安徽省中考数学试题及答案

合集下载

2024年安徽省中考数学真题试卷及答案解析

2024年安徽省中考数学真题试卷及答案解析

数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是()A. 5B. ﹣5C.D.2. 据统计,年我国新能汽车产量超过万辆,其中万用科学记数法表示为()A. B. C. D.3. 某几何体的三视图如图所示,则该几何体为()A. B.C. D.4. 下列计算正确的是()A. B.C. D.5. 若扇形的半径为6,,则的长为()A. B. C. D.6. 已知反比例函数与一次函数的图象的一个交点的横坐标为3,则k的值为()A. B. C. 1 D. 37. 如图,在中,,点在的延长线上,且,则的长是()A. B. C. D.8. 已知实数a,b满足,,则下列判断正确的是()A. B.C. D.9. 在凸五边形中,,,F是的中点.下列条件中,不能推出与一定垂直的是()A. B.C. D.10. 如图,在中,,,,是边上的高.点E,F分别在边,上(不与端点重合),且.设,四边形的面积为y,则y关于x的函数图象为()A. B.C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式有意义,则实数的取值范围是_____.12. 我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:______(填“>”或“<”).13. 不透明的袋中装有大小质地完全相同的个球,其中个黄球、个白球和个红球.从袋中任取个球,恰为个红球的概率是______.14. 如图,现有正方形纸片,点E,F分别在边上,沿垂直于的直线折叠得到折痕,点B,C分别落在正方形所在平面内的点,处,然后还原.(1)若点N在边上,且,则______(用含α的式子表示);(2)再沿垂直于的直线折叠得到折痕,点G,H分别在边上,点D落在正方形所在平面内的点处,然后还原.若点在线段上,且四边形是正方形,,,与的交点为P,则的长为______.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系,格点(网格线的交点)A.B,C.D的坐标分别为,,,.(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,,,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线平分,写出点E 的坐标.四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)已知农作物种植人员共位,且每人只参与一种农作物种植,投入资金共万元.问这两种农作物的种植面积各多少公顷?18. 数学兴趣小组开展探究活动,研究了“正整数N能否表示为(均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(为正整数):奇数的倍数表示结果一般结论______按上表规律,完成下列问题:()( )( );()______;(2)兴趣小组还猜测:像这些形如(为正整数)的正整数不能表示为(均为自然数).师生一起研讨,分析过程如下:假设,其中均为自然数.分下列三种情形分析:若均为偶数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为偶数.若均为奇数,设,,其中均为自然数,则______为的倍数.而不是的倍数,矛盾.故不可能均为奇数.若一个是奇数一个是偶数,则为奇数.而是偶数,矛盾.故不可能一个是奇数一个是偶数.由可知,猜测正确.阅读以上内容,请在情形的横线上填写所缺内容.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点处发出,经水面点折射到池底点处.已知与水平线的夹角,点到水面的距离m,点处水深为,到池壁的水平距离,点在同一条竖直线上,所有点都在同一竖直平面内.记入射角为,折射角为,求的值(精确到,参考数据:,,).20. 如图,是的外接圆,D是直径上一点,的平分线交于点E,交于另一点F,.(1)求证:;(2)设,垂足为M,若,求的长.六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:)表示.将所收集的样本数据进行如下分组:组别A B C D Ex整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a的值.【数据分析与运用】任务2 A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.七、(本题满分12分)22. 如图1,对角线与交于点O,点M,N分别在边,上,且.点E,F分别是与,的交点.(1)求证:;(2)连接交于点H,连接,.(ⅰ)如图2,若,求证:;(ⅱ)如图3,若为菱形,且,,求的值.八、(本题满分14分)23. 已知抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1.(1)求b的值;(2)点在抛物线上,点在抛物线上.(ⅰ)若,且,,求h的值;(ⅱ)若,求h的最大值.参考答案1. 【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 【答案】B【解析】【分析】本题考查了科学记数法,先把万转化为,再根据科学记数法:(,为整数),先确定的值,然后根据小数点移动的数位确定的值即可,根据科学记数法确定和的值是解题的关键.【详解】解:万,故选:.3. 【答案】D【解析】【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D选项.故选:D.4. 【答案】C【解析】【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A.与不是同类项,不能合并,选项错误,不符合题意;B.,选项错误,不符合题意;C.,选项正确,符合题意;D.当时,,当时,,选项错误,不符合题意;故选:C5. 【答案】C【解析】【分析】此题考查了弧长公式,根据弧长公式计算即可.【详解】解:由题意可得,的长为,故选:C.6. 【答案】A【解析】【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出,代入反比例函数求解即可【详解】解:∵反比例函数与一次函数图象的一个交点的横坐标为3,∴,∴,∴,故选:A7. 【答案】B【解析】【分析】本题考查了等腰直角三角形的判定和性质,对顶角的性质,勾股定理,过点作的延长线于点,则,由,,可得,,进而得到,,即得为等腰直角三角形,得到,设,由勾股定理得,求出即可求解,正确作出辅助线是解题的关键.【详解】解:过点作的延长线于点,则,∵,,∴,,∴,,∴为等腰直角三角形,∴,设,则,在中,,∴,解得,(舍去),∴,∴,故选:.8.【答案】C【解析】【分析】题目主要考查不等式的性质和解一元一次不等式组,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键【详解】解:∵,∴,∵,∴,∴,选项B错误,不符合题意;∵,∴,∵,∴,∴,选项A错误,不符合题意;∵,,∴,,∴,选项C正确,符合题意;∵,,∴,,∴,选项D错误,不符合题意;故选:C9. 【答案】D【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,结合根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A.连接,∵,,,∴,∴又∵点F为的中点∴,故不符合题意;B.连接,∵,,,∴,∴,又∵点F为的中点,∴,∵,∴,∴,∴,∴,故不符合题意;C.连接,∵点F为的中点,∴,∵,,∴,∴,,∵,,∴,∴,∴,∴,故不符合题意;D.,无法得出题干结论,符合题意;故选:D.10. 【答案】A【解析】【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定理的应用,过点E作于点H,由勾股定理求出,根据等面积法求出,先证明,由相似三角形的性质可得出,即可求出,再证明,由相似三角形的性质可得出,即可得出,根据,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.【详解】解:过点E作于点H,如下图:∵,,,∴,∵是边上的高.∴,∴,∵,,∴,∴,解得:,∴,∵,,∴,,∴,∴,∴,∴∵,∴当时,,当时,.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11. 【答案】【解析】【分析】根据分式有意义的条件,分母不能等于,列不等式求解即可.【详解】解:分式有意义的条件是分母不能等于,.故答案为:.【点拨】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12. 【答案】>【解析】【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵,,而,∴,∴;故答案为:13. 【答案】【解析】【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.详解】解:画树状图如下:由树状图可得,共有种等结果,其中恰为个红球的结果有种,∴恰为个红球的概率为,故答案为:.14. 【答案】①. ##②.【解析】【分析】①连接,根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,再结合平行线的性质即可求解;②记与交于点K,可证:,则,,由勾股定理可求,由折叠的性质得到:,,,,,则,,由,得,继而可证明,由等腰三角形的性质得到,故.【详解】解:①连接,由题意得,,∵,∴,∴,∵四边形是正方形,∴,∴,,∴,,∴∴,故答案为:;②记与交于点K,如图:∵四边形是正方形,四边形是正方形,∴,,,∴,∴,∴,同理可证:,∴,,在中,由勾股定理得,由题意得:,,,,,∴,∴,∴,∴,∴,即,∵,∴,∴,∴,∴,由题意得,而,∴,∴,故答案为:.【点拨】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 【答案】,【解析】【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵,∴,∴,∴,.【点拨】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16. 【答案】(1)见详解(2)40(3)(答案不唯一)【解析】【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A,B,C分别绕点D旋转得到对应点,即可得出.(2)连接,,证明四边形是平行四边形,利用平行四边形性质以及网格求出面积即可.(3)根据网格信息可得出,,即可得出是等腰三角形,根据三线合一的性质即可求出点E的坐标.【小问1详解】解:如下图所示:【小问2详解】连接,,∵点B与,点C与分别关于点D成中心对称,∴,,∴四边形是平行四边形,∴.【小问3详解】∵根据网格信息可得出,,∴是等腰三角形,∴也是线段的垂直平分线,∵B,C的坐标分别为,,∴点,即.(答案不唯一)四、(本大题共2小题,每小题8分,满分16分)17. 【答案】农作物的种植面积为公顷,农作物的种植面积为公顷.【解析】【分析】本题考查了二元一次方程组的应用,设农作物的种植面积为公顷,农作物的种植面积为公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设农作物的种植面积为公顷,农作物的种植面积为公顷,由题意可得,,解得,答:设农作物的种植面积为公顷,农作物的种植面积为公顷.18. 【答案】(1)(),;();(2)【解析】【分析】()()根据规律即可求解;()根据规律即可求解;()利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【小问1详解】()由规律可得,,故答案为:,;()由规律可得,,故答案为:;【小问2详解】解:假设,其中均为自然数.分下列三种情形分析:若均为偶数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为偶数.若均为奇数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为奇数.若一个是奇数一个是偶数,则为奇数.而是偶数,矛盾.故不可能一个是奇数一个是偶数.由可知,猜测正确.故答案为:.五、(本大题共2小题,每小题10分,满分20分)19. 【答案】【解析】【分析】本题考查了解直角三角形,勾股定理,三角函数,过点于,则,,由题意可得,,,,解求出、,可求出,再由勾股定理可得,进而得到,即可求解,正确作出辅助线是解题的关键.【详解】解:过点于,则,,由题意可得,,,,在中,,,∴,,∴,∴在,,∴,∴.20. 【答案】(1)见详解(2).【解析】【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.(1)由等边对等角得出,由同弧所对的圆周角相等得出,由对顶角相等得出,等量代换得出,由角平分线的定义可得出,由直径所对的圆周角等于可得出,即可得出,即.(2)由(1)知,,根据等边对等角得出,根据等腰三角形三线合一的性质可得出,的值,进一步求出,,再利用勾股定理即可求出.【小问1详解】证明:∵,∴,又与都是所对的圆周角,∴,∵,∴,∵平分,∴,∵直径,∴,∴,故,即.【小问2详解】由(1)知,,∴,又,,∴,,∴圆的半径,∴,在中.,∴即的长为.六、(本题满分12分)21. 【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析【解析】【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.任务1:直接根据总数减去各部分的数据即可;任务2:根据加权平均数的计算方法求解即可;任务3:根据中位数、众数的定义及样本中的数据求解即可;任务4:分别计算甲和乙的一级率,比较即可.【详解】解:任务1:;任务2:,乙园样本数据的平均数为6;任务3:①∵,∴甲园样本数据的中位数在C组,∵,∴乙园样本数据的中位数在C组,故①正确;②由样本数据频数直方图得,甲园样本数据的众数均在B组,乙园样本数据的众数均在C组,故②错误;③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;故答案为:①;任务4:甲园样本数据的一级率为:,乙园样本数据的一级率为:,∵乙园样本数据的一级率高于甲园样本数据的一级率,∴乙园的柑橘品质更优.七、(本题满分12分)22. 【答案】(1)见详解(2)(ⅰ)见详解,(ⅱ)【解析】【分析】(1)利用平行四边形的性质得出,再证明是平行四边形,再根据平行四边形的性质可得出,再利用证明,利用全等三角形的性质可得出.(2)(ⅰ)由平行线截线段成比例可得出,结合已知条件等量代换,进一步证明,由相似三角形的性质可得出,即可得出.(ⅱ)由菱形的性质得出,进一步得出,,进一步可得出,进一步得出,同理可求出,再根据即可得出答案.【小问1详解】证明:∵四边形是平行四边形,∴,,∴,又∵,∴四边形是平行四边形,∴,∴.在与中,∴.∴.【小问2详解】(ⅰ)∵∴,又.,∴,∵,∴,∴,∴(ⅱ)∵是菱形,∴,又,,∴,∴,∵.,∴,∴,即,∴,∴,∵,,,∴,∴,即,∴∴,故.【点拨】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.八、(本题满分14分)23. 【答案】(1)(2)(ⅰ)3;(ⅱ)【解析】【分析】题目主要考查二次函数的性质及化为顶点式,解一元二次方程,理解题意,熟练掌握二次函数的性质是解题关键.(1)根据题意求出的顶点为,确定抛物线(b为常数)的顶点横坐标为2,即可求解;(2)根据题意得出,,然后整理化简;(ⅰ)将代入求解即可;(ⅱ)将代入整理为顶点式,即可得出结果.【小问1详解】解:,∴的顶点为,∵抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1,∴抛物线(b为常数)的顶点横坐标为2,∴,∴;【小问2详解】由(1)得∵点在抛物线上,点在抛物线上.∴,,整理得:(ⅰ)∵,∴,整理得:,∵,,∴,∴;(ⅱ)将代入,整理得,∵,∴当,即时,h取得最大值为.。

