2012-2013学年北京市石景山区2013年中考二模数学试卷(含答案)
05.2012年北京市石景山中考二模数学试题(word版含答案)-推荐下载
B.62、62C.61.5 Nhomakorabea625.如图,有 6 张形状、大小、质地均相同的卡片,正面分别印有北京精神——“爱国、创
新、包容、厚德”的字样.背面完全相同,现将这 6 张卡片洗匀后正面向下放在桌子上,
从中随机抽取一张,抽出的卡片恰好是“创新”的概率是( )
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2012-2013石景山初三期末考试数学试题参考答案
DCBA石景山区2012-2013学年度第一学期期末考试试卷初三数学参考答案阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)二、填空题(本题共4道小题,每小题4分,共16分)9.6; 10.9; 11.相交; 12.=. 三、解答题(本题共8道小题,每小题5分,共40分) 13.解:()0345tan 30cos 212π--︒+︒+.=1123232-+⨯+ ……………………4分 =33. ……………………5分 14.解:(1)令0=x 得8=y ,所以抛物线与y 轴的交点坐标为(0,8);………1分(2)令0=y 得1=x 或4-=x ,所以对称轴方程为23-=x ; ………3分 (3)根据图象可知:抛物线在x 轴上方的部分所对应的自变量x 的取值范围是.14<<-x ………5分15.解:过点A 作BC AD ⊥,垂足为D . ………1分在Rt △ADB 中,30=∠ABC ,4=AB2sin ==∴B AB AD , ………2分 60=∠BAD ………3分 又 105=∠BAC45=∠∴DAC ,………4分 222==∴AD AC . ………5分16.解:(1)所有可能情况:(2,3,4)、(2,3,5)、(2,4,5)、(3,4,5); ………4分 (2)能搭成三角形的情况有3种,所以,能搭成三角形的概率为43. .……5分17. 解:连结D 、A ,过点C 分别作坐标轴的垂线段CF CE ,.………1分90=∠DOA DA ∴为⊙C 的直径 ………2分 30=∠OBA 30=∠∴ADO 又 2=DO 332=∴OA ∴点A 的坐标为)0,332(, OA CE OD CF //,// 且C 为DA 中点,33,1==∴CE CF ∴圆心C 的坐标为18. 解:(1) 点)3,1(-A 在xmy =的图象上,∴3-=m 反比例函数的解析式为x y 3-=; ………1分又 点),3(n B 在xy 3-=的图象上,1-=∴n由题意,得⎩⎨⎧-=+-=+133b k b k ,解得:⎩⎨⎧-==41b k ,∴一次函数的解析式为4-=x y ; ………3分(2)如图,作⊥AC y 轴,x AE ⊥轴,x BD ⊥轴.=--+=∆∆∆O BD O CA AED B ACO E O AB S S S S S 梯形矩形 4. ………5分19. 解:如图,△ABC 为有一个内角为60的直角三角形,△ADC 为等腰直角三角形,所以15=∠DAB . ………1分 作AB DE ⊥,垂足为E . ………2分 设1=DC ,则1=AC ,由勾股定理2=AD ,由∠60=BAC 可得2=AB ,3=BC ………3分∴13-=BD在Rt BED ∆中,30=∠B ∴ 213-=DE ………4分 在Rt DEA ∆中,426sin -==∠AD ED DAE∴即42615sin -= . ………5分 E CB A111N20.解: (1)如图:①当N 为BC 中点,AB MN // 此时△CMN ∽△CAB ,有21==AB MN CA CM ∵102=AB∴10=MN ; ………2分 ②当△1CMN ∽△CBA 时,有B CMN ∠=∠1∴AB MN BC CM 1=, 又 26=BC∴352=MN .………4分∴MN 的长为10或352(2)8个,如图(答案不唯一). ………5分四、解答题(本题共3道小题,每小题6分,共18分) 21.解:设年产量(t )与费用(万元)之间函数解析式为21ax y =,由题意可得a 210001000=,解得:10001=a ,即:100021x y =. ………1分设年销量(t )与销售单价(万元/t )之间的函数解析式为b kx y +=2,由题意,可得⎩⎨⎧+⋅=+=.030,100020b k b k 解得:⎪⎩⎪⎨⎧=-=301001b k ,即:3010012+-=x y ………3分 设毛利润为y 万元,由题意,可得=y )301001(+-x x 10002x - (其中10000≤≤x )………4分 =x x 301000112+-, 因为10001115000>=x , 所以当10000≤≤x 时,y 随x 的增大而增大,因而在1000=x 时,图象达到最高点,故当年产量为1000吨时,所获得的毛利润最大. ………………6分D 22. 解:(1)易得A (0,2),B (4,0) ……………… 1分将x =0,y =2代入c bx x y ++-=2得2=c ………………2 分 将x =4,y =0,2=c 代入c bx x y ++-=2 得到,27=b2272++-=∴x x y ……………… 3分 (2)由题意,易得217(,2),(,2)22M t t N t t t -+-++……………… 4分从而得到t t t t t MN 4)221(22722+-=+--++-=)40(<<t …… 5分当2=t 时,MN 有最大值4 . ………………6 分23.(1)证明:连结APAC AB = ∴弧AB =弧AC又 P 是劣弧BC 的中点,∴弧BP =弧CP ………………1分∴弧ABP =弧ACP , ∴AP 为⊙O 的直径又 DP 为⊙O 的切线,∴DP AP ⊥ ………………2分 作BC AM ⊥,垂足为M ∴M 为BC 中点, ∴AM 必过圆心O , 即:P O M A ,,,四点共线∴BC DP //. ………………3分(2)在Rt AMB ∆中,BC BM 21==6,8=∴AM ,43tan =∠BAM在Rt OMB ∆中,设r OB =,则由勾股定理得2226)8(+-=r r解得=r 425,225=AP ………………5分在Rt APD ∆中,DAP AP DP ∠⋅=tan =.87543225=⨯ ………………6分五、解答题(本题共2道小题,每小题7分,共14分) 24.解:(1)由题意,得12=-ab……………………………………1分 ∴a b 2-=且0≠a . ……………………………………2分 (2)由直线5+=kx y 过点A (4,1)∴541+=k ,解得1-=k∴5+-=x y ……………………………………3分 设抛物线顶点坐标为(1,n ),代入5+-=x y 中,可得451=+-=n∴抛物线顶点坐标为(1,4), ……………………………………4分 代入322+-=ax ax y 中,可得1-=a∴抛物线的解析式为322++-=x x y .…………………………………5分 (3)∵点P (t ,2t )在抛物线上∴3222++-=t t t …………………………………6分 解得3±=t∴这个抛物线上的2倍点有两个,分别是(32,3)和(32,3--).…………………………………7分25.解:(1)∵抛物线622-+-=bx x y 过点 A (1,0)∴620-+-=b …………………………………1分 ∴8=b∴抛物线1C 的解析式为 2)2(268222+--=-+-=x x x y ∴)2,2(M令0=y ,则06822=-+-x x 解这个方程,得3,121==x x∴3=m ……………………………………2分 (2)由题意,抛物线2C 过点C (-3,0),D (-1,0),N (-2,-2)∴抛物线2C 的解析式为 6822)2(222++=-+=x x x y …………3分 (3)过点'M 作H M '⊥x 轴于点H , …………………………………4分 若四边形''''N C M B 是矩形,则''OM OB =由题意,设'M )2,2(t -,'B )0,3(t -,则H )0,2(t - ………………5分 在Rt △OH M '中,2222'''OB OM H M OH ==+∴222)3(2)2(-=+-t t …………………………………6分 解得21=t ∴21=t 秒时,四边形''''N C M B 是矩形.………………………………7分。
2013石景山区中考数学二模
18.( 5 分)甲、乙两位同学进行长跑训练,两人距出发点的路程
y(米)与跑步时间 x(分)之间的函数图象如图
所示,根据图象所提供的信息解答问题:
( 1)他们在进行
米的长跑训练;
( 2)在 3< x< 4 的时段内,速度较快的人是
;
( 3)当 x=
时,两人相距最远,此时两人距离是多少米?(写出解答过程)
16.( 5 分)先化简,再求值:
,其中 x 满足 x2+3x﹣ 4=0.
17.( 5 分)已知: 如图, 一次函数 y=x+b 的图象与反比例函数
的图象交于 A、B 两点, A 点坐标为 ( 1,
m),连接 OB,过点 B 作 BC⊥x 轴,垂足为点 C,且△ BOC 的面积为 . ( 1)求 k 的值; ( 2)求这个一次函数的解析式.
根据上面提供的信息,回答下列问题:
( 1)在统计表中, a 的值为
, b 的值为
,并将统计图补充完整;
( 2)甲同学说: “我的体育成绩是此次抽样调查所得数据的中位数.
”请问: 甲同学的体育成绩应在什么分数段内?
(填相应分数段的字母)
( 3)如果把成绩在 B 段以上(含 B 段)定为优秀,那么该区今年 2400 名九年级学生中体育成绩为优秀的学生人数
2013 石景山区中考数学二模
一、选择题(本题共 32 分,每小题 4 分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案 前的字母填在相应的括号内.
1.(4 分) 3 的相反数是(
)
A.﹣ 3 B.﹣ C. 3 D.
2.(4 分)某市政府召开的全市经济形势分析会公布,全市去年地区生产总值(
GDP)实现 1091 亿元,数字 1091
2013年北京石景山初二期末数学考试题及答案
石景山区2012—2013学年第一学期期末考试试卷初二数学考生 须知1.本试卷共6页.共七道大题,25道小题. 2.本试卷满分100分,考试时间100分钟.3.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、或签字笔.一、 选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.36的平方根是( ) A . 6± B . 6C . 36±D .362.223-=( )A .3B .2C .22D .423.当<0x 时,2x x的值为( )A . 1-B .1C .1±D .x4.若分式22xx -+的值是零,则x 的值是( ) A .0=xB .2±=xC .2-=xD .2=x5.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A .必然事件B .随机事件C .确定事件D .不可能事件6. 下列图形中,是轴对称图形的是( )ABCD7.五边形内角和的度数是( )A .180°B .360°C .540°D .720°8.如图,将三角尺的直角顶点放在直线a 上,//1=502=60a b ∠︒∠︒,,,则3∠的度数为( ) A .80°B .70°a b123C .60°D .50°9.如图,已知点A ,D ,C ,F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF , 还需要添加一个条件是( ) A .∠B =∠E B .∠BCA =∠F C .BC ∥EFD .∠A =∠EDF10.如图,分别写有实数25π,,取到的数是无理数的可能性大小是( )A .41 B .21 C .34D .1二、 填空题(本题共15分,每小题3分)11x 的取值范围是 . 12.计算(3 .13.等腰三角形的两条边分别为4cm 和8cm ,则这个三角形的周长为 .14.等腰直角△ABC 中,BC =AC =1,以斜边AB和长度为1的边BB 1为直角边构造直角△ABB 1,如图,这样构造下去……, 则AB 3= ;AB n = .15.对于非零的两个实数a 、b ,规定ab b a 11-=⊕,若()1122=-⊕x ,则x 的值为 .三、解答题(本题共4个小题,每小题5分,共20 16+. 解:173x y --互为相反数,求+x y 的值.18.解方程:2216124x x x --=+-. 3ABCDEF19.先化简,再求值:21()(1)1x x x x x-÷+--,其中=2x . 解:四、画图题(本题满分6分)20.方格纸中小正方形的顶点叫格点.点A 和点B 是格点,位置如图. (1)在图1中确定格点C 使△ABC 为直角三角形,画出一个这样的△ABC ; (2)在图2中确定格点D 使△ABD 为等腰三角形,画出一个这样的△ABD ; (3)在图2中满足题(2)条件的格点D 有________个.五、列方程解应用题(本题满分6分)21.某校决定为全校数学教师每人购买一本义务教育《数学课程标准》(以下简称《标准》),同时每人配套购买一本《数学课程标准解读》(以下简称《解读》).其中《解读》的单价比《标准》的单价多25元.若学校购买《标准》用了378元,购买《解读》用了1053元,请问《标准》和《解读》的单价各是多少元? 六、解答题(本题共3个小题,共17分) 22.(本小题6分)叙述并证明三角形内角和定理.要求写出定理、已知、求证,画出图形,并写出证明过程. 定理: 已知: 求证: 证明:23.(本小题5分) 如图,在△ABC 中,AB =AC ,∠BAC =36°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)请你找出完成问题(1)后所得到的图形中的所有等腰三角形(用字母表示,写在横线上,不要求证明).AB C24.(本小题6分)已知:如图,△ABC 中,∠ACB =45°,AD ⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,∠BAD =∠FCD . 求证:(1)△ABD ≌△CFD ;(2)BE ⊥AC . 证明:七、探究题(本题满分6分)25.如图,在△ABC 中,∠ACB =90°,若把△ABC 沿直线DE 折叠, 使△ADE 与△BDE 重合.(1)当∠A =35°时,求∠CBD 的度数. (2)若AC =4,BC =3,求AD 的长.(3)当AB = m (m > 0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)ABCDEF BCDE石景山区2012-2013学年度第一学期期末考试初二数学参考答案阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共10道小题,每小题3分,共30分)16.解:原式+--……………………………………………3分+ ……………………………………………5分 17.解:由已知可得⎩⎨⎧=--=+-03092y x y x ………………………………………………2分;解出⎩⎨⎧==1215y x 所以27=+y x . ………………………………………5分 18.解:22(2)(4)16x x ---=................................................................................2分48x -=.2x =-. ……………………………………………………..4分检验:2x =-时最简公分母(+2)(2)=0x x -,所以2x =-是增根.∴原方程无解. ……………………………………5分19. 解: 21()(1)1x x x x x-÷+--=()21111x x x x -⋅-+=1x . ……………………4分当2=x=2. ……………………………………………5分 四、画图题(本题满分6分)20.解:(1) 画出一个如下图1中的一个三角形………………………………2分 (2) 画出一个如下图2中的一个三角形………………………………4分(3) 4.(理由如图2) ………………………………6分五、列方程解应用题(本题满分6分)21.解:设《标准》的单价为x 元,则《解读》的单价为(x +25)元. ……1分根据题意,得x 378=251053x , …………………………………3分 解得,x =14. ………………………………………………………4分经检验x=14是所列方程的解,且符合题意. ……………………………5分 ∴x +25=39.答:《标准》的单价为14元,则《解读》的单价为39元. …………6分 (注:不检验、不作答各扣1分)六、解答题(本题共3个小题,共17分)22.(本小题6分)解:定理:三角形的三个内角和等于180°……………………1分 已知:△ABC (如图).求证:∠A +∠B +∠ACB =180°. …………2分 证明:延长BC 到D ,过C 作CE//AB . …………3分∴ ∠1=∠A , ∠2=∠B .∵∠1+∠2+∠ACB =180°,∴∠A +∠B +∠ACB =180°. ………………6分 23.(本小题5分)解:(1)如右图…………………………………………2分(2) △ABC 、△ADB 、△DBC …………………5分 (每写出一个得1分)24.(本小题6分)解:证明:(1) ∵ AD ⊥BC ,∴ ∠ADB =∠CDF =90°.∵∠ACB =45°,∴∠ACD =∠DAC =45°. ……………………..1分 ∴ AD=CD . ………………………………………2分在△ABD 和△CFD 中,ABCDE1 2ABCDADB CDF AD CDBAD FCD ∠=∠⎧⎪=⎨⎪∠∠⎩= ∴ △ABD ≌△CFD . ………………………………3分(2) ∴ BD=FD . ……………………………………………………………4分 ∵ ∠FDB =90°,∴∠FBD =∠BFD =45°. ∵∠ACB =45°,∴∠CEB =90°.∴ BE ⊥AC . ………………………………………………………………6分七、探究题(本题满分6分) 25.解:(1)20°. …………………………1分(2)设AD =x ,由已知BD =x ;CD =4-x .在△BCD 中,∠C =90°,根据勾股定理,得x 2=(4-x )2+32 ……………2分 解得x =258. ∴AD =258………………………3分 (3)设AC =b ,BC =a ,由已知m 2=a 2+b 2,且112ab m =+……………4分可求出a +b =m +2. ……………5分 由已知a +b 即为△BCD 的周长, 所以△BCD 的周长为m +2. ……………6分BC DE。
2013石景山区中考数学二模
