七年级数学上册 期末试卷综合测试卷(word含答案)

合集下载

七年级上册海南中学数学期末试卷测试卷 (word版,含解析)

七年级上册海南中学数学期末试卷测试卷 (word版,含解析)

同理: ∴ ∴
(2)解:∠ AOD 与∠ BOC 的大小关系为: 量关系为: (3)解: 理由如下:∵
∠ AOB 与∠ DOC 存在的数 仍然成立.
又∵ ∴
【解析】【分析】(1)先计算出
再根据
( 2 ) 根 据 (1) 中 得 出 的 度 数 直 接 写 出 结 论 即 可 . ( 3 ) 根 据
若不能,说明理由。
【答案】 (1)解:
设 A 点表示的数为原点,则 B 点表示的数为 12,P 点表示的
数为 3t,则 M 点表示的数为 t,点 Q 表示的数为 12+2t,点 N 表示的数为 12+t,
M 在 N 左侧,MN=12+t- t=12- t,
∵ MN= =4,
(2)若 AB=2DE,线段 DE 在直线 AB 上移动,且满足关系式 ________. 【答案】 (1)解:①
,则
又 E 为 BC 中点
②设 当

,因点 F(异于 A、B、C 点)在线段 AB 上,


时,
可知:
Hale Waihona Puke 此时可画图如图 2 所示,代入
解得:
,即 AD 的长为 3
得:

时,
此时可画图如图 3 所示,代入
即可得到
利用周角定义得
∠ AOB+∠ COD+∠ AOC+∠ BOD=360°,而∠ AOC=∠ BOD=90°,即可得到∠ AOB+∠ DOC=180°.
2.已知点 C 在线段 AB 上,AC=2BC,点 D、E 在直线 AB 上,点 D 在点 E 的左侧
(1)若 AB=18,DE=8,线段 DE 在线段 AB 上移动 ①如图 1,当 E 为 BC 中点时,求 AD 的长; ②点 F(异于 A,B,C 点)在线段 AB 上,AF=3AD,CE+EF=3,求 AD 的长;

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。

√2 是一个无理数。

2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。

3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。

4. 决算表中列出了一个公司在一年中的所有收入和支出。

决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。

5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。

6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。

7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。

8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。

2022-2023学年湖北省黄石市大冶市七年级(上)期末数学试卷(word,解析版)

2022-2023学年湖北省黄石市大冶市七年级(上)期末数学试卷(word,解析版)

