一次函数练习题及答案(六较难)
一次函数难题经典例题及答案
一次函数难题经典例题及答案知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
一次函数练习题(附答案)
一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1.函数y=中,自变量某的取值范围是()某1A.某≥0B.某1C.某0且某≠1D.某≥0且某≠12.已知正比例函数y=-2某,当某=-1时,函数y的值是()A.2B.-2C.-0.5D.0.53.一次函数y=-2某-3的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间某(分钟)之间的函数关系,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时。
5.已知一次函数y=(m+2)某+(1-m),若y随某的增大而减小,且此函数图像与y轴的交点在某轴上方,则m的取值范围是()A.m-2B.m1C.-2D.-2m16.(2007福建福州)已知一次函数y(a1)某b的图象如图所示,那么a的取值范围是()A.a1B.a1C.a0D.a07.(2007上海市)如果一次函数yk某b的图象经过第一象限,且与y轴负半轴相交,那么()A.k0,b0B.k0,b0C.k0,b0D.k0,b08.(2007陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某2C.y某2B.y某2D.y某2)9.(2007浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。
CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。
一次函数练习题(带答案)
1. 若一次函数y=kx+b 的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.
2. 若正比例函数y=kx 的图象经过点(1,2),则此函数的解析式为_____________.
3、一次函数的图象与y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.
4.已知一次函数图象经过(-4,15),(6, -5)的两点,求其解析式。
5.已知点A (1,-1),B (3, 4)在x 轴上找一点P ,PA+PB 最短,求P 点的坐标。
6.直线1-=ax y
向上平移3个单位时过点(-1,-1),求该函数解析式。
7.已知直线62+-=x y 上点A 的横坐标为2,直线b kx y +=经过点A 且与x 轴交于点B (0,2
1),求k 、b 的值。
8. 已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于P(3,-6)。
求k 1 , k 2的值;(2)如果一次函数92-=x k y 与x 轴交于点A ,求点A 的坐标。
(1)y 与x 成正比例函数,当 时,y=5.求这个正比例函数的解析式.
(2)已知一次函数的图象经过A (-1,2)和B (3,-5)两点,求此一次函数的解析式.
9. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q (升)与工作时间t (时)之间的函数关系式,指出自变量x 的取值范围,并且画出图象.
分析:拖拉机一小时耗油5升,t 小时耗油5t 升,以20升减去5t 升就是余下的油量.
10. 已知一次函数的图象经过点P (-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.。
一次函数练习题(附答案)
一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值范围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。
一次函数难题汇编附答案解析
∴OA=2,OB=1,
∵四边形OACB是矩形,
∴BC=OA=2,AC=OB=1,
∵点C在第二象限,∴C点坐标为(-2,1),
∵正比例函数y=kx的图像经过点C,
∴-2k=1,
∴k=- ,
故选A.
【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.
【详解】
解∵B点坐标为(b,-b+2),
∴点B在直线y=-x+2上,
直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,
∵A(2,0),
∴∠AQO=45°,
∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,
∴b的取值范围为b<0或b>2.
故选D.
【点睛】
11.如图在平面直角坐标系中,等边三角形 的边长为4,点 在第二象限内,将 沿射线 平移,平移后点 的横坐标为 ,则点 的坐标为()
A. B. C. D.
【答案】D
【解析】
【分析】
先根据已知条件求出点A、B的坐标,再求出直线OA的解析式,继而得出点 的纵坐标,找出点A平移至点 的规律,即可求出点 的坐标.
【详解】
解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变,
即:甲步行的速度为每分钟 米,乙步行的速度也为每分钟80米,
故A正确;
又∵甲乙再次相遇时是16分钟,
∴16分乙共走了 米,
由图可知,出租车的用时为16-12=4分钟,
∴出租车的速度为每分 米,
故B正确;
由此发现规律:
一次函数综合题(难度较大)带答案
一次函数综合题一.解答题(共10小题)1.如图,在直角坐标系中,△ABC满足∠BCA=90°,点A、C分别在x轴和y轴上,AC=BC=2,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.(1)当AB∥y轴时,求B点坐标.(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标.(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是16?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.3.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.4.如图,在平面直角坐标系中,一次函数y=﹣2x﹣1的图象分别交x轴、y轴于点A和B,已知点C的坐标为(﹣3,0).若点P是x轴上的一个动点,(1)求直线BC的函数解析式;(2)过点P作y轴的平行线交AB于点M,交BC于点N,当点P恰好是MN的中点时,求出P点坐标.(3)若以点B、P、C为顶点的△BPC为等腰三角形时,请直接写出所有符合条件的P点坐标.5.如图,在平面直角坐标系中,直线m经过点(﹣1,2),交x轴于点A(﹣2,0),交y轴于点B,直线n与直线m交于点P,与x轴、y轴分别交于点C、D(0,﹣2),连接BC,已知点P的横坐标为﹣4.(1)求直线m的函数表达式和点P的坐标;(2)求证:△BOC是等腰直角三角形;(3)直线m上是否存在点E,使得S△ACE=S△BOC?若存在,求出所有符合条件的点E的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴相交于点C,与直线AB交于点D,交y轴于点E.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=,连接HM、NC,求HM+MN+NC的最小值;(3)将△OEC绕平面内某点旋转90°,旋转后的三角形记为△O'E'C',若点E'落在直线AB上,点O'落在直线CD上,请直接写出满足条件的点E'的坐标.7.如图所示,平面直角坐标系中,直线l1:y=﹣2x+3与直线l2:y=x+1相交于点A,直线l2与x轴相交于点B.过直线l2上的一点P(a,﹣1)作y轴的垂线,交直线l1于点C,连接BC.(1)求点A的坐标;(2)求△ABC的面积;(3)将直线l1向下平移4个单位长度得到直线l3,设直线l3与y轴相交于点D,则直线l2上是否存在一点Q,使得△DPQ是以DP为腰的等腰三角形?若存在,请直接写出Q的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系中,一次函数y=kx+b经过A(a,0),B(0,b)两点,且a,b满足(a+8)2+=0,∠ABO的平分线交x轴于点E.(1)求直线AB的表达式;(2)求直线BE的表达式;(3)点B关于x轴的对称点为点C,过点A作y轴的平行线交直线BE于点D,点M是线段AD上一动点,点P 是直线BE上一动点,则△CPM能否为不以点C为直角顶点的等腰直角三角形?若能,请直接写出点P的坐标;若不能,说明理由.9.如图,直线y=﹣x+8与x轴,y轴分别交于A,B两点,点C的坐标为(﹣6,0),连结BC,过点O作OD⊥AB于点D,点Q为线段BC上一个动点.(1)求BC,OD的长;(2)在线段BO上是否存在一点P,使得△BPQ与△ADO全等?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)当点C关于OQ的对称点恰好落在△OBD的边上,请直接写出点Q的坐标.10.已知,如图1,直线AB分别交平面直角坐标系中x轴和y轴于A,B两点,点A坐标为(﹣3,0),点B坐标为(0,6),点C在直线AB上,且点C坐标为(﹣a,a).(1)求直线AB的表达式和点C的坐标;(2)点D是x轴上的一动点,当S△AOB=S△ACD时,求点D坐标;(3)如图2,点E坐标为(0,﹣1),连接CE,点P为直线AB上一点,且∠CEP=45°,求点P坐标.参考答案与试题解析一.解答题(共10小题)1.【分析】(1)根据勾股定理,可得AB的长,根据勾股定理,可得AO的长,可得B点坐标;(2)根据全等三角形的判定与性质,可得BE=OC =x,EC=OA=x,根据勾股定理,可得x的长,可得A点坐标;(3)分类讨论:①D在y轴的正半轴上;②D在y 轴的负半轴上,根据面积的和差,可得关于y的方程,根据解方程,可得答案.【解答】解:(1)∵∠BCA=90°,AC=BC=2,∴∠BAC=45°,AB ==2,∵AB∥y轴,∴∠BAO=90°=∠COA,∴∠CAO=45°=∠OCA,∴CO=AO,∵AO2+CO2=AC2,∴2AO2=(2)2,∴AO =,∴点B 坐标为(,2);(2)如图,过点B作BE⊥y轴,垂足为点E,∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCE=∠CAO,且AC=BC,∠BEO=∠AOC,∴△AOC≌△CEB(AAS),∴BE=CO,AO=CE,∵点B落在直线y=3x上,∴设B(x,3x),∴BE=x=OC,OE=3x,∴CE=OA=2x,∵OA2+OC2=AC2,∴(2x)2+x2=20,∴x=2,∴OA=2x=4,∴点A(4,0);(3)设点D(0,y),由(2)得B(2,6),当点D在y轴正半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△BDO=16,∴×4×6+×y×2=16,∴y=4,∴点D(0,4);若点D在y轴负半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△ADO=16,∴×4×6+×4×(﹣y)=16,∴y=﹣2,∴点D坐标为(0,﹣2).综上,存在点D,使以O、A、B、D为顶点的四边形面积是16,点D的坐标为(0,4)或(0,﹣2).2.【分析】(1)根据题意,求得点C的坐标,结合B的坐标,利用待定系数法求解析式即可;(2)求出S△ABC=27,设G(m,﹣m+6),分两种情况:①S△ABG:S△ACG=1:2时,②S△ABG:S△ACG=2:1时,分别求得m的值,进而求得G点的坐标;(3)分类讨论,①当点D为直角顶点时,②当点C 为直角顶点时,根据等腰直角三角形以及全等三角形的性质即可求解.【解答】解:(1)由y=2x+6得:A(﹣3,0),C(0,6),∵点B(6,0).设直线BC的解析式为y=kx+b(k≠0):∴,解得:,∴直线BC的解析式为y=﹣x+6;(2)∵A(﹣3,0),C(0,6),B(6,0).∴AB=9,∴S△ABC =×9×6=27,设G(m,﹣m+6),(0<m<6),①当S△ABG:S△ACG=1:2时,即S△ABG =S△ABC=9,∴×9(﹣m+6)=9,∴m=4,∴G(4,2);当S△ABG:S△ACG=2:1时,即S△ABG =S△ABC=18,∴×9(﹣m+6)=18,∴m=2,∴G(2,4).综上,点G的坐标为(4,2)或(2,4);(3)∵A(﹣3,0),C(0,6),D为AC的中点,∴D (﹣,3),①当点D为直角顶点时,如图,过点D作DE⊥y轴于E,过点P作PF⊥DE交ED的延长线于F,交x 轴于H,∴∠F=∠CED=90°,∵△CDP是等腰直角三角形,∴DP=CD,∠CDB=90°,∴∠PDF+∠CDE=∠DCE+∠CDE=90°,∴△PDF≌△CDE(AAS),∴DF=CE,PF=DE,∵D (﹣,3),C(0,6).