艺计算 (9)3.1基础物性数据 (9)3.1.1液相物性数据 (9)3.1.2气相物性数据 (9)3.1.3气液相平衡数据 (9)3.2物料衡算 (10)3.3填料塔的工艺尺寸的计算 (11)3.3.1塔径的计算 (11)3.3.2泛点率校核 (11)3.3.3填料规格校核: (11)3.3.4液体喷淋密度校核 (11)3.4填料塔填料高度计算 (12)3.4.1传质单元高度计算 (12)3.4.2传质单元数的计算 (14)3.5填料塔附属高度计算 (14)3.6液体分布器计算 (15)3.6.1液体分布器 (15)3.6.2布液孔数 (17)3.6.3 液体保持管高度 (17)3.7其他附属塔内件的选择 (17)3.7.1填料支承板 (17)3.7.2除沫器(除雾器) (17)3.7.3管口结构 (18)3.8吸收塔的流体力学参数的计算 (19)3.8.1吸收塔的压力降 (19)3.8.2吸收塔的泛点率 (20)3.8.3气体动能因子 (20)3.9附属设备的计算与选择 (20)3.9.1离心泵的选择与计算 (20)3.9.2吸收塔的主要接管尺寸的计算 (21)工艺设计主要符号说明 (22)评述与讨论 (24)结束语 (25)参考文献 (26)第1章绪论1.1吸收技术概况在化学工业中,经常需将气体混合物中的个各组分加以分离。
水吸收二氧化硫填料吸收塔的设计
吉林化工大学化工原理课程设计题目水吸收二氧化硫填料吸收塔的设计教学院化学与制药工程学院专业班级应化0701学生姓名学生学号 07220101指导教师2009年12月 8 日化工原理课程设计任务书设计题目:水吸收二氧化硫填料吸收塔的设计1、设计题目:水吸收二氧化硫过程填料吸收塔的设计;矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤除去其中的SO2。
入塔的炉气流量为1000m3/h,其中进塔SO2的摩尔分率为0.03,要求SO2的吸收率为99.99%。
吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。
吸收剂的用量为最小用量的1.3倍。
2、工艺操作条件:(1)操作平均压力:常压(2)操作温度: t=20℃(3)每年生产时间: 7200h3、设计任务:1.完成干燥器的工艺设计与计算(包括塔径与塔高的计算,填料的选取)。
2.绘制吸收系统的工艺流程图,吸收塔的设备条件图。
3.编写该吸收塔的设计说明书。
目录摘要 ................................................................................................................................................ 错误!未定义书签。
1绪论............................................................................................................................................ 错误!未定义书签。
1.1气体吸收的概述 ....................................................................................................................... 错误!未定义书签。
水吸收二氧化硫填料塔的设计.doc
水吸收二氧化硫填料塔的设计.doc一、概述水吸收二氧化硫填料塔是一种用于减少工业废气中二氧化硫的浓度的设备,其主要原理是通过将废气与吸收液体接触,使二氧化硫被吸收并转化为硫酸,从而达到减少排放的目的。
本文旨在通过对水吸收二氧化硫填料塔的设计,来探讨如何提高设备的效率。
二、填料的选择填料是水吸收二氧化硫塔中的一项重要元素,它能够增加气液接触面积,提高二氧化硫的吸收效率。
根据经验,以下几种填料常用于水吸收二氧化硫塔:1、环形填料:环形填料表面积大,通气性好,能够实现较高的吸收效率。
2、球形填料:球形填料易于流动,但表面积较小,不适用于高速废气的处理。