2022-2023学年湖北省黄石市大冶市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30分.)1.(3分)﹣的倒数是()A.﹣B.C.﹣3D.32.(3分)如图,由一个球体和一个长方体组成的几何体,从它的正面看得到的平面图形是()A.B.C.D.3.(3分)下列计算中,正确的是()A.6a+4b=10ab B.7x2y﹣3x2y=4C.7a2b﹣8ba2=﹣ba2D.8x2+8x2=16x44.(3分)用四舍五入法对下列各数取近似值,其中错误的是()A.304.25≈304(精确到个位)B.1.804≈1.8(精确到十分位)C.2.602≈2.6(精确到0.01)D.1205≈1.2×103(精确到百位)5.(3分)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°6.(3分)某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了()件.A.3a﹣42B.3a+42C.4a﹣32D.3a+327.(3分)已知|a|=2,(b+1)2=25,且a<b,则a+b的值是()A.﹣2或﹣8B.﹣8或6C.2或6D.2或﹣88.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|的结果为()A.﹣a﹣c B.﹣a﹣b﹣c C.﹣a﹣2b﹣c D.a﹣2b+c9.(3分)如图,∠AOC与∠BOC互为余角,OD平分∠BOC,∠EOC=2∠AOE.若∠COD =18°,则∠AOE的大小是()A.12°B.15°C.18°D.24°10.(3分)如图,C,D在线段BE上,下列四个说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有3对互为补角的角;③若∠BAE=110°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为370°;④若BC=4,CD=3,DE=5,点F是线段BE上任意一点(包含端点),则点F到点B,C,D,E的距离之和的最小值为15,最大为25.其中正确说法的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,共24分)11.(3分)化简:﹣|﹣8|=.12.(3分)如图是一个正方体的展开图,则原正方体中与“大”字所在的面相对的面上标的字是.13.(3分)若代数2x2+3x的值为1,则代数式﹣4x2﹣6x+9的值是.14.(3分)一列火车匀速行驶,经过一条长350m的隧道需要10s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是5s,则火车的行驶速度为.15.(3分)一个角的余角的3倍与它的补角相等,则这个角的度数为.16.(3分)有一列数:1,3,2,﹣1,…,其规律是:从第二个数开始,每一个数都是其前后两个数之和,根据此规律,则第2022个数是.17.(3分)如图,C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,则∠ACF﹣∠BCG=.18.(3分)m是常数,若式子|x﹣1|+|x﹣5|+|x﹣m|的最小值是6,则m的值是.三、解答题(本大题共8小题,共66分.)19.(7分)计算:﹣14+[4﹣(+﹣)×24]÷5.20.(7分)先化简,再求值:5(x2﹣y)﹣(y﹣x2)+y,其中x=﹣3,y=.21.(8分)解方程:(1)2(x﹣3)=5x;(2).22.(8分)某同学做一道数学题,已知两个多项式A、B,B=x2y﹣2xy﹣x+1,试求A+B.这位同学把A+B误看成A﹣B,结果求出的答案为6x2y+4xy﹣2x﹣1.(1)请你替这位同学求出A+B的正确答案;(2)当x取任意数值,A﹣7B的值是一个定值时,求y的值.23.(8分)如图,点C为线段AB上一点(AC>BC),D在线段BC上,BD=2CD,点E 为AB的中点.(1)若AD=10,EC=3CD,求线段CD的长;(2)若AC=2BC,求的值.24.(9分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)求∠COD的度数;(3)若射线OE平分∠COD,求∠AOE的度数.25.(9分)大冶市某猕猴桃基地的猕猴桃除了批发销售外,还可以让市民亲自去猕猴桃基地采摘购买.已知2022年8月该基地猕猴桃的批发价格为8元/千克,在基地采摘购买的价格为10元/千克,该基地2022年8月份一共销售了5000千克猕猴桃,总销售额为48000元.(1)问2022年8月份该基地批发销售和采摘购买各销售了多少千克的猕猴桃?(2)9月份是猕猴桃产出旺季.为了促销,该基地决定2022年9月份将猕猴桃批发销售价格和采摘购买价格均在8月份的基础上降低a%,因此批发销售量和采摘销售量分别增长30%、20%,这样2022年9月份该基地猕猴桃的总销售额为52560元,求a的值?26.(10分)已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=36°,求∠DOE的度数;(2)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置.①探究∠AOD(小于平角)和∠DOE的度数之间的关系,写出你的结论,并说明理由.②在∠AOC(小于平角)的内部有一条射线OF,满足:3∠COF+2∠BOE=∠AOD+∠AOF,试确定∠AOF与∠BOE的之间的数量关系,并说明理由.2022-2023学年湖北省黄石市大冶市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,共30分.)1.(3分)﹣的倒数是()A.﹣B.C.