∴DE=PF =,OE=3,CE=DF=6﹣3=3,∴EF=3+=,PH=3+=,∴P (﹣,),同理得:P ′(,);∴P (﹣,)或(,);②当点C为直角顶点时,如图,过点D作DN⊥y轴于N,过点P作PM⊥y轴于M,同①可得△PCM≌△CDN(AAS),∴DN=CM,PM=CN,∵D (﹣,3),C(0,6).∴DN=CM =,ON=3,CN=PM=6﹣3=3,∴OM=6﹣=,∴P(3,),同理得:P′(﹣3,);∴P(3,)或(﹣3,).综上,点P的坐标为(﹣,)或(,)或(3,)或(﹣3,).3.【分析】(1)将B(4,0)代入y=kx+1得到y =﹣x+1;(2)由两直线交点的求法得到点D的坐标;易得线段PD的长度,所以根据三角形的面积公式即可得到结论;(3)根据三角形的面积公式列方程求得m=2,于是得到点P(2,2),推出∠EPB=∠EBP=45°.第1种情况,如图2,过点C作CF⊥x轴于点F根据全等三角形的性质得到BF=CF=PE=EB=2,于是得到C(6,2);第2种情况,如图3根据全等三角形的性质得到PC =CB=PE=EB=2,于是得到C(2,﹣2);第3种情况,当点P在点D下方时,得到(3,2)或(5,﹣2).【解答】解:(1)∵直线l1:y=kx+1交x轴于点B (4,0),∴0=4k+1.∴k =﹣.∴直线l1:y =﹣x+1;(2)由得:.∴D(2,).∵P(2,m),∴PD=|m ﹣|.∴S =×|4﹣0|•PD =×|m ﹣|×4=|2m﹣1|.当m时,S=2m﹣1;当m <时,S=1﹣2m;(3)当S△ABP=3时,2m﹣1=3,解得m=2,∴点P(2,2),∵E(2,0),∴PE=BE=2,∴∠EPB=∠EBP=45°,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F,∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBF与△PBE中,,∴△CBF≌△PBE(AAS).∴BF=CF=PE=EB=2.∴OF=OB+BF=4+2=6.∴C(6,2);如图3,△PBC是等腰直角三角形,∴PE=CE,∴C(2,﹣2),∴以点B为直角顶点作等腰直角△BPC,点C的坐标是(6,2)或(2,﹣2).当1﹣2m=3时,n=﹣1,可得P(2,﹣1),同法可得C(3,2)或(5,﹣2).综上所述,满足条件的点C坐标为(6,2)或(2,﹣2)或(3,2)或(5,﹣2).4.【分析】(1)由y=﹣2x﹣1得A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,用待定系数法可得直线BC为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),根据点P恰好是MN的中点,可得﹣2m﹣1﹣0=0﹣(﹣m﹣1),即可解得P (﹣,0);(3)设P(t,0),则BC2=10,BP2=t2+1,CP2=(t+3)2,分三种情况:①当BC=BP时,BC2=BP2,10=t2+1,解得P(3,0);②当BC=CP时,10=(t+3)2,解得P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,t2+1=(t+3)2,解得P (﹣,0).【解答】解:(1)在y=﹣2x﹣1中,令x=0得y=﹣1,令y=0得x =﹣,∴A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,将C(﹣3,0)代入得:﹣3k﹣1=0,解得k =﹣,∴直线BC解析式为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),∵点P恰好是MN的中点,∴PM=PN,即﹣2m﹣1﹣0=0﹣(﹣m﹣1),解得m =﹣,∴P (﹣,0);(3)设P(t,0),∵B(0,﹣1),C(﹣3,0),∴BC2=10,BP2=t2+1,CP2=(t+3)2,①当BC=BP时,BC2=BP2,∴10=t2+1,解得t=3或t=﹣3(与B重合,舍去),∴P(3,0);②当BC=CP时,∴10=(t+3)2,解得t =﹣3或t =﹣﹣3,∴P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,∴t2+1=(t+3)2,解得t =﹣,∴P (﹣,0);综上所述,P坐标为(3,0)或(﹣3,0)或(﹣﹣3,0)或(﹣,0).5.【分析】(1)设直线m的函数表达式为y=kx+b(k≠0),把(﹣1,2),(﹣2,0)代入,得,解方程组即可得到结论;(2)设直线n的函数表达式为y=sx+t(s≠0),根据直线n经过点(﹣4,﹣4),(0,﹣2),得到方程组,解方程组得到.求得点B的坐标为(0,4),点C的坐标为(4,0),于是得到结论;(3)根据三角形的面积公式得到,根据题意列方程即可得到结论.【解答】(1)解:设直线m的函数表达式为y=kx+b (k≠0).∵直线m经过点(﹣1,2),(﹣2,0),∴,解得,∴直线m的函数表达式为y=2x+4.将x=﹣4代入y=2x+4,得y=2×(﹣4)+4=﹣4,∴点P的坐标为(﹣4,﹣4);(2)证明:设直线n的函数表达式为y=sx+t(s≠0).∵直线n经过点(﹣4,﹣4),(0,﹣2),∴,解得,∴直线n 的函数表达式为.在y=2x+4中,令x=0,得y=4,即点B的坐标为(0,4).在中,令y=0,得,解得x=4,即点C的坐标为(4,0),∴OB=OC=4,又∵∠BOC=90°,∴△BOC是等腰直角三角形;(3)解:∵OB=OC=4,∠BOC=90°,∴,又∵S△ACE=S△BOC,∴S△ACE=8,即,∵AC=6,∴,即或.①当时,,解得,∴此时点E 的坐标为;②当时,,解得,∴此时点E 的坐标为.综上可知,直线m上存在点E,使得S△ACE=S△BOC,点E 的坐标为或.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG =,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'E'∥x轴,OE=O'E'=1,求出DE'=,设E'(m,3m+3),即可求E'的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=﹣3或t =,∵H是直线AB上位于第一象限内的一点,∴t =,∴H (,),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG =,∴G(3,),H'(﹣,),连接H'G交y轴于点M,∵MN =,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+;(3)令x=0,则y=1,∴E(0,1),令y=0,则x=3,∴C(3,0),当△OCE绕点逆时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点下方,∴m =﹣,∴E'(﹣,);当△OCE绕点顺时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点上方,∴m =﹣,∴E'(﹣,);综上所述:E'点坐标为(﹣,)或(﹣,).7.【分析】(1)联立方程组可求解;(2)分别求出点B,点C坐标,由三角形的面积公式可求解;(3)先求出点D坐标,由等腰三角形的性质和两点之间的距离公式可求解.【解答】解:(1)由题意可得:,解得:,∴点A (,);(2)∵直线l2与x轴相交于点B,∴点B(﹣1,0),∵点P(a,﹣1)在直线l2上,∴﹣1=a+1,∴a=﹣2,∴点P(﹣2,﹣1),∴点C的纵坐标为﹣1,∴﹣1=﹣2x+3,∴x=2,∴点C(2,﹣1),如图,设直线l1与x轴相交于点H,∴0=﹣2x+3,∴x =,∴点H (,0),∴BH =,∴△ABC 的面积=××(+1)=;(3)存在,理由如下:∵将直线l1向下平移4个单位长度得到直线l3,∴直线l3,的解析式为:y=﹣2x﹣1,∴点D(0,﹣1),如图,∵点P(﹣2,﹣1),点D(0,﹣1),∴PD⊥y轴,PD=2,设点Q(a,a+1),∵△DPQ是以DP为腰的等腰三角形,∴PQ=PD=2或PD=QD=2,当PQ=PD=2时,则(﹣2﹣a)2+(﹣1﹣a﹣1)2=4,∴a =±﹣2,∴点Q (﹣2,﹣1)或(﹣﹣2,﹣﹣1);当PD=QD=2时,则(a﹣0)2+(﹣1﹣a﹣1)2=4,∴a=0或﹣2(不合题意舍去),∴点Q(0,1),综上所述:点Q坐标为:(﹣2,﹣1)或(﹣﹣2,﹣﹣1)或(0,1).8.【分析】(1)求出点A与点B的坐标,再由待定系数法求直线AB的解析式即可;(2)过点E作EH⊥AB于点H,求出点E的坐标,再由再由待定系数法求直线BE的解析式即可;(3)①当∠MPC=90°时,P点在C点下,过点P 作GH⊥y轴交AD于点G,交y轴于点H,证明△PMG ≌△CPH(AAS),可得8+t=2t+12,求出t即可求P (﹣4,2);②当∠MPC=90°,P点在C点上时,由①得8+t=﹣2t﹣12,求出t即可求P (﹣,);③当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL交于K,证明△PKM≌△MLC (AAS),由8=﹣2t﹣6﹣(14+t),求出t =﹣,即可求P (﹣,).【解答】解:(1)∵(a+8)2+=0,∴a=﹣8,b=﹣6,∴A(﹣8,0),B(0,﹣6),∵一次函数y=+b经过A(﹣8,0),B(0,﹣6),∴,∴,∴直线AB的表达式y =﹣x﹣6;(2)∵A(﹣8,0),B(0,﹣6),∴OA=8,OB=6,∴在Rt△AOB中AB=10,过点E作EH⊥AB于点H,∵∠ABO的平分线交x轴于点E,∴EH=EO,AE=8﹣EO,AH=10﹣6=4,在Rt△AEH中,(8﹣EO)2=42+EO2,解得:EO=3,∴E(﹣3,0),设直线BE的表达式为y=k1x+b1,∴,∴,∴直线BE的表达式为y=﹣2x﹣6;(3)设P(t,﹣2t﹣6),①如图1,当∠MPC=90°时,P点在C点下,过点P作GH⊥y轴交AD于点G,交y轴于点H,∵∠MPC=90°,∴∠MPG+∠CPH=90°,∵∠MPG+∠GMP=90°,∴∠CPH=∠GMP,∵PM=PC,∴△PMG≌△CPH(AAS),∴MG=PH,CH=GP,∵PH=﹣t,CH=6﹣(﹣2t﹣6)=2t+12,∴GP=8﹣(﹣t)=8+t=2t+12,∴t=﹣4,∴P(﹣4,2);②如图2,当∠MPC=90°,P点在C点上时,由①得,HC=﹣2t﹣6﹣6=﹣2t﹣12,GP=8﹣(﹣t)=8+t,∴8+t=﹣2t﹣12,∴t =﹣,∴P (﹣,);③如图3,当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL 交于K,∵∠PMC=90°,∴∠PMK+∠CML=90°,∵∠PMK+∠MPK=90°,∴∠CML=∠MPK,∵PM=CM,∴△PKM≌△MLC(AAS),∴KM=CL,PK=ML,∴ML=PK=8,CL=KM=﹣8﹣t,∴LO=6﹣(﹣8﹣t)=14+t,∴PK=8=﹣2t﹣6﹣(14+t),∴t =﹣,∴P (﹣,);综上所述:点P的坐标为:(﹣4,2)或(﹣,)或(﹣,).9.【分析】(1)先求出点A,点B坐标,由勾股定理和面积法可求解;(2)分两种情况讨论,先求出BQ解析式,由全等三角形的性质可求解;(3)分两种情况讨论,利用折叠的性质,三角形面积公式,等腰三角形的性质可求解.【解答】解:(1)∵直线y =﹣x+8与x轴,y轴分别交于A,B两点,∴点A(6,0),点B(0,8),∴OA=6,OB=8,∵点C的坐标为(﹣6,0),∴OC=6,∴BC ===10,∵OA=OC=6,BO⊥AC,∴AB=BC=10,∵S△AOB =×AB×OD =×OA×OB,∴OD ==;(2)存在,理由如下:∵AB=BC,∴∠BCA=∠BAO,∵∠CBO+∠BCA=90°=∠AOD+∠BAO,∴∠CBO=∠AOD,设直线BC的解析式为y=kx+b,,解得:,∴直线BC的解析式为y =x+8,设点Q(a ,a+8)当△BPQ≌△OAD时,BQ=OD =,∴(a﹣0)2+(a+8﹣8)2=,∴a =±,∵点Q在第二象限,∴点Q (﹣,),当△BPQ≌△ODA时,BQ=OA=6,∴(a﹣0)2+(a+8﹣8)2=36,∴a =±,∵点Q在第二象限,∴点Q (﹣,),综上所述:点Q坐标为:(﹣,)或(﹣,);(3)如图,当点C关于OQ的对称点落在OB上时,作OE⊥CO于点E,OF⊥BO于点F,∴∠COQ=∠C'OQ=45°,又∵OE⊥CO,OF⊥BO,∴OE=OF,∵S△OBC =×OB×OC =×OC×OE +×OB×OF,∴6×8=(6+8)×OE,∴OE=OF =,∴点Q 的坐标为(﹣,).点C关于OQ的对称点落在AB上时,∴OC=OC'=OA,CQ=C'Q,∠OCQ=∠OC'Q,∴∠C'AO=∠OC'A,∴∠OCQ=∠OC'Q=∠C'AO=∠OC'A,∴∠CBA=∠QC'B,∴BQ=C'Q,∴CQ=BQ=C'Q,∴点Q是BC的中点,∴点Q(﹣3,4),综上所述:点Q坐标为(﹣3,4)或(﹣,).10.