Gauss型求积公式

合集下载

Gauss型求积公式

Gauss型求积公式

Gauss型求积公式 一、Gauss型求积公式 定义: 个节点的具有2 定义 : 把具有 n+1 个节点的具有 2 n+1 次代 数精确度的插值型求积公式

b
a
f (x)dx ≈ ∑A f (xk ) k
k=0
n
称为Gauss型求积公式, 称为Gauss型求积公式,其求积节点 xk k=0, Gauss型求积公式 ( =0, 称为高斯点 高斯点, 高斯系数。 1,……n)称为高斯点,系数 A 称为高斯系数 k称为高斯系数 Remark:构造Gauss Gauss型求积公式的关键在于确定高斯 Remark:构造Gauss型求积公式的关键在于确定高斯 个高斯点构造基函数, 点,再由n+1个高斯点构造基函数,从而得到高斯 系数。 系数。
f (x) = P x) n+1(x) ( ω 的次数不超过2n+1。
故有
∫ω
a
b
n+1
( x )P( x )dx = ∑A ωn+1( xk )P( xk ) = 0 k
k=0
n
充分性 : 设 ∫ ωn+1(x)P(x)dx = 0 对于任意次数不超过 a ω 2n+1的多项式 f (x),设 n+1(x)除f(x)的商为p(x),余 项为q(x)。
Ak 0.1713244924 0.3607615730 0.4679139346 0.1294849662 0.2797053915 0.3818300505 0.4179591837 0.1012285363 0.2223810345 0.3137066459 0.3626837834
6
7 4 0.3478548451 0.6521451549

Gauss型求积公式-第5章

Gauss型求积公式-第5章
5.2 Gauss型求积公式
形如
I n ( f ) Ak f ( xk )
k 0 n
插值型求积公式的代数精度至少为
n。
x0 x0
x1 x1
x0 x0
x1 x1
两点的求积公式为: 1 f ( x) dx A0 f ( x0 ) A1 f ( x1 ) 若限制等距节点,则 1、x0 , x1固定,A0 , A1 变量 2、确定 A0 , A1 需两个方程
x0 , x1 ,, xn 是Gauss点 x0 , x1 ,, xn 是Gauss点
n 1 ( x) 是正交多项式。
x , x ,, x
0 1
n
是正交多项式的根。
证明: 必要性
I ( f ) ( x) f ( x)dx
a
b
I n ( f ) Ak f ( xk )
n n 2
n 1 ( xk ) 1 ( x ) ( x xk ) f ( xk ) n 1 k
2
n 1 ( x) ( x xk ) f ( xk ) 1 ( xk )( x xk ) k 0 n

1
1
f ( x) dx
1 1 f f 3 3
对于任意区间 a, b 上权函数 x 1 的Gauss型求积公式,只需 作变量替换:
x
则有
x a, b t 1, 1 ,这样
ab ba t 2 2
n 1 ( xk ) f ( xk ), k 0,1,..., n H 2 n 1 ( xk ) f ( xk ), H 2
的2n+1次Hermite插值多项式,即(P110 例5)

7-5Gauss型求积公式

7-5Gauss型求积公式

参阅表 7-4.
其截断误差为
2 2n 1 (n! ) 4 ( 2n ) R( f ) f ( ) 3 (2n 1)(2n)!
(1,1)
任意区间上的Gauss-Legendre 公式
对积分

b
a
f ( x )dx
ba ba x t 做变换 利用 Gauss-Legendre 求积公式的求积节 2 2 ,
(7-51)
2.可以证明:若 f ( x) C a, b,Gauss 型求积公式当 n 时收敛于 定积分值。
3.Gauss型求积公式是数值稳定的。
3.Gauss 型求积公式是数值稳定的。
记 f * ( xk ) 为 f ( xk ) 的近似值,

Ak ( x)lk ( x)dx 0 且 a
b
Gauss型求积公式的误差 设求积公式 ( x ) f ( x )dx A
b n a k 1
k
f ( x k ) 是 Gauss 型求
积公式,H ( x ) 为以
b n
n x Gauss 点 k k 1 为节点的 f ( x ) 的 2n 1 次
Hermite 插值多项式,则有

试确定求积公式: 1 f ( x)dx af 0.6 bf (0) cf 0.6 中 待定参数 a , b 和 c ,使其代数精确度尽量高,并指出公式具有 几次代数精确度,判断是否为 Gauss 型求积公式。
1




解:记 I ( f ) 1 f ( x )dx
1
f af 0.6 bf (0) cf I
n n ( x) Al l k ( xl ) Ak a ( x)lk ( x)dx a ( x) ( x xk ) n ( xk ) dx l 1 b b