﹣3D.3【分析】乘积是1的两数互为倒数.【解答】解:﹣的倒数是﹣3.故选:C.2.(3分)如图,由一个球体和一个长方体组成的几何体,从它的正面看得到的平面图形是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,底层是一个矩形,上层中间是一个圆.故选:B.3.(3分)下列计算中,正确的是()A.6a+4b=10ab B.7x2y﹣3x2y=4C.7a2b﹣8ba2=﹣ba2D.8x2+8x2=16x4【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此判断即可.【解答】解:A.6a与4b不是同类项,所以不能合并,故本选项不合题意;B.7x2y﹣3x2y=4x2y,故本选项不合题意;C.7a2b﹣8ba2=﹣ba2,故本选项符合题意;D.8x2+8x2=16x2,故本选项不合题意;故选:C.4.(3分)用四舍五入法对下列各数取近似值,其中错误的是()A.304.25≈304(精确到个位)B.1.804≈1.8(精确到十分位)C.2.602≈2.6(精确到0.01)D.1205≈1.2×103(精确到百位)【分析】要求精确到哪一位,要看这位的后一位,然后四舍五入取值即可.【解答】解:A.304.25≈304(精确到个位),正确,故本选项不合题意;B.1.804≈1.8(精确到十分位),正确,故本选项不合题意;C.2.602≈2.60(精确到0.01),错误,故本选项符合题意;D.1205≈1.2×103(精确到百位),正确,故本选项不符合题意.故选:C.5.(3分)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°【分析】若两个角的和等于180°,则这两个角互补.结合已知条件列方程求解.【解答】解:设这个角是x°,根据题意,得x=2(180﹣x)+30,解得:x=130.即这个角的度数为130°.故选:C.6.(3分)某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了()件.A.3a﹣42B.3a+42C.4a﹣32D.3a+32【分析】根据题意可以用相应的代数式表示出这三天一共出售了多少件服装.【解答】解:∵某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,∴这三天销售了:a+(a﹣14)+2(a﹣14)+10=a+a﹣14+2a﹣28+10=(4a﹣32)件,故选:C.7.(3分)已知|a|=2,(b+1)2=25,且a<b,则a+b的值是()A.﹣2或﹣8B.﹣8或6C.2或6D.2或﹣8【分析】根据绝对值和有理数的乘方求出a,b的值,根据a<b分两种情况分别计算即可.【解答】解:∵|a|=2,(b+1)2=25,∴a=±2,b+1=±5,∴b=4或﹣6,∵a<b,∴当a=2,b=4时,a+b=6;当a=﹣2,b=4时,a+b=2;故选:C.8.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|的结果为()A.﹣a﹣c B.﹣a﹣b﹣c C.﹣a﹣2b﹣c D.a﹣2b+c【分析】先根据数轴上a,b,c的位置确定a+b,a﹣b,a+c的符号,再根据绝对值的性质化简即可.【解答】解:∵a<0,b>0,且|a|>|b|,∴a+b<0,∵a<b,∴a﹣b<0,∵a<0,c>0,且|a|>|c|,∴a+c<0,∴|a+b|﹣|a﹣b|+|a+c|=﹣(a+b)+(a﹣b)﹣(a+c)=﹣a﹣b+a﹣b﹣a﹣c=﹣a﹣2b﹣c,故选:C.9.(3分)如图,∠AOC与∠BOC互为余角,OD平分∠BOC,∠EOC=2∠AOE.若∠COD =18°,则∠AOE的大小是()A.12°B.15°C.18°D.24°【分析】根据∠AOC与∠BOC互余,OD平分∠BOC,∠EOC=2∠AOE,∠COD=18°,可求出∠BOD=DOC=18°,∠AOC=90°﹣18°﹣18°=54°,进而求出∠AOE的度数.【解答】解:(1)∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠COD=18°,∵OD平分∠BOC,∴∠BOD=∠DOC=18°,∴∠AOC=90°﹣18°﹣18°=54°,∵∠EOC=2∠AOE,∴∠AOE=∠AOC=×54°=18°,故选:C.10.(3分)如图,C,D在线段BE上,下列四个说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有3对互为补角的角;③若∠BAE=110°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为370°;④若BC=4,CD=3,DE=5,点F是线段BE上任意一点(包含端点),则点F到点B,C,D,E的距离之和的最小值为15,最大为25.其中正确说法的个数是()A.1个B.2个C.3个D.4个【分析】①按照一定的顺序数出线段的条数即可;②图中互补的角就是分别以C、D为顶点的两对邻补角,由此即可确定选择项;③根据角的和与差计算即可;④当F在线段CD上最小,计算得出答案即可.【解答】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故①正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②错误;③由∠BAE=110°,∠DAC=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=110°+110°+110°+40°=370°,故③正确;④当F在线段CD上,则点F到点B,C,D,E的距离之和最小为FB+FE+FD+FC=15,当F在E点,则点F到点B,C,D,E的距离之和最大为FB+FC+FD=25,④正确.