【分析】(1)用待定系数法求直线AB的解析式即可;(2)由题意可得AD=9,设D(x,0),则|x+3|=9,即可求D的坐标;(3)分两种情况讨论:①当点P在射线CB上时,过点C作CF⊥CE交直线EP于点F,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,证明△FMC≌△CNE(AAS),即可得F点坐标为(1,4),用待定系数法求出直线EF的解析式为y=5x﹣1,联立方程组,即可求P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,证明△CHG≌△EHK(AAS),可求得H (﹣,﹣),求出直线HE的解析式为y=﹣x﹣1,联立方程组,则可求P (﹣,﹣).【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(﹣3,0),B(0,6),则有,∴,∴y=2x+6,∵C(﹣a,a),∴C(﹣2,2);(2)∴S△AOB =×3×6=9,∴S△ACD =×2×AD=9,∴AD=9,设D(x,0),∴|x+3|=9,∴x=6或x=﹣12,∴D(6.0)或(﹣12,0);(3)①如图,当点P在射线CB上时,过点C作CF ⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,∴∠FMC=∠CNE=90°,∠MCF+∠MFC=90°,∵CF⊥CE,∴∠MCF+∠NCE=90°,∴∠MFC=∠NCE,∴△FMC≌△CNE(AAS),∴FM=CN=3,CM=EN=2,即F点坐标为(1,4),设直线EF的解析式为y=kx+b,∴,∴,∴直线EF的解析式为y=5x﹣1,联立,解得,∴P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK ⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,∵∠CHK=90°,∴∠CHG+∠KHE=90°,∵∠CHG+∠HCG=90°,∴∠KHE=∠HCG,∵∠DEP=45°,∴DH=HE,∴△CHG≌△EHK(AAS),∴CG=KE,GH=HK,∵E(0,﹣1),C(﹣2,2),∴GH=3﹣CG=2+OK=2+CG,∴CG =,∴H (﹣,﹣),设直线HE的解析式为y=k'x+b',,∴,∴y =﹣x﹣1,联立方程组,解得,∴P (﹣,﹣),综合上所述,点P 坐标为(,)或(﹣,﹣).第21页(共21页)。
(完整word版)一次函数练习题及答案(较难 实用)
初二一次函数与几何题(附答案)1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m的值是多少?2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?A B C O x y xyA B O6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.求:(1)△COP 的面积(2)求点A 的坐标及m 的值;(3)若S BOP =S DOP ,求直线BD 的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC(1)求△ABC 的面积和点C 的坐标;(2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。
一次函数的解析式专项练习30题(有答案)
求一次函数解析式专项练习1.已知A(2,﹣1),B(3,﹣2),C(a,a)三点在同一条直线上.(1)求a的值;(2)求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A(﹣1.5,0),与y轴交于点B(0,3)(1)求直线l的解析式;(2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x 轴交点的坐标.4.如图所示,直线l是一次函数y=kx+b的图象.(1)求k、b的值;(2)当x=2时,求y的值;(3)当y=4时,求x的值.5.已知一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B.若△AOB的面积为12,求一次函数的表达式.6.已知一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.7.已知y与x+2成正比例,且x=0时,y=2,求:(1)y与x的函数关系式;(2)其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.(1)写出y与x之间的函数关系式;(2)画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A(﹣2,6),且与x轴交于点B.(1)求这条直线的解析式;(2)直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集.10.已知y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;(2)结合图象求,当﹣1<y≤0时x的取值范围.11.已知y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.已知y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.13.已知一次函数的图象经过点A (,m)和B (,﹣1),其中常量m≠﹣1,求一次函数的解析式,并指出图象特征.14.已知一次函数y=(k﹣1)x+5的图象经过点(1,3).(1)求出k的值;(2)求当y=1时,x的值.15.一次函数y=k1x﹣4与正比例函数y=k2x的图象经过点(2,﹣1).(1)分别求出这两个函数的表达式;(2)求这两个函数的图象与x轴围成的三角形的面积.16.已知y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.(1)求y与x的函数关系式.(2)如果y的取值范围为3≤y≤5时,求x的取值范围.17.若一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.已知,直线AB经过A(﹣3,1),B(0,﹣2),将该直线沿y轴向下平移3个单位得到直线MN.(1)求直线AB和直线MN的函数解析式;(2)求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A(0,﹣2),且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.(1)求出y与x的函数关系式.(2)自变量x取何值时,函数值为4?23.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5,(1)求y与x的函数关系式;(2)求当x=﹣2时的函数值:(3)如果y的取值范围是0≤y≤5,求x的取值范围;(4)若函数图象与x轴交于A点,与y轴交于B点,求S△AOB.24.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)当时,求y的值;(3)将所得函数图象平移,使它过点(2,﹣1).求平移后直线的解析式.25.已知:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A(2,1)点,求它的解析式.26.已知一次函数y=(3﹣k)x+2k+1.(1)如果图象经过(﹣1,2),求k;(2)若图象经过一、二、四象限,求k的取值范围.27.正比例函数与一次函数y=﹣x+b的图象交于点(2,a),求一次函数的解析式.28.已知y+5与3x+4成正比例,且当x=1时,y=2.(1)求出y与x的函数关系式;(2)设点P(a,﹣2)在这条直线上,求P点的坐标.29.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.30.已知:关于x的一次函数y=(2m﹣1)x+m ﹣2若这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.(1)求这个函数的解析式.(2)求直线y=﹣x和(1)中函数的图象与x 轴围成的三角形面积.一次函数的解析式30题参考答案:1.(1)设直线AB解析式为y=kx+b,依题意,得,解得∴直线AB解析式为y=﹣x+1∵点C(a,a)在直线AB上,∴a=﹣a+1,解得a=;(2)直线AB与x轴、y轴的交点分别为(1,0),(0,1)∴直线AB 与坐标轴围成的三角形的面积为2.(1)设直线l的解析式为y=kx+b,∵直线l与x轴交于点A(﹣1.5,0),与y轴交于点B (0,3),∴代入得:,解得:k=2,b=3,∴直线l的解析式为y=2x+3;(2)解:分为两种情况:①当P在x轴的负半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3﹣1.5=1.5,∴△ABP 的面积是×AP×OB=×1.5×3=2.25;②当P在x轴的正半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3+1.5=4.5,∴△ABP 的面积是×AP×OB=×4.5×3=6.25.3.设一次函数的解析式为y=kx+b(k≠0),由已知得:,解得:,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,∴x=﹣1,∴该函数图象与x轴交点的坐标是(﹣1,0)4.(1)由图象可知,直线l过点(1,0)和(0,),则,解得:,即k=,b=;(2)由(1)知,直线l的解析式为y=x+,当x=2时,有y=×2+=;(3)当y=4时,代入y=x+得:4=x+,解得x=﹣5.5.∵图象经过点A(﹣6,0),∴0=﹣6k+b,即b=6k ①,∵图象与y轴的交点是B(0,b),∴•OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,代入①式,得,,一次函数的表达式是或6.根据题意,得,解得.故该一次函数的关系式是y=﹣x+.7.(1)根据题意,得y=k(x+2)(k≠0);由x=0时,y=2得2=k(0+2),解得k=1,所以y与x的函数关系式是y=x+2;(2)由,得;由,得,所以图象与x轴的交点坐标是:(﹣2,0);与y轴的交点坐标为:(0,2).8.(1)∵y+3与x+2成正比例,∴设y+3=k(x+2)(k≠0),∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.则y+3=2(x+2),即y=2x+1;(2)由(1)知,y=2x+1.令x=0,则y=1,.令y=0,则x=﹣,所以,该直线经过点(0,1)和(﹣,0),其图象如图所示:由图示知,当x<﹣时,y<09.(1)一次函数y=kx+b的图象经过点(﹣2,6),且与y=﹣x的图象平行,则y=kx+b中k=﹣1,当x=﹣2时,y=6,将其代入y=﹣x+b,解得:b=4.则直线的解析式为:y=﹣x+4;(2)如图所示:∵直线的解析式与x轴交于点B,∴y=0,0=﹣x+4,∴x=4,∴B点坐标为:(4,0),∵直线y=mx+n经过点B,且y随x的增大而减小,∴m<0,此图象与y=﹣x+4增减性相同,∴关于x的不等式mx+n<0的解集为:x>410.(1)设y=k(x+2),∵x=1时,y=﹣6.∴﹣6=k(1+2)k=﹣2.∴y=﹣2(x+2)=﹣2x﹣4.图象过(0,﹣4)和(﹣2,0)点(2)从图上可以知道,当﹣1<y≤0时x的取值范围﹣2≤x<﹣.11.∵y﹣2与2x+1成正比例,∴设y﹣2=k(2x+1)(k≠0),∵当x=﹣2时,y=﹣7,∴﹣7﹣2=k(﹣4+1),∴k=3,∴y=6x+5.12.设y=k(x﹣1),把x=﹣5,y=2代入,得2=(﹣5﹣1)k,解得.所以y与x 之间的函数关系式是13.设过点A,B的一次函数的解析式为y=kx+b,则m=k+b,﹣1=k+b,两式相减,得m+1=k+k,即m+1=(m+1),∵m≠﹣1,则k=2,∴b=m﹣1,则函数的解析式为y=2x+m﹣1(m≠﹣1),其图象是平面内平行于直线y=2x(但不包括直线y=2x﹣2)的一切直线14.(1)∵一次函数y=(k﹣1)x+5的图象经过点(1,3),∴3=(k﹣1)×1+5.∴k=﹣1.(2)∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴x=2.15.(1)把点(2,﹣1)代入y=k1x﹣4得:2k1﹣4=﹣1,解得:k1=,所以解析式为:y=x﹣4;把点(2,﹣1)代入y=k2x得:2k2=﹣1,解得:k2=﹣,所以解析式为:y=﹣x;(2)因为函数y=x﹣4与x 轴的交点是(,0),且两图象都经过点(2,﹣1),所以这两个函数的图象与x轴围成的三角形的面积是:S=××1=.16.