数值分析(19)Gauss积分

数值分析(19)Gauss积分

数值分析
(2)利用正交多项式构造高斯求积公式
设Pn(x),n=0,1,2,…,为正交多项式序列, Pn(x) 具有如下性质: 1)对每一个n ,Pn(x)是 n 次多项式。 n=0,1,… b 2) (正交性) ( x ) P ( x ) P ( x )dx 0,(i j )

a
i
j
3)对任意一个次数≤n-1的多项式P(x),有
数值分析
数值分析
利用正交多项式构造高斯求积公式的基本步骤:
1. 以n 1次正交多项式的零点 x0 , x1 , xn作为积分点 (高斯点), 2.用 高 斯 点 x0 , x1 , xn对f ( x )作Lagrange插 值 多 项 式
f ( x ) l i ( x ) f ( xi )
这样就可以用Gauss - Legendre求积公式计算一 般区间的积分.
数值分析
数值分析

对积分 f ( x )dx, 试利用n 1的两点Gauss Legendre
0
1
求积公式构造Gauss型求积公式。即确定x0 , x1和A0 , A1 使

1
0
f ( x )dx A0 f ( x0 ) A1 f ( x1 )
因为Guass求积公式也是插值型求积公式,故有 结论: n+1个节点的插值型求积公式的代数精度 d 满足: n d 2n+1。
数值分析
数值分析
(1) 用待定系数法构造高斯求积公式 例:选择系数与节点,使求积公式(1)

1
1
f ( x )dx c1 f ( x1 ) c2 f ( x2 )
数值分析
数值分析

数值分析课件_高斯求积公式

数值分析课件_高斯求积公式



b
a
f ( x ) ( x )dx Ak f ( xk )
k 0
b b
n


2

a
f ( x ) ( x )dx p( x ) ( x )dx
a



b
a
p( x ) ( x )dx Ak p( xk )
k 0
n
n
0
2
m 2n 1
Ak p( xk ) Ak f ( xk )
证明:由Weierstrass定理知
f p max f p
a xb
则Gauss型求积公式(*)是收敛的。 对
0
b
存在m次多项式
下证
p( x ) 满足
fp
n

N ,
当n
N时
k 0
2 ( x )dx
a

b
a
f ( x ) ( x )dx Ak f ( xk )
的插值型求积公式的代数精度最高不超过2n+1次。 只需证明:对于上述插值型求积公式,存在一个 2n+2次多项式,使得求积公式不能精确成立。
2 n1
令 f ( x)
因为
b
( x)
b a
其中 n 1 ( x ) ( x xk )
k 0
n
f ( x)dx 而 A f (x ) 0
k 0
n
与任何不超过n次的多项式 p( x ) 带权正交:

b a
p( x )n1 ( x ) ( x )dx 0
证明: 必要性 设
p( x ) H n

高斯求积公式

高斯求积公式
(k = 0,1 ⋯ n), 使(5.1)具有 2n +1次代数精度. , ,
定义4 定义4
如果求积公式(5.1)具有 2n +1次代数精度,
则称其节点 xk (k = 0,1 ⋯, n) 为高斯点 高斯点,相应公式(5.1)称 高斯点 , 为高斯求积公式 高斯求积公式. 高斯求积公式
3
根据定义要使(5.1)具有 2n +1次代数精度,只要对
充分性. 对于 ∀f (x) ∈H2n+1, 用 ωn+1(x) 除 f (x) , , 记商为 P(x),余式为 q(x) 即 f (x) = P(x)ωn+1(x) + q(x) , 其中 P(x),q(x)∈Hn. 由(5.5)可得

b
a
f (x)ρ(x)dx = ∫ q(x)ρ(x)dx.
b a
18
令它对 f (x) =1, x 都准确成立,有
A + A = 2; 0 1 A − 1 + A 1 = 0. 1 0 3 3
由此解出 A = A =1, 从而得到两点高斯-勒让德求积公式 0 1

1
1 −
f (x)dx ≈ f (−
1 1 ) + f (− ). 3 3
b n→ ∞ k =0 a n
16
4.5.2
高斯高斯-勒让德求积公式
在高斯求积公式(5.1)中,若取权函数 ρ(x) =1, 区间为
[−11 则得公式 , ],
n

1
−1
f (x)dx ≈ ∑A f (xk ). k
k =0
(5.9)
由于勒让德多项式是区间 [−11]上的正交多项式,因此, , 勒让德多项式 P 1(x) 的零点就是求积公式(5.9)的高斯点. n+ 形如(5.9)的高斯公式称为高斯-勒让德求积公式. 高斯-勒让ρ(x) ≥ 0, 由积分中值定理得(5.1)的余项为

