最新人教版七年级数学上册导学案—3.2 第1课时 用合并同类项的方法解一元一次方程
人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案
3.2.1 解一元一次方程—合并同类项【教学目标】1.会根据实际问题找相等关系列一元一次方程,会利用合并同类项解一元一次方程。
2.体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。
3.通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学重、难点】会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。
【教学准备】课本、练习本、练习册【教学过程】一、忆旧识新再设疑——新课导入1.复习回顾(1)同类项:所含字母____,并且_____的指数也分别相同的项叫____。
(2)合并同类项:合并同类项时,只把_____相加减,字母与字母的指数_____。
2.创设情境,提出问题约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。
这本书的拉丁文译本取名为《对消与原》。
“对消”与“还原”是什么意思呢?【设计意图】学生通过复习旧知识,进一步巩固了同类项的相关概念,为准备本课的学习做好铺垫。
二、曲径通幽细探寻——问题探究某校近三年共购买计算机140台,去年的购买量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机? 活动1:推理验证问题1:可以怎样设未知数?【学生活动】独立思考,同桌交流归纳。
分析:设前年购买计算机x台。
则去年购买计算机2x台,今年购买计算机4x台。
问题2:题目中的等量关系是什么?【学生活动】独立思考,小组交流归纳。
前年购买量+去年购买量+今年购买量=140台问题3:如何根据等量关系列方程?由题意得,x+2x+4x=140活动2:集思广益,寻找解一元一次方程的办法问题1:怎样解这个方程?如何将这个方程转化为x=a的形式?合并同类项,得7x=140系数化为1,得x=20答:所以前年这个学校购买了20台计算机。
思考:以上解方程中的“合并”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。
人教版数学七上3.2 第1课时《 用合并同类项的方法解一元一次方程》精品教学设计2
人教版数学七上3.2 第1课时《用合并同类项的方法解一元一次方程》精品教学设计2一. 教材分析《人教版数学七上3.2 第1课时》这一节内容是在学生已经掌握了方程的概念、一元一次方程的定义以及解法的基础上进行讲解的。
本节内容主要让学生掌握合并同类项的方法,并能够运用该方法解一元一次方程。
教材通过具体的例题和练习题,使学生逐步掌握合并同类项的方法,并能够灵活运用。
二. 学情分析学生在学习本节内容前,已经掌握了一定的数学基础知识,对方程的概念和一元一次方程的解法有一定的了解。
但学生在解方程的过程中,可能还存在着一些困难,如对合并同类项的理解不够深入,对一元一次方程的解法不够熟练等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行指导和帮助。
三. 教学目标1.让学生理解合并同类项的概念,并能够正确进行合并。
2.让学生掌握用合并同类项的方法解一元一次方程。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.合并同类项的概念和操作方法。
2.运用合并同类项的方法解一元一次方程。
五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握合并同类项的方法,并能够灵活运用解一元一次方程。
六. 教学准备1.教学PPT或黑板。
2.教学素材和练习题。
3.粉笔和教鞭。
七. 教学过程1.导入(5分钟)教师通过一个具体的一元一次方程,引导学生回顾解方程的方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT或黑板,呈现合并同类项的定义和操作方法,并进行讲解和示范。
同时,让学生跟随教师一起进行合并同类项的操作,加深学生对合并同类项的理解。
3.操练(10分钟)教师给出一些合并同类项的练习题,让学生独立进行操作,并及时进行指导和反馈。
4.巩固(10分钟)教师通过PPT或黑板,呈现一些一元一次方程,让学生运用合并同类项的方法进行解题。
教师及时进行指导和反馈,帮助学生巩固所学知识。
人教版数学七年级上册3.2.1:解一元一次方程合并同类项(教案)
-学生可能会在消元过程中出现计算错误。
-举例:在解方程3x + 5 - 2x + 1 = 7时,展示如何将同类项对齐并逐步消元。