(1)设y﹣3=k(4x﹣2),(2分)当x=1时,y=﹣1,∴﹣1﹣3=k(4×1﹣2),∴k=﹣2(4分),∴y﹣3=﹣2(4x﹣2),∴函数解析式为y=﹣8x+7.(5分)(2)当y=3时,﹣8x+7=3,解得:x=,当y=5时,﹣8x+7=5,解得:x=,∴x 的取值范围是≤x ≤.17.当x=0时,y=b,当y=0时,x=﹣,∴一次函数与两坐标轴的交点为(0,b)(﹣,0),∴三角形面积为:×|b|×|﹣|=24,即b2=144,解得b=±12,∴这个一次函数的解析式为y=3x+12或y=3x﹣12 18.根据题意,①当k>0时,y随x增大而增大,∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数解析式为y=﹣x+4.因此,函数解析式为y=x﹣6或y=﹣x+4 19.设一次函数解析式为y=kx+b,根据题意①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,∴解得,∴函数的解析式为:y=x﹣4;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,∴解得,∴函数解析式为y=﹣x﹣3;因此这个函数的解析式为y=x﹣4或y=﹣x﹣3.20.设直线AB的解析式为y=kx+b,∵A(﹣3,1),B(0,﹣2),∴,∴k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;(2)∵直线MN与x轴的交点为(﹣5,0),与y轴的交点坐标为(0,﹣5),∴直线MN 与两坐标轴围成的三角形面积为×|﹣5|×||﹣5=12.5.21.设与x轴的交点为B,则与两坐标轴围成的直角三角形的面积=AO•BO,∵AO=2,∴BO=3,∴点B纵坐标的绝对值是3,∴点B横坐标是±3;设一次函数的解析式为:y=kx+b,当点B纵坐标是3时,B(3,0),把A(0,﹣2),B(3,0)代入y=kx+b,得:k=,b=﹣2,所以:y=x﹣2,当点B纵坐标=﹣3时,B(﹣3,0),把A(0,﹣2),B(﹣3,0)代入y=kx+b,得k=﹣,b=﹣2,所以:y=﹣x﹣2.22.(1)依题意,设y+2=k(x+1),将x=1,y=﹣5代入,得k(1+1)=﹣5+2,解得k=﹣1.5,∴y+2=﹣1.5(x+1),即y=﹣1.5x﹣3.5;(2)把y=4代入y=﹣1.5x﹣3.5中,得﹣1.5x﹣3.5=4,解得x=﹣5,即当x=﹣5时,函数值为423.(1)设y﹣3=k(4x﹣2),∵x=1时,y=5,∴5﹣3=k(4﹣2),解得k=1,∴y与x的函数关系式y=4x+1;(2)将x=﹣2代入y=4x+1,得y=﹣7;(3)∵y的取值范围是0≤y≤5,∴0≤4x+1≤5,解得﹣≤x≤1;(4)令x=0,则y=1;令y=0,则x=﹣,∴A(0,1),B(﹣,0),∴S△AOB =××1=.24.(1)∵y﹣3与x成正比例,∴y﹣3=kx(k≠0)成正比例,把x=2时,y=7代入,得7﹣3=2k,k=2;∴y与x的函数关系式为:y=2x+3,(2)把x=﹣代入得:y=2×(﹣)+3=2;(3)设平移后直线的解析式为y=2x+3+b,把点(2,﹣1)代入得:﹣1=2×2+3+b,解得:b=﹣8,故平移后直线的解析式为:y=2x﹣525.根据题意得:当b=3时,y=kx+3,过A(2,1).1=2k+3k=﹣1.∴解析式为:y=﹣x+3.当b=﹣3时,y=kx﹣3,过A(2,1),1=2k﹣3,k=2.故解析式为:y=2x﹣3.26.(1)∵一次函数y=(3﹣k)x+2k+1的图象经过(﹣1,2),∴2=(3﹣k)×(﹣1)+2k+1,即2=3k﹣2,解得k=;(2))∵一次函数y=(3﹣k)x+2k+1的图象经过一、二、四象限,∴,解得,k>3.故k的取值范围是k>3.27.根据题意,得,解得,,所以一次函数的解析式是y=﹣x+3.28.(1)∵y+5与3x+4成正比例,∴设y+5=k(3x+4),即y=3kx+4k﹣5(k是常数,且k≠0).∵当x=1时,y=2,∴2+5=(3×1)k,解得,k=1,故y与x的函数关系式是:y=3x﹣1;(2)∵点P(a,﹣2)在这条直线上,∴﹣2=3a﹣1,解得,a=﹣,∴P 点的坐标是(﹣,﹣2)29.把(1,5)、(6,0)代入y=kx+b中,得,解得,∴一次函数的解析式是y=﹣x+6.30.(1)由题意得:,解得:<m<2,又∵m为正整数,∴m=1,函数解析式为:y=x﹣1.(2)由(1)得,函数图象与x轴交点为(1,0)与y 轴交点为(0,﹣1),∴所围三角形的面积为:×1×1=。
一次函数与方程不等式专项练习60题(有答案)
一次函数与方程、不等式专项练习60题〔有答案〕1.一次函数y=kx+b的图象如下图,那么方程kx+b=0的解为〔〕A .x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A〔m,3〕,那么不等式2x<ax+4的解集为〔〕A .x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点〔0,1〕,那么关于x的不等式kx+b>1的解集是〔〕A .x>0 B.x<0 C.x>1 D.x<14.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,0〕,那么关于x的不等式a〔x﹣1〕﹣b >0的解集为〔〕A .x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为〔1,2〕,那么使y1<y2的x的取值范围为〔〕A .x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如下图,那么关于x的不等式k2x<k1x+b的解集为〔〕A .x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A〔﹣1,﹣2〕和点B〔﹣2,0〕,直线y=2x过点A,那么不等式2x<kx+b<0的解集为〔〕A .x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,那么m的最大值是〔〕A .1 B.2 C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,假设y1<y2,那么〔〕A .x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过〔﹣,1〕,那么方程3x+9=1的解为x= _________ .11.如图,直线y=ax+b,那么方程ax+b=1的解x= _________ .12.如图,一次函数y=ax+b的图象经过A,B两点,那么关于x的方程ax+b=0的解是_________ .13.直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,那么b的取值范围是_________ .14.关于x的方程mx+n=0的解是x=﹣2,那么直线y=mx+n与x轴的交点坐标是_________ .15.ax+b=0的解为x=﹣2,那么函数y=ax+b与x轴的交点坐标为_________ .16.一次函数y=kx+b的图象如下图,那么关于x的方程kx+b=0的解为______ ,当x ______ 时,kx+b<0.17.如图,函数y=2x+b和y=ax﹣3的图象交于点P〔﹣2,﹣5〕,根据图象可得方程2x+b=ax﹣3的解是_________ .18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________ 的横坐标.19.如图,直线y=ax﹣b,那么关于x的方程ax﹣1=b的解x= _________ .20.一次函数y1=kx+b与y2=x+a的图象如图,那么方程kx+b=x+a的解是_________ .21.一次函数y=2x+2的图象如下图,那么由图象可知,方程2x+2=0的解为_________ .22.一次函数y=ax+b的图象过点〔0,﹣2〕和〔3,0〕两点,那么方程ax+b=0的解为_________ .23.方程3x+2=8的解是x= _________ ,那么函数y=3x+2在自变量x等于_________ 时的函数值是8.24.一次函数y=ax+b的图象如下图,那么一元一次方程ax+b=0的解是x= _________ .25.观察下表,估算方程1700+150x=2450的解是_________ .x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:〔4a﹣3b〕•〔a﹣2b〕28.我们知道多项式的乘法可以利用图形的面积进展解释,如〔2a+b〕〔a+b〕=2a2+3ab+b2就能用图1或图2等图形的面积表示:〔1〕请你写出图3所表示的一个等式:_________ .〔2〕试画出一个图形,使它的面积能表示:〔a+b〕〔a+3b〕=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象答复以下问题:〔1〕写出方程kx+b=0的解;〔2〕写出不等式kx+b>1的解集;〔3〕假设直线l上的点P〔m,n〕在线段AB上移动,那么m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,那么不等式0<2x<kx+b的解集是〔〕A .x<1 B.x<0或x>1 C.0<x<1 D.x>132.关于x的一次函数y=kx+b〔k≠0〕的图象过点〔2,0〕,〔0,﹣1〕,那么不等式kx+b≥0的解集是〔〕A .x≥2B.x≤2C.0≤x≤2D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0〔〕A .x=B.x≤C.x>D.x≥﹣34.函数y=8x﹣11,要使y>0,那么x应取〔〕A .x>B.x<C.x>0 D.x<035.如图,直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有以下3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是〔〕A .0 B.1 C.2 D.336.如图,直线y=ax+b经过点〔﹣4,0〕,那么不等式ax+b≥0的解集为_________ .37.如图,直线y=kx+b经过A〔﹣2,﹣1〕和B〔﹣3,0〕两点,那么不等式﹣3≤﹣2x﹣5<kx+b的解集是_________ .38.如下图,函数y=ax+b和a〔x﹣1〕﹣b>0的图象相交于〔﹣1,1〕,〔2,2〕两点.当y1>y2时,x的取值范围是_________ .39.如图,直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,那么不等式组ax+b<cx+d<2的解集为_________ .40.如图,直线y=kx+b经过点〔2,1〕,那么不等式0≤x<2kx+2b的解集为_________ .41.一次函数y=kx+b的图象如下图,由图象可知,当x _________ 时,y值为正数,当x _________ 时,y 为负数.42.如图,直线y=kx+b经过A〔1,2〕,B〔﹣2,﹣1〕两点,那么不等式x<kx+b<2的解集为_________ .43.如果直线y=kx+b经过A〔2,1〕,B〔﹣1,﹣2〕两点,那么不等式x≥kx+b≥﹣2的解集为:_________ .44.如图,直线y=kx+b与x轴交于点〔﹣3,0〕,且过P〔2,﹣3〕,那么2x﹣7<kx+b≤0的解集_________ .45.一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点〔﹣2,0〕,那么不等式ax>b的解集为_________ .46.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,O〕,那么关于x的不等式a〔x﹣l〕﹣b>0的解集为_________ .47.如图,直线y=ax+b经过A〔﹣2,﹣5〕、B〔3,0〕两点,那么,不等式组2〔ax+b〕<5x<0的解集是_________ .48.函数y1=2x+b与y2=ax﹣3的图象交于点P〔﹣2,5〕,那么不等式y1>y2的解集是_________ .49.如图,直线y=kx+b经过A〔2,0〕,B〔﹣2,﹣4〕两点,那么不等式y>0的解集为_________ .50.点P〔x,y〕位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象答复以下问题:〔1〕当﹣2≤x≤4时,求函数y的取值范围;〔2〕当x取什么值时,y<0,y=0,y>0;〔3〕当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:〔1〕方程2x+1=0的根;〔2〕不等式2x+1≥0的解;〔3〕求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并答复以下问题:〔1〕当x为什么值时,y>0;〔2〕如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A〔2,m〕.