数值分析-高斯求积分

数值分析-高斯求积分

有(插值节点为x1
3 5 , x2 0, x3
3) 5
1
A1 A2 +A3
dx
1
A1 x1 A2 x2 +A3 x3
A1 x12 A2 x22 +A3 x32
2
1
xdx 0
1

x 2dx
2
1
3
解得 :
A1
5 9
,
A2
8 9
,
A3
3点Gauss型求积公式为:
1
f ( x)dx
1
5 f( 9
3 ) 8 f (0) 59
I sin tdt sin
dx
若用n=0 2的Gaus4s-L1egend4re公式,则
I
4
sin4
(1
0.5773503)
4
sin4
(1.5773503)
0.9984725
例题2
若用n=3的Gauss-Legendre公式,则
I 0.5555556 f (0.7745967) 0.8888889 f (0) 0.5555556 f (0.7745967)
5 9
5 f( 3) 95
例题1
1
例例11 用高斯—勒让德求积公式计算 cos xdx
使其具有五次代数精度。 1
解: 用三个节点的高斯—勒让德公式
1
51
8
51
f ( x)dx f ( 15) f (0) f ( 15),
1
95
9
95
5 0.5556, 8 0.8889,cos( 1 15) cos(1 15) 0.7147
多项式,即若p( x)为一个不超过n-1次得多项式,则

gauss型求积公式

gauss型求积公式

gauss型求积公式一、Gauss型求积公式的基本概念。

1. 定义。

- 在数值积分中,Gauss型求积公式是一种高精度的求积公式。

对于积分∫_a^bf(x)ρ(x)dx(其中ρ(x)为权函数),Gauss型求积公式的形式为∫_a^bf(x)ρ(x)dx≈∑_i = 1^nA_if(x_i)。

这里x_i称为求积节点,A_i称为求积系数,n为求积公式的节点个数。

2. 特点。

- 高精度:Gauss型求积公式具有很高的代数精度。

对于n个节点的Gauss型求积公式,其代数精度为2n - 1。

这意味着对于次数不超过2n-1的多项式f(x),该求积公式能精确成立,即∫_a^bP_m(x)ρ(x)dx=∑_i = 1^nA_iP_m(x_i),其中m≤slant2n - 1,P_m(x)是m次多项式。

- 节点分布:Gauss型求积公式的节点x_i不是等距分布的。

这些节点是关于权函数ρ(x)正交的多项式的零点。

例如,当ρ(x) = 1,[a,b]=[- 1,1]时,对应的正交多项式是勒让德多项式P_n(x),Gauss型求积公式的节点就是勒让德多项式的零点。

二、求积节点与求积系数。

1. 求积节点的确定。

- 以勒让德 - Gauss求积公式为例(ρ(x)=1,[a,b]=[-1,1]),求积节点x_i是勒让德多项式P_n(x)的零点。

勒让德多项式P_n(x)可以通过递推公式(n + 1)P_n +1(x)=(2n + 1)xP_n(x)-nP_n - 1(x),P_0(x)=1,P_1(x)=x来计算。

通过求解P_n(x)=0得到求积节点x_i。

2. 求积系数的计算。

- 求积系数A_i可以通过多种方法计算。

一种常见的方法是利用正交性条件。

对于勒让德 - Gauss求积公式,求积系数A_i可以通过公式A_i=(2)/((1 -x_i)^2)[P_{n'(x_i)]^2}计算,其中P_n'(x)是勒让德多项式P_n(x)的导数。

Gauss型积分公式

Gauss型积分公式

R[ f ] [ f ( x) H ( x )]dx

b a
f ( x ) 2 w ( x )dx ( 2n 2)!
( 2 n 1 )
f ( 2 n1) ( ) ( 2n 2)!

b
a
w ( b)
(2) Gauss-Laguerre求积公式
区间[-1,1]上权函数W(x)=1的Gauss型求积公式,称
为Gauss-Legendre求积公式,其Gauss点为Legendre多项 式的零点. 公式的Gauss点和求积系数可在数学用表中查到 .
(a b) (b a)t ba 1 ab ba t )dt ( x ) 1 f ( 由 a f ( x)dx 2 2 2 2
a
b
称为权函数 定义两个可积函数的内积为:
( f , g ) W ( x) f ( x) g ( x)dx
a
b
两个函数正交,就是指这两个函数的内积为0
以n阶正交多项式的n个零点为积分点的数值积分公式
Gauss点
证明:
Gauss积分,记为Gn(f)
有2n-1阶的代数精度
E ( f ) I ( f ) I n ( f ) f [ x1 , x2 ,, xn , x]n ( x)W ( x)dx
2
3 x 1 2 1 4 xx 5 1 x dx 1 x dx
2 2
1 x dx
1
4
5 x 1 dx
1
P2(x)的两个零点为
x1
3 5
, x2
3 5
,
积分系数为
x x2 1 A1 1 x l1 ( x)dx 1 x dx x1 x 2 3

Gauss 求积公式 - mathecnueducn

Gauss 求积公式 - mathecnueducn
积分区间: [-1, 1],权函数: ρ ( x ) =
1 1 − x2
Gauss 点 = Chebyshev 多项式 Tn+1(x) 的零点 G-C 求积公式:

