自动控制原理教学文稿
自动控制原理电子教案
自动控制原理电子教案第一章:绪论1.1 自动控制的概念解释自动控制的定义强调自动控制在现代工业和日常生活中的重要性1.2 自动控制系统的分类介绍开环控制系统和闭环控制系统解释数字控制系统和模拟控制系统的区别1.3 自动控制系统的性能指标介绍稳定性、线性、收敛性和鲁棒性等性能指标解释这些指标对系统性能的影响第二章:反馈控制系统2.1 反馈控制系统的组成介绍控制器、执行器和传感器的功能和作用2.2 反馈控制系统的类型解释正反馈和负反馈的区别和应用场景2.3 控制器的设计方法介绍PID控制器和模糊控制器的原理和方法第三章:线性系统的状态空间分析3.1 状态空间表示法介绍状态空间的概念和数学表示方法3.2 状态方程和输出方程推导状态方程和输出方程的求解方法3.3 线性系统的可控性和可观测性解释可控性和可观测性的概念和判断方法第四章:非线性控制系统分析4.1 非线性系统的分类介绍线性与非线性的区别和常见的非线性特性4.2 非线性方程的求解方法解释求解非线性方程的数值方法和解析方法4.3 非线性控制系统的稳定性分析介绍李雅普诺夫理论和Lyapunov 函数的应用第五章:现代控制理论5.1 现代控制理论的概念解释现代控制理论的背景和发展5.2 鲁棒控制理论介绍鲁棒控制的概念和设计方法5.3 自适应控制理论解释自适应控制的概念和应用场景第六章:控制系统的设计方法6.1 系统设计的基本原则介绍控制系统设计中的稳定性、准确性和快速性原则6.2 控制器设计方法详细讲解PID控制器、模糊控制器、自适应控制器的设计步骤和注意事项6.3 系统仿真与实验介绍使用MATLAB等工具进行控制系统仿真的方法强调实验在控制系统教学和工程应用中的重要性第七章:线性调节器的设计7.1 调节器的作用与分类解释调节器的作用以及比例、积分、微分调节器的特点7.2 调节器的设计方法介绍Ziegler-Nichols方法等经典调节器设计方法7.3 调节器的参数整定讲解如何通过观察系统响应来整定调节器参数第八章:系统辩识8.1 系统辩识的基本概念解释系统辩识的目的和方法8.2 输入输出数据采集介绍如何采集系统的输入输出数据8.3 系统模型的建立与参数估计讲解如何根据采集到的数据建立数学模型并进行参数估计第九章:数字控制系统9.1 数字控制系统的组成介绍数字控制系统的硬件和软件组成部分9.2 数字控制算法详细讲解离散PID控制、模糊控制等数字控制算法9.3 数字控制器的实现介绍如何实现数字控制器,包括硬件实现和软件实现第十章:自动控制系统的应用10.1 工业自动化讲解自动控制系统在工业生产中的应用案例10.2 家居自动化介绍自动控制系统在智能家居中的应用案例10.3 汽车自动化探讨自动控制系统在现代汽车工业中的应用案例重点和难点解析重点环节:1. 自动控制的概念和分类2. 反馈控制系统的组成和类型3. 状态空间分析方法4. 非线性控制系统分析5. 现代控制理论6. 控制系统的设计方法和步骤7. 调节器的设计和参数整定8. 系统辩识的方法和模型建立9. 数字控制系统的组成和算法实现10. 自动控制系统的应用案例难点解析:1. 自动控制的概念和分类:理解自动控制的基本原理和不同类型控制系统的特点。
自动控制原理(经典部分)课程教案
xx科技大学《自动控制原理》(经典部分)课程教案授课时间:适用专业、班级:编写人:编写时间:)())()m n s z s p --时间常数表达式2221)(1)21)(1)i j s s T s T s ζττζ++++++授课学时:2学时章节名称第二章第三节控制系统的结构图与信号流图(1)备注教学目的和要求1.会绘制结构图。
2.会由结构图等效变换求传递函数。
2、会由结构图等效变换求传递函数。
重点难点重点: 结构图的绘制;由结构图等效变换求传递函数。
难点: 复杂结构图的等效变换。
难点:复杂结构图的等效变换。
教学方法教学手段1、教学方法: 课堂讲授法为主;用精讲多练的方法突出重点, 用分析举例的方法突破难点。
2、教学手段: 以传统的口述、粉笔加黑板的手段为主。
3、教学手段:以传统的口述、粉笔加黑板的手段为主。
教学进程设计(含教学内容、教学设计、时间分配等)一、引入(约3min)从“用数学图形描述系统的优点”引入新课。
二、教学进程设计(一)结构图的组成(约7min)1、信号线: 表示信号的传递方向。
2、方框:表示输入和输出的运算关系, 即C(S)=R(S)*G(S)。
(二)比较点: 表示两个以上信号进行代数运算。
