鲁教版初三下期中考试3

合集下载

(完整word版)鲁教版初三英语(下)期中考试试题

(完整word版)鲁教版初三英语(下)期中考试试题

(说明:请将选择题的答案写在最后的答题卡上。

总分120分。

)一、单项选择。

(20分)( ) 1. I think teenagers should_______ to choose the clothes they like.A.be allowed B.allow C.be allow D.to allow ( ) 2.We should go to school at 8 o'clock ________school mornings.A.at B.in C.on D.of( ) 3.Something is wrong with my computer.I'll get it_________.A.repair B.repairing C.to repair D.repaired ( ) 4._________,they are too short.A.To present B.At present C.In present D.About present ( ) 5. Everyone ______to have at least eight _______sleep at night.A.needs;hour’s B.need;hours’C.needed;hour’s D.needs;hours’( ) 6.“We have a lot of classes every day.”“________.”A.So we do B.So do We C.We do so D.So are we ( ) 7. Mary ha s gone to the teacher’s office. ____________ has Joan.A. AndB. NeitherC. SoD. But( ) 8. Have you studied ___________ working ____________ a group?A. by, toB. by, withC. in, toD. in, with ( ) 9. If you don't know how to spell new words, _______ in a dictionary.A. look them upB. look they upC. look up themD. look up they( )10. Usually we get _____about something and end up _____in Chinese.A. exciting; speakingB. exciting; speakC. excited; speakingD. excited; speak( )11. —____you ever ____with a group?—Yes, I have.A. Have; studyB. Have; studiedC. Do; studyD. study ( )12. Some students think that studying grammar is not helpful____.A. at allB. allC. veryD. not at all. ( )13. I have _____the English club for three months.A. joinedB. been inC. taken part inD. become a member of ( ) 14.Our teacher is very strict _______us ______ our English study.A.in;with B.with;in C.for;in D.in;for ( ) 15.The other day,my friends and I______ the rules that we have inschool.A.talk about B.talked about C.talking about D.talked ( )16. The doctor looked over Peter carefully after he _______to the hospital.A.takes B.is taken C.took D.was taken( ) 17. The keyboard is used ___ putting information into the computer.A. forB. toC. asD. in( ) 18. Lucy has ___ been to China, has she?A. everB. justC. neverD. before( ) 19. Mr. Wang has been at the school since ____.A. two yearsB. for two yearsC. two years agoD. two years before( ) 20. Great changes ________ in my hometown since 1980.A. have been taken placeB. took placeC. have taken placeD. were taken place二、完形填空(10分)Which is the best way to learn a foreign language? We remembered that we all learned our own language when we were 21 , if we can learn a second language in the same way, it won’t seem to be so 22 . Think of what small children do.They listen to 23 people say and they try to imitate what they 24 . When they want something they have to 25 for it. They are using language, talking 26 it all the time. If 27 use a second language like this all the time, they will learn it more 28 . It is also important to remember that we learn our own language by hearing people speak it, 29 by seeing what they write. In school, though you learn to hear and speak, to read and write, you must learn all new words through the ear, you can read them, spell them and write them 30 .( )21. A. boys B. girls C. children D. young people ( )22. A. important B. difficult C. interesting D. easy( )23. A. that B. which C. what D. old( )24. A. see B. listen C. hear D. speak( )25. A. send B. look C. wait D. ask( )26. A. in B. by C. on D. with ( )27. A. people B. teachers C. children D. workers ( )28. A. slowly B. hardly C. quickly D. carefully ( )29. A. not B. and C. but D. then ( )30. A. first B. earlier C. before D. laterThe children in Mr. Wu’s class are different from those in the other classesof the school. They don’t watch TV!TV is not very good for children. So Mr. Wu asks them not to watch TV fora week. He tells them that they can have fun doing other things. The childrensay, “Let’s see if Mr. Wu is right. ”So they don’t watch TV. They read, makemodel planes, play football and play games with their parents and friends. Thechildren never have so much fun reading or playing games. They say, “Wewon’t watch TV any longer! ”( )31. What are the children in Mr. Wu’s class different from those in theother classes of the school?A. They love watching TV.B. They don’t watch TV.C. They often watch TV.D. They watch TV so much.( ) 32. Is watching TV so long good or bad for children?A. Watching TV so long is good for children.B. Watching TV is just OK.C. Watching TV so long is bad for children.D. Watching TV is neither good nor bad( )33. What does Mr. Wu ask their children to do?A. He asks them to watch TV.B. He asks them not to watch TV for a weekC. He asks them not to watch TV.D. He asks them to watch TV for a week( )34. Do the children watch TV after the teacher tells them not to dothat?A. Yes they doB. Yes, but they don’t watch it at once.C. No, they can’tD. No, they want to see if Mr. Wu is right.( )35. The best title (标题)for the passage (段落)is _________.A. Watch TVB. A Good TV ShowC. Children Love TVD. Children Have Fun Without TVBMany teenagers feel that the most important people in their lives are their friends. They believe that their family members don’t know as well as their friends do.In large families,it is quite often for brothers and sisters to fight with each other and then they can only go to their friends for some ideas.It is very important for teenagers to have one good friend or a group of friends.Even they are not with their friends.they usually spend a lot of time talking among themselves on the phone. This communication(交际)is very important in children's growing up,because friends can disuss (讨论)something.These things are difficult to say to their family members.However, parents often try to choose their children's friends for them.Some parents may even stop their children from meeting their good friends.Have you ever thought of the following questions?Who chooses your friends?Do you choose your friends or your friends choose you?Have you got a good friend your parents don't like?Your answers are welcome.( )36.Many teenagers think that_____ can understand them better.A. friends B.brothers C.sisters D.parents ( )37. ______is very important to teenagers.A.To make friends B.CommunicationC.To stop meeting friends D.Both A and B( )38.When teenagers have something difficult to say to their parents,they usually_____.A.stay alone at homeB.fight with their parentsC.discuss it with their friendsD.go to their brothers and sisters for help( )39.The sentence“Your answers are welcome”means“______”.A.You are welcome to discuss the questions with usB.We've got no idea,so your answers are welcomeC.Your answers are always rightD.You can give us all the right answers( )40.Which of the following is the writer's attitude(态度)?A. Parents should choose friends for their children.B.Children should choose everything they like.C.Parents should understand their children better.D.Teenagers should only go to their friends for help.CDavid Brenner came from a poor family. When he finished his school, he was given a wonderful present. “Some of my friends got new clothes and a f ewrich boys even got new cars.”H e remembered, “my father reached into his trousers pocket and took something out, I held out my hand, and he let my present drop into it --a nickel! ”“Dad said to me, Buy a newspaper with that. Read every word of it. Then turn to the classified section and get yourself a job. Get into the world. It’s all yours now! ”“I always thought that was a great joke my father had played on me until a few years later when I was in the Army, sitting in a foxhole, and thinking about my family and my life. It was then that I came to know that my friends had got only new cars, or only new clothes. My father has given me the whole world. What a great present! ”( )41. What did David get as a present when he left school?A. New clothesB. A new carC. Something niceD. A nickel.( )42. David’s father asked him to read the newspaper to _________.A. find interesting storiesB. find himself a jobC. know what happened in the worldD. learn more things in it( )43. Some years went by and David became a ________.A. doctorB. teacherC. soldierD. driver( )44. In the end David understood the present his father gave himwas________.A. greatB. unimportantC. beautifulD. useless( )45. What does the word “nickel” in the passage mean?A. 五美分B. 镍C. 钉子D. 筛子DJapanese students work very hard but many are unhappy.They feel heavy pressures from their parents.Most students are always told by their parents to study harder and better so that they can have a wonderful life in the future, Though this may be a good idea for those very bright students,it can have terrible results for many students who are not gifted(有天赋的)enough.Many of them have tried very hard at school but have failed in the exams and have their:parents lose hope.Such students feel.that they are hated by everyone elsethey mee t and they don’t want to go to school any longer.They become dropouts(脱离传统社会的人).It is surprising that though most Japanese parents are worried about their children,they do not help them in any way.Many parents feel that they are not able to help their children and that it is the teacher’s work to help children.To make:matters worse,a lot of parents send their children to those schools opening in the evenings and on weekends-they only help the students to pass the exams and never teach them any real sense of the world.Many Japanese schools usually have rules about everything from the students hair to their clothes and things in their school bags.Child psychologists now think that such strict rules are harmful to the feelings of the students. Almost 40% of the students said that no one had taught them how to get on with others, how to tell right from wrong and how to show lave and care for others, even for their parents.( )46.Many Japanese students are unhappy because______.A.they don't like schoolB. they don't like studyC.their teachers are very strictD.their parents give them heavy pressures( )47.“Pressures”in the second sentence means_______.A.关怀B.压力 C.礼物D.责任( )48. Those students who________ may have a wonderful life in the future.A.are very clever B.are beautifulC.are not gifted D.are very handsome( )49. To our surprise in Japan many parents________.A. don't help their childrenB. are worried about their children and help them in any wayC. aren’t worried about their childrenD. are worried about their children,but don't help them in any way ( )50.According to the passage,it's necessary to teach students_______.A.to show love and care for others B.how to study wellC.how to get on with others D.all above(非选择题部分)四、根据句意及首字母完成单词。