故选:C.二、填空题(本大题共8小题,共24分)11.(3分)化简:﹣|﹣8|=﹣8.【分析】根据绝对值的意义,求出|﹣8|,进而可得答案.【解答】解:根据绝对值的意义,﹣|﹣8|=﹣[﹣(﹣8)]=﹣8,故答案为﹣8.12.(3分)如图是一个正方体的展开图,则原正方体中与“大”字所在的面相对的面上标的字是城.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:原正方体中与“大”字所在的面相对的面上标的字是城,故答案为:城.13.(3分)若代数2x2+3x的值为1,则代数式﹣4x2﹣6x+9的值是7.【分析】将代数式适当变形后,利用整体代入的方法解答即可.【解答】解:∵代数2x2+3x的值为1,∴2x2+3x=1,∴原式=﹣2(2x2+3x)+9=﹣2×1+9=﹣2+9=7,故答案为:7.14.(3分)一列火车匀速行驶,经过一条长350m的隧道需要10s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是5s,则火车的行驶速度为70m/s.【分析】设火车的行驶速度为xm/s,根据一条长350m的隧道需要10秒的时间,灯光照在火车上的时间是5秒和火车的速度不变,列出方程求解即可.【解答】解:设火车的行驶速度为xm/s,依题意列方程是:5x+350=10x,解得x=70,即火车的行驶速度为70m/s.故答案为:70m/s.15.(3分)一个角的余角的3倍与它的补角相等,则这个角的度数为45°.【分析】根据余角和补角的概念以及题意可设这个角为x,得到关于x的方程,于是得到结论.【解答】解:设这个角的度数是x°,根据题意,列方程得:3(90﹣x)=180﹣x,解方程,得x=45.答:这个角的度数45°.故答案为:45°.16.(3分)有一列数:1,3,2,﹣1,…,其规律是:从第二个数开始,每一个数都是其前后两个数之和,根据此规律,则第2022个数是﹣2.【分析】通过分析题中数的变化可以推出这个数列以1,3,2,﹣1,﹣3,﹣2,1,3,2……这6个数为一个循环单元进行循环的,所以用2022除以6,然后根据余数可得答案.【解答】解:根据题意可知:一列数是1,3,2,﹣1,﹣3,﹣2,1,3,2…,发现1,3,2,﹣1,﹣3,﹣2,6个数一个循环,所以2022÷6=337,所以第2022个数与第6个数相同,是﹣2.故答案为:﹣2.17.(3分)如图,C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,则∠ACF﹣∠BCG=45°.【分析】根据角平分线的定义,由CF平分∠ACD,CG平分∠BCE,得∠ACD=2∠ACF,∠BCE=2∠BCG,那么∠ACF﹣∠BCG=.由∠ACD=180°﹣∠BCD,得∠ACF﹣∠BCG=.根据直角的定义,由∠DCE 为直角,得∠DCE=∠BCD+∠BCE=90°,从而得到∠ACF﹣∠BCG==45°.【解答】解:∵CF平分∠ACD,CG平分∠BCE,∴∠ACD=2∠ACF,∠BCE=2∠BCG.∴∠ACF﹣∠BCG=.又∵∠ACD=180°﹣∠BCD,∴∠ACF﹣∠BCG==.∵∠DCE为直角,∴∠DCE=∠BCD+∠BCE=90°.∴∠ACF﹣∠BCG==45°.故答案为:45°.18.(3分)m是常数,若式子|x﹣1|+|x﹣5|+|x﹣m|的最小值是6,则m的值是﹣1或7.【分析】根据式子|x﹣1|+|x﹣5|+|x﹣m|所表示的意义进行计算即可.【解答】解:式子|x﹣1|+|x﹣5|+|x﹣m|所表示的意义为:数轴上表示数m的点到表示1和5的点的距离之和,如图所示,当m<1时,由1﹣m+4=6,解得m=﹣1,当m>5时,m﹣5+4=6,解得m=7,所以m=﹣1或m=7,故答案为:﹣1或7.三、解答题(本大题共8小题,共66分.)19.(7分)计算:﹣14+[4﹣(+﹣)×24]÷5.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:﹣14+[4﹣(+﹣)×24]÷5=﹣1+[4﹣×24﹣×24+×24]÷5=﹣1+[4﹣9﹣4+18]÷5=﹣1+9÷5=﹣1+1.8=0.820.(7分)先化简,再求值:5(x2﹣y)﹣(y﹣x2)+y,其中x=﹣3,y=.【分析】根据去括号、合并同类项法则把原式化简,代入计算得到答案.【解答】解:原式=x2﹣y﹣y+x2+y=2x2+(﹣﹣1+)y=2x2﹣8y,当x=﹣3,y=时,原式=2×(﹣3)2﹣8×=18﹣=.21.(8分)解方程:(1)2(x﹣3)=5x;(2).【分析】(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1进行计算即可;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1进行计算即可.【解答】解:(1)2(x﹣3)=5x2x﹣6=5x2x﹣5x=6﹣3x=6x=﹣2;(2).2x+1=6﹣2(x﹣1)2x+1=6﹣2x+22x+2x=6+2﹣14x=7x=.22.(8分)某同学做一道数学题,已知两个多项式A、B,B=x2y﹣2xy﹣x+1,试求A+B.这位同学把A+B误看成A﹣B,结果求出的答案为6x2y+4xy﹣2x﹣1.(1)请你替这位同学求出A+B的正确答案;(2)当x取任意数值,A﹣7B的值是一个定值时,求y的值.【分析】(1)根据A+B=(A﹣B)+2B列出代数式,去括号合并同类项即可;(2)先根据A﹣7B=A+B﹣8B列出代数式,去括号合并同类项求出结果.【解答】解:(1)∵B=x2y﹣2xy﹣x+1,A﹣B=6x2y+4xy﹣2x﹣1,∴A+B=(A﹣B)+2B=6x2y+4xy﹣2x﹣1+2(x2y﹣2xy﹣x+1)=6x2y+4xy﹣2x﹣1+2x2y ﹣4xy﹣2x+2=8x2y﹣4x+1;(2)A﹣7B=A+B﹣8B=8x2y﹣4x+1﹣8(x2y﹣2xy﹣x+1)=8x2y﹣4x+1﹣8x2y+16xy+8x ﹣8=(16y+4)x﹣7,∵当x取任意数值,A﹣7B的值是一个定值,∴16y+4=0,∴.23.