(三)引出点: 一个信号引出两个或以上分支。
(四)结构图的绘制(约40min)绘制: 列写微分方程组, 并列写拉氏变换后的子方程;绘制各子方程的结构图, 然后根据变量关系将各子结构图依次连接起来, 得到系统的结构图。
例题讲解。
(二)结构图的简化(约46min)1、任何复杂的系统结构图, 各方框之间的基本连接方式只有串联、并联和反馈连接三种。
方框结构图的简化是通过移动引出点、比较点、交换比较点, 进行方框运算后, 将串联、并联和反馈连接的方框合并, 求出系统传递函数。
串联的简化:12()()()G s G s G s=并联的简化:12()()()G s G s G s=±反馈连接方框的简化:11()()1()()G s s G s H s Φ=比较点的移动: 移动前后保持信号的等效性。
自动控制原理电子教案
一、教案基本信息自动控制原理电子教案课时安排:45分钟教学目标:1. 理解自动控制的基本概念和原理。
2. 掌握自动控制系统的分类和特点。
3. 了解常用自动控制器的原理和应用。
教学方法:1. 讲授:讲解自动控制的基本概念、原理和特点。
2. 互动:提问和回答,让学生积极参与课堂讨论。
3. 案例分析:分析实际应用中的自动控制系统,加深学生对知识的理解。
教学工具:1. 投影仪:用于展示PPT和视频资料。
2. 计算机:用于播放教学视频和演示软件。
二、教学内容和步骤1. 自动控制的基本概念(5分钟)讲解自动控制系统的定义、作用和基本组成。
通过举例说明自动控制系统在实际中的应用,如温度控制、速度控制等。
2. 自动控制系统的分类和特点(10分钟)讲解自动控制系统的分类,包括线性系统和非线性系统、连续系统和离散系统、开环系统和闭环系统等。
介绍各种系统的特点和应用场景。
3. 常用自动控制器原理和应用(15分钟)介绍常用的自动控制器,如PID控制器、模糊控制器、神经网络控制器等。
讲解其原理和结构,并通过实际案例分析其应用。
4. 课堂互动(5分钟)提问和回答环节,让学生积极参与课堂讨论,巩固所学知识。
可以设置一些选择题或简答题,检查学生对自动控制原理的理解。
三、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的积极性等。
2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性、解题思路的清晰性等。
3. 课程测试:在课程结束后进行一次测试,检验学生对自动控制原理的掌握程度。
四、教学资源1.PPT:制作精美的PPT,用于展示教学内容和实例。
2. 视频资料:收集相关自动控制原理的教学视频,用于辅助讲解和演示。
3. 案例分析:挑选一些实际应用中的自动控制系统案例,用于分析和学习。
五、教学拓展1. 开展课后讨论:鼓励学生在课后组成学习小组,针对课堂所学内容进行讨论和交流。
2. 参观实验室:组织学生参观自动控制实验室,实地了解自动控制系统的原理和应用。
自动控制原理第一章教案
第一章绪论一、自动控制技术自动控制技术被大量应用于工农业生产、医疗卫生、环境监测、交通管理、科研开发、军事领域、特别是空间技术和核技术。
自动控制技术的广泛应用不仅使各种生产设备、生产过程实现了自动化,提高了生产效率和产品质量,尤其在人类不能直接参与工作的场合,就更离不开自动控制技术了。
自动控制技术还为人类探索大自然、利用大自然提供了可能和帮助。
二、自动控制理论的发展过程1.1945年之前,属于控制理论的萌芽期。
1945年,美国人伯德(Bode)的“网络分析与放大器的设计”奠定了控制理论的基础,至此进入经典控制理论时期,此时已形成完整的自动控制理论体系。
2.二十世纪六十年代初。
用于导弹、卫星和宇宙飞船上的“控制系统的一般理论”(卡尔曼Kalman)奠定了现代控制理论的基础。
现代控制理论主要研究多输入-多输出、多参数系统,高精度复杂系统的控制问题,主要采用的方法是以状态空间模型为基础的状态空间法,提出了最优控制等问题。
3.七十年代以后,各学科相互渗透,要分析的系统越来越大,越来越复杂,自动控制理论继续发展,进入了大系统和智能控制时期。
例如智能机器人的出现,就是以人工智能、神经网络、信息论、仿生学等为基础的自动控制取得的很大进展。
三、自动控制技术与人类历史发展1.自动计时漏壶:古代利用滴水、沙多少来计量时间的一种仪器。
水漏是以壶盛水,利用水均衡滴漏原理,观测壶中刻箭上显示的数据来计算时间。
历史可追溯到夏、商时期。