【鲁教版】九年级数学下期中模拟试卷(带答案)

【鲁教版】九年级数学下期中模拟试卷(带答案)

一、选择题1.如图,在正方形ABCD中,点E是边BC的中点,连接AE,EF AE⊥交CD边于点F,已知4AB=,则CF的长为()A.1 B.5C.3 D.22.若234a b c==,则a bb c+-的值为()A.5 B.15C.-5 D.-153.如图,在Rt△ABC中,∠B=90⁰,34BCAB=,D是AB边上一点,过D作DE⊥AB交AC于点E,过D作DF∥AC交BC于点F,连接BE交DF于H.若DH=DE,则DEHFBHSS∆∆为()A.23B.34C.49D.9164.如图,矩形ABCD中,AD m=,AB n=,要使BC边上至少存在一点P,使ABP△、APD△、CDP两两相似,则m、n间的关系式一定满足()A .12m n ≥B .m n ≥C .32m ≥D .2m n ≥5.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=5:2,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .5:7B .10:4C .25:4D .25:496.如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且,AE EB >若1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,则32:S S 的值为( )A .51- B .51+ C .352D .35+ 7.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .58.已知点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y =﹣2x图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 1>y 3>y 2D .无法确定9.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =kx的图象上,OA =1,OC =6,则正方形ADEF 的边长为( )A .1.5B .1.8C .2D .无法求10.反比例函数ky x=经过点(2,1),则下列说法错误..的是( ) A .2k =B .函数图象分布在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小11.函数y kx k =-+与ky x=在同一坐标系中的图象可能是( ) A . B . C . D .12.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .5二、填空题13.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .14.目前,某市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=3米和b=4米,现要将此绿地扩充改造为等腰三角形,且扩充部分为含以b 为直角边的直角三角形,则扩充后等腰三角形的周长为____________米 15.已知13x y =,则x y y-的值为______ 16.如图,在矩形ABCD 中,AB =2,BC =a ,点E 在边BC 上,且BE =35a .连接AE ,将△ABE 沿AE 折叠,若点B 的对应点B′落在矩形ABCD 的边上,则a 的值为______.17.反比例函数()0ky x x=<的图象如图所示,下列关于该函数图象的四个结论:①0k >;②当0x <时,y 随x 的增大而增大;③该函数图象关于直线y x =-对称;④若点()2,3-在该反比例函数图象上,则点()1,6-也在该函数的图象上.其中正确结论的有_________(填番号).18.如图,直线AB 过原点分别交反比例函数6y x=,于A .B ,过点A 作AC x ⊥轴,垂足为C ,则△ABC 的面积为______.19.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表). 售价x (元/双) 200 240 250 400销售量y (双)30 252415价应定为_______元.20.如图,在平面直角坐标系中,函数y kx =与2y x=-的图像交于A 、B 两点,过点A 作y 轴的垂线,交函数1y x=的图像于点C ,连接BC ,则ABC ∆的面积为 _________.三、解答题21.综合与实践将矩形ABCD 和Rt CEF △按如图1的方式放置,已知点D 在CF 上(2CF CD >),90FCE ∠=︒,连接BF ,DE .特例研究(1)如图1,当AD CD =,CE CF =时,线段BF 与DE 之间的数量关系是_______;直线BF 与直线DE 之间的位置关系是_______;(2)在(1)条件下中,将矩形ABCD 绕点C 旋转到如图2的位置,试判断(1)中结论是否仍然成立,并说明理由; 探究发现(3)如图3,当2CF CE =,2CB CD =时,试判断线段BF 与DE 之间的数量关系和直线BF 与直线DE 之间的位置关系,并说明理由; 知识应用(4)如图4,在(3)的条件下,连接BE ,FD ,若22CE CD ==,请直接写出22BE FD +的值.22.如图,在ABC 中,正方形EFGH 内接于ABC ,点E F 、在边AB 上,点G H 、分别在BC AC 、上,且2EF AE FB =⋅, (1)求证:90C ∠=︒(2)求证:AH CG AE FB ⋅=⋅.23.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE =(2)若6,43DE CE ==,求AB 的长.24.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻) (1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.25.如图,一次函数15y x =-+与反比例函数2ky x=的图象交于A (1,m )、B (4,n )两点.(1)求A 、B 两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当12y y >时x 的取值范围.26.码头工人往一艘轮船上装载货物,装完货物所需时间y (分)与装载速度x (吨 /分)之间的函数关系如图所示. (1) 这批货物的质量是多少?(2) 直接写出y 与x 之间的函数表达式;(3) 现有一批货物,要在2h 内装载完成,码头工人每分钟至少要装载多少吨货物?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】根据相似三角形的性质与判定即可求出答案. 【详解】解:由题意可知:2BE CE ==, ∵90AEF B C ∠=∠=∠=︒, ∴BAE AEB AEB CEF ∠+∠=∠+∠, ∴BAE CEF ∠=∠, ∴AEB EFC ∆∆∽, ∴AB BECE CF=, ∴422CF =, ∴1CF =, 故选:A . 【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.2.C解析:C 【分析】设234a b ck ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】解:设234a b ck ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-kk =﹣5, 故选:C . 【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.3.C解析:C 【分析】 易证DE ∥BC ,可得34BC DE AB AD ==,因为DH=DE ,得35DE DH AE AE ==,又因为DF ∥AC ,所以35BH DH BE AE ==,所以32BH HE =,根据相似三角形的面积比等于相似比的平方即可求得.∵DE ⊥AB , ∴∠ADE=90°, ∵∠B=90°, ∴∠ADE=∠B , ∴DE ∥BC ∴34BC DE AB AD ==,△DEH ∽△FBH ∴35DE AE = 又∵DH=DE ∴35DE DH AE AE == ∵DF ∥AC∴35BH DH BE AE == ∴32BH HE = ∴4=9DEH FBH S S ∆∆ 故选C 【点睛】本题考查相似三角形的性质与判定,掌握相似三角形的面积比等于相似比的平方是解题关键.4.D解析:D 【分析】由于△MNP 和△DCP 相似,可得出关于MN 、PC 、NP 、CD 的比例关系式.设PC=x ,那么NP=m-x ,根据比例关系式可得出关于x 的一元二次方程,由于NC 边上至少有一点符合条件的P 点,因此方程的△≥0,由此可求出m 、n 的大小关系. 【详解】解:若设PC=x ,则NP=m-x , ∵△ABP ∽△PCD ,AB BP PC CD ∴=即,n m xx n-= 即x 2-mx+n 2=0方程有解的条件是: m 2-4n 2≥0,∴(m+2n )(m-2n )≥0,则m-2n≥0, ∴m≥2n .【点睛】本题是存在性问题,可以转化为方程问题,利用判断方程的解的问题来解决.5.D解析:D 【分析】根据题意证明DEF BAF ,再利用相似比得到面积比.【详解】解:∵四边形ABCD 是平行四边形, ∴//CD AB ,CD AB =, ∵:5:2DE EC =, ∴:5:7DE DC =, ∴:5:7DE AB =, ∵DEFBAF ,∴22::25:49DEFBAFSSDE AB ==.故选:D . 【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形相似比和面积比的关系.6.A解析:A 【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到51AE AB 和BEAE =,用a 表示出1S 、2S 和3S 的面积,再求比例. 