2013石景山区中考数学二模一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在相应的括号内.1.(4分)3的相反数是()A.﹣3 B.﹣C.3 D.2.(4分)某市政府召开的全市经济形势分析会公布,全市去年地区生产总值(GDP)实现1091亿元,数字1091用科学记数法表示为()A.1.091×102B.1.091×103C.10.91×103D.1.091×1043.(4分)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm4.(4分)一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数、平均数是()A.9,8 B.9,8.2 C.10,8 D.10,8.25.(4分)甲盒装有3个红球和4个黑球,乙盒装有3个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别.搅匀两盒中的球,从盒中分别任意摸出一个球.正确说法是()A.从甲盒摸到黑球的概率较大B.从乙盒摸到黑球的概率较大C.从甲、乙两盒摸到黑球的概率相等D.无法比较从甲、乙两盒摸到黑球的概率6.(4分)如图,AB是⊙O的直径,C是⊙O上的一点,若AC=8,AB=10,OD⊥BC于点D,则BD的长为()A.6 B.5 C.3 D.1.57.(4分)若二次函数y=x2+bx+7配方后为y=(x﹣1)2+k,则b、k的值分别为()A.2、6 B.2、8 C.﹣2、6 D.﹣2、88.(4分)如图是由五个相同的小正方体组成的几何体,则下列说法正确的是()A.左视图面积最大B.俯视图面积最小C.左视图面积和主视图面积相等D.俯视图面积和主视图面积相等二、填空题(本题共16分,每小题4分)9.(4分)分解因式:20﹣5a2=.10.(4分)抛物线y=kx2﹣5x+2的图象和x轴有交点,则k的取值范围是.11.(4分)已知:平面直角坐标系xOy中,圆心在x轴上的⊙M与y轴交于点D(0,4)、点H,过H作⊙O的切线交x轴于点A,若点M(﹣3,0),则sin∠HAO的值为.12.(4分)如图,∠AOB=45°,过OA上到点O的距离分别为1,4,7,10,13,16,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为s1,s2,s3,…,观察图中的规律,第4个黑色梯形的面积S4=,第n(n为正整数)个黑色梯形的面积S n=.三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)解方程:.15.(5分)如图,四边形ABCD是正方形,G是BC边上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE 交DG于F.在图中找出一对全等三角形,并加以证明.16.(5分)先化简,再求值:,其中x满足x2+3x﹣4=0.17.(5分)已知:如图,一次函数y=x+b的图象与反比例函数的图象交于A、B两点,A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC的面积为.(1)求k的值;(2)求这个一次函数的解析式.18.(5分)甲、乙两位同学进行长跑训练,两人距出发点的路程y(米)与跑步时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练;(2)在3<x<4的时段内,速度较快的人是;(3)当x=时,两人相距最远,此时两人距离是多少米?(写出解答过程)四、解答题(本题共20分,每小题5分)19.(5分)如图,四边形ABFE中,延长FE至点P,∠AEP=74°,∠BEF=30°,∠EFB=120°,AF平分∠EFB,EF=2.求AB长(结果精确到0.1).(参考数据:≈1.73,≈1.41,sin74°≈0.6,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)20.(5分)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D作⊙O的切线交BC于点E.(1)求证:点E为BC中点;(2)若tan∠EDC=,AD=5,求DE的长.21.(5分)为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)(3)如果把成绩在B段以上(含B段)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?22.(5分)如图,在矩形ABCD中,AB=3,BC=4,点M、N、分别在BC、AB上,将矩形ABCD沿MN折叠,设点B 的对应点是点E.(1)若点E在AD边上,BM=,求AE的长;(2)若点E在对角线AC上,请直接写出AE的取值范围:.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)如图,抛物线y=﹣x2+ax+b过点A(﹣1,0),B(3,0),其对称轴与x轴的交点为C,反比例函数(x>0,k是常数)的图象经过抛物线的顶点D.(1)求抛物线和反比例函数的解析式.(2)在线段DC上任取一点E,过点E作x轴平行线,交y轴于点F、交双曲线于点G,联结DF、DG、FC、GC.①若△DFG的面积为4,求点G的坐标;②判断直线FC和DG的位置关系,请说明理由;③当DF=GC时,求直线DG的函数解析式.24.(7分)如图,四边形ABCD、A1B1C1D1是两个边长分别为5和1且中心重合的正方形.其中,正方形A1B1C1D1可以绕中心O旋转,正方形ABCD静止不动.(1)如图1,当D、D1、B1、B四点共线时,四边形DCC1D1的面积为_;(2)如图2,当D、D1、A1三点共线时,请直接写出=;(3)在正方形A1B1C1D1绕中心O旋转的过程中,直线CC1与直线DD1的位置关系是,请借助图3证明你的猜想.25.(8分)(1)如图1,把抛物线y=﹣x2平移后得到抛物线C1,抛物线C1经过点A(﹣4,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=﹣x2交于点Q,则抛物线C1的解析式为;图中阴影部分的面积为.(2)若点C为抛物线C1上的动点,我们把∠ACO=90°时的△ACO称为抛物线C1的内接直角三角形.过点B(1,0)做x轴的垂线l,抛物线C1的内接直角三角形的两条直角边所在直线AC、CO与直线l分别交于M、N两点,以MN 为直径的⊙D与x轴交于E、F两点,如图2.请问:当点C在抛物线C1上运动时,线段EF的长度是否会发生变化?请写出并证明你的判断.参考答案与试题解析一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在相应的括号内.1.【解答】根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.2.【解答】1091=1.091×103.故选B.3.【解答】∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.4.【解答】由表格可得,众数为:9,平均数为:=8.2.故选B.5.【解答】∵甲盒装有3个红球和4个黑球,∴摸到黑球的概率为:,∵乙盒装有3个红球、4个黑球和5个白球,∴摸到黑球的概率为:=,∵>,∴从甲盒摸到黑球的概率较大.故选:A.6.【解答】∵AB是⊙O直径,∴∠C=90°,在Rt△ACB中,AB=10,AC=8,由勾股定理得:BC==6,∵∠C=90°,OD⊥BC,∴∠ODB=∠C=90°,∴OD∥AC,∵OA=OB,∴BD=DC,∴BD=BC=3,故选C.7.【解答】y=(x﹣1)2+k=x2﹣2x+1+k,则b=﹣2,1+k=7,k=6.故选C.8.【解答】观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.二、填空题(本题共16分,每小题4分)9.【解答】20﹣5a2,=5(4﹣a2),=5(2+a)(2﹣a).故答案为:5(2+a)(2﹣a).10.【解答】∵抛物线y=kx2﹣5x+2的图象和x轴有交点,∴关于x的一元二次方程kx2﹣5x+2=0有实数根,∴△=(﹣5)2﹣4k×2≥0,且k≠0,解得,k≤,且k≠0.故答案是:k≤,且k≠0.11.【解答】连接MH,∵D(0,4),M(﹣3,0),∴OD=4,OM=3,由垂径定理得:OH=OD=4,在Rt△MHO中,由勾股定理得:MH=5,∵AH为⊙M切线,∴∠MHA=∠MOH=90°,∴∠HAMO+∠AHO=90°,∠AHO+∠MHO=90°,∴∠HAO=∠MHO,∴sin∠HAO=sin∠MHO==,故答案为:.12.【解答】由题意得:s1=(1+4)×3÷2=×5=,s2=(7+10)×3÷2=×17=,s3=(13+16)×3÷2=×29=,s4=(19+22)×3÷2=×41=;…s n=.故答案为:;(12n﹣7).三、解答题(本题共30分,每小题5分)13.【解答】原式=4﹣1+1﹣3=.14.【解答】去分母得:x(x+2)﹣1=x2﹣4,去括号得:x2+2x﹣1=x2﹣4,解得:x=﹣,经检验x=﹣是分式方程的解.故原方程的解是x=﹣.15.【解答】△AED≌△DFC.证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,又∵AE⊥DG,CF∥AE,∴CF⊥DG,∴∠CFD=90°,又∵AE⊥DG,∴∠DEA=90°,∴∠EAD+∠EDA=90°,又∵∠CDF+∠EDA=90°,∴∠EAD=∠FDC,∴△AED≌△DFC (AAS).16.【解答】原式=,∵x2+3x﹣4=0,∴x1=﹣4,x2=1,∵x≠1,∴原式=﹣=﹣.17.【解答】(1)设B点的坐标为(x0,y0),则有y0=,即:k=x0y0,∵△BOC的面积为,∴|x0y0|=﹣x0y0=,∴k=x0y0=﹣3;(2)∵k=﹣3,∴y=﹣,当x=1时,y=﹣3,∴A点坐标为(1,﹣3),把A点坐标代入y=x+b得b=﹣4,则一次函数的解析式为y=x﹣4.18.【解答】(1)根据图象信息可知他们在进行1000米的长跑训练;(2)根据图象信息可知在3<x<4的时段内,速度较快的人是甲;(3)设乙距出发点的路程y(米)与跑步时间x(分)之间的函数解析式为y乙=k1x,将(4,1000)代入,得4k1=1000,解得k1=250,所以y乙=250x.在0<x≤3的时段内,设甲距出发点的路程y(米)与跑步时间x(分)之间的函数解析式为y甲=k2x,将(3,600)代入,得3k2=600,解得k2=200,所以y2=200x.当x=3分时,两人相距最远,此时两人距离是:250x﹣200x=50x=50×3=150米.答:当x=3分时,两人相距最远,此时两人距离是150米.故答案为1000;甲;150米.四、解答题(本题共20分,每小题5分)19.【解答】∵∠EFB=120°,∠BEF=30°,∴∠FEO=∠FBE=30°∴FE=FB.在Rt△EOF中,∴OE=.Rt△EOA中,∴AE=,在△AEF和△ABF中,,∴△AEF≌△ABF,∴AB=AE=7.2.20.【解答】(1)连结OD,BD,∵AB为直径,∴∠ADB=90°,又∠ABC=90°,∴BC是⊙O切线,∵DE是⊙O切线,∴BE=DE,∴∠EBD=∠EDB,∵∠ADB=90°,∴∠EBD+∠C=90°,∠EDB+∠CDE=90°,∴∠C=∠EDC,∴DE=CE,∴BE=CE,则E为BC的中点;(2)∵∠ABC=90°,∠ADB=90°,∴∠C=∠ABD=∠EDC,sinC=,∴cosC==,tanC==,Rt△ABD中,DB==5×,Rt△BDC中,BC==5××=6,又点E为BC中点,∴DE=BC=3.21.【解答】(1)抽查的总人数是:48÷0.2=240(人),则a=240×0.25=60,b==0.35.(2)甲同学的体育成绩应在C分数段内;(3)0.45×2400=1080(名).答:该区九年级考生中体育成绩为优秀的学生人数有1080名.22.【解答】(1)过点M作MH⊥AD交AD于点H,如图,则MH=AB=3,AH=BM=,∴矩形ABCD沿MN折叠,设点B的对应点是点E,∴EM=BM=,在Rt△EHM中,EH=,∴AE=AH﹣EH=;(2)在Rt△ABC中,AC==5,如图1,M点在C点处,沿∠ACB的对角线折叠,则CE=CB=4,所以AE=AC﹣BC=1;如图2,N点在A点处,沿∠CAB的对角线折叠,则AE=AB=3,∴AE的取值范围为1≤AE≤3.故答案为1≤AE≤3.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)∵抛物线y=﹣x2+ax+b过点A(﹣1,0),B(3,0),∴,解得:,∴抛物线的解析式为y=﹣x2+2x+3,顶点D(1,4),∵函数y=(x>0,m是常数)图象经过D(1,4),∴k=4,则反比例解析式为y=;(2)①设G点的坐标为(m,),据题意,可得E点的坐标为(1,),F点的坐标为(0,),∵m>1,∴FG=m,DE=4﹣,由△DFG的面积为4,即m(4﹣)=4,得m=3,∴点G的坐标为(3,);②直线FC和DG平行.理由如下:据题意,点C的坐标为(1,0),FE=1,∵m>1,易得EC=,EG=m﹣1,DE=4﹣,∴==m﹣1,==m﹣1,∴=,∵∠DEG=∠FEC,∴△DEG∽△FEC,∴∠EDG=∠ECF,∴FC∥DG;③∵FC∥DG,∴当FD=CG时,有两种情况:(i)当FD∥CG时,四边形DFCG是平行四边形,由上题得==m﹣1,∴m﹣1=1,即m=2,∴点G的坐标是(2,2),设直线DG的函数解析式为y=kx+b,把点D,G的坐标代入,得,解得:,∴直线DG的函数解析式是y=﹣2x+6;(ii)当FD与CG所在直线不平行时,四边形ADCB是等腰梯形,则DC=FG,∴m=4,∴点G的坐标是(4,1),设直线DG的函数解析式为y=mx+n,把点D,G的坐标代入,得,解得:,∴直线DG的函数解析式是y=﹣x+5,综上所述,所求直线DG的函数解析式是y=﹣2x+6或y=﹣x+5.24.【解答】(1)∵四边形ABCD、A1B1C1D1是两个边长分别为5和1且中心重合的正方形,∴当D、D1、B1、B四点共线时,四边形DCC1D1的高为(5﹣1)÷2=2,∴==6;故答案为:6;(2)∵∠CDD1+∠ADA1=90°,∠D1DC+∠DCD1=90°,∴∠DCD1=∠ADA1,在△ADA1和△DCD1中,,∴△ADA1≌△DCD1(AAS),∴DD1=CC1,设DD1=CC1=x,∴CD1=x+1,∴x2+(x+1)2=52,解得:x=3,∴CD1=4,∴=;故答案为:;(3)CC1⊥DD1证明:连接CO,DO,C1O,D1O,延长CC1交DD1于M点.如图3所示:由正方形的性质可知:CO=DO,C1O=D1O,∠COD=∠C1OD1=90°,∴∠COD﹣∠C1OD=∠C1OD1﹣∠C1OD,即:∠COC1=∠DOD1在△COC1和△DOD1中,,∴△COC1≌△DOD1(SAS),∴∠ODD1=∠OCC1∵∠C1CD+∠OCC1+∠CDO=90°,∴∠C1CD+∠ODD1+∠CDO=90°,∴∠CMD=90°即:CC1⊥DD1.故答案为:CC1⊥DD1.25.【解答】(1)抛物线C1的解析式为y=﹣(x﹣0)(x+4)=﹣x2﹣4x;图中阴影部分的面积与△POQ的面积相同,.∴阴影部分的面积为8.(2)由题意可知,抛物线C1只存在两个内接直角三角形.当点C在抛物线C1上运动时线段EF的长度不会发生变化.证明:∵MN为⊙D的直径,EF⊥MN∴BE=BF,∠OBN=∠MBF=∠MBA=90°∵∠MAB=∠CNM,∴△ABM∽△NBO∴,MB•NB=AB•BO=5连接FM,FN,∠MFN=90°,在△MBF和△FBN中,∠BMF=∠BFN,∠MBF=∠FBN=90°∴△MBF∽△FBN∴∴BF2=MB•NB=5,∴.。
北京市各区2013中考二模数学试题分类汇编(选择、填空题)
2013年初三二模分类试题—选择、填空题1.西城一、选择题(本题共32分,每小题4分) 1.3-的倒数是A .31B .3C .31-D .3-2.下列运算中正确的是A .2a a a =+B .22a a a =⋅C .222()=ab a bD .532)(a a =3.若一个多边形的内角和是720°,则这个多边形的边数是A .5B .6C .7D .84.若320-+-=x y ,则xy 的值为A .8B .6C .5D .9 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D 6.对于一组统计数据:3,3,6,3,5,下列说法中错误..的是 A .中位数是6 B .众数是3 C .平均数是4 D .方差是1.6 7.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30 °后得到正方形EFCG , EF 交AD 于点H ,则四边形DHFC 的面积为A .3B .33C . 9D .368.如图,点A ,B ,C 是正方体三条相邻的棱的中点,沿着A ,B ,C三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是A B C D二、填空题(本题共16分,每小题4分) 9.函数32=+y x 中,自变量x 的取值范围是 . 10.若把代数式1782+-x x 化为k h x +-2)(的形式,其中h ,k 为常数,则+h k = .11.如图,在△ABC 中,∠ACB=52°,点D ,E 分别是AB , AC 的中点.若点F 在线段DE 上,且∠AFC=90°, 则∠FAE 的度数为 °.12.如图,在平面直角坐标系xOy 中,点A 在第一象限,点B 在x 轴的正半轴上,∠OAB =90°.⊙P 1是△OAB 的内切圆,且P 1的坐标为(3,1).(1) OA 的长为 ,OB 的长为 ;(2) 点C 在OA 的延长线上,CD ∥AB 交x 轴于点D .将⊙P 1沿水平方向向右平移2个单位得到⊙P 2,将⊙P 2沿水平方向向右平移2个单位得到⊙P 3,按照同样的方法继续操作,依次得到⊙P 4,……⊙P n .若⊙P 1,⊙P 2,……⊙P n 均在△OCD 的内部,且⊙P n 恰好与CD 相切,则此时OD 的长为 .(用含n 的式子表示)2海淀 一、选择题(本题共32分,每小题4分) 1 . 6-的绝对值是A . 6-B .16 C . 16- D . 6 2. 2012年我国全年完成造林面积6 010 000公顷.将6 010 000用科学记数法表示为A . 76.0110⨯ B . 66.0110⨯ C . 70.60110⨯ D . 560.110⨯3.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若4AD =,2DB =,则DEBC的值为 A . 12 B . 23 C . 34D . 24. 下列计算正确的是A . 632a a a =⋅B . 842a a a ÷=C . 623)(a a = D . a a a 632=+5.下列图形可以由一个图形经过平移变换得到的是A .B .C .D .6. 如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC =,则AB 的长为A .4B .6C .8D .107. 甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况如下表所示:组员1 组员2 组员3 组员4 甲 88 95 97 100 乙90949799设两组同学得分的平均数依次为x 甲,x 乙,得分的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是A .x x =乙甲,22S S >乙甲B . x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲 D . x x <乙甲,22S S <乙甲8.如图1,在矩形ABCD 中,1,3AB BC ==.将射线AC 绕着点A 顺时针旋转α(0α︒<≤180)︒得到射线AE ,点M 与点D 关于直线AE 对称.若15x α=︒,图中某点到点M 的距离为y ,表示y 与x 的函数关系的图象如图2所示,则这个点为图1中的A .点AB . 点BC . 点CD . 点D图1 图2二、填空题(本题共16分,每小题4分) 9. 若分式241x x --的值为0,则x 的值等于____________. 10.如图,在△OAB 中,=90OAB ∠︒,则OB 的长为 .11. 如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A ,则 BC的长为_____________. 12.已知:n x ,'n x 是关于x 的方程244=0n n n a x a x a n -+-1()n n a a +>的两个实数根,'n n x x <,其中n 为正整数,且1a =1.(1)11'x x -的值为 ;(2)当n 分别取1,2,⋅⋅⋅,2013时,相对应的有2013个方程,将这些方程的所有实数根按照从小到大的顺序排列,相邻两数的差恒为(11'x x -)的值,则20132012'x x -= .3东城 一、选择题(本题共32分,每小题4分) 1. 3的相反数是 A . 3-B .3C .13 D . 13-2. 太阳的半径大约是696 000千米,用科学记数法可表示为A .696×103千米B .6.96×105千米C .6.96×106千米D .0.696×106千米 3.下列四个立体图形中,主视图为圆的是A B C D 4.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 A .3sin α B .3cos αC .αsin 3D .αcos 35. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一OACB面的点数为3的倍数的概率为 A .16B .14C .13D .126. 若一个多边形的内角和等于720︒,则这个多边形的边数是 A .5B .6C .7D .87. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数124332这些运动员跳高成绩的中位数和众数分别是 A .1.65,1.70 B .1.70,1.70C .1.70,1.65D .3,48. 如图,在平面直角坐标系中,已知⊙O 的半径为1,动直线AB 与x 轴交于点(,0)P x ,直线AB 与x 轴正方向夹角为45︒,若直线AB 与⊙O 有公共点,则x 的取值范围是 A .11x -≤≤ B .22x -<< C .02x ≤≤ D .22x -≤≤二、填空题(本题共16分,每小题4分) 9. 在函数23-=x y 中,自变量x 的取值范围是 .10. 分解因式:244mn mn m ++= .11. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三 角形的周长之和为 .12. 如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分 线与1n A CD -∠的平分线交于点n A . 设A θ∠=, 则1A ∠= ;n A ∠= .4朝阳一、选择题(本题共32分,每小题4分) 1. 的绝对值是A . 2B .12C .12D .22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为 A .57.510´ B .57.510-´ C .40.7510-´ D .67510-´3.如图,在△ABC 中,DE ∥BC ,如果AD =3,BD =5,那么DEBC的值是A .35 B . 925C . 38D . 58 4.从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为A .19 B .18 C .29 D .135.如图,圆锥的底面半径OA 为2,母线AB 为3,则这个圆锥的侧面积为 A .3π B . 6π C . 12π D . 18π6.如图,下列水平放置的几何体中,主视图不是..长方形的是7. 某校篮球课外活动小组21名同学的身高如下表则该篮球课外活动小组21名同学身高的众数和中位数分别是A .176,176B .176,177C .176,178D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上..