1 −1
1 1 − x2
f ( x ) dx ≈ ∑ Ai f ( xi )
i =0
21
n
G-C 公式
Tn+1(x) 的零点
3
Gauss 型求积公式
怎样构造更高精度的求积方法
考虑求积公式

b a
f ( x )dx ≈ ∑ Ai f ( xi )
i =0
n
含 2n+2 个参数 (节点与系数),为了使该公式具有 尽可能高的代数精度,可将 f (x) = 1, x, x2, …, x2n+1 代入公式,使其精确成立,则可构造出代数精度至 少为 2n+1 的求积公式! 自由选取求积节点!等分点不一定最佳!
第四章 数值积分与数值微分
— Gauss 求积公式
1
内容提要
数值积分 基本概念 Newton-Cotes 求积公式 复合求积公式 Gauss 求积公式 Romberg 求积公式 多重积分 数值微分
2
本讲内容
Gauss 求积公式
一般理论:公式,余项,收敛性,稳定性 Gauss-Legendre 求积公式 Gauss-Chebyshev 求积公式 无限区间的 Gauss 求积公式
17
G-L 公式余项
余项公式
f ( 2 n+ 2) (η ) b 2 R[ f ] = Pn+1 ( x ) dx ∫ (2n + 2)! a
( n + 1)!] [ = 3 (2n + 3) [(2n + 2)!] 2

第四章-4-Gauss公式

第四章-4-Gauss公式

f (x ) n1
i 0 i

n
R[ f ]
( 2 n 2) 2 f ( ) 2 n 2 2 (2n 2)!
(-1, 1)
简单 G-C 公式
n=0

1
1
(1 x 2 )1/ 2 f ( x ) dx f (0)
n=1
n=2
1
2 1/ 2 f 2 2 f (1 x ) f ( x ) d x 1 2 1
关键点!
与 1, x, x2, ..., xn 带权正交
设 p0(x), p1(x), , pn(x) , 是 [a, b] 上带权 (x) 正交 的多项式族,则 Gauss 点即为 pn+1(x) 的零点 Gauss 系数的计算
将 f (x) = 1, x, x2, …, xn 代入,解线性方程组 或利用 Lagrange 基函数
G-L 公式
一般区间上的 G-L 求积公式
I [ f ] f ( x)dx
a b
ab ba t 令 x 2 2 ab ba t) 则 g (t ) f ( 2 2 从而 b ba 1 ba n I [ f ] f ( x)dx g (t )dt Ai g (ti ) a 2 1 2 i 0 在标准区间上采用G-L求积公式!
I [ f ] f ( x)dx
b a i 0
m 1
xi1
xi
f ( x)dx
xi xi 1 hi t , hi xi 1 xi 在每个区间上令 x 2 2 m 1 hi 1 hi I [ f ] f ( xi 1/ 2 t )dt 1 2 i 0 2

第四节 高斯Gauss求积公式讲解

第四节 高斯Gauss求积公式讲解

1
? F (t )dt ?1
?
A0F (t0) ?
A1F (t1 ) ?
A2F (t2 ) ?
? 0.888888889 f (0) ? 0.555555556 f (0.7745966692)
数值分析
数值分析
例: 运用三点高斯-勒让德求积公式与辛卜生求积
? 公式计算积分1 x ? 1.5dx ?1
解 :由三点高斯-勒让德求积公式有
1
? x ? 1.5dx ?1
? 0.555556( 0.725403? 2.274596)? 0.888889 1.5
(高斯点),
2.用高斯点 x 0 , x 1 ,? x n 对 f ( x )作 Lagrange 插值多项式
n
? f ( x ) ? li ( x ) f ( x i )
i? 0
? ? ? 代入积分式
b
b
n
? ( x ) f ( x )dx ? ? ( x )(
a
a
li ( x ) f ( x i ))dx
解:先作变量代换
x
?
1 (a
?
b) ?
1 (b ?
a)t
?
1 (1 ?
t ),
2
2
2
dx ? 1 dt 2
? ? ? 于是
1
1
f ( x )dx ?
11
?1
f ( (1 ? t ))dt ?
1
F (t )dt
0
2 ?1 2
2 ?1
? 对积分 1 F (t )dt用四点 Gauss ? Legendre 求积公式 ?1
? 0 ( x ), ? 1 ( x ), ? 2 ( x ).

Gauss型求积公式

Gauss型求积公式
ab ba x t 2 2
即可将区间[a,b]变换到[-1,1]上:

b
a
1 ba 1 ab ba f ( x )dx f( t )dt (t )dt 1 2 1 2 2
n 1 2 3
xk 0 ±0.5773502692 ±0.7745966692 0 ±0.8611363116 ±0.3399810436
四、Gauss-Laguerre求积公式
区间[0,)上权函数W(x)=e-x的Gauss型求积公式,称为GaussLaguerre求积公式,其Gauss点为Laguerre多项式的零点.
公式的Gauss点和求积系数可在数学用表中查到 . 由
0 f ( x)dx 0 e e f ( x)dx
2 (1 xk ) Pn'1 ( xk ) 一点Gauss-Legendre求积公式为:

1
1
f ( x)dx Ak f ( xk )
k 0
n
Ak

2

2
(k 0,1,, n)

1
1
1
f ( x )dx 2 f (0)
两点Gauss-Legendre求积公式为:
3 3 1 f ( x)dx f ( 3 ) f ( 3 )
故有

b
a
n1 ( x )P ( x )dx Ak n1 ( xk )P ( xk ) 0
k 0
n
充分性 :
设a n1 ( x) P( x)dx 0 对于任意次数不超过 n 1 ( x)除f(x)的商为p(x),余 2n+1的多项式 f ( x), 设 项为q(x)。
x x

第3节 Gauss型求积公式

第3节 Gauss型求积公式


3.Laguere(拉盖尔)多项式
dn n x Ln ( x ) e x n ( x e ), 0 x , n 0,1, 2, dx
为区间[0,+ ∞)上关于权函数ρ(x)=e -x 的正交多项式。 而且 Ln(x) 的首项系数为 (-1)n 。具有性质:
(1). ( Lm , Ln )
得到 n-1 次插值多项式及误差:
n (x x ) i f ( x) f ( xk ) f [ x , x1 , x2 ,, xn ] n ( x ) i 1 k 1 i k ( x k x i )
n
两端积分得到:
n ( x ) ( x x1 )( x x2 )( x xn )
( x ), x [a , b]
则称多项式族 { gk(x)} 在[a,b]上带权ρ(x) 正交,并称gn(x) 为[a,b]上带权ρ(x) 的 n 次正交多项式。
1 1] 例如: 1, x , x , 在 [1, 上带权 ( x ) 1 正交。 3 gk ( x ) * , 则称其为首项系数为1的多项式, 令: gk ( x ) Ak
( x ) 1 x 2 , x [1,1]
2、正交多项式
对于多项式序列
gn ( x ) An x An1 x
n
n 1
A1 x A0 , n 0,1,2 ,
及权函数 如果:

b
a
0, l m, ( x ) gl ( x ) gm ( x )dx b 2 ( x ) gm ( x )dx 0, l m a
4.Hermite多项式
是区间(-∞,+∞)上关于权函数 ( x ) e 的正交多项 式。而且 Hn(x) 的首项系数为 2n ,具有性质:

Gauss型求积公式

Gauss型求积公式
性质
Gauss型求积公式具有高精度和高效性,特别是对于一些特殊函数(如多项式函数)的积分,其精度更高。此外, Gauss型求积公式还具有对称性、规范性和最优性等性质。
Gauss型求积公式的分类
01
按照节点数分类
根据使用的节点数不同,可以将Gauss型求积公式分为一 元、二元和多元等类型。一元Gauss型求积公式使用一个 节点,二元Gauss型求积公式使用两个节点,以此类推。
Gauss型求积公式
• 引言 • Gauss型求积公式的基本概念 • Gauss型求积公式的构造方法 • Gauss型求积公式的误差分析 • Gauss型求积公式的应用实例 • 结论
01
引言
背景介绍
01
Gauss型求积公式是数值分析中的一种重要方法,主要用于解决 积分问题。
02
它以德国数学家Carl Friedrich Gauss的名字命名,是数值积分
工程设计
在工程设计中,Gauss型求积公 式可用于计算几何形状的面积、 体积等,以及优化设计参数。
金融工程
在金融工程中,Gauss型求积 公式可用于计算期权定价、风 险评估等金融衍生品的价值。
02
Gauss型求积公式的基本概念
定义与性质
定义
Gauss型求积公式是一种数值积分方法,用于近似计算定积分的值。它通过选择一组特定的节点和权重,将积分 区间划分为有限个小区间,然后利用这组节点和权重来逼近积分。
02
Gauss型求积公式具有高精度和高效率的特点,能够 快速准确地计算积分。
03
它能够减小误差,提高计算精度,特别适合处理复 杂函数积分问题。
结论 Gauss型求积公式的优点与局限性
局限性
Gauss型求积公式需要预先确定节点和权重,对于某些复杂函数可能难以 找到合适的节点和权重。

Gauss型数值求积公式正交多项式及其零点数值微分方法数值积分与

Gauss型数值求积公式正交多项式及其零点数值微分方法数值积分与

外推:
~ U ij (4u2i , 2 j U ij ) / 3
高斯-赛德尔迭代法结合外推技术实验 n 10 20 外推
error
iteratives
0.0028
152
7.1115e-004
706
6.5304e-006
16/16
2 x ( x1 x 2 ) ( x) l0 2h 2
2 x ( x0 x 2 ) ( x) l1 h2
2 x ( x0 x1 ) ( x) l2 2h 2
12/16
1 f ( x0 ) 2h [3 f ( x0 ) 4 f ( x1 ) f ( x 2 )] 1 [ f ( x0 ) f ( x 2 )] f ( x1 ) 2h f ( x ) 1 [ f ( x ) 4 f ( x ) 3 f ( x )] 2 0 1 2 2h
b
t∈[-1, 1]
ba 1 ba ba a f ( x )dx 2 1 f ( 2 t 2 )dt b ba ba ba ba ba a f ( x)dx 2 [ f ( 2 3 2 ) f ( 2 3 2 )]
3/16
定义 如果求积结点x0, x1,· · · · · · ,xn,使插值型求积公式
1
1
得Gauss点 插值公式:
1
1 1 x0 , x1 3 3 x x0 x1 x f ( x) f ( x0 ) f ( x1 ) x1 x0 x1 x0
x x0 2 x0 1 x1 x0 dx x1 x0 1
1
x1 x 2 x1 1 x1 x0 dx x1 x0 1