〔1〕求m、b的值;〔2〕在所给的平面直角坐标系中画出直线y=﹣3x+b;〔3〕结合图象写出不等式﹣3x+b<x+1的解集是_________ .56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________ ;的解集是_________ ;的解集是_________ .57.在平面直角坐标系x0y中,直线y=kx+b〔k≠0〕过〔1,3〕和〔3,1〕两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.〔1〕在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;〔2〕根据图象可知:方程组的解为_________ ;〔3〕当x _________ 时,y2<0.〔4〕当x _________ 时,y2<﹣2〔5〕当x _________ 时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象答复以下问题.函数y=﹣2x+2的图象中:〔1〕随着x的增大,y将_________ 填“增大〞或“减小〞〕〔2〕它的图象从左到右_________ 〔填“上升〞或“下降〞〕〔3〕图象与x轴的交点坐标是_________ ,与y轴的交点坐标是_________〔4〕这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?〔5〕当x取何值时,y=0?〔6〕当x取何值时,y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为〔﹣1,0〕,∴当kx+b=0时,x=﹣1.应选C.2.∵函数y=2x和y=ax+4的图象相交于点A〔m,3〕,∴3=2m,m=,∴点A的坐标是〔,3〕,∴不等式2x<ax+4的解集为x<;应选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点〔0,1〕,∴当x<0时,关于x的不等式kx+b>1.应选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把〔2,0〕代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a〔x﹣1〕﹣b>0,∴a〔x﹣1〕>b,∵a<0,∴x﹣1<,∴x<﹣1,应选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.应选C.6.两条直线的交点坐标为〔﹣1,2〕,且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.应选B7.不等式2x<kx+b<0表达的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那局部点,显然,这些点在点A与点B之间.应选B8.联立两函数的解析式,得:,解得;即两函数图象交点为〔1,2〕,在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.应选B9.从图象上得出,当y1<y2时,x<2.应选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过〔﹣,1〕,即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,那么y=b,令y=0,那么x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,那么有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是〔﹣2,0〕15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为〔﹣2,0〕,故答案为:〔﹣2,0〕16.从图象上可知那么关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知 点P 〔﹣2,﹣5〕在函数y=2x+b 的图象上,∴﹣5=﹣4+b ,解得,b=﹣1;又点P 〔﹣2,﹣5〕在函数y=ax ﹣3的图象上,∴﹣5=﹣2a ﹣3,解得,a=1;∴由方程2x+b=ax ﹣3,得2x ﹣1=x ﹣3,解得,x=﹣2;故答案是:x=﹣218. ∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x 轴交点的横坐标为:x=﹣2,故答案为:x 轴交点.19.根据图形知,当y=1时,x=4,即ax ﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y 1=kx+b 与y 2=x+a 的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点〔﹣1,0〕,∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点〔0,﹣2〕和〔3,0〕两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、824.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21〔21-3x 〕-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a•a﹣8ab ﹣3ab+6b•b=4a 2﹣11ab+6b 228.〔1〕∵长方形的面积=长×宽,∴图3的面积=〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2,故图3所表示的一个等式:〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2,故答案为:〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2;〔2〕∵图形面积为:〔a+b 〕〔a+3b 〕=a 2+4ab+3b 2,∴长方形的面积=长×宽=〔a+b 〕〔a+3b 〕,由此可画出的图形为:29.函数与x 轴的交点A 坐标为〔﹣2,0〕,与y 轴的交点的坐标为〔0,1〕,且y 随x 的增大而增大.〔1〕函数经过点〔﹣2,0〕,那么方程kx+b=0的根是x=﹣2;〔2〕函数经过点〔0,1〕,那么当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;〔3〕线段AB 的自变量的取值范围是:﹣2≤x≤2,当﹣2≤m≤2时,函数值y 的范围是0≤y≤2, 那么0≤n≤2.30. 函数y=﹣2x+7中,令y=﹣2,那么﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3.故:y=﹣,∵0<2x<﹣,解得:0<x<1.应选C32.由于x的一次函数y=kx+b〔k≠0〕的图象过点〔2,0〕,且函数值y随x的增大而增大,∴不等式kx+b≥0的解集是x≥2.应选A33.函数y=3x﹣8的值满足y>0,即3x﹣8>0,解得:x>.应选C34.函数y=8x﹣11,要使y>0,那么8x﹣11>0,解得:x>.应选A.35.由图象可知,a>0,故①正确;b>0,故②正确;当x>﹣2是直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2,故③正确.应选D.36.由图象可以看出:当x≥﹣4时,y≥0,∴不等式ax+b≥0的解集为x≥﹣4,故答案为:x≥﹣437.∵直线y=kx+b经过A〔﹣2,﹣1〕和B〔﹣3,0〕两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a〔x﹣1〕﹣b>0的图象相交于〔﹣1,1〕,〔2,2〕两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,那么不等式组ax+b<cx+d<2的解集为〔0,2〕.40.由直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,根据图象即可知不等式组ax+b<cx+d<2的解集为〔0,2〕,故答案为:〔0,2〕.41. 一次函数y=kx+b的图象如下图,由图象可知,当x x>﹣3 时,y值为正数,当x x<﹣3 时,y为负数.42.由图形知,一次函数y=kx+b经过点〔﹣3,0〕,〔0,2〕故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A〔2,1〕和B〔﹣1,﹣2〕两点,可得:,解得;那么不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点〔﹣3,0〕,且过P〔2,﹣3〕,∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<2 45.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,那么不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把〔2,0〕代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a〔x﹣1〕﹣b>0,∴a〔x﹣1〕>b,∵a<0,∴x﹣1<,∴x<﹣147.把A〔﹣2,﹣5〕、B〔3,0〕两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2〔x﹣3〕<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A〔2,0〕,所以不等式y>0的解集是x>2.故答案为x>250.∵点P〔x,y〕位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.那么P坐标为〔﹣1,1〕,〔﹣1,2〕,〔﹣1,3〕,〔﹣2,1〕,〔﹣2,2〕,〔﹣3,1〕共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点〔0,﹣4〕和点〔2,0〕,过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;〔1〕当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;〔2〕由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;〔3〕∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过〔0,1〕和〔﹣,0〕两点作直线即可得函数y=2x+1的图象,如图:〔1〕由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;〔2〕不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;〔3〕由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点〔0,4〕和点〔﹣,0〕,过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点〔0,10〕和点〔﹣5,0〕,过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点〔0,12〕和点〔﹣4,0〕,过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;〔1〕函数图象经过点〔﹣4,0〕,并且函数值y随x的增大而增大,因而当x>﹣4时y>0;〔2〕函数经过点〔﹣6,﹣6〕和点〔﹣2,6〕并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.〔1〕根据题意得:解得:〔2〕画出直线如图:〔3〕自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b〔k≠0〕过〔1,3〕和〔3,1〕两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A〔4,0〕,∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如下图:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.〔1〕解:如下图:.〔2〕解:由图象可知:方程组的解为,故答案为:.〔3〕解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.〔4〕解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.〔5〕解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:〔1〕由图象知:随着x的增大,y将减小.〔2〕由图象知:图象从左向右下降.〔3〕由图象知:与x轴的交点坐标是〔1,0〕,与y轴的交点坐标是〔0,2〕.〔4〕由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.〔5〕由图象知:当x=1时,y=0.〔6〕由图象知:当x<1时,y>0.。