一面的字是 A .我 B .的 C .梦 D .中身高(cm ) 170 176 178 182 184 人数46542EDCB A BOA二、填空题(本题共16分,每小题4分) 9.在函数23y x =-中,自变量x 的取值范围是 .10.分解因式:32242x x x -+= .11.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,点F 在弧AC 上, 若∠BCD =32°,则∠AFD 的度数为 .12.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B ,且A (-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA 3B 3C 3;……则第3个矩形OA 3B 3C 3的面积是 ;第n 个矩形OA n B n C n 的面积是(用含n的式子表示,n 是正整数).5房山 一、选择题(本题共32分,每小题4分) 1.-2的倒数为A .2B .-2C .21 D .21- 2.国家统计局22日公布的2012年统计公报显示,我国2012年全年研究与试验发展(R &D )经费支出10240亿元,比上年增长17.9%,占国内生产总值的1.97%.将10240用科学记数法表示应为A .4100240.1⨯ B .5100240.1⨯ C .410240.10⨯ D .41010240.0⨯ 3.在直角坐标系中,点M (1,2)关于y 轴对称的点的坐标为 A .(1,-2) B .(2,-1) C . (-1,2) D . (-1,-2) 4、如图:⊙A 、⊙B 、⊙C 两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为( ) A .π B .π21 C .π2 D .π41yxA 2A 3C 3C 2A 1C 1OB 3B 2B 1BA ABC第4题图5.某场射击比赛中,第一小组10人第一轮射击成绩分别为8、9、9、10、7、8、8、9、8、8(单位:环),则这组数据的众数和中位数分别为 A .8、8B .8、9C .7、8D .9、86.若两圆的半径分别是2和3,圆心距为5,则这两圆的位置关系是 A .内切B .相交C .外切D .外离7.若一个多边形的内角和等于720 ,则这个多边形的边数是 A .5B .6C .7D .88.在正方体的表面上画有如图所示的粗线, 则其展开后正确的是二、填空题(本大题共16分,每小题4分):9.图象过点A (-1,2)的反比例函数的解析式为_____________.10.分解因式:22363a ab b -+= __________.11.如图,△ABC 中,D 为AB 上一点, 且∠ACD =∠B ,若AD =2,BD =52, 则AC = .12.观察下列等式:①23a a +=;②65a a +=;③127a a+=;④209a a +=…;则根据此规律第6个等式为 ,第n 个等式为 .DCBA第11题图D.C.B.A. B.A.第8题图6门头沟一、选择题(本题共32分,每小题4分) 1.-6的倒数是A .6B .6-C .16 D .16- 2.PM 2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为 A .62.510⨯ B .50.2510-⨯ C . 62.510-⨯ D .72510-⨯ 3.右图所示的是一个几何体的三视图,则这个几何体是A .球B .圆锥C .圆柱D .三棱柱4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是 A .8B .6C .5D .35.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 A .15B .13C .58D .386.已知圆锥侧面展开图的扇形半径为2cm ,面积是24cm 3π,则扇形的弧长和圆心角的度数分别为A .4πcm 1203,︒B .2πcm 1203,︒C .4πcm 603,︒D .2πcm 603,︒7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:甲 7 9 8 6 10 乙78988设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、2S 乙,则下列判断中正确的是A .x x =乙甲,22S S =乙甲B .x x =乙甲, 22>S S 乙甲C .x x =乙甲,22<S S乙甲 D .<x x 乙甲, 22<S S 乙甲8.如图,在平行四边形ABCD 中,AC = 12,BD = 8,P 是AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的主视图左视图 俯视图 PF E D CBA两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象 中,能表示y 与x 的函数关系的图象大致是A .B .C .D .二、填空题(本题共16分,每小题4分)9. 在函数31y x =-中,自变量x 的取值范围是 . 10.分解因式:216ax a -= . 11.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在 点C 处测得建筑物AB 的顶点A 的仰角为30︒,然后 向建筑物AB 前进20m 到达点D 处,又测得点 A 的 仰角为60︒,则建筑物AB 的高度是 m . 12.如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N . 若12CE CD =,则BN 的长是 ,AMBN的值 等于 ;若1CE CD n =(2n ≥,且n 为整数), 则AMBN的值等于 (用含n 的式子表示).7怀柔一、选择题(本题共32分,每小题4分) 1.3的倒数是( )A . -3B . 3C . 31-D . 312.土星的直径约为119300千米,119300用科学记数法表示为( )A .1.193×105B .11.93×104C .1.193×106D . 11.93×106A BCDEFMNADB C30︒60︒y 86x 12O O 12x 68y y 86x 12O y 86x12OCPQBAMN3. 下面的图形中,既是轴对称图形又是中心对称图形的是(C )4.甲、乙、丙、丁四位选手各10次射击成绩的平均数均为9.5环,方差(单位:环2)依次分别为0.035、0.015、0.025、0.027. 则这四人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁5.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.以下说法正确的是( ).(A )从甲箱摸到黑球的概率较大 (B )从乙箱摸到黑球的概率较大(C )从甲、乙两箱摸到黑球的概率相等 (D )无法比较从甲、乙两箱摸到黑球的概率6.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( ) A .40°B .60°C .70°D .80°7.下列函数中,其图象与x 轴有两个交点的是( )A . 2013)23(522+-=x y B . 2013)23(522++=x y C . 2013)23(522---=x y D . 2013)23(522++-=x y8.如图,等边△ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与 点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作 AB 边的垂线,与△ABC 的其它边交于P 、Q 两点.设线段 MN 运动的时间为t 秒,四边形MNQP 的面积为S 厘米2. 则表示S 与t 的函数关系的图象大致是6题图11题图A B OCD二、填空题(本题共16分,每小题4分) 9.若分式32+-a a 值为 0 ,则 a 的值为 . 10.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为120°,则圆锥的母线长为 cm .11. 如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB = °.12. 如12题图1,是由方向线一组同心、等距圆组成的点的位置记录图。
北京中考13年二模数学部分区23题及答案
13年二模23题部分区考题23.已知关于x 的一元二次方程x 2+(4-m )x +1-m = 0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是-3,在平面直角坐标系xOy 中,将抛物线y =x 2+(4-m )x +1-m向右平移3个单位,得到一个新的抛物线,当直线y =x +b 与这个新抛物线有且只有一个公共点时,求b 的值.23. 已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线21122y x x =-上.(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,请说明理由.23.已知关于x 的方程2(2)30x m x m --+-=. (1)求证:此方程总有两个实数根;(2)设抛物线2(2)3y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y =-x 的对称点恰好是点M ,求m 的值.(备图)23. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.23.在平面直角坐标系xOy 中, A ,B 两点在函数11:(0)k C y x x=>的图象上,其中10k >.AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,且 AC =1.(1) 若1k =2,则AO 的长为 ,△BOD 的面积为 ;(2) 如图1,若点B 的横坐标为1k ,且11k >,当AO =AB 时,求1k 的值;(3) 如图2,OC =4,BE ⊥y 轴于点E ,函数22:(0)kC y x x=>的图象分别与线段BE ,BD 交于点M ,N ,其中210k k <<.将△OMN 的面积记为1S ,△BMN 的面积记为2S ,若12S S S =-,求S 与2k 的函数关系式以及Sy x O 23.已知:抛物线2(2)2y ax a x =+--过点(3,4)A . (1)求抛物线的解析式;(2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤.①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为 .23.如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C , 反比例函数ky x=(x >0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式.(2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G ,联结DF 、DG 、FC 、GC . ①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF =GC 时,求直线DG 的函数解析式.解:23. (1)证明:∵△=()()2441m m ---.……………………………………………… 1分 =2412m m -+=()228m -+…………………………………………………………2分 ∴△>0. …………………………………………………………………3分∴无论m 取何值,方程总有两个不相等的实数根.(2)把x =-3代入原方程,解得m =1. …………………………………………………4分 ∴23y x x =+.即23924y x ⎛⎫=+- ⎪⎝⎭.依题意,可知新的抛物线的解析式为239'24y x ⎛⎫=-- ⎪⎝⎭. ………………………5分即2'3y x x =+∵抛物线'y 与直线y x b =+只有一个公共点,∴23x x x b -=+..…………………………………………………………………6分 即240x x b --=. ∵△=0.∴()()2440b --⨯-=.解得b = -4. ……………………………………………………………………7分23.解:(1)由21122y x x =-=0,得01=x ,21x =. ∴抛物线与x 轴的交点坐标为(0,0)、(1,0). ········································· 2分 (2)当a =1时,得A (1,0)、B (2,1)、C (3,3), ······································· 3分分别过点B 、C 作x 轴的垂线,垂足分别为E 、F ,则有ABC S ∆=AFC S △ - AEB S △ - BEFC S 梯形=12(个单位面积)…………………………………4分 (3)如:)(3123y y y -=.∵22111112222y a a a a =⨯-⨯=-,()()2221122222y a a a a =⨯-⨯=-, ()()2231193332222y a a a a =⨯-⨯=-,又∵3(12y y -)=()()2211113222222a a a a ⎡⎤⎛⎫⎛⎫⨯-⨯-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=29322a a -. ·································································· 5分∴)(3123y y y -=. ···················································································· 6分23、(1)证明:22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,-----------1分∴此方程总有两个实数根.------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分 抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分23.解:(1)22(2)4(1)m m m ∆=-+-=. ∵方程有两个不相等的实数根,∴0≠m .……………………………………………………………………………1分 ∵01≠-m ,∴m 的取值范围是01m m ≠≠且.………………………………………………………2分 (2)证明:令0=y 得,01)2()1(2=--+-x m x m .∴)1(2)2()1(2)2(2-±--=-±--=m mm m m m x . ∴1)1(221-=--+-=m m m x ,11)1(222-=-++-=m m m m x . …………………………………4分∴抛物线与x 轴的交点坐标为(0,1-),(0,11-m ).∴无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过定点(1,0-).……5分 (3)∵1-=x 是整数 ∴只需11-m 是整数. ∵m 是整数,且01m m ≠≠且,∴2=m .…………………………………………………………………………6分 当2=m 时,抛物线为12-=x y .把它的图象向右平移3个单位长度,得到的抛物线解析式为图1l861)3(22+-=--=x x x y .…………………………………………………7分23.解:(1) AO△BOD 的面积为 1; ………………………… 2分(2) ∵A ,B 两点在函数11:(0)k C y x x=>的图象上,∴点A ,B 的坐标分别为1(1,)k ,1(,1)k . ………………… 3分 ∵AO =AB ,由勾股定理得2211+=AO k ,22211(1)(1)=--+AB k k , ∴2221111(1)(1)+=--+k k k .解得12k =12k = …………………………………………… 4分 ∵11k >,∴12k = ………………… 5分 (3) ∵OC =4,∴点A 的坐标为(1,4).∴14k =. 设点B 的坐标为4(,)m m ,∵BE ⊥y 轴于点E ,BD ⊥x 轴于点D , ∴四边形ODBE 为矩形,且=4ODBE S 四边形,点M 的纵坐标为4m,点N 的横坐标为m .∵点M ,N 在函数22:(0)k C y x x=>的图象上,∴点M 的坐标为24(,)4mk m,点N 的坐标为2(,)km m .∴2=2=OME OND k S S ∆∆. ∴222114=()(224)mk k S BM BN m mm⋅=--22(4)8k -=.∴12=S S S -222=(4)k S S ---22=42k S --.∴222222(4)14284k S k k k -=--⨯=-+, ………………………… 6分其中204k <<.∵2222211(2)144S k k k =-+=--+,而104-<,∴当22k =时,S 的最大值为1. …………………………………… 7分23解:(1)∵抛物线2(2)2y ax a x =+--过点(3,4)A ,∴93(2)24a a +--=. 解得 1a =.∴抛物线的解析式为22y x x =--. --------------2分(2)①当0y =时,220x x --=. ∴1x =-或2.∴抛物线与x 轴交于点(1,0)A -,(2,0)B .-----3分 当2y =-时,222x x --=-. ∴0x =或1.∴抛物线与直线2y =-交于点(0,2)C -, (1,2)D -.∴C ,D 关于直线1y =-的对称点'(0,0)C ,'(1,0)D .----4分 ∴根据图象可得1-≤m ≤0或1≤m ≤2.----------------5分 ②k 的取值范围为k ≥4或k ≤4-.----------------7分 23.解: (1)抛物线2y x ax b =-++过点A (-1,0),B (3,0)10930a b a a b --+=⎧∴⎨-++=⎩解得:23a b =⎧⎨=⎩∴抛物线的解析式为223y x x =-++顶点(14)D ,函数(0ky x x=>,m 是常数)图象经过(14)D ,, 4k ∴=.…………………………………………………………………… 2分 (2)①设G 点的坐标为4m ⎛⎫ ⎪⎝⎭m ,,据题意,可得E 点的坐标为41m ⎛⎫ ⎪⎝⎭,,F 点的坐标为40m ⎛⎫ ⎪⎝⎭,,1m >,FG m ∴=,44DE m=-. 由△DFG 的面积为4,即14442m m ⎛⎫-= ⎪⎝⎭,得3m =,∴点G 的坐标为433⎛⎫⎪⎝⎭,.………………………………………………… 3分②直线FC 和DG 平行.理由如下:方法1:利用相似三角形的性质.据题意,点C 的坐标为(10),,1FE =,1m >,易得4EC m =,1EG m =-,44DE m=- 111G E m m EF -∴==-,4414DE m m CEm-==-. G E D EE F C E∴=. D E G F E C∠=∠ ∴△D E G ∽△FEC E D G E C F ∴∠=∠ //FC DG ∴ ………………………………………………… 5分方法2:利用正切值.据题意,点C 的坐标为(10),,1FE =,1m >,易得4EC m=,1EG m =-, 1444G E m m DE m -∴==-,144FE mCE m==. tan tan EDG ECF ∴∠=∠E D G E CF ∴∠=∠ //FC DG ∴.③解:方法1: F C D G ∥,∴当FD CG =时,有两种情况: 当FD CG ∥时,四边形DFCG 是平行四边形, 由上题得,GE DEEF CE=1m =-,11m ∴-=,得2m =. ∴点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+.…………………………………… 6分 当FD 与CG 所在直线不平行时,四边形ADCB 是等腰梯形, 则DC FG =,4m ∴=,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.…………………………………… 7分综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+. 方法2.在Rt ⊿DFE 中,1FE =,44DE m=-2222241(4)FD FE DE m∴=+=+-在Rt ⊿GEC 中,4EC m =,1EG m =-, 222224()(1)CG EC EG m m∴=+=+-FD CG = 22FD CG ∴=2241(4)m ∴+-224()(1)m m=+-解方程得:2m =或4m =当2m =时,点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩, ∴直线AB 的函数解析式是26y x =-+. 当4m =时,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.注:不同解法酌情给分。
2013年北京石景山数学中考二模答案