4高斯求积公式

4高斯求积公式
1

截断误差为 R
2 (2 n ) f ( ), (1,1). 2n 2 (2n)!


高斯积分的优点:少节点,高精度。
高斯型求积公式, 使用较少的节点, 可得到高精度的结果. 1 例如,计算积分 I dx . 1 x 0
它的精确值(八位有效数字)为 I = 0.693 147 18。 使用节点数为129的复化辛普生公式计算,得 I 0.693 146 70。
适当的选取n+1个节点和插值系数,插值型求积公式的代数精度 可以达到2n+1.
定义 如果求积结点x0, x1,· · · · · · ,xn,使插值型求积公式

1
1
f ( x )dx Ak f ( xk ), 其中Ak lk ( x )dx 1
1
n
k 0
的代数精度为2n+1,则称该求积公式为Gauss型求积 公式. 称这些求积结点为Gauss点.
a
b
是Gauss型求积公式,则它的求积系数 Ai 满足
(1) (2) Ai 0,
n i 0 i
i 0, 1, 2,
b a
,n ;
A
( x)dx .
证明略。
例2 试构造形如

1
1
x f ( x)dx Ai f ( xi )
2 i 1
n
的Gauss型求积公式。 解 利用正交化方法已求出在区间[-1,1]上带权
求插值型求积公式

1
1
f ( x )dx A0 f ( x0 ) A1 f ( x1 )
使其代数精度为3,取 f(x)=1, x, x2, x3
A0 A1 2 A x A x 0 0 0 1 1 2 2 2 A0 x 0 A1 x1 3 3 3 A x A x 1 1 0 0 0

6.5Gauss求积公式

6.5Gauss求积公式
n1 ( x) ( x xk ) 与任意次数不超过 n 的多
n k 0
项式P ( x ) 均正交, 即满足

b
a
p( x)n1 ( x)dx 0 .
推论 6.5.1 在区间 [a , b] 上 n + 1次正交多项 式 gn+1( x ) 的零点即为 Gauss 点。
2. Gauss-Legendre 求积公式
若有解,则得 到的插值型的 数值积分公式 (1)至少有 2n+1次代数精 度。
1. Gauss 求积公式
但是,考虑2n+2次多项式:
f ( x)
2 n 1 n
( x ) ( x xi ) 0,1,…,n)处为零,在其它点 处均大于零,所以 而
6.5 Gauss 求积公式
1. Gauss 求积公式
设插值型的数值积分公式:
n

b a
f ( x ) d x Ak f ( xk ),
k 0
b
(1)
Ak lk ( x) d x 。 其中 现在取消对积分节点的限制,让它与 Ak 一样, a 作为一个待定常数,这样在数值积分公式 (1)中 前面讲述的方法(lagrange插值型数值积 需要确定的系数为xk和Ak(x kk= 0, 1, …, n),共 分法)是事先给定积分节点 。例如 Newton2n+2公式把区间 个系数。根据代数精度的概念,要确定这 Cotes [a , b] 的等分点作为求积节点, 2n+2个系数(xk和Ak),需要解如下n+1 2n+2 个方 这样所求积分公式的代数精度至多为 。 程构成的非线性方程组
再计算A0和A1时,它们已成为线性关系,取 f(x) = 1 和 x可得到 3 3 A0 A1 2, A0 A1 0 . 3 3 解得A0= A1=1。

Gauss型积分公式解读

Gauss型积分公式解读

摘要求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。

这时我们可以通过数值方法求出函数积分的近似值。

当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。

已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n为偶数时,其代数精度达到n+1。

若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。

如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。

因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。

关键词:Newton-Cotes型积分公式正交多项式代数精度1、实验目的1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提高代数精度这一问题中的思想方法。

2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的编程能力。

3)用实验报告的形式展现,提高自己在写论文方面的能力。

2、算法流程下面介绍三种常见的Gauss型积分公式1)高斯-勒让德(Gauss-Legendre)积分公式勒让德(Legendre)多项式如下定义的多项式L n(x)=12n n!d ndx n(x2−1)n,x∈[−1,1],n=0,1,2⋯称作勒让德多项式。