一次函数练习及答案
一次函数练习及答案一.选择题1.对于函数y=2x+1,下列结论正确的是()A.它的图象必经过点(0,1)B.它的图象经过第一、三、四象限C.当x>时,y<0D.y的值随x值的增大而减小2.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知:实数x满足2a﹣3≤x≤2a+2,y1=x+a,y2=﹣2x+a+3,对于每一个x,p都取y1,y2中的较大值.若p的最小值是a2﹣1,则a的值是()A.0或﹣3 B.2或﹣1 C.1或2 D.2或﹣34.一次函数y=kx+b的图象如图,那么下列说法正确的是()A.x>0时,y>0 B.x<0时,y>0 C.x>2时,y>0 D.x<2时,y>0 5.如图中的直线l1:y=k1x+b1,l2:y=k2x+b2,l3:y=k3x+b3,则()A.k1<k3<k2B.k3<k1<k2C.k3<k2<k1D.k1<k2<k3 6.设min{a,b}表示a,b这两个数中的较小的一个,如min{﹣1,1}=﹣1,min{3,2}=2,则关于x的一次函数y=min{x,3x﹣4}可以表示为()A.y=x B.y=3x﹣4C.y=D.y=7.已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4 B.﹣6 C.14 D.68.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程=k﹣2有解,且使关于x的一次函数y=(k+)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A.﹣1 B.2 C.3 D.49.设一次函数y=kx+b(k≠0)的图象经过点(1,﹣3),且y的值随x的值增大而增大,则该一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数y=﹣mx+10﹣m经过一、二、四象限,且关于x的分式方程的解为整数,则所有符合条件的m值是()A.1,2,5,7 B.1,5,7,8 C.1,2,7 D.1,2,7,8 11.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线,则一次函数y=(a+b)x+ac的图象必不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.已知:a,b,c满足关系式a=bc,下列说法:①如果a表示路程,b表示速度,c 表示时间,当速度b一定时,a随着c的增大而增大;②a、b、c一定满足b=;③a (a≠0)一定时,b和c成反比例关系;④当a=0时,则b=0,c=0.其中不正确的是()A.①B.②④C.③D.①③二.填空题13.若a、b、c是△ABC的三条边,且=k,则一次函数y=kx﹣1的图象不经过第象限.14.已知关于x的一次函数y=(m﹣3)x+m+2的图象经过第一、二四象限,则关于x的一次函数y=(m+2)x﹣m+3必经过第象限.15.如图,直线y=﹣x+1与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,如果在第二象限内有一点,且△ABP 的面积与△ABC的面积相等,则a的值为.16.如图所示,长方形OABC的顶点A在x轴上,C在y轴上,点B坐标为(4,2),若直线y=mx﹣1恰好将长方形分成面积相等的两部分,则m的值为.17.如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为y=2x+4,点P是y轴上一动点,当△PBD的周长最小时,线段OP的长为.三.解答题18.请你用学习“一次函数”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数y=|x|的图象:①列表填空:x…﹣3 ﹣2 ﹣1 0 1 2 3 …y……②描点、连线,画出y=|x|的图象;(2)结合所画函数图象,写出y=|x|两条不同类型的性质;(3)结合所画函数图象,求方程|x|﹣2x﹣1=0的解.19.若两个一次函数y=k1x+b1(k1≠0),y=k2x+b2(k2≠0),则称函数y=(k1+k2)x+b1b2为这两个函数的组合函数.(1)一次函数y=3x+2与y=﹣4x+3的组合函数为;若一次函数y=ax﹣2,y =﹣x+b的组合函数为y=3x+2,则a=,b=.(2)已知一次函数y=﹣x+b与y=kx﹣3的组合函数的图象经过第一、二、四象限,求常数k、b满足的条件;(3)已知一次函数y=﹣2x+m与y=3mx﹣6,则不论何值,它们的组合函数一定经过的定点坐标是.20.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.参考答案一.选择题1.解:∵函数y=2x+1,∴当x=0时,y=1,故选项A正确;它的图象经过第一、二、三象限,故选项B错误;当x=时,y=1,故当x>时,y>1,故选项C错误;该函数y随x的增大而增大,故选项D错误;故选:A.2.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.3.解:解方程x+a=﹣2x+a+3,解得x=1,当x=1时,y1=a+1,所以直线y1=x+a,y2=﹣2x+a+3的交点坐标为(1,a+1),所以对任意一个x,若p都取y1,y2中的最大值,则p的最小值是a+1.所以a2﹣1=a+1所以(a﹣2)(a+1)=0.所以a=2或a=﹣1.故选:B.4.解:A、如图所示,当x>0时,y<4,故本选项错误;B、如图所示,当x<0时,y>4,故本选项错误;C、如图所示,当x>2时,y<0,故本选项错误;D、如图所示,当x<2时,y>0,故本选项正确;故选:D.5.解:由题意得:k1为负数,k2>k3,∴k1,k2,k3的大小关系是k1<k3<k2.故选:A.6.解:根据已知,在没有给出x的取值范围时,不能确定2x和x+3的大小.当x<3x﹣4时,即x>2时,可表示为y=x.当x≥3x﹣4时,即x≤2时,可表示为y=3x﹣4.故选:D.7.解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.8.解:∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,解得,k>﹣1.5,∵关于x的分式方程=k﹣2有解,∴当k=﹣1时,分式方程=k﹣2的解是x=,当k=1时,分式方程=k﹣2无解,当k=2时,分式方程=k﹣2无解,当k=3时,分式方程=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.9.解:因为一次函数y=kx+b的图象经过点(1,﹣3),且y的值随x值的增大而增大,所以k>0,b<0,即函数图象经过第一,三,四象限,故选:B.10.解:一次函数y=﹣mx+10﹣m经过一、二、四象限,则﹣m<0,10﹣m>0,解得:0<m<10,将分式方程两边同乘以x﹣8得:mx=8x﹣3(x﹣8),解得:x=,∵x≠8,故m≠8,当x=1,2,7时,0<m<10,故选:C.11.解:∵抛物线的开口向上,∴a>0;∵与y轴的交点为在y轴的负半轴上,∴c<0;∵对称轴为x=<0,∴b>0;所以函数y=(a+b)x+ac的图象必不经过第二象限.故选:B.12.解:∵a,b,c满足关系式a=bc,则①如果a表示路程,b表示速度,c表示时间,当速度b一定时,时间越长走的距离越远,因此正确;②当C≠0时,a、b、c一定满足b=,不正确;③因为a=bc,所以,a(a≠0)一定时,b和c成反比例关系,正确;④当a=0时,则a和c至少有一个为0,不正确.故选:B.二.填空题(共5小题)13.解:∵a、b、c是△ABC的三条边,∴b+c>a,c+a>b,a+b>c,∴=k>1,一次函数y=kx﹣1的图象经过一、三、四象限,∴一次函数y=kx﹣1的图象不经过第二象限;故答案为:二14.解:函数经过第一、二、四象限,则m﹣3<0,m+2>0,解得:﹣2<m<3,∴m+2>0,﹣m+3>0,∴关于x的一次函数y=(m+2)x﹣m+3经过第一,二、三象限;故答案为:一,二、三15.解:连接PO,由已知易得A(,0),B(0,1),OA=,OB=1,AB=2,∵等腰Rt△ABC中,∠BAC=90°,∴S△ABP=S△ABC=2,S△AOP=,S△BOP=﹣,S△ABP=S△BOP+S△AOB﹣S△AOP=2,即﹣=2,解得a=.故答案为:.16.解:∵直线y=mx﹣1恰好将长方形分成面积相等的两部分,∴直线y=mx﹣1经过长方形的对角线交点(2,1).把点(2,1)代入可得y=mx﹣1,得2m﹣1=1,解得m=1.故答案为:1.17.解:作点D关于y轴的对称点D′,连接BD′交y轴于点P,则点P即为所求,直线AC的解析式为y=2x+4,当x=0时,y=4,当y=0时,x=﹣2,∴点A的坐标为(﹣2,0),点C的坐标为(0,4),∴点D的坐标为(﹣1,2),点B的坐标为(﹣2,4),∴点D′的坐标为(1,2),设过点B和点D′的直线解析式为y=kx+b,,解得,,∴过点B和点D′的直线解析式为y=,当x=0时,y=,即点P的坐标为(0,),∴OP=,故答案为:.三.解答题(共3小题)18.解:(1)①填表;x…﹣3 ﹣2 ﹣1 0 1 2 3 …y… 3 2 1 0 1 2 3 …故答案为:3,2,1,0,1,2,3;②画函数图象如图:(2)①增减性:x<0时,y随x的增大而减小x>0时,y随x的增大而增大②对称性:图象关于y轴对称③函数的最小值为0;(3)由图象可得:方程|x|﹣2x﹣1=0的解为x=﹣;19.解:(1)一次函数y=3x+2与y=﹣4x+3的组合函数为y=(3﹣4)x+2×3,即y=﹣x+6;∵一次函数y=ax﹣2,y=﹣x+b的组合函数为y=(a﹣1)x﹣2b,∴a﹣1=3,﹣2b=2,∴a=4,b=﹣1;(2)∵一次函数y=﹣x+b与y=kx﹣3的组合函数为y=(﹣1+k)x﹣3b,又图象经过第一、二、四象限,∴﹣1+k<0,﹣3b>0,∴k<1,b<0;(3)∵一次函数y=﹣2x+m与y=3mx﹣6的组合函数为y=(﹣2+3m)x﹣6m,即y=m(3x﹣6)﹣2x,∴当x=2时,y=﹣4,∴此函数的图象一定过定点(2,﹣4).故答案为:(1)y=﹣x+6;4,﹣1;(3)(2,﹣4).20.解:(1)∵函数图象经过原点,∴m﹣1=0,解得m=1;(2)∵函数图象在y轴上的截距为﹣3,∴当x=0时,y=﹣3,即m﹣1=﹣3,解得m=﹣2;(3)∵函数图象平行于直线y=x+1,∴2m+3=1,解得m=﹣1;(4)∵该函数的值y随自变量x的增大而减小,∴2m+3<0,解得m<﹣;(5)∵该函数图象不经过第二象限,∴,解得﹣<m≤1.。
一次函数习题(有答案)
第六章《一次函数》班级:姓名:学号:成绩:一、填空题(共40分,每空2分)。
(1)点A在y 轴右侧,距y轴6个单位长度,距x 轴8个单位长度,则A点的坐标是,A点离开原点的距离是。
(2)点(-3,2),(a , a+1)在函数y=kx-1 的图像上,则k= a=(3)正比例函数的图像经过点(-3,5),则函数的关系式是。
(4)函数y=-5x+2 与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是。
( 5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式。
(6)写出下列函数关系式①速度60千米的匀速运动中,路程S与时间t的关系②等腰三角形顶角y与底角x之间的关系③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系④矩形周长30,则面积y与一条边长x之间的关系在上述各式中,是一次函数,是正比例函数(只填序号)(7)正比例函数的图像一定经过点。
(8)若点(3,a )在一次函数y=3x+1 的图像上,则。
(9)一次函数y=kx-1的图像经过点(-3,0),则k= 。
(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式。
(11)函数y=-x+m^2 与y=4x-1的图像交于轴,则m= 。
二、选择:(每题3分,共9分)(1)下面哪个点不在函数y=-2x+3 的图像上()A.(-5,13)B.(0.5,2)C(3,0)D(1,1)(2)下列函数关系中表示一次函数的有()①②③④⑤A.1个B.2个C.3个D.4个(3)下列函数中,y随x的增大而减小的有()①②③④A.1个B.2个C.3个D.4个三、(12分)在同一坐标系中作出y=2x+1, ,的图像;在上述三个函数的图像中,哪一个函数的值先达到30 ?四、(13分)某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