2023年安徽省中考数学真题+答案解析

2023年安徽省中考数学真题+答案解析

2023年安徽省中考数学真题+答案解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5 B.C.D.52.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a24.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1 B.y=﹣x2+1 C.y=2x+1 D.y=﹣2x+16.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC 于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1 D.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n 等于第n个图案中“◎”的个数的2倍.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分 6 7 8 9 10人数 1 2 a b 2已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是,七年级活动成绩的众数为分;(2)a=,b=;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(i)当0<t<2时,求△OBD与△ACE的面积之和;(ii)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为?若存在,请求出点B的横坐标t的值;若不存在,请说明理由.2023年安徽省中考数学真题答案解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5 B.C.D.5【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,即可得出答案.【解答】解:﹣5的相反数是5.故选:D.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.2.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】根据几何体的三视图分析解答即可.【解答】解:由几何体的三视图可得该几何体是B选项,故选:B.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分别化简,进而判断即可.【解答】解:A.a4+a4=2a4,故此选项不合题意;B.a4•a4=a8,故此选项不合题意;C.(a4)4=a16,故此选项符合题意;D.a8÷a4=a4,故此选项不合题意.故选:C.4.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:<0,x﹣1<0,x<1,在数轴上表示为,故选:A.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1 B.y=﹣x2+1 C.y=2x+1 D.y=﹣2x+1【分析】根据各函数解析式可得y随x的增大而减小时x的取值范围.【解答】解:选项A中,函数y=x2+1,x<0时,y随x的增大而减小;故A不符合题意;选项B中,函数y=﹣x2+1,x>0时,y随x的增大而减小;故B不符合题意;选项C中,函数y=2x+1,y随x的增大而增大;故C不符合题意;选项D中,函数y=﹣2x+1,y随x的增大而减小.故D符合题意;故选:D.6.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°【分析】根据多边形的内角和可以求得∠BAE的度数,根据周角等于360°,可以求得∠COD的度数,然后即可计算出∠BAE﹣∠COD的度数.【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.【分析】先罗列出所有等可能结果,从中找到“平稳数”的结果,再根据概率公式求解即可.【解答】解:用1,2,3这三个数字随机组成一个无重复数字的三位数出现的等可能结果有:123、132、213、231、312、321,其中恰好是“平稳数”的有123、321,所以恰好是“平稳数”的概率为=,故选:C.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC 于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1 D.【分析】根据相似三角形的判定结合正方形的性质证得△AEF∽△ACB,求得AC=3,根据相似三角形的性质求得AE=2,CE=,证得△ADE∽△CFE,根据相似三角形的性质得到CM ==BM,证得△CDM≌△BGM,求出BG,根据勾股定理即可求出MG.【解答】解:∵四边形ABCD是正方形,AF=2,FB=1,∴CD=AD=AB=BC=3,∠ADC=∠DAB=∠ABC=90°,DC∥AB,AD∥BC,∴AC==3,∵EF⊥AB,∴EF∥BC,∴△AEF∽△ACB,∴=,∴=,∴EF=2,∴AE==2,∴CE=AC﹣AE=,∵AD∥CM,∴△ADE∽△CFE,∴=,∴==2,∴CM==BM,在△CDM和△BGM中,,∴△CDM≌△BGM(SAS),∴CD=BG=3,∴MG===.故选:B.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.【分析】根据反比例函数y=与一次函数y=﹣x+b的图象,可知k>0,b>0,所以函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,根据两个交点为(1,k)和(k,1),可得k ﹣b=﹣1,b=k+1,可得函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),不过原点,即可判断函数y =x2﹣bx+k﹣1的大致图象.【解答】解:∵一次函数函数y=﹣x+b的图象经过第一、二、四象限,且与y轴交于正半轴,则b>0,反比例函数y=的图象经过第一、三象限,则k>0,∴函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,由图象可知,反比例函数y=与一次函数y=﹣x+b的图象有两个交点(1,k)和(k,1),∴﹣1+b=k,∴k﹣b=﹣1,∴b=k+1,∴对于函数y=x2﹣bx+k﹣1,当x=1时,y=1﹣b+k﹣1=﹣1,∴函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),∵反比例函数y=与一次函数y=﹣x+b的图象有两个交点,∴方程=﹣x+b有两个不相等的实数根,∴Δ=b2﹣4k=(k+1)2﹣4k=(k﹣1)2>0,∴k﹣1≠0,∴当x=0时,y=k﹣1≠0,∴函数y=x2﹣bx+k﹣1的图象不过原点,∴符合以上条件的只有A选项.故选:A.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB 最小,即可得P A+PB最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B 正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.四边形ABCD【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK =m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC=(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=3.【分析】直接利用立方根的性质化简,进而得出答案.【解答】解:原式=2+1=3.故答案为:3.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为7.45×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74.5亿=7450000000=7.45×109.故答案为:7.45×109.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=1.【分析】根据BD=(BC+)和AB=7,BC=6,AC=5,可以计算出BD的长,再根据BC的长,即可计算出CD的长.【解答】解:∵BD=(BC+),AB=7,BC=6,AC=5,∴BD=(6+)=5,∴CD=BC﹣BD=6﹣5=1,故答案为:1.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=kx+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,当D的坐标为(2+2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.【分析】直接将分式的分子分解因式,进而化简,把已知数据代入得出答案.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【分析】设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,根据销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,列出二元一次方程组,解方程组即可.【解答】解:设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,由题意得:,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.【分析】(1)根据轴对称的性质画出图形即可;(2)根据平移的性质画出图形即可;(3)根据线段垂直平分线的作法画出图形即可.【解答】解:(1)线段A1B1如图所示;(2)线段A2B2如图所示;(3)直线MN即为所求.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为3n;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n 等于第n个图案中“◎”的个数的2倍.【分析】(1)不难看出,第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,从而可求第n个图案中“◎”的个数;(2)根据所给的规律进行总结即可;(3)结合(1)(2)列出相应的式子求解即可.【解答】解:(1)∵第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,∴第n个图案中“◎”的个数:1+2(n﹣1)+n+1=3n,故答案为:3n;(2)由题意得:第n个图案中“★”的个数可表示为:;故答案为:;(3)由题意得:=2×3n,解得:n=11或n=0(不符合题意).五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】在不同的直角三角形中,利用直角三角形的边角关系进行计算即可.【解答】解:如图,由题意可知,∠ORB=36.9°,∠ORA=24.2°,在Rt△AOR中,AR=40m,∠ORA=24.2°,∴OA=sin∠ORA×AR=sin24.2°×40≈16.4(m),OR=cos24.2°×40≈36.4(m),在Rt△BOR中,OB=tan36.9°×36.4≈27.3(m),∴AB=OB﹣OA=27.3﹣16.4=10.9(m),答:无人机上升高度AB约为10.9m.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.【分析】(1)由垂径定理证出∠ACB=∠ACD,则可得出结论;(2)延长AE交BC于M,延长CE交AB于N,证明四边形AECD是平行四边形,则AE=CD=3,根据勾股定理即可得出答案.【解答】(1)证明:∵OA⊥BD,∴=,∴∠ACB=∠ACD,即CA平分∠BCD;(2)延长AE交BC于M,延长CE交AB于N,∵AE⊥BC,CE⊥AB,∴∠AMB=∠CNB=90°,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°,∴∠BAD=∠CNB,∠BCD=∠AMB,∴AD∥NC,CD∥AM,∴四边形AECD是平行四边形,∴AE=CD=3,∴BC===3.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分 6 7 8 9 10人数 1 2 a b 2 已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是1,七年级活动成绩的众数为8分;(2)a=2,b=3;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.【分析】(1)分别求得成绩为8分,9分,10分的人数,再结合总人数为10人列式计算即可求得成绩为7分的学生数,然后根据众数定义即可求得众数;(2)根据中位数的定义将八年级的活动成绩从小到大排列,那么其中位数应是第5个和第6个数据的平均数,结合已知条件易得第5个和第6个数据分别为8,9,再根据表格中数据即可求得答案;(3)结合(1)(2)中所求,分别求得两个年级优秀率及平均成绩后进行比较即可.【解答】解:(1)由扇形统计图可得,成绩为8分的人数为10×50%=5(人),成绩为9分的人数为10×20%=2(人),成绩为10分的人数为10×20%=2(人),则成绩为7分的学生数为10﹣5﹣2﹣2=1(人),∵出现次数最多的为8分,∴七年级活动成绩的众数为8分,故答案为:1;8;(2)由题意,将八年级的活动成绩从小到大排列后,它的中位数应是第5个和第6个数据的平均数,∵八年级10名学生活动成绩的中位数为8.5分,∴第5个和第6个数据的和为8.5×2=17=8+9,∴第5个和第6个数据分别为8分,9分,∵成绩为6分和7分的人数为1+2=3(人),∴成绩为8分的人数为5﹣3=2(人),成绩为9分的人数为10﹣5﹣2=3(人),即a=2,b=3,故答案为:2;3;(3)不是,理由如下:结合(1)(2)中所求可得七年级的优秀率为×100%=40%,八年级的优秀率为×100%=50%,七年级的平均成绩为=8.5(分),八年级的平均成绩为=8.3(分),∵40%<50%,8.5>8.3,∴本次活动中优秀率高的年级并不是平均成绩也高.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.【分析】(1)证MA=MD=MB,得∠MAD=∠MDA,∠MDB=∠MBD,再由三角形内角和定理得∠ADB=∠MDA+∠MDB=90°即可;(2)(i)证四边形EMBD是平行四边形,得DE=BM=AM,再证四边形EAMD是平行四边形,进而得平行四边形EAMD是菱形,则∠BAD=∠CAD,然后证A、C、D、B四点共圆,由圆周角定理得=,即可得出结论;(ii)过点E作EH⊥AB于点H,由勾股定理得AB=10,再由菱形的性质得AE=AM=5,进而由锐角三角函数定义得EH=3,则AH=4,BH=6,然后由锐角三角函数定义即可得出结论.【解答】(1)解:∵M是AB的中点,∴MA=MB,由旋转的性质得:MA=MD=MB,∴∠MAD=∠MDA,∠MDB=∠MBD,∵∠MAD+∠MDA+∠MDB+∠MBD=180°,∴∠ADB=∠MDA+∠MDB=90°,即∠ADB的大小为90°;(2)(i)证明:∵∠ADB=90°,∴AD⊥BD,∵ME⊥AD,∴ME∥BD,∵ED∥BM,∴四边形EMBD是平行四边形,∴DE=BM=AM,∴DE∥AM,∴四边形EAMD是平行四边形,∵EM⊥AD,∴平行四边形EAMD是菱形,∴∠BAD=∠CAD,又∵∠ACB=∠ADB=90°,∴A、C、D、B四点共圆,∵∠BCD=∠CAD,∴=,∴BD=CD;(ii)解:如图3,过点E作EH⊥AB于点H,则∠EHA=∠EHB=90°,在Rt△ABC中,由勾股定理得:AB===10,∵四边形EAMD是菱形,∴AE=AM=AB=5,∴sin∠CAB===,∴EH =AE •sin ∠CAB =5×=3,∴AH ===4,∴BH =AB ﹣AH =10﹣4=6,∴tan ∠ABE ===,即tan ∠ABE 的值为.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O 是坐标原点,抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2.(1)求a ,b 的值;(2)已知点B ,C 在抛物线上,点B 的横坐标为t ,点C 的横坐标为t +1.过点B 作x 轴的垂线交直线OA 于点D ,过点C 作x 轴的垂线交直线OA 于点E .(i )当0<t <2时,求△OBD 与△ACE 的面积之和;(ii )在抛物线对称轴右侧,是否存在点B ,使得以B ,C ,D ,E 为顶点的四边形的面积为?若存在,请求出点B 的横坐标t 的值;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得答案;(2)由题意得B (t ,﹣t 2+4t ),C (t +1,﹣t 2+2t +3),利用待定系数法可得OA 的解析式为y =x ,则D (t ,t ),E (t +1,t +1),(i )设BD 与x 轴交于点M ,过点A 作AN ⊥CE ,则M (t ,0),N (t +1,3),利用S △OBD +S △ACE =BD •OM +AN •CE 即可求得答案;(ii )分两种情况:①当2<t <3时,②当t >3时,分别画出图象,利用S 四边形DCEB =(BD +CE )•DH ,建立方程求解即可得出答案.【解答】解:(1)∵抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2, ∴, 解得:;(2)由(1)得:y =﹣x 2+4x ,∴当x =t 时,y =﹣t 2+4t ,当x =t +1时,y =﹣(t +1)2+4(t +1),即y =﹣t 2+2t +3,∴B (t ,﹣t 2+4t ),C (t +1,﹣t 2+2t +3),设OA 的解析式为y =kx ,将A (3,3)代入,得:3=3k ,∴k =1,∴OA 的解析式为y =x ,∴D (t ,t ),E (t +1,t +1),(i )设BD 与x 轴交于点M ,过点A 作AN ⊥CE ,如图,则M (t ,0),N (t +1,3),∴S △OBD +S △ACE =BD •OM +AN •CE =(﹣t 2+4t ﹣t )•t +(﹣t 2+2t +3﹣t ﹣1)=(﹣t 3+3t 2)+(t 3﹣3t 2+4)=﹣t 3+t 2+t 3﹣t 2+2=2;(ii )①当2<t <3时,过点D 作DH ⊥CE 于H ,如图,则H (t +1,t ),BD =﹣t 2+4t ﹣t =﹣t 2+3t ,CE =t +1﹣(﹣t 2+2t +3)=t 2﹣t ﹣2,DH =t +1﹣t =1, ∴S 四边形DCEB =(BD +CE )•DH , 即=(﹣t 2+3t +t 2﹣t ﹣2)×1,解得:t=;②当t>3时,如图,过点D作DH⊥CE于H,则BD=t﹣(﹣t2+4t)=t2﹣3t,CE=t2﹣t﹣2,=(BD+CE)•DH,∴S四边形DBCE即=(t2﹣3t+t2﹣t﹣2)×1,解得:t1=+1(舍去),t2=﹣+1(舍去);综上所述,t的值为.。

2023年安徽省中考数学真题(答案解析)

2023年安徽省中考数学真题(答案解析)

2023年安徽省初中学业水平考试数学(试题卷)一、选择题(本大题共10小题,每小题4分,满分40分)1.【答案】A【解析】解:5-的相反数是5,故选:A .2.【答案】B【解析】解:∵主视图是直角三角形,故A ,C ,D 选项不合题意,故选:B .3.【答案】C【解析】解:A 选项,4442a a a +=,故该选项不正确,不符合题意;B 选项,448a a a ⋅=,故该选项不正确,不符合题意;C 选项,()1446a a =,故该选项正确,符合题意;D 选项,844a a a ÷=,故该选项不正确,不符合题意;故选:C .4.【答案】A 【解析】解:102x -<解得:1x <,数轴上表示不等式的解集故选:A .5.【答案】D【解析】解:A 选项,21y x =+,0a >,对称轴为直线0x =,当0x <时,y 的值随x 值的增大而减小,当0x >时,y 的值随x 值的增大而增大,故该选项不正确,不符合题意;B 选项,21y x =-+,a<0,对称轴为直线0x =,当0x <时,y 的值随x 值的增大而增大,当0x >时,y 的值随x 值的增大而减小,故该选项不正确,不符合题意;C 选项,21y x =+,0k >,y 的值随x 值的增大而增大,故该选项不正确,不符合题意;D 选项,21y x =-+,0k <,y 的值随x 值的增大而减小,故该选项正确,符合题意;故选:D .6.【答案】D 【解析】∵360360180,55BAE COD ︒︒∠=︒-∠=,∴3603601803655BAE COD ︒︒∠-∠=︒--=︒,故选D .7.【答案】C【解析】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有,123,132,213,231,312,321共六种可能,只有123321,是“平稳数”∴恰好是“平稳数”的概率为21=63故选:C .8.【答案】B【解析】解:∵四边形ABCD 是正方形,2AF =,1FB =,∴213AD BC AB AF FG ===+=+=,AD CB ∥,,AD AB CB AB ⊥⊥,∵EF AB ⊥,∴AD EF BC ∥∥∴2DE AF EM FB ==,ADE CME ∽△△,∴2AD DE CM EM ==,则1322CM AD ==,∴332MB CM =-=,∵BC AD ∥,∴GMB GDA ∽,∴31232BG MB AG DA ===∴3BG AB ==,在Rt BGM △中,352MG ==,故选:B .9.【答案】A 【解析】解:如图所示,设()1,A k ,则(),1B k ,根据图象可得1k >,将点(),1B k 代入y x b =-+,∴1k b =-+,∴1k b =-,∵1k >,∴2b >,∴21y x bx k =-+-()2222112=224b b x bx b x bx b x b ⎛⎫=-+--=-+--++- ⎪⎝⎭,对称轴为直线12b x =>,当1x =时,121b b -+-=-,∴抛物线经过点()1,1-,∴抛物线对称轴在1x =的右侧,且过定点()1,1-,当0x =时,120y k b =-=->,故选:A .10.【答案】A 【解析】解:如图所示,延长,AD BC ,依题意60QAD QBA ∠=∠=︒∴ABQ 是等边三角形,∵P 是CD 的中点,∴PD PC =,∵DEA CBA ∠=∠,∴ED CQ∥∴,PQC PED PCQ PDE ∠=∠∠=∠,∴PDE PCQ≌∴PQ PE =,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设,AQ BQ 的中点分别为,G H ,则11,22GP AE PH EB ==∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE EB =,则,,Q P F 三点共线,PF 取得最小值,此时()122AE EB AE EB ==+=,则ADE ECB △≌△,∴,C D 到AB 的距离相等,则CD AB ∥,此时332PF AD ==此时ADE V 和BCE 的边长都为2,则,AP PB 最小,∴3232PF =⨯=,∴()22237PA PB ==+=∴PA PB +=27,或者如图所示,作点B 关于GH 对称点B ',则PB PB '=,则当,,A P B '三点共线时,AP PB AB '+=此时()2224237AB AB BB ''=+=+故A 选项错误,根据题意可得,,P Q F 三点共线时,PF 最小,此时PE PF =3=23PE PF +=B 选项正确;CDE 周长等于4CD DE CE CD AE EB CD AB CD ++=++=+=+,即当CD 最小时,CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵60,60GHQ GHM GDM ∠=︒∠=∠=︒,则120CHM ∠=︒如图,延长DE ,HG ,交于点N ,则60NGD QGH ∠=∠=︒,60NDG ADE ∠=∠=︒∴NGD △是等边三角形,∴ND GD HM ==,在NPD 与HPC △中,60NPD HPC N CHP PD PC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴NPD HPC≌∴ND CH=∴CH MH=∴30HCM HMC ∠=∠=︒∴CM QF ∥,则CM DM ⊥,∴DMC是直角三角形,在DCM △中,DC DM>∴当DC DM =时,DC 最短,122DC GH AB ===∵2CD PC PC=+∴CDE 周长的最小值为2226++=,故C 选项正确;∵NPD HPC≌∴四边形ABCD 面积等于ADE EBC DEC ADE NEBHS S S S S ++=+ 平行四边∴当BGD △的面积为0时,取得最小值,此时,,D G 重合,C H ,重合∴四边形ABCD 面积的最小值为2332=4⨯33D 选项正确,故选:A .二、填空题(本大题共4小题,每小题5分,满分20分)11.【答案】3381+=213+=,故答案为:3.12.【答案】97.4510⨯【解析】解:74.5亿89=74.5107.4510⨯=⨯.故答案为:97.4510⨯.13.【答案】1【解析】解:∵7,6AB BC ==,5AC =,∴2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭149256526-⎛⎫=+= ⎪⎝⎭∴651CD BC BD =-=-=,故答案为:1.14.【答案】①.3②.4【解析】解:(1)∵2,30AB AOB =∠=︒,90OAB ∠=︒,∴3,24OA OB AB ===∴()(),2A B ,∵C 是OB 的中点,∴)C ,∵反比例函数(0)k y k x =>的图象经过斜边OB 的中点C .∴k =∴反比例数解析式为3y x =(2)∵()A,)C 设直线AC 的解析式为y kx b=+∴01b b⎧=+⎪⎨=+⎪⎩解得:332k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为323y x =-+,∵∥DB AC ,设直线BD 的解析式为33y x b =-+,将点()2B 代入并解得4b =,∴直线BD 的解析式为343y x =-+,∵反比例数解析式为y x=联立3433y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得:32x y ⎧=⎪⎨=⎪⎩或32x y ⎧=-⎪⎨=+⎪⎩当32x y ⎧=⎪⎨=-⎪⎩时,((2223229312BD =-+-+=+=当32x y ⎧=⎪⎨=+⎪⎩时,()()2223229312BD =++=+=(222216OB =+=∴22OB BD -4=,故答案为:4.三、(本大题共2小题,每小题8分,满分16分)15.【答案】1x +【解析】解:2211x x x +++()211x x +=+1x =+,当1x =时,∴原式=11-+=.16.【答案】调整前甲、乙两地该商品的销售单价分别为40,50元【解析】解:设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意得,()10110%15x y x y +=⎧⎨++=-⎩解得:4050x y =⎧⎨=⎩答:调整前甲、乙两地该商品的销售单价分别为40,50元四、(本大题共2小题、每小题8分、满分16分)17.【答案】(1)见解析(2)见解析(3)见解析【解析】(1)解:如图所示,线段11A B 即为所求;A B即为所求;(2)解:如图所示,线段22M N即为所求(3)解:如图所示,点,如图所示,∵221310AM BM ==+221310MN =+=∴AM MN =,又1,3NP MQ MP AQ ====,∴NPM MQA ≌,∴NMP MAQ ∠=∠,又90MAQ AMQ ∠+∠=︒,∴90NMP AMQ ∠+∠=︒∴AM MN ⊥,∴MN 垂直平分AB .18.【答案】(1)3n (2)()12n n ⨯+(3)11n =【解析】(1)解:第1个图案中有3个,第2个图案中有336+=个,第3个图案中有3239+⨯=个,第4个图案中有33312+⨯=个,……∴第n 个图案中有3n 个,故答案为:3n .(2)第1个图案中“★”的个数可表示为122⨯,第2个图案中“★”的个数可表示为232´,第3个图案中“★”的个数可表示为342⨯,第4个图案中“★”的个数可表示为452⨯,……,第n 个图案中“★”的个数可表示为()12n n ⨯+,(3)解:依题意,()11232n n n ⨯+++++=……,第n 个图案中有3n 个,∴()1322n n n +=⨯,解得:0n =(舍去)或11n =.五、(本大题共2小题,每小题10分,满分20分)19.【答案】无人机从A 点到B 点的上升高度AB 约为10.9米【解析】解:依题意,24.2ARO ∠=︒,36.9BRO ∠=︒,40AR =,在Rt AOR 中,24.2ARO ∠=︒,∴sin 40sin 24.2AO AR ARO =⨯∠=⨯︒,cos 40cos 24.2RO AR ARO =⨯∠=⨯︒,在Rt BOR 中,tan 40cos 24.2tan 36.9OB OR BRO =⨯∠=⨯︒⨯︒,∴AB BO AO=-40cos 24.2tan 36.940sin 24.2=⨯︒⨯︒-⨯︒400.910.75400.41≈⨯⨯-⨯10.9≈(米)答:无人机从A 点到B 点的上升高度AB 约为10.9米.20.【答案】(1)见解析(2)BC =【解析】(1)∵对角线BD 是O 的直径,OA BD⊥∴ AB AD =,∴BCA DCA ∠=∠,∴CA 平分BCD ∠.(2)∵对角线BD 是O 的直径,∴90BAD BCD ∠=∠=︒,∴,DC BC DA AB⊥⊥∵,AE BC CE AB ⊥⊥,∴,DC AE DA CE ,∴四边形AECD 平行四边形,∴3DC AE ==,又∵BD =,∴BC ==.六、(本题满分12分)21.【答案】(1)1,8(2)23,(3)优秀率高的年级不是平均成绩也高,理由见解析【解析】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%---∴样本中,七年级活动成绩为7分的学生数是1010%=1´,根据扇形统计图,七年级活动成绩的众数为8分,故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =--=,1012223b =----=,故答案为:23,.(3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<,∴优秀率高的年级为八年级,但平均成绩七年级更高,∴优秀率高的年级不是平均成绩也高七、(本题满分12分)22.【答案】(1)90ADB ∠=︒(2)(ⅰ)见解析;(ⅱ)12【解析】(1)解:∵MA MD MB==∴,MAD MDA MBD MDB ∠=∠∠=∠,在ABD △中,=180MAD MDA MBD MDB ∠+∠+∠+∠︒∴180902ADB ADM BDM ︒∠=∠+∠==︒(2)证明:(ⅰ)证法一:如图,延长BD AC 、,交于点F ,则90BCF ∠=︒,∵ME AD ⊥,90ADB ∠=︒∴EM BD ∥.又∵DE AB ∥,∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点,,∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥,∴AMDE 是菱形.∴AE AM =.∵EM BD ∥,∴AE AM AF AB=.∴AB AF =.∵90ADB ∠=︒,即AD BF ⊥,∴BD DF =,即点D 是Rt BCF 斜边的中点.∴BD CD =.证法二:∵90ACB ADB ∠=∠=︒,M 是斜边AB 的中点,∴点A C D B 、、、在以M 为圆心,AB 为直径的M 上.∵ME AD ⊥,∴ME 垂直平分AD .∴EA ED =.∴EAD EDA ∠=∠.∵DE AB ∥,∴BAD EDA ∠=∠.∴EAD BAD ∠=∠.∴BD CD =.证法三:∵ME AD ⊥,90ADB ∠=︒∴EM BD ∥.又∵DE AB ∥,∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点,,∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥,∴AMDE 是菱形.∴EAD MAD ∠=∠.∵90ACB ADB ∠=∠=︒,M 是斜边AB 的中点,∴点A C D B 、、、在以M 为圆心,AB 为直径的M 上.∴BD CD =.(ⅱ)如图所示,过点E 作EH AB ⊥于点H,∵8,6AC BC ==,∴10AB ==,则152AE AM AB ===,∵,90EAH BAC ACB AHE ∠=∠∠=∠=︒,∴AHE ACB ∽,∴510EH AH AE BC AC AB ===,∴3,4EH AH ==,∴1046BH AB AH =-=-=,∴31tan 62EH ABE BH ===八、(本题满分14分)23.【答案】(1)1,4a b =-=(2)(ⅰ)2;(2)52t =【解析】(1)解:依题意,93322a b b a+=⎧⎪⎨-=⎪⎩,解得:14a b =-⎧⎨=⎩,∴24y x x =-+;(2)(ⅰ)设直线OA 的解析式为y kx =,∵()3,3A ,∴33k=解得:1k =,∴直线y x =,如图所示,依题意,()()()()22,4,1,141B t t t C t t t -++-+++,(),D t t ,()1,1E t t ++,∴()()2223033=33t t t BD t t t t t ⎧-+<≤⎪=-+⎨->⎪⎩,()()()()22220213122t t t CE t t t t t ⎧-++<<⎪=-+++=⎨--≥⎪⎩,∴当02t <<时,OBD 与ACE △的面积之和为()1131=222BD t CE t ⨯+--,(ⅱ)当点B 在对称右侧时,则2t >,∴22CE t t =--,当23t <<时,23BD t t =-+,∴()221321=12BDEC S t t t t t =-++--⨯-梯形,∴312t -=,解得:52t =,当3t >时,23BD t t =-,∴()2221321=212BDCE S t t t t t t =-+--⨯--梯形,∴2321=2t t --,解得:2142t +=(舍去)或2142t =(舍去)综上所述,52t =.。