沙漏是为了避免水因气温变化而影响计时精度而设计的。
其原理是通过流沙推动齿轮组,使指针在时刻盘上指示时刻。
最早记载见于元代。
2.记里鼓车:记里鼓车是中国古代用于计算道路里程的车,行一里路打一下鼓的装置,故名“记里鼓车”。
记里鼓车这是一种会自动记载行程的车辆,是中国古代社会的科学家、发明家研制出的自动机械物体,被机器人专家称为是一种中国古代机器人。
记里鼓车的记程功能是由齿轮系完成的。
车中有一套减速齿轮系,始终与车轮同时转动,其最末一只齿轮轴在车行一里时正好回转一周,车子上层的木人受凸轮牵动,由绳索拉起木人右臂击鼓一次,以示里程。
《自动控制原理》电子教案
5
《自动控制原理》电子教案
《自动控制原理》课程实验教学大纲
一、实验教学目标与基本要求
《自动控制原理》课程实验通过上机使用 MATLAB 软件,使学生初步掌握 MATLAB 软件在控制理论中的 基本应用,学会利用 MATLAB 软件分析控制系统,从而加深对自动控制系统的认识,帮助理解经典自动控 制的相关理论和分析方法。通过本课程上机实验,要求学生对 MATLAB 软件有一个基本的了解,掌握 MATLAB 软件中基本数组和矩阵的表示方法,掌握 MATLAB 软件的基本绘图功能,学会 MATLAB 软件中自动控制理论 常用函数的使用,学会在 MATLAB 软件工作窗口进行交互式仿真和使用 M_File 格式的基本编程方法,初步
制系统的性能。了解开环零、极点对系统性能的影响。
5.熟悉频率分析法分析控制系统性能的方法 熟悉典型环节频率特性的求取以及频率特性曲线,掌握系统开环对数频率特性曲线、极坐标曲线绘制 的基本方法。了解根据开环对数频率特性曲线分析闭环系统性能的方法。熟悉用奈奎斯特稳定判据判断系
1
《自动控制原理》电子教案
4.频率法反馈校正的基本原理和方法(选讲)
(七)非线性控制系统 了解非线性系统与线性系统的区别,了解非线性特性和非线性系统的主要特征,学会非线性系统的描 述函数分析方法,了解非线性系统的相平面分析法(选讲)。
3
《自动控制原理》电子教案
1. 非线性系统的基本概念
2. 典型非线性特性、非线性系统的主要特征
三、实验方法、特点与基本要求
本课程实验采用计算机 MATLAB 软件仿真方法,其特点是利用 MATLAB 软件丰富的功能函数、灵活的编 程和调试手段以及强大的人机交互和图形输出功能,可以实现对控制系统直观和方便的分析和设计。
自动控制原理教案
自动控制原理-教案一、课程简介1.1 课程背景自动控制原理是工程技术和科学研究中的重要基础,广泛应用于工业、农业、医疗、航空航天等领域。
本课程旨在介绍自动控制的基本理论、方法和应用,使学生掌握自动控制系统的基本原理和设计方法,具备分析和解决自动控制问题的能力。
1.2 教学目标(1)理解自动控制的基本概念、原理和分类;(2)掌握线性系统的数学模型建立和求解方法;(3)熟悉系统的稳定性、瞬态和稳态性能分析;(4)学会设计简单的线性控制器;(5)了解自动控制技术的应用和发展趋势。
二、教学内容2.1 自动控制的基本概念(1)自动控制系统的定义和分类;(2)自动控制系统的组成和基本环节;(3)自动控制系统的性能指标。
2.2 线性系统的数学模型(1)连续时间线性系统的数学模型;(2)离散时间线性系统的数学模型;(3)系统的状态空间表示。
2.3 系统的稳定性分析(1)连续时间线性系统的稳定性;(2)离散时间线性系统的稳定性;(3)系统稳定性的判定方法。
2.4 系统的瞬态和稳态性能分析(1)连续时间线性系统的瞬态响应;(2)离散时间线性系统的瞬态响应;(3)系统的稳态性能分析。
2.5 控制器的设计方法(1)PID控制器的设计;(2)状态反馈控制器的设计;(3)观测器的设计。
三、教学方法3.1 讲授法通过课堂讲授,系统地介绍自动控制原理的基本概念、理论和方法。
3.2 案例分析法通过分析实际案例,使学生更好地理解自动控制系统的原理和应用。
3.3 实验法安排实验课程,让学生亲自动手进行实验,培养实际操作能力和问题解决能力。
3.4 讨论法组织学生进行课堂讨论,促进学生思考和交流,提高分析和解决问题的能力。
四、教学评估4.1 平时成绩包括课堂表现、作业完成情况、实验报告等,占总成绩的30%。
4.2 期中考试通过期中考试检验学生对自动控制原理的基本概念、理论和方法的掌握程度,占总成绩的30%。
4.3 期末考试通过期末考试全面评估学生对自动控制原理的掌握程度,占总成绩的40%。
自动控制原理电子教案