由于(x2−1)n是2n次多项式,所以L n(x)是n次多项式,其最高次幂的系数A n与多项式1 2n n!d ndx n(x(2n))=12n n!2n(2n−1)(2n−2)⋯(n+1)x n的系数相同。

也就是说n次勒让德多项式具有正交性即勒让德多项式L n(x)是在[−1,1]上带ρ(x)=1的n次正交多项式,而且(L m,L n)=∫L m(x)L n(x)dx1−1={0, m≠n22n+1, m=n这时Gauss型积分公式的节点就取为上述多项式L n(x)的零点,相应的Gauss型积分公式为∫f(x)dx 1−1≈∑A k f(x k) nk=1此积分公式即成为高斯-勒让德积分公式。

6c高斯型求积公式

6c高斯型求积公式
b
定理
若节点 xk , k 0,1, , n 是高斯点,则以这些点为根
n
的多项式 ( x) ( x xk ) 是最高次幂系数为 1 的的勒让德多项
k 0
式,即
(n 1)! d n 1 ( x 2 1) n 1 L n 1 (2n 2)! dx n 1
计算方法
第六章 数值积分与数值微分
—— Gauss 求积公式
1
本讲内容
Gauss 求积公式
一般理论: 公式, 余项, 收敛性, 稳定性
Gauss-Legendre 求积公式
Gauss-Chebyshev 求积公式
无限区间的 Gauss 求积公式
2
Gauss 型求积公式
考虑求积公式
0.4674
20

1 1
f ( x ) dx Ai f ( xi )
i 0
9
n
简单 G-L 公式
n =0 时, Pn1 ( x) x G-L 求积公式:
1 1
Gauss 点: x0 0
将 f (x)=1 代入求出 A0

f ( x ) dx 2 f (0)
1 2
n =1 时, Pn1 ( x ) (3 x 2 1) Gauss 点: x0 3 , x1 3
i 0
n
要证 xi 为 Gauss 点,即公式对 p(x) H2n+1精确成立 “ p( x) ( x)q( x) r( x) ” p(x), r(x)Hn 设
n1

b a
( x ) p( x )dx ( x)n1 ( x)q( x)dx ( x)r( x)dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用Schmidt正交化过程,
g ( x) f ( x) 0 0 n 1 ( f ( x), gi ( x)) g n ( x) f n ( x) n gi ( x) i 0 ( g i ( x ), g i ( x ))
n
就可以将多项式基函数
Ak 0.8535533905 0.1464466094 0.7110930099 0.2785177335 0.0103892565 0.6031541043 0.3574186924 0.0388879085 0.0005392947
n
5
3
xk 0.2635603197 1.4134030591 3.5964257710 7.0858100058 12.6408008442 0.2228466041 1.1889321016 2.9927363260 5.7751435691 9.8374674183 15.9828739806
三次Legendre多项式及其零点为:
1 P3 ( x ) (5 x 3 3x ), x0 0.6 , x1 0, x2 0.6 2
三、Gauss-Legendre求积公式
1 d n 1 2 n 1 xk (k 0,1,, n)为Pn 1 ( x ) ( x 1 ) n 1 n 1 ( n 1 )! 2 dx 的零点 。
Ak 2 1 0.5555555556 0.8888888889
n 6
xk ±0.9324695142 ±0.6612093865 ±0.2386191861 ±0.9491079123 ±0.7415311856 ±0.4058451514 0 ±0.9602898565 ±0.7966664774 ±0.5255324099 ±0.1834346425
问题: 若求积公式
I f ( x )dx Ak f ( xk )
b a k 0 n
中含有2n+2个待定参数 xk , Ak (k 0,1, 2,, n) 我们能否通过节点的选择将求积公式的 代数精度从n 或者n+1提高到2n+1?
一、Gauss型求积公式 定义:把具有 n+1 个节点的具有 2 n+1 次代 数精确度的插值型求积公式
x x
n


所以,对[0, +)上权函数W(x)=1的积分,也可以构造类似的 Gauss-Laguerre求积公式:
0 f ( x)dx Ai e f ( xi )
xi i 1
n 2
xk 0.5858864376 3.4142135623 0.4157745567 2.2942803602 602899450829 0.3225476896 1.7457611011 4.5366202969 9.3950709123
b
即f ( x) P( x) n1 ( x) q( x)
其中P( x), q( x)的次数 n