2024年安徽省中考数学试卷(附答案解析)

2024年安徽省中考数学试卷(附答案解析)

2024年安徽省中考数学试卷(附答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.(4分)据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A.0.944×107B.9.44×106C.9.44×107D.94.4×106【解答】解:944万=9440000=9.44×106,故选:B.3.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据三视图进行观察,下半部分是圆柱,上半部分是圆锥,故选:D.4.(4分)下列计算正确的是()A.a3+a3=a6B.a6÷a3=a2C.(﹣a)2=a2D.=a【分析】利用合并同类项法则,同底数幂除法法则,幂的乘方,二次根式逐项判断即可.【解答】解:A、a3+a3=2a3,故A选项错误;B、a6÷a3=a3,故B选项错误;C、(﹣a)2=a2,故C选项正确;D、,故D选项错误;故选:C.5.(4分)若扇形AOB的半径为6,∠AOB=120°,则的长为()A.2πB.3πC.4πD.6π【分析】利用弧长计算公式计算即可.【解答】解:=,故选:C.【点评】本题考查了弧长的计算,掌握弧长计算公式是解题的关键.6.(4分)已知反比例函数y=(k≠0)与一次函数y=2﹣x的图象的一个交点的横坐标为3,则k的值为()A.﹣3B.﹣1C.1D.3【分析】将x=3代入一次函数中,求得y=﹣1,再将(3,﹣1)代入反比例函数中,求得k的值.【解答】解:将x=3代入y=2﹣x中,得:y=﹣1,将(3,﹣1)代入y=中,得:k=﹣3,故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,将交点横坐标代入解析式中是解题的关键.7.(4分)如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是()A.B.C.2﹣2D.【分析】由等腰直角三角形的性质可得AB=2,AH=BH=CH=,由勾股定理可求DH的长,即可求解.【解答】解:如图,过点C作CH⊥AB于H,∵AC=BC=2,∠ACB=90°,CH⊥AB,∴AB=2,AH=BH=CH=,∵CD=AB=2,∴DH===,∴DB=﹣,故选:B.【点评】本题考查了等腰直角三角形的性质,勾股定理,掌握等腰直角三角形的性质是解题的关键.8.(4分)已知实数a,b满足a﹣b+1=0,0<a+b+1<1,则下列判断正确的是()A.﹣<a<0B.<b<1C.﹣2<2a+4b<1D.﹣1<4a+2b<0【分析】由a﹣b+1=0得出b=a+1,代入0<a+b+1<1可得﹣1<a<﹣,再求0<b<,分别代入选项判断即可.【解答】解:∵a﹣b+1=0,∴b=a+1,∵0<a+b+1<1,∴0<a+a+1+1<1,即0<2a+2<1∴﹣1<a<﹣,故选项A错误,不合题意.∵b=a+1,﹣1<a<﹣,∴0<b<,故选项B错误,不合题意.由﹣1<a<﹣得,﹣2<2a<﹣1,﹣4<4a<﹣2,由0<b<得,0<4b<2,0<2b<1,∴﹣2<2a+4b<1,故选项C正确,符合题意.∴﹣4<4a+2b<﹣1,选项D错误,不合题意.故选:C.【点评】本题主要考查了解一元一次不等式,掌握解一元一次不等式是解题关键.9.(4分)在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能推出AF与CD一定垂直的是()A.∠ABC=∠AED B.∠BAF=∠EAF C.∠BCF=∠EDF D.∠ABD=∠AEC【分析】将每个选项的条件分别作为已知条件,结合题干,通过证三角形全等,再看能否证明AF⊥CD 即可【解答】选项A:连接AC、AD,∵AB=AE,∠ABC=∠AED,BC=DE,∴△ABC≌△AED(SAS),∴AC=AD,∵F是AD的中点,∴AF⊥CD,所以选项A不合题意;选项B:连接BF、EF,∵AB=AE,∠BAF=∠EAF,AF=AF,∴△ABF≌△AEF(SAS),∴∠AFB=∠AFE,BF=EF,∴△BFC≌△EFD(SSS),∴∠BFC=∠EFD,∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项B不合题意;选项C:思路与选项B大致相同,先证△BFC≌△EFD(SAS),再证△ABF≌△AEF(SSS),∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项C不合题意;选项D的条件无法证出全等,故证不出AF⊥CD,所以选项D符合题意.故答案选:D.【点评】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的相关知识是解题关键.10.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.【分析】过D作DH⊥AB于H,求出AC==2,BD==;可得CD==AE•DH=x×==,AD=AC﹣CD=,故DH==,从而S△ADEx,S△BDE=BE•DE=(4﹣x)×=﹣x;证明△BDE∽△CDF,可得=()2==S△BDE=(﹣x)=﹣x,从而y=S△ABC﹣S△ADE﹣S△CDF=﹣x+,观,故S△CDF察各选项可知,A符合题意.【解答】解:过D作DH⊥AB于H,如图:∵∠ABC=90°,AB=4,BC=2,∴AC==2,∵BD是边AC上的高,∴BD===;∴CD ==,AD =AC ﹣CD =,∴DH ===,∴S △ADE =AE •DH =x ×=x ,S △BDE =BE •DE =(4﹣x )×=﹣x ;∵∠BDE =90°﹣∠BDF =∠CDF ,∠DBE =90°﹣∠CBD =∠C ,∴△BDE ∽△CDF ,∴=()2=()2=,∴S △CDF =S △BDE =(﹣x )=﹣x ,∴y =S △ABC ﹣S △ADE ﹣S △CDF =×2×4﹣x ﹣(﹣x )=﹣x +,∵﹣<0,∴y 随x 的增大而减小,且y 与x 的函数图象为线段(不含端点),观察各选项图象可知,A 符合题意;故选:A .【点评】本题考查动点问题的函数图象,涉及相似三角形判定与性质,勾股定理及应用,面积法等,解题的关键是求出y 与x 的函数关系式.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)若分式有意义,则实数x 的取值范围是.【分析】根据分式分母不为0进行计算即可.【解答】解:∵分式有意义,∴x ﹣4≠0,∴x ≠4,故答案为:x ≠4.12.(5分)我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:(填“>”或“<”).【解答】解:()2=10,()2=,∵10,∴,故答案为:>.13.(5分)不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.【分析】先画出树状图,再根据树状图求概率.【解答】解:由图可知,共有12种可能的结果,其中2个红球的结果出现2次,∴P=,故答案为:.14.(5分)如图,现有正方形纸片ABCD,点E,F分别在边AB,BC上.沿垂直于EF的直线折叠得到折痕MN,点B,C分别落在正方形所在平面内的点B′,C′处,然后还原.(1)若点N在边CD上,且∠BEF=α,则∠C′NM=(用含α的式子表示);(2)再沿垂直于MN的直线折叠得到折痕GH,点G,H分别在边CD,AD上,点D落在正方形所在平面内的点D′处,然后还原.若点D′在线段B′C′上,且四边形EFGH是正方形,AE=4,EB=8,MN与GH的交点为P,则PH的长为3.【解答】解:(1)∵MN⊥EF,∠BEF=α,∴∠EMN=90°﹣α,∵CD∥AB,∴∠CNM=∠EMN=90°﹣α,∴∠C′NM=∠CNM=90°﹣α.故答案为:90°﹣α.(2)如图,设PH与NC'交于点G',∵四边形ABCD和四边形EFGH是正方形,∴∠A=∠D=∠GHE=90°,GH=EH,∴∠AHE+∠GHD=∠AHE+∠AEH=90°∴∠GHD=∠AEH,∴△EAH≌△HDG(AAS)同理可证△EAH≌△HDG≌△GCF≌△FBE,∴DH=CG=AE=4,DG=EB=8,∴GH==4,∵MN⊥GH,且∠C′NM=∠CNM,∴MN垂直平分GG',即PG=PG'=GG',且NG=NG',∵四边形CBMN沿MN折叠,∴CN=C'N,∴CN﹣NG=C'N﹣NG',即C'G'=CG=4,∵△GDH沿GH折叠得到△GD'H,∴GD'=GD=8,∵∠HC'G'=∠HD'G=90°,∴C'G'∥D'G,∴==,∴HG'=GG'=HG=2,又∵PG'=GG'=,∴PH=PG'+HG'=3.故答案为:3.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:x2﹣2x=3.【分析】利用因式分解解方程.【解答】解:x2﹣2x=3,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A,B,C,D的坐标分别为(7,8),(2,8),(10,4),(5,4).(1)以点D为旋转中心,将△ABC旋转180°得到△A1B1C1,画出△A1B1C1;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分∠BAC,写出点E的坐标.【解答】解:(1)如图,画出△A1B1C1;(2)以B,C1,B1,C为顶点的四边形的面积=10×8﹣2××2×4﹣2××4×8=40;(3)如图,点E即为所求(答案不唯一),点E的坐标(6,6).四、(本大题共2小题,每小题8分,满分16分)17.(8分)乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地,采用新技术种植A ,B 两种农作物.种植这两种农作物每公顷所需人数和投入资金如下表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A 48B39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元,问A ,B 这两种农作物的种植面积各多少公顷?【解答】解:设A 种农作物的种植面积是x 公顷,B 种农作物的种植面积是y 公顷,根据题意得:,解得:.答:A 种农作物的种植面积是3公顷,B 种农作物的种植面积是4公顷.18.(8分)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为x 2﹣y 2(x ,y 均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果1=12﹣023=22﹣125=32﹣227=42﹣329=52﹣42…4=22﹣028=32﹣1212=42﹣2216=52﹣3220=62﹣42…一般结论2n ﹣1=n 2﹣(n ﹣1)24n =按上表规律,完成下列问题:(ⅰ)24=()2﹣()2;(ⅱ)4n =;(2)兴趣小组还猜测:像2,6,10,14,…这些形如4n ﹣2(n 为正整数)的正整数N 不能表示为x 2﹣y 2(x ,y 均为自然数).师生一起研讨,分析过程如下:假设4n ﹣2=x 2﹣y 2,其中x ,y 均为自然数.分下列三种情形分析:①若x,y均为偶数,设x=2k,y=2m,其中k,m均为自然数,则x2﹣y2=(2k)2﹣(2m)2=4(k2﹣m2)为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为偶数.②若x,y均为奇数,设x=2k+1,y=2m+1,其中k,m均为自然数,则x2﹣y2=(2k+1)2﹣(2m+1)2=为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为奇数.③若x,y一个是奇数一个是偶数,则x2﹣y2为奇数.而4n﹣2是偶数,矛盾.故x,y不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【分析】(1)(i)由所给数据可推出24=4×6=(6+1)2﹣(6﹣1)2=72﹣52;(ii)结合第一问推导数据发现规律:4n=4•n=(n+1)2﹣(n﹣1)2;(2)利用平方差公式因式分解即可得到答案.【解答】解:(1)(i)4=4×1=(1+1)2﹣(1﹣1)2,8=4×2=(2+1)2﹣(2﹣1)2,12=4×3=(3+1)2﹣(3﹣1)2,20=4×5=(5+1)2﹣(5﹣1)2,24=4×6=(6+1)2﹣(6﹣1)2=72﹣52,......4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:7,5;(ii)由(1)推导的规律可知4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:(n+1)2﹣(n﹣1)2.(3)(2k+1)2﹣(2m+1)2=(2k+1+2m+1)(2k+1﹣2m﹣1)=4(k2﹣m2+k﹣m).故答案为:4(k2﹣m2+k﹣m).五、(本大题共2小题,每小题10分,满分20分)19.(10分)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B处发出,经水面点E折射到池底点A处.已知BE与水平线的夹角α=36.9°,点B到水面的距离BC=1.20m,点A处水深为1.20m,到池壁的水平距离AD=2.50m.点B,C,D在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求的值(精确到0.1).参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】根据题意得出,∠CEB=α=36.9°,EH=1.20m,从而求出CE,AH,AE的长,分别求出sinβ和sinγ的值,得出结果.【解答】解:过点E作EH⊥AD于点H,由题意可知,∠CEB=α=36.9°,EH=1.20m,∴(m),AH=AD﹣CE=2.50﹣1.60=0.90(m),∴=1.50(m),∴,∵=cosα=0.80,∴.【点评】本题考查了解直角三角形的应用,理解题意得出线段长度是解题的关键.20.(10分)如图,⊙O是△ABC的外接圆,D是直径AB上一点,∠ACD的平分线交AB于点E,交⊙O 于另一点F,FA=FE.(1)求证:CD⊥AB;(2)设FM⊥AB,垂足为M,若OM=OE=1,求AC的长.【分析】(1)证明∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,即可得到∠CDE=90°,由此得出CD⊥AB;(2)求出AB和BC的长,即可求出AC的长.【解答】(1)证明:∵FA=FE,∴∠FAE=∠AEF,∵∠FAE与∠BCE都是所对的圆周角,∴∠FAE=∠BCE,∵∠AEF=∠CEB,∴∠CEB=∠BCE,∵CE平分∠ACD,∴∠ACE=∠DCE∵AB是直径,∴∠ACB=90°,∴∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,∴∠CDE=90°,∴CD⊥AB;(2)解:由(1)知,∠BEC=∠BCE,∴BE=BC,∵AF=EF,FM⊥AB,∴MA=ME=2,AE=4,∴圆的半径OA=OB=AE﹣OE=3,∴BC=BE=OB﹣OE=2,在△ABC中,AB=6,BC=2,∠ACB=90°,∴.【点评】本题考查了圆周角定理,勾股定理,垂径定理等,掌握定理并综合运用是解题的关键.六、(本题满分12分)21.(12分)综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:cm)表示.将所收集的样本数据进行如下分组:组别A B C D Ex 3.5≤x<4.5 4.5≤x<5.5 5.5≤x<6.5 6.5≤x<7.57.5≤x≤8.5整理样本数据,并绘制甲、乙两园样本数据的频数分布直方图,部分信息如下:任务1求图1中a的值.【数据分析与运用】任务2A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是(填正确结论的序号).①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.【分析】(1)用200分别减去其它各组的频数可得a的值;(2)根据加权平均数公式计算即可;(3)分别根据中位数、众数和极差的定义解答即可;(4)根据统计图数据判断即可.【解答】解:(1)由题意得,a=200﹣(15+70+50+25)=40;(2)(15×4+50×5+70×6+50×7+15×8)=6,故乙园样本数据的平均数为6;(3)由统计图可知,两园样本数据的中位数均在C组,故①正确;甲园的众数在B组,乙园的众数在C组,故②结论错误;两园样本数据的最大数与最小数的差不一定相等,故③结论错误;故答案为:①;(4)乙园的柑橘品质更优,理由如下:由样本数据频数分布直方图可得,乙园一级柑橘所占比例大于甲园,因此可以认为乙园的柑橘品质更优.【点评】本题考查频数分布直方图,样本估计总体,频数分布表,加权平均数、中位数、众数以及极差,解题的关键是读懂图象信息,属于中考常考题型.七、(本题满分12分)22.(12分)如图1,▱ABCD的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且AM=CN.点E,F分别是BD与AN,CM的交点.(1)求证:OE=OF;(2)连接BM交AC于点H,连接HE,HF.(ⅰ)如图2,若HE∥AB,求证:HF∥AD;(ⅱ)如图3,若▱ABCD为菱形,且MD=2AM,∠EHF=60°,求的值.【分析】(1)证明△AOE≌△COF(ASA),即可得到OE=OF;(2)(i)证明△HOF∽△AOD,即可得到HF∥AD;(ii)先求出OA=2OH,OB=5OE,即可得到的值.【解答】(1)证明:∵▱ABCD,∴AD∥BC,OA=OC,∴AM∥CN,∵AM=CN,∴四边形AMCN是平行四边形,∴AN∥CM,∴∠OAE=∠OCF,在△AOE与△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)(i)证明:∵HE∥AB,∴,∵OB=OD,OE=OF,∴,∵∠HOF=∠AOD,∴△HOF∽△AOD,∴∠OHF=∠OAD,∴HF∥AD;(ii)解:∵▱ABCD为菱形,∴AC⊥BD,∵OE=OF,∠EHF=60°,∴∠EHO=∠FHO=30°,∴,∵AM∥BC,MD=2AM,∴=,即HC=3AH,∴OA+OH=3(OA﹣OH),∴OA=2OH,∵BN∥AD,MD=2AM,AM=CN,∴,即3BE=2ED,∴3(OB﹣OE)=2(OB+OE),∴OB=5OE,∴,∴的值是.【点评】本题考查了平行四边形的性质与判定,相似三角形的性质与判定,全等三角形的性质与判定等,综合运用性质与判定方法是解题的关键.八、(本题满分14分)23.(14分)已知抛物线y=﹣x2+bx(b为常数)的顶点横坐标比抛物线y=﹣x2+2x的顶点横坐标大1.(1)求b的值;(2)点A(x1,y1)在抛物线y=﹣x2+2x上,点B(x1+t,y1+h)在抛物线y=﹣x2+bx上.(ⅰ)若h=3t,且x1≥0,t>0,求h的值;(ⅱ)若x1=t﹣1,求h的最大值.【分析】(1)求出抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,根据题意列方程,即可求出b的值;(2)先求出h=﹣t2﹣2x1t+2x1+4t,(i)列方程即可求出h的值;(ii)求出h关于t的方程,配顶点式求出h最大值.【解答】解:(1)∵抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,∴,∴b=4;(2)∵点A(x1,y1)在抛物线y=﹣x2+2x上,∴,∵B(x1+t,y1+h)在抛物线y=﹣x2+4x上,∴,t),∴h=﹣t2﹣2x1t+2x1+4t,(i)∵h=3t,∴3t=﹣t2﹣2x1t+2x1+4t,∴t(t+2x1)=t+2x1,∵x1≥0,t>0,∴t+2x1>0,∴t=1,∴h=3;(ii)将x1=t﹣1代入h=﹣t2﹣2x1t+2x1+4t,∴h=﹣3t2+8t﹣2,,∵﹣3<0,∴当,即时,h取最大值.。