自动控制原理电子教案第一章:绪论1.1 自动控制的概念介绍自动控制的定义和意义解释自动控制系统的组成和功能1.2 自动控制系统的分类介绍连续控制系统和离散控制系统的区别介绍开环控制系统和闭环控制系统的区别1.3 自动控制的发展历程介绍自动控制的发展历程和重要里程碑介绍自动控制在我国的发展状况第二章:自动控制系统的数学模型2.1 数学模型的概念介绍数学模型的定义和作用解释数学模型在自动控制系统中的应用2.2 连续系统的数学模型介绍连续系统的微分方程表示法介绍连续系统的传递函数表示法2.3 离散系统的数学模型介绍离散系统的差分方程表示法介绍离散系统的Z域表示法第三章:自动控制系统的稳定性分析3.1 稳定性概念介绍系统稳定性的定义和重要性解释稳定性的判定标准3.2 连续系统的稳定性分析介绍劳斯-赫尔维茨稳定性判据介绍尼科尔斯-李雅普诺夫稳定性判据3.3 离散系统的稳定性分析介绍离散系统的稳定性判定方法介绍离散系统的劳斯-赫尔维茨判据第四章:自动控制系统的控制器设计4.1 控制器设计概述介绍控制器设计的意义和目标解释控制器设计的基本方法4.2 连续系统的PID控制器设计介绍PID控制器的原理和结构介绍PID控制器的参数调整方法4.3 离散系统的控制器设计介绍离散PID控制器的设计方法介绍离散控制器的实现和优化方法第五章:自动控制系统的仿真与实验5.1 自动控制系统仿真概述介绍自动控制系统仿真的意义和目的解释仿真软件的选择和使用方法5.2 连续系统的仿真实验介绍连续系统的仿真实验方法和步骤分析实验结果和性能指标5.3 离散系统的仿真实验介绍离散系统的仿真实验方法和步骤分析实验结果和性能指标第六章:线性系统的状态空间分析6.1 状态空间的概念介绍状态空间及其在自动控制系统中的应用解释状态向量和状态方程的含义6.2 状态空间表示法介绍状态空间表示法的基本原理解释状态转移矩阵和系统矩阵的概念6.3 状态空间分析法介绍状态空间分析法在系统稳定性、可控性和可观测性方面的应用解释李雅普诺夫理论在状态空间分析中的应用第七章:非线性系统的分析与控制7.1 非线性系统概述介绍非线性系统的定义和特点解释非线性系统分析的重要性7.2 非线性系统的数学模型介绍非线性系统的常见数学模型解释非线性方程和方程组的求解方法7.3 非线性控制策略介绍非线性控制的基本策略和方法分析非线性控制系统的性能和稳定性第八章:现代控制理论及其应用8.1 现代控制理论概述介绍现代控制理论的定义和发展历程解释现代控制理论在自动控制系统中的应用8.2 鲁棒控制介绍鲁棒控制的定义和目标解释鲁棒控制在自动控制系统中的应用和优势8.3 自适应控制介绍自适应控制的定义和原理解释自适应控制在自动控制系统中的应用和效果第九章:自动控制系统的实现与优化9.1 系统实现概述介绍自动控制系统实现的意义和目标解释系统实现的方法和技术9.2 数字控制器的实现介绍数字控制器的实现方法和步骤解释数字控制器实现中的主要技术问题9.3 系统优化方法介绍系统优化方法的定义和目标解释系统优化方法在自动控制系统中的应用和效果第十章:自动控制技术的应用案例分析10.1 工业自动化控制系统案例分析工业自动化控制系统的组成和功能解释工业自动化控制系统在工业生产中的应用案例10.2 控制系统案例分析控制系统的组成和功能解释控制系统在现代工业和生活中的应用案例10.3 航空航天控制系统案例分析航空航天控制系统的组成和功能解释航空航天控制系统在航空航天领域的应用案例重点和难点解析重点环节1:自动控制的概念与系统组成自动控制系统的定义和功能是理解自动控制理论的基础,需要重点关注。
自动控制原理课程设计范文
1 +恋1 +cffs第一章串联校正装置的结构特性自动控制原理课程设计是综合性与实践性较强的教学环节。
本课程设计的任务是使学生 初步掌握控制系统数字仿真的基本方法,同时学会利用 MATLAB 语言进行控制系统仿真和辅 助设计的基本技能,为今后从事控制系统研究工作打下较好的基础。
1.1超前校正装置图1.1分别为无源和有源超前校正网络。
对于无源校正装置 (a),忽略该网络的输入阻抗和输出阻抗效应,则其传递函数为:•S ---GCc) = ^)= ll±^ = _邑 ° E ⑶0 1+宠卄丄 T式中,图1.1CL — .式中, ,对于有源校正装置(b ),其对应的传递函数为:另一在式(6-3)中,令r..则(6-3)可写成如下形式: 阴…霁严十卜上式即为实际的比例微分控制器(PD 的传递函数的表达式1.2超前校正装置的极点及频率特性超前校正装置的零、极点分布如 图1.2所示,由于/',故|「门的零点总在其极点的右侧。