b
a
f ( x )dx P ( x )n1 ( x )dx q( x )dx
a a
b
b
由条件 P( x )n1 ( x)dx 0,
a
b
所给的求积公式是插值型的,其代数精度至少为n。
证毕
两条结论:
①.高斯型求积公式一定是插值型求积公 式,其系数由高斯点唯一确定。 ②.高斯型求积公式是代数精度最高的求积 公式(2n+1次)。
当高斯点确定以后,高斯系数 Ak (k 0,1,, n)
n b a dx Ak k 0 n b a xdx Ak x k k 0 n b n n a x dx Ak xk k 0
1, x,, x 变为正交基 p ( x), p ( x),, p ( x)
0 1 n
例: 解
求积分
2 x 1 f ( x)dx 的2点Gauss公式.
1
按 Schemite 正交化过程作出正交多项式:
p0 ( x) 1
( x, p 0 ( x)) p1 ( x) x p 0 ( x) ( p 0 ( x), p 0 ( x))
四、Gauss-Laguerre求积公式
区间[0,)上权函数W(x)=e-x的Gauss型求积公式,称为GaussLaguerre求积公式,其Gauss点为Laguerre多项式的零点.
公式的Gauss点和求积系数可在数学用表中查到 . 由
0 f ( x)dx 0 e e f ( x)dx
确定.
即可由线性方程组
也可以由插值型求积公式中的系数公式 Ak a lk ( x )dx 确定。
b
二、Legendre多项式
n+1次Legendre多项式为:
1 d n 1 2 n 1 Pn 1 ( x ) ( x 1 ) ( x [1,1]; n 0,1,2,) n 1 n 1 (n 1)!2 dx
2 (1 xk ) Pn'1 ( xk ) 一点Gauss-Legendre求积公式为:

1
1
f ( x)dx Ak f ( xk )
k 0
n
Ak

2

2
(k 0,1,, n)

1
1
1
f ( x )dx 2 f (0)
两点Gauss-Legendre求积公式为:
3 3 1 f ( x)dx f ( 3 ) f ( 3 )
Gauss型求积公式
由前面的讨论已经知道,以a=x0<x1<…<xn=b为节点的N-C求积公式 的代数精度一般为n或n+1,这时节点简单地按照闭式等距的方式确定。 对一个求积公式而言,如果不固定节点的位置, 在节点数目不变的情况下,代数精度能否提高, 最多能达到多少?高斯型求积公式讨论的就是最高代数精度的求积公式.
ab ba x t 2 2
即可将区间[a,b]变换到[-1,1]上:

b
a
1 ba 1 ab ba f ( x )dx f( t )dt (t )dt 1 2 1 2 2
n 1 2 3
xk 0 ±0.5773502692 ±0.7745966692 0 ±0.8611363116 ±0.3399810436
其性质有 •1、n+1次Legendre多项式与任意不超过n次的多项 式在区间[-1,1]上正交。
•2、n+1次Legendre多项式的n+1个零点都在区间[1,1]内。
例: 一次Legendre多项式及其零点为:
P 1 ( x) x, x0 0
二次Legendre多项式及其零点为:
1 P2 ( x ) (3x 2 1), 2 3 3 x0 , x1 3 3
故 q( x )dx Ak q( xk )
b a n 0
n
所以求积公式至少具有2n+1次代数精确度。对 于2n+2次多项式 有 f ( x ) 2 n1 ( x )

b
a

f ( x )dx 0

2 A k n1 ( x k ) 0 k 0
n
故求积公式的代数精确度是2n+1。
I

0
1
sin x dx x
1 sin(0.5773503 ) sin(0.5773503 ) 1 1 0.945363 . 2 0.5773503 0.5773503
高斯求积公式的截断误差为
22 n 3 (2 n 2) R[ f ] f ( ) 2 (2n 3)[(2n 2)!] 1 1
的n+1次多项式 n1 ( x) ( x x j ) 与任意次数不超
过n的多项式P(x)正交,即

b
a
n1 ( x )P ( x )dx 0
证明: 必要性 : 设 xk (k 0,1,, n)是高斯点,于是对任意次数不超过n 的多项式P(x) ,
f ( x) P( x) n 1 ( x)的次数不超过2n+1。
2 2 ( x , p ( x )) ( x , p1 ( x)) 2 0 p 2 ( x) x p 0 ( x) p1 ( x) ( p 0 ( x), p 0 ( x)) ( p1 ( x), p1 ( x))
3 x 1 2 1 4 xx 5 1 x dx 1 x dx
3 5 3 5
x1
, x2
故两点Gauss公式为
2 1 x f ( x ) dx 1 3 [ f ( 1 3 5
) f(
3 5
)]
例 利用两点Gauss-Legendre求积公式计算 sin x 为偶函数 解:因为 x 1 1
sin x 1 sin x I dx dx x 2 1 x 0

1
1
f ( x)dx w0 f ( x0 ) w1 f ( x1 )
1 1 f ( x)dx f ( ) f ( ) 1 3 3
1
定理:插值型求积公式中的节点 x
n
斯点的充要条件是,在[a,b]上,以这些点为零点
j 0
是高 ( k 0 , 1 , , n ) k

b
a
f ( x )dx Ak f ( xk )
k 0
n
称为Gauss型求积公式,其求积节点 x k(k=0, 1,……n)称为高斯点,系数 Ak 称为高斯系数。 Remark:构造Gauss型求积公式的关键在于确定高斯 点,再由n+1个高斯点构造基函数,从而得到高斯 系数。
节点 xi Ai ,(i 0,1,, n),但是如何确定
相关文档
最新文档