【详解】解:设正方形ABCD 的边长为a , ∵点E 是AB 上的黄金分割点,∴51AEAB ,则AE =,∴BE AE =,则21322BE a a ⎛⎫== ⎪ ⎪⎝⎭,∵22211322S AE a a ⎛⎫-=== ⎪ ⎪⎝⎭,22S BE BC =⋅=,∴()2222335355222S a a a a --=--=-, ∴()22323551:52:22S S a a --=-=. 故选:A .【点睛】 本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.7.B解析:B【分析】证明()△△DHA CGD AAS ≅,()△△ANB DGC AAS ≅得到:1AN DG AH===,而11AH m =--=,解得2m =-,即可求解; 【详解】设点8,D m m ⎛⎫ ⎪⎝⎭, 如图所示,过点D 作x 轴的垂线交CE 于点G ,过点A 作x 轴的平行线DG 于点H ,过点A 作AN x ⊥轴于点N ,∵90GDC DCG ∠+∠=︒,90GDC HDA ∠=∠=︒,∴HDA GCD ∠=∠,又AD CD =,90DHA CGD ∠=∠=︒,∴()△△DHA CGDAAS ≅,∴HA DG =,DH CG =, 同理可得:()△△ANB DGCAAS ≅, ∴1AN DG AH===, 则点8,1G m m ⎛⎫- ⎪⎝⎭,CG DH =, 11AH m =--=,解得:2m =-,故点()2,5G --,()2,4D --,()2,1H-, 则点8,55E ⎛⎫-- ⎪⎝⎭,25GE =, ∴223555CE CG GE DH GE =-=-=-=. 故答案选B .【点睛】本题主要考查了反比例函数图象上点的坐标特征,正方形的性质,准确分析计算是解题的关键.8.C解析:C【分析】根据反比例函数图象上点的坐标特征得到y 1=12x -,y 2=22x -,y 3=32x -,然后根据x 1<0<x 2<x 3比较y 1,y 2,y 3的大小.【详解】点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是2y x =-的图象上的点, ∴y 1=12x -,y 2=22x -,y 3=32x -, 而x 1<0<x 2<x 3,∴y 1>y 3>y 2.故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征:熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9.C解析:C【分析】根据OA 、OC 的长度,可得反比例函数的比例系数k=6,设正方形ADEF 的边长为x ,则OD DE=(1x)x=6⋅+⋅,解得x 即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅,设正方形ADEF 的边长为x ,则OD=OA+AD=1+x ,DE=x ,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍),故选:C .【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k.10.C解析:C【分析】将点(2,1)代入kyx=中求出k值,再根据反比例函数的性质对四个选项逐一分析即可.【详解】将点(2,1)代入kyx=中,解得:k=2,A.k=2,此说法正确,不符合题意;B.k=2﹥0,反比例函数图象分布在第一、三象限,此书说法正确,不符合题意;C.k=2﹥0且x﹥0,函数图象位于第一象限,且y随x的增大而减小,此说法错误,符合题意;D.k=2﹥0且x﹥0,函数图象位于第一象限,且y随x的增大而减小,此说法正确,不符合题意;故选:C.【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质,理解函数图象上的点与解析式的关系是解答的关键.11.D解析:D【分析】根据题意,分类讨论k>0和k<0,两个函数图象所在的象限,即可解答本题.【详解】解:当k>0时,函数y=-kx+k的图象经过第一、二、四象限,函数kyx=(k≠0)的图象在第一、三象限,故选项A、选项C错误,当k<0时,函数y=-kx+k的图象经过第一、三、四象限,函数kyx=(k≠0)的图象在第二、四象限,故选项B错误,选项D正确,故选:D.【点睛】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论,数形结合的思想解答.12.D解析:D【分析】过点B作BH⊥x轴于H,根据坐标特征可得点A和点B的纵坐标相同,由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a),即可求出BH和AB,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B作BH⊥x轴于H∵四边形ABCD为平行四边形∴//AB x轴,CD=AB∴点A和点B的纵坐标相同由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a)∴BH=a,CD=AB=2a -(3a-)=5a∴ABCDS=BH·CD=5故选D.【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.二、填空题13.09【分析】直接根据平行线分线段成比例定理求解即可【详解】解:∵∴即:∴DE=09cm故答案为:09【点睛】此题主要考查了平行线分线段成比例定理熟练运用定理是解答此题的关键解析:0.9【分析】直接根据平行线分线段成比例定理求解即可.【详解】解:∵////AF BE CD,∴AB EFBC DE=即:2 1.8 =1DE∴DE=0.9cm故答案为:0.9【点睛】此题主要考查了平行线分线段成比例定理,熟练运用定理是解答此题的关键14.16或10+2或【分析】分三种情形讨论即可①AB=BE1②AB=AE3③E2A=E2B 分别计算即可【详解】解:如图在Rt △ABC 中∵∠ACB=BC=3AC=4∴①当BA=BE1=5时CE1=2∴∴△解析:16或10+25或403【分析】分三种情形讨论即可,①AB=BE 1,②AB=AE 3,③E 2A=E 2B ,分别计算即可.【详解】解:如图在Rt △ABC 中,∵∠ACB=90,BC=3,AC=4 ∴225AB BC AC =+=①当BA=BE 1=5时,CE 1=2, ∴221125AE AC CE =+=∴△ABE 1周长为(5②当AB=AE 3=5时,CE 3=BC=3,BE 3=6,∴△ABE 3周长为16米.③当E 2A=E 2B 时,作E 2H ⊥AB ,则BH=AH=2.5, ∵∠B=∠B ,∠ACB=∠BHE 2=90∘,∴△BAC ∽△BE 2H ,∴2BE BH BC AB=∴BE 2=256, ∴△ABE 2周长为25402563⨯+=米.综上所述扩充后等腰三角形的周长为16或403米故答案为:16或403【点睛】 本题考查等腰三角形的定义、勾股定理、相似三角形的性质与判定、三角形周长等知识,正确理解题意是解题的关键,运用了分类讨论的数学思想,注意漏解.15.【分析】可得y=3x 代入所求式子可得结论【详解】解:∵∴y=3x ∴=故答案是:【点睛】本题主要考查了比例的性质解题时注意:内项之积等于外项之积 解析:23- 【分析】可得y=3x ,代入所求式子可得结论.【详解】解:∵13x y =, ∴y=3x , ∴x y y -=3233x x x -=-, 故答案是:23-. 【点睛】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积. 16.或【分析】分两种情况:①点落在AD 边上根据矩形与折叠的性质易得即可求出a 的值;②点落在CD 边上证明根据相似三角形对应边成比例即可求出a 的值【详解】解:分两种情况:①当点落在AD 边上时如图1四边形AB解析:103. 【分析】分两种情况:①点'B 落在AD 边上,根据矩形与折叠的性质易得=AB BE ,即可求出a 的值;②点'B 落在CD 边上,证明''ADB B CE ∆∆,根据相似三角形对应边成比例即可求出a 的值.【详解】解:分两种情况:①当点B '落在AD 边上时,如图1.四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,'1452BAE B AE BAD ∴∠=∠=∠=︒, AB BE ∴=,325a ∴=, 103a ∴=;②当点'B 落在CD 边上时,如图2.∵四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点'B 落在CD 边上, '90B AB E ∴∠=∠=︒,'2AB AB ==,'35BE B E a ==, 2224DB B A AD a ''∴-=-3255EC BC BE a a a =-=-=. 在ADB '∆与B CE '∆中,9090B AD EB C AB D D C ∠=∠=︒-∠''⎧⎨∠=∠=︒'⎩, ''ADB B CE ∴∆∆,'''DB AB CE B E ∴=,即22355a a =,解得1a =,2a = 综上,所求a 的值为103或3. 故答案为103或3. 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.17.②③④【分析】观察反比例函数y =(x <0)的图象可得图象过第二象限可得k <0然后根据反比例函数的图象和性质即可进行判断【详解】解:①由题图可得:当时则该函数的应满足:则①错误②由题图象可知随的增大而 解析:②③④.【分析】观察反比例函数y =k x(x <0)的图象可得,图象过第二象限,可得k <0,然后根据反比例函数的图象和性质即可进行判断.【详解】解:①由题图可得:当0x <时,0y >, 则该函数()0k y x x=<的k 应满足:0k <, 则①错误,②由题图象可知, y 随x 的增大而增大,(反比例函数具有单调性),则②正确,③由于该图象为()0k y x x=<的图象(注意x 的范围),在第二象限。