石景山区2013初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)二、填空题(本题共4道小题,每小题4分,共16分)9.()()a a -+225;10.825≤k 且0≠k ; 11.53; 12.2123;)(71223-n .三、解答题(本题共6道小题,每小题5分,共30分)13.解:原式=231124-+- ……………………………………………………4分 =2 ………………………………………………………5分 14. 解:()4122-=-+x x x ………………………………………………………2分∴23-=x ……………………………………………………………4分 经检验: 23-=x 是原方程的增根………………………………………………5分∴23-=x 是原方程的根.15.证明:略(找出全等三角形1分;证明4分)16.解:原式xx 1--= …………………………………………………………2分 由043=-+x x 2,得1,421=-=x x ……………………………………… 3分 由题意,1≠x ……………………………………………………… 4分∴原式45414-=----=. ………………………………………………………5分 17. 解:(1)设B 点的坐标为00(,)x y ,则有00ky x =,即: 00y x k =…………1分∵△BOC 的面积为32,∴2321210000=-=y x y x , …………………2分∴00y x k ==-3. …………………………………………………………3分(2)∵3k =-,∴3y x=-,当1x =时,3y =-,∴A 点坐标为(1,3)-,……………………………………………………………4分 把A 点坐标代入y x b =+得4b =-,这个一次函数的解析式为4y x =-. …5分18.解:(1)1000米; ……..……..………..……..…..……………………..1分(2)甲 ………………..……..……..……..……..…………..2分 (3)设l 乙:x k y 11=,过(4,1000),故x y 2501= ……………………..3分在0<x ≤3的时段内,设l 甲:x k y 22=,过(3,600),故x y 2002=……..4分 当3=x 时,150,600,7502121=-==y y y y .答:当3=x 时,两人相距最远,此时两人距离是150米 ………..……..……..5分 四、解答题(本题共20分,每小题5分) 19. 解:由∠EFB =120°,AF 平分∠EFB ,∴∠EFO =60°,∠EOF =90°………………………………………………………..1分 ∴FE =FB ………………………………………………………..2分 Rt △EOF 中, ∴OE =EFcos30︒=3分 Rt △EOA 中,∴AE 2.776cos 3cos ≈︒=∠=AEO OE ……………………………………..4分在△AEF 和△ABF 中⎪⎩⎪⎨⎧=∠=∠=AF AF BFA EFA BF EF ∴△AEF ≌△ABF∴AB =AE 2.7= ……………………………………………..5分20.解: (1)连结OD , ∵AB 为直径,∴∠ADB =90°,又∠ABC =90°, ∴BC 是⊙O 切线 ………………………………………………..1分 ∵DE 是⊙O 切线 ∴BE=DE , ∴∠EBD=∠EDB , ∵∠ADB=90°,∴∠EBD+∠C=90°,∠EDB+∠CDE=90°,∴∠C=∠EDC , ∴DE=CE , ∴BE=CE. ………………………………………………..2分 (2) ∵∠ABC =90°,∠ADB=90°, ∴∠C=∠ABD=∠EDC ,35sin =C Rt △ABD 中,DB=525tan ⨯=∠ABD AD , …………………………………..3分Rt △BDC 中,BC=653525sin =⨯⨯=C BD ,………………………………..4分 又点E 为BC 中点,∴12DE BC ==3 .……………………………………..5分21.解:(1) 60 , 0.35 ,补充后如右图:………………………… 3分 (2) C ; ……………4分(3)0.8×2400=1920(名) 答:该区九年级考生中体育成绩 为优秀的学生人数有1920名.…………………………5分22.解:(1)由题意,△BMN 沿MN 折叠得到△EMN ∴△BMN ≌△EMN∴EM =BM =27. 过点M 作MH ⊥AD 交AD 于点H ,则四边形ABMH 为矩形 MH =AB =3, AH =BM =27. Rt △EHM 中, EH =2133)27(2222=-=-HM EM ∴AE 2137-=. ……………………………… 3分 (2) 1≤AE ≤3. ……………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1) 抛物线2y x ax b =-++过点A (-1,0),B (3,0)10930a b a a b --+=⎧∴⎨-++=⎩解得:23a b =⎧⎨=⎩∴抛物线的解析式为223y x x =-++顶点(14)D ,函数(0ky x x=>,m 是常数)图象经过(14)D ,, 4k ∴=.…………………………………………………………………… 2分分数段(2)①设G 点的坐标为4m ⎛⎫ ⎪⎝⎭m ,,据题意,可得E 点的坐标为41m ⎛⎫ ⎪⎝⎭,,F 点的坐标为40m ⎛⎫ ⎪⎝⎭,,1m > ,FG m ∴=,44DE m=-. 由△DFG 的面积为4,即14442m m ⎛⎫-= ⎪⎝⎭,得3m =,∴点G 的坐标为433⎛⎫⎪⎝⎭,.………………………………………………… 3分②直线FC 和DG 平行.理由如下:方法1:利用相似三角形的性质. 据题意,点C 的坐标为(10),,1FE =,1m > ,易得4EC m =,1EG m =-,44DE m=- 111G E m m EF -∴==-,4414DE m m CEm-==-. GE DEEF CE∴=. DEG FEC ∠=∠∴△D E G ∽△FECEDG ECF ∴∠=∠//FC DG ∴ ………………………………………………… 5分方法2:利用正切值.据题意,点C 的坐标为(10),,1FE =, 1m > ,易得4EC m=,1EG m =-, 1444GE m m DE m -∴==-,144FE mCE m==. tan tan EDG ECF ∴∠=∠EDG ECF ∴∠=∠ //FC DG ∴.③解:方法1:FC DG ∥,∴当FD CG =时,有两种情况: 当FD CG ∥时,四边形DFCG 是平行四边形, 由上题得,GE DEEF CE=1m =-,11m ∴-=,得2m =. ∴点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+.…………………………………… 6分 当FD 与CG 所在直线不平行时,四边形ADCB 是等腰梯形, 则DC FG =,4m ∴=,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.…………………………………… 7分 综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.方法2.在Rt ⊿DFE 中,1FE =,44DE m=-2222241(4)FD FE DE m∴=+=+-在Rt ⊿GEC 中,4EC m =,1EG m =-, 222224()(1)CG EC EG m m∴=+=+-FD CG = 22FD CG ∴=2241(4)m ∴+-224()(1)m m=+-解方程得:2m =或4m =当2m =时,点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+. 当4m =时,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.注:不同解法酌情给分B24. 解:(1)11DCC D S 四边形=1(15)22⨯+⨯=6;…………………………1分 (2)11CD DD =43; ……………………2分 (3)1CC ⊥1DD . ……………………3分 证明:连接11,,,CO DO C O DO ,延长 1CC 交1DD 于M 点.如图所示:……4分由正方形的性质可知: 11,CO DO C O DO == 1145COD C OD ∠=∠=∴1111C O D C O D C O DC OD ∠-∠=∠-∠, 即:11COC DOD ∠=∠∴△1COC ≌△1DOD ………………………………………5分 11ODD OCC ∴∠=∠1190C CD OCC CDO ∠+∠+∠= 1190C CD ODD CDO ∴∠+∠+∠=90CMD ∴∠=即:1CC ⊥1DD . ………………………………………7分25.解:(1)抛物线1C 的解析式为2(0)(4)4y x x x x =--+=--;图中阴影部分的面积与△POQ 的面积相同,18282POQ S ∆=⨯⨯=. ∴阴影部分的面积为8. …………………………………… 2分 (2)由题意可知,抛物线1C 只存在两个内接直角三角形. 当点C 在抛物线1C 上运动时线段EF 的长度不会发生变化. 证明: ∵MN 为⊙D 的直径,EF MN ⊥∴BE BF =,90OBN MBF MBA ∠=∠=∠=∵MAB CNM ∠=∠, ∴△ABM ∽△N B O∴MB ABBO NB=,5=⋅=⋅BO AB NB MB 连接,FM FN ,90MFN ∠=,在△M BF 和△FBN 中, BMF BFN ∠=∠,90MBF FBN ∠=∠= ∴△M B F ∽△FBN …………………………………… 6分 ∴BFBMBN BF = ∴2BF =5=⋅NB MB ,BF =∴EF = …………………………………… 8分。
2012年--二模数学试卷(定稿A3版)+答案-石景山07
2 x …………..3 分 15
∴ FCA AFC (2) 过C 作 CG AB 于G ∵ AF ⊥ AB ,∴ AF ∥ CG ∵ DE
设 l2: y 2 k 2 x b ,过(12,1.6) , (0,4) , 故y
1 x 4 ………..4 分 5 2 1 千米,晓阳的速度是每分钟 千米...5 分 15 5
2
20 2 n 1 n ; 12.29; 2 ; 2 2n 3 . 3
AC CD ACB CDE CB DE
∴△ABC≌△CED ∴∠ABC=∠E ………………3 分 ………………4 分 ………………5 分
三、解答题(本题共 30 分,每小题 5 分) 13.解:原式 1 3 - 1 - 2 3 1 ………………4 分 ………………5 分 ………………1 分 ………………2 分 ………………3 分 ………………4 分
3 若从这个盒子中随机摸出一个是黄球的概率是 ,则盒子中黄球的个数是 5
A.2 B.4 C.6 D.8 5.如图,在△ ABC 中, DE ∥ BC , AD 2 , AE 3 , BD 4 ,则 AC 的长为 A. 9 B. 8 C. 7 D. 6
第1行 第2行 第3行 … 三、解答题(本题共 30 分,每小题 5 分) 13.计算: 1
25.已知二次函数 y x 2 (2m 2) x (m 2 4m 3) 中,m 为不小于 0 的整数,它的图像与 x 轴交 于点 A 和点 B,点 A 在原点左边,点 B 在原点右边. (1)求这个二次函数的解析式; (2)点 C 是抛物线与 y 轴的交点,已知 AD=AC(D 在线段 AB 上) ,有一动点 P 从点 A 出发,沿线 段 AB 以每秒 1 个单位长度的速度移动,同时,另一动点 Q 从点 C 出发,以某一速度沿线段
北京市石景山2013年中考二模数学试题与答案
石景山区2013年初三第二次统一练习数 学 试 卷第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在相应的括号内.1.3的相反数是( )A .-3B .3C .31-D .312.某市政府召开的全市经济形势分析会公布,全市去年地区生产总值(GDP )实现1091亿元,数字1091用科学记数法表示为( )A .210091.1⨯ B .310091.1⨯ C .31091.10⨯ D .410091.1⨯ 3.如图,△ABC 中,DE 是AC 的垂直平分线,AE =4cm , △ABD 的周长为14cm ,则△ABC 的周长为( ) A .18 cm B . 22 cm C .24 cm D. 26 cm4.一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数、平均数是( )5.甲盒装有3个红球和4个黑球,乙盒装有3个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别.搅匀两盒中的球,从盒中分别任意摸出一个球.正确说法是( )A .从甲盒摸到黑球的概率较大B .从乙盒摸到黑球的概率较大C .从甲、乙两盒摸到黑球的概率相等D .无法比较从甲、乙两盒摸到黑球的概率6.如图,AB 是⊙O 的直径,C 是⊙O 上的一点,若 AC =8,AB =10,OD ⊥BC 于点D ,则BD 的长为( )A .6B .5C .3D .1.5 7.若二次函数72++=bx x y 配方后为k x y +-=2)1(,则b 、k 的值分别为( )A .2、6B .2、8C .-2、6D .-2、8D C B O A 第6题图 第 3题图EDCBA8. 如图是由五个相同的小正方体组成的几何体,则下列说法正确的是( )A .左视图面积最大B .俯视图面积最小C .左视图面积和主视图面积相等D .俯视图面积和主视图面积相等第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分)9.分解因式:2a 520- = .10.抛物线252+-=x kx y 的图象和x 轴有交点,则k 的取值范围是 . 11.已知:平面直角坐标系xoy 中,圆心在x 轴上的⊙M 与y 轴交于点D (0,4)、A ,若点M (-3,0),则HAO ∠sin 的值为 .12.如图,45AOB ∠=,过OA 上到点O 的距离分别为1,4,7,10,13,16,…的点作OA 的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为,,,321s s s …,观察图中的规律,第4个黑色梯形的面积=4S ,第n (n 为正整数)个黑色梯形的面积=n S . 三、解答题(本题共30分,每小题5分) 13.计算:23)23(45tan 320--+︒-. 解:14.解分式方程:14122=---x x x . 解:第 8题图 第 12题图 O15.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE交DG 于F .请在图中找出一对全等三角形,并加以证明. 证明:16. 先化简,再求值:124113+--÷⎪⎭⎫ ⎝⎛---x x x x x x 23,其中x 满足043=-+x x 2. 解:17.已知:如图,一次函数y x b =+的图象与反比例函数(0)ky k x=<的图象交于A 、B 两点,A 点坐标为(1,)m ,连接OB ,过点B 作BC x ⊥轴,垂足为点C ,且△BOC 的面积为32.(1)求k 的值;(2)求这个一次函数的解析式. 解:DCG18.甲、乙两位同学进行长跑训练,两人距出发点的路程y(米)与跑步时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练;(2)在3(3)当x 解:19∠EFB=解:))O学业考试体育成绩(分数段)统计表20.如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,过点D 作⊙O 的切线交BC 于点E . (1)求证:点E 为BC 中点; (2)若tan EDC =25,AD =5,求DE 的长. 解:21.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :40分;B :39-35分;C :34-30分;D :29-20分;E :19-0分)统计如下:分数段 人数(人) 频率 A 48 0.2 B a 0.25 C 84 b D 36 0.15 E120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为_____,b 的值为______,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?______(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?解:22.如图,在矩形ABCD 中,AB =3,BC =4,点M 、N 、分别在BC 、AB 上,将矩形ABCD 沿MN 折叠,设点B 的对应点是点E .(1)若点E 在AD 边上,BM =27,求AE 的长;(2)若点E 在对角线AC 上,请直接写出AE 的取值范围: .解:ENMDCB Ay x O五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C , 反比例函数ky x=(x >0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式. (2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G ,联结DF 、DG 、FC 、GC . ①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF =GC 时,求直线DG 的函数解析式.解:24.如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __;(2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.解:25.(1)如图1,把抛物线2y x =-平移后得到抛物线1C ,抛物线1C 经过点(4,0)A -和原点(0,0)O ,它BBB图1 图2 图3的顶点为P ,它的对称轴与抛物线2y x =-交于点Q ,则抛物线1C 的解析式为____________;图中阴影部分的面积为_____.(2)若点C 为抛物线1C 上的动点,我们把90ACO ∠=时的△ACO 称为抛物线1C 的内接直角三角形.过点(1,0)B 做x 轴的垂线l ,抛物线1C 的内接直角三角形的两条直角边所在直线AC 、CO 与直线l 分别交于M 、N 两点,以MN 为直径的⊙D 与x 轴交于E 、F 两点,如图2.请问:当点C 在抛物线1C 上运动时,线段EF 的长度是否会发生变化?请写出并证明你的判断.解:图1图2石景山区2013初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题共8道小题,每小题4分,共32分)二、填空题(本题共4道小题,每小题4分,共16分) 9.()()a a -+225; 10.825≤k 且0≠k ; 11.53; 12.2123;)(71223-n .三、解答题(本题共6道小题,每小题5分,共30分)13.解:原式=231124-+- ……………………………………………………4分 =2 ………………………………………………………5分 14. 解:()4122-=-+x x x ………………………………………………………2分∴23-=x ……………………………………………………………4分 经检验: 23-=x 是原方程的增根………………………………………………5分∴23-=x 是原方程的根.15.证明:略(找出全等三角形1分;证明4分)16.解:原式xx 1--= …………………………………………………………2分 由043=-+x x 2,得1,421=-=x x ……………………………………… 3分 由题意,1≠x ……………………………………………………… 4分∴原式45414-=----=. ………………………………………………………5分 17. 解:(1)设B 点的坐标为00(,)x y ,则有00ky x =,即: 00y x k =…………1分∵△BOC 的面积为32,∴2321210000=-=y x y x , …………………2分∴00y x k ==-3. …………………………………………………………3分(2)∵3k =-,∴3y x=-,当1x =时,3y =-,∴A 点坐标为(1,3)-,……………………………………………………………4分 把A 点坐标代入y x b =+得4b =-,这个一次函数的解析式为4y x =-. …5分18.解:(1)1000米; ……..……..………..……..…..……………………..1分(2)甲 ………………..……..……..……..……..…………..2分 (3)设l 乙:x k y 11=,过(4,1000),故x y 2501= ……………………..3分在0<x ≤3的时段内,设l 甲:x k y 22=,过(3,600),故x y 2002=……..4分 当3=x 时,150,600,7502121=-==y y y y .答:当3=x 时,两人相距最远,此时两人距离是150米 ………..……..……..5分 四、解答题(本题共20分,每小题5分)19. 