由式(6- 1)和式(6-2)可知,在采用超前校正网络时,频率特性为:式中系统的开环增益会有 ./ (或片)倍的衰减。
对此,用放大倍数附加放大器予以补偿。
经补偿后,令 -1+局帀£ =二丫=7 —其传递函数与式(6-5)对应的幅频特性的表达式分别为:炉(少)=沁堤祖T _赵览Q 应其相应的极坐标如 图1.3。
由图可见,超前校正装置的极坐标是一个位于第一象十 1 仏)」]ifl/ct-1) 限的半圆,圆心坐标L ° 」,半径为2 。
从坐标原点到半圆作切线,它与正实轴的夹角即为该校正装置的最大超前角,且有:卫(切点伽)|二 |]十(边亍*1 + (辺叶 此最大超前角对应的频率可由公式得到。
令 ,则有:m 1.2零、租点分布对公式的幅频特性取对数坐标,有:根据上式,可令rT - 1,•-,利用如下Matkab 语句作出它的伯德图,如1.4所示。
图1.4alpha=0.1; T=1;Gc=tf([T,1],[alpha*T,1]);[x0,y0,w]=Bode(Gc);[x,y]=bode_asymp(Gc,w);subplot(211),semilogx(w,20*log10(x0(:)),x,y) subplot(212),semilogx(w,y0(:))£仙)二 201g|C?t 血)| 二 201,g-20®由式(6—7)可知,由于,因而当时,校正网络的相位总是正值。
自动控制原理教案
在工业生产中,控制系统广泛应用于各种设备和生产线中,如机械手、自动化流水线等。通过控制系统,可以实现设备的自动化控制和生产过程的优化。
工业自动化
在航空航天领域,控制系统用于控制飞行器的姿态、高度、速度等参数,保证飞行器的安全和稳定。如飞机自动驾驶仪、导弹制导系统等。
稳定性
系统应具有快速响应能力,能够及时对输入信号做出反应,提高控制精度。
快速性
系统应能够准确地将输入信号转换为期望的输出信号,减小误差。
准确性
系统应具有较强的抗干扰能力,能够抵御外部干扰对系统性能的影响。
抗干扰性
控制系统设计的基本原则
03
现代控制设计方法
利用线性代数、状态空间、最优控制等理论进行系统设计,如线性二次型最优控制等。
总结词
自动控制原理涉及许多基本概念,其中最重要的是系统模型。系统模型是对实际系统的抽象描述,用于分析系统的动态行为。传递函数是线性时不变系统的一种数学描述,用于分析系统的频率响应和稳定性。时域分析和频域分析是两种常用的系统分析方法,分别在时间域和频率域内分析系统的性能指标和稳定性。此外,反馈控制、PID控制器等也是自动控制原理中的重要概念。
详细描述
自动控制原理的基本概念
02
CHAPTER
控制系统类型与组成
开环控制系统
输入信号不受输出信号影响的系统,常用于简单的控制任务。
闭环控制系统
输出信号反馈到输入端,形成闭环,能自动调节系统参数,实现更好的控制效果。
复合控制系统
结合开环和闭环控制系统的特点,具有更高的控制精度和稳定性。
控制系统类型
《自动控制理论》讲稿(完整版)
《自动控制理论》讲稿(完整版)《自动控制理论》讲稿自动控制原理是自动化类专业基础课,是自动控制技术的基础,是研究自动控制共同规律的技术科学。
自动控制理论可分为自动控制原理(经典控制理论)和现代控制理论。
开始主要用于研究工程技术领域的自动控制问题,现已将其应用范围扩展工程领域,如应用到经济学、生物医学、社会学、生产管理等领域。
自动控制理论已成为普遍使用的基础理论。
我们本学期介绍的自动控制原理是自动控制技术基础的基础,计划授课85学时,其中10学时用于实验。
参考书:《自动控制原理》,天大、技师、理工合编,天津大学出版社;《自动控理论》,两航一校合编,国防工业出版社;《现代控制工程》,(日),绪方胜彦,科出版社;《自动控制系统》,(美),本杰明,水利电力出版社;《线性系统理论》《反馈控制理论》自动控制理论:经典控制理论(自控原理)现代控制理论自动控制理论的划分是以控制理论发展的不同阶段人为归纳为:建立在时域法、频率法和根轨迹法基础上的经典控制理论和建立在状态空间法基础上的现代控制理论。
经典控制理论:主要研究单输入、单输出(SISO)线性定常系统的分析和设计问题。
其基本方法是采用描述输入-输出关系的传递函数为基础,包括:时域法、频域法、根轨迹法、相平面法等,工具:乃氏曲线,伯德图,尼氏图,根轨迹等曲线。
现代控制理论:主要研究具有多输入-多输出系统(MIMO)、变参数系统的分析和设计问题。