【鲁教版】九年级全册英语期中试卷(含答案)

【鲁教版】九年级全册英语期中试卷(含答案)

一、选择题1.—Excuse me, could you please tell me _________?—It's not far from here. I can walk with you.A.how can I get to Xinhua BookstoreB.how I can get to Xinhua BookstoreC.how could I get to Xinhua Bookstore2._________ we study,_________ our grades will be.A.more hardly;more better B.The more hard;the bestC.The harder;the better D.The more hardly;the better 3.Knowledge is power, but sometimes I feel thoughts are ________ than knowledge. A.powerful B.more powerfulC.most powerful D.the most powerful4.There are two ______. please ________ what they said.A.note, note B.notes, notes C.note, notes D.notes, note5.I eat five meals a day. I have _____ 5 pounds.A.put on B.put up C.put in6.________is the first course of a meal.A.Starter B.Main Course C.Dinner D.Dessert7.The flu(流感) is so harmful that people _________ go to public places.A.not warn to B.warn not to C.are not warned to D.are warned not to 8.—Lucy,who's the man you called up just now?—He's my uncle,a of mine.A.relative B.pupilC.stranger D.present9.-How do you improve your spoken English?-By practicing _____________ to my teachers and classmates.A.talking B.to talk C.talk10.— How ___________ your sofa feels!— Is it like a soft bed? I often lie on it for a short break at noon.A.terrible B.comfortable C.humorous D.dangerous 11.The Yellow River________flood large areas, but now the waters of it are usedto________energy.A.was used to; producing B.used to; producingC.was used to; produce D.used to; produce12.—Does my question sound ______enough?—I don't think so. You can ask more ______ by using “could” instead of “can”.A.polite; politely B.politely; polite C.politely; politely D.polite; polite 13.The boy was born in ____,but his parents are _______.A.Russian, British B.Russian, EnglandC.Russia, British D.Russia, England14.— How does Tom go to the office?— He __________ drive a car, but now he __________ there to keep healthy.A.used to; is used to walk B.was used to; is used to walkingC.was used to; is used to walk D.used to; is used to walking15.It is not __________ to speak loudly in public.A.polite B.special C.possible D.personal16.I don't believe that this boy can paint such a nice picture.A.five years old B.five-years-oldC.five-year-old D.five year old17.About 5000 cars in the factory last month.A.have produced B.were produced C.was produced D.will be produced 18.Mike likes coins very much.He has collected about five__ coins from different countries so far.A.hundred of B.hundred C.hundreds of D.hundreds 19.We find________impossible for us to learn a foreign language well in a short time.A.thatB.thisC.oneD.it20.Some people are _________ power, wealth or fame, but all I want is only health and happiness.A.responsible for B.known for C.thirsty for D.thankful to【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【详解】句意:——打扰一下,请问你能告诉我怎么去新华书店吗?——离这不远。

鲁教版语文期中考试卷

鲁教版语文期中考试卷

一、选择题(每题2分,共20分)1. 下列词语中,加点字注音完全正确的一项是()A. 沉默(mò)淹没(yān)融化(róng)B. 拼搏(pīn)稳定(wěn)沉淀(diàn)C. 拖拉(tuō)停滞(zhì)领悟(wù)D. 沉重(zhòng)恍惚(huǎng)突破(tū)2. 下列句子中,没有语病的一项是()A. 我们在参观过程中,深受革命先烈的英勇事迹的鼓舞。

B. 随着社会的发展,我国的教育事业取得了举世瞩目的巨大成就。

C. 为了完成这次任务,我们付出了辛勤的劳动和汗水。

D. 他的学习成绩一直名列前茅,是老师心中的得意门生。

3. 下列词语中,不属于近义词的一项是()A. 欢快欢乐B. 优秀优异C. 谦虚谦逊D. 感动感激4. 下列句子中,使用了比喻修辞手法的一项是()A. 那座山就像一位雄壮的巨人。