解:由∠EFB =120°,AF 平分∠EFB ,∴∠EFO =60°,∠EOF =90°………………………………………………………..1分 ∴FE =FB ………………………………………………………..2分 Rt △EOF 中, ∴OE =EFcos30︒=分 Rt △EOA 中,∴AE 2.776cos 3cos ≈︒=∠=AEO OE ……………………………………..4分在△AEF 和△ABF 中⎪⎩⎪⎨⎧=∠=∠=AF AF BFA EFA BF EF ∴△AEF ≌△ABF∴AB =AE 2.7= ……………………………………………..5分20.解: (1)连结OD , ∵AB 为直径,∴∠ADB =90°,又∠ABC =90°, ∴BC 是⊙O 切线 ………………………………………………..1分 ∵DE 是⊙O 切线 ∴BE=DE , ∴∠EBD=∠EDB , ∵∠ADB=90°,∴∠EBD+∠C=90°,∠EDB+∠CDE=90°,∴∠C=∠EDC , ∴DE=CE , ∴BE=CE. ………………………………………………..2分 (2) ∵∠ABC =90°,∠ADB=90°, ∴∠C=∠ABD=∠EDC ,35sin =C Rt △ABD 中,DB=525tan ⨯=∠ABD AD , …………………………………..3分Rt △BDC 中,BC=653525sin =⨯⨯=C BD ,………………………………..4分 又点E 为BC 中点,∴12DE BC ==3 .……………………………………..5分21.解:(1) 60 , 0.35 ,补充后如右图:………………………… 3分 (2) C ; ……………4分(3)0.8×2400=1920(名) 答:该区九年级考生中体育成绩 为优秀的学生人数有1920名.…………………………5分22.解:(1)由题意,△BMN 沿MN 折叠得到△EMN ∴△BMN ≌△EMN分数段∴EM =BM =27. 过点M 作MH ⊥AD 交AD 于点H ,则四边形ABMH 为矩形 MH =AB =3, AH =BM =27. Rt △EHM 中, EH =2133)27(2222=-=-HM EM ∴AE 2137-=. ……………………………… 3分 (2) 1≤AE ≤3. ……………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1) 抛物线2y x ax b =-++过点A (-1,0),B (3,0)10930a b a a b --+=⎧∴⎨-++=⎩解得:23a b =⎧⎨=⎩∴抛物线的解析式为223y x x =-++顶点(14)D ,函数(0ky x x=>,m 是常数)图象经过(14)D ,, 4k ∴=.…………………………………………………………………… 2分 (2)①设G 点的坐标为4m ⎛⎫ ⎪⎝⎭m ,,据题意,可得E 点的坐标为41m ⎛⎫ ⎪⎝⎭,,F 点的坐标为40m ⎛⎫ ⎪⎝⎭,,1m > ,FG m ∴=,44DE m=-. 由△DFG 的面积为4,即14442m m ⎛⎫-= ⎪⎝⎭,得3m =,∴点G 的坐标为433⎛⎫⎪⎝⎭,.………………………………………………… 3分②直线FC 和DG 平行.理由如下:方法1:利用相似三角形的性质.据题意,点C 的坐标为(10),,1FE =, 1m > ,易得4EC m =,1EG m =-,44DE m=- 111G E m m EF -∴==-,4414DE m m CEm-==-.G E D EE F C E∴=. D E G F E C∠=∠ ∴△D E G ∽△FEC E D G E C F ∴∠=∠ //FC DG ∴ ………………………………………………… 5分方法2:利用正切值. 据题意,点C 的坐标为(10),,1FE =,1m > ,易得4EC m=,1EG m =-, 1444G E m m DE m -∴==-,144FE mCE m==. tan tan EDG ECF ∴∠=∠E D G E CF ∴∠=∠ //FC DG ∴.③解:方法1: F C D G ∥,∴当FD CG =时,有两种情况: 当FD CG ∥时,四边形DFCG 是平行四边形, 由上题得,GE DEEF CE=1m =-,11m ∴-=,得2m =. ∴点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入,得422k b k b=+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+.…………………………………… 6分 当FD 与CG 所在直线不平行时,四边形ADCB 是等腰梯形, 则DC FG =,4m ∴=,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.…………………………………… 7分 综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.方法2.在Rt ⊿DFE 中,1FE =,44DE m=-2222241(4)FD FE DE m∴=+=+-在Rt ⊿GEC 中,4EC m =,1EG m =-, 222224()(1)CG EC EG m m∴=+=+-FD CG = 22FD CG ∴=2241(4)m ∴+-224()(1)m m=+-解方程得:2m =或4m =当2m =时,点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入,B得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+. 当4m =时,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩, ∴直线AB 的函数解析式是5y x =-+.综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.注:不同解法酌情给分24. 解:(1)11DCC D S 四边形=1(15)22⨯+⨯=6;…………………………1分 (2)11CD DD =43; ……………………2分 (3)1CC ⊥1DD . ……………………3分 证明:连接11,,,CO DO C O DO ,延长 1CC 交1DD 于M 点.如图所示:……4分由正方形的性质可知: 11,CO DO C O DO == 1145COD C OD ∠=∠=∴1111C O D C O D C O DC OD ∠-∠=∠-∠, 即:11COC DOD ∠=∠∴△1COC ≌△1DOD ………………………………………5分 11ODD OCC ∴∠=∠1190C CD OCC CDO ∠+∠+∠= 1190C CD ODD CDO ∴∠+∠+∠=90CMD ∴∠=即:1CC ⊥1DD . ………………………………………7分25.解:(1)抛物线1C 的解析式为2(0)(4)4y x x x x =--+=--;图中阴影部分的面积与△POQ 的面积相同,18282POQ S ∆=⨯⨯=. ∴阴影部分的面积为8. …………………………………… 2分 (2)由题意可知,抛物线1C 只存在两个内接直角三角形. 当点C 在抛物线1C 上运动时线段EF 的长度不会发生变化. 证明: ∵MN 为⊙D 的直径,EF MN ⊥∴BE BF =,90OBN MBF MBA ∠=∠=∠=∵MAB CNM ∠=∠, ∴△ABM ∽△N B O∴MB ABBO NB=,5=⋅=⋅BO AB NB MB 连接,FM FN ,90MFN ∠=,在△M BF 和△FBN 中,BMF BFN ∠=∠,90MBF FBN ∠=∠= ∴△M B F ∽△FBN …………………………………… 6分 ∴BF BMBN BF =∴2BF =5=⋅NB MB ,BF =∴EF = …………………………………… 8分。
北京市各区2013中考二模数学试题分类汇编(选择、填空题)
2013年初三二模分类试题—选择、填空题1.西城一、选择题(本题共32分,每小题4分) 1.3-的倒数是A .31B .3C .31-D .3-2.下列运算中正确的是A .2a a a =+B .22a a a =⋅C .222()=ab a bD .532)(a a =3.若一个多边形的内角和是720°,则这个多边形的边数是A .5B .6C .7D .8420-=y ,则xy 的值为A .8B .6C .5D .9 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D 6.对于一组统计数据:3,3,6,3,5,下列说法中错误..的是 A .中位数是6 B .众数是3 C .平均数是4 D .方差是1.6 7.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30 °后得到正方形EFCG , EF 交AD 于点H ,则四边形DHFC 的面积为A .3B .33C . 9D .368.如图,点A ,B ,C 是正方体三条相邻的棱的中点,沿着A ,B ,C三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是A B C D二、填空题(本题共16分,每小题4分) 9.函数32=+y x 中,自变量x 的取值范围是 . 10.若把代数式1782+-x x 化为k h x +-2)(的形式,其中h ,k 为常数,则+h k = .11.如图,在△ABC 中,∠ACB=52°,点D ,E 分别是AB , AC 的中点.若点F 在线段DE 上,且∠AFC=90°, 则∠FAE 的度数为 °.12.如图,在平面直角坐标系xOy 中,点A 在第一象限,点B 在x 轴的正半轴上,∠OAB =90°.⊙P 1是△OAB 的内切圆,且P 1的坐标为(3,1).(1) OA 的长为 ,OB 的长为 ;(2) 点C 在OA 的延长线上,CD ∥AB 交x 轴于点D .将⊙P 1沿水平方向向右平移2个单位得到⊙P 2,将⊙P 2沿水平方向向右平移2个单位得到⊙P 3,按照同样的方法继续操作,依次得到⊙P 4,……⊙P n .若⊙P 1,⊙P 2,……⊙P n 均在△OCD 的内部,且⊙P n 恰好与CD 相切,则此时OD 的长为 .(用含n 的式子表示)2海淀 一、选择题(本题共32分,每小题4分) 1 . 6-的绝对值是A . 6-B .16 C . 16- D . 6 2. 2012年我国全年完成造林面积6 010 000公顷.将6 010 000用科学记数法表示为A . 76.0110⨯ B . 66.0110⨯ C . 70.60110⨯ D . 560.110⨯3.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若4AD =,2DB =,则DEBC的值为 A . 12 B . 23 C . 34D . 24. 下列计算正确的是A . 632a a a =⋅B . 842a a a ÷=C . 623)(a a = D . a a a 632=+5.下列图形可以由一个图形经过平移变换得到的是- 3 -A .B .C .D .6. 如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC =,则AB 的长为A .4B .6C .8D .107. 甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况如下表所示:设两组同学得分的平均数依次为x 甲,x 乙,得分的方差依次为S 甲,S 乙,则下列关系中完全正确的是A .x x =乙甲,22S S >乙甲B . x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲 D . x x <乙甲,22S S <乙甲8.如图1,在矩形ABCD 中,1,AB BC ==.将射线AC 绕着点A 顺时针旋转α(0α︒<≤180)︒得到射线AE ,点M 与点D 关于直线AE 对称.若15x α=︒,图中某点到点M 的距离为y ,表示y 与x 的函数关系的图象如图2所示,则这个点为图1中的A .点AB . 点BC . 点CD . 点D图1 图2二、填空题(本题共16分,每小题4分) 9. 若分式241x x --的值为0,则x 的值等于____________. 10.如图,在△OAB 中,=90O A B∠︒,则OB 的长为 .11. 如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A ,则BC 的长为_____________.12.已知:n x ,'n x 是关于x 的方程244=0n n n a x a x a n -+-1()n n a a +>的两个实数根,'n n x x <,其中n 为正整数,且1a =1.(1)11'x x -的值为 ;(2)当n 分别取1,2,⋅⋅⋅,2013时,相对应的有2013个方程,将这些方程的所有实数根按照从小到大的顺序排列,相邻两数的差恒为(11'x x -)的值,则20132012'x x -= .3东城 一、选择题(本题共32分,每小题4分) 1. 3的相反数是 A . 3-B .3C .13 D . 13-2. 太阳的半径大约是696 000千米,用科学记数法可表示为A .696×103千米B .6.96×105千米C .6.96×106千米D .0.696×106千米 3.下列四个立体图形中,主视图为圆的是A B C D 4.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 A .3sin α B .3cos αC .αsin 3D .αcos 35. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一- 5 -面的点数为3的倍数的概率为 A .16B .14C .13D .126. 若一个多边形的内角和等于720︒,则这个多边形的边数是 A .5B .6C .7D .87. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是 A .1.65,1.70B .1.70,1.70C .1.70,1.65D .3,48. 如图,在平面直角坐标系中,已知⊙O 的半径为1,动直线AB 与x 轴交于点(,0)P x ,直线AB 与x 轴正方向夹角为45︒,若直线AB 与⊙O 有公共点,则x 的取值范围是 A .11x -≤≤ B .x << C .0x ≤≤ D .x ≤≤二、填空题(本题共16分,每小题4分) 9. 在函数23-=x y 中,自变量x 的取值范围是 .10. 分解因式:244mn mn m ++= .11. 如图,已知正方形ABCD 的对角线长为形ABCD 沿直线EF 折叠,则图中折成的4个阴影三 角形的周长之和为 .12. 如图,∠ACD 是△ABC 的外角,ABC∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与 1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分 线与1n A CD -∠的平分线交于点n A . 设A θ∠=, 则1A ∠= ;n A ∠= .4朝阳一、选择题(本题共32分,每小题4分) 1.的绝对值是 A .B .12C .12D .22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.千克以下.将0.用科学记数法表示为 A .57.510´ B .57.510-´ C .40.7510-´ D .67510-´3.如图,在△ABC 中,DE ∥BC ,如果AD =3,BD =5,那么DEBC的值是A .35 B . 925 C . 38 D . 584.从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为A .19 B .18 C .29 D .135.如图,圆锥的底面半径OA 为2,母线AB 为3,则这个圆锥的侧面积为 A .3π B . 6π C . 12π D . 18π6.如图,下列水平放置的几何体中,主视图不是..长方形的是7. 某校篮球课外活动小组21名同学的身高如下表则该篮球课外活动小组21名同学身高的众数和中位数分别是A .176,176B .176,177C .176,178D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上..一面的字是 A .我C .梦D .中- 7 -二、填空题(本题共16分,每小题4分) 9.在函数y =x 的取值范围是 .10.分解因式:32242x x x -+= .11.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,点F 在弧AC 上, 若∠BCD =32°,则∠AFD 的度数为 .12.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B ,且A (-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA;……则第3个矩形OA 3B 3C 3的面积是 ;第n 个矩形OA nn的式子表示,n 是正整数).5房山一、选择题(本题共32分,每小题4分) 1.-2的倒数为A .2B .-2C .21 D .21- 2.国家统计局22日公布的2012年统计公报显示,我国2012年全年研究与试验发展(R &D )经费支出10240亿元,比上年增长17.9%,占国内生产总值的1.97%.将10240用科学记数法表示应为A .4100240.1⨯ B .5100240.1⨯ C .410240.10⨯ D .41010240.0⨯ 3.在直角坐标系中,点M (1,2)关于y 轴对称的点的坐标为 A .(1,-2) B .(2,-1) C . (-1,2) D . (-1,-2) 4、如图:⊙A 、⊙B 、⊙C 两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为( ) A .π B .π21 C .π2 D .π41第4题图5.某场射击比赛中,第一小组10人第一轮射击成绩分别为8、9、9、10、7、8、8、9、8、8(单位:环),则这组数据的众数和中位数分别为 A .8、8B .8、9C .7、8D .9、86.若两圆的半径分别是2和3,圆心距为5,则这两圆的位置关系是 A .内切B .相交C .外切D .外离7.若一个多边形的内角和等于720,则这个多边形的边数是 A .5B .6C .7D .88.在正方体的表面上画有如图所示的粗线, 则其展开后正确的是二、填空题(本大题共16分,每小题4分):9.图象过点A (-1,2)的反比例函数的解析式为_____________.10.分解因式:22363a ab b -+= __________.11.如图,△ABC 中,D 为AB 上一点, 且∠ACD =∠B ,若AD =2,BD =52, 则AC = .12.观察下列等式:①23a a +=;②65a a +=;③127a a+=;④209a a +=…;则根据此规律第6个等式为 ,第n 个等式为 .DCBAD.C.B.A. B.A.- 9 -6门头沟一、选择题(本题共32分,每小题4分) 1.-6的倒数是A .6B .6-C .16 D .16- 2.PM 2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.米,把0.用科学记数法表示为A .62.510⨯B .50.2510-⨯C . 62.510-⨯D .72510-⨯ 3.右图所示的是一个几何体的三视图,则这个几何体是A .球B .圆锥C .圆柱D .三棱柱4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是 A .8B .6C .5D .35.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 A .15B .13C .58D .386.已知圆锥侧面展开图的扇形半径为2cm ,面积是24cm 3π,则扇形的弧长和圆心角的度数分别为A .4πcm 1203,︒B .2πcm 1203,︒C .4πcm 603,︒D .2πcm 603,︒7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、2S 乙,则下列判断中正确的是A .x x =乙甲,22S S =乙甲B .x x =乙甲, 22>S S 乙甲C .x x =乙甲,22<SS 乙甲D .<x x 乙甲, 22<S S 乙甲8.如图,在平行四边形ABCD 中,AC = 12,BD = 8,P 是AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的左视图 俯视图 PF E D CBA两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象 中,能表示y 与x 的函数关系的图象大致是A .B .C .D .二、填空题(本题共16分,每小题4分)9.在函数y x 的取值范围是 . 10.分解因式:216ax a -= . 11.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在 点C 处测得建筑物AB 的顶点A 的仰角为30︒,然后 向建筑物AB 前进20m 到达点D 处,又测得点 A 的 仰角为60︒,则建筑物AB 的高度是 m . 12.如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N . 若12CE CD =,则BN 的长是 ,AMBN的值 等于 ;若1CE CD n =(2n ≥,且n 为整数), 则AMBN的值等于 (用含n 的式子表示).7怀柔一、选择题(本题共32分,每小题4分) 1.3的倒数是( )A . -3 B. 3 C . 31-D . 312.土星的直径约为千米,用科学记数法表示为()A .1.193×105B .11.93×104C .1.193×106D . 11.93×106A BCDEFMNADB C30︒60︒- 11 -CPQBAMN3. 下面的图形中,既是轴对称图形又是中心对称图形的是(C )4.甲、乙、丙、丁四位选手各10次射击成绩的平均数均为9.5环,方差(单位:环2)依次分别为0.035、0.015、0.025、0.027. 则这四人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁5.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.以下说法正确的是( ).(A )从甲箱摸到黑球的概率较大 (B )从乙箱摸到黑球的概率较大(C )从甲、乙两箱摸到黑球的概率相等 (D )无法比较从甲、乙两箱摸到黑球的概率6.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( ) A .40°B .60°C .70°D .80°7.下列函数中,其图象与x 轴有两个交点的是( )A . 2013)23(522+-=x y B . 2013)23(522++=x yC . 2013)23(522---=x yD . 2013)23(522++-=x y8.如图,等边△ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与 点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作 AB 边的垂线,与△ABC 的其它边交于P 、Q 两点.设线段 MN 运动的时间为t 秒,四边形MNQP 的面积为S 厘米2. 则表示S 与t 的函数关系的图象大致是11题图A B OCD二、填空题(本题共16分,每小题4分) 9.若分式32+-a a 值为 0 ,则 a 的值为 . 10.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为120°,则圆锥的母线长为 cm .11. 如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB = °.12. 如12题图1,是由方向线一组同心、等距圆组成的点的位置记录图。