一次函数精选20题(附问题详解)
分邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A 村到县城共用多长时间?26.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)小24.(本题满分10分)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量不低于四月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案?24.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.(1)小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时.(2)小张出发几小时与小李相距15千米?(3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案)25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式.23.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?20.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)22.(本题满分10分)甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(4分)(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个).(3分)(3)在什么时间段内乙比甲离A 地更近?(3分)图1325、(2011•黑河)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?23.(2011福建龙岩,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
一次函数 练习题 及答案
一次函数 练习题 及答案一.选择题1.若点(3,1)在一次函数y=kx-2(k ≠0)的图象上,则k 的值是( )A .5B .4C .3D .12.直线y=x+3与x 轴的交点是( )A .(﹣3,0)B .(0,﹣3)C .(0,3)D .(3,0)3.一次函数y=-2x+4的图象与y 轴的交点坐标是( )A .(0,4)B .(4,0)C .(2,0)D .(0,2)4.直线y=x+1与y=–2x –4交点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.直线y kx b =+经过A (0,2)和B (3,0)两点,那么这个一次函数关系式是()A .23y x =+B .223y x =-+C .32y x =+D .1y x =+6.对于一次函数y=﹣2x+4,下列结论错误的是( ).A .函数值随自变量的增大而减小B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得y=﹣2x 的图象D .函数的图象与x 轴的交点坐标是(0,4)7.一次函数y = x +2的图象大致是( )8.当0,0<<b k 时,函数y kx b =+的图像大致是 ( )9.如图,直线l 是一次函数y=kx +b 的图象,则有( )A 、 k <0 b <0B 、 k <0 b >0C 、 k >0 b >0D 、 k >0 b <010.直线y=-2x+1经过的象限是( ).A .三、二、一B .三、四、一C .二、三、四D .二、一、四11.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限12.一次函数y= - x+2经过两点(1x ,1y )(2x ,2y ),当12x x <时,( ).A .12y y <B .12y y >C .12y y =D .无法比较13.一次函数y=kx+b (k≠0)的图像如图所示,则下列结论正确的是( )A .k=2B .k=3C .b=2D .b=314.函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b>0的解集是A. x<2B. x>2C. x<3D. x>315.国内航空规定,乘坐飞机经济舱旅客所携带行李的重量x 与其运费y (元)之间是一次函数关系, 其图象如图所示,那么旅客可携带的免费行李的最大重量为( )A.20kgB.25kgC.28kgD.30kg二.填空题:1.一列火车以60千米/时的速度行驶,它驶过的路程s (千米)是所用时间t (时)的函数,这个函数关系式可表示为 .2.正比例函数图象过点(1,﹣5),则函数解析式为_________.3.一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: .4.将直线y=—x+1的图象向上平移3个单位长度,得到直线_________.5.一次函数y=-2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 .6.点A (-1,y 1),B (3,y 2)是直线y=-x+b 的两点,则y 1-y 2 0(填“>”或“<”).7.拖拉机的油箱有油100升,每工作1小时耗油8升,则油箱的剩余油量y (升)与工作时间x (时)间的函数关系式为 。
一次函数练习题(含答案)
一次函数练习题(含答案)1.已知x+3与y成正比例,并且当x=1时,y=8.则y与x之间的函数关系式为(C)y=8x+6.2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过(C)三象限。
3.直线y=-2x+4与两坐标轴围成的三角形的面积是(B)6.4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2.如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为(A)y1>y2.5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,则有一组a,b的取值,使得下列4个图中的一个为正确的是(D)。
6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第(A)一象限。
7.一次函数y=kx+2经过点(1,1),那么这个一次函数(B)y随x的增大而减小。
8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在(C)第三象限。
9.要得到y=-33x-4的图像,可把直线y=-x/2向下平移4个单位。
10.若函数y=(m-5)x+(4m+1)x^2(m为常数)中的y与x 成正比例,则m的值为(A)m>-11.11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是(B)-1<k<1.12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5.这样的直线可以作(B)3条。
13.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是(A)-4<a<0.1.根据函数图像回答问题:XXX到达离家最远的地方需要几小时?此时离家多远?求XXX出发两个半小时离家多远?求XXX出发多长时间距家12千米?2.已知一次函数的图像,交x轴于A(-6,0),交正比例函数的图像于点B,且点B在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,求正比例函数和一次函数的解析式。
一次函数经典题型 习题(精华 含答案)
一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
一次函数的应用 练习题(带答案
一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。
一次函数难题汇编含答案解析
一次函数难题汇编含答案解析一、选择题1.函数y=2x﹣5的图象经过()A.第一、三、四象限B.第一、二、四象限C.第二、三、四象限D.第一、二、三象限【答案】A【解析】【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.2.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3 B.5 C.﹣1 D.﹣3【答案】C【解析】【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k﹣1),解得:k1=﹣1,k2=5,因为正比例函数的y=kx(k≠0)的图象经过二,四象限,所以k<0,所以k=﹣1,故选C.【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.3.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时,设动车的速度为x千米/小时,根据题意,得:3x+3×2503=1000,解得:x=250,动车的速度为250千米/小时,错误;④由图象知x=t时,动车到达乙地,∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.4.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y (米)与时间t (分)的函数关系如图所示,则下列结论错误的是( )A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D【解析】【分析】 根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变, 即:甲步行的速度为每分钟480806米,乙步行的速度也为每分钟80米, 故A 正确;又∵甲乙再次相遇时是16分钟,∴16分乙共走了80161280米,由图可知,出租车的用时为16-12=4分钟,∴出租车的速度为每分12804320米,故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x 米, 依题意得:12380320xx ,解之得:1600x , ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确.故选:D .【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.5.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52, 则直线y 2═−2x+m 与x 轴的交点坐标为(52,0), ∴不等式0<y 2<y 1的解集是1<x<52故选:D【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.6.已知点(k,b)为第二象限内的点,则一次函数y kx b=-+的图象大致是( ) A.B.C.D.【答案】D【解析】【分析】根据已知条件“点(k,b)为第二象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=-kx+b的图象所经过的象限.【详解】解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴-k>0.∴一次函数y=-kx+b的图象经过第一、二、三象限,观察选项,D选项符合题意.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b <0时,直线与y轴负半轴相交.7.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.8.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.9.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.10.如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2019的坐标为( )A .(21009,21010)B .(﹣21009,21010)C .(21009,﹣21010)D .(﹣21009,﹣21010)【答案】D【解析】【分析】 写出一部分点的坐标,探索得到规律A 2n +1[(﹣2)n ,2×(﹣2)n ](n 是自然数),即可求解;【详解】A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…由此发现规律:A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),2019=2×1009+1,∴A2019[(﹣2)1009,2×(﹣2)1009],∴A2019(﹣21009,﹣21010),故选D.