安徽省中考数学试卷及答案详解
中考数学试题及答案安徽
中考数学试题及答案安徽一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. 0.33333...C. πD. 0.5答案:C2. 一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:C3. 一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),则该二次函数的对称轴是:A. x = 0B. x = 1C. x = -1D. x = 2答案:A4. 以下哪个图形是中心对称图形?A. 等边三角形B. 圆C. 等腰梯形D. 矩形答案:B5. 计算下列表达式的值:(2x+3)(x-1)-(2x-5)(x+2)A. 4x^2 - 7x + 1B. 4x^2 + x - 7C. 4x^2 + 7x - 1D. 4x^2 - x + 7答案:C6. 如果一个数的平方等于它本身,那么这个数是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A7. 一个圆的半径为r,那么它的面积是:A. πr^2B. 2πrC. πrD. πr^3答案:A8. 一个等腰三角形的底角为45°,那么它的顶角是:A. 45°B. 60°C. 90°D. 120°答案:C9. 一个正数x的算术平方根是3,那么x的立方根是:A. 3B. 9C. 27D. √3答案:D10. 一个数列的前三项为1,2,4,那么这个数列的第四项是:A. 8B. 7C. 6D. 5答案:A二、填空题(每题3分,共15分)11. 一个直角三角形的两条直角边长分别为6和8,那么它的斜边长是________。
答案:1012. 计算(3x^2 - 2x + 1) ÷ (x - 1)的商是________。
答案:3x + 113. 一个等差数列的首项为2,公差为3,那么它的第五项是________。
2024年安徽中考试卷数学
1、已知直角三角形的一条直角边长为5,斜边长为13,则另一条直角边的长为:A. 8B. 12C. 15D. 17(答案)B2、下列四组数中,哪一组是勾股数?A. 3, 4, 5B. 6, 7, 8C. 9, 10, 11D. 12, 13, 15(答案)A3、若一个多边形的内角和是外角和的3倍,则这个多边形的边数为:A. 6B. 7C. 8D. 9(答案)C4、已知点A(2,3)和点B(4,1),则线段AB的中点坐标为:A. (3,2)B. (2,3)C. (4,1)D. (5,0)(答案)A5、下列哪个选项描述的是平行线的性质?A. 同位角相等B. 对顶角相等C. 邻补角互补D. 同旁内角互补(答案)D6、一个矩形的周长是20厘米,长是a厘米,则宽是:A. (20 - a)厘米B. (20 - 2a)厘米C. (10 - a)厘米D. 10 - a厘米(答案)C7、若关于x的一元二次方程x2 - 2x + m = 0有两个相等的实数根,则m的值为:A. 0B. 1C. 2D. 3(答案)B8、下列哪个选项是方程x2 - 5x + 6 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 4(答案)B和C(注:此题为多选题形式,但按照题目要求选出一个最符合的解,通常选择第一个正确的,即B。
若实际情况允许多选,则B和C均为正确答案。
)9、已知等腰三角形的底边长为8,腰长为5,则这个等腰三角形的面积为:A. 12B. 16C. 20D. 24(答案)C10、下列哪个选项是正确的因式分解?A. x2 - 4 = (x - 2)2B. x2 - 4 = (x + 2)(x - 2)C. x2 + 4 = (x + 2)2D. x2 + 4 = (x + 2)(x - 2)(答案)B。
2024年安徽省中考数学真题试卷及答案解析
数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是()A. 5B. ﹣5C.D.2. 据统计,年我国新能汽车产量超过万辆,其中万用科学记数法表示为()A. B. C. D.3. 某几何体的三视图如图所示,则该几何体为()A. B.C. D.4. 下列计算正确的是()A. B.C. D.5. 若扇形的半径为6,,则的长为()A. B. C. D.6. 已知反比例函数与一次函数的图象的一个交点的横坐标为3,则k的值为()A. B. C. 1 D. 37. 如图,在中,,点在的延长线上,且,则的长是()A. B. C. D.8. 已知实数a,b满足,,则下列判断正确的是()A. B.C. D.9. 在凸五边形中,,,F是的中点.下列条件中,不能推出与一定垂直的是()A. B.C. D.10. 如图,在中,,,,是边上的高.点E,F分别在边,上(不与端点重合),且.设,四边形的面积为y,则y关于x的函数图象为()A. B.C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式有意义,则实数的取值范围是_____.12. 我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:______(填“>”或“<”).13. 不透明的袋中装有大小质地完全相同的个球,其中个黄球、个白球和个红球.从袋中任取个球,恰为个红球的概率是______.14. 如图,现有正方形纸片,点E,F分别在边上,沿垂直于的直线折叠得到折痕,点B,C分别落在正方形所在平面内的点,处,然后还原.(1)若点N在边上,且,则______(用含α的式子表示);(2)再沿垂直于的直线折叠得到折痕,点G,H分别在边上,点D落在正方形所在平面内的点处,然后还原.若点在线段上,且四边形是正方形,,,与的交点为P,则的长为______.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系,格点(网格线的交点)A.B,C.D的坐标分别为,,,.(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,,,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线平分,写出点E 的坐标.四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)已知农作物种植人员共位,且每人只参与一种农作物种植,投入资金共万元.问这两种农作物的种植面积各多少公顷?18. 数学兴趣小组开展探究活动,研究了“正整数N能否表示为(均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(为正整数):奇数的倍数表示结果一般结论______按上表规律,完成下列问题:()( )( );()______;(2)兴趣小组还猜测:像这些形如(为正整数)的正整数不能表示为(均为自然数).师生一起研讨,分析过程如下:假设,其中均为自然数.分下列三种情形分析:若均为偶数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为偶数.若均为奇数,设,,其中均为自然数,则______为的倍数.而不是的倍数,矛盾.故不可能均为奇数.若一个是奇数一个是偶数,则为奇数.而是偶数,矛盾.故不可能一个是奇数一个是偶数.由可知,猜测正确.阅读以上内容,请在情形的横线上填写所缺内容.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点处发出,经水面点折射到池底点处.已知与水平线的夹角,点到水面的距离m,点处水深为,到池壁的水平距离,点在同一条竖直线上,所有点都在同一竖直平面内.记入射角为,折射角为,求的值(精确到,参考数据:,,).20. 如图,是的外接圆,D是直径上一点,的平分线交于点E,交于另一点F,.(1)求证:;(2)设,垂足为M,若,求的长.六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:)表示.将所收集的样本数据进行如下分组:组别A B C D Ex整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a的值.【数据分析与运用】任务2 A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.七、(本题满分12分)22. 如图1,对角线与交于点O,点M,N分别在边,上,且.点E,F分别是与,的交点.(1)求证:;(2)连接交于点H,连接,.(ⅰ)如图2,若,求证:;(ⅱ)如图3,若为菱形,且,,求的值.八、(本题满分14分)23. 已知抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1.(1)求b的值;(2)点在抛物线上,点在抛物线上.(ⅰ)若,且,,求h的值;(ⅱ)若,求h的最大值.参考答案1. 【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 【答案】B【解析】【分析】本题考查了科学记数法,先把万转化为,再根据科学记数法:(,为整数),先确定的值,然后根据小数点移动的数位确定的值即可,根据科学记数法确定和的值是解题的关键.【详解】解:万,故选:.3. 【答案】D【解析】【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D选项.故选:D.4. 【答案】C【解析】【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A.与不是同类项,不能合并,选项错误,不符合题意;B.,选项错误,不符合题意;C.,选项正确,符合题意;D.当时,,当时,,选项错误,不符合题意;故选:C5. 【答案】C【解析】【分析】此题考查了弧长公式,根据弧长公式计算即可.【详解】解:由题意可得,的长为,故选:C.6. 【答案】A【解析】【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出,代入反比例函数求解即可【详解】解:∵反比例函数与一次函数图象的一个交点的横坐标为3,∴,∴,∴,故选:A7. 【答案】B【解析】【分析】本题考查了等腰直角三角形的判定和性质,对顶角的性质,勾股定理,过点作的延长线于点,则,由,,可得,,进而得到,,即得为等腰直角三角形,得到,设,由勾股定理得,求出即可求解,正确作出辅助线是解题的关键.【详解】解:过点作的延长线于点,则,∵,,∴,,∴,,∴为等腰直角三角形,∴,设,则,在中,,∴,解得,(舍去),∴,∴,故选:.8.【答案】C【解析】【分析】题目主要考查不等式的性质和解一元一次不等式组,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键【详解】解:∵,∴,∵,∴,∴,选项B错误,不符合题意;∵,∴,∵,∴,∴,选项A错误,不符合题意;∵,,∴,,∴,选项C正确,符合题意;∵,,∴,,∴,选项D错误,不符合题意;故选:C9. 【答案】D【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,结合根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A.连接,∵,,,∴,∴又∵点F为的中点∴,故不符合题意;B.连接,∵,,,∴,∴,又∵点F为的中点,∴,∵,∴,∴,∴,∴,故不符合题意;C.连接,∵点F为的中点,∴,∵,,∴,∴,,∵,,∴,∴,∴,∴,故不符合题意;D.,无法得出题干结论,符合题意;故选:D.10. 【答案】A【解析】【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定理的应用,过点E作于点H,由勾股定理求出,根据等面积法求出,先证明,由相似三角形的性质可得出,即可求出,再证明,由相似三角形的性质可得出,即可得出,根据,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.【详解】解:过点E作于点H,如下图:∵,,,∴,∵是边上的高.∴,∴,∵,,∴,∴,解得:,∴,∵,,∴,,∴,∴,∴,∴∵,∴当时,,当时,.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11. 【答案】【解析】【分析】根据分式有意义的条件,分母不能等于,列不等式求解即可.【详解】解:分式有意义的条件是分母不能等于,.故答案为:.【点拨】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12. 【答案】>【解析】【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵,,而,∴,∴;故答案为:13. 【答案】【解析】【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.详解】解:画树状图如下:由树状图可得,共有种等结果,其中恰为个红球的结果有种,∴恰为个红球的概率为,故答案为:.14. 【答案】①. ##②.【解析】【分析】①连接,根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,再结合平行线的性质即可求解;②记与交于点K,可证:,则,,由勾股定理可求,由折叠的性质得到:,,,,,则,,由,得,继而可证明,由等腰三角形的性质得到,故.【详解】解:①连接,由题意得,,∵,∴,∴,∵四边形是正方形,∴,∴,,∴,,∴∴,故答案为:;②记与交于点K,如图:∵四边形是正方形,四边形是正方形,∴,,,∴,∴,∴,同理可证:,∴,,在中,由勾股定理得,由题意得:,,,,,∴,∴,∴,∴,∴,即,∵,∴,∴,∴,∴,由题意得,而,∴,∴,故答案为:.【点拨】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 【答案】,【解析】【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵,∴,∴,∴,.【点拨】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16. 【答案】(1)见详解(2)40(3)(答案不唯一)【解析】【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A,B,C分别绕点D旋转得到对应点,即可得出.(2)连接,,证明四边形是平行四边形,利用平行四边形性质以及网格求出面积即可.(3)根据网格信息可得出,,即可得出是等腰三角形,根据三线合一的性质即可求出点E的坐标.【小问1详解】解:如下图所示:【小问2详解】连接,,∵点B与,点C与分别关于点D成中心对称,∴,,∴四边形是平行四边形,∴.【小问3详解】∵根据网格信息可得出,,∴是等腰三角形,∴也是线段的垂直平分线,∵B,C的坐标分别为,,∴点,即.(答案不唯一)四、(本大题共2小题,每小题8分,满分16分)17. 【答案】农作物的种植面积为公顷,农作物的种植面积为公顷.【解析】【分析】本题考查了二元一次方程组的应用,设农作物的种植面积为公顷,农作物的种植面积为公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设农作物的种植面积为公顷,农作物的种植面积为公顷,由题意可得,,解得,答:设农作物的种植面积为公顷,农作物的种植面积为公顷.18. 【答案】(1)(),;();(2)【解析】【分析】()()根据规律即可求解;()根据规律即可求解;()利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【小问1详解】()由规律可得,,故答案为:,;()由规律可得,,故答案为:;【小问2详解】解:假设,其中均为自然数.分下列三种情形分析:若均为偶数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为偶数.若均为奇数,设,,其中均为自然数,则为的倍数.而不是的倍数,矛盾.故不可能均为奇数.若一个是奇数一个是偶数,则为奇数.而是偶数,矛盾.故不可能一个是奇数一个是偶数.由可知,猜测正确.故答案为:.五、(本大题共2小题,每小题10分,满分20分)19. 【答案】【解析】【分析】本题考查了解直角三角形,勾股定理,三角函数,过点于,则,,由题意可得,,,,解求出、,可求出,再由勾股定理可得,进而得到,即可求解,正确作出辅助线是解题的关键.【详解】解:过点于,则,,由题意可得,,,,在中,,,∴,,∴,∴在,,∴,∴.20. 【答案】(1)见详解(2).【解析】【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.(1)由等边对等角得出,由同弧所对的圆周角相等得出,由对顶角相等得出,等量代换得出,由角平分线的定义可得出,由直径所对的圆周角等于可得出,即可得出,即.(2)由(1)知,,根据等边对等角得出,根据等腰三角形三线合一的性质可得出,的值,进一步求出,,再利用勾股定理即可求出.【小问1详解】证明:∵,∴,又与都是所对的圆周角,∴,∵,∴,∵平分,∴,∵直径,∴,∴,故,即.【小问2详解】由(1)知,,∴,又,,∴,,∴圆的半径,∴,在中.,∴即的长为.六、(本题满分12分)21. 【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析【解析】【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.任务1:直接根据总数减去各部分的数据即可;任务2:根据加权平均数的计算方法求解即可;任务3:根据中位数、众数的定义及样本中的数据求解即可;任务4:分别计算甲和乙的一级率,比较即可.【详解】解:任务1:;任务2:,乙园样本数据的平均数为6;任务3:①∵,∴甲园样本数据的中位数在C组,∵,∴乙园样本数据的中位数在C组,故①正确;②由样本数据频数直方图得,甲园样本数据的众数均在B组,乙园样本数据的众数均在C组,故②错误;③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;故答案为:①;任务4:甲园样本数据的一级率为:,乙园样本数据的一级率为:,∵乙园样本数据的一级率高于甲园样本数据的一级率,∴乙园的柑橘品质更优.七、(本题满分12分)22. 【答案】(1)见详解(2)(ⅰ)见详解,(ⅱ)【解析】【分析】(1)利用平行四边形的性质得出,再证明是平行四边形,再根据平行四边形的性质可得出,再利用证明,利用全等三角形的性质可得出.(2)(ⅰ)由平行线截线段成比例可得出,结合已知条件等量代换,进一步证明,由相似三角形的性质可得出,即可得出.(ⅱ)由菱形的性质得出,进一步得出,,进一步可得出,进一步得出,同理可求出,再根据即可得出答案.【小问1详解】证明:∵四边形是平行四边形,∴,,∴,又∵,∴四边形是平行四边形,∴,∴.在与中,∴.∴.【小问2详解】(ⅰ)∵∴,又.,∴,∵,∴,∴,∴(ⅱ)∵是菱形,∴,又,,∴,∴,∵.,∴,∴,即,∴,∴,∵,,,∴,∴,即,∴∴,故.【点拨】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.八、(本题满分14分)23. 【答案】(1)(2)(ⅰ)3;(ⅱ)【解析】【分析】题目主要考查二次函数的性质及化为顶点式,解一元二次方程,理解题意,熟练掌握二次函数的性质是解题关键.(1)根据题意求出的顶点为,确定抛物线(b为常数)的顶点横坐标为2,即可求解;(2)根据题意得出,,然后整理化简;(ⅰ)将代入求解即可;(ⅱ)将代入整理为顶点式,即可得出结果.【小问1详解】解:,∴的顶点为,∵抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1,∴抛物线(b为常数)的顶点横坐标为2,∴,∴;【小问2详解】由(1)得∵点在抛物线上,点在抛物线上.∴,,整理得:(ⅰ)∵,∴,整理得:,∵,,∴,∴;(ⅱ)将代入,整理得,∵,∴当,即时,h取得最大值为.。
安徽省中考数学试题(含答案)
安徽省中考数学试题(含答案)2022年安徽省中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。