北京市各区2013年中考二模数学试题分类汇编(统计)及答案
初三数学分类试题—统计西城1.为了解“校本课程”开展情况,某校科研室随机选取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的课程),并将调查的结果绘制成如下两幅不完整的统计图:调查结果的条形统计图调查结果的扇形统计图请根据以上信息回答下列问题:(1) 参加问卷调查的学生共有人;(2) 在扇形统计图中,表示“C”的扇形的圆心角为度;(3) 统计发现,填写“喜欢手工制作”的学生中,男生人数∶女生人数=1∶6.如果从所有参加问卷调查的学生中随机选取一名学生,那么这名学生是填写“喜欢手工制作”的女生的概率为.海淀2.北京市近年来大力发展绿地建设,2010年人均公共绿地面积比2005年增加了4平方米,以下是根据北京市常住人口调查数据和绿地面积的有关数据制作的统计图表的一部分.北京市人均公共绿地面积调查规划统计图北京市常住人口统计表(1)补全条形统计图,并在图中标明相应数据;(2)按照2013年的预测,预计2020年北京市常住人口将达到多少万人?(3)按照2013年的北京市常住人口预测,要完成2020年的北京市人均公共绿地面积规划,从2005年到2020年,北京市的公共绿地总面积需增加多少万平方米?东城3.某中学九(1)班同学为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?朝阳4.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题: (1)频数分布表中的a = ,b = ; (2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?房山5. 某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整)1100 1300 1500 1700 1900 2100 2300 (元)教育支出频数分布表教育支出频数分布直方图请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 名学生; (2)请将上面两幅统计图补充完整;(3)在图1中,“踢毽”部分所对应的圆心角为 度;(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人? 门头沟6.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.其它类别表1 阅读课外书籍人数分组统计表阅读课外书籍人数分组统计图图1人数阅读课外书籍人数分组所占百分比统计图图26%26%30%20%AB C D E F请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E 组人数在这次调查中所占的百分比是多少?(2)求出表1中a 的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.怀柔7.第九届中国(北京)国际园林博览会2013年5月18日正式开幕,,前往参观的人非常多.为了解游客进园前等候检票的时间,赵普同学利用5月19日周末的时间,在当天9:00-10:00,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min 而小于20min ,其它类同. (1)这里采用的调查方式是 ; (2)求表中a 的值,并请补全频数分布直方图;(3)在调查人数里,等候时间少于40min 的有 人; (4)此次调查中,中位数所在的时间段是 min .解:(1)这里采用的调查方式是 ; (2)a = ,补全频数分布直方图在图上; (3) 人; (4) min .大兴8.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进阅读课外书籍人数分组统计图 等候时间(min )行分段(A :50分;B :49~45分;C :44~40分;D :39~30分;E :29~0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ,b 的值为 ,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该区今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?丰台9.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年1至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如下:分数段人数(人) 频率 A48 0.2 Ba 0.25 C84 0.35 D 36 bE 120.05学业考试体育成绩(分数段)统计表分数段学业考试体育成绩(分数段)统计表%请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天?石景山10.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :40分; B :39-35分; C :34-30分; D :29-20分;E :19-0分)统计如下:分数段 人数(人) 频率 A 48 0.2 B a 0.25 C 84 b D 36 0.15 E120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为_____,b 的值为______,并将统计图补充完整; (2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?______(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?解:分数段A C昌平11. 某中学艺术节期间,向全校学生征集书画作品. 美术社团从九年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.4个班征集到的作品数量分布统计图4个班征集到的作品数量统计图班级图1 图2(1)直接回答美术社团所调查的4个班征集到作品共件,并把图1补充完整;(2)根据美术社团所调查的四个班征集作品的数量情况,估计全年级共征集到作品的数量为;(3)在全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生. 现在要在其中抽两人去参加学校总结表彰座谈会,用树状图或列表法,求恰好抽中一男生一女生的概率.密云12.在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有____________套,B型玩具有____________套,C型玩具有____________套.(2)若每人组装A型玩具16套与组装C型玩具12套所花的时间相同,那么a的值为____________,每人每小时能组装C型玩具____________套.顺义13.甲、乙两学校都选派相同人数的学生参加综合素质测试,测试结束后,发现每名参赛学生的成绩都是70分、80分、90分、100分这四种成绩中的一种,并且甲、乙两学校的学生获得100分的人数也相等.根据甲学校学生成绩的条形统计图和乙学校学生成绩的扇形统计图,解答下列问题:(1)求甲学校学生获得100分的人数,并补全统计图;(2)分别求出甲、乙两学校学生这次综合素质测试所得分数的中位数和平均数,以此比较哪个学校的学生这次测试的成绩更好些.甲学校学生成绩的条形统计图乙学校学生成绩的扇形统计图213分数510090分分参考答案1.解:(1) 80;……………………………………………………………………1分(2) 54;……………………………………………………………………3分(3) 3 20.2. 解:(1)如下图:-------------------2分(2)205575%=2740÷(万人).答:预计2020年北京市常住人口将达到2740万人.----------3分(3)274018154011=32380⨯-⨯(万平方米).答:从2005年到2020年,北京市的公共绿地总面积需增加32380万平方米.3.解:(1)表格:从上往下依次是:12,0.08;图略;……3分(2)68%;……4分(3)120户. ……5分4.解:(1)a=3,b=0.075;……………………………………………………………2分(2)…………………………3分(3)500(0.050.15)100⨯+=.所以该小区家庭中,教育支出不足1500元的家庭大约有100户.…………5分5. 解:(1)200 ………1分(2)图略 ………3分 (3)54 ………4分 (4)744人 ………5分6.解:(1)这次共调查了学生50人,E 组人数在这次调查中所占的百分比是8%.(2)表1中a 的值是15, 补全图1.(3)54人.7. 解:(1)抽样调查或抽查(填“抽样”也可以)…………………………1分 (2)a =0.350频数分布直方图如下………………………3分(3)32 …………………………………………………………………4分 (4)20~30…………………………………………………………………5分 8.解:(1) 60 , 0.15 (图略) ………………………………3分 (2) C ………………………………………………………4分 (3)0.8×10440=8352(名) ……………………………………5分 答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.9. 解:(1)度微度级别20 %-------------3分如图,画图基本准确,每个统计图全部正确得1分.(2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天.10.解:(1)60 ,0.35 ,补充后如右图:………………………… 3分(3)0.8×2400=1920(名)答:该区九年级考生中体育成绩为优秀的学生人数有1920名.…………………………5分1119.解:(1) 12. …………………………………………………………… 1分如图所示. ………………………………………………… 2分4个班征集到的作品数量统计图Array班级(2)42. ………………………………………………………………3分(3)列表如下: ……………………………………………………4分共有20种机会均等的结果,其中一男生一女生占12种,∴ P (一男生一女生)=123=. ……………………5分12. (每空1分)(1)132,48,60;(2)4,6.13.解:(1)设甲学校学生获得100分的人数为x .由题意和甲、乙学校学生成绩的统计图得12356x x =+++ 得2x =所以甲学校学生获得100分的人数有2人.图(略) …………………………………2分 (2)由(1)可知: 甲学校的学生得分与 相应人数为:乙学校的学生得分与相应人数为:所以,甲学校学生分数的中位数为90(分).甲学校学生分数的平均数为 270380590210051585.823526x ⨯+⨯+⨯+⨯==≈+++甲(分)…………3分乙学校学生分数的中位数为80(分) 乙学校学生分数的平均数为 370480390210050025083.3343263x ⨯+⨯+⨯+⨯===≈+++乙(分) …4分由于甲学校学生分数的中位数和平均数都大于乙学校学生分数的中位数和平均 数,所以甲学校学生的数学竞赛成绩较好. ………。
数学_2013年北京市石景山区高考数学二模试卷(理科)(含答案)
2013年北京市石景山区高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U ={0, 1, 2, 3, 4},集合A ={0, 1, 2, 3},B ={2, 3, 4},那么C U (A ∩B)( ) A {0, 1} B {2, 3} C {0, 1, 4} D {0, 1, 2, 3, 4}2. 在复平面内,复数z 1的对应点是Z 1(1, 1),z 2的对应点是Z 2(1, −1),则z 1⋅z 2=( ) A 1 B 2 C −i D i3. 在极坐标系中,圆心为(1,π2),且过极点的圆的方程是( )A ρ=2sinθB ρ=−2sinθC ρ=2cosθD ρ=−2cosθ4. 如图所示的程序框图表示求算式“2×3×5×9×17”的值,则判断框内可以填入( )A k ≤10B k ≤16C k ≤22D k ≤34 5. 设a =212,b =313,c =log 32,则( )A b <a <cB a <b <cC c <b <aD c <a <b6. 对于直线m ,n 和平面α,β,使m ⊥α成立的一个充分条件是( )A m ⊥n ,n // αB m // β,β⊥αC m ⊥β,n ⊥β,n ⊥αD m ⊥n ,n ⊥β,β⊥α7. 已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( ) A √34 B √32 C √3 D 2√38. 已知函数f(x)=x −[x],其中[x]表示不超过实数x 的最大整数.若关于x 的方程f(x)=kx +k 有三个不同的实根,则实数k 的取值范围是( )A [−1,−12)∪(14,13] B (−1,−12]∪[14,13) C [−13,−14)∪(12,1] D (−13,−14]∪[12,1)二、填空题:本大题共6小题,每小题5分,共30分.9. 如图是甲,乙两组各6名同学身高(单位:cm )数据的茎叶图.记甲,乙两组数据的平均数依次为x ¯甲和x ¯乙,则 x ¯甲________x ¯乙. (填入:“>”,“=”,或“<”) 10. (2x −1)5的展开式中x 3项的系数是________.(用数字作答)11. 在△ABC 中,BC =2,AC =√7,B =π3,则AB =________;△ABC 的面积是________.12. 如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD 与半圆O 相切于点C ,AD ⊥PD .若PC =4,PB =2,则CD =________.13. 在等差数列{a n }中,a 2=5,a 1+a 4=12,则a n =________;设b n =1a n2−1(n ∈N ∗),则数列{b n }的前n 项和S n =________.14. 已知正数a ,b ,c 满足a +b =ab ,a +b +c =abc ,则c 的取值范围是________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15. 如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且α∈(π6,π2).将角α的终边按逆时针方向旋转π3,交单位圆于点B .记A(x 1, y 1),B(x 2, y 2).(Ⅰ)若x 1=13,求x 2;(Ⅱ)分别过A ,B 作x 轴的垂线,垂足依次为C ,D .记△AOC 的面积为S 1,△BOD 的面积为S 2.若S 1=2S 2,求角α的值.16. 某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励. (1)求1名顾客摸球3次停止摸奖的概率;(2)记X 为1名顾客摸奖获得的奖金数额,求随机变量X 的分布列和数学期望.17. 如图1,四棱锥P −ABCD 中,PD ⊥底面ABCD ,面ABCD 是直角梯形,M 为侧棱PD 上一点.该四棱锥的俯视图和侧(左)视图如图2所示. (1)证明:BC ⊥平面PBD ; (2)证明:AM // 平面PBC ;(3)线段CD 上是否存在点N ,使AM 与BN 所成角的余弦值为√34?若存在,找到所有符合要求的点N,并求CN的长;若不存在,说明理由.18. 如图所示,椭圆C:x2+y2m=1(0<m<1)的左顶点为A,M 是椭圆C上异于点A的任意一点,点P与点A关于点M对称.(1)若点P的坐标为(95, 4√35),求m的值;(2)若椭圆C上存在点M,使得OP⊥OM,求m的取值范围.19. 已知函数f(x)=23x3−2x2+(2−a)x+1,其中a∈R.(1)若a=2,求曲线y=f(x)在点(1, f(1))处的切线方程;(2)求f(x)在区间[2, 3]上的最大值和最小值.20. 已知集合S n={(x1, x2, ..., x n)|x1, x2, ..., x n是正整数1, 2, 3, ..., n的一个排列}(n≥2),函数g(x)={1,x>0−1,x<0.对于(a1, a2,…a n)∈S n,定义:b i=g(a i−a1)+g(a i−a2)+...+g(a i−a i−1),i∈{2, 3, ..., n},b1=0,称b i为a i的满意指数.排列b1,b2,…,b n为排列a1,a2,…,a n的生成列;排列a1,a2,…,a n为排列b1,b2,…,b n的母列.(1)当n=6时,写出排列3,5,1,4,6,2的生成列及排列0,−1,2,−3,4,3的母列;(2)证明:若a1,a2,…,a n和a′1,a′2,…,a′n为S n中两个不同排列,则它们的生成列也不同;(3)对于S n中的排列a1,a2,…,a n,定义变换τ:将排列a1,a2,…,a n从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列a1,a2,…,a n变换为各项满意指数均为非负数的排列.2013年北京市石景山区高考数学二模试卷(理科)答案1. C2. B3. A4. C5. D6. C7. B8. B 9. > 10. 80 11. 3,3√3212. 12513. 2n +1,n4(n+1) 14. (1,43]15. (1)由三角函数定义,得 x 1=cosα,x 2=cos(α+π3).因为 α∈(π6,π2),cosα=13,所以 sinα=√1−cos 2α=2√23. 所以 x 2=cos(α+π3)=12cosα−√32sinα=1−2√66. (2)依题意得 y 1=sinα,y 2=sin(α+π3). 所以 S 1=12x 1y 1=12cosα⋅sinα=14sin2α, S 2=12|x 2|y 2=12[−cos(α+π3)]⋅sin(α+π3)=−14sin(2α+2π3).依题意S 1=2S 2 得 sin2α=−2sin(2α+2π3),即sin2α=−2[sin2αcos 2π3+cos2αsin2π3]=sin2α−√3cos2α,整理得 cos2α=0.因为 π6<α<π2,所以 π3<2α<π,所以 2α=π2,即 α=π4.16. (1)解:设“1名顾客摸球3次停止摸奖”为事件A ,则共有基本事件:1+C 31⋅C 11+C 31⋅C 21⋅C 11+C 31⋅C 21⋅C 11⋅C 11=16个,则A 事件包含基本事件的个数为C 31⋅C 21⋅C 11=6个, 则 P(A)=616=38,故1名顾客摸球3次停止摸奖的概率为38,(2)解:随机变量X 的所有取值为0,5,10,15,20. P(X =0)=14,P(X =5)=A 22A 42=16,P(X =10)=1A 42+A 22A 43=16,P(X =15)=A 43˙=16, P(X =20)=A 33A 44=14.