3、波纹填料:波纹填料的波纹结构能够增加填料表面积,提高吸收效率,同时能够增加液体在填料层间的流动速度,提高液体换热效率。
在选用填料时,应根据具体需要选择合适的填料种类和尺寸,以达到最佳的吸收效果。
三、参数的设定水吸收二氧化硫塔的设计中,除填料的选择外,还需要确定其他的设备参数,例如塔高、塔径、吸收液的流量、浓度等等。
在进行参数设定时,需要考虑以下几个因素:1、处理废气的流量和含量:废气的流量和含量决定了吸收液的循环速度和浓度等参数,进而影响到设备的处理效率。
2、吸收液的流量和浓度:吸收液的流量和浓度是影响设备处理效率的关键因素。
过高的流量和浓度会增加设备的运行成本,过低的流量和浓度则会降低设备的处理能力。
在设定参数时,需要根据具体的需要进行权衡。
3、塔高和塔径:塔高和塔径直接影响到填料的使用量和气液接触的效果。
过高或过小的塔高和塔径均会导致设备效率低下。
四、其他注意事项在设计水吸收二氧化硫填料塔时,还需要注意以下问题:1、设备的安全:设备中的吸收液具有一定的腐蚀性和有毒性,因此需要采取相应的防护措施,确保设备的安全运行。
2、设备的维护:设备运行一段时间后需要对填料进行清洗和更换,以确保设备的处理效率。
因此,在设计时需要考虑设备的维护难度和费用。
3、设备的运行成本:设备的运行成本主要包括吸收液的消耗、能源消耗和维护成本等多个方面,需要在设计时进行全面的考虑,以实现最佳的经济效益。
水吸收二氧化硫填料塔设计
课程设计课程名称:化工原理课程设计设计题目:水吸收二氧化硫烟气的填料塔设计学院:环境科学与工程学院专业:再生资源科学与技术年级: XXX级学生姓名: XXX 指导教师: XXX 日期: 2013.6.24-2013.7.5课程设计任务书一、设计任务及操作条件烟气的填料塔设计设计题目:水吸收SO2操作条件:(1)混合烟气处理量为1000m3/h(30℃,100KN/m2);,其余可视为空气;(2)进塔气体组成:9%(体积比)SO2(3)回收其中所含SO的95%;2(4)吸收塔操作温度为30℃,压力位100KN/m2;(5)液气比为最小液气比的1.2倍;(6)空塔气速取泛点气速的0.65倍;(7)填料:自选;二、设计内容1.设计方案的选择及流程的确定;2.塔的物料衡算和热量衡算;3.塔的主要工艺尺寸确定:(1)塔高的确定;(2)塔径的确定;(3)全塔压降的验算;4.辅助设备的选型与计算;5.绘制工艺流程图;6.绘制填料塔设备图;7.编写设计说明书。
摘要:吸收是分离气体混合物的单元操作,其分离原理是利用气体混合物中各组分在液体溶剂中溶解度的差异来实现不同气体的分离。
一个完整的吸收过程应包括吸收和解吸两部分。
气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。
在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都广泛应用到气体吸收过程。
本次化工原理课程设计的目的是根据设计要求采用填料吸收塔的方法处理含有二氧化硫的混合物,使其达到排放标准,采用填料吸收塔吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,关键词:吸收单元操作解析目录第1章绪论 (1)1.1吸收技术概况 (1)1.2吸收在工业生产中的应用 (2)1.3 吸收设备的发展 (2)第2章设计方案 (4)2.1吸收剂的选择 (4)2.2 吸收流程的选择 (5)2.2.1 气体吸收过程分类 (5)2.2.2 吸收装置的流程 (5)2.3吸收塔设备及填料的选择 (6)2.3.1 吸收塔设备 (6)2.3.2 填料的选择 (7)2.4吸收剂再生方法的选择 (7)2.5操作参数的选择 (8)2.5.1操作温度的确定 (8)2.5.2操作压力的确定 (8)第3章吸收塔工艺条件的计算 (10)3.1基础物性数据 (10)3.1.1液相物性数据 (10)3.1.2气相物性数据 (10)3.1.3气液两相平衡时的数据 (10)3.2物料衡算 (11)3.3填料塔的工艺尺寸计算 (11)3.3.1塔径的计算 (11)3.3.2泛点率校核和填料规格 (12)3.3.3液体喷淋密度校核 (13)3.4填料层高度计算 (13)3.4.1传质单元数的计算 (13)3.4.2传质单元高度的计算 (13)3.4.3填料层高度的计算 (14)3.5填料塔附属高度的计算 (14)3.6液体分布器的简要设计 (15)3.6.1液体分布器的选型 (15)3.6.2分布点密度及布液孔数的计算 (16)3.6.3塔底液体保持管高度的计算 (17)3.7其它附属塔内件的选择 (17)3.7.1 填料支撑板 (17)3.7.2 填料压紧装置与床层限制板 (17)3.7.3气体进出口装置与排液装置 (18)3.8流体力学参数计算 (18)3.8.1填料层压力降的计算 (18)3.8.2吸收塔主要接管的尺寸计算 (19)3.8.3离心泵的计算与选择 (20)第4章工艺设计计算结果汇总与主要符号说明 (23)4.1填料塔工艺尺寸计算结果表 (23)4.2流体力学参数计算结果汇总 (24)4.3附属设备计算结果汇总 (24)D聚丙烯塑料阶梯环填料主要性能参数汇总 (25)4.4所用38N4.5主要符号说明 (25)第5章设计方案讨论 (27)第6章心得体会 (28)附录 (29)参考文献 (32)第1章绪论1.1吸收技术概况利用混合气体中各组分在同一种溶剂(吸收剂)中溶解度的不同分离气体混合物的单元操作称为吸收。
完整版水吸收二氧化硫填料塔课程设计
完整版水吸收二氧化硫填料塔课程设计一、设计目的本课程设计旨在通过设计水吸收二氧化硫填料塔,加深学生对于填料塔设计的理解,提高其工程设计、计算和绘图能力。
二、设计要求1. 处理二氧化硫废气的进口浓度为 1000 毫克/立方米,出口浓度不大于 50 毫克/立方米。
2. 填料塔高度不得超过 10 米。
3. 填料材料应为陶瓷、聚丙烯等道德耐腐蚀材料。
4. 设计流量为 1000 立方米/小时。
5. 填料塔内部应设有适当的填料,以提高反应效率。
6. 填料塔底部应设计出口,方便排放处理后的废气。
三、设计内容与流程1. 对于所处理的废气进行性质分析,以确定适合的吸收液和填料类型。
2. 计算所需填料体积,选择合适的填料类型。
3. 设计填料塔结构,包括填料塔高度、直径和进出口管道。
同时考虑填料塔内部流体的流动情况,选择合适的流动形式。
4. 设计填料塔进出口配管,涉及流量计、液位计、泵站等设备,确定相应的参数。
5. 进行系统热平衡计算,确定所需的冷却水和吸收液的流量,为系统正常运行提供保障。
6. 编制设备配置图、管道设计图和设备接线图等绘图,以便生产。
7. 进行整体方案设计,包括工艺流程图、工艺控制流程、运行控制流程等方面。
四、设计结果与分析本课程设计结果为一种能够有效处理二氧化硫废气的水吸收二氧化硫填料塔,其主要设计参数如下:1. 填料塔高度:6 米2. 填料塔直径:1.8 米3. 入口流量:1000 立方米/小时4. 出口浓度:50 毫克/立方米5. 填料类型:陶瓷该设计方案可以达到预期的净化效果,同时具有较高的实用性和经济性,为工程实践提供了重要的参考。
化工原理课程设计报告——30℃时水吸收二氧化硫填料塔的设计
.《化工原理》课程设计报告题目:处理量为1000m3/h清水吸收二氧化硫填料吸收塔设计系别:环境科学与工程学院专业班级:环境工程11(2)班姓名:陈新林学号:3111007481指导教师:郑育英(课程设计时间:2013年12月30日——2014年1月5日)广东工业大学目录1.课程设计目的 (1)2.课程设计题目描述和要求 (1)3.课程设计报告内容 (4)3.1基础物性数据 (4)3.1.1液相物性数据 (4)3.1.2气相物性数据 (5)3.1.3气液相平衡数据 (6)3.2物料衡算 (6)3.3塔径计算 (7)3.3.1塔径的计算 (8)3.3.2泛点率校核: (8)3.3.3填料规格校核: (9)3.3.4液体喷淋密度得校核: (9)3.4填料层高度的计算 (9)3.4.1传质单元数的计算 (9)3.4.2传质单元高度的计算 (10)3.4.3填料层高度的计算 (11)3.5填料塔附属高度的计算 (11)3.6液体分布器计算 (12)3.6.1液体分布器的选型 (12)3.6.2布液计算 (13)3.7其他附属塔内件的选择 (13)3.7.1填料支承装置的选择 (13)3.7.2填料压紧装置 (16)3.7.3塔顶除雾器 (17)3.8吸收塔的流体力学参数计算 (17)3.8.1吸收塔的压力降 (17)3.8.2吸收塔的泛点率 (18)3.8.3气体动能因子 (18)3.9附属设备的计算与选择 (18)3.9.1离心泵的选择与计算 (18)3.9.2吸收塔主要接管尺寸选择与计算 (24)工艺设计计算结果汇总与主要符号说明 (24)4.总结 (26)参考文献 (27)1. 课程设计目的化工原理课程设计是学生学过相关基础课程及化工原理理论与实验后,进一步学习化工设计的基础知识,培养工程设计能力的重要教学环节。