1.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.22.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.下面四个几何体中,主视图为三角形的是()A.B.C.D.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.下列方程中,有两个相等实数根的是()A.x2+1=2xB.x2+1=0C.x2﹣2x=3D.x2﹣2x=06.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是137.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA,则BD的长度为()A.B.C.D.49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:1=.12.分解因式:ab2﹣a=.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:(1)=2,第2个等式:(1)=2,第3个等式:(1)=2,第4个等式:(1)=2.第5个等式:(1)=2.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2022年4月份相比,该超市2022年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2022年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2022年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2022年4月份axa﹣x2022年4月份1.1a1.43x (2)求2022年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DGAG.2022年安徽省中考数学参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D.5.下列方程中,有两个相等实数根的是()A.x2+1=2xB.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【解答】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2],因此方差为,于是选项C不符合题意;故选:D.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA,则BD的长度为()A.B.C.D.4【解答】解:∵∠C=90°,AC=4,cosA,∴AB,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A,∴,故选:C.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.如图,△AB C和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GHEJx,∴yEJ•GHx2.当x=2时,y,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.yFJ•G H(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:1= 2 .【解答】解:原式=3﹣1=2.故答案为:2.12.分解因式:ab2﹣a=a(b+1)(b﹣1).【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.如图,一次函数y=x+k(k>0)的图象与x 轴和y轴分别交于点A和点B.与反比例函数y的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为 2 .【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积OA•OBk2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为30 °;(2)当四边形APCD是平行四边形时,的值为.【解答】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QRAP,∵∠PAB=30°,∠B=90°,∴AP=2PB,ABPB,∴PB=QR,∴,故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:1.【解答】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【解答】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:(1)=2,第2个等式:(1)=2,第3个等式:(1)=2,第4个等式:(1)=2.第5个等式:(1)=2.…按照以上规律,解决下列问题:(1)写出第6个等式:(1)=2 ;(2)写出你猜想的第n个等式:(1)=2 (用含n的等式表示),并证明.【解答】解:(1)第6个等式:(1)=2;(2)猜想的第n个等式:(1)=2.证明:∵左边2右边,∴等式成立.故答案为:(1)=2;(1)=2.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD,∴tan42.0°0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD,∴tan36.9°0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2022年4月份相比,该超市2022年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2022年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2022年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2022年4月份axa﹣x2022年4月份1.1a1.43x 1.04(a﹣x)(2)求2022年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2022年4月份相比,该超市2022年4月份线下销售额增长4%,∴该超市2022年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:xa,∴0.2.答:2022年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC 与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【解答】(1)证明:∵AB 是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D =90°,∴∠DAF+∠AFD=90°,∵∠A FD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60 ,扇形统计图中“C”对应扇形的圆心角的大小为108 °;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【解答】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x2+px+q,其顶点坐标为(,q),∵顶点仍在直线y=x+1上,∴q1,∴q1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q1(p﹣1)2,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DGAG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PGAG.真是被情节吸引了!。
2023年安徽省中考数学真题+答案解析
2023年安徽省中考数学真题+答案解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5 B.C.D.52.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a24.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1 B.y=﹣x2+1 C.y=2x+1 D.y=﹣2x+16.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC 于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1 D.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n 等于第n个图案中“◎”的个数的2倍.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分 6 7 8 9 10人数 1 2 a b 2已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是,七年级活动成绩的众数为分;(2)a=,b=;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(i)当0<t<2时,求△OBD与△ACE的面积之和;(ii)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为?若存在,请求出点B的横坐标t的值;若不存在,请说明理由.2023年安徽省中考数学真题答案解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5 B.C.D.5【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,即可得出答案.【解答】解:﹣5的相反数是5.故选:D.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.2.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】根据几何体的三视图分析解答即可.【解答】解:由几何体的三视图可得该几何体是B选项,故选:B.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分别化简,进而判断即可.【解答】解:A.a4+a4=2a4,故此选项不合题意;B.a4•a4=a8,故此选项不合题意;C.(a4)4=a16,故此选项符合题意;D.a8÷a4=a4,故此选项不合题意.故选:C.4.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:<0,x﹣1<0,x<1,在数轴上表示为,故选:A.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1 B.y=﹣x2+1 C.y=2x+1 D.y=﹣2x+1【分析】根据各函数解析式可得y随x的增大而减小时x的取值范围.【解答】解:选项A中,函数y=x2+1,x<0时,y随x的增大而减小;故A不符合题意;选项B中,函数y=﹣x2+1,x>0时,y随x的增大而减小;故B不符合题意;选项C中,函数y=2x+1,y随x的增大而增大;故C不符合题意;选项D中,函数y=﹣2x+1,y随x的增大而减小.故D符合题意;故选:D.6.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°【分析】根据多边形的内角和可以求得∠BAE的度数,根据周角等于360°,可以求得∠COD的度数,然后即可计算出∠BAE﹣∠COD的度数.【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.【分析】先罗列出所有等可能结果,从中找到“平稳数”的结果,再根据概率公式求解即可.【解答】解:用1,2,3这三个数字随机组成一个无重复数字的三位数出现的等可能结果有:123、132、213、231、312、321,其中恰好是“平稳数”的有123、321,所以恰好是“平稳数”的概率为=,故选:C.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC 于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1 D.【分析】根据相似三角形的判定结合正方形的性质证得△AEF∽△ACB,求得AC=3,根据相似三角形的性质求得AE=2,CE=,证得△ADE∽△CFE,根据相似三角形的性质得到CM ==BM,证得△CDM≌△BGM,求出BG,根据勾股定理即可求出MG.【解答】解:∵四边形ABCD是正方形,AF=2,FB=1,∴CD=AD=AB=BC=3,∠ADC=∠DAB=∠ABC=90°,DC∥AB,AD∥BC,∴AC==3,∵EF⊥AB,∴EF∥BC,∴△AEF∽△ACB,∴=,∴=,∴EF=2,∴AE==2,∴CE=AC﹣AE=,∵AD∥CM,∴△ADE∽△CFE,∴=,∴==2,∴CM==BM,在△CDM和△BGM中,,∴△CDM≌△BGM(SAS),∴CD=BG=3,∴MG===.故选:B.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.【分析】根据反比例函数y=与一次函数y=﹣x+b的图象,可知k>0,b>0,所以函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,根据两个交点为(1,k)和(k,1),可得k ﹣b=﹣1,b=k+1,可得函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),不过原点,即可判断函数y =x2﹣bx+k﹣1的大致图象.【解答】解:∵一次函数函数y=﹣x+b的图象经过第一、二、四象限,且与y轴交于正半轴,则b>0,反比例函数y=的图象经过第一、三象限,则k>0,∴函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,由图象可知,反比例函数y=与一次函数y=﹣x+b的图象有两个交点(1,k)和(k,1),∴﹣1+b=k,∴k﹣b=﹣1,∴b=k+1,∴对于函数y=x2﹣bx+k﹣1,当x=1时,y=1﹣b+k﹣1=﹣1,∴函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),∵反比例函数y=与一次函数y=﹣x+b的图象有两个交点,∴方程=﹣x+b有两个不相等的实数根,∴Δ=b2﹣4k=(k+1)2﹣4k=(k﹣1)2>0,∴k﹣1≠0,∴当x=0时,y=k﹣1≠0,∴函数y=x2﹣bx+k﹣1的图象不过原点,∴符合以上条件的只有A选项.故选:A.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB 最小,即可得P A+PB最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B 正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.四边形ABCD【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK =m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC=(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=3.【分析】直接利用立方根的性质化简,进而得出答案.【解答】解:原式=2+1=3.故答案为:3.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为7.45×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74.5亿=7450000000=7.45×109.故答案为:7.45×109.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=1.【分析】根据BD=(BC+)和AB=7,BC=6,AC=5,可以计算出BD的长,再根据BC的长,即可计算出CD的长.【解答】解:∵BD=(BC+),AB=7,BC=6,AC=5,∴BD=(6+)=5,∴CD=BC﹣BD=6﹣5=1,故答案为:1.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=kx+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,当D的坐标为(2+2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.【分析】直接将分式的分子分解因式,进而化简,把已知数据代入得出答案.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【分析】设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,根据销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,列出二元一次方程组,解方程组即可.【解答】解:设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,由题意得:,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.【分析】(1)根据轴对称的性质画出图形即可;(2)根据平移的性质画出图形即可;(3)根据线段垂直平分线的作法画出图形即可.【解答】解:(1)线段A1B1如图所示;(2)线段A2B2如图所示;(3)直线MN即为所求.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为3n;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n 等于第n个图案中“◎”的个数的2倍.【分析】(1)不难看出,第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,从而可求第n个图案中“◎”的个数;(2)根据所给的规律进行总结即可;(3)结合(1)(2)列出相应的式子求解即可.【解答】解:(1)∵第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,∴第n个图案中“◎”的个数:1+2(n﹣1)+n+1=3n,故答案为:3n;(2)由题意得:第n个图案中“★”的个数可表示为:;故答案为:;(3)由题意得:=2×3n,解得:n=11或n=0(不符合题意).五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】在不同的直角三角形中,利用直角三角形的边角关系进行计算即可.【解答】解:如图,由题意可知,∠ORB=36.9°,∠ORA=24.2°,在Rt△AOR中,AR=40m,∠ORA=24.2°,∴OA=sin∠ORA×AR=sin24.2°×40≈16.4(m),OR=cos24.2°×40≈36.4(m),在Rt△BOR中,OB=tan36.9°×36.4≈27.3(m),∴AB=OB﹣OA=27.3﹣16.4=10.9(m),答:无人机上升高度AB约为10.9m.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.【分析】(1)由垂径定理证出∠ACB=∠ACD,则可得出结论;(2)延长AE交BC于M,延长CE交AB于N,证明四边形AECD是平行四边形,则AE=CD=3,根据勾股定理即可得出答案.【解答】(1)证明:∵OA⊥BD,∴=,∴∠ACB=∠ACD,即CA平分∠BCD;(2)延长AE交BC于M,延长CE交AB于N,∵AE⊥BC,CE⊥AB,∴∠AMB=∠CNB=90°,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°,∴∠BAD=∠CNB,∠BCD=∠AMB,∴AD∥NC,CD∥AM,∴四边形AECD是平行四边形,∴AE=CD=3,∴BC===3.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分 6 7 8 9 10人数 1 2 a b 2 已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是1,七年级活动成绩的众数为8分;(2)a=2,b=3;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.【分析】(1)分别求得成绩为8分,9分,10分的人数,再结合总人数为10人列式计算即可求得成绩为7分的学生数,然后根据众数定义即可求得众数;(2)根据中位数的定义将八年级的活动成绩从小到大排列,那么其中位数应是第5个和第6个数据的平均数,结合已知条件易得第5个和第6个数据分别为8,9,再根据表格中数据即可求得答案;(3)结合(1)(2)中所求,分别求得两个年级优秀率及平均成绩后进行比较即可.【解答】解:(1)由扇形统计图可得,成绩为8分的人数为10×50%=5(人),成绩为9分的人数为10×20%=2(人),成绩为10分的人数为10×20%=2(人),则成绩为7分的学生数为10﹣5﹣2﹣2=1(人),∵出现次数最多的为8分,∴七年级活动成绩的众数为8分,故答案为:1;8;(2)由题意,将八年级的活动成绩从小到大排列后,它的中位数应是第5个和第6个数据的平均数,∵八年级10名学生活动成绩的中位数为8.5分,∴第5个和第6个数据的和为8.5×2=17=8+9,∴第5个和第6个数据分别为8分,9分,∵成绩为6分和7分的人数为1+2=3(人),∴成绩为8分的人数为5﹣3=2(人),成绩为9分的人数为10﹣5﹣2=3(人),即a=2,b=3,故答案为:2;3;(3)不是,理由如下:结合(1)(2)中所求可得七年级的优秀率为×100%=40%,八年级的优秀率为×100%=50%,七年级的平均成绩为=8.5(分),八年级的平均成绩为=8.3(分),∵40%<50%,8.5>8.3,∴本次活动中优秀率高的年级并不是平均成绩也高.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.【分析】(1)证MA=MD=MB,得∠MAD=∠MDA,∠MDB=∠MBD,再由三角形内角和定理得∠ADB=∠MDA+∠MDB=90°即可;(2)(i)证四边形EMBD是平行四边形,得DE=BM=AM,再证四边形EAMD是平行四边形,进而得平行四边形EAMD是菱形,则∠BAD=∠CAD,然后证A、C、D、B四点共圆,由圆周角定理得=,即可得出结论;(ii)过点E作EH⊥AB于点H,由勾股定理得AB=10,再由菱形的性质得AE=AM=5,进而由锐角三角函数定义得EH=3,则AH=4,BH=6,然后由锐角三角函数定义即可得出结论.【解答】(1)解:∵M是AB的中点,∴MA=MB,由旋转的性质得:MA=MD=MB,∴∠MAD=∠MDA,∠MDB=∠MBD,∵∠MAD+∠MDA+∠MDB+∠MBD=180°,∴∠ADB=∠MDA+∠MDB=90°,即∠ADB的大小为90°;(2)(i)证明:∵∠ADB=90°,∴AD⊥BD,∵ME⊥AD,∴ME∥BD,∵ED∥BM,∴四边形EMBD是平行四边形,∴DE=BM=AM,∴DE∥AM,∴四边形EAMD是平行四边形,∵EM⊥AD,∴平行四边形EAMD是菱形,∴∠BAD=∠CAD,又∵∠ACB=∠ADB=90°,∴A、C、D、B四点共圆,∵∠BCD=∠CAD,∴=,∴BD=CD;(ii)解:如图3,过点E作EH⊥AB于点H,则∠EHA=∠EHB=90°,在Rt△ABC中,由勾股定理得:AB===10,∵四边形EAMD是菱形,∴AE=AM=AB=5,∴sin∠CAB===,∴EH =AE •sin ∠CAB =5×=3,∴AH ===4,∴BH =AB ﹣AH =10﹣4=6,∴tan ∠ABE ===,即tan ∠ABE 的值为.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O 是坐标原点,抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2.(1)求a ,b 的值;(2)已知点B ,C 在抛物线上,点B 的横坐标为t ,点C 的横坐标为t +1.过点B 作x 轴的垂线交直线OA 于点D ,过点C 作x 轴的垂线交直线OA 于点E .(i )当0<t <2时,求△OBD 与△ACE 的面积之和;(ii )在抛物线对称轴右侧,是否存在点B ,使得以B ,C ,D ,E 为顶点的四边形的面积为?若存在,请求出点B 的横坐标t 的值;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得答案;(2)由题意得B (t ,﹣t 2+4t ),C (t +1,﹣t 2+2t +3),利用待定系数法可得OA 的解析式为y =x ,则D (t ,t ),E (t +1,t +1),(i )设BD 与x 轴交于点M ,过点A 作AN ⊥CE ,则M (t ,0),N (t +1,3),利用S △OBD +S △ACE =BD •OM +AN •CE 即可求得答案;(ii )分两种情况:①当2<t <3时,②当t >3时,分别画出图象,利用S 四边形DCEB =(BD +CE )•DH ,建立方程求解即可得出答案.【解答】解:(1)∵抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2, ∴, 解得:;(2)由(1)得:y =﹣x 2+4x ,∴当x =t 时,y =﹣t 2+4t ,当x =t +1时,y =﹣(t +1)2+4(t +1),即y =﹣t 2+2t +3,∴B (t ,﹣t 2+4t ),C (t +1,﹣t 2+2t +3),设OA 的解析式为y =kx ,将A (3,3)代入,得:3=3k ,∴k =1,∴OA 的解析式为y =x ,∴D (t ,t ),E (t +1,t +1),(i )设BD 与x 轴交于点M ,过点A 作AN ⊥CE ,如图,则M (t ,0),N (t +1,3),∴S △OBD +S △ACE =BD •OM +AN •CE =(﹣t 2+4t ﹣t )•t +(﹣t 2+2t +3﹣t ﹣1)=(﹣t 3+3t 2)+(t 3﹣3t 2+4)=﹣t 3+t 2+t 3﹣t 2+2=2;(ii )①当2<t <3时,过点D 作DH ⊥CE 于H ,如图,则H (t +1,t ),BD =﹣t 2+4t ﹣t =﹣t 2+3t ,CE =t +1﹣(﹣t 2+2t +3)=t 2﹣t ﹣2,DH =t +1﹣t =1, ∴S 四边形DCEB =(BD +CE )•DH , 即=(﹣t 2+3t +t 2﹣t ﹣2)×1,解得:t=;②当t>3时,如图,过点D作DH⊥CE于H,则BD=t﹣(﹣t2+4t)=t2﹣3t,CE=t2﹣t﹣2,=(BD+CE)•DH,∴S四边形DBCE即=(t2﹣3t+t2﹣t﹣2)×1,解得:t1=+1(舍去),t2=﹣+1(舍去);综上所述,t的值为.。