B. 小明长得胖乎乎的。

C. 她的眼睛像星星一样明亮。

D. 那只鸟儿飞得高高的。

5. 下列句子中,使用了拟人修辞手法的一项是()A. 太阳慢慢升起,照亮了大地。

B. 那朵花在微风中轻轻摇曳。

C. 小河唱着歌儿流向远方。

D. 那只小鸟在天空中自由翱翔。

二、填空题(每题2分,共20分)6. 《咏柳》这首诗的作者是,诗中描绘了柳树在春天里_______的景象。

7. 《月光下的凤尾竹》这首诗的作者是,诗中描绘了月光下_______的美丽景色。

8. 《黄河颂》这首诗的作者是,诗中赞美了黄河的_______。

9. 《春》这首诗的作者是,诗中描绘了春天_______的景象。

10. 《小河》这首诗的作者是,诗中描绘了小河_______的美丽景色。

三、阅读题(每题10分,共30分)11. 阅读下面的诗歌,回答问题。

《题西林壁》苏轼横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

(1)这首诗的作者是_______,诗中描绘了_______的景象。

【鲁教版】初三数学下期中试卷附答案

【鲁教版】初三数学下期中试卷附答案

一、选择题1.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:4 2.若234a b c ==,则a b b c +-的值为( ) A .5 B .15 C .-5 D .-153.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203C .52D .1524.如图,已知在ABC 中,D 为BC 上一点,//EG BC ,分别交AB ,AD ,AC 于点E ,F ,G ,则下列比例式正确的是( )A .AE EF BE BD = B .EF AF DC AD = C .AC FG CG DC = D .AE FG AB DC= 5.下列相似图形不是位似图形的是( )A .B .C .D . 6.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( ) A .5(5-1) B .5(5+1) C .10(5-2) - D .5(3-5) 7.已知:点A(1,y 1)、B (2,y 2)、C(-3,y 3)都在反比例函数k y x =图象上(k>0),则y 1、y 2、y 3的关系是( )A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 2<y 1 8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =8x上,过点C 作CE ∥x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .3.5D .59.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab-4的值为( ) A .0 B .-2 C .2 D .-610.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .5 11.已知一个正比例函数与一个反比例函数的图像交于(-3,4),则这两个函数的表达式分别是( )A .412,3y x y x ==B .412,3y x y x =-=-C .412,3y x y x =-=D .412,3y x y x==- 12.如图,函数y =kx (k >0)与函数2y x=的图象相交于A ,C 两点,过A 作AB ⊥y 轴于B ,连结BC ,则三角形ABC 的面积为( )A .1B .2C .k 2D .2k 2二、填空题13.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个.14.如图,点О是正方形ABCD 的中心,DE 与О相切于点E ,连接,BE 若10,DE =102BE =О的面积是________________.15.如图所示,在△ABC 中DE ∥BC ,若2EFB EFD S S ∆∆=,则 DE:BC=______.16.如图,ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的______.17.如图,四边形OABC 和ADEF 均为正方形,反比例函数8y x =的图象分别经过AB 的中点M 及DE 的中点N ,则正方形ADEF 的边长为___18.已知反比例函数3y x=-,当1x >时,y 的取值范围是____ 19.如图,菱形ABCD 的两个顶点A 、B 在函数k y x=(x>0)的图像上,对角线AC//x 轴.若AC=4,点A 的坐标为(2,2),则菱形ABCD 的周长为_____.20.如图,在平面直角坐标系中,反比例函数y=k x (k≠0),经过▱ABCD 的顶点B .D ,点A 的坐标为(0,-1),AB ∥x 轴,CD 经过点(0,2),▱ABCD 的面积是18,则点C 的坐标是______.三、解答题21.如图,Rt ABC ∆中,90ACB ∠=︒,顶点A 、B 都在反比例函数()0k y x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,使OA AB ⊥于A ,连结OC ,并延长交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若()1,A n .(1)求反比例函数的解析式;(2)求EOD ∠的度数.22.()1如图1,四边形ABCD 和BEFG 都是正方形,将正方形BEFG 绕点B 按顺时针方向旋转,记旋转角为,a 则图中AG 与CE 的数量关系是__ ,AG 与CE 的位置关系是_ _ ;()2如图2,四边形ABCD 和BEFG 都是矩形,且2,2BC AB BE BG ==,将矩形BEFG 绕点B 按顺时针方向旋转,记旋转角为,a 图中AG 与CE 的数量和位置关系分别是什么?请仅就图2的情况给出证明;参考答案23.如图,已知(4,)A n -,(1,4)B -是一次函数y kx b =+的图象和反比例函数m y x =的图象的两个交点.(1)求反比例函数和一次函数的解析式.(2)求直线AB 与x 轴的交点C 的坐标及AOB 的面积.(3)求不等式0m kx b x+-<的解集(请直接写出答案). 24.如图,在平面直角坐标系中,一次函数1(0)y kx b k =+≠的图象与反比例函数()2m y m 0x=≠的图象相交于第一、三象限内的A (3,5),B (a ,﹣3)两点,与x 轴交于点C .(1)求该反比例函数和一次函数的解析式; (2)直接写出当1y >2y 时,x 的取值范围;(3)在y 轴上找一点P 使PB ﹣PC 最大,求PB ﹣PC 的最大值及点P 的坐标.25.已知一次函数y 1 = yy − (2y + 1)的图象与 x 轴和 y 轴分别交于 A 、B 两点,A (3,0),一次函数与反比例函数21ky x+=-的图象分别交于 C 、D 两点.(1)求一次函数与反比例函数解析;(2)求△OCD 的面积;(3)直接写出 y 1> y 2时,y 的取值范围.26.如图,在ABC ∆中,点D 、E 、F 分别在AB 、AC 、BC 上,DE //BC ,EF //AB .(1)求证:ADE ∆∽EFC ∆;(2)如果6AB =,4=AD ,求ADE EFCS S ∆∆的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意可得DN=NM=MB ,据此可得DF :BE=DN :NB=1:2,再根据BE :DC=BM :MD=1:2,AB=DC ,故可得出DF :FC 的值.【详解】解:由题意可得DN=NM=MB ,AB//CD ,AB//BC∴△DFN ∽△BEN ,△DMC ∽△BME ,∴DF :BE=DN :NB=1:2,BE :DC=BM :MD=1:2,又∵AB=DC ,∴DF :AB=1:4,∴DF :FC=1:3故选:B .【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用. 2.C解析:C【分析】 设234a b c k ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】 解:设234a b c k ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-k k=﹣5, 故选:C .【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.3.C解析:C【分析】 根据平行线分线段成比例得到BC AD CE DF =,代入已知解答即可. 【详解】解:∵////AB CD EF , ∴BC AD CE DF=, ∵:3:1AD DF =,10BE =, ∴1031CE CE -=, 解得:CE=52, 故选:C .【点睛】 本题考查平行线分线段成比例、比例的性质,掌握平行线分线段成比例是解答的关键,注意对应线段的顺序.4.D解析:D【分析】根据相似三角形的判定推出△AEF∽△ABD,△AFG∽△ADC,△AEG∽△ABC,再根据相似三角形的性质得出比例式即可.【详解】A、∵EG∥BC,即EF∥BD,∴△AEF∽△ABD,∴AE EF=,AB BD≠,故本选项不符合题意;∵AB BEB、∵EF∥BD,∴△AEF∽△ABD,∴EF AF=,BD AD∵BD≠DC,故本选项不符合题意;C、∵EG∥BC,即FG∥DC,∴△AFG∽△ADC,∴AG FG=,AC DC∵AG AC≠,故本选项不符合题意;AC CGD、∵EG∥BC,∴△AEG∽△ABC,∴AE AG=,AB AC∵FG∥DC,∴△AFG∽△ADC,∴AG FG=,AC DC∴AE FG=,故本选项符合题意;AB DC故选:D【点睛】本题考查了相似三角形的性质和判定,能正确的识别图形、灵活运用定理进行推理是解此题的关键.5.D解析:D【分析】根据位似变换的概念判断即可.【详解】解:D中两个图形,对应边不互相平行,不是位似图形,A、B、C中的图形符合位似变换的定义,是位似图形,故选:D.