Gauss型求积公式-第5章
Gauss型积分公式
Gauss型积分公式摘要求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。
这时我们可以通过数值方法求出函数积分的近似值。
当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。
已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n 为偶数时,其代数精度达到n+1。
若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。
如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。
因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。
关键词:Newton-Cotes型积分公式正交多项式代数精度1、实验目的1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提高代数精度这一问题中的思想方法。
2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的编程能力。
3)用实验报告的形式展现,提高自己在写论文方面的能力。
2、算法流程下面介绍三种常见的Gauss型积分公式1)高斯-勒让德(Gauss-Legendre)积分公式勒让德(Legendre)多项式如下定义的多项式称作勒让德多项式。
由于是次多项式,所以是n次多项式,其最高次幂的系数与多项式的系数相同。
也就是说n次勒让德多项式具有正交性即勒让德多项式是在上带的n次正交多项式,而且这时Gauss型积分公式的节点就取为上述多项式的零点,相应的Gauss型积分公式为此积分公式即成为高斯-勒让德积分公式。
其中Gauss-Legendre求积公式的系数1其中k的取值范围为Gauss点和系数不容易计算,但是在实际计算中精度要求不是很高,所以给出如下表所示的部分Gauss点和系数,在实际应用中只需查表即可。
数值分析课件高斯求积公式
1
1
1 f ( x)dx A0 f (
求 A0 , A:1
3 ) A1 f (
) 3
令 f ( x) ,1,代x入公式精确成立,得到: A0 A1 1
或
1
1
A0 1 l0 ( x)dx 1, A1 1 l1( x)dx 1
两点Gauss-Legendre求积公式
3次代数精度
1
1
1
一、 Gauss积分问题的提法
n
积分公式的一般形式: In ( f ) Ak f ( xk ) k0
➢为了提高代数精度,需要适当选择求积节点:
①当求积节点个数确定后,不管这些求积节点如何选
取,求积公式的代数精度最高能达到多少?2n 1
②具有最高代数精度的求积公式中求积节点如何选取?
n 个1求积节点, n个求1 积系数,共 个2n未知2量,需要
f p max f p axb
则Gauss型求积公式(*)是收敛的。
证明:由Weierstrass定理知 对 0
存在m次多项式 p( x满)足
下证 N , 当 n 时N
f
p 2
b
( x)dx
a
b
n
f ( x)( x)dx
a
Ak f ( xk )
k0
b
n
f ( x)( x)dx
➢ Gauss-Chebyshev求积公式
(x)
1
n
f ( x)( x)dx
1
Ak f ( xk )
k0
1 1 x2
其中求积节点
多项式的零点
xk
n [a, b] 是n+1次Chebyshev
k0
Gauss型积分公式
摘要求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。
这时我们可以通过数值方法求出函数积分的近似值。
当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。
已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n为偶数时,其代数精度达到n+1。
若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。
如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。
因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。
关键词:Newton-Cotes型积分公式正交多项式代数精度1、实验目的1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提高代数精度这一问题中的思想方法。
2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的编程能力。
3)用实验报告的形式展现,提高自己在写论文方面的能力。
2、算法流程下面介绍三种常见的Gauss型积分公式1)高斯-勒让德(Gauss-Legendre)积分公式勒让德(Legendre)多项式如下定义的多项式L n(x)=12n n!d ndx n(x2−1)n,x∈[−1,1],n=0,1,2⋯称作勒让德多项式。
由于(x2−1)n是2n次多项式,所以L n(x)是n次多项式,其最高次幂的系数A n与多项式1 2n n!d ndx n(x(2n))=12n n!2n(2n−1)(2n−2)⋯(n+1)x n的系数相同。