基本方法是:采用描述系统内部特征的状态空间的方法,更多的采用计算机作为其工具。
自动控制原理包括下列内容:第一章:控制理论的基本概念,开、闭环,分类第二章:数学模型即:描述系统运动状态的数学表达式——微分方程、传递函数、结构图信、号流程图第三章时域分析法:动态性能、静态性能、一二阶系统分析第四章根轨迹分析法:常规根轨迹、特殊根轨迹第五章频域分析法:频率特性、频域指标、频域分析第六章系统综合与校正第七章非线性系统与分析第八章采样控制系学习要求:1.掌握自动控制系统的一般概念及其组成与分类;2.掌握控制系统的基本性能要求。
自动控制原理课程教案
自动控制原理课程教案第一章自动控制系统导论本章教学目标:1使学生掌握自动控制系统的相关概念2使学生理解和掌握自动控制的基本原理3使学生了解自动控制系统的分类和基本要求本章基本要求:1正确理解和掌握负反馈控制的原理2了解控制系统的组成与分类3能确定被控系统的被控对象,被控量和给定量,掌握根据原理图绘制系统方框图的方法。
本章各节的教学内容:1自动控制系统的基本原理2自动控制系统分类3对控制系统的基本要求4自动控制的发展简史5控制系统设计概论本章教学重点:1要求学生了解自动控制系统基本概念、基本变量、基本组成及工作原理2理解信息反馈的含义和作用,区别开环控制和闭环控制3绘制控制系统方框图本章教学内容的深化和拓宽:使学生了解更多工程实际中所用的控制系统,并深入了解它们的工作原理。
本章教学方式:采用工程实例和设疑方法引导学生用系统论,信息论观点分析广义系统的动态特征、信息流,理解信息反馈的作用。
绘制控制系统方框图。
在讲述控制理论发展史引入我国古代指南车和“二弹一星”特殊贡献科学家——钱学森在自动控制理论方面的成就,进行爱国主义和专业教育。
在讲述控制系统系统设计概论,引用转台转速控制和磁盘驱动读取系统的设计实例,强化设计训练。
本章教学过程中应注意的问题:本章概念较多,多举事例说明,以吸引学生的兴趣。
本章主要参考书目:《自动控制原理》吴秀华主编,中国水利水电出版社,2006年《自动控制原理》修订版,孙亮,北京工业大学出版社,2006 年《自动控制原理》胡寿松,北京航空航天大学,2006 年。
《自动控制原理》黄家英主编,东南大学出版社,1991年《自动控制原理》李友善主编,国防工业出版社,1989年《控制理论基础》王显正、陈正航主编,科学出版社,2000年第二章控制系统的数学模型本章教学目标:通过本章学习,使学生掌握不同域对应的不同种类的数学模型,学会系统微分方程和传递函数的求法,能绘制系统结构图和信号流图,会用结构图等效变换和梅森公式求系统的传递函数。
自动控制原理B教案H
自动控制原理B教案H一、教学目标1. 了解自动控制的基本概念,掌握自动控制系统的基本组成部分及工作原理。
2. 熟悉常见自动控制器的结构、特点及应用,学会分析自动控制系统的性能指标。
3. 掌握线性系统的时域分析方法,了解频域分析方法及其应用。
4. 学会设计简单的线性控制器,并能对实际控制系统进行调试与优化。
5. 培养学生的动手实践能力,提高解决实际工程问题的能力。
二、教学内容1. 自动控制的基本概念1.1 自动控制系统的定义1.2 自动控制系统的分类1.3 自动控制系统的性能要求2. 自动控制系统的基本组成部分2.1 控制器2.2 执行器2.3 被控对象2.4 反馈元件3. 常见自动控制器3.1 比例控制器3.2 积分控制器3.3 微分控制器3.4 PID控制器4. 自动控制系统的性能分析4.1 稳定性分析4.2 快速性分析4.3 准确性分析5. 线性系统的时域分析方法5.1 阶跃响应法5.2 冲击响应法5.3 稳态误差分析三、教学方法1. 讲授法:讲解自动控制基本概念、原理和方法。
2. 案例分析法:分析常见自动控制器的结构、特点及应用。
3. 实验法:进行自动控制系统实验,验证理论知识。
4. 讨论法:引导学生探讨自动控制领域的前沿问题。
四、教学环境1. 教室:配备投影仪、计算机、网络等教学设备。
2. 实验室:具备自动控制实验设备,如控制器、执行器、被控对象等。
3. 教材及辅助资料:提供相关教材、论文、案例等。
五、教学评价1. 平时成绩:考察学生的出勤、课堂表现、作业完成情况。
2. 实验报告:评估学生在实验过程中的操作能力、分析能力及解决问题的能力。
3. 期末考试:测试学生对自动控制原理的掌握程度。
4. 综合评价:结合平时成绩、实验报告和期末考试成绩,全面评价学生的学习效果。