2023年安徽省中考数学真题(答案解析)
2023年安徽省初中学业水平考试数学(试题卷)一、选择题(本大题共10小题,每小题4分,满分40分)1.【答案】A【解析】解:5-的相反数是5,故选:A .2.【答案】B【解析】解:∵主视图是直角三角形,故A ,C ,D 选项不合题意,故选:B .3.【答案】C【解析】解:A 选项,4442a a a +=,故该选项不正确,不符合题意;B 选项,448a a a ⋅=,故该选项不正确,不符合题意;C 选项,()1446a a =,故该选项正确,符合题意;D 选项,844a a a ÷=,故该选项不正确,不符合题意;故选:C .4.【答案】A 【解析】解:102x -<解得:1x <,数轴上表示不等式的解集故选:A .5.【答案】D【解析】解:A 选项,21y x =+,0a >,对称轴为直线0x =,当0x <时,y 的值随x 值的增大而减小,当0x >时,y 的值随x 值的增大而增大,故该选项不正确,不符合题意;B 选项,21y x =-+,a<0,对称轴为直线0x =,当0x <时,y 的值随x 值的增大而增大,当0x >时,y 的值随x 值的增大而减小,故该选项不正确,不符合题意;C 选项,21y x =+,0k >,y 的值随x 值的增大而增大,故该选项不正确,不符合题意;D 选项,21y x =-+,0k <,y 的值随x 值的增大而减小,故该选项正确,符合题意;故选:D .6.【答案】D 【解析】∵360360180,55BAE COD ︒︒∠=︒-∠=,∴3603601803655BAE COD ︒︒∠-∠=︒--=︒,故选D .7.【答案】C【解析】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有,123,132,213,231,312,321共六种可能,只有123321,是“平稳数”∴恰好是“平稳数”的概率为21=63故选:C .8.【答案】B【解析】解:∵四边形ABCD 是正方形,2AF =,1FB =,∴213AD BC AB AF FG ===+=+=,AD CB ∥,,AD AB CB AB ⊥⊥,∵EF AB ⊥,∴AD EF BC ∥∥∴2DE AF EM FB ==,ADE CME ∽△△,∴2AD DE CM EM ==,则1322CM AD ==,∴332MB CM =-=,∵BC AD ∥,∴GMB GDA ∽,∴31232BG MB AG DA ===∴3BG AB ==,在Rt BGM △中,352MG ==,故选:B .9.【答案】A 【解析】解:如图所示,设()1,A k ,则(),1B k ,根据图象可得1k >,将点(),1B k 代入y x b =-+,∴1k b =-+,∴1k b =-,∵1k >,∴2b >,∴21y x bx k =-+-()2222112=224b b x bx b x bx b x b ⎛⎫=-+--=-+--++- ⎪⎝⎭,对称轴为直线12b x =>,当1x =时,121b b -+-=-,∴抛物线经过点()1,1-,∴抛物线对称轴在1x =的右侧,且过定点()1,1-,当0x =时,120y k b =-=->,故选:A .10.【答案】A 【解析】解:如图所示,延长,AD BC ,依题意60QAD QBA ∠=∠=︒∴ABQ 是等边三角形,∵P 是CD 的中点,∴PD PC =,∵DEA CBA ∠=∠,∴ED CQ∥∴,PQC PED PCQ PDE ∠=∠∠=∠,∴PDE PCQ≌∴PQ PE =,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设,AQ BQ 的中点分别为,G H ,则11,22GP AE PH EB ==∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE EB =,则,,Q P F 三点共线,PF 取得最小值,此时()122AE EB AE EB ==+=,则ADE ECB △≌△,∴,C D 到AB 的距离相等,则CD AB ∥,此时332PF AD ==此时ADE V 和BCE 的边长都为2,则,AP PB 最小,∴3232PF =⨯=,∴()22237PA PB ==+=∴PA PB +=27,或者如图所示,作点B 关于GH 对称点B ',则PB PB '=,则当,,A P B '三点共线时,AP PB AB '+=此时()2224237AB AB BB ''=+=+故A 选项错误,根据题意可得,,P Q F 三点共线时,PF 最小,此时PE PF =3=23PE PF +=B 选项正确;CDE 周长等于4CD DE CE CD AE EB CD AB CD ++=++=+=+,即当CD 最小时,CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵60,60GHQ GHM GDM ∠=︒∠=∠=︒,则120CHM ∠=︒如图,延长DE ,HG ,交于点N ,则60NGD QGH ∠=∠=︒,60NDG ADE ∠=∠=︒∴NGD △是等边三角形,∴ND GD HM ==,在NPD 与HPC △中,60NPD HPC N CHP PD PC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴NPD HPC≌∴ND CH=∴CH MH=∴30HCM HMC ∠=∠=︒∴CM QF ∥,则CM DM ⊥,∴DMC是直角三角形,在DCM △中,DC DM>∴当DC DM =时,DC 最短,122DC GH AB ===∵2CD PC PC=+∴CDE 周长的最小值为2226++=,故C 选项正确;∵NPD HPC≌∴四边形ABCD 面积等于ADE EBC DEC ADE NEBHS S S S S ++=+ 平行四边∴当BGD △的面积为0时,取得最小值,此时,,D G 重合,C H ,重合∴四边形ABCD 面积的最小值为2332=4⨯33D 选项正确,故选:A .二、填空题(本大题共4小题,每小题5分,满分20分)11.【答案】3381+=213+=,故答案为:3.12.【答案】97.4510⨯【解析】解:74.5亿89=74.5107.4510⨯=⨯.故答案为:97.4510⨯.13.【答案】1【解析】解:∵7,6AB BC ==,5AC =,∴2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭149256526-⎛⎫=+= ⎪⎝⎭∴651CD BC BD =-=-=,故答案为:1.14.【答案】①.3②.4【解析】解:(1)∵2,30AB AOB =∠=︒,90OAB ∠=︒,∴3,24OA OB AB ===∴()(),2A B ,∵C 是OB 的中点,∴)C ,∵反比例函数(0)k y k x =>的图象经过斜边OB 的中点C .∴k =∴反比例数解析式为3y x =(2)∵()A,)C 设直线AC 的解析式为y kx b=+∴01b b⎧=+⎪⎨=+⎪⎩解得:332k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为323y x =-+,∵∥DB AC ,设直线BD 的解析式为33y x b =-+,将点()2B 代入并解得4b =,∴直线BD 的解析式为343y x =-+,∵反比例数解析式为y x=联立3433y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得:32x y ⎧=⎪⎨=⎪⎩或32x y ⎧=-⎪⎨=+⎪⎩当32x y ⎧=⎪⎨=-⎪⎩时,((2223229312BD =-+-+=+=当32x y ⎧=⎪⎨=+⎪⎩时,()()2223229312BD =++=+=(222216OB =+=∴22OB BD -4=,故答案为:4.三、(本大题共2小题,每小题8分,满分16分)15.【答案】1x +【解析】解:2211x x x +++()211x x +=+1x =+,当1x =时,∴原式=11-+=.16.【答案】调整前甲、乙两地该商品的销售单价分别为40,50元【解析】解:设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意得,()10110%15x y x y +=⎧⎨++=-⎩解得:4050x y =⎧⎨=⎩答:调整前甲、乙两地该商品的销售单价分别为40,50元四、(本大题共2小题、每小题8分、满分16分)17.【答案】(1)见解析(2)见解析(3)见解析【解析】(1)解:如图所示,线段11A B 即为所求;A B即为所求;(2)解:如图所示,线段22M N即为所求(3)解:如图所示,点,如图所示,∵221310AM BM ==+221310MN =+=∴AM MN =,又1,3NP MQ MP AQ ====,∴NPM MQA ≌,∴NMP MAQ ∠=∠,又90MAQ AMQ ∠+∠=︒,∴90NMP AMQ ∠+∠=︒∴AM MN ⊥,∴MN 垂直平分AB .18.【答案】(1)3n (2)()12n n ⨯+(3)11n =【解析】(1)解:第1个图案中有3个,第2个图案中有336+=个,第3个图案中有3239+⨯=个,第4个图案中有33312+⨯=个,……∴第n 个图案中有3n 个,故答案为:3n .(2)第1个图案中“★”的个数可表示为122⨯,第2个图案中“★”的个数可表示为232´,第3个图案中“★”的个数可表示为342⨯,第4个图案中“★”的个数可表示为452⨯,……,第n 个图案中“★”的个数可表示为()12n n ⨯+,(3)解:依题意,()11232n n n ⨯+++++=……,第n 个图案中有3n 个,∴()1322n n n +=⨯,解得:0n =(舍去)或11n =.五、(本大题共2小题,每小题10分,满分20分)19.【答案】无人机从A 点到B 点的上升高度AB 约为10.9米【解析】解:依题意,24.2ARO ∠=︒,36.9BRO ∠=︒,40AR =,在Rt AOR 中,24.2ARO ∠=︒,∴sin 40sin 24.2AO AR ARO =⨯∠=⨯︒,cos 40cos 24.2RO AR ARO =⨯∠=⨯︒,在Rt BOR 中,tan 40cos 24.2tan 36.9OB OR BRO =⨯∠=⨯︒⨯︒,∴AB BO AO=-40cos 24.2tan 36.940sin 24.2=⨯︒⨯︒-⨯︒400.910.75400.41≈⨯⨯-⨯10.9≈(米)答:无人机从A 点到B 点的上升高度AB 约为10.9米.20.【答案】(1)见解析(2)BC =【解析】(1)∵对角线BD 是O 的直径,OA BD⊥∴ AB AD =,∴BCA DCA ∠=∠,∴CA 平分BCD ∠.(2)∵对角线BD 是O 的直径,∴90BAD BCD ∠=∠=︒,∴,DC BC DA AB⊥⊥∵,AE BC CE AB ⊥⊥,∴,DC AE DA CE ,∴四边形AECD 平行四边形,∴3DC AE ==,又∵BD =,∴BC ==.六、(本题满分12分)21.【答案】(1)1,8(2)23,(3)优秀率高的年级不是平均成绩也高,理由见解析【解析】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%---∴样本中,七年级活动成绩为7分的学生数是1010%=1´,根据扇形统计图,七年级活动成绩的众数为8分,故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =--=,1012223b =----=,故答案为:23,.(3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<,∴优秀率高的年级为八年级,但平均成绩七年级更高,∴优秀率高的年级不是平均成绩也高七、(本题满分12分)22.【答案】(1)90ADB ∠=︒(2)(ⅰ)见解析;(ⅱ)12【解析】(1)解:∵MA MD MB==∴,MAD MDA MBD MDB ∠=∠∠=∠,在ABD △中,=180MAD MDA MBD MDB ∠+∠+∠+∠︒∴180902ADB ADM BDM ︒∠=∠+∠==︒(2)证明:(ⅰ)证法一:如图,延长BD AC 、,交于点F ,则90BCF ∠=︒,∵ME AD ⊥,90ADB ∠=︒∴EM BD ∥.又∵DE AB ∥,∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点,,∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥,∴AMDE 是菱形.∴AE AM =.∵EM BD ∥,∴AE AM AF AB=.∴AB AF =.∵90ADB ∠=︒,即AD BF ⊥,∴BD DF =,即点D 是Rt BCF 斜边的中点.∴BD CD =.证法二:∵90ACB ADB ∠=∠=︒,M 是斜边AB 的中点,∴点A C D B 、、、在以M 为圆心,AB 为直径的M 上.∵ME AD ⊥,∴ME 垂直平分AD .∴EA ED =.∴EAD EDA ∠=∠.∵DE AB ∥,∴BAD EDA ∠=∠.∴EAD BAD ∠=∠.∴BD CD =.证法三:∵ME AD ⊥,90ADB ∠=︒∴EM BD ∥.又∵DE AB ∥,∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点,,∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥,∴AMDE 是菱形.∴EAD MAD ∠=∠.∵90ACB ADB ∠=∠=︒,M 是斜边AB 的中点,∴点A C D B 、、、在以M 为圆心,AB 为直径的M 上.∴BD CD =.(ⅱ)如图所示,过点E 作EH AB ⊥于点H,∵8,6AC BC ==,∴10AB ==,则152AE AM AB ===,∵,90EAH BAC ACB AHE ∠=∠∠=∠=︒,∴AHE ACB ∽,∴510EH AH AE BC AC AB ===,∴3,4EH AH ==,∴1046BH AB AH =-=-=,∴31tan 62EH ABE BH ===八、(本题满分14分)23.【答案】(1)1,4a b =-=(2)(ⅰ)2;(2)52t =【解析】(1)解:依题意,93322a b b a+=⎧⎪⎨-=⎪⎩,解得:14a b =-⎧⎨=⎩,∴24y x x =-+;(2)(ⅰ)设直线OA 的解析式为y kx =,∵()3,3A ,∴33k=解得:1k =,∴直线y x =,如图所示,依题意,()()()()22,4,1,141B t t t C t t t -++-+++,(),D t t ,()1,1E t t ++,∴()()2223033=33t t t BD t t t t t ⎧-+<≤⎪=-+⎨->⎪⎩,()()()()22220213122t t t CE t t t t t ⎧-++<<⎪=-+++=⎨--≥⎪⎩,∴当02t <<时,OBD 与ACE △的面积之和为()1131=222BD t CE t ⨯+--,(ⅱ)当点B 在对称右侧时,则2t >,∴22CE t t =--,当23t <<时,23BD t t =-+,∴()221321=12BDEC S t t t t t =-++--⨯-梯形,∴312t -=,解得:52t =,当3t >时,23BD t t =-,∴()2221321=212BDCE S t t t t t t =-+--⨯--梯形,∴2321=2t t --,解得:2142t +=(舍去)或2142t =(舍去)综上所述,52t =.。
2024年安徽省中考数学试卷(附答案解析)
2024年安徽省中考数学试卷(附答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.(4分)据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A.0.944×107B.9.44×106C.9.44×107D.94.4×106【解答】解:944万=9440000=9.44×106,故选:B.3.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据三视图进行观察,下半部分是圆柱,上半部分是圆锥,故选:D.4.(4分)下列计算正确的是()A.a3+a3=a6B.a6÷a3=a2C.(﹣a)2=a2D.=a【分析】利用合并同类项法则,同底数幂除法法则,幂的乘方,二次根式逐项判断即可.【解答】解:A、a3+a3=2a3,故A选项错误;B、a6÷a3=a3,故B选项错误;C、(﹣a)2=a2,故C选项正确;D、,故D选项错误;故选:C.5.(4分)若扇形AOB的半径为6,∠AOB=120°,则的长为()A.2πB.3πC.4πD.6π【分析】利用弧长计算公式计算即可.【解答】解:=,故选:C.【点评】本题考查了弧长的计算,掌握弧长计算公式是解题的关键.6.(4分)已知反比例函数y=(k≠0)与一次函数y=2﹣x的图象的一个交点的横坐标为3,则k的值为()A.﹣3B.﹣1C.1D.3【分析】将x=3代入一次函数中,求得y=﹣1,再将(3,﹣1)代入反比例函数中,求得k的值.【解答】解:将x=3代入y=2﹣x中,得:y=﹣1,将(3,﹣1)代入y=中,得:k=﹣3,故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,将交点横坐标代入解析式中是解题的关键.7.(4分)如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是()A.B.C.2﹣2D.【分析】由等腰直角三角形的性质可得AB=2,AH=BH=CH=,由勾股定理可求DH的长,即可求解.【解答】解:如图,过点C作CH⊥AB于H,∵AC=BC=2,∠ACB=90°,CH⊥AB,∴AB=2,AH=BH=CH=,∵CD=AB=2,∴DH===,∴DB=﹣,故选:B.【点评】本题考查了等腰直角三角形的性质,勾股定理,掌握等腰直角三角形的性质是解题的关键.8.(4分)已知实数a,b满足a﹣b+1=0,0<a+b+1<1,则下列判断正确的是()A.﹣<a<0B.<b<1C.﹣2<2a+4b<1D.﹣1<4a+2b<0【分析】由a﹣b+1=0得出b=a+1,代入0<a+b+1<1可得﹣1<a<﹣,再求0<b<,分别代入选项判断即可.【解答】解:∵a﹣b+1=0,∴b=a+1,∵0<a+b+1<1,∴0<a+a+1+1<1,即0<2a+2<1∴﹣1<a<﹣,故选项A错误,不合题意.∵b=a+1,﹣1<a<﹣,∴0<b<,故选项B错误,不合题意.由﹣1<a<﹣得,﹣2<2a<﹣1,﹣4<4a<﹣2,由0<b<得,0<4b<2,0<2b<1,∴﹣2<2a+4b<1,故选项C正确,符合题意.∴﹣4<4a+2b<﹣1,选项D错误,不合题意.故选:C.【点评】本题主要考查了解一元一次不等式,掌握解一元一次不等式是解题关键.9.(4分)在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能推出AF与CD一定垂直的是()A.∠ABC=∠AED B.∠BAF=∠EAF C.∠BCF=∠EDF D.∠ABD=∠AEC【分析】将每个选项的条件分别作为已知条件,结合题干,通过证三角形全等,再看能否证明AF⊥CD 即可【解答】选项A:连接AC、AD,∵AB=AE,∠ABC=∠AED,BC=DE,∴△ABC≌△AED(SAS),∴AC=AD,∵F是AD的中点,∴AF⊥CD,所以选项A不合题意;选项B:连接BF、EF,∵AB=AE,∠BAF=∠EAF,AF=AF,∴△ABF≌△AEF(SAS),∴∠AFB=∠AFE,BF=EF,∴△BFC≌△EFD(SSS),∴∠BFC=∠EFD,∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项B不合题意;选项C:思路与选项B大致相同,先证△BFC≌△EFD(SAS),再证△ABF≌△AEF(SSS),∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项C不合题意;选项D的条件无法证出全等,故证不出AF⊥CD,所以选项D符合题意.故答案选:D.【点评】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的相关知识是解题关键.10.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.【分析】过D作DH⊥AB于H,求出AC==2,BD==;可得CD==AE•DH=x×==,AD=AC﹣CD=,故DH==,从而S△ADEx,S△BDE=BE•DE=(4﹣x)×=﹣x;证明△BDE∽△CDF,可得=()2==S△BDE=(﹣x)=﹣x,从而y=S△ABC﹣S△ADE﹣S△CDF=﹣x+,观,故S△CDF察各选项可知,A符合题意.【解答】解:过D作DH⊥AB于H,如图:∵∠ABC=90°,AB=4,BC=2,∴AC==2,∵BD是边AC上的高,∴BD===;∴CD ==,AD =AC ﹣CD =,∴DH ===,∴S △ADE =AE •DH =x ×=x ,S △BDE =BE •DE =(4﹣x )×=﹣x ;∵∠BDE =90°﹣∠BDF =∠CDF ,∠DBE =90°﹣∠CBD =∠C ,∴△BDE ∽△CDF ,∴=()2=()2=,∴S △CDF =S △BDE =(﹣x )=﹣x ,∴y =S △ABC ﹣S △ADE ﹣S △CDF =×2×4﹣x ﹣(﹣x )=﹣x +,∵﹣<0,∴y 随x 的增大而减小,且y 与x 的函数图象为线段(不含端点),观察各选项图象可知,A 符合题意;故选:A .【点评】本题考查动点问题的函数图象,涉及相似三角形判定与性质,勾股定理及应用,面积法等,解题的关键是求出y 与x 的函数关系式.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)若分式有意义,则实数x 的取值范围是.【分析】根据分式分母不为0进行计算即可.【解答】解:∵分式有意义,∴x ﹣4≠0,∴x ≠4,故答案为:x ≠4.12.(5分)我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:(填“>”或“<”).【解答】解:()2=10,()2=,∵10,∴,故答案为:>.13.(5分)不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.【分析】先画出树状图,再根据树状图求概率.【解答】解:由图可知,共有12种可能的结果,其中2个红球的结果出现2次,∴P=,故答案为:.14.(5分)如图,现有正方形纸片ABCD,点E,F分别在边AB,BC上.沿垂直于EF的直线折叠得到折痕MN,点B,C分别落在正方形所在平面内的点B′,C′处,然后还原.(1)若点N在边CD上,且∠BEF=α,则∠C′NM=(用含α的式子表示);(2)再沿垂直于MN的直线折叠得到折痕GH,点G,H分别在边CD,AD上,点D落在正方形所在平面内的点D′处,然后还原.若点D′在线段B′C′上,且四边形EFGH是正方形,AE=4,EB=8,MN与GH的交点为P,则PH的长为3.