也就是说n次勒让德多项式具有正交性即勒让德多项式L n(x)是在[−1,1]上带ρ(x)=1的n次正交多项式,而且(L m,L n)=∫L m(x)L n(x)dx1−1={0, m≠n22n+1, m=n这时Gauss型积分公式的节点就取为上述多项式L n(x)的零点,相应的Gauss型积分公式为∫f(x)dx 1−1≈∑A k f(x k) nk=1此积分公式即成为高斯-勒让德积分公式。
gauss型求积公式
gauss型求积公式一、Gauss型求积公式的基本概念。
1. 定义。
- 在数值积分中,Gauss型求积公式是一种高精度的求积公式。
对于积分∫_a^bf(x)ρ(x)dx(其中ρ(x)为权函数),Gauss型求积公式的形式为∫_a^bf(x)ρ(x)dx≈∑_i = 1^nA_if(x_i)。
这里x_i称为求积节点,A_i称为求积系数,n为求积公式的节点个数。
2. 特点。
- 高精度:Gauss型求积公式具有很高的代数精度。
对于n个节点的Gauss型求积公式,其代数精度为2n - 1。
这意味着对于次数不超过2n-1的多项式f(x),该求积公式能精确成立,即∫_a^bP_m(x)ρ(x)dx=∑_i = 1^nA_iP_m(x_i),其中m≤slant2n - 1,P_m(x)是m次多项式。
- 节点分布:Gauss型求积公式的节点x_i不是等距分布的。
这些节点是关于权函数ρ(x)正交的多项式的零点。
例如,当ρ(x) = 1,[a,b]=[- 1,1]时,对应的正交多项式是勒让德多项式P_n(x),Gauss型求积公式的节点就是勒让德多项式的零点。
二、求积节点与求积系数。
1. 求积节点的确定。
- 以勒让德 - Gauss求积公式为例(ρ(x)=1,[a,b]=[-1,1]),求积节点x_i是勒让德多项式P_n(x)的零点。
勒让德多项式P_n(x)可以通过递推公式(n + 1)P_n +1(x)=(2n + 1)xP_n(x)-nP_n - 1(x),P_0(x)=1,P_1(x)=x来计算。
通过求解P_n(x)=0得到求积节点x_i。
2. 求积系数的计算。
- 求积系数A_i可以通过多种方法计算。
一种常见的方法是利用正交性条件。
对于勒让德 - Gauss求积公式,求积系数A_i可以通过公式A_i=(2)/((1 -x_i)^2)[P_{n'(x_i)]^2}计算,其中P_n'(x)是勒让德多项式P_n(x)的导数。
高斯求积获奖课件
高斯求积定理
f ( x) q( x)n ( x) r( x)
其中q( x), r( x)均为至多n 1次多项式,且r( xk ) f ( xk )
b
b
b
b
f ( x)dx q( x)ωn ( x)dx r( x)dx r( x)dx
a
a
a
a
b
r( x)dx
a
n
Ak r( xk )
k1
n
Ak f ( xk ) 代数精度至少
0.946083
0.7745907 1
多种措施旳比较
• 此例题旳精确值为0.9460831... • 由例题旳多种算法可知: • 对Newton-cotes公式,当n=1时只有1位有效
数字,当n=2时有3位有效数字,当n=5时有7 位有效数字。 • 对复化梯形公式有2位有效数字,对复化 Simpson公式有6位有效数字。 • 用复化梯形公式,对积分区间[0,1]二分了11 次用2049个函数值,才可得到7位精确数字。 • 用Romberg公式对区间二分3次,用了9个函数 值,得到一样旳成果。 • 用Gauss公式仅用了3个函数值,就得到成果。
3b at 2b来自f ( x)dxb a 1 f (a
b
b a t)dt
2
2
2
a
1
例:利用两点Guass公式计算 1 sin xdx 0x
解:a 0, b 1,因此x 1 1 t 22
I
1 sin xdx
1
1
sin( 1 2
1 t) 2 dt
0x
2 1 1 1t
22
sin( 1 1 1 ) sin( 1 1 1 )
1v( x)du(n 1)( x)
gauss积分
∫
1 −1
sin( t + 1 ) / 2 dt t + 1
1 1 sin ( − 0 .5773503 + 1) sin ( 0 .5773503 + 1) 2 2 I ≈ + = 0 .9460411 − 0 . 5773503 + 1 0 .5773503 + 1
个节点的Gauss公式 用3个节点的 个节点的 公式
总结
1:梯形求积公式和抛物线求积公式是低精度的方法,但对于光滑 性较差的函数有时比用高精度方法能得到更好的效果。复化梯形 公式和抛物线求积公式,精度较高,计算较简,使用非常广泛。 2:Romberg求积方法,算法简单,当节点加密提高积分近似程度 时,前面的计算结果可以为后面的计算使用,因此,对减少计算 量很有好处。并有比较简单的误差估计方法。 3。Gauss型求积,它的节点是不规则的,所以当节点增加时,前 面的计算的函数值不能被后面利用。计算过程比较麻烦,但精度 高,特别是对计算无穷区间上的积分和旁义积分,则是其他方法 所不能比的。
∫
令I=
1
0
sin x dx x
∫
1
0
sin x dx x
各种做法比较如下: 一、Newton-Cotes公式 公式 当n=1时,即用梯形公式,I=0.9270354 当n=2时, 即用Simpson公式,I=0.9461359 当n=3时,I=0.9461090 当n=4时,I=0.9460830 当n=5时,I=0.9460831