2024年安徽省宿州市埇桥区宿城一中中考数学最后一卷+答案解析

2024年安徽省宿州市埇桥区宿城一中中考数学最后一卷+答案解析

2024年安徽省宿州市埇桥区宿城一中中考数学最后一卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如果a 的相反数是2,那么a 等于()A.B.2C.D.2.华为Mate 20手机搭载了全球首款7纳米制程芯片,7纳米就是米.数据用科学记数法表示为()A. B. C.D.3.不等式的解集是()A. B.C.D.4.实数在数轴上的对应点可能是()A.A 点B.B 点C.C 点D.D 点5.如图,菱形ABCD 的的边长为6,,对角线BD 上有两个动点E 、点E 在点F 的左侧,若,则的最小值为()A. B. C.6 D.86.如图是两个可以自由转动的转盘,其中一个转盘平均分为4份,另一个转盘平均分为3份,两个转盘分别标有数字;同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为5的概率是()A.B. C.D.7.如图,二次函数:与一次函数:的图象交于A ,B 两点,则一元二次方程的解为()A.B.,C.,D.8.化简的结果是()A. B. C. D.9.如图,在平面直角坐标系中,的顶点A、C的坐标分别为、,,,函数的图象经过点B,则k的值为()A.B.C.D.2510.如图,在平面直角坐标系中,点A在一次函数位于第一象限的图象上运动,点B在x轴正半轴上运动,在AB右侧以它为边作矩形ABCD,且,,则OD的最大值是()A.B.C.D.二、填空题:本题共5小题,每小题4分,共20分。

11.若分式的值为则______.12.函数中,自变量x的取值范围是__________.13.计算:______.14.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占,期末考试成绩占,小彤的这两项成绩依次是90,则小彤这学期的体育成绩是______.15.如图1,有一张矩形纸片ABCD,已知,,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上如图;然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC上如图,给出四个结论:①AF的长为10;②的周长为18;③;④GH的长为5,其中正确的结论有__________写出所有正确结论的番号三、解答题:本题共9小题,共90分。

2020年安徽省中考数学试卷【解答版】

2020年安徽省中考数学试卷【解答版】

2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比-2小的数是()A.- 12B. 12C.-3D.0【答案】解:根据两个负数,绝对值大的反而小可知-3<-2.故选C.2.计算(-a)6÷a3的结果是()A.-a3B.-a2C.a3D.a2【答案】原式=a6÷a3=a3.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【答案】A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【答案】54700000用科学记数法表示为:5.47×107.5.下列方程中,有两个相等实数根的是()A.x2+1=2xB.x2+1=0C.x2-2x=3D.x2-2x=0【答案】A、△=(-2)2-4×1×1=0,有两个相等实数根;B、△=0-4=-4<0,没有实数根;C、△=(-2)2-4×1×(-3)=16>0,有两个不相等实数根;D、△=(-2)2-4×1×0=4>0,有两个不相等实数根.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是 187D.中位数是13【答案】数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;x¯=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2= 17[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]= 187,因此方差为 187,于是选项C不符合题意;7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(-1,2)B.(1,-2)C.(2,3)D.(3,4)【答案】A、当点A的坐标为(-1,2)时,-k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,-2)时,k+3=-2,解得:k=-5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=13>0,∴y随x的增大而增大,选项D不符合题意.8.如图,Rt△ABC中,∠C=90∘,点D在AC上,∠DBC=∠A.若AC=4,cos A= 45,则BD的长度为()A. 94B. 125C. 154D.4【答案】∵∠C=90∘,AC=4,cos A= 45,∴AB=ACcos A=5,∴BC=AB2-AC2=3,∵∠DBC=∠A.∴ cos∠DBC=cos∠A=BCBD=45,∴BD=3× 54= 154,9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120∘C.若∠ABC=120∘,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【答案】A、如图,若半径OB 平分弦AC ,则四边形OABC 不一定是平行四边形;原命题是假命题;B 、若四边形OABC 是平行四边形,则AB =OC ,OA =BC ,∵ OA =OB =OC ,∴ AB =OA =OB =BC =OC ,∴ ∠ABO =∠OBC =60∘,∴∠ABC =120∘,是真命题;C 、如图,若∠ABC =120∘,则弦AC 不平分半径OB ,原命题是假命题;D 、如图,若弦AC 平分半径OB ,则半径OB 不一定平分弦AC ,原命题是假命题;10. 如图,△ABC 和△DEF 都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将△ABC 在直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为()A.B.C.D.【答案】如图1所示:当0<x ≤2时,过点G 作GH ⊥BF 于H.∵ △ABC 和△DEF 均为等边三角形,∴△GEJ 为等边三角形.∴ GH = 32EJ = 32x ,∴ y = 12EJ ⋅GH =34x 2.当x =2时,y =3,且抛物线的开口向上.如图2所示:2<x ≤4时,过点G 作GH ⊥BF 于H .y = 12FJ ⋅GH =34(4-x )2,函数图象为抛物线的一部分,且抛物线开口向上.二、填空题(本大题共4小题,每小题5分,满分20分)11. 计算:9-1=________. 【答案】原式=3-1=2.12. 分解因式:ab 2-a =________. 【答案】解:原式=a (b 2-1)=a (b +1)(b -1),故答案为:a (b +1)(b -1).13. 如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y = k x的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为_______.【答案】一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B ,令x =0,则y =k ,令y =0,则x =-k ,故点A 、B 的坐标分别为(-k ,0)、(0,k ),则△OAB 的面积= 12OA ⋅OB = 12k 2,而矩形ODCE 的面积为k ,则 12k 2=k ,解得:k =0(舍去)或2,14. 在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∠PAQ 的大小为________​∘;(2)当四边形APCD 是平行四边形时, AB QR的值为________.【答案】由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠PAB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP ,∵∠QRA +∠QRP =180∘,∴ ∠D +∠C =180∘,∴ AD //BC ,∴ ∠B +∠DAB =180∘,∵ ∠DQR +∠CQR =180∘,∴ ∠DQA +∠CQP =90∘,∴ ∠AQP =90∘,∴ ∠B =∠AQP =90∘,∴ ∠DAB =90∘,∴∠DAQ =∠QAP =∠PAB =30∘,故答案为:30;由折叠的性质可得:AD =AR ,CP =PR ,∵ 四边形APCD 是平行四边形,∴ AD =PC ,∴ AR =PR ,又∵∠AQP =90∘,∴ QR = 12AP ,∵ ∠PAB =30∘,∠B =90∘,∴ AP =2PB ,AB =3PB ,∴PB =QR ,∴AB QR= 3,故答案为:3.三、(本大题共2小题,每小题8分,满分16分)15. 解不等式: 2x -12>1.【答案】去分母,得:2x -1>2,移项,得:2x >2+1,合并,得:2x >3,系数化为1,得:x > 32.16. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90∘得到线段B 1A 2,画出线段B 1A 2.【答案】如图线段A 1B 1即为所求.如图,线段B 1A 2即为所求.四、(本大题共2小题,每小题8分,满分16分)17. 观察以下等式:第1个等式: 13×(1+ 21)=2- 11,第2个等式: 34×(1+ 22)=2- 12,第3个等式: 55×(1+ 23)=2- 13,第4个等式: 76×(1+ 24)=2- 14.第5个等式: 97×(1+ 25)=2- 15.…按照以上规律,解决下列问题: (1)写出第6个等式:________;(2)写出你猜想的第n 个等式:________(用含n 的等式表示),并证明.【答案】第6个等式: 118×(1+ 26)=2- 16;猜想的第n 个等式: 2n -1n +2×(1+ 2n )=2- 1n .证明:∵ 左边= 2n -1n +2× n +2n = 2n -1n=2- 1n =右边,∴ 等式成立.故答案为: 118×(1+ 26)=2- 16; 2n -1n +2×(1+ 2n )=2- 1n.18.如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9∘,塔顶A 的仰角∠ABD =42.0∘,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9∘≈0.75,sin36.9∘≈0.60,tan42.0∘≈0.90.)【答案】由题意,在Rt △ABD 中,tan ∠ABD = AD BD,∴ tan42.0∘= AD BD≈0.9,∴ AD ≈0.9BD ,在Rt △BCD 中,tan ∠CBD = CD BD,∴ tan36.9∘= CDBD≈0.75,∴ CD ≈0.75BD ,∵ AC =AD -CD ,∴ 15=0.15BD ,∴ BD =100米,∴CD =0.75BD =75(米),五、(本大题共2小题,每小题10分,满分20分)19. 某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a -x2020年4月份1.1a1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.【答案】∵ 与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a -x )元.故答案为:1.04(a -x ).依题意,得:1.1a =1.43x +1.04(a -x ),解得:x = 213,∴ 1.43x 1.1a =1.43⋅ 213a 1.1a = 0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20. 如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【答案】证明:∵ AB 是半圆O 的直径,∴∠ACB =∠ADB =90∘,在Rt △CBA 与Rt △DAB 中,BC =ADBA =AB ,∴ Rt △CBA ≅Rt △DAB (HL );∵ BE =BF ,由(1)知BC ⊥EF ,∴ ∠E =∠BFE ,∵ BE 是半圆O 所在圆的切线,∴ ∠ABE =90∘,∴ ∠E +∠BAE =90∘,由(1)知∠D =90∘,∴∠DAF +∠AFD =90∘,∵ ∠AFD =∠BFE ,∴ ∠AFD =∠E ,∴ ∠DAF =90∘-∠AFD ,∠BAF =90∘-∠E ,∴ ∠DAF =∠BAF ,∴AC 平分∠DAB .六、(本题满分12分)21. 某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A 套餐的人数为_____,扇形统计图中“C ”对应扇形的圆心角的大小为_____°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【答案】在抽取的240人中最喜欢A 套餐的人数为240×25%=60(人),则最喜欢C 套餐的人数为240-(60+84+24)=72(人),∴扇形统计图中“C ”对应扇形的圆心角的大小为360∘× 72240=108∘,故答案为:60、108;估计全体960名职工中最喜欢B 套餐的人数为960× 84240=336(人);画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴ 甲被选到的概率为 612= 12.七、(本题满分12分)22. 在平面直角坐标系中,已知点A (1,2),B (2,3),C (2,1),直线y =x +m 经过点A ,抛物线y =ax 2+bx +1恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线y =x +m 上,并说明理由;(2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】点B 是在直线y =x +m 上,理由如下:∵ 直线y =x +m 经过点A (1,2),∴ 2=1+m ,解得m =1,∴ 直线为y =x +1,把x =2代入y =x +1得y =3,∴ 点B (2,3)在直线y =x +m 上;∵ 直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得 a +b +1=24a +2b +1=1,解得a =-1,b =2;由(2)知,抛物线为y =-x 2+2x +1,设平移后的抛物线为y =-x +px +q ,其顶点坐标为( p 2, p 24+q ),∵ 顶点仍在直线y =x +1上,∴ p 24+q = p 2+1,∴ q = p 24- p 2-1,∵ 抛物线y =-x +px +q 与y 轴的交点的纵坐标为q ,∴ q = p 24- p 2-1=- 14(p -1)2+ 54,∴ 当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为 54.八、(本题满分14分)23. 如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE =AD .EC 与BD 相交于点G ,与AD 相交于点F ,AF =AB .(1)求证:BD ⊥EC ;(2)若AB =1,求AE 的长;(3)如图2,连接AG ,求证:EG -DG = 2AG .【答案】证明:∵ 四边形ABCD 是矩形,点E 在BA 的延长线上,∴ ∠EAF =∠DAB =90∘,又∵AE =AD ,AF =AB ,∴ △AEF ≅△ADB (SAS ),∴ ∠AEF =∠ADB ,∴∠GEB +∠GB E =∠ADB +∠ABD =90∘,即∠EGB =90∘,故BD ⊥EC ,∵ 四边形ABCD 是矩形,∴ AE //CD ,∴ ∠AEF =∠DCF ,∠EAF =∠CDF ,∴△AEF ∽△DCF ,∴AE DC= AF DF ,即AE ⋅DF =AF ⋅DC ,设AE =AD =a (a >0),则有a ⋅(a -1)=1,化简得a 2-a -1=0,解得a = 1+ 52或 1-52(舍去),∴ AE = 1+ 52.如图,在线段EG 上取点P ,使得EP =DG,在△AEP 与△ADG 中,AE =AD ,∠AEP =∠ADG ,EP =DG ,∴ △AEP ≅△ADG (SAS ),∴ AP =AG ,∠EAP =∠DAG ,∴ ∠PAG =∠PAD +∠DAG =∠PAD +∠EAP =∠DAE =90∘,∴ △PAG 为等腰直角三角形,∴EG -DG =EG -EP =PG =2AG.。

2024年安徽省中考真题数学试卷含答案解析

2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

2020年安徽省中考数学试卷(含答案解析)

2020年安徽省中考数学试卷(含答案解析)