四、教ቤተ መጻሕፍቲ ባይዱ流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程合并同类项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或计算总价的情况?”(如分糖果、计算购物总价等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索合并同类项的奥秘。
人教版数学七年级上册3.2.1:解一元一次方程合并同类项(教案)
一、教学内容
本节课依据人教版数学七年级上册第三章“一元一次方程”中的3.2.1节“解一元一次方程合并同类项”进行设计。教学内容主要包括以下方面:
1.理解一元一次方程的概念,掌握方程的基本形式:ax+b=0(a≠0)。
2.学会合并同类项,将含有同类项的方程简化,为求解方程打下基础。
4.培养学生的运算能力,熟练掌握合并同类项的操作,提高解题效率。
5.激发学生的自主学习与合作交流意识,通过课堂讨论与互动,发展学生的批判性思维和团队合作精神。
三、教学难点与重点
1.教学重点
-理解并掌握一元一次方程的基本形式,即ax+b=0(a≠0)。
-学会合并同类项,将含有同类项的方程简化。
-运用合并同类项的方法,求解一元一次方程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
3.通过实例分析,让学生理解合并同类项解一元一次方程的原理,并能熟练运用此方法解决实际问题。
4.掌握一元一次方程的标准化形式,即ax+b=0(a≠0)。
本节课将结合教材内容,以实用性为导向,旨在让学生掌握合并同类项解一元一次方程的方法,并能够灵活运用。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
一、教学内容
本节课依据人教版七年级数学上册第三章《一元一次方程》中的3.2.1节“解一元一次方程-合并同类项解一元一次方程”进行设计。教学内容主要包括以下几部分:
1.掌握合并同类项法则,能够将含有一元一次方程的式子中的同类项进行合并。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力,使其能够运用合并同类项法则对一元一次方程进行合理变形,从而解决问题。
2.培养学生的数学运算能力,提高解题速度和准确性,熟练掌握移项、合并同类项等基本操作。
3.培养学生的分析问题和解决问题的能力,通过实际问题的引入和解决,让学生体会数学知识在实际生活中的应用。
4.培养学生的团队合作意识,通过小组讨论和交流,提高学生的沟通能力,增强合作解决问题的能力。
5.培养学生的创新意识,鼓励学生在解题过程中尝试不同的方法和思路,提高思维的灵活性。
三、教学难点与重点
1.教学重点
-理解并掌握合并同类项法则,能够将一元一次方程中的同类项进行有效合并。
-学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。
3.2解一元一次方程(一)第1课时合并同类项(导学案)七年级数学上册(人教版)
3.2 解一元一次方程(一)第1课时合并同类项导学案1. 学会运用合并同类项解形如ax+bx=c类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.★知识点1:合并的思想在解方程中的应用在解类似于“ax+bx=c”的方程时,将方程左边按合并同类项的方法合并为一项,即(a+b)x=c,使方程逐渐化为ax=b的形式体现化归思想.★知识点2:找数学规律找数学规律的题目,都会涉及一个或几个变化的量.而找规律,多数情况下,是指变量的变化规律.所以,抓住了变量就等于抓住了解决问题的关键.而这些变量通常按照一定的顺序给出,观察这些序列号与变量的关系是关键.★知识点3:利用方程这个工具解应用问题通过实际问题,重点让学生经历和感受方程较算式的优越性,突出数学模型的广泛性和有效性.1. 合并同类项是指.2. 列方程的基本相等关系:总量= .3. 工作总量= ×,它也是列方程时常用的基本等量关系.4. 观察以下数列,指出该数列的特征:2,-4,6,-8,10,-12,…特征: .5. 0,1,1,2,3,5,8,13,21,…特征: .6. 观察下面两列数:①2,-4,8,-16,32,…②-6,12,-24,48,-96,…这两列数之间有什么联系?1. 含有相同的_____,并且相同字母的_____也相同的项,叫做同类项;2. 合并同类项时,把各同类项的_____相加减,字母和字母的指数_____.3. 用合并同类项进行化简:(1)3x-5x = ________;(2)-3x + 7x = ________;(3)y + 5y-2y =________;(4)12233y y y+-=_______.