e f (x)dx ≈ ∑A f (xk ) k
−x k=1
n
(3)
4 .Gauss - Hermite 求积公式
∫
+∞ −
Gauss型积分公式
Gauss型积分公式摘要求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。
这时我们可以通过数值方法求出函数积分的近似值。
当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。
已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n 为偶数时,其代数精度达到n+1。
若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。
如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。
因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。
关键词:Newton-Cotes型积分公式正交多项式代数精度1、实验目的1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提高代数精度这一问题中的思想方法。
2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的编程能力。
3)用实验报告的形式展现,提高自己在写论文方面的能力。
2、算法流程下面介绍三种常见的Gauss型积分公式1)高斯-勒让德(Gauss-Legendre)积分公式勒让德(Legendre)多项式如下定义的多项式称作勒让德多项式。
由于是次多项式,所以是n次多项式,其最高次幂的系数与多项式的系数相同。
也就是说n次勒让德多项式具有正交性即勒让德多项式是在上带的n次正交多项式,而且这时Gauss型积分公式的节点就取为上述多项式的零点,相应的Gauss型积分公式为此积分公式即成为高斯-勒让德积分公式。
其中Gauss-Legendre求积公式的系数1其中k的取值范围为Gauss点和系数不容易计算,但是在实际计算中精度要求不是很高,所以给出如下表所示的部分Gauss点和系数,在实际应用中只需查表即可。
Gauss型积分公式
G a u s s型积分公式-CAL-FENGHAI.-(YICAI)-Company One1摘要求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。
这时我们可以通过数值方法求出函数积分的近似值。
当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。
已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n为偶数时,其代数精度达到n+1。
若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。
如何选取适当的节点,能使代数精度提高Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。
因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。
关键词:Newton-Cotes型积分公式正交多项式代数精度1、实验目的1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提高代数精度这一问题中的思想方法。
2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的编程能力。
3)用实验报告的形式展现,提高自己在写论文方面的能力。
2、算法流程下面介绍三种常见的Gauss型积分公式1)高斯-勒让德(Gauss-Legendre)积分公式勒让德(Legendre)多项式如下定义的多项式称作勒让德多项式。
由于是次多项式,所以是n次多项式,其最高次幂的系数与多项式的系数相同。
也就是说n 次勒让德多项式具有正交性即勒让德多项式是在上带的n次正交多项式,而且这时Gauss 型积分公式的节点就取为上述多项式的零点,相应的Gauss型积分公式为12此积分公式即成为高斯-勒让德积分公式。
其中Gauss-Legendre 求积公式的系数其中k 的取值范围为Gauss 点和系数不容易计算,但是在实际计算中精度要求不是很高,所以给出如下表所示的部分Gauss 点,在实际应用中只需查表即可。
高斯(Gauss)求积公式剖析
前面介绍的 n+1个节点的 Newton -Cotes求积公式, 其特征是节点是等距的。这种特点使得求积公式便于
构造,复化求积公式易于形成。但同时也限制了公式
的精度。 n是偶数时,代数精度为n+1, n是奇数时, 代数精度为n 。
我们知道 n+1个节点的插值型求积公式的代数精 确度不低于n 。设想:能不能在区间[a,b]上适当选择 n+1个节点 x 0x1,x2,……,xn ,使插值求积公式的代数精 度高于n?
于n,故有
b
n
n
( x)r( x)dx
a
Akr( xk ) Ak f ( xk ) (4)
k0
k0
由性质3)及(4)式,有
b
b
b
(x) f ( x)dx a