六、教学重点与难点1. 教学重点:自动控制系统的基本原理及其组成部分;常见自动控制器的结构、特点及应用;线性系统的时域分析方法;自动控制系统的性能分析与评价。
演示文稿自动控制原理
• 改变管网特性曲线的调节方法
当关小阀门时,压力由P1增加到 P2,而流量由Q1减小到Q2,一部 分压力作为克服阻力损失掉了,功
率由N1降到N2,效率也下降了 。
l 改变风机特性曲线的方法
1、改变风机的转数 2、改变风机进口导流叶片角度
用交流变频器控制风机就是这 种控制方法,改变风机转速,功 率成三次方规律变化,是一种节 能调节方法。
演示文稿自动控制原理
第1页,共51页。
(优选)自动控制原理第章
第2页,共51页。
水泵控制风机控制 风机控制 冷水机组控制 供热锅炉控制
第3页,共51页。
1、单台水泵的特性曲线
第一节 水泵控制
三种不同的G-H曲线
1-平坦型;2-陡降型;3-驼峰型
单级单吸离心泵的性能曲线
Gn
G1 n1
H ( n )2 H1 n1
N ( n )3 N1 n1
G、H、N 叶轮转速为 n 时的流量、扬程和功率; G1、H1、N1 叶轮转速为 n1 时的流量、扬程和功率;
第4页,共51页。
2、管路特性曲线
在管路系统中,水泵的工作状态与管路特性有关。 对于开式系统有:
H ' H1 hw
对于闭式系统有:
H ' hw (闭式系统)
• 由公用低压电网供电时,容量小于或等于11KW者,可全压启动。
• 由居住小区变电所低压配电装置供电时,容量在小于或等于
15KW者,可全压启动。
当启动电流降到原来的1/K时,启动转矩变为原来 的1/K2,说明降压启动会显著降低转矩。
•串入电抗器降压启动 •自耦变压器降压启动 •星三角转换降压启动
第8页,共51页。
第29页,共51页。
《自动控制原理》讲稿
讲稿2012~2013学年第一学期邯郸学院制实验一典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。
2. 掌握控制系统时域性能指标的测量方法。
二、实验仪器1.自动控制系统实验箱一台2.计算机一台三、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。
G(S)= -R2/R12.惯性环节的模拟电路及其传递函数如图1-2。
G(S)= - K/TS+1K=R2/R1,T=R2C3.积分环节的模拟电路及传递函数如图1-3。
G(S)=1/TST=RC4.微分环节的模拟电路及传递函数如图1-4。
G(S)= - RCS5.比例+微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf)。
G(S)= K(TS+1)K=R2/R1,T=R2C6.比例+积分环节的模拟电路及传递函数如图1-6。
G(S)=K(1+1/TS)K=R2/R1,T=R2C五、实验步骤1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
比例环节3.连接被测量典型环节的模拟电路(图1-1)。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
4.在实验项目的下拉列表中选择实验一[一、典型环节及其阶跃响应] 。
5.鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6.观测计算机屏幕显示出的响应曲线及数据。
7.记录波形及数据(由实验报告确定)。
惯性环节8.连接被测量典型环节的模拟电路(图1-2)。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
9.实验步骤同4~7积分环节10.连接被测量典型环节的模拟电路(图1-3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理
3-6 线性系统的稳态误差计算
把在阶跃函数作用下没有原理性稳态误差的系统,称为无差系统;把具有原理性稳态误差的系统称为有差系统。
非线性因素引起的系统稳态误差称为附加稳态误差,或结构性稳态误差。
习惯上常把系统在阶跃输入作用下的稳态误差称为静差。
因而,0型系统可称为有(静)差系统或零阶无差度系统,一型系统可称为一阶无差度系统,二型系统可称为二阶无差度系统。
4-3 广义根轨迹
2、附加开环零点的作用