2020年安徽省中考数学试卷(含答案)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比2-小的数是( )A .3-B .1-C .0D .2【解答】解:根据两个负数,绝对值大的反而小可知32-<-.故选:A .2.(4分)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a【解答】解:原式633a a a =÷=.故选:C .3.(4分)下面四个几何体中,主视图为三角形的是( )A .B .C .D .【解答】解:A 、主视图是圆,故A 不符合题意;B 、主视图是三角形,故B 符合题意;C 、主视图是矩形,故C 不符合题意;D 、主视图是正方形,故D 不符合题意;故选:B .4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .85.4710⨯B .80.54710⨯C .554710⨯D .75.4710⨯【解答】解:54700000用科学记数法表示为:75.4710⨯.故选:D .5.(4分)下列方程中,有两个相等实数根的是( )A .212x x +=B .210x +=C .223x x -=D .220x x -=【解答】解:A 、△2(2)4110=--⨯⨯=,有两个相等实数根;B 、△0440=-=-<,没有实数根;C 、△2(2)41(3)160=--⨯⨯-=>,有两个不相等实数根;D 、△2(2)41040=--⨯⨯=>,有两个不相等实数根.故选:A .6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;(11101113111315)712x =++++++÷=,即平均数是12,于是选项B 不符合题意;22222118[(1012)(1112)3(1312)2(1512)]77S =-+-⨯+-⨯+-=,因此方差为187,于是选项C 不符合题意;故选:D .7.(4分)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(1,2)-B .(1,2)-C .(2,3)D .(3,4)【解答】解:A 、当点A 的坐标为(1,2)-时,32k -+=,解得:10k =>,y ∴随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,2)-时,32k +=-,解得:50k =-<,y ∴随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,233k +=,解得:0k =,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,334k +=,解得:103k =>, y ∴随x 的增大而增大,选项D 不符合题意.故选:B .8.(4分)如图,Rt ABC ∆中,90C ∠=︒,点D 在AC 上,DBC A ∠=∠.若4AC =,4cos 5A =,则BD 的长度为( )A .94B .125C .154D .4【解答】解:90C ∠=︒,4AC =,4cos 5A =,5cos AC AB A ∴==,∴223BC AB AC =-=, DBC A ∠=∠.4cos cos 5BC DBC A BD ∴∠=∠==,∴515344BD =⨯=,故选:C . 9.(4分)已知点A ,B ,C 在O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则120ABC ∠=︒C .若120ABC ∠=︒,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC【解答】解:A 、如图,若半径OB 平分弦AC ,则四边形OABC 不一定是平行四边形;原命题是假命题; B 、若四边形OABC 是平行四边形,则AB OC =,OA BC =,OA OB OC ==,AB OA OB BC OC ∴====,60ABO OBC ∴∠=∠=︒,120ABC ∴∠=︒,是真命题;C 、如图,若120ABC ∠=︒,则弦AC 不平分半径OB ,原命题是假命题;D 、如图,若弦AC 平分半径OB ,则半径OB 不一定平分弦AC ,原命题是假命题;故选:B .10.(4分)如图,ABC ∆和DEF ∆都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将ABC ∆在直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )A .B .C .D .【解答】解:如图1所示:当02x <时,过点G 作GH BF ⊥于H .ABC ∆和DEF ∆均为等边三角形,GEJ ∴∆为等边三角形.3322GH EJ x ∴==,21324y EJ GH x ∴==. 当2x =时,3y =,且抛物线的开口向上.如图2所示:24x <时,过点G 作GH BF ⊥于H .213)24y FJ GH x ==-,函数图象为抛物线的一部分,且抛物线开口向上.故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)计算:91-= 2 .【解答】解:原式312=-=故答案为:2.12.(5分)分解因式:2ab a -= (1)(1)a b b +- .【解答】解:原式2(1)(1)(1)a b a b b =-=+-,故答案为:(1)(1)a b b +-13.(5分)如图,一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数k y x=的图象在第一象限内交于点C ,CD x ⊥轴,CE y ⊥轴.垂足分别为点D ,E .当矩形ODCE 与OAB ∆的面积相等时,k 的值为 2 .【解答】解:一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B ,令0x =,则y k =,令0y =,则x k =-,故点A 、B 的坐标分别为(,0)k -、(0,)k ,则OAB ∆的面积21122OA OB k ==,而矩形ODCE 的面积为k , 则212k k =,解得:0k =(舍去)或2,故答案为2. 14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将PCQ ∆,ADQ ∆分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)PAQ ∠的大小为 30 ︒;(2)当四边形APCD 是平行四边形时,AB QR的值为 .【解答】解:(1)由折叠的性质可得:B AQP ∠=∠,DAQ QAP PAB ∠=∠=∠,DQA AQR ∠=∠,CQP PQR ∠=∠,D ARQ ∠=∠,C QRP ∠=∠,180QRA QRP ∠+∠=︒,180D C ∴∠+∠=︒,//AD BC ∴,180B DAB ∴∠+∠=︒,180DQR CQR ∠+∠=︒,90DQA CQP ∴∠+∠=︒,90AQP ∴∠=︒,90B AQP ∴∠=∠=︒,90DAB ∴∠=︒,30DAQ QAP PAB ∴∠=∠=∠=︒,故答案为:30;(2)由折叠的性质可得:AD AR =,CP PR =, 四边形APCD 是平行四边形,AD PC ∴=,AR PR ∴=,又90AQP ∠=︒,12QR AP ∴=, 30PAB ∠=︒,90B ∠=︒,2AP PB ∴=,3AB PB =,PB QR ∴=,∴3AB QR =, 三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:2112x ->. 【解答】解:去分母,得:212x ->,移项,得:221x >+,合并,得:23x >,系数化为1,得:32x >. 16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段11A B (点1A ,1B 分别为A ,B 的对应点);(2)将线段11B A 绕点1B 顺时针旋转90︒得到线段12B A ,画出线段12B A .【解答】解:(1)如图线段11A B 即为所求.(2)如图,线段12B A 即为所求.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:121(1)2311⨯+=-,第2个等式:321(1)2422⨯+=-, 第3个等式:521(1)2533⨯+=-,第4个等式:721(1)2644⨯+=-.第5个等式:921(1)2755⨯+=-.⋯按照以上规律,解决下列问题: (1)写出第6个等式: 1121(1)2866⨯+=- ; (2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.【解答】解:(1)第6个等式:1121(1)2866⨯+=-; (2)猜想的第n 个等式:2121(1)22n n n n-⨯+=-+. 证明:左边21221122n n n n n n n-+-=⨯==-=+右边,∴等式成立. 故答案为:1121(1)2866⨯+=-;2121(1)22n n n n -⨯+=-+. 18.(8分)如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42.0ABD ∠=︒,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.90.75︒≈,sin36.90.60︒≈,tan42.00.90︒≈.)【解答】解:由题意,在Rt ABD ∆中,tan AD ABD BD ∠=,tan 42.00.9AD BD∴︒=≈,0.9AD BD ∴≈, 在Rt BCD ∆中,tan CD CBD BD ∠=,tan36.90.75CD BD ∴︒=≈,0.75CD BD ∴≈, AC AD CD =-,150.15BD ∴=,100BD ∴=米,0.7575CD BD ∴==(米)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元) 线上销售额(元) 线下销售额(元) 2019年4月份a x a x - 2020年4月份 1.1a 1.43x1.04()a x -(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)与2019年4月份相比,该超市2020年4月份线下销售额增长4%, ∴该超市2020年4月份线下销售额为1.04()a x -元.故答案为:1.04()a x -.(2)依题意,得:1.1 1.43 1.04()a x a x =+-,解得:213x a =,∴21.43 1.430.22130.21.1 1.1 1.1a x a a a a ===. 20.(10分)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD BC =,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:CBA DAB ∆≅∆;(2)若BE BF =,求证:AC 平分DAB ∠.【解答】(1)证明:AB 是半圆O 的直径,90ACB ADB ∴∠=∠=︒,在Rt CBA ∆与Rt DAB ∆中,BC AD BA AB=⎧⎨=⎩,Rt CBA Rt DAB(HL)∴∆≅∆; (2)解:BE BF =,由(1)知BC EF ⊥,E BFE ∴∠=∠,BE 是半圆O 所在圆的切线,90ABE ∴∠=︒,90E BAE ∴∠+∠=︒,由(1)知90D ∠=︒,90DAF AFD ∴∠+∠=︒,AFD BFE ∠=∠,AFD E ∴∠=∠,90DAF AFD ∴∠=︒-∠,90BAF E ∠=︒-∠, DAF BAF ∴∠=∠,AC ∴平分DAB ∠.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A 套餐的人数为 60 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ︒;(2)依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A 套餐的人数为24025%60⨯=(人), 则最喜欢C 套餐的人数为240(608424)72-++=(人),∴扇形统计图中“C ”对应扇形的圆心角的大小为72360108240︒⨯=︒,故答案为:60、108; (2)估计全体960名职工中最喜欢B 套餐的人数为84960336240⨯=(人); (3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为61122=. 七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点(1,2)A ,(2,3)B ,(2,1)C ,直线y x m =+经过点A ,抛物线21y ax bx =++恰好经过A ,B ,C 三点中的两点. (1)判断点B 是否在直线y x m =+上,并说明理由;(2)求a ,b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y x m =+上,理由如下:直线y x m =+经过点(1,2)A ,21m ∴=+,解得1m =,∴直线为1y x =+,把2x =代入1y x =+得3y =,∴点(2,3)B 在直线y x m =+上;(2)直线1y x =+与抛物线21y ax bx =++都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把(1,2)A ,(2,1)C 代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得1a =-,2b =; (3)由(2)知,抛物线为221y x x =-++,设平移后的抛物线为2y x px q =-++,其顶点坐标为(2p ,2)4p q +, 顶点仍在直线1y x =+上,∴2142p p q +=+,2142p p q ∴=-++, 抛物线2y x px q =-++与y 轴的交点的纵坐标为q ,22151(1)4244p p q p ∴=-++=--+, ∴当1p =时,平移后所得抛物线与y 轴交点纵坐标的最大值为54. 八、(本题满分14分) 23.(14分)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE AD =.EC 与BD 相交于点G ,与AD 相交于点F ,AF AB =.(1)求证:BD EC ⊥;(2)若1AB =,求AE 的长;(3)如图2,连接AG ,求证:2EG DG AG -=.【解答】(1)证明:四边形ABCD 是矩形,点E 在BA 的延长线上,90EAF DAB ∴∠=∠=︒, 又AE AD =,AF AB =,()AEF ADB SAS ∴∆≅∆, AEF ADB ∴∠=∠,90GEB GBE ADB ABD ∴∠+∠=∠+∠=︒, 即90EGB ∠=︒,故BD EC ⊥,(2)解:四边形ABCD 是矩形,//AE CD ∴,AEF DCF ∴∠=∠,EAF CDF ∠=∠,AEF DCF ∴∆∆∽,∴AE AF DC DF=,即AE DF AF DC =, 设(0)AE AD a a ==>,则有(1)1a a -=,化简得210a a --=, 解得15a +15-,15AE +∴=.(3)如图,在线段EG 上取点P ,使得EP DG =,在AEP ∆与ADG ∆中,AE AD =,AEP ADG ∠=∠,EP DG =, ()AEP ADG SAS ∴∆≅∆,AP AG ∴=,EAP DAG ∠=∠,90PAG PAD DAG PAD EAP DAE ∴∠=∠+∠=∠+∠=∠=︒, PAG ∴∆为等腰直角三角形,2EG DG EG EP PG AG ∴-=-=.。

安徽省2024年中考数学试卷(解析版)

安徽省2024年中考数学试卷(解析版)

2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。

2020年安徽省中考数学试题及参考答案(word版,有答案及评分标准)

2020年安徽省中考数学试题及参考答案(word版,有答案及评分标准)
函数关系式;在以下图的坐标系中画出该函数图象;指出金额在什
么范畴内,以同样的资金能够批发到较多数量的该种水果.
【解】
〔3〕经调查,某经销商销售该种水果的日最高销量与零售价之间的函
数关系如图〔2〕所示,该经销商拟每日售出60kg以上该种水果,
且当日零售价不变,请你关心该经销商设计进货和销售的方案,
使得当日获得的利润最大.
A. B.
C. D.
8.函数 的图象如图,那么 的图象可能是………………………………………【】
9.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD= ,BD= ,那么AB的长为…………【】
A.2 B.3 C.4 D.5
10.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切
=1…………………………………………………………………8分
16.证:∵AB是⊙O的直径,∴∠ACB=90°
∵MP为⊙O的切线,∴∠PMO=90°
∵MP∥AC,∴∠P=∠CAB
∴∠MOP=∠B…………………………………………………………6分
故MO∥BC.……………………………………………………………8分
圆圆心,那么∠AIB的度数是……………………………………………【】
A.120°B.125°C.135°D.150°
二、填空题〔本大题共4小题,每题5分,总分值20分〕
11.如图,将小王某月手机费中各项费用的情形制成扇形统计图,那么表示短信费
的扇形圆心角的度数为.
12.因式分解: .
13.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角〔如下图〕,
四、〔本大题共2小题,每题8分,总分值16分〕
17.〔1〕猜想: ……………………………………………3分

2022年安徽省中考数学试卷(解析版)

2022年安徽省中考数学试卷(解析版)

2022年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列为负数的是()A.|﹣2|B.C.0D.﹣52.(4分)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×1063.(4分)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.4.(4分)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a25.(4分)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁6.(4分)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α7.(4分)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.58.(4分)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.9.(4分)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.10.(4分)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△P AB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式≥1的解集为.12.(5分)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.13.(5分)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k =.14.(5分)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:()0﹣+(﹣2)2.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?18.(8分)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.20.(10分)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.六、(本题满分12分)21.(12分)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n 名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=,a=;(2)八年级测试成绩的中位数是;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.七、(本题满分12分)22.(12分)已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.八、(本题满分14分)23.(14分)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC 为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).2022年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列为负数的是()A.|﹣2|B.C.0D.﹣5【分析】根据实数的定义判断即可.【解答】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.2.(4分)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:3400万=34000000=3.4×107.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看,是一个矩形.故选:A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a2【分析】A.应用整式加减法则进行求解即可得出答案;B.应用同底数幂乘法法则进行求解即可得出答案;C.应用整式加减法则进行求解即可出答案;D.应用同底数幂除法法则进行求解即可出答案.【解答】解:A.因为a3与a6不是同类项,所以不能合并,故A选项不符合题意;B.因为a3•a6=a3+6=a9,所以B选项结果等于a9,故B选项符合题意;C.因为a10与a不是同类项,所以不能合并,故C选项不符合题意;D.因为a18÷a2=a18﹣2=a16,所以D选项结果不等于a9,故D选项不符合题意.故选:B.【点评】本题主要考查了同底数幂乘除法,整式加减,熟练掌握同底数幂乘除法,整式加减运算法则进行求解是解决本题的关键.5.(4分)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁【分析】当时间一样的时候,分别比较甲、乙和丙、丁的平均速度;当路程都是3千米的时候,比较甲、丁的平均速度即可得出答案.【解答】解:∵30分钟甲比乙步行的路程多,50分钟丁比丙步行的路程多,∴甲的平均速度>乙的平均速度,丁的平均速度>丙的平均速度,∵步行3千米时,甲比丁用的时间少,∴甲的平均速度>丁的平均速度,∴走的最快的是甲,故选:A.【点评】本题考查了函数的图象,通过控制变量法比较平均速度的大小是解题的关键.6.(4分)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α【分析】根据矩形的性质和三角形外角的性质,可以用含α的式子表示出∠2.【解答】解:由图可得,∠1=90°+∠3,∵∠1=α,∴∠3=α﹣90°,∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α,故选:C.【点评】本题考查矩形的性质、三角形外角的性质,解答本题的关键是明确题意,用含α的代数式表示出∠2.7.(4分)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.5【分析】过点O作OC⊥AB于点C,连接OB,根据垂径定理可得AC=BC=5,所以PC =PB﹣BC=1,根据勾股定理即可解决问题.【解答】解:如图,过点O作OC⊥AB于点C,连接OB,则OB=7,∵P A=4,PB=6,∴AB=P A+PB=10,∵OC⊥AB,∴AC=BC=5,∴PC=PB﹣BC=1,在Rt△OBC中,根据勾股定理得:OC2=OB2﹣BC2=72﹣52=24,在Rt△OPC中,根据勾股定理得:OP===5,故选:D.【点评】本题考查了垂径定理,勾股定理,解决本题的关键是掌握垂径定理.8.(4分)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为,故选:B.【点评】本题主要考查列表法与树状图法求概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(4分)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴;若a<0,则一次函数y=ax+a2是减函数,交y轴的正半轴,y=a2x+a是增函数,交y轴的负半轴,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.10.(4分)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△P AB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【分析】如图,不妨假设点P在AB的左侧,证明△P AB的面积是定值,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.因为△P AB的面积是定值,推出点P的运动轨迹是直线PM,求出OT的值,可得结论.【解答】解:如图,不妨假设点P在AB的左侧,∵S△P AB+S△ABC=S△PBC+S△P AC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△P AB的面积是定值.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式≥1的解集为x≥5.【分析】先去分母、再移项即可.【解答】解:≥1,x﹣3≥2,x≥3+2,x≥5.故答案为:x≥5.【点评】本题考查的是解一元一次不等式,掌握解一元一次不等式是解答本题的关键.12.(5分)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.【点评】本题考查了根的判别式以及解一元一次方程,牢记“当Δ=0时,方程有两个相等实数根”是解题的关键.13.(5分)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k=3.【分析】设出C点的坐标,根据C点的坐标得出B点的坐标,然后计算出k值即可.【解答】解:由题知,反比例函数y=的图象经过点C,设C点坐标为(a,),作CH⊥OA于H,过A点作AG⊥BC于G,∵四边形OABC是平行四边形,OC=AC,∴OH=AH,CG=BG,四边形HAGC是矩形,∴OH=CG=BG=a,即B(3a,),∵y=(k≠0)的图象经过点B,∴k=3a•=3,故答案为:3.【点评】本题主要考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质,平行四边形的性质等知识是解题的关键.14.(5分)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=45°;(2)若DE=1,DF=2,则MN=.【分析】(1)根据AAS证△ABE≌△GEF,得出EG=AB,GF=AE,推出DG=GF即可得出∠FDG的度数;(2)由(1)的结论得出CD的长度,GF的长度,根据相似三角形的性质分别求出DM,NC的值即可得出MN的值.【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.【点评】本题主要考查正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,熟练掌握这些基础知识是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:()0﹣+(﹣2)2.【分析】应用零指数幂,算术平方根,有理数的乘方运算法则进行求解即可得出答案.【解答】解:原式=1﹣4+4=1.【点评】本题主要考查了零指数幂,算术平方根,有理数的乘方,熟练掌握零指数幂,算术平方根,有理数的乘方运算法则进行求解是解决本题的关键.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.【分析】(1)根据平移的性质可得△A1B1C1;(2)根据旋转的性质可得△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题主要考查了作图﹣平移变换,旋转变换,熟练掌握平移和旋转的性质是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y 1.25x+1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【分析】(1)根据题意和表格中的数据,可以用含x、y的代数式表示出2021年进出口总额;(2)根据题意和题目中的数据,可以列出相应的方程组,然后求解即可.【解答】解:(1)由表格可得,2021年进出口总额为:1.25x+1.3y,故答案为:1.25x+1.3y;(2)由题意可得,,解得,∴1.25x=400,1.3y=260,答:2021年进口额是400亿元,出口额是260亿元.【点评】本题考查二元一次方程组的应用、列代数式,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.18.(8分)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.【点评】本题考查数字的变化类、列代数式,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式和猜想,并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.【分析】(1)根据直角三角形的边角关系可求出OD,进而求出AD;(2)根据切线的性质可得OC⊥CD,再根据等腰三角形的性质可得∠OCA=∠OAC,由各个角之间的关系以及等量代换可得答案.【解答】解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=•OC=,∴AD=OD﹣OA=﹣1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.【点评】本题考查切线的性质,直角三角形的边角关系以及等腰三角形的性质,掌握直角三角形的边角关系、等腰三角形的性质是解决问题的前提.20.(10分)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.【分析】由三角形内角和定理证得△CBD和△ABD是直角三角形,解直角三角形即可求出AB.【解答】解:∵CE∥AD,∴∠A=∠ECA=37°,∴∠CBD=∠A+∠ADB=37°+53°=90°,∴∠ABD=90°,在Rt△BCD中,∠BDC=90°﹣53°=37°,CD=90米,cos∠BDC=,∴BD=CD•cos∠37°≈90×0.80=72(米),在Rt△ABD中,∠A=37°,BD=72米,tan A=,∴AB=≈=96(米).答:A,B两点间的距离约96米.【点评】本题主要考查了解直角三角形的应用,证得△CBD和△ABD是直角三角形是解决问题的关键.六、(本题满分12分)21.(12分)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n 名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=20,a=4;(2)八年级测试成绩的中位数是86.5;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.【分析】(1)根据八年级D组人数及其所占百分比即可得出n的值,用n的值分别减去其它各组的频数即可得出a的值.(2)根据中位数的定义解答即可.(3)用样本估计总体即可.【解答】解:(1)由题意得:n=7÷35%=20(人),故2a=20﹣1﹣2﹣3﹣6=8,故答案为:20;4;(2)把八年级测试成绩从小到大排列,排在中间的两个数分别为86,87,故中位数为=86.5,故答案为:86.5;(3)500×+500×(1﹣5%﹣5%﹣20%﹣35%)=100+175=275(人),故估计该校七、八两个年级对冬奥会关注程度高的学生一共有275人.【点评】本题考查频数分布直方图、扇形统计图、中位数、用样本估计总体等知识,解题的关键是利用数形结合的思想解答.七、(本题满分12分)22.(12分)已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.【分析】(1)利用AAS证明△DOE≌△BOC,得DE=BC,从而得出四边形BCDE是平行四边形,再根据CD=CB,即可证明结论;(2)(i)根据线段垂直平分线的性质得,AE=EC,ED=EB,则∠AED=∠CED=∠BEC,再根据平角的定义,可得答案;(ii)利用AAS证明△ABF≌△ACE,可得AC=AB,由AE=AF,利用等式的性质,即【解答】(1)证明:设CE与BD交于点O,∵CB=CD,CE⊥BD,∴DO=BO,∵DE∥BC,∴∠DEO=∠BCO,∵∠DOE=∠BOC,∴△DOE≌△BOC(AAS),∴DE=BC,∴四边形BCDE是平行四边形,∵CD=CB,∴平行四边形BCDE是菱形;(2)(i)解:∵DE垂直平分AC,∴AE=EC且DE⊥AC,∴∠AED=∠CED,又∵CD=CB且CE⊥BD,∴CE垂直平分DB,∴DE=BE,∴∠DEC=∠BEC,∴∠AED=∠CED=∠BEC,又∵∠AED+∠CED+∠BEC=180°,∴∠CED=;(ii)证明:由(i)得AE=EC,又∵∠AEC=∠AED+∠DEC=120°,∴∠ACE=30°,同理可得,在等腰△DEB中,∠EBD=30°,∴∠ACE=∠ABF=30°,在△ACE与△ABF中,,∴△ABF≌△ACE(AAS),∴AC=AB,又∵AE=AF,∴AB﹣AE=AC﹣AF,即BE=CF.【点评】本题是四边形综合题,主要考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识,熟练掌握线段垂直平分线的性质是解题的关键.八、(本题满分14分)23.(14分)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC 为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).【分析】(1)通过分析A点坐标,利用待定系数法求函数解析式;(2)(ⅰ)结合矩形性质分析得出P2的坐标为(m,﹣m2+8),然后列出函数关系式,利用二次函数的性质分析最值;(ⅱ)设P2P1=n,分别表示出方案一和方案二的矩形面积,利用二次函数的性质分析最值,从而利用数形结合思想确定取值范围.【解答】解:(1)由题意可得:A(﹣6,2),D(6,2),又∵E(0,8)是抛物线的顶点,设抛物线对应的函数表达式为y=ax2+8,将A(﹣6,2)代入,(﹣6)2a+8=2,解得:a=﹣,∴抛物线对应的函数表达式为y=﹣x2+8;(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P3在抛物线AED上,∴P2的坐标为(m,﹣m2+8),∴P1P2=P3P4=MN=﹣m2+8,P2P3=2m,∴l=3(﹣m2+8)+2m=﹣m2+2m+24=﹣(m﹣2)2+26,∵﹣<0,∴当m=2时,l有最大值为26,即栅栏总长l与m之间的函数表达式为l=﹣m2+2m+24,l的最大值为26;(ⅱ)方案一:设P2P1=n,则P2P3=18﹣3n,∴矩形P1P2P3P4面积为(18﹣3n)n=﹣3n2+18n=﹣3(n﹣3)2+27,∵﹣3<0,∴当n=3时,矩形面积有最大值为27,此时P2P1=3,P2P3=9,令﹣x2+8=3,解得:x=±,∴此时P1的横坐标的取值范围为﹣+9≤x≤,方案二:设P2P1=n,则P2P3==9﹣n,∴矩形P1P2P3P4面积为(9﹣n)n=﹣n2+9n=﹣(n﹣)2+,∵﹣1<0,∴当n=时,矩形面积有最大值为,此时P2P1=,P2P3=,令﹣x2+8=,解得:x=±,∴此时P1的横坐标的取值范围为﹣+≤x≤.【点评】本题考查二次函数的应用,掌握待定系数法求函数解析式,准确识图,确定关键点的坐标,利用数形结合思想解题是关键.。