a ( x)q( x)Pn1( x)dx
( x)r( x)dx
a
b
n
0 ( x)r( x)dx a
Ak f ( xk )
求解得:c1 c2 1,
x1
3 3
,
x2
3 3
所求Gห้องสมุดไป่ตู้uss公式为:
1
f ( x)dx f (
3) f(
3)
1
3
3
计算物理
计算物理
(2)利用正交多项式构造高斯求积公式
设Pn(x),n=0,1,2,…,为正交多项式序列, Pn(x)
具有如下性质:
1)对每一个n ,Pn(x)是 n 次多项式。 n=0,1,…
a
Ak f ( xk )
对一切
不高于m次的多项式p(x)都等号成立k0,即R(p)=0;而对
高斯积分
所以,应取
H1 H 2 1.000,000,000,0
高斯积分法
n个插值结点非等距分布
结点和积分权系数可以查表
1
1
f ( )d Ai f (i )
i 1
n
高斯积分法
二维积分的高斯公式
以一维高斯积分公式为基础,导出二维及三维公式。求二维 重积分 1 1 f ( , )dd
n点高斯积分
若构造的n+1个节点的插值求积公式,则可将 f (x) = 1, x, x2, …, x2n+1 代入求积公式可求解,
b a 1dx c0 c1++cn b 不是线性方程组, xdx c0 x0 c1 x1++cn xn a 不易求解。 b 2 n 1 2 n 1 x 2 n 1dx c0 x0 c1 x12 n 1++cn xn a
高斯积分法
例如,n=1时 不论f(ξ )的次数是0还是1,只需取H1=2, ξ 1=0,上式均是精确成立的。因为
I f ( )d H1 f (1 )
1 1
f ( ) C0 C1
I f ( )d 2C0 2 f (0)
1
1
高斯积分法
当n=2时,能保证式子精确成立所允许的多项式 的最高次数是3,此时,f(ξ)的通式为
1
1
1
1 1 1
f ( ,, )ddd
其中被积分函数f(ξ ,η ,ζ )一般是很 复杂的,即使能够得出它的显式,其积分也 是很繁的。因此,一般用数值积分来代替函 数的定积分。
高斯积分法
数值积分:在积分区域内按一定规则选出 一些点,称为积分点,算出被积函数f(ξ , η ,ζ )在这些积分点处的值,然后再乘以相 应的加权系数并求和,作为近似的积分值。
Gauss型求积公式
故 q( x )dx Ak q( xk )
b a n 0
n
所以求积公式至少具有2n+1次代数精确度。对 于2n+2次多项式 有 f ( x ) 2 n1 ( x )
b
a
f ( x )dx 0
而
2 A k n1 ( x k ) 0 k 0
n
故求积公式的代数精确度是2n+1。
三次Legendre多项式及其零点为:
1 P3 ( x ) (5 x 3 3x ), x0 0.6 , x1 0, x2 0.6 2
三、Gauss-Legendre求积公式
1 d n 1 2 n 1 xk (k 0,1,, n)为Pn 1 ( x ) ( x 1 ) n 1 n 1 ( n 1 )! 2 dx 的零点 。
2 2
4 x 1 dx
1
5 x 1 dx
1
P2(x)的两个零点为 积分系数为
, 1 1 1 2 2 x x2 A1 1 x l1 ( x)dx 1 x dx x1 x 2 3 1 1 1 2 2 x x1 A2 x l2 ( x)dx x dx 1 1 x2 x1 3
问题: 若求积公式
I f ( x )dx Ak f ( xk )
b a k 0 n
中含有2n+2个待定参数 xk , Ak (k 0,1, 2,, n) 我们能否通过节点的选择将求积公式的 代数精度从n 或者n+1提高到2n+1?
一、Gauss型求积公式 定义:把具有 n+1 个节点的具有 2 n+1 次代 数精确度的插值型求积公式
三点Gauss-Legendre求积公式为:
15 高斯型积分
高斯积分
y
y
x
梯形插值积分选择被 积函数端点构造线性函 数,近似被积函数。
18
x
x1
x2
高斯积分选择积分区 间内的点,构造函数, 近似被积函数。
二点高斯积分
例:计算积分 1.5 exdx 1
解:
方法一、牛顿 -莱布尼兹公式:
1.5 exdx e1.5 - e 1.763407241879019 1
由正交性知ω(x)与1及x带权正交,即得
1
1
0 x( x)dx 0, 0 x x( x)dx 0.
于是得
2 2 b 2 c 0, 2 2 b 2 c 0.
75 3
97 5
16
由此解得 即
10
5
b , c .
9
21
( x) x2 10 x 5 .
b xm ( x)dx
a
m 0,1, ,2n 1.
(6.5)
k0
当给定权函数(x),求出右端积分,则可由(6.5)式解
得xk及Ak(k=0,1, ,n).
由于(6.5)式是关于xk及Ak(k=0,1, ,n)的非线性方 程组,当n>1时求解是困难的.只有在节点xk(k=0,1, ,n) 确定以后,方可利用(6.5)式求解Ak(k=0,1, ,n),此时
b
I a f ( x)( x)dx
这里(x)为权函数,类似(1.3)式,它的求积公式为
6
b
n
f ( x)( x)dx
a
Ak f ( xk ).
(6.4)
k0
在这个求积公式里Ak(k=0,1, ,n)为不依赖于f(x)的求 积系数, xk(k=0,1, ,n)为求积节点,可适当选取xk及 Ak(k=0,1, ,n)使(6.4)式具有2n+1次代数精度.