问题1:某校三个年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?追问1:(1)对于一个实际问题应该如何列方程?(2)这个问题中的已知量和未知量各是什么?如果设前年购买计算机x台,请用含x的式子表示题目中的其他未知量,去年购买计算机台,今年购买计算机台.追问2:(3)题目中的相等关系是什么?(4)根据以上的相等关系列出的方程是什么?问题2:对于问题1还有不同的设法吗?根据不同的设法可以列出相应的方程吗?问题3:通过问题1列出了三个一元一次方程,如何将上述的第一个方程转化为x=a的形式呢?追问1:系数化为1这一步的根据是什么?追问2:解方程时“合并同类项”起到什么作用?例1:解下列方程:(1)2x-52x=6-8;(2)7x-x+3x-x=-15×4-6×3.解下列方程:(1)5x-2x = 9;(2)137 22x x+=;(3)111524x x x--=;(4)22142332x x x-++=-⨯+.例2:有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?类比例2的解法,完成下列各题:1. 一个数列,按一定规律排列成如下形式:1,-4,16,-64,256,-1024,…,其中某三个相邻的数的和为-13312,求这三个数各是多少?2. 三个连续的奇数的和是39,求这三个数.3. 我校开展的数学课外兴趣小组活动,每周四进行一次活动,现知本月连续的三次活动日子之和为27,你知道是哪三天吗?本月四次活动的日子之和是多少呢?1. 下列方程合并同类项正确的是()A.由3x-x=-1+3,得2x =4B.由2x+x=-7-4,得3x =-3C.由15-2=-2x+x,得3=xD.由6x-2-4x+2=0,得2x=02. 如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33. 某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4. 解下列方程:(1)-3x x =10;(2)6m-m-m =3;(3)3y-4y =-25-20.某洗衣厂计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?(1)解形如“ax + bx + ··· + mx = p”的一元一次方程有哪些步骤?(2)合并同类项在解方程的过程中起到了什么作用?(3)在本节课中,列方程和解方程两个环节中各蕴含了哪些数学思想?(4)用方程解决实际问题有哪些步骤?【参考答案】1. 把同类项的系数相加,字母及字母的指数不变.2. 各部分量的和;3. 工作时间;工作效率;4. 绝对值为连续偶数,奇数位置为正,偶数位置为负;5. 从第3个数开始,后一个数是前两个数的和;6. 第二列数是第一列数所对应的数的-3倍.1. 字母;指数;2. 系数;不变;3. (1)-2x;(2)4x;(3)4y;(4)-y.例1:解:(1)解:合并同类项,得122x-=-,系数化为1,得x=4;(2)解:合并同类项,得6x=-78,系数化为1,得x=-13.解:(1)合并同类项,得3x=9,系数化为1,得x=3.(2)合并同类项,得2x=7,系数化为1,得72 x=.(3)合并同类项,得115 4x=,系数化为1,得x=60.(4)合并同类项,得116x=,去绝对值,得11 6x=±,系数化为1,得x=±6.例2:解:设这三个相邻数中第一个数为x,则第二个数为-3x,第三个数-3×(-3x)=9x.根据这三个数的和是-1701,得x-3x+9x=-1701,合并同类项,得7x=-1701,系数化为1,得x=-243,所以-3x=729,9x=-2187.答:这三个数是-243,729,-2187.1. 解:设三个相邻数中第一个数为x,则第二个数为-4x,第三个数为16x.由题意,得x+(-4x)+16x=-13312,解得x=-1024,所以-4x=4096,16x=-16384.答:这三个数分别为:-1024,4096,-16384.2. 解:设这3个连续奇数为x-2,x,x+2.根据题意,得x-2+x+x+2=39.解得x=13.所以x-2=13-2=11,x+2=13+2=15.答:这三个数分别为:11,13,15.3. 解:设三次活动时间分别为:x-7,x,x+7.根据题意,得x-7+x+x+7=27.解得x=9.所以这三天分别是2,9,16.本月四次活动时间分别为2,9,16,23,它们的和为50.1. D;2. B;3. 2x-1+x=56;4.(1)x =-4;(2)m =32;(3)y =45.解:设计划生产Ⅰ型洗衣机x台,则计划生产Ⅱ型洗衣机2x台,Ⅲ型洗衣机14x台,依题意,得x+2x+14x=25500,解得x=1500,则2x=3000,14x=21000.答:计划生产Ⅰ型洗衣机1500台,Ⅱ型洗衣机3000台,Ⅲ型洗衣机21000台.。