【点睛】本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.11.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=-bx+k的一次项系数-b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y 随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.12.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k <0,再根据待定系数法求出k 的值即可.【详解】解:∵正比例函数y =kx 的图象经过第二、四象限,∴k <0.∵正比例函数y =kx 的图象过点A (2m ,1)和B (2,m ),∴2km 12k m =⎧⎨=⎩, 解得:m 11k 2=-⎧⎪⎨=-⎪⎩或m 11k 2=⎧⎪⎨=⎪⎩(舍去). 故选:A .【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.13.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 【答案】C【解析】【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个, ∵买瓶子用来分装15升油,瓶子都装满,且无剩油,∴购买B 型瓶的个数是1522533x x -=-, ∵瓶子的个数为自然数,∴x=0时, 253x -=5; x=3时, 253x -=3; x=6时, 253x -=1; ∴购买B 型瓶的个数是(253x -)为正整数时的值,故A 成立; 由上可知,购买A 型瓶的个数为0个或3个或6个,所以购买A 型瓶的个数最多为6,故B 成立;设购买A 型瓶x 个,所需总费用为y 元,则购买B 型瓶的个数是(253x -)个, ④当0≤x<3时,y=5x+6×(253x -)=x+30, ∴k=1>0,∴y 随x 的增大而增大,∴当x=0时,y 有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x -)-5=x+25, ∵.k=1>0随x 的增大而增大,∴当x=3时,y 有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C 不成立,D 成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.14.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.15.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】 【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.16.若一次函数y=(k-3)x-1的图像不经过第一象限,则A .k<3B .k>3C .k>0D .k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k <3.故选A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.17.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C【解析】【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G 2,对于这两个图象,有以下几种说法:①当G 1与G 2有公共点时,y 1随x 增大而减小;②当G 1与G 2没有公共点时,y 1随x 增大而增大;③当k =2时,G 1与G 2平行,且平行线之间的距离为.下列选项中,描述准确的是( )A .①②正确,③错误B .①③正确,②错误C .②③正确,①错误D .①②③都正确 【答案】D【解析】【分析】画图,找出G 2的临界点,以及G 1的临界直线,分析出G 1过定点,根据k 的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y 2=2x+3(﹣1<x <2)的函数值随x 的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x 轴,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM=.故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线y=2x-1与y=x-k的交点在第四象限,则k的取值范围是()A.12<k<1 B.13<k<1 C.k>12D.k>13【答案】A 【解析】【分析】由直线y=2x-1与y=x-k 可列方程组求交点坐标,再通过交点在第四象限可求k 的取值范围.【详解】解:设交点坐标为(x ,y )根据题意可得 21y x y x k =-⎧⎨=-⎩解得 112x k y k =-⎧⎨=-⎩∴交点坐标()112k,k --∵交点在第四象限,∴10120k k -⎧⎨-⎩>< ∴112k <<故选:D .【点睛】本题考查了两条直线相交坐标问题,掌握平面直角坐标系内点的坐标特点是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二一次函数与几何题1、平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少?2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B恰好将矩形OABC分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6) 求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x 轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.求:(1)△COP 的面积(2)求点A 的坐标及m 的值;(3)若S BOP =S DOP ,求直线BD 的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC (1)求△ABC 的面积和点C 的坐标; (2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。
(3)在x 轴上是否存在点M ,使△MAB 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。
14、已知正比例函数y=k 1x 和一次函数y=k 2x+b 的图像如图,它们的交点A (-3,4),且OB=53OA 。
(1)求正比例函数和一次函数的解析式;(2)求△AOB 的面积和周长; (3)在平面直角坐标系中是否存在点P ,使P 、O 、A 、B 成为直角梯形的四个顶点?若存在,请直接写出P 点的坐标;若不存在,请说明理由。
15、如图,已知一次函数y=x+2的图像与x 轴交于点A ,与y 轴交于点C ,(1)求∠CAO 的度数;(2)若将直线y=x+2沿x 轴向左平移两个单位,试求出平移后的直线的解析式;(3)若正比例函数y=kx (k ≠0)的图像与y=x+2得图像交于点B ,且∠ABO=30°,求:AB 的长及点B 的坐标 16、一次函数y=33x+2的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第二象限内做等边△ABC (1)求C 点的坐标;(2)在第二象限内有一点M (m ,1),使S △ABM =S △ABC ,求M 点的坐标;(3)点C (23,0)在直线AB 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求P 点的坐标;若不存在,说明理由。
17、已知正比例函数y=k1x 和一次函数y=k2x+b 的图像相交于点A(8,6),一次函数与x 轴相交于B ,且OB=0.6OA ,求这两个函数的解析式 18、已知一次函数y=x+2的图像经过点A(2,m )。
与x 轴交于点c ,求角AOC.19、已知函数y=kx+b 的图像经过点A (4,3)且与一次函数y=x+1的图像平行,点B (2,m)在一次函数y=kx+b 的图像上(1)求此一次函数的表达式和m 的值?(2)若在x 轴上有一动点P (x,0),到定点A (4,3)、B (2,m)的距离分别为PA 和PB ,当点P 的横坐标为多少时,PA+PB 的值最小?答案3、点到线的最短距离是点向该线做垂线因为直线与x夹角45度所以ABO为等腰直角三角形AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2在B分别向xy做垂线垂线与轴交点就是B的坐标由于做完还是等腰直角三角形所以议案用上面的共识可知B点坐标是(0.5,-0.5)7、一次函数的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数的解析式为y=8x+4或y=(25/2)x-58、因为正比例函数和一次函数都经过(3,-6)所以这点在两函数图像上所以,当x=3 y=-6 分别代入得k1= -2 k2=1若一次函数图像与x轴交于点A 说明A的纵坐标为0把y=0代入到y=x-9中得 x=9所以A(9,0)例4、A的横坐标=-1/2,纵坐标=00=-k/2+b,k=2bC点横坐标=4,纵坐标y=4k+b=9bB点横坐标=0,纵坐标y=bSobcd=(\9b\+\b\)*4/2=1010\b\=5\b\=1/2b=1/2,k=2b=1 y=x+1/2b=-1/2,k=-1 y=-x-1/2\b\表示b的绝对值11、?解:设这个一次函数解析式为y=kx+b∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB∴{-3k+b=4{3k+b=0∴{k=-2/3{b=2∴这个函数解析式为y=-2/3x+2?解2根据勾股定理求出OA=OB=5,所以,分为两种情况:当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5,当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,12、做辅助线PF,垂直y轴于点F。
做辅助线PE垂直x轴于点E。
(1)求S三角形COP解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2(2)求点A的坐标及P的值解:可证明三角形CFP全等于三角形COA,于是有PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)通过(1)式和(3)式组成的方程组就解,可以得到AO = 4,FC = 1.p = FC + OC = 1 + 2 = 3.所以得到A点的坐标为(-4,0),P点坐标为(2,3), p值为3.(3)若S三角形BOP=S三角形DOP,求直线BD的解析式解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即3BE = 2FD。
又因为:FD:DO = PF:OB 即FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)因此可以得到直线BD的解析式为:y = (-3/2)x + 617、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有8K1=6 (1)8K2+b=6 ....... (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 ....... (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75正比例函数y=0.75x,一次函数y=3x-1818、一次函数y=x+2的图像经过点a(2,m),有m=2+2=4,与x轴交于点c,当y=0时,x=-2.三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位.19、解:两直线平行,斜率相等故k=1,即直线方程为y=x+b经过点(4,3)代入有:b=-1故一次函数的表达式为:y=x-1经过点(2,m)代入有:m=12)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上AB的直线方程为:(y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有:(0-1)/2=(x-2)/2x=1即当点P的横坐标为1时,PA+PB的值最小.。