Gauss型求积公式
Gauss型求积公式具有高精度和高效性,特别是对于一些特殊函数(如多项式函数)的积分,其精度更高。此外, Gauss型求积公式还具有对称性、规范性和最优性等性质。
Gauss型求积公式的分类
01
按照节点数分类
根据使用的节点数不同,可以将Gauss型求积公式分为一 元、二元和多元等类型。一元Gauss型求积公式使用一个 节点,二元Gauss型求积公式使用两个节点,以此类推。
Gauss型求积公式
• 引言 • Gauss型求积公式的基本概念 • Gauss型求积公式的构造方法 • Gauss型求积公式的误差分析 • Gauss型求积公式的应用实例 • 结论
01
引言
背景介绍
01
Gauss型求积公式是数值分析中的一种重要方法,主要用于解决 积分问题。
02
它以德国数学家Carl Friedrich Gauss的名字命名,是数值积分
工程设计
在工程设计中,Gauss型求积公 式可用于计算几何形状的面积、 体积等,以及优化设计参数。
金融工程
在金融工程中,Gauss型求积 公式可用于计算期权定价、风 险评估等金融衍生品的价值。
02
Gauss型求积公式的基本概念
定义与性质
定义
Gauss型求积公式是一种数值积分方法,用于近似计算定积分的值。它通过选择一组特定的节点和权重,将积分 区间划分为有限个小区间,然后利用这组节点和权重来逼近积分。
02
Gauss型求积公式具有高精度和高效率的特点,能够 快速准确地计算积分。
03
它能够减小误差,提高计算精度,特别适合处理复 杂函数积分问题。
结论 Gauss型求积公式的优点与局限性
局限性
Gauss型求积公式需要预先确定节点和权重,对于某些复杂函数可能难以 找到合适的节点和权重。
NA-5-3-高斯(Gauss)求积公式
这样就可以用Gauss - Legendre求积公式计算一 般区间的积分.
数值分析
数值分析
例
对积分 f ( x )dx, 试利用n 1的两点Gauss Legendre
1 0
求积公式构造Gauss型求积公式。即确定x0 , x1和A0 , A1 使
1
0
f ( x )dx A0 f ( x0 ) A1 f ( x1 )
该积分的准确值
1
1
x 1.5dx 2.399529
数值分析
数值分析
一般区间的Gauss - Legendre 求积公式
如果积分区间是[a,b],用线性变换 ba ab x t 2 2 将积分区间从[a,b]变成[-1,1],由定积分的换元积 分法有
b
a
ba 1 ba ab f ( x )dx 1 f ( 2 t 2 )dt 2
A0 + A1 + …… + An =∫a 1dx.= b-a b x0 A0 + x1 A1+ …… +xn An =∫a xdx.= (b2-a 2)/2
......
b
x0 rA0 + x1 rA1+ …… +xn rAn =∫a xr dxr =(br+1-a r+1) (r+1)
数值分析
b
数值分析
数值分析
数值分析
(1) 用待定系数法构造高斯求积公式 例:选择系数与节点,使求积公式(1)
1
1
f ( x )dx c1 f ( x1 ) c2 f ( x2 )
(1)
成为Gauss公式。 解:n=1, 由定义,若求积公式具有3次代数精度,则 其是Gauss公式。 为此,分别取 f(x)=1, x,x2,x3 代入公式,并让 其成为等式,得 c1 c2 1, 求解得: c1 + c2=2 3 3 x1 , x2 c1 x1+ c2 x2=0 3 3 所求Gauss公式为: c1 x12+ c2 x22 =2/3 1 3 3 c1 x13+ c2 x23 =0 1 f ( x )dx f ( 3 ) f ( 3 ) 数值分析
1-6高斯求积
f ( x ) q( x ) n ( x ) r ( x )
其中q( x ), r ( x )均为至多n 1次多项式,且 r ( xk ) f ( xk )
高斯求积定理
取f l ( x ) x l ( l 0,1, , n 1)代入求积公式, 并令其精确成立,得 n元线性方程组
A1 A2 An u0 A1 x1 A2 x 2 An x n u1 A x n 1 A x n 1 A x n 1 u 2 2 n n n 1 1 1
系数行列式为范德蒙行列式,方程组有唯一解。 以此方程组的解为求积系数的求积公式对任 意至多n-1次多项式精确成立。
• 五、Gauss公式
• 令x=(t+1)/2,
sin( t 1) / 2 I dt 1 t 1
1
• 用2个节点的Gauss公式
2 Ak ( k 1,2,, n) 2 ' 2 (1 xk )[ Ln ( xk )]
计算相应的系数,就可得到高斯求积公式:
高斯求积公式
1个节点时, f ( x )dx 2 f (0), 具有一次代数精度。 1 1 2个节点时, f ( x )dx f ( ) f ( ), 3 3 1
高斯求积
提示: 有n个节点的求积公式
f ( x )dx A
a k 1
b
n
k
f ( xk )
最高可具有2n-1次代数精度。 这类求积公式就是高斯求积公式。
定义: 如果一组节点 x1 , x2 ,, xn [a, b]能使求积公式
b n
( x ) f ( x )dx A
1, j k 则pk ( x j ) 0, j k
4高斯求积公式
截断误差为 R
2 (2 n ) f ( ), (1,1). 2n 2 (2n)!