【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.6.C解析:C【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ、PB的长度,再根据PQ=AQ+PB-AB即可求出PQ的长度.【详解】解:如图,根据黄金分割点的概念,可知512PB AQAB AB==,∴AQ=PB,AB=10,∴AQ=PB=51105552⨯=,∴PQ=AQ+PB-AB=555555101052010(52)+-==.故选:C.【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.7.D解析:D【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∵反比例函数kyx=(k>0),∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小,∵-3<0,∴点C(-3,y3)位于第三象限,∴y3<0;∵2>1>0,∴A(1,y2)、B(2,y3)在第一象限,∵2>1,∴0<y2<y1,∴y3<y2<y1.故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.B解析:B【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN =DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH =﹣1﹣m =1,解得:m =﹣2,故点G (﹣2,﹣5),D (﹣2,﹣4),H (﹣2,1),则点E (﹣85,﹣5),GE =25, CE =CG ﹣GE =DH ﹣GE =5﹣25=235, 故选B .【点睛】 本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.9.B解析:B【解析】试题∵点(a ,b )反比例函数2y x上, ∴b=2a,即ab=2, ∴原式=2-4=-2.故选B . 考点:反比例函数图象上点的坐标特征.10.C解析:C【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k ,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k , ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4,故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,11.B解析:B【分析】用待定系数法分别求出两个函数表达式即可.【详解】解:设正比例函数为y =kx ,将(-3,4)代入,得4=-3k , 解得43k =-, ∴正比例函数为43y x =-, 设反比例函数为k y x=, 将(-3,4)代入,得43k =- 解得k =-12,∴反比例函数为12y x=-, 故选:B .【点睛】本题考查了用待定系数法求正比例函数表达式和反比例函数表达式,熟练掌握待定系数法是解决本题的关键.12.B解析:B【分析】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,根据点A ,C 关于原点对称,可得出点C 坐标,最后根据三角形的面积计算即可.【详解】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,则点C 坐标2,x x ⎛⎫--⎪⎝⎭, ∵AB ⊥y 轴, ∴()114222ABC A C S AB y y x x=⋅-=⋅=, 故选B .【点睛】本题考查反比例函数图象上点的坐标特征,熟练掌握双曲线是关于原点对称,两个分支上的点也是关于原点对称是解题的关键.二、填空题13.3【分析】根据∠BEO=∠CDO=90°可证同理可证从而得出答案;【详解】是的高又∵综上与相似的三角形有3个故答案为:3【点睛】本题考查了相似三角形的判定解题的关键是找出两个对应角相等即可;解析:3【分析】根据∠BEO=∠CDO=90°,BOE COD ∠=∠可证BOE COD ∽△△,同理可证BOE CAE ∽△△,BOE BAD ∽△△,从而得出答案;【详解】 BD ,CE 是ABC 的高,90BEO CEA BDC BDA ∴∠=∠=∠=∠=︒,BEO CDO ∠=∠,BOE COD ∠=∠,BOE COD ∴∽△△,90EBO A ∠+∠=︒,90ACE A ∠+∠=︒,EBO ECA ∴∠=∠,又∵BEO CEA ∠=∠,BOE CAE ∴∽△△,BEO BDA ∠=∠,∠=∠OBE ABD ,BOE BAD ∴∽△△,综上与BOE △相似的三角形有3个.故答案为:3.【点睛】本题考查了相似三角形的判定,解题的关键是找出两个对应角相等即可;14.25【分析】连接EO 可知EO ⊥ED 延长DE 到点F 作BF ⊥DF 根据题意可知△DEO ∽△DFB 在△EFB 中根据勾股定理求解得出半径的长然后再根据圆的面积公式求解即可;【详解】如图:连接EO 可知EO ⊥ED解析:25π【分析】连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,根据题意可知△DEO ∽△DFB ,在△EFB 中,222EB EF FB =+,根据勾股定理求解得出半径的长,然后再根据圆的面积公式求解即可;【详解】如图:连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,∵∠FDB=∠EDO ,∠DEO=∠DFB ,∴△DEO ∽△DFB ,∵EO=r ,ED=10,EB=∵DO=OB , ∴12DO EO DE DB FB DF===, ∴EF=10,FB=2r , 在△EFB 中,222EB EF FB =+,()22102=1004r +,∴ r=5,∴ 圆的面积为225r ππ=,故答案为:25π【点睛】本题考查了圆的面积公式、相似三角形的判定、勾股定理等知识,熟练掌握这些公式是解题的关键;15.1:2【分析】由可得DF :FB=1:2又由DE ∥BC 可得△DFE 和△BFC 相似确定DE:BC 【详解】解:设为1则为2∵∴DF :FB=1:2又∵DE ∥BC ∴△DFE ∽△BFC ∴DE:BC=DF:FB=解析:1:2【分析】由2EFB EFD S S ∆∆=,可得DF :FB=1:2,又由DE ∥BC ,可得△DFE 和△BFC 相似,确定DE:BC.【详解】解:设EFD S ∆为1,则EFB S ∆为2,∵2EFB EFD S S ∆∆=,∴DF :FB=1:2,又∵DE ∥BC ,∴△DFE ∽△BFC ,∴DE:BC=DF:FB=1:2故答案为1:2【点睛】本题考查了相似三角形的性质和判定,解题的关键在于根据面积比确定边长的比.16.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC= 解析:13【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC , ∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.17.【分析】设正方形的边长为正方形的边长为再由是的中点是的中点可知再代入反比例函数求出的值即可【详解】解:设正方形的边长为正方形的边长为是的中点是的中点反比例函数的图象分别经过的中点及的中点解得故答案为解析:2-+【分析】设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,再由M 是AB 的中点,N 是DE 的中点可知(,)2a M a ,(,)2b N ab ,再代入反比例函数8y x=求出b 的值即可. 【详解】 解:设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,M 是AB 的中点,N 是DE 的中点, (,)2a M a ,(,)2b N a b . 反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N ,∴82a a ,82b a b ,解得4a =,225b .故答案为:2-+【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.-3<y<0【分析】根据反比例函数的增减性求解【详解】在反比例函数∴函数图象在第二四象限且在每个象限内y 随x 的增大而增大当x >1时函数图象在第四象限且当x=1时y=-3∴当x >1时-3<y<0;故答解析:-3<y<0【分析】 根据反比例函数的增减性求解.【详解】在反比例函数3y x=-,30k =-<, ∴函数图象在第二、四象限,且在每个象限内y 随x 的增大而增大,当x >1时,函数图象在第四象限且当x=1时,y=-3,∴当x >1时-3<y<0;故答案为:-3<y<0.【点睛】考查反比例函数的增减性,掌握反比例函数的增减性是解题的关键,即在y=k x(k≠0)中,当k >0时,在每个象限内y 随x 的增大而减小,当k <0时,在每个象限内y 随x 的增大而增大.19.【分析】连接BD 与AC 交于点O 根据AC=4得出AO=OC=2再根据A 的坐标为(22)求出反比例解析式从而计算出B 点的坐标再根据距离公式算出AB 的长度从而求算周长【详解】如图连接BD 与AC 交于点O ∵A解析:【分析】连接BD 与AC 交于点O ,根据AC=4,得出AO=OC=2,再根据A 的坐标为(2,2)求出反比例解析式,从而计算出B 点的坐标,再根据距离公式算出AB 的长度,从而求算周长.【详解】如图,连接BD 与AC 交于点O∵A 的坐标为(2,2)∴反比例函数的解析式为4y x=又∵四边形ABCD 是菱形且AC=4∴AO=OC=2 ∴B 点坐标为()4,1∴()()2242125-+-= ∴菱形ABCD 的周长为:5故答案为:5【点睛】本题考查反比例函数与菱形性质相结合,掌握菱形的对角线平分以及反比例图象上的点的特点是解题关键.20.(32)【分析】如图先求出AE 的长再根据平行四边形的面积可求出ABCD 的长从而可知点B 坐标然后利用待定系数法可求出反比例函数的解析式最后利用函数解析式可求出点D 坐标从而根据CD 的长可求出点C 的横坐标 解析:(3,2)【分析】如图,先求出AE 的长,再根据平行四边形的面积可求出AB 、CD 的长,从而可知点B 坐标,然后利用待定系数法可求出反比例函数的解析式,最后利用函数解析式可求出点D 坐标,从而根据CD 的长可求出点C 的横坐标,即可得出答案.