通过该环节的实践,可使学生初步掌握单元操作设计的基本程序与方法,得到工程设计能力的基本锻炼。
水吸收二氧化硫过程填料吸收塔的设计_化工原理毕业论文
⽔吸收⼆氧化硫过程填料吸收塔的设计_化⼯原理毕业论⽂吉林化⼯学院化⼯原理课程设计题⽬⽔吸收⼆氧化硫过程填料吸收塔的设计教学院化⼯与材料⼯程学院专业班级轻化0802学⽣姓名学⽣学号指导教师2010年11⽉ 18 ⽇课程设计任务书1、设计题⽬:⽔吸收⼆氧化硫过程填料吸收塔的设计;矿⽯焙烧炉送出的⽓体冷却到25℃后送⼊填料塔中,⽤20℃清⽔洗涤洗涤除去。
⼊塔的炉⽓流量为6000m3。
⽂⽒管吸收器结构简单、设备⼩、占空其中的SO2间少、⽓速⾼、处理量⼤、⽓液接触好、传质较容易,特别适⽤于捕集⽓流中的微⼩颗粒物。
但因⽓液并流,⽓液接触时间短,不适合难溶或反应速度慢的⽓液吸收,⽽且压⼒损失⼤(800~9000h),能耗⾼4. 液膜吸收器:在液膜吸收器中,⽓液两相在流动的液膜表⾯上接触。
液膜是沿着圆管或平板的纵向表⾯流动的。
已知有三种类型的液膜吸收器:列管式吸收器:液膜沿垂直圆管的内壁流动;板状填料吸收器:填料是⼀些平⾏的薄板,液膜沿垂直薄板的两测流动;升膜式吸收器:液膜向上(反向)流动。
⽬前,液膜吸收器应⽤⽐较少,其中最常见的是列管式吸收器,常⽤于从⾼浓度⽓体混合物同时取出热量的易溶⽓体(氯化氢,⼆氧化硫)的吸收。
填料吸收器填料吸收器是装有各种不同形状填料的塔。
喷淋液体沿填料表⾯流下,⽓液两相主要在填料的润湿表⾯上接触。
设备单位体积内的填料表⾯积可以相当⼤,因此,能在较⼩的体积内得到很⼤的传质表⾯。
但在很多情况下,填料的活性接触表⾯⼩于其⼏何表⾯。
5. 填料吸收器:填料吸收器⼀般作成塔状,塔内装有⽀撑板,板上堆放填料层。
喷淋的液体通过分布器洒向填料。
在吸收器内,填料在整个塔内堆成⼀个整体。
有时也将填料装成⼏层,每层的下边都设有单独的⽀撑板。
当填料分层堆放时,层与层之间常装有液体再分布装置。
在填料吸收器中,⽓体和液体的运动经常是逆流的。
⽽很少采⽤并流操作。
但近年来对在⾼⽓速条件下操作的并流填料吸收器给予另外很⼤的关注。
化工原理课程设计℃时水吸收二氧化硫填料塔的设计
《化工原理》课程设计报告题目:处理量为1000m3/h清水吸收二氧化硫填料吸收塔设计系别:环境科学与工程学院专业班级:环境工程11(2)班姓名:陈新林学号:指导教师:郑育英(课程设计时间:2013年12月30日——2014年1月5日)广东工业大学目录1.课程设计目的 (1)2.课程设计题目描述和要求 (1)3.课程设计报告内容 (4)3.1基础物性数据 (4)3.1.1液相物性数据 (4)3.1.2气相物性数据 (5)3.1.3气液相平衡数据 (6)3.2物料衡算 (6)3.3塔径计算 (7)3.3.1塔径的计算 (8) (8) (9) (9)3.4填料层高度的计算 (9)3.4.1传质单元数的计算 (9) (10) (11)3.5填料塔附属高度的计算 (11)3.6液体分布器计算 (12)3.6.1液体分布器的选型 (12) (13)3.7其他附属塔内件的选择 (13)3.7.1填料支承装置的选择 (13)3.7.2填料压紧装置 (16)3.7.3塔顶除雾器 (17)3.8吸收塔的流体力学参数计算 (17)3.8.1吸收塔的压力降 (17)3.8.2吸收塔的泛点率 (18)3.8.3气体动能因子 (18)3.9附属设备的计算与选择 (18)3.9.1离心泵的选择与计算 (18)3.9.2吸收塔主要接管尺寸选择与计算……………………………………工艺设计计算结果汇总与主要符号说明 (24)4.总结 (26)参考文献 (27)1. 课程设计目的化工原理课程设计是学生学过相关基础课程及化工原理理论与实验后,进一步学习化工设计的基础知识,培养工程设计能力的重要教学环节。