【解答】解:(1)∵MN⊥EF,∠BEF=α,∴∠EMN=90°﹣α,∵CD∥AB,∴∠CNM=∠EMN=90°﹣α,∴∠C′NM=∠CNM=90°﹣α.故答案为:90°﹣α.(2)如图,设PH与NC'交于点G',∵四边形ABCD和四边形EFGH是正方形,∴∠A=∠D=∠GHE=90°,GH=EH,∴∠AHE+∠GHD=∠AHE+∠AEH=90°∴∠GHD=∠AEH,∴△EAH≌△HDG(AAS)同理可证△EAH≌△HDG≌△GCF≌△FBE,∴DH=CG=AE=4,DG=EB=8,∴GH==4,∵MN⊥GH,且∠C′NM=∠CNM,∴MN垂直平分GG',即PG=PG'=GG',且NG=NG',∵四边形CBMN沿MN折叠,∴CN=C'N,∴CN﹣NG=C'N﹣NG',即C'G'=CG=4,∵△GDH沿GH折叠得到△GD'H,∴GD'=GD=8,∵∠HC'G'=∠HD'G=90°,∴C'G'∥D'G,∴==,∴HG'=GG'=HG=2,又∵PG'=GG'=,∴PH=PG'+HG'=3.故答案为:3.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:x2﹣2x=3.【分析】利用因式分解解方程.【解答】解:x2﹣2x=3,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A,B,C,D的坐标分别为(7,8),(2,8),(10,4),(5,4).(1)以点D为旋转中心,将△ABC旋转180°得到△A1B1C1,画出△A1B1C1;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分∠BAC,写出点E的坐标.【解答】解:(1)如图,画出△A1B1C1;(2)以B,C1,B1,C为顶点的四边形的面积=10×8﹣2××2×4﹣2××4×8=40;(3)如图,点E即为所求(答案不唯一),点E的坐标(6,6).四、(本大题共2小题,每小题8分,满分16分)17.(8分)乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地,采用新技术种植A ,B 两种农作物.种植这两种农作物每公顷所需人数和投入资金如下表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A 48B39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元,问A ,B 这两种农作物的种植面积各多少公顷?【解答】解:设A 种农作物的种植面积是x 公顷,B 种农作物的种植面积是y 公顷,根据题意得:,解得:.答:A 种农作物的种植面积是3公顷,B 种农作物的种植面积是4公顷.18.(8分)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为x 2﹣y 2(x ,y 均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果1=12﹣023=22﹣125=32﹣227=42﹣329=52﹣42…4=22﹣028=32﹣1212=42﹣2216=52﹣3220=62﹣42…一般结论2n ﹣1=n 2﹣(n ﹣1)24n =按上表规律,完成下列问题:(ⅰ)24=()2﹣()2;(ⅱ)4n =;(2)兴趣小组还猜测:像2,6,10,14,…这些形如4n ﹣2(n 为正整数)的正整数N 不能表示为x 2﹣y 2(x ,y 均为自然数).师生一起研讨,分析过程如下:假设4n ﹣2=x 2﹣y 2,其中x ,y 均为自然数.分下列三种情形分析:①若x,y均为偶数,设x=2k,y=2m,其中k,m均为自然数,则x2﹣y2=(2k)2﹣(2m)2=4(k2﹣m2)为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为偶数.②若x,y均为奇数,设x=2k+1,y=2m+1,其中k,m均为自然数,则x2﹣y2=(2k+1)2﹣(2m+1)2=为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为奇数.③若x,y一个是奇数一个是偶数,则x2﹣y2为奇数.而4n﹣2是偶数,矛盾.故x,y不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【分析】(1)(i)由所给数据可推出24=4×6=(6+1)2﹣(6﹣1)2=72﹣52;(ii)结合第一问推导数据发现规律:4n=4•n=(n+1)2﹣(n﹣1)2;(2)利用平方差公式因式分解即可得到答案.【解答】解:(1)(i)4=4×1=(1+1)2﹣(1﹣1)2,8=4×2=(2+1)2﹣(2﹣1)2,12=4×3=(3+1)2﹣(3﹣1)2,20=4×5=(5+1)2﹣(5﹣1)2,24=4×6=(6+1)2﹣(6﹣1)2=72﹣52,......4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:7,5;(ii)由(1)推导的规律可知4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:(n+1)2﹣(n﹣1)2.(3)(2k+1)2﹣(2m+1)2=(2k+1+2m+1)(2k+1﹣2m﹣1)=4(k2﹣m2+k﹣m).故答案为:4(k2﹣m2+k﹣m).五、(本大题共2小题,每小题10分,满分20分)19.(10分)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B处发出,经水面点E折射到池底点A处.已知BE与水平线的夹角α=36.9°,点B到水面的距离BC=1.20m,点A处水深为1.20m,到池壁的水平距离AD=2.50m.点B,C,D在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求的值(精确到0.1).参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】根据题意得出,∠CEB=α=36.9°,EH=1.20m,从而求出CE,AH,AE的长,分别求出sinβ和sinγ的值,得出结果.【解答】解:过点E作EH⊥AD于点H,由题意可知,∠CEB=α=36.9°,EH=1.20m,∴(m),AH=AD﹣CE=2.50﹣1.60=0.90(m),∴=1.50(m),∴,∵=cosα=0.80,∴.【点评】本题考查了解直角三角形的应用,理解题意得出线段长度是解题的关键.20.(10分)如图,⊙O是△ABC的外接圆,D是直径AB上一点,∠ACD的平分线交AB于点E,交⊙O 于另一点F,FA=FE.(1)求证:CD⊥AB;(2)设FM⊥AB,垂足为M,若OM=OE=1,求AC的长.【分析】(1)证明∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,即可得到∠CDE=90°,由此得出CD⊥AB;(2)求出AB和BC的长,即可求出AC的长.【解答】(1)证明:∵FA=FE,∴∠FAE=∠AEF,∵∠FAE与∠BCE都是所对的圆周角,∴∠FAE=∠BCE,∵∠AEF=∠CEB,∴∠CEB=∠BCE,∵CE平分∠ACD,∴∠ACE=∠DCE∵AB是直径,∴∠ACB=90°,∴∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,∴∠CDE=90°,∴CD⊥AB;(2)解:由(1)知,∠BEC=∠BCE,∴BE=BC,∵AF=EF,FM⊥AB,∴MA=ME=2,AE=4,∴圆的半径OA=OB=AE﹣OE=3,∴BC=BE=OB﹣OE=2,在△ABC中,AB=6,BC=2,∠ACB=90°,∴.【点评】本题考查了圆周角定理,勾股定理,垂径定理等,掌握定理并综合运用是解题的关键.六、(本题满分12分)21.(12分)综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:cm)表示.将所收集的样本数据进行如下分组:组别A B C D Ex 3.5≤x<4.5 4.5≤x<5.5 5.5≤x<6.5 6.5≤x<7.57.5≤x≤8.5整理样本数据,并绘制甲、乙两园样本数据的频数分布直方图,部分信息如下:任务1求图1中a的值.【数据分析与运用】任务2A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是(填正确结论的序号).①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.【分析】(1)用200分别减去其它各组的频数可得a的值;(2)根据加权平均数公式计算即可;(3)分别根据中位数、众数和极差的定义解答即可;(4)根据统计图数据判断即可.【解答】解:(1)由题意得,a=200﹣(15+70+50+25)=40;(2)(15×4+50×5+70×6+50×7+15×8)=6,故乙园样本数据的平均数为6;(3)由统计图可知,两园样本数据的中位数均在C组,故①正确;甲园的众数在B组,乙园的众数在C组,故②结论错误;两园样本数据的最大数与最小数的差不一定相等,故③结论错误;故答案为:①;(4)乙园的柑橘品质更优,理由如下:由样本数据频数分布直方图可得,乙园一级柑橘所占比例大于甲园,因此可以认为乙园的柑橘品质更优.【点评】本题考查频数分布直方图,样本估计总体,频数分布表,加权平均数、中位数、众数以及极差,解题的关键是读懂图象信息,属于中考常考题型.七、(本题满分12分)22.(12分)如图1,▱ABCD的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且AM=CN.点E,F分别是BD与AN,CM的交点.(1)求证:OE=OF;(2)连接BM交AC于点H,连接HE,HF.(ⅰ)如图2,若HE∥AB,求证:HF∥AD;(ⅱ)如图3,若▱ABCD为菱形,且MD=2AM,∠EHF=60°,求的值.【分析】(1)证明△AOE≌△COF(ASA),即可得到OE=OF;(2)(i)证明△HOF∽△AOD,即可得到HF∥AD;(ii)先求出OA=2OH,OB=5OE,即可得到的值.【解答】(1)证明:∵▱ABCD,∴AD∥BC,OA=OC,∴AM∥CN,∵AM=CN,∴四边形AMCN是平行四边形,∴AN∥CM,∴∠OAE=∠OCF,在△AOE与△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)(i)证明:∵HE∥AB,∴,∵OB=OD,OE=OF,∴,∵∠HOF=∠AOD,∴△HOF∽△AOD,∴∠OHF=∠OAD,∴HF∥AD;(ii)解:∵▱ABCD为菱形,∴AC⊥BD,∵OE=OF,∠EHF=60°,∴∠EHO=∠FHO=30°,∴,∵AM∥BC,MD=2AM,∴=,即HC=3AH,∴OA+OH=3(OA﹣OH),∴OA=2OH,∵BN∥AD,MD=2AM,AM=CN,∴,即3BE=2ED,∴3(OB﹣OE)=2(OB+OE),∴OB=5OE,∴,∴的值是.【点评】本题考查了平行四边形的性质与判定,相似三角形的性质与判定,全等三角形的性质与判定等,综合运用性质与判定方法是解题的关键.八、(本题满分14分)23.(14分)已知抛物线y=﹣x2+bx(b为常数)的顶点横坐标比抛物线y=﹣x2+2x的顶点横坐标大1.(1)求b的值;(2)点A(x1,y1)在抛物线y=﹣x2+2x上,点B(x1+t,y1+h)在抛物线y=﹣x2+bx上.(ⅰ)若h=3t,且x1≥0,t>0,求h的值;(ⅱ)若x1=t﹣1,求h的最大值.【分析】(1)求出抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,根据题意列方程,即可求出b的值;(2)先求出h=﹣t2﹣2x1t+2x1+4t,(i)列方程即可求出h的值;(ii)求出h关于t的方程,配顶点式求出h最大值.【解答】解:(1)∵抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,∴,∴b=4;(2)∵点A(x1,y1)在抛物线y=﹣x2+2x上,∴,∵B(x1+t,y1+h)在抛物线y=﹣x2+4x上,∴,t),∴h=﹣t2﹣2x1t+2x1+4t,(i)∵h=3t,∴3t=﹣t2﹣2x1t+2x1+4t,∴t(t+2x1)=t+2x1,∵x1≥0,t>0,∴t+2x1>0,∴t=1,∴h=3;(ii)将x1=t﹣1代入h=﹣t2﹣2x1t+2x1+4t,∴h=﹣3t2+8t﹣2,,∵﹣3<0,∴当,即时,h取最大值.。
2024年安徽省数学中考试题正式版含答案解析
绝密★启用前2024年安徽省数学中考试题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−5的绝对值是( )A. 5B. −5C. 15D. −152.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 0.944×107B. 9.44×106C. 9.44×107D. 94.4×1063.某几何体的三视图如图所示,则该几何体为( )A. B. C. D.4.下列计算正确的是( )A. a3+a5=a6B. a6÷a3=a2C. (−a)2=a2D. √ a2=a5.若扇形AOB的半径为6,∠AOB=120∘,则AB⏜的长为( )A. 2πB. 3πC. 4πD. 6π6.已知反比例函数y=kx(k≠0)与一次函数y=2−x的图象的一个交点的横坐标为3,则k的值为( )A. −3B. −1C. 1D. 37.如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是( )A. √ 10−√ 2B. √ 6−√ 2C. 2√ 2−2D. 2√ 2−√ 68.已知实数a,b满足a−b+1=0,0<a+b+1<1,则下列判断正确的是( )A. −12<a<0 B. 12<b<1C. −2<2a+4b<1D. −1<4a+2b<09.在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能..推出AF与CD一定垂直的是( )A. ∠ABC=∠AEDB. ∠BAF=∠EAFC. ∠BCF=∠EDFD. ∠ABD=∠AEC10.如图,在Rt▵ABC中,∠ABC=90∘,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为( )A. B. C. D.第II卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。
2022年安徽省中考数学真题试卷(含解析)
2022年安徽省中考数学真题试卷(含解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C .D 四个选项,其中只有一个是符合题目要求的.1.下列为负数的是()A .2-BC .0D .5-2.据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A .83.410⨯B .80.3410⨯C .73.410⨯D .63410⨯3.一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A .B .C .D .4.下列各式中,计算结果等于9a 的是()A .36+a a B .36a a ⋅C .10a a-D .182÷a a 5.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A .甲B .乙C .丙D .丁6.两个矩形的位置如图所示,若1∠=α,则2∠=()A .90α-︒B .45α-︒C .180α︒-D .270α︒-7.已知⊙O 的半径为7,AB 是⊙O 的弦,点P 在弦AB 上.若PA =4,PB =6,则OP =()AB .4C D .58.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A .13B .38C .12D .239.在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是()A .B .C .D .10.已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△PAB ,△PBC ,△PCA 的面积分别记为0S ,1S ,2S ,3S .若12302S S S S ++=,则线段OP 长的最小值是()AB C .D 二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式312x -≥的解集为________.12.若一元二次方程2240x x m -+=有两个相等的实数根,则m =________.13.如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x=的图象经过点C ,()0ky k x=≠的图象经过点B .若OC AC =,则k =________.14.如图,四边形ABCD 是正方形,点E 在边AD 上,△BEF 是以E 为直角顶点的等腰直角三角形,EF ,BF 分别交CD 于点M ,N ,过点F 作AD 的垂线交AD 的延长线于点G .连接DF ,请完成下列问题:(1)FDG ∠=________°;(2)若1DE =,DF =,则MN =________.三、(本大题共2小题,每小题8分,满分16分)15.计算:()02122⎛⎫-- ⎪⎝⎭.16.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到111A B C △,请画出111A B C △﹔(2)以边AC 的中点O 为旋转中心,将△ABC 按逆时针方向旋转180°,得到222A B C △,请画出222A B C △.四、(本大题共2小题,每小题8分,满分16分)17.某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y 52020211.25x1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?18.观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.已知AB 为⊙O 的直径,C 为⊙O 上一点,D 为BA 的延长线上一点,连接CD .(1)如图1,若CO ⊥AB ,∠D =30°,OA =1,求AD 的长;(2)如图2,若DC 与⊙O 相切,E 为OA 上一点,且∠ACD =∠ACE ,求证:CE ⊥AB .20.如图,为了测量河对岸A ,B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得A ,B 均在C 的北偏东37°方向上,沿正东方向行走90米至观测点D ,测得A 在D 的正北方向,B 在D 的北偏西53°方向上.求A ,B 两点间的距离.参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈.六、(本题满分12分)21.第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生.为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n 名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x 表示):A :7075x ≤<,B :7580x ≤<,C :8085x ≤<,D :8590x ≤<,E :9095x ≤<,F :95100x ≤≤,并绘制七年级测试成绩频数直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D 组的全部数据如下:86,85,87,86,85,89,88请根据以上信息,完成下列问题:(1)n =______,a =______;(2)八年级测试成绩的中位数是______﹔(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.七、(本题满分12分)22.已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若DE BC ∥,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .八、(本题满分14分)23.如图1,隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米.以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.E (0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点1P ,4P 在x 轴上,MN 与矩形1234PPP P 的一边平行且相等.栅栏总长l 为图中粗线段12PP ,23P P ,34P P ,MN 长度之和.请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点2P ,3P 在抛物线AED 上.设点1P 的横坐标为()06m m <≤,求栅栏总长l 与m 之间的函数表达式和l 的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形1234PP P P 面积的最大值,及取最大值时点1P 的横坐标的取值范围(1P 在4P 右侧).答案与解析1.D 【分析】根据正负数的意义分析即可;【详解】解:A 、2-=2是正数,故该选项不符合题意;BC 、0不是负数,故该选项不符合题意;D 、-5<0是负数,故该选项符合题意.故选D.2.C 【分析】将3400万写成34000000,保留1位整数,写成10(110)n a a ⨯<≤的形式即可,n 为正整数.【详解】解:3400万34000000=,保留1位整数为3.4,小数点向左移动7位,因此734000000 3.410=⨯,故选:C ..3.A 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A 4.B 【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.36a a,不是同类项,不能合并在一起,故选项A不合题意;+B.36369a a a a+⋅==,符合题意;C.10a a-,不是同类项,不能合并在一起,故选项C不合题意;D.12821816a aa a-÷,不符合题意,==故选B5.A【分析】根据图象,先比较甲、乙的速度;然后再比较丙、丁的速度,进而在比较甲、丁的速度即可.【详解】乙在所用时间为30分钟时,甲走的路程大于乙走的路程,故甲的速度较快;丙在所用时间为50分钟时,丁走的路程大于丙走的路程,故丁的速度较快;又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,故选A6.C【分析】用三角形外角性质得到∠3=∠1-90°=α-90°,用余角的定义得到∠2=90°-∠3=180°-α.【详解】解:如图,∠3=∠1-90°=α-90°,∠2=90°-∠3=180°-α.故选:C.7.D【分析】连接OA ,过点O 作OC AB ⊥于点C ,如图所示,先利用垂径定理求得152AC BC AB ===,然后在Rt AOC ∆中求得OC =Rt POC ∆中,利用勾股定理即可求解.