2020年安徽省中考数学试卷及答案解析

2020年安徽省中考数学试卷及答案解析

2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比2-小的数是( )A .3-B .1-C .0D .22.(4分)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a3.(4分)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .85.4710⨯B .80.54710⨯C .554710⨯D .75.4710⨯5.(4分)下列方程中,有两个相等实数根的是( )A .212x x +=B .210x +=C .223x x -=D .220x x -=6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是137.(4分)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(1,2)-B .(1,2)-C .(2,3)D .(3,4)8.(4分)如图,Rt ABC ∆中,90C ∠=︒,点D 在AC 上,DBC A ∠=∠.若4AC =,4cos 5A =,则BD 的长度为( )A .94B .125C .154D .49.(4分)已知点A ,B ,C 在O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则120ABC ∠=︒C .若120ABC ∠=︒,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC10.(4分)如图,ABC ∆和DEF ∆都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将ABC ∆在直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )A .B .C .D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:91-=.12.(5分)分解因式:2ab a-=.13.(5分)如图,一次函数(0)y x k k=+>的图象与x轴和y轴分别交于点A和点B.与反比例函数kyx=的图象在第一象限内交于点C,CD x⊥轴,CE y⊥轴.垂足分别为点D,E.当矩形ODCE与OAB∆的面积相等时,k的值为.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A 的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将PCQ∆,ADQ∆分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)PAQ∠的大小为︒;(2)当四边形APCD是平行四边形时,ABQR的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:2112x ->. 16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段11A B (点1A ,1B 分别为A ,B 的对应点); (2)将线段11B A 绕点1B 顺时针旋转90︒得到线段12B A ,画出线段12B A .四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:121(1)2311⨯+=-, 第2个等式:321(1)2422⨯+=-, 第3个等式:521(1)2533⨯+=-, 第4个等式:721(1)2644⨯+=-. 第5个等式:921(1)2755⨯+=-. ⋯按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42.0ABD ∠=︒,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.90.75︒≈,sin36.90.60︒≈,tan42.00.90︒≈.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)-2019年4月份a x a x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.=,20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD BCAC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.∆≅∆;(1)求证:CBA DAB(2)若BE BF=,求证:AC平分DAB∠.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ︒;(2)依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点(1,2)A ,(2,3)B ,(2,1)C ,直线y x m =+经过点A ,抛物线21y ax bx =++恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线y x m =+上,并说明理由;(2)求a ,b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE AD =.EC 与BD 相交于点G ,与AD 相交于点F ,AF AB =.(1)求证:BD EC ⊥;(2)若1AB =,求AE 的长;(3)如图2,连接AG ,求证:2EG DG -=.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比2-小的数是( )A .3-B .1-C .0D .2【解答】解:根据两个负数,绝对值大的反而小可知32-<-.故选:A .2.(4分)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a【解答】解:原式633a a a =÷=.故选:C .3.(4分)下面四个几何体中,主视图为三角形的是( )A .B .C .D .【解答】解:A 、主视图是圆,故A 不符合题意;B 、主视图是三角形,故B 符合题意;C 、主视图是矩形,故C 不符合题意;D 、主视图是正方形,故D 不符合题意;故选:B .4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .85.4710⨯B .80.54710⨯C .554710⨯D .75.4710⨯【解答】解:54700000用科学记数法表示为:75.4710⨯.故选:D .5.(4分)下列方程中,有两个相等实数根的是( )A .212x x +=B .210x +=C .223x x -=D .220x x -=【解答】解:A 、△2(2)4110=--⨯⨯=,有两个相等实数根;B 、△0440=-=-<,没有实数根;C 、△2(2)41(3)160=--⨯⨯-=>,有两个不相等实数根;D 、△2(2)41040=--⨯⨯=>,有两个不相等实数根.故选:A .6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;(11101113111315)712x =++++++÷=,即平均数是12,于是选项B 不符合题意;22222118[(1012)(1112)3(1312)2(1512)]77S =-+-⨯+-⨯+-=,因此方差为187,于是选项C 不符合题意;故选:D .7.(4分)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(1,2)-B .(1,2)-C .(2,3)D .(3,4)【解答】解:A 、当点A 的坐标为(1,2)-时,32k -+=,解得:10k =>,y ∴随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,2)-时,32k +=-,解得:50k =-<,y ∴随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,233k +=,解得:0k =,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,334k +=,解得:103k =>, y ∴随x 的增大而增大,选项D 不符合题意.故选:B .8.(4分)如图,Rt ABC ∆中,90C ∠=︒,点D 在AC 上,DBC A ∠=∠.若4AC =,4cos 5A =,则BD 的长度为( )A .94B .125C .154D .4【解答】解:90C ∠=︒,4AC =,4cos 5A =, 5cos AC AB A∴==, ∴223BC AB AC =-=,DBC A ∠=∠.4cos cos 5BC DBC A BD ∴∠=∠==, ∴515344BD =⨯=, 故选:C .9.(4分)已知点A ,B ,C 在O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则120ABC ∠=︒C .若120ABC ∠=︒,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC【解答】解:A 、如图,若半径OB 平分弦AC ,则四边形OABC 不一定是平行四边形;原命题是假命题;B 、若四边形OABC 是平行四边形,则AB OC =,OA BC =,OA OB OC ==,AB OA OB BC OC ∴====, 60ABO OBC ∴∠=∠=︒, 120ABC ∴∠=︒,是真命题; C 、如图,若120ABC ∠=︒,则弦AC 不平分半径OB ,原命题是假命题;D 、如图,若弦AC 平分半径OB ,则半径OB 不一定平分弦AC ,原命题是假命题; 故选:B .10.(4分)如图,ABC ∆和DEF ∆都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将ABC ∆在直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )A .B .C .D .【解答】解:如图1所示:当02x <时,过点G 作GH BF ⊥于H .ABC ∆和DEF ∆均为等边三角形, GEJ ∴∆为等边三角形.33GH ∴==, 21324y EJ GH ∴==. 当2x =时,3y =,且抛物线的开口向上. 如图2所示:24x <时,过点G 作GH BF ⊥于H .213(4)24y FJ GH x ==-,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)计算:91-= 2 . 【解答】解:原式312=-=. 故答案为:2.12.(5分)分解因式:2ab a -= (1)(1)a b b +- .【解答】解:原式2(1)(1)(1)a b a b b =-=+-,故答案为:(1)(1)a b b +-13.(5分)如图,一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数ky x=的图象在第一象限内交于点C ,CD x ⊥轴,CE y ⊥轴.垂足分别为点D ,E .当矩形ODCE 与OAB ∆的面积相等时,k 的值为 2 .【解答】解:一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B ,令0x =,则y k =,令0y =,则x k =-,故点A 、B 的坐标分别为(,0)k -、(0,)k ,则OAB ∆的面积21122OA OB k ==,而矩形ODCE 的面积为k ,则212k k =,解得:0k =(舍去)或2,故答案为2.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A 的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将PCQ∆,ADQ∆分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)PAQ∠的大小为30︒;(2)当四边形APCD是平行四边形时,ABQR的值为.【解答】解:(1)由折叠的性质可得:B AQP∠=∠,DAQ QAP PAB∠=∠=∠,DQA AQR∠=∠,CQP PQR∠=∠,D ARQ∠=∠,C QRP∠=∠,180QRA QRP∠+∠=︒,180D C∴∠+∠=︒,//AD BC∴,180B DAB∴∠+∠=︒,180DQR CQR∠+∠=︒,90DQA CQP∴∠+∠=︒,90AQP∴∠=︒,90B AQP∴∠=∠=︒,90DAB∴∠=︒,30DAQ QAP PAB∴∠=∠=∠=︒,故答案为:30;(2)由折叠的性质可得:AD AR=,CP PR=,四边形APCD是平行四边形,AD PC∴=,AR PR∴=,又90AQP ∠=︒,12QR AP ∴=, 30PAB ∠=︒,90B ∠=︒, 2AP PB ∴=,3AB PB =,PB QR ∴=,∴3ABQR=, 故答案为:3.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解不等式:2112x ->. 【解答】解:去分母,得:212x ->, 移项,得:221x >+, 合并,得:23x >, 系数化为1,得:32x >. 16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段11A B (点1A ,1B 分别为A ,B 的对应点);(2)将线段11B A 绕点1B 顺时针旋转90︒得到线段12B A ,画出线段12B A .【解答】解:(1)如图线段11A B 即为所求. (2)如图,线段12B A 即为所求.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)观察以下等式:第1个等式:121(1)2311⨯+=-,第2个等式:321(1)2422⨯+=-,第3个等式:521(1)2533⨯+=-,第4个等式:721(1)2644⨯+=-.第5个等式:921(1)2755⨯+=-.⋯按照以上规律,解决下列问题: (1)写出第6个等式:1121(1)2866⨯+=- ; (2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.【解答】解:(1)第6个等式:1121(1)2866⨯+=-; (2)猜想的第n 个等式:2121(1)22n n n n-⨯+=-+.证明:左边21221122n n n n n n n-+-=⨯==-=+右边,∴等式成立.故答案为:1121(1)2866⨯+=-;2121(1)22n n n n-⨯+=-+. 18.(8分)如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42.0ABD ∠=︒,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.90.75︒≈,sin36.90.60︒≈,tan42.00.90︒≈.)【解答】解:由题意,在Rt ABD ∆中,tan ADABD BD∠=, tan 42.00.9ADBD∴︒=≈, 0.9AD BD ∴≈,在Rt BCD ∆中,tan CDCBD BD∠=, tan36.90.75CDBD∴︒=≈, 0.75CD BD ∴≈, AC AD CD =-, 150.15BD ∴=, 100BD ∴=米,0.7575CD BD ∴==(米),答:山高CD 为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间 销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a x -2020年4月份1.1a 1.43x1.04()a x -(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04()a x -元.故答案为:1.04()a x -.(2)依题意,得:1.1 1.43 1.04()a x a x =+-,解得:213x a =, ∴21.431.430.22130.21.1 1.1 1.1ax a aa a===. 答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD BC =,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:CBA DAB ∆≅∆;(2)若BE BF =,求证:AC 平分DAB ∠.【解答】(1)证明:AB 是半圆O 的直径,90ACB ADB ∴∠=∠=︒,在Rt CBA ∆与Rt DAB ∆中,BC AD BA AB =⎧⎨=⎩,Rt CBA Rt DAB(HL)∴∆≅∆;(2)解:BE BF =,由(1)知BC EF ⊥,E BFE ∴∠=∠,BE 是半圆O 所在圆的切线,90ABE ∴∠=︒, 90E BAE ∴∠+∠=︒,由(1)知90D ∠=︒,90DAF AFD ∴∠+∠=︒, AFD BFE ∠=∠, AFD E ∴∠=∠,90DAF AFD ∴∠=︒-∠,90BAF E ∠=︒-∠, DAF BAF ∴∠=∠,AC ∴平分DAB ∠.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为︒;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为24025%60⨯=(人),则最喜欢C套餐的人数为240(608424)72-++=(人),∴扇形统计图中“C”对应扇形的圆心角的大小为72360108240︒⨯=︒,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为84960336240⨯=(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为61 122=.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点(1,2)A ,(2,3)B ,(2,1)C ,直线y x m =+经过点A ,抛物线21y ax bx =++恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线y x m =+上,并说明理由; (2)求a ,b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y x m =+上,理由如下: 直线y x m =+经过点(1,2)A ,21m ∴=+,解得1m =, ∴直线为1y x =+,把2x =代入1y x =+得3y =,∴点(2,3)B 在直线y x m =+上;(2)直线1y x =+与抛物线21y ax bx =++都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把(1,2)A ,(2,1)C 代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得1a =-,2b =;(3)由(2)知,抛物线为221y x x =-++,设平移后的抛物线为2y x px q =-++,其顶点坐标为(2p,2)4p q +, 顶点仍在直线1y x =+上,∴2142p pq +=+,2142p pq ∴=-++,抛物线2y x px q =-++与y 轴的交点的纵坐标为q ,22151(1)4244p p q p ∴=-++=--+,∴当1p =时,平移后所得抛物线与y 轴交点纵坐标的最大值为54. 八、(本题满分14分)23.(14分)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE AD =.EC 与BD 相交于点G ,与AD 相交于点F ,AF AB =.(1)求证:BD EC ⊥;(2)若1AB =,求AE 的长;(3)如图2,连接AG ,求证:2EG DG AG -=.【解答】(1)证明:四边形ABCD 是矩形,点E 在BA 的延长线上, 90EAF DAB ∴∠=∠=︒,又AE AD =,AF AB =,()AEF ADB SAS ∴∆≅∆,AEF ADB ∴∠=∠,90GEB GBE ADB ABD ∴∠+∠=∠+∠=︒,即90EGB ∠=︒,故BD EC ⊥,(2)解:四边形ABCD 是矩形,//AE CD ∴,AEF DCF ∴∠=∠,EAF CDF ∠=∠,AEF DCF ∴∆∆∽,∴AE AF DC DF=, 即AE DF AF DC =,设(0)AE AD a a ==>,则有(1)1a a -=,化简得210a a --=, 解得15a +15-, 15AE +∴=. (3)如图,在线段EG 上取点P ,使得EP DG =,在AEP ∆与ADG ∆中,AE AD =,AEP ADG ∠=∠,EP DG =, ()AEP ADG SAS ∴∆≅∆,AP AG ∴=,EAP DAG ∠=∠,90PAG PAD DAG PAD EAP DAE ∴∠=∠+∠=∠+∠=∠=︒, PAG ∴∆为等腰直角三角形,2EG DG EG EP PG AG ∴-=-=.。

2010-2019年安徽省中考数学试卷及答案(共10套)

2010-2019年安徽省中考数学试卷及答案(共10套)