通过该环节的实践,可使学生初步掌握单元操作设计的基本程序与方法,得到工程设计能力的基本锻炼。
化工原理课程设计是以实际训练为主的课程,学生应在过程中收集设计数据,在教师指导下完成一定的设备设计任务,以达到培养设计能力的目的。
单元过程及单元设备设计是整个过程和装备设计的核心和基础,并贯穿于设计过程的始终,从这个意义上说,作为相关专业的本科生能够熟练地掌握典型的单元过程及装备的设计过程和方法,无疑是十分重要的。
水吸收二氧化硫填料塔的设计
⽔吸收⼆氧化硫填料塔的设计化⼯原理课程设计题⽬⽔吸收⼆氧化硫填料塔的设计教学院化⼯与材料⼯程学院专业班级材化0901学⽣姓名学⽣学号指导教师2011年 7⽉5 ⽇课程设计任务书1、设计题⽬:处理量为2750m3/h⽔吸收⼆氧化硫过程填料吸收塔的设计;矿⽯焙烧炉送出的⽓体冷却到20℃后送⼊填料塔中,⽤20℃清⽔洗涤洗涤除去其中的SO2。
⼊塔的炉⽓流量为2750m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。
吸收塔为常压操作,因该过程液⽓⽐很⼤,吸收温度基本不变,可近似取为清⽔的温度。
吸收剂的⽤量为最⼩⽤量的1.5倍。
2、⼯艺操作条件:(1)操作平均压⼒常压(2)操作温度t=20℃(3)选⽤填料类型及规格⾃选。
3、设计任务:完成⼲燥器的⼯艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的⼯艺流程图和吸收塔的⼯艺条件图,编写设计说明书。
化⼯原理教研室 2011年5⽉⽬录第1章设计⽅案 ............................................................ 错误!未定义书签。
1.1吸收剂的选择 (4)1.2吸收流程的选择 (V)1.3吸收塔设备及填料的选择 (V)1.4吸收剂再⽣⽅法的选择 (VII)1.5操作参数的选择 .................................................................................................... VII 第2章吸收塔的⼯艺计算.. (IX)2.1基础物性数据 (IX)2.2物料衡算 (IX)2.3填料塔的⼯艺尺⼨的计算 (XI)2.4填料塔填料⾼度计算 (XII)2.5填料塔附属⾼度计算 (XIV)2.6液体分布器计算........................................................................................................... X V2.7其他附属塔内件的选择..................................................................................... X VII2.8吸收塔的流体⼒学参数的计算 ......................................................................... XIX 2.9附属设备的计算与选择.. (XX)⼯艺设计主要符号说明 ...................................................................................... X XII 设计总结........................................................................................ 错误!未定义书签。
2019年水吸收二氧化硫填料塔的设计课程设计907968.doc
化工原理课程设计题目水吸收二氧化硫填料塔的设计课程设计任务书1、设计题目:处理量为2750m3/h水吸收二氧化硫过程填料吸收塔的设计;矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO2。
入塔的炉气流量为2750m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。
吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。
吸收剂的用量为最小用量的1.5倍。
2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=20℃(3)选用填料类型及规格自选。
3、设计任务:完成干燥器的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。
化工原理教研室 2011年5月目录第1章设计方案 ............................................................................................ I II1.1吸收剂的选择 (4)1.2吸收流程的选择 (V)1.3吸收塔设备及填料的选择 (V)1.4吸收剂再生方法的选择 (VII)1.5操作参数的选择 (VII)第2章吸收塔的工艺计算 (IX)2.1基础物性数据 (IX)2.2物料衡算 (IX)2.3填料塔的工艺尺寸的计算 (XI)2.4填料塔填料高度计算 (XII)2.5填料塔附属高度计算 (XIV)2.6液体分布器计算........................................................................................................... X V2.7其他附属塔内件的选择..................................................................................... X VII2.8吸收塔的流体力学参数的计算 (XIX)2.9附属设备的计算与选择 (XX)工艺设计主要符号说明 ...................................................................................... X XII 设计总结 ...................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工原理》课程设计报告题目:处理量为1000m3/h清水吸收二氧化硫填料吸收塔设计系别:环境科学与工程学院专业班级:环境工程11(2)班姓名:陈新林学号:指导教师:郑育英(课程设计时间:2013年12月30日——2014年1月5日)广东工业大学目录1.课程设计目的 (1)2.课程设计题目描述和要求 (1)3.课程设计报告内容 (4)塔径计算 (7)塔径的计算 (8) (8) (9) (9)填料层高度的计算 (9)传质单元数的计算 (9) (10) (11)填料塔附属高度的计算 (11)2 (13)4.总结 (26)参考文献 (27)1. 课程设计目的化工原理课程设计是学生学过相关基础课程及化工原理理论与实验后,进一步学习化工设计的基础知识,培养工程设计能力的重要教学环节。
通过该环节的实践,可使学生初步掌握单元操作设计的基本程序与方法,得到工程设计能力的基本锻炼。
化工原理课程设计是以实际训练为主的课程,学生应在过程中收集设计数据,在教师指导下完成一定的设备设计任务,以达到培养设计能力的目的。
单元过程及单元设备设计是整个过程和装备设计的核心和基础,并贯穿于设计过程的始终,从这个意义上说,作为相关专业的本科生能够熟练地掌握典型的单元过程及装备的设计过程和方法,无疑是十分重要的。
2.课程设计题目描述和要求设计题目描述(1) 设计题目二氧化硫填料吸收塔及周边动力设备与管线设计(2) 设计内容根据所给的设计题目完成以下内容:(1)设计方案确定;(2)相关衡算;(3)主要设备工艺计算;(4)主要设备结构设计与算核;(5)辅助(或周边)设备的计算或选择;(6)制图、编写设计说明书及其它。
(3) 原始资料,废气的处理量为1000m3/h,其中进口设计一座填料吸收塔,用于脱除废气中的SO2含SO为2%(摩尔分率),采用清水进行逆流吸收。
要求塔吸收效率达98%。
吸收塔操作条2件:常压:;恒温,气体与吸收剂温度:303K清水取自1800米外的湖水。
示意图参见设计任务书。