【详解】解:连接OA ,过点O 作OC AB ⊥于点C ,如图所示,则12AC BC AB ==,7OA =,∵PA =4,PB =6,∴4610AB PA PB =+=+=,∴152AC BC AB ===,∴541PC AC PA =-=-=,在Rt AOC ∆中,OC ===,在Rt POC ∆中,5OP ===,故选:D 8.B 【分析】列出所有可能的情况,找出符合题意的情况,利用概率公式即可求解.【详解】解:对每个小正方形随机涂成黑色或白色的情况,如图所示,共有8种情况,其中恰好是两个黑色小正方形和一个白色小正方形情况有3种,∴恰好是两个黑色小正方形和一个白色小正方形的概率为38,故选:B9.D【分析】分为0a >和a<0两种情况,利用一次函数图像的性质进行判断即可.【详解】解:当1x =时,两个函数的函数值:2y a a =+,即两个图像都过点()21,a a +,故选项A 、C 不符合题意;当0a >时,20a >,一次函数2y ax a =+经过一、二、三象限,一次函数2y a x a =+经过一、二、三象限,都与y 轴正半轴有交点,故选项B 不符合题意;当a<0时,20a >,一次函数2y ax a =+经过一、二、四象限,与y 轴正半轴有交点,一次函数2y a x a =+经过一、三、四象限,与y 轴负半轴有交点,故选项D 符合题意.故选:D .10.B【分析】根据12302S S S S ++=,可得1012S S =,根据等边三角形的性质可求得△ABC 中AB 边上的高1h 和△PAB 中AB 边上的高2h 的值,当P 在CO 的延长线时,OP 取得最小值,OP =CP -OC ,过O 作OE ⊥BC ,求得OC =【详解】解:如图,2PDB BDC S S S =+ ,3PDA ADC S S S =+ ,∴1231()()PDB BDC PDA ADC S S S S S S S S ++=++++=1()()PDB PDA BDC ADC S S S S S ++++=1PAB ABCS S S ++=110S S S ++=102S S +=02S ,∴1012S S =,设△ABC 中AB 边上的高为1h ,△PAB 中AB 边上的高为2h ,则0111116322S AB h h h ==´= ,1222116322S AB h h h ==´= ,∴211332h h =´,∴122h h =,∵△ABC 是等边三角形,∴22166()332h =-=2113322h h ==,∴点P 在平行于AB ,且到AB 332∴当点P 在CO 的延长线上时,OP 取得最小值,过O 作OE ⊥BC 于E ,∴12CP h h =+=∵O 是等边△ABC 的中心,OE ⊥BC∴∠OCE =30°,CE =132BC =∴OC =2OE∵222OE CE OC +=,∴2223(2)OE OE +=,解得OE∴OC =∴OP =CP -OC =故选B .11.5x ≥【分析】根据解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1可得答案.【详解】解:312x -≥去分母,得x -3≥2,移项,得x ≥2+3,合并同类项,系数化1,得,x ≥5,故答案为:x ≥5.12.2【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m=240b ac =-= ,∴16420m -⨯⨯=,解得:2m =.故答案为:2.13.3【分析】过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,先证四边形CDEB 为矩形,得出CD =BE ,再证Rt △COD ≌Rt △BAE (HL ),根据S 平行四边形OCBA =4S △OCD =2,再求S △OBA =112OCBA S =平行四边形即可.【详解】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,∴CD ∥BE ,∵四边形ABCO 为平行四边形,∴CB OA ∥,即CB DE ∥,OC =AB ,∴四边形CDEB 为平行四边形,∵CD ⊥OA ,∴四边形CDEB 为矩形,∴CD =BE ,∴在Rt △COD 和Rt △BAE 中,OC AB CD EB =⎧⎨=⎩,∴Rt △COD ≌Rt △BAE (HL ),∴S △OCD =S △ABE ,∵OC =AC ,CD ⊥OA ,∴OD =AD ,∵反比例函数1y x=的图象经过点C ,∴S △OCD =S △CAD =12,∴S 平行四边形OCBA =4S △OCD =2,∴S △OBA =112OCBA S =平行四边形,∴S △OBE =S △OBA +S △ABE =13122+=,∴3232k =⨯=.故答案为3.14.452615【分析】(1)先证△ABE ≌△GEF ,得FG =AE =DG ,可知△DFG 是等腰直角三角形即可知FDG ∠度数.(2)先作FH ⊥CD 于H ,利用平行线分线段成比例求得MH ;再作MP ⊥DF 于P ,证△MPF ∽△NHF ,即可求得NH 的长度,MN =MH +NH 即可得解.【详解】(1)∵四边形ABCD 是正方形,∴∠A =90°,AB =AD ,∴∠ABE +∠AEB =90°,∵FG ⊥AG ,∴∠G =∠A =90°,∵△BEF 是等腰直角三角形,∴BE =FE ,∠BEF =90°,∴∠AEB +∠FEG =90°,∴∠FEG =∠EBA ,在△ABE 和△GEF 中,A G ABE GEF BE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△GEF (AAS ),∴AE =FG ,AB =GE ,在正方形ABCD 中,AB =ADAD GE∴=∵AD =AE +DE ,EG =DE +DG ,∴AE =DG =FG ,∴∠FDG =∠DFG =45°.故填:45°.(2)如图,作FH ⊥CD 于H ,∴∠FHD =90°又∵∠G =∠GDH =90°,∴四边形DGFH 是矩形,又∵DG =FG ,∴四边形DGFH 是正方形,∴DH =FH =DG =2,∴AG FH∥∴ DE DM FH MH,∴DM =23,MH =43,作MP ⊥DF 于P ,∵∠MDP =∠DMP =45°,∴DP =MP ,∵DP 2+MP 2=DM 2,∴DP =MP∴PF ∵∠MFP +∠MFH =∠MFH +∠NFH =45°,∴∠MFP =∠NFH ,∵∠MPF =∠NHF =90°,∴△MPF ∽△NHF ,∴=MP PF NH HF ,即=NH 252332,∴NH =25,∴MN =MH +NH =43+25=2615.故填:2615.15.1【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】()02122⎛⎫- ⎪⎝⎭144=-+1=16.(1)见解析(2)见解析【分析】(1)根据平移的方式确定出点A 1,B 1,C 1的位置,再顺次连接即可得到111A B C △;(2)根据旋转可得出确定出点A 2,B 2,C 2的位置,再顺次连接即可得到222A B C △.【详解】(1)如图,111A B C △即为所作;(2)如图,222A B C △即为所作;17.(1)1.25x +1.3y(2)2021年进口额400亿元,出口额260亿元.【分析】(1)根据进出口总额=进口额+出口额计算即可;(2)根据2021年进出口总额比2020年增加了140亿元,列方程1.25x +1.3y =520+140,然后联立方程组5201.25 1.3520140x y x y +=⎧⎨+=+⎩,解方程组即可.【详解】(1)解:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y 5202021 1.25x 1.3y 1.25x +1.3y故答案为:1.25x +1.3y ;(2)解:根据题意1.25x +1.3y =520+140,∴5201.25 1.3520140x y x y +=⎧⎨+=+⎩,解得:320200x y =⎧⎨=⎩,2021年进口额1.25x =1.25320400⨯=亿元,2021年出口额是1.3 1.3200260y =⨯=亿元.18.(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.【详解】(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.19.1(2)见解析【分析】(1)根据直角三角形的性质(在直角三角形中,30︒角所对的直角边等于斜边的一半)及勾股定理可求出OD ,进而求出AD 的长;(2)根据切线的性质可得OC ⊥CD ,根据同一个圆的半径相等及等腰三角形的性质可得∠OCA =∠OAC ,由各个角之间的关系以及等量代换可得答案.【详解】(1)解:∵OA =1=OC ,CO ⊥AB ,∠D =30︒∴CD =2⋅OC =2∴OD ===∴1AD OD OA =--(2)证明:∵DC 与⊙O 相切∴OC ⊥CD即∠ACD +∠OCA =90︒∵OC =OA∴∠OCA =∠OAC∵∠ACD =∠ACE∴∠OAC +∠ACE =90︒∴∠AEC =90︒∴CE ⊥AB20.96米【分析】根据题意可得ACD ∆是直角三角形,解Rt ACD ∆可求出AC 的长,再证明BCD ∆是直角三角形,求出BC 的长,根据AB =AC -BC 可得结论.【详解】解:∵A ,B 均在C 的北偏东37°方向上,A 在D 的正北方向,且点D 在点C 的正东方,∴ACD ∆是直角三角形,∴903753BCD ∠=︒-︒=︒,∴∠A =90°-∠BCD =90°-53°=37°,在Rt △ACD 中,sin CD A AC =∠,CD =90米,∴90150sin 0.60CD AC A =≈=∠米,∵90,53CDA BDA ∠=︒∠=︒,∴905337,BDC ∠=︒-︒=︒∴375390BCD BDC ∠+∠=︒+︒=︒,∴90,CBD ∠=︒即BCD ∆是直角三角形,∴sin BC BDC CD=∠,∴sin 900.6054BC CD BDC =∠≈⨯= 米,∴1505496AB AC BC =-=-=米,答:A ,B 两点间的距离为96米.21.(1)20;4(2)86.5(3)该校七、八两个年级对冬奥会关注程度高的学生一共有275人.【分析】(1)八年级D 组:8590x ≤<的频数为7÷D 组占35%求出n ,再利用样本容量减去其他四组人数÷2求()120123642a =----=即可;(2)根据中位数定义求解即可;(3)先求出七八年级不低于90分的人数,求出占样本的比,用两个年级总数×1140计算即可.【详解】(1)解:八年级测试成绩D 组:8590x ≤<的频数为7,由扇形统计图知D 组占35%,∴进行冬奥会知识测试学生数为n=7÷35%=20,∴()120123642a =⨯----=,故答案为:20;4;(2)解:A 、B 、C 三组的频率之和为5%+5%+20%=30%<50%,A 、B 、C 、D 四组的频率之和为30%+35%=65%>50%,∴中位数在D 组,将D 组数据从小到大排序为85,85,86,86,87,88,89,∵20×30%=6,第10与第11两个数据为86,87,∴中位数为868786.52+=,故答案为:86.5;(3)解:八年级E :9095x ≤<,F :95100x ≤≤两组占1-65%=35%,共有20×35%=7人七年级E :9095x ≤<,F :95100x ≤≤两组人数为3+1=4人,两年级共有4+7=11人,占样本1140,∴该校七、八两个年级对冬奥会关注程度高的学生一共有()1150050027540⨯+=(人).22.(1)见解析(2)(ⅰ)60CED ∠=︒;(ⅱ)见解析【分析】(1)先根据DC =BC ,CE ⊥BD ,得出DO =BO ,再根据“AAS”证明ODE OBC ∆∆≌,得出DE =BC ,得出四边形BCDE 为平行四边形,再根据对角线互相垂直的平行四边形为菱形,得出四边形BCDE 为菱形;(2)(ⅰ)根据垂直平分线的性质和等腰三角形三线合一,证明∠BEG =∠DEO=∠BEO ,再根据∠BEG +∠DEO +∠BEO =180°,即可得出180603CED ︒∠==︒;(ⅱ)连接EF ,根据已知条件和等腰三角形的性质,算出15GEF ∠=︒,得出45OEF ∠=︒,证明OE OF =,再证明BOE COF ∆∆≌,即可证明结论.【详解】(1)证明:∵DC =BC ,CE ⊥BD ,∴DO =BO ,∵DE BC ∥,∴ODE OBC ∠=∠,OED OCB ∠=∠,∴ODE OBC ∆∆≌(AAS ),∴DE BC =,∴四边形BCDE 为平行四边形,∵CE ⊥BD ,∴四边形BCDE 为菱形.(2)(ⅰ)根据解析(1)可知,BO =DO ,∴CE 垂直平分BD ,∴BE =DE ,∵BO =DO ,∴∠BEO =∠DEO ,∵DE 垂直平分AC ,∴AE =CE ,∵EG ⊥AC ,∴∠AEG =∠DEO ,∴∠AEG =∠DEO=∠BEO ,∵∠AEG +∠DEO +∠BEO =180°,∴180603CED ︒∠==︒.(ⅱ)连接EF ,∵EG ⊥AC ,∴90EGF ∠=︒,∴90EFA GEF ∠=︒-∠,∵180AEF BEF∠=︒-∠180BEC CEF=︒-∠-∠()180BEC CEG GEF =︒-∠-∠-∠1806060GEF=︒-︒-︒+∠60GEF=︒+∠∵AE =AF ,∴AEF AFE ∠=∠,∴9060GEF GEF ︒-∠=︒+∠,15GEF ∴∠=︒,∴601545OEF CEG GEF ∠=∠-∠=︒-︒=︒,∵CE BD ⊥,∴90EOF EOB ∠=∠=︒,∴9045OFE OEF ∠=︒-∠=︒,∴OEF OFE ∠=∠,∴OE OF =,AE CE = ,∴EAC ECA =∠∠,60EAC ECA CEB ∠+∠=∠=︒ ,30ECA ∴∠=︒,9030EBO OEB ∠=︒-∠=︒ ,∴30OCF OBE ∠=∠=︒,90BOE COF ∠=∠=︒ ,∴BOE COF ∆∆≌(AAS ),BE CF ∴=.23.(1)y =16-x 2+8(2)(ⅰ)l =12-m 2+2m +24,l 的最大值为26;(ⅱ)方案一:最大面积27,9≤P 1横坐标81492≤P 1横坐标【分析】(1)通过分析A 点坐标,利用待定系数法求函数解析式;(2)(ⅰ)结合矩形性质分析得出P 2的坐标为(m ,-16m 2+8),然后列出函数关系式,利用二次函数的性质分析最值;(ⅱ)设P 2P 1=n ,分别表示出方案一和方案二的矩形面积,利用二次函数的性质分析最值,从而利用数形结合思想确定取值范围.【详解】(1)由题意可得:A (-6,2),D (6,2),又∵E (0,8)是抛物线的顶点,设抛物线对应的函数表达式为y =ax 2+8,将A (-6,2)代入,(-6)2a +8=2,解得:a =16-,∴抛物线对应的函数表达式为y =16-x 2+8;(2)(ⅰ)∵点P 1的横坐标为m (0<m ≤6),且四边形P 1P 2P 3P 4为矩形,点P 2,P 3在抛物线AED 上,∴P 2的坐标为(m ,16-m 2+8),∴P 1P 2=P 3P 4=MN =16-m 2+8,P 2P 3=2m ,∴l =3(16-m 2+8)+2m =12-m 2+2m +24=12-(m -2)2+26,∵12-<0,∴当m =2时,l 有最大值为26,即栅栏总长l 与m 之间的函数表达式为l =12-m 2+2m +24,l 的最大值为26;(ⅱ)方案一:设P 2P 1=n ,则P 2P 3=18-3n ,∴矩形P 1P 2P 3P 4面积为(18-3n )n =-3n 2+18n =-3(n -3)2+27,∵-3<0,∴当n =3时,矩形面积有最大值为27,此时P 2P 1=3,P 2P 3=9,令16-x 2+8=3,解得:x =∴此时P1的横坐标的取值范围为9≤P 1横坐标,方案二:设P 2P 1=n ,则P 2P 3=9-n ,∴矩形P 1P 2P 3P 4面积为(9-n )n =-n 2+9n =-(n -92)2+814,∵-1<0,∴当n =92时,矩形面积有最大值为814,此时P 2P 1=92,P 2P 3=92,令16-x 2+8=92,解得:x =∴此时P1的横坐标的取值范围为92≤P 1横坐标。
2022年安徽省中考数学试卷(解析版)
2021年安徽省中考数学试卷(解析版)2022年安徽省中考数学试卷一、选择题〔本大题共10小题,每题4分,总分值40分〕每题都给出A,B,C,D 四个选项,其中只有一个是正确的。
1.8-的绝对值是〔 〕A.8-B.8C.8±D.81-2.2022年我省粮食总产量为635.2亿斤,其中635.2亿科学记数法表示〔 〕 A.610352.6⨯ B.810352.6⨯ C.1010352.6⨯ D.8102.635⨯3.以下运算正确的选项是〔 〕A.()532a a = B.842a a a =⋅ C. 236a a a =÷ D.()333b a ab =4.一个由圆柱和圆锥组成的几何体如图水平放置,其主〔正〕视图为〔 〕A. B. C. D.5.以下分解因式正确的选项是〔 〕A.)4(42+-=+-x x x xB.)(2y x x x xy x +=++C.2)()()(y x x y y y x x -=-+-D.)2)(2(442-+=+-x x x x6.据省统计局发布,2022年我省有效创造专利数比2022年增长22.1%假定2022年的平均增长率保持不变,2022年和2022年我省有效创造专利分别为a 万件和b 万件,那么〔 〕A.a b )2%1.221(⨯+=B.a b 2%)1.221(+=C.a b 2%)1.221(⨯+=D.a b 2%1.22⨯=7.假设关于x 的一元二次方程x (x +1)+ax =0有两个相等的实数根,那么实数a 的值为〔 〕A. 1-B.1C.22或-D.13或-8.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8 乙2]3488类于以上数据,说法正确的选项是〔 〕A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.□ABCD 中,E 、F 是对角线BD 上不同的两点,以下条件中,不能得出四边形A ECF 一定为平行四边形的是〔 〕A.BE=DFB.AE=CFC.AF//C ED.∠BAE =∠DCF 10.如图,直线21l l 、都与直线l 垂直,垂足分别为M,N,MN =1正方形ABCD 的边长为3,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止,记点C 平移的距离为x ,正方形ABCD 的边位于21l l 、之间分的长度和为y ,那么y 关于x 的函数图象太致为〔 〕A. B. C. D.二、填空题(本大共4小题,每题5分,总分值30分) 11. 不等式128>-x 的解集是 。
2024年安徽省中考真题数学试卷含答案解析
安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。
2024安徽中考数学试卷
一、选择题1.下列哪个数不是有理数?A.0B.-3/2C.π(答案)D.0.52.下列哪个数轴上的点表示的是正数?A.在原点左侧3个单位长度的点B.在原点右侧2个单位长度的点(答案)C.原点D.在原点左侧和右侧各1个单位长度的点3.下列哪个是代数式?A. 5 > 3B.x + 1 = 5C.2a - b(答案)D.你吃了吗?4.下列哪个是单项式?A.x + yB.2x2yC.1/xD.5(答案)5.下列运算正确的是?A.3a - 2a = 1B.a2 + a3 = a5C.7a - a = 6a(答案)D.(ab)2 = ab26.下列哪个是不等式?A.x + 3 = 5B.x - 2 > 3(答案)C.x2 - 4x + 4D.x/27.下列哪个数不是整数?A.-3B.0C.3/2(答案)D.58.下列哪个是多项式?A.x2 - 2x(答案)B.1/xC.√xD.x2 - 2x + 3 = 09.下列哪个是不等式的解?A.x = 2 是不等式x > 3 的解B.x = -1 是不等式x < -2 的解C.x = 4 是不等式x ≥4 的解(答案)D.x = 0 是不等式x ≠0 的解10.下列哪个运算符合分配律?A.a(b + c) = ab + cB.a(b + c) = ab + ac(答案)C. a + b = abD.(a + b)2 = a2 + b2。
安徽省2024年中考数学试卷(解析版)
2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。
安徽省2022年中考[数学卷]考试真题与答案解析
安徽省2022年中考[数学卷]考试真题与答案解析一、选择题本大题共10小题,每小题4分,满分40分。
每小题都给出A ,B ,C .D 四个选项,其中只有一个是符合题目要求的。