(8分)如图,点C为线段AB上一点(AC>BC),D在线段BC上,BD=2CD,点E 为AB的中点.(1)若AD=10,EC=3CD,求线段CD的长;(2)若AC=2BC,求的值.【分析】(1)设最小的线段CD为x,根据题意列方程,求出x的值;(2)设CD长为x,用含有x的代数式分别表示出EC、BD的长,再求比值.【解答】解:(1)设CD=x,则BD=2CD=2x,∵AD=10,∴AB=10+2x,∵点E为AB的中点,∴,∴EC=EB﹣CB=5+x﹣3x=5﹣2x,∴5﹣2x=3x,解得x=1;∴CD=1;(2)设CD=x,则BD=2CD=2x,BC=CD+BD=3x,AC=2BC=6x,∴AB=3x+6x=9x,∵E为AB的中点,∴,∴EC=EB﹣BC4.5x﹣3x=1.5x,∴.24.(9分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是北偏东70°;(2)求∠COD的度数;(3)若射线OE平分∠COD,求∠AOE的度数.【分析】(1)先求出∠AOB=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOB=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COD的度数;(3)根据射线OE平分∠COD,即可求出∠COE=35°再利用∠AOC=55°求出答案即可.【解答】解:(1)∵OB的方向是北偏西40°,OA的方向是北偏东15°,∴∠NOB=40°,∠NOA=15°,∴∠AOB=∠NOB+∠NOA=55°,∵∠AOB=∠AOC,∴∠AOC=55°,∴∠NOC=∠NOA+∠AOC=70°,∴OC的方向是北偏东70°;故答案为:北偏东70°;(2)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.又∵射线OD是OB的反向延长线,∴∠BOD=180°.∴∠COD=180°﹣110°=70°.(3)∵∠COD=70°,OE平分∠COD,∴∠COE=35°.∵∠AOC=55°.∴∠AOE=90°.25.(9分)大冶市某猕猴桃基地的猕猴桃除了批发销售外,还可以让市民亲自去猕猴桃基地采摘购买.已知2022年8月该基地猕猴桃的批发价格为8元/千克,在基地采摘购买的价格为10元/千克,该基地2022年8月份一共销售了5000千克猕猴桃,总销售额为48000元.(1)问2022年8月份该基地批发销售和采摘购买各销售了多少千克的猕猴桃?(2)9月份是猕猴桃产出旺季.为了促销,该基地决定2022年9月份将猕猴桃批发销售价格和采摘购买价格均在8月份的基础上降低a%,因此批发销售量和采摘销售量分别增长30%、20%,这样2022年9月份该基地猕猴桃的总销售额为52560元,求a的值?【分析】(1)设今年8月份猕猴桃批发销售了x千克,则采摘购买销售了(5000﹣x)千克,根据等量关系:总销售额为48000元列出方程求解即可;(2)题目中的等量关系是:2020年9月份该基地猕猴桃的总销售额为52560元列出方程求解即可.【解答】解:(1)设2022年8月份批发销售了x千克的猕猴桃,则采摘购买销售了(5000﹣x)千克的猕猴桃,依题意得:8x+10(5000﹣x)=48000,解得x=1000,5000﹣x=4000.故2022年8月份批发销售了1000千克的猕猴桃,采摘购买销售了4000千克的猕猴桃;(2)由题意得:8(1﹣a%)×1000(1+30%)+10(1﹣a%)×4000(1+20%)=52560,10400(1﹣a%)+48000(1﹣a%)=52560,58400(1﹣a%)=52560,1﹣a%=0.9,解得a=10.故a的值是10.26.(10分)已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=36°,求∠DOE的度数;(2)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置.①探究∠AOD(小于平角)和∠DOE的度数之间的关系,写出你的结论,并说明理由.②在∠AOC(小于平角)的内部有一条射线OF,满足:3∠COF+2∠BOE=∠AOD+∠AOF,试确定∠AOF与∠BOE的之间的数量关系,并说明理由.【分析】(1)根据平角的定义以及角的和差关系进行计算即可;(2)根据角平分线的定义,直角、平角以及角的和差关系进行计算即可.【解答】(1)解:∵∠AOC=36°,∠AOC+∠BOC=180°,∴∠BOC=180°﹣∠AOC=144°,∵OE平分∠BOC,∴∠COE=∠BOE=72°,∵∠COD是直角,∴∠DOE=∠COD﹣∠COE=90°﹣72°=18°;(2)①结论为:∠AOD=270°﹣2∠DOE;理由:∵∠COD=90°,OE平分∠BOC,∴∠COE=∠BOE=90°﹣∠DOE,∵∠BOE=∠DOE﹣∠BOD,∴90°﹣∠DOE=∠DOE﹣∠BOD,即∠BOD=2∠DOE﹣90°,∴∠AOD=180°﹣∠BOD=180°﹣(2∠DOE﹣90°)=270°﹣2∠DOE,即∠AOD=270°﹣2∠DOE;②结论为:∠BOE+∠AOF=90°,理由:设∠BOE=x,∠AOF=y,∵3∠COF+2∠BOE=∠AOD+∠AOF,∵左边=3∠COF+2x=3(180°﹣∠AOF﹣∠BOC)+2x=3(180°﹣y﹣2x)+2x=540°﹣3y﹣4x,而右边=180°﹣(90°﹣2∠BOE)+y=90°+2x+y,∴540°﹣3y﹣4x=90°+2x+y,即x+y=90°,∴∠BOE+∠AOF=90°.。