2010-2019年安徽省中考数学试卷及答案(共10套)目录1、2010年安徽省中考数学试卷及答案2、2011年安徽省中考数学试卷及答案3、2012年安徽省中考数学试卷及答案4、2013年安徽省中考数学试卷及答案5、2014年安徽省中考数学试卷及答案6、2015年安徽省中考数学试卷及答案7、2016年安徽省中考数学试卷及答案8、2017年安徽省中考数学试卷及答案9、2018年安徽省中考数学试卷及答案10、2019年安徽省中考数学试卷及答案2010年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是A.-1B.0C.1D.22.计算(2x)3÷x的结果正确的是A.8x2B.6x2C.8x3D.6x33.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为A.50°B.55°C.60°D.65°4. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是A.2.89×107B.2.89×106C.28.9×105D.2.89×1045.如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是6.某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为A.0,5B.0,1C.-4,5D.-4,18.如图,☉O 过点B 、C,圆心O 在等腰直角三角形ABC 的内部,∠BAC=90°,OA=1,BC=6,则☉O 的半径为A.√10B.2√3C.√13D.3√29.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.当第一位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是A.495B.497C.501D.50310.甲、乙两人准备在一段长为1 200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m/s 和6 m/s,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数图象是A B C D二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:√3×√6-√2= .12.不等式组{-x +4<2,3x -4≤8的解集是 . 13.如图,△ABC 内接于☉O,AC 是☉O 的直径,∠ACB=50°,点D 是BAC⏜上一点,则∠D= .14.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 .(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(1-1a -1)÷a 2-4a+4a -a ,其中a=-1.16.若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是60°,船的速度为5米/秒,求船从A 处到B 处约需几分钟?(参考数据:√3≈1.7)17.点P(1,a)在反比例函数y=k的图象上,它关于y轴的对称点在一次函数y=2x+4x的图象上,求此反比例函数的解析式.18.在小正方形组成的15×15的网格图中,四边形ABCD和四边形A'B'C'D'的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1;(2)若四边形ABCD平移后,与四边形A'B'C'D'成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m2下降到5月份的12 600元/m2.(1)问4、5两月平均每月降价的百分率是多少?(参考数据:√0.9≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m2?请说明理由.20.如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.21.上海世博会门票的价格如下表所示:门票价格一览表指定日普通票200元平日优惠票100元…………某旅行社准备了1 300元,全部用来购买指定日普通票和平日优惠票,且每种票至少买一张.(1)有多少种购票方案?列举所有可能的结果;(2)如果从上述方案中任意选一种方案购票,求恰好选到11张门票的概率.22.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九年级(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20,且x为整数)的捕捞与销售的相关信息如下:鲜鱼销售价格(元/kg)20单位捕捞成本(元/kg) 5-x 5捕捞量(kg) 950-10x(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本) (3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省初中毕业学业考试答案1.B 0既不是正数也不是负数,故选B.2.A 本题应先根据积的乘方的法则计算出(2x)3的值,再根据单项式除以单项式法则得出结果为:(2x)3÷x=8x3÷x=8x3-1=8x2.3.C4.B 289万=2 890 000=2.89×106,故选B.5.D 正方体的三个视图都是正方形;球体的三个视图都是圆;选项C直三棱柱的主视图是长方形,左视图是三角形,俯视图虽也是长方形,但由于视角不同,两长方形的形状也不同;选项D圆柱的主视图是长方形,左视图为圆,俯视图为形状大小与主视图相同的长方形,所以只有圆柱符合本题条件,故选D.6.C 由折线统计图可知:1月份到2月份利润增长10万元,2月份到3月份利润增长20万元,故A错;1到4月份利润最高的是3月份为130万元,最低的是1月份为100万元,极差为30万元,1到5月份的最高利润也是130万元,最低利润仍是100万元,极差为30万元,极差相同,故B错;本题的中位数是指把5个月的利润按大小顺序排列,最中间的那个数应为115万元,所以D也错;众数是指在所有数据中出现次数最多的数,130万出现两次,最多,故C正确.7.D y=(x-2)2 +k=x2-4x+4+k,与y=x2+bx+5比较可得:一次项系数b=-4,常数项4+k=5,解得k=1.故选D.8.C 如图,过点A作AM⊥BC于M,连接OB.在Rt△ABC中,∵AB=AC,AM⊥BC于BC=3,∠ABM=45°,∴在Rt△ABM中,BM=AM=3.∵AM垂直平分弦M,BC=6,∴BM=CM=12BC,∴AM经过圆心O.∵AO=1,AM=3,∴OM=2.在Rt△BOM中,OM=2,BM=3,根据勾股定理可知BO=√13.9.A10.C 乙的速度比甲的速度快,甲在乙的前面100 m处,乙追上甲需要50 s,可把A、B排除,乙追上甲时走了300 m,距离终点还有900 m,则乙到终点还需的时间为900÷6=150 s,所以乙跑完全程共需200 s,故选C.11.2√2√3×√6-√2=√18-√2=3√2-√2=2√2.12.2<x≤4 解不等式-x+4<2,得-x<2-4,-x<-2,x>2;解不等式3x-4≤8,得3x≤8+4,3x≤12,x≤4.所以原不等式组的解集为2<x≤4.13.40° ∵△ABC 是☉O 的内接三角形,AC 是☉O 的直径,∴∠ABC=90°.在△ABC 中,∠ACB=50°,∠ABC=90°,∴∠BAC=180°-∠ACB-∠ABC=180°-50°-90°=40°,∴∠D=∠BAC=40°.14.②③④ 由①中∠BAD=∠ACD,∠ADB=∠ADC,不能证明△ABD 和△CAD 全等,从而不能得出△ABC 为等腰三角形,故①错误;②中∠BAD=∠CAD,又∠ADB=∠ADC,AD 为公共边,可推出△ADB ≌△ADC,∴AB=AC,∴△ABC 为等腰三角形;③如图(1),分别在DB 、DC 的延长线上截取BE=AB,CF=AC,连接AE 、AF.∵AB+BD=AC+CD,∴DE=DF.又∵AD ⊥BC,∴△AEF 为等腰三角形,∴∠E=∠F.又∵BE=AB,CF=AC,∴∠EAB=∠E=∠F=∠CAF.∵∠ABC=∠E+∠EAB,∠ACB=∠F+∠CAF,∴∠ABC=∠ACB,∴△ABC 为等腰三角形.④如图(2),在BC 上分别截取BF=AB,CE=AC,连接AE 、AF.∵AB-BD=AC-CD,∴DF=DE.又∵AD ⊥BC,∴△AEF 是等腰三角形,∴∠EAD=∠FAD,∠AEF=∠AFE.又∵BF=AB,CE=AC,∴∠BAF=∠AFD=∠AED=∠CAE,∴∠BAD=∠BAF-∠FAD,∠CAD=∠CAE-∠EAD,∴∠BAD=∠CAD.又∵AD ⊥BC,∴△ABC 是等腰三角形.图(1) 图(2) 15.原式=a -2a -1·a(a -1)(a -2)2(3分) =aa -2.(5分)当a=-1时,原式=aa -2=-1-1-2=13.(8分)16.如图,过点B 作BC 垂直河岸,垂足为C,则在Rt △ACB 中,AB=BCsin ∠BAC =900sin60°=600√3(米).(5分)因而时间t=600√35=120√3(秒), 120√3秒≈3.4分钟,即船从A 处到B 处约需3.4分钟.(8分) 17.点P(1,a)关于y 轴的对称点是(-1,a).(2分) ∵点(-1,a)在一次函数y=2x+4的图象上, ∴a=2×(-1)+4=2.(4分)∴点P为(1,2).∵点P(1,2)在反比例函数y=kx的图象上, ∴k=2.∴反比例函数的解析式为y=2x.(8分)18.(1)旋转后得到的图形A1B1C1D1如图所示.(4分)(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.(8分)(注:本题是开放型题,答案不唯一,只要正确即可给分,如将四边形ABCD先向右平移8个单位,再向下平移2个单位得到四边形A2B2C2D2)19.(1)设4、5两月平均每月降价的百分率为x,根据题意,得14 000·(1-x)2=12 600.(3分)化简,得(1-x)2=0.9.解得x1≈0.05,x2≈1.95(不合题意,舍去).因此,4、5两月平均每月降价的百分率约为5%.(6分)(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12600(1-x)2=12 600×0.9=11 340>10 000.由此可知,7月份该市的商品房成交均价不会跌破10 000元/m2.(10分)(注:第(2)小题也可通过估算加以判断,只要正确即可给分)20.(1)证明:∵AD∥FE,∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.(2分)∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴平行四边形BCEF是菱形.(5分)(2)证明:∵EF=BC,AB=BC=CD,AD∥FE,∴四边形ABEF、四边形CDEF均为平行四边形,∴AF=BE,FC=ED.(8分)又∵AC=2BC=BD,∴△ACF≌△BDE.(10分) 21.(1)有6种购票方案:购票方案指定日普通票张数平日优惠票张数1 1 112 2 93 3 74 4 55 5 36 6 1(6分) (2)由(1)知,共有6种购票方案,且选到每种方案的可能性相等,而恰好选到11张门票的方案只有1种,因此恰好选到11张门票的概率是16.(12分)22.(1)该养殖场每天的捕捞量与前一天相比减少了10 kg.(2分)(2)由题意,得y=20(950-10x)-(5-x5)(950-10x)=-2x2+40x+14 250.(7分)(3)y=-2x2+40x+14 250=-2(x-10)2+14 450,∵-2<0,1≤x≤20且x为整数,(9分)∴当1≤x≤10时,y随x的增大而增大;当10<x≤20时,y随x的增大而减小;∴当x=10时,即在第10天y取得最大值,最大值为14 450元.(12分)23.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴aa1=k,∴a=ka1.又∵c=a1,∴a=kc.(3分)(2)取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2.(7分)此时aa1=bb1=cc1=2,∴△ABC∽△A1B1C1,且c=a1.(10分)(注:本题是开放型题,只要给出的△ABC和△A1B1C1符合要求即可给分)(3)不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1.又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c,即a=4c,b=2c.(12分)∴b+c=2c+c<4c=a,而b+c>a,故不存在这样的△ABC和△A1B1C1,使得k=2.(14分)2011年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.-2,0,2,-3这四个数中最大的是A.2B.0C.-2D.-32.安徽省2010年末森林面积为3 804.2千公顷,用科学记数法表示3 804.2千正确的是A.3 804.2×103B.380.42×104C.3.804 2×106D.3.804 2×1073.右图是由五个相同的小正方体搭成的几何体,其左视图是A B C D4.设a=√19-1,a在两个相邻整数之间,则这两个整数是A.1和2B.2和3C.3和4D.4和55.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形”,下列推断正确的是A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为15D.事件M发生的概率为256.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是A.7B.10C.9D.117.如图,☉O 的半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是A.π5 B .25π C.35π D.45π8.一元二次方程x(x-2)=2-x 的根是 A.-1B.2C.1和2D.-1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2√2,CD=√2,点P 在四边形ABCD 的边上,若P 到BD 的距离为32,则点P 的个数为A.1个B.2个C.3个D.4个10.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x,△AMN 的面积为y,则y 关于x 的函数图象的大致形状是A BC D二、填空题(本大题共4小题,每小题5分,满分20分) 11.因式分解:a 2b+2ab+b= .12.根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:E=10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,☉O 的两条弦AB 、CD 互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则☉O 的半径是 .14.定义运算:a ⊗b=a(1-b),下面给出了关于这种运算的几个结论: ①2⊗(-2)=6;②a ⊗b=b ⊗a;③若a+b=0,则(a ⊗a)+(b ⊗b)=2ab; ④若a ⊗b=0,则a=0.其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 三、(本大题共2小题,每小题8分,满分16分) 15.先化简,再求值:1x -1-2x 2-1,其中x=-2.16.江南生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量的3倍还多2 000千克,求粗加工的该种山货质量.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B 1 C1和△A2B2C2.(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A 2B2C2.18.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A12( , );(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1 500 m高的C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.(参考数据:√3≈1.73)20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲、乙两组学生成绩分布的条形统计图如下:(1)请补充完整下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组 6.9 2.4 91.7% 16.7%乙组 1.3 83.3% 8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出三条支持乙组学生观点的理由.六、(本题满分12分)。

2022年安徽省中考数学真题(解析版)

2022年安徽省中考数学真题(解析版)
(2)先作FH⊥CD于H,利用平行线分线段成比例求得MH;再作MP⊥DF于P,证△MPF∽△NHF,即可求得NH的长度,MN=MH+NH即可得解.
【详解】(1)∵四边形ABCD是正方形,
∴∠A=90°,AB=AD,
∴∠ABE+∠AEB=90°,
∵FG⊥AG,
∴∠G=∠A=90°,
∵△BEF是等腰直角三角形,
(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:
年份
进口额/亿元
出口额/亿元
进出口总额/亿元
2020
x
y
520
2021
1.25x
1.3y
(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?
∴S平行四边形OCBA=4S△OCD=2,
∴S△OBA= ,
∴S△OBE=S△OBA+S△ABE= ,
∴ .
故答案为3.
【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.
∴∠MFP=∠NFH,
∵∠MPF=∠NHF=90°,
∴△MPF∽△NHF,
∴ ,即 ,
∴NH= ,
∴MN=MH+NH= + = .
故填: .
【点睛】本题主要考查正方形的性质及判定以及相似三角形的性质和判定,熟知相关知识点并能熟练运用,正确添加辅助线是解题的关键.
三、(本大题共2小题,每小题8分,满分16分)
故选B.
【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P点的位置是解题的关键.

2023年安徽省中考数学最后一卷(解析版)

2023年安徽省中考数学最后一卷(解析版)

2023年中考最后一卷学校:___________姓名:___________班级:___________考号:___________ 一、单选题【详解】解:5125000 1.2510=× 故选A . 【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 4.如图是教师每天在黑板上书写用的粉笔,它的主视图是( )A .B .C .D .【答案】C【详解】该几何体是圆台,主视图即从正面看到的图形是等腰梯形.故选C . 5.如图,将一张矩形纸片和一张直角三角形纸片叠放在一起,∠1+∠2的值是( )A .180°B .240°C .270°D .300°【答案】C 【分析】过B 点作BE AF ∥,进而可得:AF BE CD ∥∥,然后利用平行线的性质即可求出∠1+∠2的值.【详解】过B 点作BE AF ∥,∵AF CD ∥,BC的长为()二、填空题11.已知数据1,2,3,4,a的众数是2,则它们的中位数是___.【答案】2【分析】先根据众数的定义求出a的值,再根据中位数的定义求解即可.【详解】∵数据1,2,3,4,a的众数是2,∴a=2,∴数据1,2,2,3,4的的中位数是2.故答案为:2.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一组数据中出现次数最多的数据叫做众数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.FC1三、解答题.解方程请结合以上信息回答下列问题:(1)直接写出a=,b=;(2)本次抽查的学生平均每天睡眠时间的中位数落在组;(3)根据“通知”要求,初中生睡眠时间要达到9小时.该校有1800名学生,根据抽样调查结果,估计该校学生平均每天睡眠时间低于9小时的人数.【答案】(1)20,36%(2)C。