高斯积分的优点:少节点,高精度。
高斯型求积公式, 使用较少的节点, 可得到高精度的结果. 1 例如,计算积分 I dx . 1 x 0
它的精确值(八位有效数字)为 I = 0.693 147 18。 使用节点数为129的复化辛普生公式计算,得 I 0.693 146 70。
适当的选取n+1个节点和插值系数,插值型求积公式的代数精度 可以达到2n+1.
定义 如果求积结点x0, x1,· · · · · · ,xn,使插值型求积公式
1
1
f ( x )dx Ak f ( xk ), 其中Ak lk ( x )dx 1
1
n
k 0
的代数精度为2n+1,则称该求积公式为Gauss型求积 公式. 称这些求积结点为Gauss点.
a
b
是Gauss型求积公式,则它的求积系数 Ai 满足
(1) (2) Ai 0,
n i 0 i
i 0, 1, 2,
b a
,n ;
A
( x)dx .
证明略。
例2 试构造形如
1
1
x f ( x)dx Ai f ( xi )
2 i 1
n
的Gauss型求积公式。 解 利用正交化方法已求出在区间[-1,1]上带权
求插值型求积公式
1
1
f ( x )dx A0 f ( x0 ) A1 f ( x1 )
使其代数精度为3,取 f(x)=1, x, x2, x3
A0 A1 2 A x A x 0 0 0 1 1 2 2 2 A0 x 0 A1 x1 3 3 3 A x A x 1 1 0 0 0
6.5Gauss求积公式
n k 0
项式P ( x ) 均正交, 即满足
b
a
p( x)n1 ( x)dx 0 .
推论 6.5.1 在区间 [a , b] 上 n + 1次正交多项 式 gn+1( x ) 的零点即为 Gauss 点。
2. Gauss-Legendre 求积公式
若有解,则得 到的插值型的 数值积分公式 (1)至少有 2n+1次代数精 度。
1. Gauss 求积公式
但是,考虑2n+2次多项式:
f ( x)
2 n 1 n
( x ) ( x xi ) 0,1,…,n)处为零,在其它点 处均大于零,所以 而
6.5 Gauss 求积公式
1. Gauss 求积公式
设插值型的数值积分公式:
n
b a
f ( x ) d x Ak f ( xk ),
k 0
b
(1)
Ak lk ( x) d x 。 其中 现在取消对积分节点的限制,让它与 Ak 一样, a 作为一个待定常数,这样在数值积分公式 (1)中 前面讲述的方法(lagrange插值型数值积 需要确定的系数为xk和Ak(x kk= 0, 1, …, n),共 分法)是事先给定积分节点 。例如 Newton2n+2公式把区间 个系数。根据代数精度的概念,要确定这 Cotes [a , b] 的等分点作为求积节点, 2n+2个系数(xk和Ak),需要解如下n+1 2n+2 个方 这样所求积分公式的代数精度至多为 。 程构成的非线性方程组
再计算A0和A1时,它们已成为线性关系,取 f(x) = 1 和 x可得到 3 3 A0 A1 2, A0 A1 0 . 3 3 解得A0= A1=1。
Gauss型积分公式解读
摘要求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。
这时我们可以通过数值方法求出函数积分的近似值。
当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。
已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n为偶数时,其代数精度达到n+1。
若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。
如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。
因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。
关键词:Newton-Cotes型积分公式正交多项式代数精度1、实验目的1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提高代数精度这一问题中的思想方法。
2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的编程能力。
3)用实验报告的形式展现,提高自己在写论文方面的能力。
2、算法流程下面介绍三种常见的Gauss型积分公式1)高斯-勒让德(Gauss-Legendre)积分公式勒让德(Legendre)多项式如下定义的多项式L n(x)=12n n!d ndx n(x2−1)n,x∈[−1,1],n=0,1,2⋯称作勒让德多项式。
由于(x2−1)n是2n次多项式,所以L n(x)是n次多项式,其最高次幂的系数A n与多项式1 2n n!d ndx n(x(2n))=12n n!2n(2n−1)(2n−2)⋯(n+1)x n的系数相同。
也就是说n次勒让德多项式具有正交性即勒让德多项式L n(x)是在[−1,1]上带ρ(x)=1的n次正交多项式,而且(L m,L n)=∫L m(x)L n(x)dx1−1={0, m≠n22n+1, m=n这时Gauss型积分公式的节点就取为上述多项式L n(x)的零点,相应的Gauss型积分公式为∫f(x)dx 1−1≈∑A k f(x k) nk=1此积分公式即成为高斯-勒让德积分公式。
Gauss型积分公式
R[ f ] [ f ( x) H ( x )]dx
b a
f ( x ) 2 w ( x )dx ( 2n 2)!