1. 下列为负数的是()A. B. C. 0 D. 2-5-【答案】D【分析】根据正负数的意义分析即可;【详解】解:A 、=2是正数,故该选项不符合题意;2-B C 、0不是负数,故该选项不符合题意;D 、-5<0是负数,故该选项符合题意.故选D.2. 据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为( )A. B. C. D. 83.410⨯80.3410⨯73.410⨯63410⨯【答案】C【分析】将万写成,保留1位整数,写成的形式即可,n 为正整34003400000010(110)n a a ⨯<≤数.【详解】解:万,保留1位整数为,小数点向左移动7位,340034000000= 3.4因此,734000000 3.410=⨯故选:C .3. 一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是( )A. B.C. D.【答案】A 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A4. 下列各式中,计算结果等于的是()9a A. B. C. D. 36+a a 36a a ⋅10a a -182÷a a 【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A .,不是同类项,不能合并在一起,故选项A 不合题意;36+a a B .,符合题意;36369a a a a +⋅==C .,不是同类项,不能合并在一起,故选项C 不合题意;10a a -D .,不符合题意,11816282a a a a -==÷故选B5. 甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是( )A. 甲B. 乙C. 丙D. 丁【答案】A 【分析】根据图象,先比较甲、乙的速度;然后再比较丙、丁的速度,进而在比较甲、丁的速度即可.【详解】乙在所用时间为30分钟时,甲走的路程大于乙的走的路程,故甲的速度较快;丙在所用时间为50分钟时,丁走的路程大于丙的走的路程,故丁的速度较快;又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,故选A6. 两个矩形的位置如图所示,若,则( )1∠=α2∠=A. B. C. D. 90α-︒45α-︒180α︒-270α︒-【答案】C 【分析】用三角形外角性质得到∠3=∠1-90°=α-90°,用余角的定义得到∠2=90°-∠3=180°-α.【详解】解:如图,∠3=∠1-90°=α-90°,∠2=90°-∠3=180°-α.故选:C .性质,三角形的外角性质,互为余角的定义.7. 已知⊙O 的半径为7,AB 是⊙O 的弦,点P 在弦AB 上.若PA =4,PB =6,则OP =()A. B. 4 C. D. 5【答案】D【分析】连接,过点作于点,如图所示,先利用垂径定理求得OA O OC AB ⊥C,然后在中求得,再在中,利用勾股定理即可152AC BC AB ===Rt AOC ∆OC =Rt POC ∆求解.【详解】解:连接,过点作于点,如图所示,OA O OC AB ⊥C则,,12AC BC AB ==7OA =∵PA =4,PB =6,∴,4610AB PA PB =+=+=∴,152AC BC AB ===∴,541PC AC PA =-=-=在中,,Rt AOC ∆OC ===在中,,故选:DRt POC ∆5OP ===8. 随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为( )A. B. C. D. 13381223【答案】B【分析】列出所有可能的情况,找出符合题意的情况,利用概率公式即可求解.【详解】解:对每个小正方形随机涂成黑色或白色的情况,如图所示,共有8种情况,其中恰好是两个黑色小正方形和一个白色小正方形情况有3种,∴恰好是两个黑色小正方形和一个白色小正方形的概率为,故选:B38【点睛】本题考查了用列举法求概率,能一个不漏的列举出所有可能的情况是解题的关键.9. 在同一平面直角坐标系中,一次函数与的图像可能是( )2y ax a =+2y a x a =+A. B.C. D.【答案】D【分析】分为和两种情况,利用一次函数图像的性质进行判断即可.0a >0a <【详解】解:当时,两个函数的函数值:,即两个图像都过点,故选1x =2y a a =+()21,a a +项A 、C 不符合题意;当时,,一次函数经过一、二、三象限,一次函数经过一、0a >20a >2y ax a =+2y a x a =+二、三象限,都与轴正半轴有交点,故选项B 不符合题意;y 当时,,一次函数经过一、二、四象限,与轴正半轴有交点,一次函0a <20a >2y ax a =+y 数经过一、三、四象限,与轴负半轴有交点,故选项D 符合题意.2y a x a =+y 故选:D .【点睛】本题主要考查了一次函数的图像性质.理解和掌握它的性质是解题的关键.一次函数的图像有四种情况:y kx b =+①当,时,函数的图像经过第一、二、三象限;0k >0b >y kx b =+②当,时,函数的图像经过第一、三、四象限;0k >0b <y kx b =+③当,时,函数的图像经过第一、二、四象限;0k <0b >y kx b =+④当,时,函数的图像经过第二、三、四象限.0k <0b <y kx b =+10. 已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△PAB ,△PBC ,△PCA 的面积分别记为,,,.若,则线段OP 长的最小值0S 1S 2S 3S 12302S S S S ++=是()A. B. C. D. 【答案】B【分析】根据,可得,根据等边三角形的性质可求得△ABC 中AB 边12302S S S S ++=1012S S =上的高和△PAB 中AB 边上的高的值,当P 在CO 的延长线时,OP 取得最小值,1h 2hOP =CP -OC ,过O 作OE ⊥BC ,求得OC =【详解】解:如图,,,∴2PDB BDC S S S =+ 3PDA ADC S S S =+ 1231()()PDB BDC PDA ADC S S S S S S S S ++=++++= =1()()PDB PDA BDC ADC S S S S S ++++1PAB ABCS S S ++=110S S S ++==,102S S +02S ∴,1012S S =设△ABC 中AB 边上的高为,△PAB 中AB 边上的高为,1h 2h 则,0111116322S AB h h h ==´= ,∴,∴,1222116322S AB h h h ==´= 211332h h =´122h h =∵△ABC 是等边三角形,∴,1h =,2112h h =∴点P 在平行于AB ,且到AB ∴当点P 在CO 的延长线上时,OP 取得最小值,过O 作OE ⊥BC 于E ,∴12CP h h =+∵O 是等边△ABC 的中心,OE ⊥BC∴∠OCE =30°,CE = 132BC =∴OC =2OE∵,222OE CE OC +=∴,2223(2)OE OE +=解得OE∴OC =∴OP =CP -OC .故选B .二、填空题本大题共4小题,每小题5分,满分20分。
2022年安徽省中考数学试卷(解析版)
2022年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列为负数的是()A.|﹣2|B.C.0D.﹣52.(4分)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×1063.(4分)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.4.(4分)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a25.(4分)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁6.(4分)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α7.(4分)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.58.(4分)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.9.(4分)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.10.(4分)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△P AB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式≥1的解集为.12.(5分)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.13.(5分)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k =.14.(5分)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:()0﹣+(﹣2)2.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?18.(8分)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.20.(10分)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.六、(本题满分12分)21.(12分)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n 名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=,a=;(2)八年级测试成绩的中位数是;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.七、(本题满分12分)22.(12分)已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.八、(本题满分14分)23.(14分)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC 为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).2022年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列为负数的是()A.|﹣2|B.C.0D.﹣5【分析】根据实数的定义判断即可.【解答】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.2.(4分)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:3400万=34000000=3.4×107.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看,是一个矩形.故选:A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a2【分析】A.应用整式加减法则进行求解即可得出答案;B.应用同底数幂乘法法则进行求解即可得出答案;C.应用整式加减法则进行求解即可出答案;D.应用同底数幂除法法则进行求解即可出答案.【解答】解:A.因为a3与a6不是同类项,所以不能合并,故A选项不符合题意;B.因为a3•a6=a3+6=a9,所以B选项结果等于a9,故B选项符合题意;C.因为a10与a不是同类项,所以不能合并,故C选项不符合题意;D.因为a18÷a2=a18﹣2=a16,所以D选项结果不等于a9,故D选项不符合题意.故选:B.【点评】本题主要考查了同底数幂乘除法,整式加减,熟练掌握同底数幂乘除法,整式加减运算法则进行求解是解决本题的关键.5.(4分)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁【分析】当时间一样的时候,分别比较甲、乙和丙、丁的平均速度;当路程都是3千米的时候,比较甲、丁的平均速度即可得出答案.【解答】解:∵30分钟甲比乙步行的路程多,50分钟丁比丙步行的路程多,∴甲的平均速度>乙的平均速度,丁的平均速度>丙的平均速度,∵步行3千米时,甲比丁用的时间少,∴甲的平均速度>丁的平均速度,∴走的最快的是甲,故选:A.【点评】本题考查了函数的图象,通过控制变量法比较平均速度的大小是解题的关键.6.(4分)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α【分析】根据矩形的性质和三角形外角的性质,可以用含α的式子表示出∠2.【解答】解:由图可得,∠1=90°+∠3,∵∠1=α,∴∠3=α﹣90°,∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α,故选:C.【点评】本题考查矩形的性质、三角形外角的性质,解答本题的关键是明确题意,用含α的代数式表示出∠2.7.(4分)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.5【分析】过点O作OC⊥AB于点C,连接OB,根据垂径定理可得AC=BC=5,所以PC =PB﹣BC=1,根据勾股定理即可解决问题.【解答】解:如图,过点O作OC⊥AB于点C,连接OB,则OB=7,∵P A=4,PB=6,∴AB=P A+PB=10,∵OC⊥AB,∴AC=BC=5,∴PC=PB﹣BC=1,在Rt△OBC中,根据勾股定理得:OC2=OB2﹣BC2=72﹣52=24,在Rt△OPC中,根据勾股定理得:OP===5,故选:D.【点评】本题考查了垂径定理,勾股定理,解决本题的关键是掌握垂径定理.8.(4分)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为,故选:B.【点评】本题主要考查列表法与树状图法求概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(4分)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴;若a<0,则一次函数y=ax+a2是减函数,交y轴的正半轴,y=a2x+a是增函数,交y轴的负半轴,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.10.(4分)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△P AB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【分析】如图,不妨假设点P在AB的左侧,证明△P AB的面积是定值,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.因为△P AB的面积是定值,推出点P的运动轨迹是直线PM,求出OT的值,可得结论.【解答】解:如图,不妨假设点P在AB的左侧,∵S△P AB+S△ABC=S△PBC+S△P AC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△P AB的面积是定值.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式≥1的解集为x≥5.【分析】先去分母、再移项即可.【解答】解:≥1,x﹣3≥2,x≥3+2,x≥5.故答案为:x≥5.【点评】本题考查的是解一元一次不等式,掌握解一元一次不等式是解答本题的关键.12.(5分)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.【点评】本题考查了根的判别式以及解一元一次方程,牢记“当Δ=0时,方程有两个相等实数根”是解题的关键.13.(5分)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k=3.【分析】设出C点的坐标,根据C点的坐标得出B点的坐标,然后计算出k值即可.【解答】解:由题知,反比例函数y=的图象经过点C,设C点坐标为(a,),作CH⊥OA于H,过A点作AG⊥BC于G,∵四边形OABC是平行四边形,OC=AC,∴OH=AH,CG=BG,四边形HAGC是矩形,∴OH=CG=BG=a,即B(3a,),∵y=(k≠0)的图象经过点B,∴k=3a•=3,故答案为:3.【点评】本题主要考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质,平行四边形的性质等知识是解题的关键.14.(5分)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=45°;(2)若DE=1,DF=2,则MN=.【分析】(1)根据AAS证△ABE≌△GEF,得出EG=AB,GF=AE,推出DG=GF即可得出∠FDG的度数;(2)由(1)的结论得出CD的长度,GF的长度,根据相似三角形的性质分别求出DM,NC的值即可得出MN的值.【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.【点评】本题主要考查正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,熟练掌握这些基础知识是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:()0﹣+(﹣2)2.【分析】应用零指数幂,算术平方根,有理数的乘方运算法则进行求解即可得出答案.【解答】解:原式=1﹣4+4=1.【点评】本题主要考查了零指数幂,算术平方根,有理数的乘方,熟练掌握零指数幂,算术平方根,有理数的乘方运算法则进行求解是解决本题的关键.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.【分析】(1)根据平移的性质可得△A1B1C1;(2)根据旋转的性质可得△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题主要考查了作图﹣平移变换,旋转变换,熟练掌握平移和旋转的性质是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y 1.25x+1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【分析】(1)根据题意和表格中的数据,可以用含x、y的代数式表示出2021年进出口总额;(2)根据题意和题目中的数据,可以列出相应的方程组,然后求解即可.【解答】解:(1)由表格可得,2021年进出口总额为:1.25x+1.3y,故答案为:1.25x+1.3y;(2)由题意可得,,解得,∴1.25x=400,1.3y=260,答:2021年进口额是400亿元,出口额是260亿元.【点评】本题考查二元一次方程组的应用、列代数式,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.18.(8分)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.【点评】本题考查数字的变化类、列代数式,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式和猜想,并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.【分析】(1)根据直角三角形的边角关系可求出OD,进而求出AD;(2)根据切线的性质可得OC⊥CD,再根据等腰三角形的性质可得∠OCA=∠OAC,由各个角之间的关系以及等量代换可得答案.【解答】解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=•OC=,∴AD=OD﹣OA=﹣1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.【点评】本题考查切线的性质,直角三角形的边角关系以及等腰三角形的性质,掌握直角三角形的边角关系、等腰三角形的性质是解决问题的前提.20.(10分)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.【分析】由三角形内角和定理证得△CBD和△ABD是直角三角形,解直角三角形即可求出AB.【解答】解:∵CE∥AD,∴∠A=∠ECA=37°,∴∠CBD=∠A+∠ADB=37°+53°=90°,∴∠ABD=90°,在Rt△BCD中,∠BDC=90°﹣53°=37°,CD=90米,cos∠BDC=,∴BD=CD•cos∠37°≈90×0.80=72(米),在Rt△ABD中,∠A=37°,BD=72米,tan A=,∴AB=≈=96(米).答:A,B两点间的距离约96米.【点评】本题主要考查了解直角三角形的应用,证得△CBD和△ABD是直角三角形是解决问题的关键.六、(本题满分12分)21.(12分)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n 名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=20,a=4;(2)八年级测试成绩的中位数是86.5;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.【分析】(1)根据八年级D组人数及其所占百分比即可得出n的值,用n的值分别减去其它各组的频数即可得出a的值.(2)根据中位数的定义解答即可.(3)用样本估计总体即可.【解答】解:(1)由题意得:n=7÷35%=20(人),故2a=20﹣1﹣2﹣3﹣6=8,故答案为:20;4;(2)把八年级测试成绩从小到大排列,排在中间的两个数分别为86,87,故中位数为=86.5,故答案为:86.5;(3)500×+500×(1﹣5%﹣5%﹣20%﹣35%)=100+175=275(人),故估计该校七、八两个年级对冬奥会关注程度高的学生一共有275人.【点评】本题考查频数分布直方图、扇形统计图、中位数、用样本估计总体等知识,解题的关键是利用数形结合的思想解答.七、(本题满分12分)22.(12分)已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.【分析】(1)利用AAS证明△DOE≌△BOC,得DE=BC,从而得出四边形BCDE是平行四边形,再根据CD=CB,即可证明结论;(2)(i)根据线段垂直平分线的性质得,AE=EC,ED=EB,则∠AED=∠CED=∠BEC,再根据平角的定义,可得答案;(ii)利用AAS证明△ABF≌△ACE,可得AC=AB,由AE=AF,利用等式的性质,即【解答】(1)证明:设CE与BD交于点O,∵CB=CD,CE⊥BD,∴DO=BO,∵DE∥BC,∴∠DEO=∠BCO,∵∠DOE=∠BOC,∴△DOE≌△BOC(AAS),∴DE=BC,∴四边形BCDE是平行四边形,∵CD=CB,∴平行四边形BCDE是菱形;(2)(i)解:∵DE垂直平分AC,∴AE=EC且DE⊥AC,∴∠AED=∠CED,又∵CD=CB且CE⊥BD,∴CE垂直平分DB,∴DE=BE,∴∠DEC=∠BEC,∴∠AED=∠CED=∠BEC,又∵∠AED+∠CED+∠BEC=180°,∴∠CED=;(ii)证明:由(i)得AE=EC,又∵∠AEC=∠AED+∠DEC=120°,∴∠ACE=30°,同理可得,在等腰△DEB中,∠EBD=30°,∴∠ACE=∠ABF=30°,在△ACE与△ABF中,,∴△ABF≌△ACE(AAS),∴AC=AB,又∵AE=AF,∴AB﹣AE=AC﹣AF,即BE=CF.【点评】本题是四边形综合题,主要考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识,熟练掌握线段垂直平分线的性质是解题的关键.八、(本题满分14分)23.(14分)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC 为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).【分析】(1)通过分析A点坐标,利用待定系数法求函数解析式;(2)(ⅰ)结合矩形性质分析得出P2的坐标为(m,﹣m2+8),然后列出函数关系式,利用二次函数的性质分析最值;(ⅱ)设P2P1=n,分别表示出方案一和方案二的矩形面积,利用二次函数的性质分析最值,从而利用数形结合思想确定取值范围.【解答】解:(1)由题意可得:A(﹣6,2),D(6,2),又∵E(0,8)是抛物线的顶点,设抛物线对应的函数表达式为y=ax2+8,将A(﹣6,2)代入,(﹣6)2a+8=2,解得:a=﹣,∴抛物线对应的函数表达式为y=﹣x2+8;(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P3在抛物线AED上,∴P2的坐标为(m,﹣m2+8),∴P1P2=P3P4=MN=﹣m2+8,P2P3=2m,∴l=3(﹣m2+8)+2m=﹣m2+2m+24=﹣(m﹣2)2+26,∵﹣<0,∴当m=2时,l有最大值为26,即栅栏总长l与m之间的函数表达式为l=﹣m2+2m+24,l的最大值为26;(ⅱ)方案一:设P2P1=n,则P2P3=18﹣3n,∴矩形P1P2P3P4面积为(18﹣3n)n=﹣3n2+18n=﹣3(n﹣3)2+27,∵﹣3<0,∴当n=3时,矩形面积有最大值为27,此时P2P1=3,P2P3=9,令﹣x2+8=3,解得:x=±,∴此时P1的横坐标的取值范围为﹣+9≤x≤,方案二:设P2P1=n,则P2P3==9﹣n,∴矩形P1P2P3P4面积为(9﹣n)n=﹣n2+9n=﹣(n﹣)2+,∵﹣1<0,∴当n=时,矩形面积有最大值为,此时P2P1=,P2P3=,令﹣x2+8=,解得:x=±,∴此时P1的横坐标的取值范围为﹣+≤x≤.【点评】本题考查二次函数的应用,掌握待定系数法求函数解析式,准确识图,确定关键点的坐标,利用数形结合思想解题是关键.。
2022年安徽省中考数学真题试卷附答案解析
请点击修改第 II 卷的文字说明
评卷人 得分 二、填空题
D. 7 3
2
11.不等式 x 3 1的解集为________. 2
12.若一元二次方程 2x2 4x m 0 有两个相等的实数根,则 m ________.