【七年级数学上册】《3.2 解一元一次方程(1)-合并同类项与移项》导学案 新人教版
《3.2 解一元一次方程(1)─合并同类项与移项》导学案【学习目标】1.会列一元一次方程解决实际问题,•并会合并同类项解一元一次方程;2.培养学生观察、分析、概括的能力;3.初步渗透特殊—一般—特殊的辩证唯物主义思想【学习重点】:会合并同类项解一元一次方程;【学习难点】:会列一元一次方程解决实际问题;【使用说明与学法指导】1、先认真阅读学习目标;2、再认真阅读86—87页内容,并用红笔标注重点;3、阅读教材后认真完成导学案.预习案【预习自学】1.等式性质 1:2:2.解方程:(1)x-9=8;(2) 3x+1=4;3.下列各题中的两个项是不是同类项?(1)3x y与-3x y (2)0.2a b与0.2ab(3)11abc与9bc (4)3m n 与-n m(5)4xy z与4 x yz (6)6 与x4.能把上题中的同类型合并成一项吗?如何合并?5.合并同类型的法则是什么?依据是什么【我的疑惑】________________________________________________________探究案探究点:合并解一元一次方程问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x;这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.2.自己试着完成例1 解下列方程:(1)2x-5/2x=6-8; (2)7x-2.5x+3x-1.5x=-15×4-6×3合并同类项,得系数化为1,得所以-3x= ,9x=答:这三个数是、、讨论:以上列方程解决实际问题的关键。
人教版七年级数学上册:3.2《解一元一次方程(一) ——合并同类项与移项》说课稿5
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿5一. 教材分析《人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》是学生在掌握了方程的概念和一元一次方程的定义后,进一步学习解一元一次方程的方法。
这一节内容是整个初中数学中非常重要的一部分,也是学生学习代数的基础。
通过这一节的学习,学生将学会如何合并同类项和移项,从而解决一元一次方程。
二. 学情分析学生在进入七年级之前,已经学习了小学数学,对数学的基本概念和运算规则有一定的了解。
但是,对于解一元一次方程,他们可能是第一次接触,因此需要通过实例和练习来逐步理解和掌握。
另外,由于学生的学习能力和学习习惯各不相同,因此在教学过程中需要关注学生的个体差异,因材施教。
三. 说教学目标本节课的教学目标是让学生掌握合并同类项和移项的方法,能够解一元一次方程。
同时,通过教学过程,培养学生的逻辑思维能力和解决问题的能力。
四. 说教学重难点本节课的重点是让学生学会合并同类项和移项的方法,难点是让学生理解为什么要合并同类项和移项,以及如何在解题过程中正确地应用这些方法。
五. 说教学方法与手段为了达到本节课的教学目标,我将以问题为导向,采用启发式教学法和实例教学法。
通过提出问题,引导学生思考和探索,从而让学生理解和掌握合并同类项和移项的方法。
同时,我将使用多媒体教学手段,如PPT和教学软件,来辅助教学,使教学过程更加生动和直观。
六. 说教学过程1.导入:通过提出实际问题,引发学生的思考,激发学生的学习兴趣。
2.讲解:通过实例讲解,让学生理解合并同类项和移项的概念和方法。
3.练习:让学生通过练习题,巩固所学的知识和方法。
4.总结:对所学内容进行总结,让学生形成系统的知识结构。
5.拓展:提出一些拓展问题,激发学生的学习兴趣和探索精神。
七. 说板书设计板书设计要简洁明了,能够突出本节课的重点内容。
可以设计成思维导图的形式,将合并同类项和移项的方法和步骤清晰地展示出来。
【人教版七年级上册数学上册】3.2解一元一次方程(一)——合并同类项与移项课时3
注意:1. 移项必须是由等号的一边移到另一边,而不
是在等号的同一边交换位置.
2. 方程中的各项均包括它们前面的符号,如x-2=1中,
方程左边的项有x,-2,移项时所移动的项一定要变号.
3.移项时,一般都习惯把含未知数的项移到等号左边,
把常数项移到等号右边.
移项与加法交换律的区别
移项是在等式中,把某些项从等号的一边移到另一边,
(3) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
解:(2) 列方程,得 -3y=y+1.移项,得 -3y-y=1.
合并同类项,得 -4y=1.
系数化为1,得
1
y=4
.
3.利用方程解答下列问题:
(1) x的3倍与2的和等于x的2倍与1的差,求x的值;
(2) y与-3的积等于y与1的和,求y的值;
2.解下列方程:
1
−6
2
3
= .