( 2 n 1 )
f ( 2 n1) ( ) ( 2n 2)!
b
a
w ( x )dx,
2
(a , b)
(2) Gauss-Laguerre求积公式
(1)求出区间[a,b]上权函数为W(x)的正交多
项式pn(x) .
(2)求出pn(x)的n个零点x1 , x2 , … xn 即为 Gsuss点. (3)计算积分系数
例:
求积分
1 x f ( x)dx
1
2
的2点Gauss公式.
解
按 Schemite 正交化过程作出正交多项式:
p0 ( x) 1
2.001389
Gauss 公式的余项:
R[ f ] f ( x )dx Ak f ( xk )
b a k 0 n
插值多项式的余项
/* 设P为f 的过x0 … xn的插值多项式 */
f ( x )dx Ak P ( xk )
b a k 0 n
/*只要P 的阶数不大于2n+1,则下一步等式成立*/
b
因此,[a,b]上权函数W(x)=1的Gauss型求积公式为 ba n ab ba b xi ) Ai f ( a f ( x)dx 2 i 1 2 2
n
1 2
xk
0 ±0.5773502692 ±0.7745966692 0 ±0.8611363116 ±0.3399810436
区间[0,)上权函数W(x)=e-x的Gauss型求积公式,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形如
I n ( f ) Ak f ( xk )
k 0 n
插值型求积公式的代数精度至少为
n。
x0 x0
x1 x1
x0 x0
x1 x1
两点的求积公式为: 1 f ( x) dx A0 f ( x0 ) A1 f ( x1 ) 若限制等距节点,则 1、x0 , x1固定,A0 , A1 变量 2、确定 A0 , A1 需两个方程
x0 , x1 ,, xn 是Gauss点 x0 , x1 ,, xn 是Gauss点
n 1 ( x) 是正交多项式。
x , x ,, x
0 1
n
是正交多项式的根。
证明: 必要性
I ( f ) ( x) f ( x)dx
a
b
I n ( f ) Ak f ( xk )
n n 2
n 1 ( xk ) 1 ( x ) ( x xk ) f ( xk ) n 1 k
2
n 1 ( x) ( x xk ) f ( xk ) 1 ( xk )( x xk ) k 0 n
1
1
f ( x) dx
1 1 f f 3 3
对于任意区间 a, b 上权函数 x 1 的Gauss型求积公式,只需 作变量替换:
x
则有
x a, b t 1, 1 ,这样
ab ba t 2 2
n 1 ( xk ) f ( xk ), k 0,1,..., n H 2 n 1 ( xk ) f ( xk ), H 2
的2n+1次Hermite插值多项式,即(P110 例5)
n 1 ( x) H 2 n 1 ( x) 1 ( xk )( x xk ) k 0 n
I ( p2 n 2 ) ( x) p2 n 2 ( x)dx 0
a
b
I n ( p2 n 2 ) Ak p2 n 2 ( xk ) 0
k 0
n
定义 5.2
如果形如(5-32)的求积公式具有代数精度
2n 1 次,则称其为Gauss型求积公式,并称其中的求积节点
n
~ I (lk ) I n (lk ) I n (lk )
另外,确定求积节点后,可由Lagrange插值基函数的积分得 b 求积系数 n 1 ( x) Ak ( x) dx (5-37)’ a 1 ( xk )( x xk ) n
小结 构造n+1个节点的Gauss型求积公式的方法: 1. 以求积节点和求积系数为2n+2个未知量, 求解由2n+1次代数精度得到的2n+2个非线性方程 2. 由求积区间和权函数得到n+1次正交多项式, 解其零点获得n+1个求积节点,再如下计算求积系数: a. 按照Hermite基函数得到的求积系数公式(5-37) b. 按照Lagrange基函数得到的求积系数公式(5-37)’ c. 求解由n次代数精度得到的n+1个线性方程
n
另一方面 I n ( f ) I n (n 1qn ) I n (rn ) I n (rn )
n+1个节点的插值 型求积公式的代数 精度至少为n
Ak n 1 ( xk )qn ( xk ) I ( f ) In ( f )
1 1
1
x
1 3
1 3 1 3
1
dx
1
或 取 f ( x) 1, x ,由代数精度的定义,得线性方程组
A0 A1
dx 2 1
1
1
1 1 A0 A1 3 3
1 x dx 0
A0 A1
A1 A0
2 0
A0 A1 1