数学七年级上册 期末试卷检测(基础+提高,Word版 含解析)

数学七年级上册 期末试卷检测(基础+提高,Word版 含解析)

数学七年级上册期末试卷检测(基础+提高,Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.一副直角三角板(其中一个三角板的内角是45°,45°,90°,•另一个是30°,60°,90°)(1)如图①放置,AB⊥AD,∠CAE=________,BC与AD的位置关系是________;(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD 边重合, AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由. (3)根据(1)(2)的计算,请解决下列问题:如图③∠BAD=90°,∠BAC=∠FAD= (是锐角),将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.【答案】(1)15°;BC与AD相互平行(2)解:AE是∠CAB′的角平分线.理由如下:如图②,∵∠EAD=45°,∠B′AC′=30°,∴∠EAB′=∠EAD-∠B′AC′=15°.又由(1)知,∠CAE=15°,∴∠CAE=∠EAB′,即AE是∠CAB′的角平分线(3)解:AE是∠CAF的角平分线.理由如下:如图③,∵∠EAD=45°,∠BAD=90°,∴∠BAE=∠DAE=45°,又∵∠BAC=∠FAD=α,∴∠BAE-∠BAC=∠DAE-∠FAD,∴∠CAE=∠FAE,即AE是∠CAF的角平分线【解析】【解答】(1)解:∵AB⊥AD,∴∠BAD=90°,∴∠CAE=90°-45°-30°=15°,∵AB⊥AD,AB⊥BC,∴BC与AD相互平行【分析】(1)∠CAE=∠BAD-∠BAC-∠EAD=15°,因为AB⊥AD,AB⊥BC,所以BC与AD相互平行;(2)先计算出∠EAB′=∠EAD-∠B′AC′=15°,由(1)可得∠EAB′=∠CAE,所以AE是∠CAB′的角平分线;(3)分别计算出∠CAE=∠FAE=45°-α,所以AE是∠CAF的角平分线.4.如图,O为直线AB上一点,∠BOC=36°.(1)若OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数:(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,求∠AOE的度数:(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用n含的代数式表示∠AOE的度数________(直接写出结果).【答案】(1)解:∵∠BOC=36°,OD平分∠AOC,∴∠AOD=∠DOC=72°,∵∠DOE=90°,则∠AOE=90°−72°=18°;故答案为:18°(2)解:设∠AOD=x,则∠DOC=2x,∠BOC=180°−3x=36°,解得:x=48°,∴∠AOE=60°-x=60°−48°=12°(3) .【解析】【解答】(3)设∠AOD=x,则∠DOC=(n−1)x,∠BOC=180°-nx=36°,解得:x=,∴∠AOE=-=.【分析】(1)利用角平分线的性质得出∠AOD=∠DOC=72°,进而得出∠AOE的度数;(2)设∠AOD=x,则∠DOC=2x,∠BOC=180°−3x=36°,得出x的值,进而得出∠AOE 的度数;(3)利用(2)中作法,得出x与α的关系,进而得出答案.5.我们学过角的平分线的概念类比给出新概念:从一个角的顶点出发把这个角分成1:2的两个角的射线,叫做这个角的三分线显然,一个角的三分线有两条,例如:如图1,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线。