4
1
3
移项,得 −
2
4
(1) 6x-7=4x-5;
(2)
解:(1) 移项,
(2)
得6x-4x=-5+7.
1
合并同类项,得-
4
合并同类项,
得2x=2.
系数化为1,得 x=1.
= 6.
=6.
系数化为1,得 x= -24.
3.利用方程解答下列问题:
(1) x的3倍与2的和等于x的2倍与1的差,求xx+2x=32-7.
(2) 移项,得
合并同类项 ,得
5x=25.
合并同类项,得
系数化为1,得
x=5.
3
x- x=1+3.
2
最新部编版人教数学七上3.2第1课时用合并同类项的方法解一元一次方程导学案精品
前言:
该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)
3.2 解一元一次方程(一)——合并同类项与移项
第1课时用合并同类项的方法解一元一次方程
教学目标
1.通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题的优越性.
2.掌握合并同类项解“ax+bx=c”类型的一元一次方程的方法,能熟练求解一元一次方程,并判别解得合理性.
3.通过学生间的相互交流、沟通,培养他们的协作意识。
重点:
1建立列方程解决实际问题的思想方法。
2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程。
难点:
1.分析实际问题中的已知量和未知量,找出相等关系,列出方程。
2.使学生逐步建立列方程解决实际问题的思想方法
使用说明:
1.阅读课本P88——89
2.限时20分钟完成本导学案。
然后小组讨论。
一、导学
书中88页问题1:
(1)如何列方程?分哪些步骤?
设未知数:设前年购买计算机x台.则去年购买计算机_____台,今年购买计算机______台.
找相等关系:__________________________________________________
1。
人教版数学七年级上册导学人教版数学七年级上册导学案3.2解一元一次方程(一)合并同类项与移项 导学案
3. 2解一元一次方程----合并同类项与移项学习目标:1.学会探究数列中的规律,建立等量关系。
2.能够正确求解一元一次方程并判断解的合理性。
一、自主学习:阅读课本91页例3,完成下面的问题:1.有一列数,按一定规律排列:1,-3,9,-27,81,-243,…,其中某3个相邻的数的和为-1701,这三个数是多少?从符号和绝对值两方面观察,这列数有什么规律?试着列方程解决以上问题:二、合作探究:1.三个连续奇数的和是27,求这三个奇数。
2.小明和小红做游戏,小明拿出一张日历:“我用笔圈出了2×2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?三、即时训练:基础训练1.三个连续整数的和是54,则这三个数是()A.15,16,17B.16,17,18C.17,18,19D.18,19,202.一棵小树现在高为150cm,预计今年后每年能长10cm,则长到210cm需要经过()A.5年B.6年C.7年D.8年3.有一个两位数,个位上的数是十位上的数的一半,如果把十位上的数与个位上的数对调,那么得到的两位数比原来的两位数小36,求原来的两位数。
若设原来的两位数的个位上的数为x ,根据题意,下面所列方程正确的是( )A. 36210210++=+⨯x x x xB. x x x 21036210+=+⨯C. 3622-+=+x x x xD. 362010210-+=+⨯x x x x4.三个连续偶数的和是30,求这三个偶数。
5.在某月内,李老师要参加三天的学习培训,现在知道这三天的日期的数字之和是39;(1)培训时间是连续的三天,你知道这几天分别是当月的哪几号吗?(2)若培训时间是连续三周的周六,那这几天又分是当月的哪几号?能力拓展1.有一些卡片分别标有5,10,15,20,…的卡片,小明拿到了相邻的3张卡片,且卡片上的数字之和为255.小明拿到的3张卡片上的数分别是多少?四、评点总结附:学后反思3. 2解一元一次方程----合并同类项与移项学习目标:1.学会解决方案选择问题。
人教版数学七上3.2第1课时《用合并同类项的方法解一元一次方程》精品说课稿1
人教版数学七上3.2 第1课时《用合并同类项的方法解一元一次方程》精品说课稿1一. 教材分析《用合并同类项的方法解一元一次方程》是人教版数学七上3.2第1课时的内容。
这部分教材主要让学生掌握一元一次方程的解法,培养学生运用数学知识解决实际问题的能力。
通过这部分的学习,学生能够理解一元一次方程的概念,掌握合并同类项的方法,并能够运用该方法解决实际问题。
二. 学情分析学生在学习这部分内容前,已经学习了有理数、方程等基础知识,对于解一元一次方程有一定的了解。
但部分学生对于合并同类项的方法和解方程的步骤还不够熟练,需要老师在教学过程中进行引导和巩固。
此外,学生对于实际问题的解决能力有待提高,需要老师通过实例进行讲解和训练。
三. 说教学目标1.知识与技能目标:学生能够理解一元一次方程的概念,掌握合并同类项的方法,并能够运用该方法解一元一次方程。
2.过程与方法目标:学生通过自主学习、合作交流,培养解方程的能力和团队协作精神。
3.情感态度与价值观目标:学生培养对数学的兴趣,提高解决实际问题的能力,培养积极的学习态度。
四. 说教学重难点1.教学重点:学生掌握合并同类项的方法,能够解一元一次方程。