2020年安徽省中考数学试题及答案解析

2020年安徽省中考数学试题及答案解析

2020年安徽省中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020年)下列各数中比2-小的数是( )A .3-B .1-C .0D .2 2.(2020年)计算()63a a -÷的结果是( )A .3a -B .2a -C .3aD .2a 3.(2020年)下列几何体中,其主视图为三角形的是( )A .B .C .D . 4.(2020年)计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为( )A .0.547B .80.54710⨯C .554710⨯D .75.4710⨯ 5.(2020年)下列方程中,有两个相等实数根的是( )A .212x x +=B .21=0x +C .223x x -=D .220x x -=6.(2020年)冉冉的妈妈在网上销售装饰品.最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11 B .平均数是12 C .方差是187 D .中位数是13 7.(2020年)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,48.(2020年)如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠.若44,5AC cosA ==,则BD 的长度为( )A .94B .125C .154D .49.(2020年)已知点,,A B C 在O 上.则下列命题为真命题的是( )A .若半径OB 平分弦AC .则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形.则120ABC ∠=︒C .若120ABC ∠=︒.则弦AC 平分半径OBD .若弦AC 平分半径OB .则半径OB 平分弦AC10.(2020年)如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A .B .C .D .二、填空题11.(20201=_____.12.(2020年)分解因式:2ab a -=______.13.(2020年)如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数k y x=上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________.14.(2020年)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,C D 落在AP 上的同一点R 处.请完成下列探究:()1PAQ ∠的大小为__________︒;()2当四边形APCD 是平行四边形时ABQR 的值为__________.三、解答题15.(2020年)解不等式:2112x -> 16.(2020年)如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点);()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .17.(2020年)观察以下等式:第1个等式:12112311⎛⎫⨯+=- ⎪⎝⎭ 第2个等式:32112422⎛⎫⨯+=- ⎪⎝⎭ 第3个等式:52112533⎛⎫⨯+=- ⎪⎝⎭ 第4个等式:72112644⎛⎫⨯+=- ⎪⎝⎭第5个等式:92112755⎛⎫⨯+=- ⎪⎝⎭ ······ 按照以上规律.解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(2020年)如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒.求山高CD (点,,A C D 在同一条竖直线上).(参考数据:36.90.75,36.90.60,42.00.90tan sin tan ︒≈︒≈︒≈ )19.(2020年)某超市有线上和线下两种销售方式.与2019年4月份相比.该超市2020年4月份销售总额增长10%,其中线上销售额增长43%.线下销售额增长4%,()1设2019年4月份的销售总额为a 元.线上销售额为x 元,请用含,a x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值.20.(2020年)如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.21.(2020年)某单位食堂为全体名职工提供了,,,A B C D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ;()2依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.22.(2020年)在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.23.(2020年)如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:EG DG -=.参考答案1.A【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.【详解】∵|-3|=3,|-1|=1,又0<1<2<3,∵-3<-2,所以,所给出的四个数中比-2小的数是-3,故选:A【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.C【分析】先处理符号,化为同底数幂的除法,再计算即可.【详解】解:()63a a -÷ 63a a =÷3.a =故选C .【点睛】本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键. 3.D【解析】试题分析:A .圆柱的主视图为矩形,∵A 不符合题意;B .正方体的主视图为正方形,∵B 不符合题意;C .球体的主视图为圆形,∵C 不符合题意;D .圆锥的主视图为三角形,∵D 符合题意.故选D .考点:简单几何体的三视图.4.D【分析】根据科学记数法的表示方法对数值进行表示即可.【详解】解:54700000=5.47×107,故选:D .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题关键.5.A【分析】根据根的判别式逐一判断即可.【详解】A.212x x +=变形为2210x x -+=,此时∵=4-4=0,此方程有两个相等的实数根,故选项A 正确;B.21=0x +中∵=0-4=-4<0,此时方程无实数根,故选项B 错误;C.223x x -=整理为2230x x --=,此时∵=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D.220x x -=中,∵=4>0,此方程有两个不相等的实数根,故选项D 错误.故选:A.【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键. 6.D【分析】分别根据众数、平均数、方差、中位数的定义判断即可.【详解】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15,A .这组数据的众数为11,此选项正确,不符合题意;B .这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;C .这组数据的方差为22221(1012)(1112)3(1312)2(1512)7⎡⎤-+-⨯+-⨯+-⎣⎦=187,此选项正确,不符合题意;D .这组数据的中位数为11,此选项错误,符合题意,故选:D .【点睛】本题考查了众数、平均数、方差、中位数,熟练掌握他们的意义和计算方法是解答的关键.7.B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∵k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.8.C【分析】 先根据445AC cosA ==,,求出AB=5,再根据勾股定理求出BC=3,然后根据DBC A ∠=∠,即可得cos∵DBC=cosA=45,即可求出BD . 【详解】∵∵C=90°, ∵cos =AC A AB, ∵445AC cosA ==,, ∵AB=5,根据勾股定理可得, ∵DBC A ∠=∠, ∵cos∵DBC=cosA=45,∵cos∵DBC=BC BD =45,即3BD =45∵BD=154, 故选:C . 【点睛】本题考查了解直角三角形和勾股定理,求出BC 的长是解题关键. 9.B 【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可. 【详解】A .∵半径OB 平分弦AC ,∵OB∵AC ,AB=BC ,不能判断四边形OABC 是平行四边形, 假命题;B .∵四边形OABC 是平行四边形,且OA=OC, ∵四边形OABC 是菱形, ∵OA=AB=OB ,OA∵BC , ∵∵OAB 是等边三角形, ∵∵OAB=60º, ∵∵ABC=120º, 真命题;C .∵120ABC ∠=︒,∵∵AOC=120º,不能判断出弦AC 平分半径OB , 假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是 假命题, 故选:B . 【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.【分析】根据图象可得出重叠部分三角形的边长为x,x ,由此得出面积y 是x 的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得 【详解】C 点移动到F 点,重叠部分三角形的边长为x,由于是等边三角形,x ,面积为x ·122x ,B 点移动到F 点,重叠部分三角形的边长为(4-x),高为42x ,面积为y=(4-x )4x ·12)24x -,由二次函数图象的性质可判断答案为A, 故选A. 【点睛】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论. 11.2 【分析】利用二次根式的性质化简,进而通过计算即可得出答案. 【详解】1=3-1=2故答案为:2. 【点睛】此题主要考查了二次根式、实数的运算;正确化简二次根式是解题的关键. 12.a (b +1)(b ﹣1).解:原式=2(1)a b -=a (b +1)(b ﹣1), 故答案为a (b +1)(b ﹣1). 13.2 【分析】根据题意由反比例函数k 的几何意义得:,ODCE S k =矩形再求解,A B 的坐标及21,2ABOS k =建立方程求解即可. 【详解】 解:矩形ODCE ,C 在ky x=上, ,ODCE S k ∴=矩形把0x =代入:,y x k =+,y k ∴=()0,,B k ∴把0y =代入:,y x k =+,x k ∴=-(),0,A k ∴-21,2ABOSk ∴= 由题意得:21,2k k = 解得:2,0k k ==(舍去)2.k ∴=故答案为:2. 【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.14.30【分析】(1)根据折叠得到∵D+∵C=180°,推出AD∵BC,,进而得到∵AQP=90°,以及∵A=180°-∵B=90°,再由折叠,得到∵DAQ=∵BAP=∵PAQ=30°即可;(2)根据题意得到DC∵AP,从而证明∵APQ=∵PQR,得到QR=PR和QR=AR,结合(1)中结论,设QR=a,则AP=2a,由勾股定理表达出=即可解答.【详解】解:(1)由题意可知,∵D+∵C=180°,∵AD∵BC,由折叠可知∵AQD=∵AQR,∵CQP=∵PQR,∵∵AQR+∵PQR=1()902DQR CQR∠+∠=︒,即∵AQP=90°,∵∵B=90°,则∵A=180°-∵B=90°,由折叠可知,∵DAQ=∵BAP=∵PAQ,∵∵DAQ=∵BAP=∵PAQ=30°,故答案为:30;(2)若四边形APCD为平行四边形,则DC∵AP,∵∵CQP=∵APQ,由折叠可知:∵CQP=∵PQR,∵∵APQ=∵PQR,∵QR=PR,同理可得:QR=AR,即R为AP的中点,由(1)可知,∵AQP=90°,∵PAQ=30°,且AB=AQ,设QR=a,则AP=2a,∵QP=12AP a=,=,∵AB QR ==,【点睛】本题考查了四边形中的折叠问题,涉及了平行四边形的性质,勾股定理等知识点,解题的关键是读懂题意,熟悉折叠的性质. 15.32x >【分析】根据解不等式的方法求解即可. 【详解】 解:2112x -> 212x -> 23x >32x >. 【点睛】此题主要考查不等式的求解,解题的关键是熟知其解法. 16.(1)见解析;(2)见解析. 【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可; (2)根据旋转的定义作图可得线段B 1A 2. 【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.17.(1)112112866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明见解析.【分析】(1)根据前五个个式子的规律写出第六个式子即可;(2)观察各个式子之间的规律,然后作出总结,再根据等式两边相等作出证明即可.【详解】(1)由前五个式子可推出第6个等式为:112112866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明:∵左边=2122122111222n n n nn n n n n n--+-⎛⎫⨯+=⨯==-⎪++⎝⎭=右边,∵等式成立.【点睛】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.18.75米【分析】设山高CD=x米,先在Rt∵BCD中利用三角函数用含x的代数式表示出BD,再在Rt∵ABD 中,利用三角函数用含x的代数式表示出AD,然后可得关于x的方程,解方程即得结果.【详解】解:设山高CD=x米,则在Rt∵BCD中,tanCDCBDBD∠=,即tan36.9xBD︒=,∵4tan36.90.753x xBD x =≈=︒,在Rt∵ABD中,tanADABDBD∠=,即tan4243ADx︒=,∵44tan 420.9 1.233AD x x x =⋅︒≈⋅=, ∵AD -CD =15,∵1.2x -x =15,解得:x =75. ∵山高CD =75米. 【点睛】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握三角函数的知识是解题的关键.19.()1()1.04a x -;()21.5【分析】()1根据增长率的含义可得答案;()2由题意列方程()1.43 1.04 1.1,x a x a +-=求解x 即可得到比值.【详解】解:()12020年线下销售额为()1.04a x -元, 故答案为:()1.04a x -.()2由题意得:()1.43 1.04 1.1,x a x a +-=0.390.06,x a ∴=2,13x a ∴=∴ 2020年4月份线上销售额与当月销售总额的比值为: 21.432113 1.3.1.1135aa ⨯=⨯= 答:2020年4月份线上销售额与当月销售总额的比值为:1.5【点睛】本题考查的列代数式及一元一次方程的应用,掌握列一元一次方程解决应用题是解题的关键. 20.()1证明见解析;()2证明见解析. 【分析】()1利用,AD BC =证明,ABD BAC ∠=∠利用AB 为直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC ∠=∠ 再证明,CBF DAF ∠=∠ 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠ 从而可得答案. 【详解】()1证明:,AD BC =,AD BC ∴= ,ABD BAC ∴∠=∠AB 为直径,90,ADB BCA ∴∠=∠=︒ ,AB BA =CBA DAB ∴≌.()2证明:,90,BE BF ACB =∠=︒,FBC EBC ∴∠=∠90,,ADB ACB DFA CFB ∠=∠=︒∠=∠,DAF FBC EBC ∴∠=∠=∠BE 为半圆O 的切线,90,90,ABE ABC EBC ∴∠=︒∠+∠=︒90,ACB ∠=︒90,CAB ABC ∴∠+∠=︒ ,CAB EBC ∴∠=∠ ,DAF CAB ∴∠=∠AC ∴平分DAB ∠.【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.21.(1)60,108°;(2)336;(3)12【分析】(1)用最喜欢A 套餐的人数对应的百分比乘以总人数即可,先求出最喜欢C 套餐的人数,然后用最喜欢C 套餐的人数占总人数的比值乘以360°即可求出答案; (2)先求出最喜欢B 套餐的人数对应的百分比,然后乘以960即可;(3)用列举法列出所有等可能的情况,然后找出甲被选到的情况即可求出概率. 【详解】(1)最喜欢A 套餐的人数=25%×240=60(人), 最喜欢C 套餐的人数=240-60-84-24=72(人), 扇形统计图中“C ”对应扇形的圆心角为:360°×72240=108°, 故答案为:60,108°;(2)最喜欢B 套餐的人数对应的百分比为:84240×100%=35%, 估计全体960名职工中最喜欢B 套餐的人数为:960×35%=336(人);(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁, 其中甲被选到的情况有甲乙,甲丙,甲丁3种, 故所求概率P=36=12. 【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,用列举法求概率,由图表获取正确的信息是解题关键.22.(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可; (2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组;(3)设平移后所得抛物线的对应表达式为y=-(x -h )2+k ,根据顶点在直线1yx 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值. 【详解】(1)点B 在直线y x m =+上,理由如下: 将A (1,2)代入y x m =+得21m =+, 解得m=1, ∵直线解析式为1y x ,将B (2,3)代入1yx ,式子成立,∵点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∵抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x -h )2+k , ∵顶点在直线1y x 上,∵k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1, ∵-h 2+h+1=-(h -12)2+54, ∵当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键.23.(1)见解析;(2;(3)见解析【分析】(1)由矩形的形及已知证得∵EAF∵∵DAB ,则有∵E=∵ADB ,进而证得∵EGB=90º即可证得结论;(2)设AE=x ,利用矩形性质知AF∵BC ,则有EA AF EB BC=,进而得到x 的方程,解之即可; (3)在EF 上截取EH=DG ,进而证明∵EHA∵∵DGA ,得到∵EAH=∵DAG ,AH=AG ,则证得∵HAG 为等腰直角三角形,即可得证结论.【详解】(1)∵四边形ABCD 是矩形,∵∵BAD=∵EAD=90º,AO=BC ,AD∵BC ,在∵EAF 和∵DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩,∵∵EAF∵∵DAB(SAS),∵∵E=∵BDA ,∵∵BDA+∵ABD=90º,∵∵E+∵ABD=90º,∵∵EGB=90º,∵BG∵EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x ,∵AF∵BC ,∵E=∵E ,∵∵EAF∵∵EBC , ∵EA AF EB BC=,又AF=AB=1, ∵11x x x =+即210x x --=,解得:x =,x =(舍去) 即AE=12;(3)在EG 上截取EH=DG ,连接AH ,在∵EAH 和∵DAG ,AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩,∵∵EAH∵∵DAG(SAS),∵∵EAH=∵DAG ,AH=AG ,∵∵EAH+∵DAH=90º,∵∵DAG+∵DAH=90º,∵∵HAG=90º,∵∵GAH 是等腰直角三角形,∵222AH AG GH +=即222AG GH =,,∵GH=EG -EH=EG -DG ,∵EG DG -=.【点睛】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年安徽省中考试题数学试题考生注意:本卷一至八大题全体考生必做,附加题报考理科实验班的考生必做,一至八大题共24小题,满分150分;附加题共2小题,满分20分。

考试时间120分。

一、选择题(本题共10个小题,每小题4分,共40分)在每小题给出的四个选项中,只有一项是符合题意的,把所选项前的标号填在题后的括号内。

1、冬季某天我国三个城市的最高气温分别是-10℃、1℃、-7℃,把它们从高到低排列正确的是……( ) A :-10℃、-7℃、1℃ B :-7℃、-10℃、1℃ C :1℃ 、-7℃、-10℃ D :1℃ 、-10℃、-7℃2、下列运算正确的是………………………………………………………………………………………( ) A :a 2·a 3=a 6 B :a 3÷a=a 3 C :(a 2)3=a 5 D :(3a 2)2=9a 43、函数xxy -=1中自变量x 的取值范围是…………………………………………………………………( ) A :x ≠0 B :x ≠1 C :x>1 D :x<1且x ≠0 4、下列多项式能因式分解的是……………………………………………………………………………( )A :x 2-yB :x 2+1C :x 2+y+y 2D :x 2-4x+4 5、如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有………………………………………………( ) A :1个 B :2个 C :3个 D :4个 6、下面是空心圆柱体在指定方向上的视图,正确的是(华东版教材试验区试题)……………( )7、一种花边是由如图的弓形组成的, 弧ACB 的半径为5,弦AB=8,则弓形的高CD 为……( ) A :2 B :25 C :3 D :316 ABCD 第七题ABC D第5题图8、点P (m ,1)在第二象限内,则点Q (-m ,0)在……………………………………………( )A :x 轴正半轴上B :x 轴负半轴上C :y 轴正半轴上D :y 轴负半轴上9、如图,⊙O 1与⊙O 2相交,P 是⊙O 1上的一点,过P 点作两圆的切线,则切线的条数可能是…( ) A :1,2 B :1,3 C :1,2,3 D :1,2,3,410、党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。

在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为……………………………………………( )A :(1+x)2=2B :(1+x)2=4C :1+2x=2D :(1+x)+2(1+x)=411、如图,在平行四边形ABCD 中,AC=4,BD=6,P 是BD 上的任一点,过P 作EF ∥AC ,与平行四边形的两条边分别交于点E ,F 。

设BP=x ,EF=y ,则能反映y 与x 之间关系的图象为……………( )二、填空题(本题共5个小题,每小题4分,共20分) 12、资料表明,到2000年底,我省省级自然保护区的面积为35.03万公顷,这个近似数有____个有效数字。

13、用“84”消毒液配制药液,对白色衣物进行消毒,要求按1:200的比例进行稀释。

现要配制此种药液4020克,则需“84”消毒液____ 克。

14、近视眼镜的度数y (度)与镜片焦距x (米)成反比例。

已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是____。

15、城镇人口占总人口比例的大小表示城填化水平的高低。

由下面统计图可知,我国城镇化水平提高最快的时期是___________。

O 1O 2第8题图A BC D E FP16、我国近期每日公布非典疫情,其中有关数据的收集所采用的调查方式是_______ 。

(华东版教材试验试题)17、如图,l 是四形形ABCD 的对称轴,如果AD ∥BC ,有下列结论: ①AB ∥CD ②AB=BC ③AB ⊥BC ④AO=OC 其中正确的结论是______________。

(把你认为正确..的结论的序号都.填上) 三、(本题共两小题,每小题8分,共16分) 18、已知:x y y x y x -+=-=2221求,,的值。

19、解不等式组:()⎪⎩⎪⎨⎧<--<-3221121x xABC DO第15题图l四、(本题共两小题,每小题8分,共16分)20、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD 和EFGH 都是正方形。

求证:△ABF ≌△DAE21、解方程:312122=+++x xx x五、(本题共两小题,每小题10分,共20分)20、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。

其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。

问王大伯一共获纯利多少元?21、如图是五角星,已知AC=a ,求五角星外接圆的直径(结果用含三角函数的式子表示)。

ABCDEFGH22、已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围。

七、(本题满分12分)23、某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。

有关数据如下表所示:(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平。

问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。

问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?24、如图,这些等腰三角形与正三角形的形状有差异,我们把这与正三角形的接近程度称为“正度”。

在研究“正度”时,应保证相似三角形的“正度”相等。

设等腰三角形的底和腰分别为a ,b ,底角和顶角分别为α,β。

要求“正度”的值是非负数。

同学甲认为:可用式子|a-b|来表示“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子|α-β|来表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形。

探究:(1)他们的方案哪个较合理,为什么?(2)对你认为不够合理的方案,请加以改进(给出式子即可); (3)请再给出一种衡量“正度”的表达式a bb ααβ……附加题(共两小题,每小题10分,共20分)报考理科实验班的学生必做,不考理科实验班的学生不要做。

)1、要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额。

(1)试提出一种分配方案,使得分到相同名额的学校少于4所;(2)证明:不管怎样分配,至少有3所学校得到的名额相同;(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校。

2、如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连结A1B1,我们称A1B1是这个五边形的一条中对线。

如果五边形的每条中对线都将五边形的面积分成相等的两部分。

求证:五边形的每条边都有一条对角线和它平行。

数学参考答案及评分标准二、填空题(本题共5个小题,每小题4分,共20分)三、(本题共两小题,每小题8分,共16分) 16、解:()()()分分时当82322121212222K K K K +=⨯--+-=-+=-=x y y x y x ,,17、解:分不等式组的解集是分得解不等式分得解不等式8316133K K K K K K <<∴><x x ②x ①,, 四、(本题共两小题,每小题8分,共16分) 18、证明:分中和在分是正方形四边形8≌3900K K ΘK K ΘDAEABF DA AB ADE BAF DAE Rt ABF Rt ADE DAE BAF ABCD ∆∆∴=∠=∠∆∆∠=∠-=∠∴19、解:()分所以原方程的根是分是原方程的根经检验分解得得由分这个方程无实数根得由分解得分则原方程可化为设81716101221501141011132102311212121222222122K K K K K K K K ΘK K K K =======+-=+∴<⨯⨯--=∆=+-=+===+-=+x x x x x x x x xx x x xx y y y y y xx ,,,,,五、(本题共两小题,每小题10分,共20分) 20、解:()元王大伯一共获纯利答分元共获纯利分解得分得根据题意亩西红柿亩茄子设王大伯种了630001063000152600102400815105440001800170025::,,,K K K K K K =⨯+⨯⎩⎨⎧==⎩⎨⎧=+=+y x ②y x ①y x y x 21、解:分中在分分的五等分点是圆分则分连结于并延长交圆连101861821536180513901000K K K K K K ΘK K K K cos cos ,,,,,,,,aCAF AC AF a AC ACF Rt CAD CAF CAD O E D C B A ACF CF F O AO =∠=∴=∆=∠=∠∴=⨯=∠∴=∠ 六、(本题满分12分) 22、解:(1)函数y=x 2+bx-1的图象经过点(3,2)∴9+3b-1=2,解得b=-2 ……2分 ∴函数解析式为y=x 2-2x-1 ……3分 (2)y=x 2-2x-1=(x-1)2-2 ……6分 图象略,图象正确给2分 ……8分(3)当x=3 时,y=2根据图象知,当x ≥3时,y ≥2∴当x>0时,使y ≥2的x 的取值范围是x ≥3 ……12分七、(本题满分12分) 23、解:(1)风景区是这样计算的:调整前的平均价格:()元1652520151010=++++ ……2分设整后的平均价格:()元16530251555=++++ ……4分∵调整前后的平均价格不变,平均日人数不变∴平均日总收入持平 ……5分(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元) ……7分 现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元) ……9分 ∴平均日总收入增加了:%.49160160175≈- ……10分(3)游客的说法较能反映整体实际。

……12分八、(本题满分14分)24、解:(1)同学乙的方案较为合理。

相关文档
最新文档