北师大版数学七年级上册期末测试卷(含答案)

北师大版数学七年级上册期末测试卷(含答案)

北师大版数学七年级上册期末测试卷(含答案)七年级数学上册期末试卷一、选择题(每小题3分,共30分)1.(3分)(-2)^3表示()A。

2乘以-3B。

2个-3相加C。

3个-2相加D。

3个-2相乘2.(3分)下列各式中,与3÷4÷5运算结果相同的是()A。

3÷(4÷5)B。

3÷(4×5)C。

3÷(5÷4)D。

4÷3÷53.(3分)数轴上表示-5和3的点分别是A和B,则线段AB的长为()A。

-8B。

-2C。

2D。

84.(3分)将正方体展开需要剪开的棱数为()A。

5条B。

6条C。

7条D。

8条5.(3分)用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A。

圆锥B。

五棱柱C。

正方体D。

圆柱6.(3分)2019年9月25日,北京大兴国际机场正式投入运营。

预计2022年实现年旅客吞吐量xxxxxxxx次。

数据xxxxxxxx科学记数法表示为()A。

4.5×10^6B。

45×10^6C。

4.5×10^7D。

0.45×10^87.(3分)如图,填在下面每个正方形中的四个数之间都有相同的规律,则m的值为()A。

107B。

118C。

146D。

1668.(3分)小明种了一棵小树,想了解小树生长的过程,记录小树每周的生长高度,将这些数据制成统计图,下列统计图中较好的是()A。

折线图B。

条形图C。

扇形图D。

不能确定9.(3分)下列调查中,适合用普查方式收集数据的是()A。

要了解我市中学生的视力情况B。

要了解某电视台某节目的收视率C。

要了解一批灯泡的使用寿命D。

要保证载人飞船成功发射,对重要零部件的检查10.(3分)已知,每本练本比每根水性笔便宜2元,小刚买了6本练本和4根水性笔正好用去18元,设水性笔的单价为x元,下列方程正确的是()A。

6(x+2)+4x=18B。

人教版七年级数学上册期末考试测试卷(附答案)

人教版七年级数学上册期末考试测试卷(附答案)

人教版七年级数学上册期末考试测试卷(附答案)篇文章是一份数学测试题,包含10道选择题。

以下是对每道题的解答和解释:1.如果+20%表示增加20%,那么-6%表示减少6%。

答案为C。

2.解方程得到“3÷2×(2-x)=1”,化简后得到“x=1/2”。

所以“3/2”的倒数是“2/3”。

答案为B。

3.由图可知,a和b的差的绝对值大于它们的积,即|a-b|>ab。

所以选项C错误。

4.368万精确到万位,2.58精确到百分位,0.0450有4个有效数字,保留3个有效数字为1.00×104.选项B错误。

5.从图中可以看出,这是一个棱锥,有5个顶点,有6个面和8条棱。

选项B和D错误。

6.将a,ab和ab2分别化简为a,-a和-a,所以它们按由小到大的顺序排列为ab2<a<ab。

答案为B。

7.将分母移到等号左边,得到“x(x-1)=35(x-1)”;移项化简后得到“5x=15-3(x-1)”。

答案为A。

8.将y和z的值代入x-y+z,得到“4x-2”。

答案为B。

9.沿虚线剪开后,左上角和右下角的小正方形边长相等,设为x,则有n=x,m=x+2n,代入公式得到“x=m/3-n/3”。

答案为B。

10.这个几何体由4个正方形和2个长方形组成,其中一个正方形在底部,上面有一个长方形,另一个长方形和3个正方形在顶部。

所以这个几何体是一个三棱柱。

本文是一篇数学试卷,需要进行格式调整和小幅度改写。

具体修改如下:一、选择题:1.一个几何体最多可由多少个这样的正方体组成?()A。

12个B。

13个C。

14个D。

18个2.填空题:本大题共 10 小题,每小题 3 分,共 30 分。

11.多项式 2x^3 - x^2y^2 - 3xy + x - 1 是_______次_______项式。

12.三视图都是同一平面图形的几何体有_______、_______。

(写两种即可)13.若ab ≠ 0,则等式 a + b = a + b 成立的条件是______________。

七年级上册期末试卷测试卷(含答案解析)

七年级上册期末试卷测试卷(含答案解析)