所以,随机变量X 的分布列为:EX =0×14+5×16+10×16+15×16+20×14=10.17. (1)证明:由俯视图可得,BD 2+BC 2=CD 2, ∴ BC ⊥BD .又∵ PD ⊥平面ABCD , ∴ BC ⊥PD , ∵ BD ∩PD =D , ∴ BC ⊥平面PBD .(2)证明:取PC 上一点Q ,使PQ:PC =1:4,连接MQ ,BQ .由左视图知 PM:PD =1:4,∴ MQ // CD ,MQ =14CD .在△BCD 中,易得∠CDB =60∘,∴ ∠ADB =30∘. 又 BD =2,∴ AB =1,AD =√3. 又∵ AB // CD ,AB =14CD ,∴ AB // MQ ,AB =MQ .∴ 四边形ABQM 为平行四边形, ∴ AM // BQ .∵ AM ⊄平面PBC ,BQ ⊂平面PBC , ∴ 直线AM // 平面PBC .(3)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为√34.证明如下: ∵ PD ⊥平面ABCD ,DA ⊥DC ,建立如图所示的空间直角坐标系D −xyz . ∴ D(0,0,0),A(√3,0,0),B(√3,1,0),C(0,4,0),M(0,0,3).设 D(0,0,0),A(√3,0,0),B(√3,1,0),C(0,4,0),M(0,0,3),其中N(0, t, 0). ∴ AM →=(−√3,0,3),BN →=(−√3,t −1,0). 要使AM 与BN 所成角的余弦值为√34,则有 |AM →||BN →|˙=√34, ∴ |3|⋅=√34,解得 t =0或2,均适合N(0, t, 0).故点N 位于D 点处,此时CN =4;或CD 中点处,此时CN =2,有AM 与BN 所成角的余弦值为√34.18. 解:(1)依题意,M 是线段AP 的中点,因为A(−1, 0),P(95,4√35), 所以点M 的坐标为(25,2√35). 由于点M 在椭圆C 上, 所以425+1225m=1,解得 m =47.(2)设M(x 0, y 0)(−1<x 0<1),则 x 02+y 02m =1,①因为 M 是线段AP 的中点,所以 P(2x 0+1, 2y 0). 因为 OP ⊥OM ,所以OP →⊥OM →,所以OP →⋅OM →=0,即 x 0(2x 0+1)+2y 02=0.②由①,②消去y 0,整理得 m =2x 02+x 02x 02−2.所以 m =1+12(x 0+2)+6x 0+2−8≤12−√34, 当且仅当 x 0=−2+√3时,上式等号成立. 所以m 的取值范围是(0,12−√34]. 19. (1)解:f(x)的定义域为R ,且 f ′(x)=2x 2−4x +2−a ,当a =2时,f(1)=−13,f ′(1)=−2,所以曲线y =f(x)在点(1, f(1))处的切线方程为 y +13=−2(x −1),即 6x +3y −5=0.(2)解:方程f ′(x)=0的判别式为△=(−4)2−4×2×(2−a)=8a .(1)当a ≤0时,f ′(x)≥0,所以f(x)在区间(2, 3)上单调递增,所以f(x)在区间[2, 3] 上的最小值是f(2)=73−2a ;最大值是f(3)=7−3a .(2)当a >0时,令f ′(x)=0,得 x 1=1−√2a2,或x 2=1+√2a2.f(x)和f ′(x)的情况如下:故f(x)的单调增区间为(−∞,1−√2a2),(1+√2a2,+∞);单调减区间为(1−√2a2,1+√2a2).①当0<a≤2时,x2≤2,此时f(x)在区间(2, 3)上单调递增,所以f(x)在区间[2, 3]上的最小值是f(2)=73−2a;最大值是f(3)=7−3a.②当2<a<8时,x1<2<x2<3,此时f(x)在区间(2, x2)上单调递减,在区间(x2, 3)上单调递增,所以f(x)在区间[2, 3]上的最小值是f(x2)=53−a−a√2a3.因为f(3)−f(2)=143−a,所以当2<a≤143时,f(x)在区间[2, 3]上的最大值是f(3)=7−3a;当143<a<8时,f(x)在区间[2, 3]上的最大值是f(2)=73−2a.③当a≥8时,x1<2<3≤x2,此时f(x)在区间(2, 3)上单调递减,所以f(x)在区间[2, 3]上的最小值是f(3)=7−3a;最大值是f(2)=73−2a.综上可得,当a≤2时,f(x)在区间[2, 3]上的最小值是73−2a,最大值是7−3a;当2<a≤143时,f(x)在区间[2, 3]上的最小值是53−a−a√2a3,最大值是7−3a;当143<a<8时,f(x)在区间[2, 3]上的最小值是53−a−a√2a3,最大值是73−2a;当a≥8时,f(x)在区间[2, 3]上的最小值是7−3a,最大值是73−2a.20. (1)解:当n=6时,排列3,5,1,4,6,2的生成列为0,1,−2,1,4,−3;排列0,−1,2,−3,4,3的母列为3,2,4,1,6,5.(2)证明:设a1,a2,…,a n的生成列是b1,b2,…,b n;a′1,a′2,…,a′n的生成列是与b′1,b′2,…,b′n,从右往左数,设排列a1,a2,…,a n与a′1,a′2,…,a′n第一个不同的项为a k与a′k,即:a n=a′n,a n−1=a′n−1,…,a k+1=a′k+1,a k≠a′k.显然b n=b′n,b n−1=b′n−1,…,b k+1=b′k+1,下面证明:b k≠b′k.由满意指数的定义知,a i的满意指数为排列a1,a2,…,a n中前i−1项中比a i小的项的个数减去比a i大的项的个数.由于排列a1,a2,…,a n的前k项各不相同,设这k项中有l项比a k小,则有k−l−1项比a k 大,从而b k=l−(k−l−1)=2l−k+1.同理,设排列a′1,a′2,…,a′n中有l′项比a′k小,则有k−l′−1项比a′k大,从而b′k=2l′−k+1.因为a1,a2,…,a k与a′1,a′2,…,a′k是k个不同数的两个不同排列,且a k≠a′k,所以l≠l′,从而b k≠b′k.所以排列a1,a2,…,a n和a′1,a′2,…,a′n的生成列也不同.(3)证明:设排列a1,a2,…,a n的生成列为b1,b2,…,b n,且a k为a1,a2,…,a n中从左至右第一个满意指数为负数的项,所以b1≥0,b2≥0,…,b k−1≥0,b k≤−1.进行一次变换τ后,排列a1,a2,…,a n变换为a k,a1,a2,…a k−1,a k+1,…,a n,设该排列的生成列为b′1,b′2,…,b′n.所以(b′1, b′2,…,b′n)−(b1+b2+...+b n)=[g(a1−a k)+g(a2−a k)+...+g(a k−1−a k)]−[g(a k−a1)+g(a k−a2)+...+g(a k−a k−1)]=−2[g(a k−a1)+g(a k−a2)+...+g(a k−a k−1)]=−2b k≥2.因此,经过一次变换τ后,整个排列的各项满意指数之和将至少增加2.因为a i的满意指数b i≤i−1,其中i=1,2,3,…,n,所以,整个排列的各项满意指数之和不超过1+2+3+...+(n−1)=n(n−1),2即整个排列的各项满意指数之和为有限数,所以经过有限次变换τ后,一定会使各项的满意指数均为非负数.。
最新初中中考数学题库 2012石景山区初三数学二模试卷及答案
石景山区2012年初三第二次统一练习数 学 试 卷考 生 须 知1.本试卷共10页.第10页为草稿纸,全卷共五道大题,25道小题. 2.本试卷满分120分,考试时间120分钟.3.在试卷密封线内准确填写区(县)名称、毕业学校、姓名和准考证号. 4.考试结束后,将试卷和答题纸一并交回.第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在题后的括号内.1.2的算术平方根是( ) A .21B .2C .2-D .2±2.2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为( )A .6105.2-⨯ B .5105.2-⨯ C .5105.2⨯- D .6105.2-⨯-3.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120︒ 的菱形,剪口与折痕所成的角α 的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒4.北京市2001-2010年星级饭店客房出租率(%)的情况如下表: 年份 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 出租率 62 62 52 65 62 61 60 52 4956 表中出租率(%)的中位数和众数分别为( )A .61、62 B .62、62 C .61.5、62 D .60.5、62 5.如图,有6张形状、大小、质地均相同的卡片,正面分别印有北京精神——“爱国、创新、包容、厚德”的字样.背面完全相同,现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片恰好是“创新”的概率是( ) A .31 B .32 C .61 D .41 6.若一个多边形的内角和是900°,则这个多边形的边数是( ) A .5 B .6 C .7 D .8第3题图 爱国创新爱国 包容爱国厚德爱国爱国创新爱国A .向右平移2个单位,向上平移一个单位B .向右平移2个单位,向下平移一个单位C .向左平移2个单位,向下平移一个单位D .向左平移2个单位,向上平移一个单位8.已知正方形纸片的边长为18,若将它按下图所示方法折成一个正方体纸盒,则纸盒的边(棱)长是( ) A .6B .23C .29D .32第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分)9.分式3-x x有意义的条件为 . 10.分解因式:=-339ab b a ______ ________.11.已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .12.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .三、解答题(本题共30分,每小题5分) 13.()22145cos 314.38-⎪⎭⎫ ⎝⎛+︒---π.解: 第8题图第11题图111210987654321第12题图14.解分式方程123482---=-xxx . 解:15.已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD =AB ,∠1=∠2=∠3. 求证:BC=DE . 证明:16.已知:0162=-+x x ,求代数式()()()()3312122+-+--+x x x x x 的值.解:17.已知一次函数y kx b =+的图象与直线3y x =-平行且经过点()3,2-,与x 轴、y 轴分别交于 A 、 B 两点. (1)求此一次函数的解析式;(2)点C 是坐标轴上一点,若△ABC 是底角为︒30的等腰三角形,求点C 的坐标. 解:18.列方程(组)解应用题:如图是一块长、宽分别为60 m 、50 m 的矩形草坪,草坪中有宽度均为x m 的一横两纵的甬道. (1)用含x 的代数式表示草坪的总面积S ;(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽. 解: y x O 321FEABC D四、解答题(本题共20分,每小题5分)19.如图,梯形纸片ABCD 中,AD //BC ,∠B =30º.折叠纸片使BC 经过点A ,点B 落在点B ’处,EF 是折痕,且BE =EF =4,AF ∥CD .(1)求∠BAF 的度数;(2)当梯形的上底AD 多长时,线段DF 恰为该梯形的高?解:20.以下是根据全国 2011年国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分.请根据以上信息,解答下列问题:(产量相关数据精确到1万吨)(1)请补全扇形统计图; (2)通过计算说明全国的粮食产量与上一年相比,增长最多的是 年;(3)2011年早稻的产量为万吨;(4)2008-2011这三年间,比上一年增长的粮食产量的平均数为多少万吨,若按此平均数增长,请你估计2012年的粮食产量为多少万吨.(结果保留到整数位) 解:21.已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MP 的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =.(1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长. 解:A BD E C B 'F M CODP BA6%22%%早稻夏粮秋粮2011年各类粮食占全体 粮食的百分比分组统计图小阳遇到这样一个问题:如图(1),O 为等边△ABC 内部一点,且3:2:1::=OC OB OA ,求AOB ∠的度数.小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△CO A 绕点A 逆时针旋转60°,使点C 与点B 重合,得到△O AB ',连结O O '. 则△O AO '是等边三角形,故OA O O =',至此,通过旋转将线段OA 、OB 、OC 转移到同一个三角形B O O '中. (1)请你回答:︒=∠AOB . (2)参考小阳思考问题的方法,解决下列问题: 已知:如图(3),四边形ABCD 中,AB=AD ,∠DAB =60°,∠DCB =30°,AC =5,CD =4.求四边形ABCD 的面积. 解:五、解答题(本题满分22分,第23题7分,第24题7分,第25题8分)23.已知:直线122y x =+分别与 x 轴、y 轴交于点A 、点B ,点P (a ,b )在直线AB 上,点P 关于y 轴的对称点P ′ 在反比例函数xky =图象上.(1) 当a =1时,求反比例函数xky =的解析式;(2) 设直线AB 与线段P'O 的交点为C .当P'C =2CO 时,求b 的值;(3) 过点A 作AD //y 轴交反比例函数图象于点D ,若AD =2b,求△P ’DO 的面积.解:y x O D C B A 图⑴ 图⑵ 图⑶(C )O C B A O'O C B A 备用图24.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.解:25.已知:抛物线y =-x 2+2x +m-2交y 轴于点A (0,2m-7).与直线y =2x 交于点B 、C (B 在右、C 在左). (1)求抛物线的解析式;(2)设抛物线的顶点为E ,在抛物线的对称轴上是否存在一点F ,使得BFE CFE ∠=∠,若存在,求出点F 的坐标,若不存在,说明理由; (3)射线OC 上有两个动点P 、Q 同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC 运动,以PQ 为斜边在直线BC 的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ 与抛物线y =-x 2+2x +m-2有公共点,求t 的取值范围. 解: A B C D E AE B C D图1 图 2 yxO备用图石景山区2012初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题共8道小题,每小题4分,共32分)题 号 12345678答 案B A D D A C C B二、填空题(本题共4道小题,每小题4分,共16分) 9.3≠x ; 10.()()b a b a ab 33-+; 11.225-225π; 12.10;6. 三、解答题(本题共6道小题,每小题5分,共30分)13.解:()22145cos 3--14.38-⎪⎭⎫ ⎝⎛+︒-π=4223122+⨯-- ……………………………4分 =322+…………………………………………………5分 14. 123482---=-xxx解:()()123228---=-+x x x x ……………………………1分 ()()()42382--+-=x x x ……………………………3分46822+---=x x x ……………………………4分∴10-=x经检验:10-=x 是原方程的根.………………………5分15.证明:∵∠1=∠2=∠3∴DAE BAC ∠=∠…………………………… 1分 又∵AFE DFC ∠=∠∴E C ∠=∠ …………………………… 2分 在△ABC 和△ADE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AD AB EC DAE BAC …………………………… 3分 ∴△ABC ≌△ADE ……………………………………………………… 4分∴BC=DE . ……………………………………………………… 5分 16.解:原式222922144x x x x x -++-++= …………………………………2分1062++=x x ………………………………… 3分当0162=-+x x 时,162=+x x ………………………………… 4分 原式11=. …………………………………5分17.解:(1)∵一次函数y kx b =+的图象与直线3y x =-平行且经过点()3,2-∴⎩⎨⎧-=+-=323b k k 解得⎩⎨⎧=-=33b k∴一次函数解析式为33+-=x y …………………………………1分 (2)令0=y ,则1=x ;令0=x 则3=y∴()()3,0,0,1B A∵1=OA ,3=OB …………………………2分 ∴2=AB ∴︒=∠30ABO若AC AB =,可求得点C 的坐标为()0,31C 或()3,02-C ………………………4分 若CA CB =如图︒=︒-︒=∠3030603OAC ,3330tan 3=︒=OA OC ∴⎪⎪⎭⎫ ⎝⎛33,03C …………………………………………5分 ∴()0,31C ,()3,02-C ,⎪⎪⎭⎫ ⎝⎛33,03C 18.解:(1)S = 6050⨯-(60 x + 2×50 x -2×x 2 )=3000 + 2x 2-160x .………2分(2)由题意得:-2x 2+160x =60501000104⨯⨯, ………………3分解得 x = 2 或 x = 78. …………………………………4分 又0<x <50,所以x = 2,答:甬道的宽是2米. ……………………………………5分 19. 解:(1)∵BE =EF ∴∠EFB =∠B ,由题意,△EF B '≌△BEF∴∠EFB ’ =∠EFB =∠B=30°∴△BFA 中,︒=︒-︒-︒-︒=∠90303030180BAF ……………………………………2分 (2)联结DF ,∵AD //BC ,AF ∥CD∴四边形AFCD 是平行四边形 ……………………………………3分 ∴∠C =∠A FB =60°∴CD =AF =3230cos =︒EF ……………………………………4分 若BC DF ⊥,则360cos =︒=CD FC此时3=AD . ……………………………………5分 20.(1)72%;(2)2011;(3)3427; ……………………每空1分,共3分(4)(57121-52871)÷3≈=1417 ………………………………………4分57121+1417=58538. ………………………………………5分21.(1)联结CO , … …………………………………1分∵DM ⊥AB∴∠D+∠A=90° ∵PC PD = ∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA∴∠OCA+∠PCD=90° ∴PC ⊥OC∴直线PC 是⊙O 的切线 …………………………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q∴22tanD QAC tan ==∠ ∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x …………………………………4分 ∴22=AQ∴242==AQ AN …………………………………5分22. 解:(1)150° ………………………1分(2) 如图,将△ADC 绕点A 顺时针旋转60°,使点D 与点B 重合,………2分 得到△O AB ',连结O C '. 则△O AC '是等边三角形,可知4,5'===='DC BO CA O C ,ADC ABO ∠=∠'……………………3分 在四边形ABCD 中,︒=∠-∠-︒=∠+∠270360DCB DAB ABC ADC ,)(360''ABO ABC BC O ∠+∠-︒=∠∴︒=︒-︒=90270360. ……………………4分34522=-=∴BC 6432543215432''-=⨯⨯-⨯=-=∴∆∆BCO ACO ABCD S S S 四边形.………………5分23.(1)∵点P 在直线AB 上, 1=a 时,2121+⨯=b =25………………………1分 ∴)25,1(P ,∴)25,1(-'P ,代入xk y = 得25-=k , ∴x y 25-= …………………………2分 (2)联结'PP∵点P 和点P '关于y 轴对称 ∴'PP ∥x 轴 ∴OCA C PP ∽△△'∴'PP ∶=OA C P '∶CO …………3分 ∵CO C P 2'= ∴'PP =OA 2∵221+=x y 与x 轴交于点A 、点B ∴)0,4(-A ,)2,0(B 可得4=OAP 'Pxy ODC BA O 'DCBA∴8'=PP ∴a =4∴42421=+⨯=b ………………………5分 (3)当点P 在第一象限时:∵点P 和点P '关于y 轴对称且),(b a P∴),('b a P -∵y AD ∥∴)24-(b D , ∵D P 、点点'在xk y =上 ∴b a b⨯-=⨯-24 ∴2=a∴32221=+⨯=b ∵),23,4(-D )3,2('-P∴29'=DO P S △ …………6分当点P 在第二象限时:)24-(bD -,∴b a b⨯-=-⨯-24∴2-=a∴12)2(21=+-⨯=b∵),21,4(--D )1,2('P∴23'=DO P S △ …………7分24.解:(1)DC DB 2= (2) DC DB 2=证明:过点C 作CF ∥BE 交AD 的延长线于点F , 在 AD 上取点G 使得CF CG = ∴76∠=∠=∠F∵︒=∠=∠=∠602BAC CED BED ∴︒=∠=∠606F ,︒=∠30CED ∴41205∠=︒=∠∵︒=∠+∠=∠=∠+∠6021713 ∴23∠=∠ ∵AC AB = ∴△ABE ≌△CAG7654321AEBCG FD 图(1)∴AG BE AE CG ==, ∵︒=∠-∠=∠306CED GCE ∴EG CG =∴BE AG CG CF 2121=== 由△DBE ∽△DCF 得2==FCBEDC BD∴DC DB 2=(3) 结论:DC DB 2=.25.解:(1)点A (0,2m -7)代入y =-x 2+2x +m -2,得m =5 ∴抛物线的解析式为y =-x 2+2x +3 ………………………2分(2)由⎩⎨⎧=++-=x y x x y 2322得⎪⎩⎪⎨⎧==323y x ,⎪⎩⎪⎨⎧=-=323y x∴B (32,3),C (32,3--)B (32,3)关于抛物线对称轴1=x 的对称点为)32,32('-B可得直线C B '的解析式为32632-+=x y ,由⎩⎨⎧=-+=132632y x y ,可得⎩⎨⎧==61y x∴)6,1(F ………………………5分(3)当)2,2(t t M --在抛物线上时,可得03242=-+t t ,4131±-=t , 当)2,(t t P --在抛物线上时,可得32=t ,3±=t ,舍去负值,所以t 的取值范围是34131≤≤+-t .………………8分87654321E D CBAGF图(2)。