⒈设计满足吸收要求的填料塔及附属设备;⒉选择合适的流体输送管路与动力设备(求出扬程、选定型号等),并核算离心泵安装高度。
设计要求设计时间为一周。
设计成果要求如下:1.完成设计所需数据的收集与整理2.完成填料塔的各种计算3.完成动力设备及管线的设计计算4.完成填料塔的设备组装图5. 完成设计说明书或计算书(手书或电子版打印均可)目录、设计题目任务、气液平衡数据、L/G 、液泛速度、塔径、K Y a (或K X a 的计算、H OL 、N OL 的计算、动力设备计算过程(包括管径确定)等。
3.课程设计报告内容吸收塔的工艺计算基础物性数据液相物性数据对低浓度吸收过程,溶液的物性数据可近似取水的物性数据。
由手册查得,30℃时水的有关物性数据如下:密度3/7.995m Kg =水ρ【1】黏度s Pa ⋅⨯=-6105.801水μ【1】表面张力为0.07122N/m L σ=【1】SO2在水中的扩散系数为922.210/L D m s -=⨯【1】气相物性数据混合气体的平均摩尔质量为29=空气M Kg/mol 【1】 64=二氧化硫M Kg/mol 【1】15.3209.06491.029111__=⨯+⨯=⨯+-⨯=y M y M M 二氧化硫空气)(kg/kmol混合气体的密度为 3__/293.1m Kg RT P M V =⋅=ρ混合气体的黏度可近似取为空气的黏度,查资料【1】得30℃空气的黏度为=0.0000186pa s G μ⋅【1】查得SO2在空气中的扩散系数为521.46910/G D m s -=⨯【1】查资料【5】:C A -------------30度时二氧化硫在水中的平衡浓度,单位为kmol/m 3x ----------------------30度时二氧化硫在水中溶解平衡时的摩尔分数H---------------30度时二氧化硫在水中达到平衡时的溶解度系数,单位为kmol/kp a *m 3 y----------------30度时气相中二氧化硫的摩尔分数*AP --------------30度时气相中二氧化硫的平衡分压,单位为 kpa 由以上的y 和x ,以x 的值为横坐标,y 的值为纵坐标作平衡曲线,如图:物料衡算进口气体的体积流量G'=1000m 3/h二氧化硫的摩尔分数为y 1=进塔气相摩尔比为 Y 1=y 1/1-y 1==效率 211/94.9%Y Y η=-=出塔气相摩尔比 Y 2= ()11Y η-=进塔惰性气相流量 G=(G'/⨯(1-y 1)⨯273/303=(1000/⨯⨯273/303=h空气的体积流量 V G =G'⨯(1-y 1)=⨯=910m 3/h出口液体中溶质与溶剂的摩尔比 X 2=0由图平衡曲线可以读出y 1=所对应的溶质在液相中的摩尔分数*1x =对应的液相中溶质与溶剂的摩尔比为00253.000252.0100252.01*1*1*1=-=-=x x X 最小液气比 099.37)(2*121min =--=X X Y Y G L 【1】 取液气比 649.55)(5.1min ==GL G L 【1】 故 L=⨯=h 操作线方程:2Y X G L Y +=【1】 代入数据得:00504.0649.55+=X Y 塔径计算该流程的操作压力及温度适中,避免二氧化硫腐蚀,故此选用mm 25=φ型的塑料鲍尔环填料。
其主要性能参数为:比表面积 32/209m m a t =【4】空隙率 33/90.0m m =ε【4】形状修正系数 ψ=【4】填料因子平均值 p φ=232 m 1-【4】A= 【4】 K=【4】塔径的计算吸收液的密度近似看成30度水的密度:3/7.995m Kg L ==水ρρ30度时空气的密度3/165.1m Kg =空气ρ 【1】 3/927.2m Kg =二氧化硫ρ【1】采用Eckert 关联式计算泛点气速:气相质量流量为:液相质量流量为:选用mm 25=φ型的塑料鲍尔环 A= 【4】 K=【4】8/14/12.032)()(]))(([LV V L L L V t F g W W K A a g u l ρρμρρε-=【4】 代入数值得:s m u F /77.0=取空塔气速:s m u u F /462.06.0,== 塔径m u G D 875.04,,==π【1】 圆整塔径,取 D=则算得'221000/36000.437/0.7850.7850.9G u m s D ===⨯ 0.93615()d 0.025D ==>合格 【4】 填料表面的润湿状况是传质的基础,为保持良好的传质性能,每种填料应维持一定的液体润湿速率(或喷淋密度)。