2.教学难点:学生对于合并同类项的运用和解决实际问题的能力。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,以及数学软件和网络资源。
六. 说教学过程1.导入新课:通过一个实际问题引入一元一次方程的概念,激发学生的学习兴趣。
2.知识讲解:讲解合并同类项的方法,并通过例题进行讲解,让学生跟随老师一起解方程。
3.课堂练习:学生独立完成练习题,巩固所学知识。
4.拓展与应用:通过实际问题,让学生运用合并同类项的方法解方程,培养学生的实际问题解决能力。
5.总结与反思:学生总结本节课所学知识,老师进行点评和讲解。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿一. 教材分析《人教版七年级数学上册》第三章第二节《解一元一次方程(一)——合并同类项与移项》是学生在学习了代数基础和方程概念之后,进一步深入研究一元一次方程的解法。
此节内容主要介绍了一元一次方程的解法——合并同类项与移项,是学生解决实际问题,提高解决实际问题能力的重要工具。
二. 学情分析七年级的学生已经具备了一定的代数基础,对方程的概念有了初步的了解,但是解一元一次方程的方法和技巧还不够熟练,需要通过本节课的学习进一步提高。
同时,学生在这个阶段的学习中,需要培养抽象思维能力和逻辑推理能力。
三. 说教学目标1.知识与技能目标:理解合并同类项与移项的概念,学会运用合并同类项与移项解一元一次方程。
2.过程与方法目标:通过自主学习、合作交流,培养学生的抽象思维能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:合并同类项与移项的方法及应用。
2.教学难点:如何引导学生理解并掌握合并同类项与移项的原理和技巧。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。
2.教学手段:利用多媒体课件辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习上节课的内容,引出本节课的主题——解一元一次方程。
2.自主学习:让学生自主探究合并同类项与移项的方法,引导学生发现解题规律。
3.合作交流:学生分组讨论,分享解题心得,互相学习,提高解题能力。
4.教师讲解:针对学生的疑问和难点,进行讲解和辅导,帮助学生掌握解题方法。
5.巩固练习:布置适量的练习题,让学生巩固所学知识,提高解题技巧。
6.课堂小结:总结本节课的学习内容,强化学生对合并同类项与移项的理解。
7.课后作业:布置相关的作业,让学生进一步巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册
3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。
人教版七年级上册数学教案第三章3.2解一元一次方程(一)-合并同类项与移项
3.重点难点解析:在讲授过程中,我会特别强调同类项的识别和正确合并,以及移项时符号的变化。对于难点部分,我会通过对比分析和反复练习来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与合并同类项和移项相关的实际问题。
-求解过程中的运算技巧:在化简方程时,学生可能会出现运算错误。
-难点突破:教授运算技巧,如先处理数字再处理字母,避免混淆。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程(一)-合并同类项与移项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个数量关系的问题?”比如,如果你知道两个数的和以及其中一个数,你会如何找到另一个数?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程的奥秘。
最后,我认识到,教学反思不仅是对于课堂的回顾,也是对于自己教学方法的审视。我会继续努力,不断调整教学策略,以期达到更好的教学效果。毕竟,教育的目标是让学生真正理解和掌握知识,而不仅仅是完成课堂任务。
然而,我也注意到,在小组讨论中,有些学生过于依赖同伴,自己思考不够。为了解决这个问题,我打算在未来的课堂中,增加一些个人思考的环节,鼓励每个学生独立思考,然后再进行小组交流。
在学生展示环节,我尽量给予积极的反馈,鼓励学生表达自己的思路。我发现,即使是错误的答案,也能成为教学的机会,通过错误的纠正,学生往往能更深刻地理解正确的概念。
-方程求解步骤:引导学生按照步骤解方程,包括合并同类项、移项、化简、求解。
人教版七年级数学上册 导学案:3.2 第1课时 用合并同类项的方法解一元一次方程【精品】