石景山区实验中学2012——2013学年度第一学期初三期中试题与答案_20160914155504
2 012~2013学年度实验中学第一学期期中初三数学考试试卷 (2012-11-07)注意:1.本试卷共[请单击修改] 页;2.考试时间: 120分钟;3.姓名、学号必须写在指定地方;4.本考试为闭卷考试。
题号一二三四五六七八总分得分一、选择题(每小题4分,共32分)( )1.用配方法把函数y=245x x-+变形,所得结果是A. y=2(2)1x-+ B. y=2(2)9x-- C. y=2(2)1x+- D. y=2(2)5x+-( )2.在Rt△ABC中,∠C=900,AC=4,AB=5,则sinB的值是A.23B.35C.34D.45( )3.将抛物线y=2x2向左平移3个单位,再向上平移1个单位得到的抛物线,其解析式是A. y=2(x+3)2+1B. y=2(x-3)2-1C.y=2(x+3)2-1D. y=2(x-3)2+1 ( )4.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为A. y=-x2B. y=-x2+1C. y=x2-1D.y=-x2-1( )5.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan∠ACB的值是A.13B.12C.2D. 3( )6.已知∠A为锐角,sinA=cos50°,则∠A等于A. 20°B. 30°C.40°D. 50°评卷人得分..( )7.如图,△ABC 中,cosB=22,sinC=53,AC=5,则△ABC 的面积是 A.221 B. 12C. 14D. 21( )8.如图为二次函数y=ax 2+bx+c 的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法正确的个数是 ①ac <0 ②a+b+c >0 ③方程ax 2+bx+c=0的根为x 1=-1,x 2=3 ④当x >1时,y 随着x 的增大而增大. A.1 B. 2C.3D. 4二、填空题(每小题4分,共16分)9.若 03tan =-α,且α为锐角,则α=_____度.10.如图,在Rt △ABC 中,∠C=90°,AB=2BC , 则sinB 的值为 .11.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+, 由此可知铅球推出的距离是 m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石景山区2013年初三第二次统一练习数 学 试 卷第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在相应的括号内.1.3的相反数是( )A .-3B .3C .31- D .312.某市政府召开的全市经济形势分析会公布,全市去年地区生产总值(GDP )实现1091亿元,数字1091用科学记数法表示为( )A .210091.1⨯ B .310091.1⨯ C .31091.10⨯ D .410091.1⨯ 3.如图,△ABC 中,DE 是AC 的垂直平分线,AE =4cm , △ABD 的周长为14cm ,则△ABC 的周长为( ) A .18 cm B . 22 cm C .24 cm D. 26 cm4.一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数、平均数是( )5.甲盒装有3个红球和4个黑球,乙盒装有3个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别.搅匀两盒中的球,从盒中分别任意摸出一个球.正确说法是( )A .从甲盒摸到黑球的概率较大B .从乙盒摸到黑球的概率较大C .从甲、乙两盒摸到黑球的概率相等D .无法比较从甲、乙两盒摸到黑球的概率6.如图,AB 是⊙O 的直径,C 是⊙O 上的一点,若 AC =8,AB =10,OD ⊥BC 于点D ,则BD 的长为( )A .6B .5C .3D .1.5D C B O A 第6题图 第 3题图EDCBA7.若二次函数72++=bx x y 配方后为k x y +-=2)1(,则b 、k 的值分别 为( )A .2、6B .2、8C .-2、6D .-2、8 8. 如图是由五个相同的小正方体组成的几何体,则下列说法正确的是( )A .左视图面积最大B .俯视图面积最小C .左视图面积和主视图面积相等D .俯视图面积和主视图面积相等第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分)9.分解因式:2a 520- = .10.抛物线252+-=x kx y 的图象和x 轴有交点,则k 的取值范围是 . 11.已知:平面直角坐标系xoy 中,圆心在x 轴上的⊙M 与y 轴交于点D (0,4)、 A ,若点M (-3,0),则HAO ∠sin 的值为 . 12.如图,45AOB ∠=,过OA 上到点O 的距离分别为1,4,7,10,13,16,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为,,,321s s s …,观察图中的规律,第4个黑色梯形的面积=4S ,第n (n 为正整数)个黑色梯形的面积=n S .三、解答题(本题共30分,每小题5分) 13.计算:23)23(45tan 320--+︒-. 解:14.解分式方程:14122=---x x x . 解:15.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F .请在图中找出一对全等三角形,并加以证明. 证明:DC第 8题图第 12题图 OO16. 先化简,再求值:124113+--÷⎪⎭⎫ ⎝⎛---x x x x x x 23,其中x 满足043=-+x x 2. 解:17.已知:如图,一次函数y x b =+的图象与反比例函数(0)ky k x=<的图象交于A 、B 两点,A 点坐标为(1,)m ,连接OB ,过点B 作BC x ⊥轴,垂足为点C ,且△BOC 的面积为32.(1)求k 的值;(2)求这个一次函数的解析式. 解:18.甲、乙两位同学进行长跑训练,两人距出发点的路程y (米)与跑步时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答问题: (1)他们在进行 米的长跑训练;(2)在3(3)当x 解:19∠EFB =解:))学业考试体育成绩(分数段)统计表20.如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,过点D 作⊙O 的切线交BC 于点E .(1)求证:点E 为BC 中点; (2)若tan EDC =25,AD =5,求DE 的长. 解:21.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :40分; B :39-35分; C :34-30分; D :29-20分;E :19-0分)统计如下:分数段 人数(人) 频率 A 48 0.2 B a 0.25 C 84 b D 36 0.15 E120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为_____,b 的值为______,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?______(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?解:22.如图,在矩形ABCD 中,AB =3,BC =4,点M 、N 、分别在BC 、AB 上,将矩形ABCD 沿MN 折叠,设点B 的对应点是点E .(1)若点E 在AD 边上,BM =27,求AE 的长;(2)若点E 在对角线AC 上,请直接写出AE 的取值范围: .解:ENMDCB Ay x O五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C , 反比例函数ky x=(x >0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式.(2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G ,联结DF 、DG 、FC 、GC . ①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF =GC 时,求直线DG 的函数解析式.解:24.如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __;(2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.解:BBB图1 图2 图325.(1)如图1,把抛物线2y x =-平移后得到抛物线1C ,抛物线1C 经过点(4,0)A -和原点(0,0)O ,它的顶点为P ,它的对称轴与抛物线2y x =-交于点Q ,则抛物线1C 的解析式为____________;图中阴影部分的面积为_____.(2)若点C 为抛物线1C 上的动点,我们把90ACO ∠=时的△ACO 称为抛物线1C 的内接直角三角形.过点(1,0)B 做x 轴的垂线l ,抛物线1C 的内接直角三角形的两条直角边所在直线AC 、CO 与直线l 分别交于M 、N 两点,以MN 为直径的⊙D 与x 轴交于E 、F 两点,如图2.请问:当点C 在抛物线1C 上运动时,线段EF 的长度是否会发生变化?请写出并证明你的判断.解:图1图2石景山区2013初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)二、填空题(本题共4道小题,每小题4分,共16分) 9.()()a a -+225; 10.825≤k 且0≠k ; 11.53; 12.2123;)(71223-n .三、解答题(本题共6道小题,每小题5分,共30分) 13.解:原式=231124-+- ……………………………4分 =2 ……………………………………5分 14. 解:()4122-=-+x x x ……………………………2分∴23-=x ……………………4分 经检验: 23-=x 是原方程的增根……………………5分∴23-=x 是原方程的根.15.证明:略(找出全等三角形1分;证明4分)16.解:原式xx 1--= ……………………………2分 由043=-+x x 2,得1,421=-=x x ……………… 3分 由题意,1≠x ∴原式45414-=----=. ………………………………………………………5分17. 解:(1)设B 点的坐标为00(,)x y ,则有00ky x =,即: 00y x k =…1分∵△BOC 的面积为32,∴2321210000=-=y x y x , ……………2分∴00y x k ==-3. …………………………………………………………3分(2)∵3k =-,∴3y x=-,当1x =时,3y =-,∴A 点坐标为(1,3)-,………………………………………4分把A 点坐标代入y x b =+得4b =-,这个一次函数的解析式为4y x =-. …5分18.解:(1)1000米; ….……..…..……………………..1分(2)甲 …………………..……..…………..2分 (3)设l 乙:x k y 11=,过(4,1000),故x y 2501= ……………..3分在0<x ≤3的时段内,设l 甲:x k y 22=,过(3,600),故x y 2002=.4分当3=x 时,150,600,7502121=-==y y y y .答:当3=x 时,两人相距最远,此时两人距离是150米 …….……..5分 四、解答题(本题共20分,每小题5分) 19. 解:由∠EFB =120°,AF 平分∠EFB ,∴∠EFO =60°,∠EOF =90°……………………………..1分 ∴FE =FB …………………………………..2分 Rt △EOF 中, ∴OE =EFcos30︒=分 Rt △EOA 中,∴AE 2.776cos 3cos ≈︒=∠=AEO OE ……………………..4分在△AEF 和△ABF 中⎪⎩⎪⎨⎧=∠=∠=AF AF BFA EFA BF EF ∴△AEF ≌△ABF∴AB =AE 2.7= …………………..5分20.解: (1)连结OD , ∵AB 为直径,∴∠ADB =90°,又∠ABC =90°, ∴BC 是⊙O 切线 ……………………………..1分 ∵DE 是⊙O 切线 ∴BE=DE , ∴∠EBD=∠EDB , ∵∠ADB=90°,∴∠EBD+∠C=90°,∠EDB+∠CDE=90°,∴∠C=∠EDC , ∴DE=CE , ∴BE=CE. ……………………………..2分(2) ∵∠ABC =90°,∠ADB=90°, ∴∠C=∠ABD=∠EDC ,35sin =C Rt △ABD 中,DB=525tan ⨯=∠ABD AD , ……………..3分Rt △BDC 中,BC=653525sin =⨯⨯=C BD ,…………………..4分 又点E 为BC 中点,∴12DE BC ==3 .…………………..5分21.解:(1) 60 , 0.35 ,补充后如右图:………………………… 3分 (2) C ; ……………4分(3)0.8×2400=1920(名) 答:该区九年级考生中体育成绩为优秀的学生人数有1920名.…………………………5分22.解:(1)由题意,△BMN 沿MN 折叠得到△EMN ∴△BMN ≌△EMN ∴EM =BM =27. 过点M 作MH ⊥AD 交AD 于点H ,则四边形ABMH 为矩形 MH =AB =3, AH =BM =27. Rt △EHM 中, EH =2133)27(2222=-=-HM EM ∴AE 2137-=. ……………………………… 3分 (2) 1≤AE ≤3. ……………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1) 抛物线2y x ax b =-++过点A (-1,0),B (3,0)10930a b a a b --+=⎧∴⎨-++=⎩解得:23a b =⎧⎨=⎩∴抛物线的解析式为223y x x =-++顶点(14)D ,函数(0ky x x=>,m 是常数)图象经过(14)D ,, 4k ∴=.…………………………………………………………………… 2分 (2)①设G 点的坐标为4m ⎛⎫ ⎪⎝⎭m ,,据题意,可得E 点的坐标为41m ⎛⎫ ⎪⎝⎭,,F 点的坐标为40m ⎛⎫ ⎪⎝⎭,,1m > ,FG m ∴=,44DE m=-. 由△DFG 的面积为4,即14442m m ⎛⎫-= ⎪⎝⎭,得3m =,∴点G 的坐标为433⎛⎫⎪⎝⎭,.…………………… 3分②直线FC 和DG 平行.理由如下:方法1:利用相似三角形的性质.据题意,点C 的坐标为(10),,1FE =, 1m > ,易得4EC m =,1EG m =-,44DE m=- 111G E m m EF -∴==-,4414DE m m CEm-==-. G E D EE F C E∴=. D E G F E C∠=∠ ∴△D E G ∽△FEC E D G E C F ∴∠=∠ //FC DG ∴ …………………… 5分方法2:利用正切值.据题意,点C 的坐标为(10),,1FE =, 1m > ,易得4EC m=,1EG m =-, 1444G E m m DE m -∴==-,144FE mCE m==. tan tan EDG ECF ∴∠=∠E D G E CF ∴∠=∠ //FC DG ∴.③解:方法1: F C D G ∥,∴当FD CG =时,有两种情况: 当FD CG ∥时,四边形DFCG 是平行四边形, 由上题得,GE DEEF CE=1m =-,11m ∴-=,得2m =. ∴点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+.…………………… 6分 当FD 与CG 所在直线不平行时,四边形ADCB 是等腰梯形, 则DC FG =,4m ∴=,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.……………………… 7分 综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.方法2.在Rt ⊿DFE 中,1FE =,44DE m=-2222241(4)FD FE DE m∴=+=+-B 在Rt ⊿GEC 中,4EC m=,1EG m =-, 222224()(1)CG EC EG m m∴=+=+- FD CG = 22FD CG ∴=2241(4)m ∴+-224()(1)m m=+- 解方程得:2m =或4m =当2m =时,点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩, ∴直线AB 的函数解析式是26y x =-+.当4m =时,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩, ∴直线AB 的函数解析式是5y x =-+.综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.注:不同解法酌情给分24. 解:(1)11DCC D S 四边形=1(15)22⨯+⨯=6;…………………………1分 (2)11CD DD =43; ……………………2分 (3)1CC ⊥1DD . ……………………3分 证明:连接11,,,CO DO C O DO ,延长 1CC 交1DD 于M 点.如图所示:……4分 由正方形的性质可知:11,CO DO C O DO == 1145COD C OD ∠=∠=∴1111C O D C O D C O DC OD ∠-∠=∠-∠, 即:11COC DOD ∠=∠ ∴△1COC ≌△1DOD ………………………………………5分 11ODD OCC ∴∠=∠1190C CD OCC CDO ∠+∠+∠=1190C CD ODD CDO ∴∠+∠+∠=90CMD ∴∠=即:1CC ⊥1DD . ………………………………………7分25.解:(1)抛物线1C 的解析式为2(0)(4)4y x x x x =--+=--;图中阴影部分的面积与△POQ 的面积相同,18282POQ S ∆=⨯⨯=. ∴阴影部分的面积为8. …………………………………… 2分(2)由题意可知,抛物线1C 只存在两个内接直角三角形. 当点C 在抛物线1C 上运动时线段EF 的长度不会发生变化. 证明: ∵MN 为⊙D 的直径,EF MN ⊥∴BE BF =,90OBN MBF MBA ∠=∠=∠=∵MAB CNM ∠=∠,∴△ABM ∽△N B O ∴MB AB BO NB=,5=⋅=⋅BO AB NB MB 连接,FM FN ,90MFN ∠= ,在△MBF 和△FBN 中,BMF BFN ∠=∠,90MBF FBN ∠=∠=∴△M B F ∽△FBN …………………………………… 6分 ∴BF BM BN BF=∴2BF =5=⋅NB MB ,BF =∴EF = …………………………………… 8分。