则得具有3次代数精度的Gauss-Legendre公式:
3 1
即
A0 x A1 x 0
3
A0 A1 1
1 1 x0 , x1 3 3
1
1
1 1 f ( x) dx f f 3 3
事实上,n+1个节点的求积公式,代数精度必小于2n+2 。
2 2 取2n+2次多项式 p2n2 ( x) ( x x0 ) ( x xn )
n
n 1 ( x) f ( xk ) ( x) ( x )( x x ) dx a k n 1 k
b
2
I ( H 2 n 1 )
~ In ( f )
因为 f ( x) H 2 n 1 ( x) r2 n 1 ( x) ,从而
I ( f ) ( x) f ( x)dx ( x) H 2 n 1 ( x)dx ( x)r2 n 1 ( x)dx
的数值积分公式。
具有更高代数精度的求积公式的构造
对于数值求积公式:
A0 A1
1
1
f ( x) dx A0 f ( x0 ) A1 f ( x1 )
由代数精度定义可得如下非线性方程组:
2
2 A1 x12 2 A0 x0
A0 x0 A1 x1 0
3 0
3、从代数精度出发,需对
1
若不限制等距节点,则 1、 x0 , x1 , A0 , A1 均为变量
2、确定 x0 , x1 , A0 , A1 需四个方程 3、从代数精度出发,需对
2 x , x , x3 , f ( x) 1,
f ( x) 1, x ,
精确成立。 Newton-Cotes公式
I (rn ) I n (rn )
Gauss型求积公式求积系数确定
Gauss求积公式代数精度为2n+1:
f ( x) p( x) r ( x)
b
a
f ( x)dx p( x)dx r ( x)dx
Ak f ( xk ) r ( x)dx
b k 0 a
精确成立。 具有更高代数精度的求积公式
具有更高代数精度的求积公式的构造
由代数精度定义,利用代数精度最高原则,通过求解 2n 2 阶
非线性方程组来确定所有 x0 , x1 , , xn 和 A0 , A1 , , An 共
2n 2 个待定系数, 就可以构造出具有 2n 1 次代数精度
b a
( x) f ( x)dx Ak f ( xk ) En ( f )
k 0
n
具有 2n 1 次代数精度,必须且只须以节点 x 0 , x1 , , x n 为零点的 n n 1次多项式
n 1 ( x) ( x x j )
j 0
与所有次数不超过 n 的多项式在 [a, b] 上关于权函数 ( x) 正交。 定理 5.2 换句话为:
n
n次多项式
n 1 ( x) n 1 ( x) f ( xk ) 3 1 ( xk )) ( x xk ) k 0 (n
n
由于 n 1 ( x) 与所有n次多项式正交,则有
b
a
( x) H 2 n 1 ( x)dx
k 0
k 0
n
n1 ( x) ( x x j )
j 0
n
即 n 1 ( x ) 与任意次数不超过n的多项式在[a,b]上关于 ( x) 正交。
充分性 假设 n 1 ( x )与任意次数不超过n的多项式在[a,b]上关于 权函数 ( x) 正交。
f ( x) P2 n 1 利用多项式的带余除法,有唯一的 qn ( x), rn ( x) Pn
使得
f ( x) n 1 ( x)qn ( x) rn ( x)
b a
I ( f ) I (n 1qn ) I (rn ) ( x)n1 ( x)qn ( x)dx I (rn )
积分,求和 的线性性
(n 1 , qn ) I (rn ) I ( rn )
x k (k 0, 1, , n) 为Gauss点.
利用求解非线性方程组构造求积公式:
1、简单易理解 2、节点个数较多时,对应规模较大的非线性方程组,求解困难
3、没有统一的求解公式 实用的求积公式: 1、寻找求积节点 2、计算求积系数
Gauss型求积公式求积节点
定理 5.2 要使插值型求积公式
4 2 4 4 x 3x 2 1 3 9 9
令 ( x) 4 3x 2 1 , 0 2 9 此时,得 1
1
1 1 x0 , x1 3 3
A0 l0 ( x)dx
1
x
1 3
1 3
1
1 3
dx
1
A1 l1 ( x)dx
积分中值定理
b 1 ( 2 n 2) 2 ( a, b) f ( ) ( x)n 1 ( x ) dx, a (2n 2)!
代数精度为2n+1
求积系数 Ak
b
b ~ I n ( f ) ( x) H 2 n 1 ( x)dx 为Gauss型求积公式 a
a
a a
b
b
b
~ ~ I ( H 2 n 1 ) I (r2 n 1 ) I n ( f ) En ( f )
b ~ En ( f ) ( x)r2 n 1 ( x)dx a