13.如图,平行四边形 OABC 的顶点 O 是坐标原点,A 在 x 轴的正半轴上,B,C 在第
试卷第 5页,共 7页
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ …………○…………外…………○…………装…………○…………订…………○…………线…………○…………
21.第 24 届冬奥会于 2022 年 2 月 20 日在北京胜利闭幕.某校七、八年级各有 500 名 学生.为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取 n 名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用 x 表示): A: 70 x 75 ,B: 75 x 80 ,C: 80 x 85 , D: 85 x 90 ,E: 90 x 95 , F: 95 x 100 , 并绘制七年级测试成绩频数直方图和八年级测试成绩扇形统计图,部分信息如下:
C.
D.
10.已知点 O 是边长为 6 的等边△ABC 的中心,点 P 在△ABC 外,△ABC,△PAB, △PBC,△PCA 的面积分别记为 S0 , S1 , S2 , S3 .若 S1 S2 S3 2S0 ,则线段 OP 长
的最小值是(
)
A. 3 3 2
B. 5 3
2
C. 3 3
第 II 卷(非选择题)
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
2022年安徽省中考数学试题及答案解析(Word版)
(2)若 , ,则 ________.
三、(本大题共
15. 计算: .
16. 如图,在由边长为1个单位长度 小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
(1)将△ABC向上平移6个单位,再向右平移2个单位,得到 ,请画出 ﹔
(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到 ,请画出 .
A. B.
C. D.
10. 已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为 , , , .若 ,则线段OP长的最小值是( )
A. B. C. D.
二、填空题(本大题共
11. 不等式 的解集为________.
12. 若一元二次方程 有两个相等的实数根,则 ________.
A. B.4C. D.5
8. 随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“ ”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为( )
A. B. C. D.
9. 在同一平面直角坐标系中,一次函数 与 图像可能是()
(2)写出你猜想的第n个等式(用含n的式子表示),并证明.
五、(本大题共
19. 已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.
(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;
(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE,求证:CE⊥AB.
【详解】解:连接 ,过点 作 于点 ,如图所示,
则 , ,
2022年安徽省中考数学真题(解析版)
2022年安徽省初中学业水平考试数学 (试题卷)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C .D 四个选项,其中只有一个是符合题目要求的. 1. 下列为负数的是( ) A. 2-B.C. 0D. 5-2. 据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为( ) A. 83.410⨯B. 80.3410⨯C. 73.410⨯D. 63410⨯3. 一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是( )A.B.C.D.4. 下列各式中,计算结果等于9a 的是( ) A. 36+a aB. 36a a ⋅C.10a a - D. 182÷a a5. 甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是( )A. 甲B. 乙C. 丙D. 丁6. 两个矩形的位置如图所示,若1∠=α,则2∠=( )A.90α-︒B.45α-︒ C. 180α︒- D. 270α︒-7. 已知⊙O 的半径为7,AB 是⊙O 的弦,点P 在弦AB 上.若P A =4,PB =6,则OP =( )A.B. 4C.D. 58. 随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“ 进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为( ) A.13B.38C.12D.239. 在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( )A. B. C. D.10. 已知点O 是边长为6的等边⊙ABC 的中心,点P 在⊙ABC 外,⊙ABC ,⊙P AB ,⊙PBC ,⊙PCA 的面积分别记为0S ,1S ,2S ,3S .若12302S S S S ++=,则线段OP 长的最小值是( ) A.332B.532C.33D. 732二、填空题(本大题共4小题,每小题5分,满分20分) 11. 不等式312x -≥的解集为________. 12. 若一元二次方程2240x x m -+=有两个相等的实数根,则m =________.13. 如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=≠的图象经过点B .若OC AC =,则k =________. 14. 如图,四边形ABCD 是正方形,点E 在边AD 上,⊙BEF 是以E 为直角顶点的等腰直角三角形,EF ,BF 分别交CD 于点M ,N ,过点F 作AD 的垂线交AD 的延长线于点G .连接DF ,请完成下列问题: (1)FDG ∠=________°;(2)若1DE =,22DF =,则MN =________.三、(本大题共2小题,每小题8分,满分16分)15. 计算:()0211622⎛⎫-+- ⎪⎝⎭.16. 如图,在由边长为1个单位长度的小正方形组成的网格中,⊙ABC 的顶点均为格点(网格线的交点).(1)将⊙ABC 向上平移6个单位,再向右平移2个单位,得到111A B C △,请画出111A B C △﹔(2)以边AC 的中点O 为旋转中心,将⊙ABC 按逆时针方向旋转180°,得到222A B C △,请画出222A B C △.四、(本大题共2小题,每小题8分,满分16分)17. 某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表:2021年进口额和出口额度分别是多少亿元?18. 观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯, 第2个等式:()()()22222134134⨯+=⨯+-⨯, 第3个等式:()()()22223146146⨯+=⨯+-⨯, 第4个等式:()()()22224158158⨯+=⨯+-⨯, ……按照以上规律.解决下列问题: (1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19. 已知AB 为⊙O 的直径,C 为⊙O 上一点,D 为BA 的延长线上一点,连接CD .(1)如图1,若CO ⊙AB ,⊙D =30°,OA =1,求AD 的长;(2)如图2,若DC 与⊙O 相切,E 为OA 上一点,且⊙ACD =⊙ACE ,求证:CE ⊙AB .20. 如图,为了测量河对岸A ,B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得A ,B 均在C 的北偏东37°方向上,沿正东方向行走90米至观测点D ,测得A 在D 的正北方向,B 在D 的北偏西53°方向上.求A ,B 两点间的距离.参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈.六、(本题满分12分)21. 第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生.为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n 名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x 表示): A :7075x ≤<,B :7580x ≤<,C :8085x ≤<, D :8590x ≤<,E :9095x ≤<,F :95100x ≤≤,并绘制七年级测试成绩频数直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D 组的全部数据如下:86,85,87,86,85,89,88 请根据以上信息,完成下列问题: (1)n =______,a =______;(2)八年级测试成绩的中位数是______﹔(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.七、(本题满分12分)22. 已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC . (⊙)求⊙CED 的大小;(⊙)若AF =AE ,求证:BE =CF .八、(本题满分14分)23. 如图1,隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米.以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.E (0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式; (2)在隧道截面内(含边界)修建“型或“型栅栏,如图2、图3中粗线段所示,点1P ,4P 在x轴上,MN 与矩形1234PP P P 的一边平行且相等.栅栏总长l 为图中粗线段12PP ,23PP ,34P P ,MN 长度之和.请解决以下问题: (⊙)修建一个“型栅栏,如图2,点2P ,3P 在抛物线AED 上.设点1P 的横坐标为()06m m <≤,求栅栏总长l 与m 之间的函数表达式和l 的最大值; (⊙)现修建一个总长为18的栅栏,有如图3所示的修建“型或“型栅型两种设计方案,请你从中选择一种,求出该方案下矩形1234PP P P 面积的最大值,及取最大值时点1P 的横坐标的取值范围(1P 在4P 右侧).2022年安徽省初中学业水平考试数学 (试题卷)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C .D 四个选项,其中只有一个是符合题目要求的. 1. 【答案】D【解析】解:A 、2-=2是正数,故该选项不符合题意;B 、3是正数,故该选项不符合题意; C 、0不是负数,故该选项不符合题意;D 、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键. 2. 【答案】C【解析】解:3400万34000000=,保留1位整数为3.4,小数点向左移动7位,因此734000000 3.410=⨯, 故选:C .【点睛】本题考查科学记数法的表示方法,熟练掌握10(110)na a ⨯≤<中a 的取值范围和n 的取值方法是解题的关键. 3. 【答案】A【解析】解:该几何体的俯视图为:,故选:A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 4. 【答案】B【解析】A .36+a a ,不是同类项,不能合并在一起,故选项A 不合题意; B .36369a a a a +⋅==,符合题意;C .10a a -,不是同类项,不能合并在一起,故选项C 不合题意;D .11816282a a a a -==÷,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键. 5. 【答案】A【解析】乙在所用时间为30分钟时,甲走的路程大于乙走的路程,故甲的速度较快; 丙在所用时间为50分钟时,丁走的路程大于丙走的路程,故丁的速度较快; 又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,故选A 【点睛】本题考查了从图象中获取信息的能力,正确的识图是解题的关键. 6. 【答案】C【解析】解:如图,⊙3=⊙1-90°=α-90°,⊙2=90°-⊙3=180°-α.故选:C .【点睛】 本题主要考查了矩形,三角形外角,余角,解决问题的关键是熟练掌握矩形的角的性质,三角形的外角性质,互为余角的定义.7.【答案】D【解析】解:连接OA ,过点O 作OC AB ⊥于点C ,如图所示, 则12AC BC AB ==,7OA =, ⊙P A =4,PB =6,⊙4610AB PA PB =+=+=, ⊙152AC BC AB ===,⊙541PC AC PA =-=-=, 在Rt AOC ∆中,22227526OC OA AC =-=-=, 在Rt POC ∆中,()22222615OP OC PC =+=+=,故选:D【点睛】本题考查了垂径定理及勾股定理的运用,构造直角三角形是解题的关键. 8. 【答案】B【解析】解:对每个小正方形随机涂成黑色或白色的情况,如图所示,共有8种情况,其中恰好是两个黑色小正方形和一个白色小正方形情况有3种, ⊙恰好是两个黑色小正方形和一个白色小正方形的概率为38,故选:B【点睛】本题考查了用列举法求概率,能一个不漏的列举出所有可能的情况是解题的关键. 9. 【答案】D【解析】解:当1x =时,两个函数的函数值:2y a a =+,即两个图像都过点()21,a a+,故选项A 、C 不符合题意;当0a >时,20a >,一次函数2y ax a =+经过一、二、三象限,一次函数2y a x a =+经过一、二、三象限,都与y 轴正半轴有交点,故选项B 不符合题意;当0a <时,20a >,一次函数2y ax a =+经过一、二、四象限,与y 轴正半轴有交点,一次函数2y a x a=+经过一、三、四象限,与y 轴负半轴有交点,故选项D 符合题意. 故选:D .【点睛】本题主要考查了一次函数的图像性质.理解和掌握它的性质是解题的关键. 一次函数y kx b =+的图像有四种情况:⊙当0k >,0b >时,函数y kx b =+的图像经过第一、二、三象限; ⊙当0k >,0b <时,函数y kx b =+的图像经过第一、三、四象限; ⊙当0k <,0b >时,函数y kx b =+的图像经过第一、二、四象限; ⊙当0k <,0b <时,函数y kx b =+的图像经过第二、三、四象限. 10. 【答案】B 【解析】解:如图,2PDBBDCS SS,3PDAADCS SS,⊙1231()()PDBBDCPDAADCS S S S S S S S++=++++=1()()PDB PDABDCADCS S SSS++++=1PABABCS SS++=110S S S ++=102S S +=02S ,⊙1012S S =, 设⊙ABC 中AB 边上的高为1h ,⊙P AB 中AB 边上的高为2h , 则0111116322S AB h h h ,1222116322S AB h h h ,⊙211332h h ,⊙122h h =, ⊙⊙ABC 是等边三角形,⊙22166()332h ,2113322h h , ⊙点P 在平行于AB ,且到AB 的距离等于332的直线上,⊙当点P 在CO 的延长线上时,OP 取得最小值, 过O 作OE ⊙BC 于E ,⊙12932CPh h , ⊙O 是等边⊙ABC 的中心,OE ⊙BC ⊙⊙OCE =30°,CE =132BC = ⊙OC =2OE ⊙222OE CE OC +=,⊙2223(2)OE OE ,解得OE =3,⊙OC =23,⊙OP =CP -OC =95323322. 故选B .【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P 点的位置是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分) 11. 【答案】5x ≥ 【解析】解:312x -≥ 去分母,得x -3≥2,移项,得x ≥2+3,合并同类项,系数化1,得,x ≥5,故答案为:x ≥5.【点睛】本题考查了解一元一次不等式,解题的关键掌握解一元一次不等式的方法步骤. 12. 【答案】2【解析】解:由题意可知:2a =,4b =-,c m = 240b ac =-=,⊙16420m -⨯⨯=,解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键. 13. 【答案】3【解析】解:过点C 作CD ⊙OA 于D ,过点B 作BE ⊙x 轴于E , ⊙CD ⊙BE ,⊙四边形ABCO 为平行四边形, ⊙CB ⊙OA ,即CB ⊙DE ,OC =AB , ⊙四边形CDEB 为平行四边形,⊙CD ⊙OA ,⊙四边形CDEB 为矩形,⊙CD =BE ,⊙在Rt ⊙COD 和Rt ⊙BAE 中,OC ABCD EB =⎧⎨=⎩,⊙Rt⊙COD ⊙Rt ⊙BAE (HL ),⊙S ⊙OCD =S ⊙ABE ,⊙OC =AC ,CD ⊙OA ,⊙OD =AD , ⊙反比例函数1y x=的图象经过点C ,⊙S ⊙OCD =S ⊙CAD =12,⊙S 平行四边形OCBA =4S ⊙OCD =2, ⊙S ⊙OBA =112OCBA S =平行四边形,⊙S ⊙OBE =S ⊙OBA +S ⊙ABE =13122+=,⊙3232k =⨯=. 故答案为3.【点睛】本题考查反比例函数k 的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k 的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.14. 【答案】 ⊙ 45 ⊙.2615【解析】(1)⊙四边形ABCD 是正方形,⊙⊙A =90°,AB =AD ,⊙⊙ABE +⊙AEB =90°, ⊙FG ⊙AG ,⊙⊙G =⊙A =90°,⊙⊙BEF 是等腰直角三角形,⊙BE =FE ,⊙BEF =90°,⊙⊙AEB +⊙FEG =90°,⊙⊙FEG =⊙EBA ,在⊙ABE 和⊙GEF 中,A GABE GEF BE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊙⊙ABE ⊙⊙GEF (AAS ),⊙AE =FG ,AB =GE ,在正方形ABCD 中,AB =AD AD GE ∴=⊙AD =AE +DE ,EG =DE +DG ,⊙AE =DG =FG ,⊙⊙FDG =⊙DFG =45°.故填:45°.(2)如图,作FH ⊙CD 于H ,⊙⊙FHD =90° ⊙四边形DGFH 是正方形,⊙DH =FH =DG =2,⊙AGFH ⊙=DE DM FH MH ,⊙DM =23,MH =43, 作MP ⊙DF 于P ,⊙⊙MDP =⊙DMP =45°,⊙DP =MP ,⊙DP 2+MP 2=DM 2,⊙DP =MP =23,⊙PF =523 ⊙⊙MFP +⊙MFH =⊙MFH +⊙NFH =45°,⊙⊙MFP =⊙NFH ,⊙⊙MPF =⊙NHF =90°,⊙⊙MPF ⊙⊙NHF ,⊙=MP PF NH HF ,即=NH 252332,⊙NH =25, ⊙MN =MH +NH =43+25=2615. 故填: 2615. 【点睛】本题主要考查正方形的性质及判定以及相似三角形的性质和判定,熟知相关知识点并能熟练运用,正确添加辅助线是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 【答案】1【解析】()0211622⎛⎫-+- ⎪⎝⎭144=-+1= 故答案为:1 【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键. 16. 【答案】(1)见解析 (2)见解析【解析】(1)如图,111A B C △即为所作;(2)如图,222A B C △即为所作;【点睛】本题考查作图-旋转变换与平移变换,解题的关键是理解题意,灵活运用所学知识解决问题.四、(本大题共2小题,每小题8分,满分16分)17. 【答案】(1)1.25x +1.3y (2)2021年进口额400亿元,出口额260亿元.【解析】(1)解:(2)解:根据题意125x +1.3y =520+140,⊙5201.25 1.3520140x y x y +=⎧⎨+=+⎩,解得:320200x y =⎧⎨=⎩, 2021年进口额1.25x =1.25320400⨯=亿元,2021年出口额是1.3 1.3200260y =⨯=亿元.【点睛】本题考查列二元一次方程组解应用题,列代数式,掌握列二元一次方程组解应用题的方法与步骤是解题关键.18. 【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【解析】(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅ [][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++, 故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.【答案】(11 (2)见解析【解析】(1)解:⊙OA =1=OC ,CO ⊥AB ,⊙D =30︒⊙CD =2⊙ OC =2⊙OD⊙1AD OD OA =-=(2)证明:⊙DC 与⊙O 相切⊙OC ⊥CD 即⊙ACD +⊙OCA =90︒⊙OC = OA ⊙⊙OCA =⊙OAC ⊙⊙ACD =⊙ACE ⊙⊙OAC +⊙ACE =90︒ ⊙⊙AEC =90︒⊙CE ⊥AB【点睛】本题考查切线的性质,直角三角形的性质,勾股定理以及等腰三角形的性质,掌握相关性质定理是解题的关键.20. 【答案】96米【解析】解:⊙A ,B 均在C 的北偏东37°方向上,A 在D 的正北方向,且点D 在点C 的正东方, ⊙ACD ∆是直角三角形,⊙903753BCD ∠=︒-︒=︒,⊙⊙A =90°-⊙BCD =90°-53°=37°,在Rt ⊙ACD 中,sin CD A AC =∠,CD =90米,⊙90150sin 0.60CD AC A =≈=∠米, ⊙90,53CDA BDA ∠=︒∠=︒,⊙905337,BDC ∠=︒-︒=︒ ⊙375390BCD BDC ∠+∠=︒+︒=︒, ⊙90,CBD ∠=︒ 即BCD ∆是直角三角形,⊙sin BC BDC CD=∠, ⊙sin 900.6054BC CD BDC =∠≈⨯=米, ⊙1505496AB AC BC =-=-=米,答:A ,B 两点间的距离为96米.【点睛】此题主要考查了解直角三角形-方向角问题的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题.六、(本题满分12分)21. 【答案】(1)20;4(2)86.5 (3)该校七、八两个年级对冬奥会关注程度高的学生一共有275人.