【详解】如图,由题意得,2(1)3,,AE AE AB AB CD =--=⊥=,点C 、D 纵坐标均为2 ABCD S AE AB AE CD ∴=⋅=⋅,即3318AB CD ==解得6AB CD ==∴点B 坐标为(6,1)B -将点(6,1)B -代入反比例函数的解析式得16k =- 解得6k =-则反比例函数的解析式为6y x =-令2y =得62x-=,解得3x =- (3,2)D ∴-设点C 坐标为(,2)C a (3)6CD a ∴=--=,解得3a =(3,2)C ∴故答案为:(3,2).【点睛】本题考查了平行四边形的面积、利用待定系数法求反比例函数的解析式等知识点,根据平行四边形的面积求出AB 的长,从而得出点B 坐标是解题关键.三、解答题21.(1)反比例函数的解析式为12y x+=;(2)22.5° 【分析】 (1)根据同角的余角相等和相似三角形的判定可证得△AOD ∽△BAC ,则有AO OD AD AB AC BC==,进而有AC=2,BC=2n ,则点B 坐标为(2n+1,n ﹣2),由(2n+1)(n ﹣2)=1·n 解出n 值,即可求得k 值进行解答; (2)根据直角三角形的中线等于斜边的一半可证得BE=CE=AE=12AB=OA ,进而∠AEO=2∠ECB=45°,由BC ∥x 轴得∠EOD=∠ECB 即可解答·【详解】解:(1)∵直线AC x ⊥轴,OA AB ⊥,∴∠OAE=90°,∠ADO=90°,∴∠AOD+∠OAD=90°,∠BAC+∠OAD=90°,∴∠AOD=∠BAC ,又∠ACB=∠ADO=90°,∴△AOD ∽△BAC ,∴AO OD AD AB AC BC==, ∵()1,A n ,∴OD=1,AD=n ,又2AB OA =,∴AC=2OD=2,BC=2AD=2n ,∵∠ACB=∠ADO=90°,∴BC ∥x 轴,∴点B 的坐标为(2n+1,n ﹣2),∵点A 、B 都在反比例函数()0k y x x =>的图象上, ∴(2n+1)(n ﹣2)=1·n ,解得:n 1= 1n 2= 1(负值,舍去),则A(1,1,则k=1×(1+=1+∴反比例函数的解析式为1y x=; (2)∵Rt ABC ∆中,90ACB ∠=︒,点E 为AB 的中点,∴BE=CE=AE=12AB , 又∵AB=2OA ,∠OAE=90°,∴∠AEO=∠AOE=45°,∠ECB=∠EBC,∵∠AEO=2∠ECB ,∴∠ECB= 12∠AEO=22.5°, ∵BC ∥x 轴,∴∠EOD=∠ECB=22.5°.【点睛】本题考查了求反比例函数的解析式、相似三角形的判定与性质、坐标与图形、直角三角形的斜边中线性质、等腰三角形的性质、三角形的外角、平行线的性质等知识,是一道与反比例函数有关的几何题,难度适中,解答的关键是熟练掌握相关知识的运用,利用数形结合思想找寻知识的关联点,进行推理、探究与计算.22.(1)AG=CE ,AG ⊥CE ;(2)CE=2AG ,理由见详解.【分析】(1)根据题意易得AB=CB ,BG=BE ,∠ABC=∠GBE=90°,则有∠ABG=∠CBE ,进而可证△ABG ≌△CBE ,然后问题可证,延长AG 交BC 、CE 与点H 、M ,然后根据三角形全等的性质及直角三角形的性质可求解;(2)由题意易得∠ABG=∠CBE ,则可证△ABG ∽△CBE ,进而问题可得证.【详解】解:(1)∵四边形ABCD 和BEFG 都是正方形,∴AB=CB ,BG=BE ,∠ABC=∠GBE=90°,∴∠ABG+∠GBC=90°,∠CBE+∠GBC=90°,∴∠ABG=∠CBE ,∴△ABG ≌△CBE (SAS ),∴AG=CE ,延长AG 交BC 、CE 与点H 、M ,如图所示:∴∠GAB=∠ECB ,∵∠GAB+∠AHB=90°,∠AHB=∠CHM ,∴∠ECB+∠CHM=90°,∴AM ⊥CE ,即AG ⊥CE ,故答案为AG=CE ,AG ⊥CE ;(2)CE=2AG ,理由如下:∵四边形ABCD 和BEFG 都是矩形,∴∠ABC=∠GBE=90°,∴∠ABG+∠GBC=90°,∠GBC+∠CBE=90°,∴∠ABG=∠CBE ,∵2,2BC AB BE BG ==,∴△ABG ∽△CBE , ∴2BC CE AB AG==, ∴CE=2AG .【点睛】 本题主要考查矩形与正方形的性质及相似三角形的性质与判定,熟练掌握矩形与正方形的性质及相似三角形的性质与判定是解题的关键.23.(1)3y x =--,4y x =-;(2)(3,0)C -,152;(3)40x -<<或1x >. 【分析】(1)将(1,4)B -代入m y x=,即可得到m ,从而得到反比例函数解析式,然后将A 、B 代入y kx b =+,即可得到一次函数的解析式;(2)在一次函数上,当0y =时,即可得到C 的坐标,从而得到OC 的长,然后由AOB AOC COB S S S =+求出AOB 的面积;(3)根据图象即可求出m kx b x +<的解析,即不等式0m kx b x +-<的解集. 【详解】(1)反比例函数m y x=经过点(1,4)B -,1(4)4m ∴=⨯-=-,4y x∴=-, 将4x =-,y n =代入反比例解析式得:1n =,(4,1)A ∴-,∴将A 与B 坐标代入一次函数解析式得:441k b k b +=-⎧⎨-+=⎩, 解得:13k b =-⎧⎨=-⎩, 3y x ∴=--.(2)在直线3y x =--中,当0y =时,3x =-,(3,0)C ∴-,即3OC =, 115(3134)22AOB AOC COB S S S∴=+=⨯+⨯=. (3)由两函数交点A 与B 的横坐标,m kx b x+<, 利用图象即可求出不等式0m kx b x+-<的解集是40x -<<或1x >. 【点睛】 本题考查了一次函数和反比例函数的综合问题,以及和不等式相结合的问题,正确理解函数的图象的坐标,函数与自变量的关系是解决本题的关键.24.(1)一次函数的解析式为12y x =+;反比例函数的解析式为215y x=;(2)﹣5<x<0或x >3.(3)P (0,2),【分析】(1)用待定系数法求反比例函数的解析式:把点A 坐标代入反比例函数解析式中,求得m 的值,即可知反比例函数解析式,将点B 坐标代入,可解得a 的值及点B 的坐标,再将点B 的坐标代入一次函数解析式,解关于,k b 的二元一次方程组,即可求得一次函数的解析式;(2)观察图象,结合一次函数与反比例函数图象的交点坐标可以解题;(3)先求一次函数与两坐标轴的交点坐标, 此时,PB ﹣PC =BC 最大,P 即为所求,根据勾股定理求得BC 【详解】解:(1)把A (3,5)代入2(0),m y m x =≠可得m =3×5=15, ∴反比例函数的解析式为215y x=;把点B (a ,﹣3)代入215y x=,可得a =﹣5, ∴B (﹣5,﹣3). 把A (3,5),B (﹣5,﹣3)代入1y x b =+,可得3553k b k b +=⎧⎨-+=-⎩, 解得12k b =⎧⎨=⎩, ∴一次函数的解析式为12y x =+;(2)当1y >2y 时,﹣5<x <0或x >3.(3)一次函数的解析式为12y x =+,令x =0,则y =2,∴一次函数与y 轴的交点为P (0,2),此时,PB ﹣PC =BC 最大,P 即为所求,令y =0,则x =﹣2,∴C (﹣2,0),∴BC ==【点睛】本题考查待定系数法求一次函数、反比例函数的解析式、二元一次方程组的解法、一次函数与反比例函数图象的性质、一次函数图象与两坐标轴的交点坐标求法、线段差的最值、勾股定理等,知识点难度一般,是常见题型,掌握相关知识是解题关键.25.(1)13y x =-,22y x =-;(2)32;(3)1x <或2x > 【分析】(1)将点A (3,0)代入y 1 = yy − (2y + 1)即可求一次函数解析式,将k 代入21k y x +=-即可求反比例函数解析式;(2)如图所示作出辅助线,通过一次函数和反比例函数的解析式求出C 、D 的坐标,再由COD COE FOD CHD S S S S S =---矩形OEFH 计算即可;(3)结合图象以及C 、D 的坐标即可得出.【详解】解:(1)将点A (3,0)代入y 1 = yy − (2y + 1)得:3(21)0k k -+=,解得k=1,∴13y x =-,22y x=- (2)如图,连接OC ,OD ,作CE ⊥y 轴于点E ,作DF ⊥x 轴于点F ,CE,DF 交于点H , ∴212COE FOD S S ===,四边形OEFH 为矩形,由23x x -=-,解得:121,2x x ==, ∴(1,2),(2,1)C D --, ∴CE=1,OE=2,OF=2,DF=1,CH=DH=1,∴COD COE FOD CHD S S S S S =---矩形OEFH=1322111122⨯-⨯⨯--= ∴△OCD 的面积为32;(3)由(2)可知(1,2),(2,1)C D --,通过图象可知:若y 1> y 2,则1x <或2x >.【点睛】本题考查了反比例函数与一次函数综合问题,以及反比例函数与几何问题,解题的关键是熟练掌握反比例函数的图象和性质.26.(1)证明见解析;(2)4.【分析】(1)根据平行线的性质可得∠A =∠CEF ,∠AED =∠C ,即可得结论;(2)根据线段的和差关系可得BD 的长,由DE //BC ,EF //AB 可得四边形DBFE 是平行四边形,根据平行四边形的性质可得EF 的长,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】(1)∵DE//BC ,EF//AB ,∴∠A =∠CEF ,∠AED =∠C ,∴△ADE ∽△EFC .(2)∵AB =6,AD =4,∴DB =6-4=2,∵DE//BC ,EF//AB ,∴四边形DBFE 是平行四边形,∴EF =DB=2,∵△ADE ∽△EFC ,224()()42∆∆===ADE EFC S AD S EF . 【点睛】本题考查平行线的性质、平行四边形的判定与性质及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;相似三角形的面积比等于相似比的平方;熟练掌握相关判断定理及性质是解题关键.。