第三章 一元一次方程. (3)=-+x x x 34543 (4) 4a +5a -23a = = .针对训练:解下列方程:(1) 5-2 = 9; (2) 72321=+x x .探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为35,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,··· . 其中某三个相邻数的和是-1701,这三个数各是多少?二、课堂小结1. 解形如“a + b + ··· + m = p ”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.A. 由3-=-1+3,得2=4B. 由2+=-7-4,得3=-3C. 由15-2=-2+,得3=D. 由6-2-4+2=0,得2=02.如果2与-3的值互为相反数,那么等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有人,可列方程为_____________.4.解下列方程:(1) -3 + 0.5 =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1214,这三种洗衣机计划各生产多少台?。
【精品】人教版七年级数学上册 教案:3.2 第1课时 用合并同类项的方法解一元一次方程2
3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“a+b=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点建立方程解决实际问题,会解“a+b=c”类型的一元一次方程.教学难点分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆实际问题一元一次方程设问1如何列方程?分哪些步骤?师生讨论分析(1)设未知数前年这个学校购买计算机台;(2)找相等关系前年购买量+去年购买量+今年购买量=140台.(3)列方程+2+4=140.设问2怎样解这个方程?如何将这个方程转化为“=a”的形式?学生观察、思考根据分配律,可以把含的项合并,即+2+4=(1+2+4)=7老师板演解方程过程略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理“合并”是一种恒等变形,它使方程变得简单,更接近“=a”的形式.三、拓广探索,比较分析学生思考回答若设去年购买计算机台,得方程++2=140.若设今年购买计算机台,得方程++=140.课本P87例2.问题①每相邻两个数之间有什么关系?②用表示其中任意一个数,那么与相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为35,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理解方程的步骤及依据分别是合并和系数化为1;总量=各部分量的和.。
人教版七年级数学上册 教案:3.2 第1课时 用合并同类项的方法解一元一次方程1【精品】
3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程1.会利用合并同类项的方法解一元一次方程;(重点)2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用.(难点)一、情境导入1.等式的基本性质有哪些?2.解方程:(1)-9=8;(2)3+1=4.3.下列各题中的两个项是不是同类项?(1)3y与-3y;(2)0.2ab与0.2ab;(3)2abc与9bc; (4)3mn与-nm;(5)4y与4y; (6)6与.4.能把上题中的同类项合并成一项吗?如何合并?5.合并同类项的法则是什么?依据是什么?二、合作探究探究点一:利用合并同类项解简单的一元一次方程解下列方程:(1)9-5=8;(2)4-6-=15.解析:先将方程左边的同类项合并,再把未知数的系数化为1.解:(1)合并同类项,得4=8.系数化为1,得=2.(2)合并同类项,得-3=15.系数化为1,得=-5.方法总结:解方程的实质就是利用等式的性质把方程变形为=a的形式.探究点二:根据“总量=各部分量的和”列方程解决问题足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?解析:遇到比例问题时可设其中的每一份为,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3个,则白色皮块有5个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程.解:设黑色皮块有3个,则白色皮块有5个,根据题意列方程3+5=32,解得=4,则黑色皮块有3=12(个),白色皮块有5=20(个).答:黑色皮块有12个,白色皮块有20个.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用和比例关系把黑皮与白皮的数量表示出.三、板书设计1.用合并同类项的方法解简单的一元一次方程.解方程的步骤:(1)合并同类项;(2)系数化为1(等式的基本性质2).2.找等量关系列一元一次方程.列方程解应用题的步骤:(1)设未知数;(2)分析题意找出等量关系;(3)根据等量关系列方程;(4)解方程并作答.本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫.教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯.。
人教版-数学-七年级上册-导学案:3.2.1解一元一次方程(一)--合并同类项与移项
编制人: 审核人:执教老师:授课日期:学生姓名:学习 目标 1. 初步学会用合并同类项解一元一次方程; 2.会用合并同类项解简单的一元一次方程;学习重点会用合并同类项解简单的一元一次方程。