【解析】(1)解:八年级测试成绩D 组:8590x ≤<的频数为7,由扇形统计图知D 组占35%, ⊙进行冬奥会知识测试学生数为n=7÷35%=20, ⊙()120123642a =⨯----=,故答案为:20;4; (2)解:A 、B 、C 三组频率之和为5%+5%+20%=30%<50%,A 、B 、C 、D 四组的频率之和为30%+35%=65%>50%,⊙中位数在D 组,将D 组数据从小到大排序为85,85,86,86,87, 88 ,89,⊙20×30%=6,第10与第11两个数据为86,87,⊙中位数为868786.52+=,故答案为:86.5; (3)解:八年级E :9095x ≤<,F :95100x ≤≤两组占1-65%=35%,共有20×35%=7人七年级E :9095x ≤<,F :95100x ≤≤两组人数为3+1=4人,两年级共有4+7=11人,占样本1140, ⊙该校七、八两个年级对冬奥会关注程度高的学生一共有()1150050027540⨯+=(人). 【点睛】本题考查从频率直方图和扇形统计图获取信息与处理信息,样本的容量,频数,中位数,用样本的百分比含量估计总体中的数量,掌握样本的容量,频数,中位数,用样本的百分比含量估计总体中的数量是解题关键.七、(本题满分12分)22. 【答案】(1)见解析 (2)(⊙)60CED ∠=︒;(⊙)见解析【解析】(1)证明:⊙DC =BC ,CE ⊙BD ,⊙DO =BO ,⊙DE BC ∥,⊙ODE OBC ∠=∠,OED OCB ∠=∠,⊙ODE OBC ∆∆≌(AAS ),⊙DE BC =, ⊙四边形BCDE 为平行四边形,⊙CE ⊙BD ,⊙四边形BCDE 为菱形.(2)(⊙)根据解析(1)可知,BO =DO ,⊙CE 垂直平分BD ,⊙BE =DE ,⊙BO =DO ,⊙⊙BEO =⊙DEO ,⊙DE 垂直平分AC ,⊙AE =CE ,⊙EG ⊙AC ,⊙⊙AEG =⊙DEO ,⊙⊙AEG =⊙DEO=⊙BEO ,⊙⊙AEG +⊙DEO +⊙BEO =180°,⊙180603CED ︒∠==︒. (⊙)连接EF ,⊙EG ⊙AC ,⊙90EGF ∠=︒,⊙90EFA GEF ∠=︒-∠,⊙180AEF BEF ∠=︒-∠180BEC CEF =︒-∠-∠()180BEC CEG GEF =︒-∠-∠-∠1806060GEF =︒-︒-︒+∠60GEF =︒+∠⊙AE =AF ,⊙AEF AFE ∠=∠,⊙9060GEF GEF ︒-∠=︒+∠,15GEF ∴∠=︒,⊙601545OEF CEG GEF ∠=∠-∠=︒-︒=︒,⊙CE BD ⊥,⊙90EOF EOB ∠=∠=︒,⊙9045OFE OEF ∠=︒-∠=︒,⊙OEF OFE ∠=∠,⊙OE OF =,AE CE =,⊙EAC ECA ∠=∠,60EAC ECA CEB ∠+∠=∠=︒,30ECA ∴∠=︒,9030EBO OEB ∠=︒-∠=︒,⊙30OCF OBE ∠=∠=︒,90BOE COF ∠=∠=︒,⊙BOE COF ∆∆≌(AAS ), BE CF ∴=.【点睛】本题主要考查了垂直平分线的性质、等腰三角形的判定和性质,三角形全等的判定和性质,菱形的判定,直角三角形的性质,作出辅助线,得出15GEF ∠=︒,得出OE OF =,是解题的关键.八、(本题满分14分)23. 【答案】(1)y =16-x 2+8(2)(⊙)l =12-m 2+2m +24,l 的最大值为26;(⊙)方案一:9≤P 1横坐标方案二:+92≤P 1横坐标【解析】(1)由题意可得:A (-6,2),D (6,2),又⊙E (0,8)是抛物线的顶点,设抛物线对应的函数表达式为y =ax 2+8,将A (-6,2)代入, (-6)2a +8=2,解得:a =16-,⊙抛物线对应的函数表达式为y =16-x 2+8; (2)(⊙)⊙点P 1的横坐标为m (0<m ≤6),且四边形P 1P 2P 3P 4为矩形,点P 2,P 3在抛物线AED 上, ⊙P 2的坐标为(m ,16-m 2+8),⊙P 1P 2=P 3P 4=MN =16-m 2+8,P 2P 3=2m , ⊙l =3(16-m 2+8)+2m =12-m 2+2m +24=12-(m -2)2+26, ⊙12-<0,⊙当m =2时,l 有最大值为26, 即栅栏总长l 与m 之间的函数表达式为l =12-m 2+2m +24,l 的最大值为26; (⊙)方案一:设P 2P 1=n ,则P 2P 3=18-3n ,⊙矩形P 1P 2P 3P 4面积为(18-3n )n =-3n 2+18n =-3(n -3)2+27,⊙-3<0,⊙当n =3时,矩形面积有最大值为27,此时P 2P 1=3,P 2P 3=9,令16-x 2+8=3,解得:x =,⊙此时P 1的横坐标的取值范围为9≤P 1横坐标方案二:设P 2P 1=n ,则P 2P 3=9-n ,⊙矩形P1P2P3P4面积为(9-n)n=-n2+9n=-(n-92)2+814,⊙-1<0,⊙当n=92时,矩形面积有最大值为814,此时P2P1=92,P2P3=92,令16-x2+8=92,解得:x=⊙此时P1的横坐标的取值范围为92≤P1横坐标.【点睛】本题考查二次函数的应用,掌握待定系数法求函数解析式,准确识图,确定关键点的坐标,利用数形结合思想解题是关键.。
2022年安徽省中考数学试卷和答案
2022年安徽省中考数学试卷和答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列为负数的是()A.|﹣2|B.C.0D.﹣52.(4分)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106 3.(4分)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.4.(4分)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a2 5.(4分)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁6.(4分)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α7.(4分)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=()A.B.4C.D.58.(4分)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.9.(4分)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a 的图象可能是()A.B.C.D.10.(4分)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式≥1的解集为.12.(5分)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.13.(5分)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y =(k≠0)的图象经过点B.若OC=AC,则k=.14.(5分)如图,四边形ABCD是正方形,点E在边AD上,△BEF 是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:()0﹣+(﹣2)2.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y 的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?18.(8分)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.20.(10分)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.六、(本题满分12分)21.(12分)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=,a=;(2)八年级测试成绩的中位数是;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.七、(本题满分12分)22.(12分)已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.八、(本题满分14分)23.(14分)如图1,隧道截面由抛物线的一部分AED和矩形ABCD 构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED 上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.【知识点】非负数的性质:算术平方根;有理数;绝对值.【答案】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.2.【知识点】科学记数法—表示较大的数.【答案】解:3400万=34000000=3.4×107.故选:C.3.【知识点】简单几何体的三视图.【答案】解:从上面看,是一个矩形.故选:A.4.【知识点】同底数幂的除法;整式的加减;同底数幂的乘法.【答案】解:A.因为a3与a6不是同类项,所以不能合并,故A 选项不符合题意;B.因为a3•a6=a3+6=a9,所以B选项结果等于a9,故B选项符合题意;C.因为a10与a不是同类项,所以不能合并,故C选项不符合题意;D.因为a18÷a2=a18﹣2=a16,所以D选项结果不等于a9,故D选项不符合题意.故选:B.5.【知识点】函数的图象.【答案】解:∵30分钟甲比乙步行的路程多,50分钟丁比丙步行的路程多,∴甲的平均速度>乙的平均速度,丁的平均速度>丙的平均速度,∵步行3千米时,甲比丁用的时间少,∴甲的平均速度>丁的平均速度,∴走的最快的是甲,故选:A.6.【知识点】矩形的性质.【答案】解:由图可得,∠1=90°+∠3,∵∠1=α,∴∠3=α﹣90°,∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α,故选:C.7.【知识点】垂径定理;勾股定理.【答案】解:如图,过点O作OC⊥AB于点C,连接OB,则OB=7,∵PA=4,PB=6,∴AB=PA+PB=10,∵OC⊥AB,∴AC=BC=5,∴PC=PB﹣BC=1,在Rt△OBC中,根据勾股定理得:OC2=OB2﹣BC2=72﹣52=24,在Rt△OPC中,根据勾股定理得:OP===5,故选:D.8.【知识点】列表法与树状图法.【答案】解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为,故选:B.9.【知识点】一次函数的图象.【答案】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y 轴的正半轴;若a<0,则一次函数y=ax+a2是减函数,交y轴的正半轴,y=a2x+a 是增函数,交y轴的负半轴,且两直线的交点的横坐标为1;故选:D.10.【知识点】勾股定理;等边三角形的性质.【答案】解:如图,不妨假设点P在AB的左侧,∵S△PAB+S△ABC=S△PBC+S△PAC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△PAB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.二、填空题(本大题共4小题,每小题5分,满分20分)11.【知识点】解一元一次不等式.【答案】解:≥1,x﹣3≥2,x≥3+2,x≥5.故答案为:x≥5.12.【知识点】根的判别式.【答案】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.13.【知识点】平行四边形的性质;反比例函数的图象.【答案】解:由题知,反比例函数y=的图象经过点C,设C点坐标为(a,),作CH⊥OA于H,过A点作AG⊥BC于G,∵四边形OABC是平行四边形,OC=AC,∴OH=AH,CG=BG,四边形HAGC是矩形,∴OH=CG=BG=a,即B(3a,),∵y=(k≠0)的图象经过点B,∴k=3a•=3,故答案为:3.14.【知识点】正方形的性质;勾股定理;等腰直角三角形.【答案】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.【知识点】零指数幂;有理数的乘方;算术平方根;实数的运算.【答案】解:原式=1﹣4+4=1.16.【知识点】作图﹣旋转变换;作图﹣平移变换.【答案】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.【知识点】二元一次方程组的应用;列代数式.【答案】解:(1)由表格可得,2021年进出口总额为:1.25x+1.3y,故答案为:1.25x+1.3y;(2)由题意可得,,解得,∴1.25x=400,1.3y=260,答:2021年进口额是400亿元,出口额是260亿元.18.【知识点】规律型:数字的变化类.【答案】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.五、(本大题共2小题,每小题10分,满分20分)19.【知识点】切线的性质;含30度角的直角三角形.【答案】解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=•OC=,∴AD=OD﹣OA=﹣1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.20.【知识点】解直角三角形的应用﹣方向角问题.【答案】解:∵CE∥AD,∴∠A=∠ECA=37°,∴∠CBD=∠A+∠ADB=37°+53°=90°,∴∠ABD=90°,在Rt△BCD中,∠BDC=90°﹣53°=37°,CD=90米,cos∠BDC=,∴BD=CD•cos∠37°≈90×0.80=72(米),在Rt△ABD中,∠A=37°,BD=72米,tanA=,∴AB=≈=96(米).答:A,B两点间的距离约96米.六、(本题满分12分)21.【知识点】扇形统计图;中位数;用样本估计总体;频数(率)分布直方图.【答案】解:(1)由题意得:n=7÷35%=20(人),故2a=20﹣1﹣2﹣3﹣6=8,解得a=4,故答案为:20;4;(2)把八年级测试成绩从小到大排列,排在中间的两个数分别为86,87,故中位数为=86.5,故答案为:86.5;(3)500×+500×(1﹣5%﹣5%﹣20%﹣35%)=100+175=275(人),故估计该校七、八两个年级对冬奥会关注程度高的学生一共有275人.七、(本题满分12分)22.【知识点】四边形综合题.【答案】(1)证明:设CE与BD交于点O,∵CB=CD,CE⊥BD,∴DO=BO,∵DE∥BC,∴∠DEO=∠BCO,∵∠DOE=∠BOC,∴△DOE≌△BOC(AAS),∴DE=BC,∴四边形BCDE是平行四边形,∵CD=CB,∴平行四边形BCDE是菱形;(2)(i)解:∵DE垂直平分AC,∴AE=EC且DE⊥AC,∴∠AED=∠CED,又∵CD=CB且CE⊥BD,∴CE垂直平分DB,∴DE=BE,∴∠DEC=∠BEC,∴∠AED=∠CED=∠BEC,又∵∠AED+∠CED+∠BEC=180°,∴∠CED=;(ii)证明:由(i)得AE=EC,又∵∠AEC=∠AED+∠DEC=120°,∴∠ACE=30°,同理可得,在等腰△DEB中,∠EBD=30°,∴∠ACE=∠ABF=30°,在△ACE与△ABF中,,∴△ABF≌△ACE(AAS),∴AC=AB,又∵AE=AF,∴AB﹣AE=AC﹣AF,即BE=CF.八、(本题满分14分)23.【知识点】二次函数综合题.【答案】解:(1)由题意可得:A(﹣6,2),D(6,2),又∵E(0,8)是抛物线的顶点,设抛物线对应的函数表达式为y=ax2+8,将A(﹣6,2)代入,(﹣6)2a+8=2,解得:a=﹣,∴抛物线对应的函数表达式为y=﹣x2+8;(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P3在抛物线AED上,∴P2的坐标为(m,﹣m2+8),∴P1P2=P3P4=MN=﹣m2+8,P2P3=2m,∴l=3(﹣m2+8)+2m=﹣m2+2m+24=﹣(m﹣2)2+26,∵﹣<0,∴当m=2时,l有最大值为26,即栅栏总长l与m之间的函数表达式为l=﹣m2+2m+24,l的最大值为26;(ⅱ)方案一:设P2P1=n,则P2P3=18﹣3n,∴矩形P1P2P3P4面积为(18﹣3n)n=﹣3n2+18n=﹣3(n﹣3)2+27,∵﹣3<0,∴当n=3时,矩形面积有最大值为27,此时P2P1=3,P2P3=9,令﹣x2+8=3,解得:x=±,∴此时P1的横坐标的取值范围为﹣+9≤x≤,方案二:设P2P1=n,则P2P3==9﹣n,∴矩形P1P2P3P4面积为(9﹣n)n=﹣n2+9n=﹣(n﹣)2+,∵﹣1<0,∴当n=时,矩形面积有最大值为,此时P2P1=,P2P3=,令﹣x2+8=,解得:x=±,∴此时P1的横坐标的取值范围为﹣+≤x≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.(4分)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.(4分)方程=3的解是()A.﹣B.C.﹣4 D.46.(4分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.(4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.49.(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式x﹣2≥1的解集是.12.(5分)因式分解:a3﹣a=.13.(5分)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△AB G=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(﹣2016)0++tan45°.16.(8分)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A (4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.(12分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016?安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.(4分)(2016?安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.(4分)(2016?安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.(4分)(2016?安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.(4分)(2016?安徽)方程=3的解是()A.﹣B.C.﹣4 D.4【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.(4分)(2016?安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.(4分)(2016?安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.(4分)(2016?安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD?BC=4×8=32,∴AC=4;故选B.9.(4分)(2016?安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.(4分)(2016?安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016?安徽)不等式x﹣2≥1的解集是x≥3.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.(5分)(2016?安徽)因式分解:a3﹣a=a(a+1)(a﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.(5分)(2016?安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.(5分)(2016?安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE 沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△AB G=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△AB G=?6?3=9,S△FGH=?GH?HF=×3×4=6,∴S△AB G=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016?安徽)计算:(﹣2016)0++tan45°.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.(8分)(2016?安徽)解方程:x2﹣2x=4.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016?安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(8分)(2016?安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=2n2+2n+1.【分析】(1)根据1+3+5+7=16可得出16=42;设第n幅图中球的个数为a n,列出部分a n的值,根据数据的变化找出变化规律“a n﹣1=1+3+5+…+(2n﹣1)=n2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为:2n+1;2n2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016?安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E 在线段AB上),测得∠DEB=60°,求C、D两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE?cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.(10分)(2016?安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.(12分)(2016?安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.(12分)(2016?安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD?AD=×2×4=4;S△AC D=AD?CE=×4×(x﹣2)=2x﹣4;S△B C D=BD?CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△AC D+S△B C D=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.(14分)(2016?安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,DE∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.。