增加开环零点也就是增加了闭环零点,闭环零点对系统性能的影响,相当于减小闭环系统的阻尼,从而使系统的过渡过程有出现超调的趋势,并且这种作用将随闭环零点接近坐标原点的强度而加强。
4-4 系统性能的分析
1、 闭环零极点与时间响应
经验指出,如果闭环零、极点之间的距离比它们本身的模值小一个数量级,则这一对闭环零、极点就构成了偶极子。
在略去偶极子和非主导零、极点的情况下,闭环系统的根轨迹增益常会发生改变,必须注意核算,否则将导致性能的估算错误。
闭环系统零、极点位置对时间响应性能的影响,可以归纳为以下几点:
(1) 稳定性。
如果闭环极点全部位于s 左半平面,则系统一定是稳定的,即稳定性只与
闭环极点位置有关,而与闭环零点位置无关。
(2) 运动形式。
如果闭环系统无零点,且闭环极点均为实数极点,则时间响应一定是单
调的;果闭环极点均为复数极点,则时间响应一般是振荡的。
(3) 超调量。
超调量主要取决于闭环复数主导极点的衰减率1//d σωξ=,并
与其他闭环零、极点接近坐标原点的程度有关。
(4) 调节时间。
调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值
1n σξω= ;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。
(5) 实数零、极点影响。
零点减小系统阻尼,使峰值时间提前,超调量增大;极点增大
系统阻尼,使峰值时间滞后,超调量减小。
它们的作用,随着其本身接近坐标原点的程度而加强。
(6) 偶极子及其处理。
如果零、极点之间的距离比它们本身的模值小一个数量级,则它
们就构成了偶极子。
远离原点的偶极子,其影响可略;接近原点的偶极子,其影响必须考虑。
(7) 主导极点。
在s 平面上,最靠近虚轴而附近又无闭环零点的一些闭环极点,对系统
性能影响最大,称为主导极点。
凡比主导极点的实部大3~6倍以上的其他闭环零、极点,其影响均可忽略。
6-3 串联校正
1、 频率响应法校正设计
一般地说,开环频率特性的低频段表征了闭环系统的稳态性能;开环频率特性的中频段表征了闭环系统的动态性能;开环频率特性的高频段表征了闭环系统的复杂性和噪声抑制性能。
因此,用频域法设计控制系统的实质,就是在系统中加入频率特性形状合适的校正装置,使开环系统频率特性形状变成所期望的形状:低频段增益充分大,以保证稳态误差要求;中频段对数幅频特性斜率一般为-20dB/dec ,并占据充分宽的频带,以保证具备适当的相角裕度;高频段增益尽快减小,以消弱噪声影响,若系统原有部分高频段已符合该种要求,则校正时可保持高频段形状不变,以简化校正装置的形式。
6-4 反馈校正
1、 反馈校正的原理与特点
反馈校正的基本原理是:用反馈校正装置包围待校正系统中对动态性能改善有重大妨碍作用的某些环节,形成一个局部反馈回路(内回路,或称副回路),在局部反馈回路的开环幅值远大于1的条件下,局部反馈回路的特性主要取决于反馈校正装置,而与被包围部分无关;适当选择反馈校正装置的形式和参数,可以使已校正系统的性能满足给定指标的要求。
反馈校正具有如下明显特点:
(1) 削弱非线性特性的影响
(2) 减小系统的时间常数
(3) 降低系统对参数变化的敏感性
7-5 离散系统的稳定性与稳定误差
4、采样周期与开环增益对稳定性的影响
(1)当采样周期一定时,加大开环增益会使离散系统的稳定性变差,甚至使系统变得不稳定。
(2)当开环增益一定时,采样周期越长,丢失的信息越多,对离散系统的稳定性及动态性能均不利,甚至可使系统失去稳定性。
7-6 离散系统的动态性能
2、采样器和保持器对动态性能的影响
(1)采样器可使系统的峰值时间和调节时间略有减小,但使超调量增大,故采样造成的信息损失会降低系统的稳定程度。
然而,在某些情况下,例如在具有大延
迟的系统中,误差采样反而会提高系统的稳定程度。
(2)零阶保持器使系统的峰值时间和调节时间都加长,超调量和振荡次数也增加。
这是因为除了采样造成的不稳定因素外,零阶保持器的相角滞后降低了系统的
稳定程度。
9-2线性系统的可控性与可观测性
如果系统所有状态变量的运动都可以由输入来影响和控制而由任意的初态达到原点,则称系统是完全可控的,或者更确切地说是状态完全可控的,简称为系统可控;否则,就称系统是不完全可控的,或简称为系统不可控。
相应地,如果系统所有状态变量的任意形式的运动均可由输出完全反映,则称系统是状态完全可观测的,简称为系统可观测;反之,则称系统是不完全可观测的,或简称为系统不可观测。