依Morris 等推荐,d<75mm 的环形及其它填料的最小润湿速率(W L )min 为()320.08m /m h ⋅最小喷淋密度()()32min min 0.0820916.72/W t U L a m m h =⨯=⨯=⋅喷淋密度32min 236.82357.91/()0.94V L U m m h U π===⋅>Ω⨯ 经以上校核可知,填料塔直径选用D=900mm 合理。
填料层高度的计算传质单元数的计算由图曲线可以读出以下9个点所对应的y 和x :由辛普森积分法有:000277.08000241.0002456.08*0*8=-=-=X X ξ 96.3254.428680000923.0)..........424(332180=⨯=+++++=f f f f f N OL ξm*x -----------------与y 对应的平衡液相中的溶质的摩尔分数*X -----------------与Y 对应的平衡液相中的溶质与溶剂的摩尔比OL N -----------------传质单元数,单位 m查资料【5】有:sPa s m D s m D mN m N G L G L C ⋅⨯=⨯=⨯=⨯=⨯=-----52925231086.1/102.2,,/10469.1/10122.7,,/1033μσσ气相总传质单元高度采用修正的恩田关联式计算:液体质量通量气体质量通量气膜吸收系数:液膜吸收系数:由 1.25 3.96 4.95OL OL Z H N m =⨯=⨯=填料有效高度取:Z ’==设计取填料层高度为 ' 6.435m Z =填料塔附属高度的计算塔的附属高度主要包括塔的上部空间高度,安装液体分布器所需的空间高度,塔的底部空间高度等。
塔的上部空间高度是为使随气流携带的液滴能够从气相中分离出来而留取的高度,可取(包括除沫器高度)。
设塔定液相停留时间为10s,则塔釜液所占空间高度为考虑到气相接管的空间高度,底部空间高度取为米,那么塔的附属空间高度可以取为。
吸收塔的总高度为h 1.7 6.4358.135m=+=液体分布器计算液体分布器可分为初始分布器和再分布器,初始分布器设置于填料塔内,用于将塔顶液体均匀的分布在填料表面上,初始分布器的好坏对填料塔效率影响很大,分布器的设计不当,液体预分布不均,填料层的有效湿面积减小而偏流现象和沟流现象增加,即使填料性能再好也很难得到满意的分离效果。
因而液体分布器的设计十分重要。
特别对于大直径低填料层的填料塔,特别需要性能良好的液体分布器。
液体分布器的性能主要由分布器的布液点密度(即单位面积上的布液点数),各布液点均匀性,各布液点上液相组成的均匀性决定,设计液体分布器主要是决定这些参数的结构尺寸。
对液体分布器的选型和设计,一般要求:液体分布要均匀;自由截面率要大;操作弹性大;不易堵塞,不易引起雾沫夹带及起泡等;可用多种材料制作,且操作安装方便,容易调整水平。
液体分布器的种类较多,有多种不同的分类方法,一般多以液体流动的推动力或按结构形式分。
若按流动推动力可分为重力式和压力式,若按结构形式可分为多孔型和溢流型。
其中,多孔型液体分布器又可分为:莲蓬式喷洒器、直管式多孔分布器、排管式多孔型分布器和双排管式多孔型分布器等。
溢流型液体分布器又可分为:溢流盘式液体分布器和溢流槽式液体分布器。
根据本吸收的要求和物系的性质可选用重力型排管式液体分布器,布液孔数应应依所用填料所需的质量分布要求决定,喷淋点密度应遵循填料的效率越所需的喷淋点密度越大这一规律。
800D mm ≥时,建议采用盘式分布器(筛孔式)液体分布器的选择:按Eckert 建议值,275060cm D mm ≅时,每塔截面设一个喷淋点,按分布点几何均匀与流量均匀的原则,进行布点设计。
设计结果为:盘式分布器(筛孔式):【5】分布盘直径:600mm 【5】分布盘厚度:4mm 【5】 由H g n d L o S ∆=24φπ取设计取mm d 150=其他附属塔内件的选择填料支承装置的作用是支承填料以及填料层内液体的重量,同时保证气液两相顺利通过。