七年级上册期末试卷测试卷(含答案解析)一、选择题1.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( )A .1B .2C .1-D .2-2.单项式24x y 3-的次数是( ) A .43-B .1C .2D .33.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分B .3点30分C .6点45分D .9点4.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .5.已知23a +与5互为相反数,那么a 的值是( ) A .1B .-3C .-4D .-16.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行7.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A .3B .2C .0D .-1 8.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小9.下列方程为一元一次方程的是( )A .12y y+=B .x+2=3yC .22x x =D .3y=210.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或411.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .12.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109 B .2.85×108C .28.5×108D .2.85×10613.下列计算正确的是( )A .2334a a a +=B .﹣2(a ﹣b)=﹣2a+bC .5a ﹣4a=1D .2222a b a b a b -=-14.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥15.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( )A .6个B .5个C .4个D .3个二、填空题16.在直线l 上有四个点A 、B 、C 、D ,已知AB =8,AC =2,点D 是BC 的中点,则线段AD =________.17.若60A ∠=︒,且A ∠与B 互补,则B ∠=_______________度. 18.计算:3-|-5|=____________.19.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.20.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 21.若3a b -=,则代数式221b a -+的值等于________.22.如图,已知线段AB =8,若O 是AB 的中点,点M 在线段AB 上,OM =1,则线段BM的长度为_____.23.有5个面的棱柱是______棱柱.24.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.25.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.三、解答题26.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯-⎪⎝⎭. 27.如图,点O 是直线AB 上一点, OC ⊥OE ,OF 平分∠AOE ,∠COF =25°,求∠BOE 的度数.28.某校办工厂生产一批新产品,现有两种销售方案。

七年级数学上册期末试卷综合测试卷(word含答案)

七年级数学上册期末试卷综合测试卷(word含答案)

七年级数学上册期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册 期末试卷综合测试卷(word 含答案)一、选择题1.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-2.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( ) A .36.1728910⨯亿元 B .261.728910⨯亿元 C .56.1728910⨯亿元 D .46.1728910⨯亿元3.方程去分母后正确的结果是( ) A .B .C .D .4.若a ,b 互为倒数,则4ab -的值为A .4-B .1-C .1D .05.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .35 6.化简:35xy xy -的结果是( )A .2B .2-C .2xyD .2xy -7.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m8.下列方程为一元一次方程的是( ) A .12y y+= B .x+2=3yC .22x x =D .3y=29.多项式343553m n m n -+的项数和次数分别为( ) A .2,7 B .3,8 C .2,8D .3,710.若,,则多项式与的值分别为( ) A .6,26B .-6,26C .-6,-26D .6,-2611.如图所示的几何体的左视图是( )A .B .C .D .12.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个13.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变D .商品的销售量不变14.下列各图中,可以是一个正方体的平面展开图的是( ) A .B .C .D .15.下列计算中正确的是( ) A .()33a a -=B .235a b ab +=C .22243a a a -=D .332a a a +=二、填空题16.如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.17.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.18.如图,已知,,AB DE BAC m CDE n ∠=︒∠=︒∕∕,则ACD ∠=___________°.19.动点,A B 分别从数轴上表示10和2-的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,__________秒后,点,A B 间的距离为3个单位长度.20.青藏高原面积约为2 500 000方千米,将2 500 000用科学记数法表示应为______. 21.已知关于x 的方程345m x -=的解是1x =,则m 的值为______. 22.已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.23.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.24.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.25.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.三、解答题26.先化简,再求值:若x =2,y =﹣1,求2(x 2y ﹣xy 2﹣1)﹣(2x 2y ﹣3xy 2﹣3)的值. 27.解下列方程:(1)()5123x x -=- (2)143123y y ---= 28.如图,由6相同的小正方体组合成的简单几何体.(1)请在方格纸中分别画出几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加 个小正方体.29.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕? 若设小明今天计划买纸杯蛋糕的总价为x 元,请你根据题意完善表格中的信息,并列方程解答.单价 数量 总价 今天 12 x 明天30.如图,在方格纸中,A 、B 、C 为3个格点,点C 在直线AB 外.(1)仅用直尺,过点C 画AB 的垂线m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系.31.我们定义:若两个角差的绝对值等于60,则称这两个角互为“正角”,其中一个角是另一个角的“正角”,如:1110∠=,250∠=,|12|60-=∠∠,则1∠和2∠互为“正角”.如图,已知120AOB ∠=,射线OC 平分AOB ∠, EOF ∠在AOB ∠的内部,若60EOF ∠=,则图中互为“正角”的共有___________对.32.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).33.先化简,后求值. (1)化简:()()22222212a b ababa b +--+-(2)当()221320b a -++=时,求上式的值.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。

(1)例如,当n=2时,a 2=2²−32×2+247=187,则a 5=___,a 6=___; (2)第n 层比第(n+1)层多堆放多少个仪器箱;(用含n 的代数式表示)(3)假设堆放时上层仪器箱的总重量会对下一层仪器箱产生同样大小的压力,压力单位是牛顿,设每个仪器箱重54 牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。

①若仪器箱仅堆放第1、2两层,求第1层中每个仪器箱承受的平均压力; ②在确保仪器箱不被损坏的情况下,仪器箱最多可以堆放几层?为什么?36.一般情况下2323a b a b++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 37.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.38.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.39.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.40.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.43.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

相关文档
最新文档