学习难点学习过程教师二次备课 与学生笔记一、自主学习 了解新知(独学) 任务1:同类项概念的考查:1.含有相同的 ,并且相同字母的 也相同的单项式,叫做同类项。
2.请你举例同类项: 任务2:合并同类项的考查:1.合并同类项时,把 相加减,字母和字母的指数 .2.合并同类项:(1) 2x-5x; (2) -3x+0.5x; (3) 2x +23x -32x任务3:利用合并同类项解方程:例1.解方程7x-2.5x+3x-1.5x=-15×4-6×3. 解:1.通过合并同类项解下列方程:(1) 5x-2x=9; (2)2x +23x =7;(3) -3x+0.5x=10; (4) 7x-4.5x=2.5×3-5.二、合作探究 掌握新知(对学、群学、展示)例1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:___ __________ --如何解这个方程呢?下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.例2:教材87页上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.三、知识应用巩固新知(小组合作,学能展示)四、发现总结提升知识合并同类项是将方程转化为的形式,其中a、b是常数.五、课堂检测成绩:教学反思我学到的知识我学到的方法与思想我的疑惑。
新人教部编版初中七年级数学上册3.2 第1课时 用合并同类项的方法解一元一次方程
长冲中学“四学一测”活力课堂
知识点一 利用合并同类项解简单的一元一次方程 1.对于方程 2y+3y-4y=1,合并同类项正确的是
(A) A.y=1 B.-y=1 C.9y=1 D.-9y=1
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
2.方程- 3 x-3x= 5 -1 的解为( B )
长冲中学“四学一测”活力课堂
5.解下列方程: (1)4x-3x=1; 解:x=1.
(3) x - x =-2; 23
解:x=-12.
(2)-x+4x=6-1; 解:x=5 .
3 (4)-2x+0.5x=1.
解:x=- 2 . 3
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
知识点二 根据“总量=各部分量的和”列方程解决 问题 6.挖一条长 1210 m 的水渠,由甲、乙两队从两头同 时施工,甲队每天挖 130 m,乙队每天挖 90 m,需 几天才能挖好?设需用 x 天才能挖好,由题意得方 程如下,正确的是( A ) A.130x+90x=1210 B.130+90x=1210 C.130x+90=1210 D.(130-90)x=1210
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
11.对于任意四个有理数 a,b,c,d,定义新运算:
a b =ad-bc.已知 2x 4 =18,则 x 的值为
cd
x1
A.-1 B.2 C.3 D.4
(C)
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
12.将正整数 1 至 2020 按一定规律排列如下表,平 移表中带阴影的方框,方框中三个数的和可能是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程
解一元一次方程(一) ——合并同类项与移项
用合并同类项的方法解一元一次方程
ax +bx = c 类型的一元一次方程,进一步体会 .
. .
.
(2) 8x + 4x -7x = (3)
=-+x x x 34
5
43 (5) 9x +x -15x = (4) 4a +5a -23a =
2x +4x =27,它的左边是同类项,右边是常数项,所以方程左边合=( - + )x = x ,方程右边不变,所以方程的解为x = . 2,写出方程的解 的解为x = ; 的解为x = .
例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的
和是-1701,这三个数各是多少?Array
二、课堂小结
1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.
.
2. 用方程解决实际问题的步骤
1.下列方程合并同类项正确的是( )
A. 由3x-x=-1+3,得2x=4
B. 由2x+x=-7-4,得3x=-3
C. 由15-2=-2x+x,得3=x
D. 由6x-2-4x+2=0,得2x=0
2.如果2x与x-3的值互为相反数,那么x等于()
A.-1 B.1 C.-3 D.3
3.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.
4.解下列方程:
(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.
5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数
量之比为1:2:14,这三种洗衣机计划各生产多少台?
温馨提示:配套课件及全册导学案WORD版见光盘
或网站下载:(无须登录,直接下。