【鲁教版】九年级数学下期中试卷(附答案)(1)

【鲁教版】九年级数学下期中试卷(附答案)(1)

一、选择题1.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .62.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m ==,连接,AD BE 交于点F ,则AF AD的值为( )A .1m n -B .1m m n +-C .1n m n +-D .1n m - 3.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .3600 4.已知a 3b 4=,则下列变形错误的是( ) A .34a b= B .34a b = C .4a=3b D .43b a = 5.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠6.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AE AC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个7.如图,已知双曲线()0k y x x=>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .48.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( ) A .120x x < B .130x x < C .230x x <D .120x x +< 9.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab-4的值为( ) A .0 B .-2 C .2 D .-610.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .1211.若点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上,则123,,y y y 的大小关系是( )A .123y y y <<B .132y y y <<C .321y y y <<D .213y y y << 12.一次函数y =kx ﹣k 与反比例函数y =k x在同一直角坐标系内的图象大致是( ) A . B . C . D .二、填空题13.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)14.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .15.如图,已知△ABC 中,∠B =90°,BC =3,AB =4,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将△ADE 沿DE 翻折得到△A ′DE ,若△A ′EC 是直角三角形,则AD 长为_____.16.如图,P 为△ABC 的重心,连结AB 并延长BC 于点D ,过点P 作EF ∥BC 分别交AB ,AB 于点E ,F .若△ABC 的面积为36,则△AEF 的面积为____.17.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x 的图象经过A 、B 两点,则菱形ABCD 的面积是_____;18.在直角坐标系中,已知A (0,4)、B (2,4),C 为x 轴正半轴上一点,且OB 平分∠ABC ,过B 的反比例函数y =k x交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记△BDF 的面积为S 1,△OEF 的面积为S 2,则12S S =_____.19.如图,A 、B 两点在双曲线()30y x x=>,分别经过A 、B 两点向坐标轴作垂线段,已知1S =阴影,则12S S +=______.20.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.三、解答题21.在如图所示的12个小正方形组成的网格中,ABC的三个顶点都在小正方形的顶点上.仅用无刻度的直尺按要求完成下列作图.(1)在图1网格中找格点D,作直线BD,使直线BD与AC的交点P是AC的中点.(2)在图2网格中找格点E,作直线BE交AC于点Q,使得CQ CB=.22.△ABC在边长为1的正方形网格中如图所示.(1)以点C为位似中心,作出△ABC的位似图形△A1B1C1,使其位似比为1:2.且△A1B1C1位于点C的异侧,并表示出A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C2.23.如图,一次函数()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,5tan 3DCO ∠=,过点A 作AE x ⊥轴于点E ,若点C 是OE 的中点,且点A 的横坐标为-6.(1)求该反比例函数和一次函数的解析式;(2)连接ED ,求ADE 的面积.24.在平面直角坐标系xOy 中,直线l :1y x =-与双曲线k y x=相交于点(2,)A m . (1)求点A 坐标及反比例函数的表达式;(2)若直线l 与x 轴交于点B ,点P 在反比例函数的图象上,当OPB △的面积为1时,求点P 的坐标.25.如图,一次函数y =ax +b 的图象与反比例函数的图象交于A (﹣4,2)、B (2,n )两点,且与x 轴交于点C .(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积;(3)根据图象写出一次函数的值<反比例函数的值x 的取值范围.26.如图,在ABC 中,D 为BC 上一点,BAD C ∠=∠.(1)求证:C ABD BA ∽△△.(2)若6,3AB BD ==,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC , ∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 2.C解析:C【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答.【详解】解:过D 作DG ∥AC 交BE 于G ,则△BDG ∽△BCE , ∴DG BD CE BC=, ∵1BD BC n =,∴1DG BD CE BC n ==, ∵1AE ACm =, ∴1m CE AC m-=, ∴DG=11m CE AC n mn-⋅= ∵DG ∥AC ,∴△DGF ∽△AEF ,∴111m AC DF DG m mn AF AE n AC m--===, ∴1AD m n AF n +-=,即1AF n AD m n =+-, 故选:C .【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.3.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.4.A解析:A【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】 解:由34a b =得,4a=3b , A 、由等式性质可得:ab=12,原变形错误,故这个选项符合题意;B 、由等式性质得到4a=3b ,原变形正确,故这个选项不符合题意;C 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;D 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;故选:A .【点睛】本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.5.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AEAC AB,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠ ∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠= ∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.6.B解析:B【分析】根据相似三角形的判定逐个判断即可得.【详解】①在ADE 和ACB △中,AED B A A ∠=∠⎧⎨∠=∠⎩, ADEACB ∴,则条件①能满足; ②//DE BC ,ADE ABC ∴,则条件②不能满足;③在ADE 和ACB △中,AD AE AC AB A A⎧=⎪⎨⎪∠=∠⎩,ADE ACB ∴,则条件③能满足;④由AD BC DE AC ⋅=⋅得:AD DE AC BC=, 对应的夹角ADE ∠与C ∠不一定相等,∴此时ADE 和ACB △不一定相似,则条件④不能满足;综上,能满足的条件有2个,故选:B .【点睛】 本题考查了相似三角形的判定,熟练掌握判定方法是解题关键.7.A解析:A【分析】通过设F的坐标,得到点B 的坐标,再利用四边形面积OFBE 等于矩形面积OABC 减去三角形COE 和△AOF 的面积作等量,解得k 值即可.【详解】解:设点F 的坐标(m ,k m ), ∵点F 是AB 的中点,∴点B 的坐标(m ,2k m), 则 S 四边形OEBF =S 矩形OABC -S △COE -S △AOF ,∴2=m 21122k k k m --(k>0) ∴2=2k-k ,∴k=2,故选:A.【点睛】本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,难点是根据一点的坐标表示其他点的坐标.8.A解析:A【分析】根据反比例函数2yx=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【详解】解:∵反比例函数2yx=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.9.B解析:B【解析】试题∵点(a,b)反比例函数2yx=上,∴b=2a,即ab=2,∴原式=2-4=-2.故选B.考点:反比例函数图象上点的坐标特征.10.B解析:B【分析】根据平移和平行四边形的性质将点D也用a、b表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a、b,再由点坐标求出k的值.【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.11.B解析:B【分析】根据反比例函数的解析式分别代入求解,把123,,y y y 的值求解出来,再进行比较,即可得到答案.【详解】解:∵点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上, ∴1166y -==-,2166y ==,3362y ==, 即:132y y y <<,故选B .【点睛】本题主要考查了与反比例函数有关的知识点,能根据已知条件求出未知量是解题的关键,再比较大小的时候注意符号.12.C解析:C【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:A.∵由反比例函数的图象在一、三象限可知,k >0∴0k -<∴一次函数y kx k =-的图象经过一、三、四象限.故本选项错误;B.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误;C.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项正确;D.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误.故选:C【点睛】本题考查的是反比例函数、一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k 的符号,再根据一次函数的性质进行解答.二、填空题13.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===,∴8463DE AF DF AB ===. 设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.14.09【分析】直接根据平行线分线段成比例定理求解即可【详解】解:∵∴即:∴DE=09cm 故答案为:09【点睛】此题主要考查了平行线分线段成比例定理熟练运用定理是解答此题的关键解析:0.9 【分析】直接根据平行线分线段成比例定理求解即可.【详解】解:∵////AF BE CD ,∴AB EF BC DE= 即:2 1.8=1DE∴DE=0.9cm故答案为:0.9【点睛】此题主要考查了平行线分线段成比例定理,熟练运用定理是解答此题的关键15.或【分析】先根据勾股定理得到AC =5再根据平行线分线段成比例得到AD :AE =AB :AC =4:5设AD =x 则AE =A′E =xEC =5﹣xA′B =2x ﹣4在Rt △A′BC 中根据勾股定理得到A′C 再根据△ 解析:78或258 【分析】 先根据勾股定理得到AC =5,再根据平行线分线段成比例得到AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =2x ﹣4,在Rt △A ′BC 中,根据勾股定理得到A ′C ,再根据△A ′EC 是直角三角形,根据勾股定理得到关于x 的方程,解方程即可求解.【详解】解:在△ABC 中,∠B =90°,BC =3,AB =4,∴AC =5,∵DE ∥BC ,∴AD :AB =AE :AC ,即AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =24x ﹣, 在Rt △A ′BC 中,A ′C =22(24)3x -+,∵△A ′EC 是直角三角形,∴①当A '落在边AB 上时,∠EA ′C =90°,∠BA ′C =∠ACB ,A ′B =3×cot ∠ACB =39344⨯=, ∴AD =1974248⎛⎫-= ⎪⎝⎭;②点A 在线段AB 22(24)3x -+2+(5﹣54x )2=(54x )2,解得x 1=4(不合题意舍去),x 2=258.故AD 长为78或258. 故答案为:78或258. 【点晴】本题考查了勾股定理和平行线等分线段成比例定理,掌握相关知识是解决问题的关键. 16.16【分析】先根据重心性质得再证明最后根据相似三角形的性质求解即可【详解】解:∵P 为△ABC 重心∴∵∴∴∴故答案为16【点睛】本题考查了三角形的重心的性质和相似三角形的判定与性质重心到顶点的距离与重 解析:16 【分析】先根据重心性质得223AP AP PD AD ==,,再证明AEF ABC ∽,最后根据相似三角形的性质求解即可.【详解】解:∵P 为△ABC 重心, ∴223AP AP PD AD ==, ∵//EF BC∴AEF ABC ∽∴23AE AF AB AC == ∴22()163AEF ABC S S ==△△ 故答案为16.【点睛】本题考查了三角形的重心的性质和相似三角形的判定与性质,重心到顶点的距离与重心到对边中点的距离之比为2:1是解答本题的关键.17.【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y=的图象解析:42【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB2222=2,∵四边形ABCD是菱形,∴BC=AB=2∴菱形ABCD的面积=BC×AH=2故答案为2【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.18.【分析】过点B作BH⊥OC于H构造出矩形利用矩形的性质进而求解出CDEF的坐标最终分别计算出S1S2即可求出结果【详解】如图过点B作BH⊥OC 于H∵A(04)B(24)∴OA=4AB=2AB∥OC∴解析:23 60【分析】过点B作BH⊥OC于H,构造出矩形,利用矩形的性质,进而求解出C、D、E、F的坐标,最终分别计算出S1,S2,即可求出结果.【详解】如图,过点B 作BH ⊥OC 于H .∵A (0,4)、B (2,4),∴OA =4,AB =2,AB ∥OC ,∴∠ABO =∠BOC ,∵OB 平分∠ABC ,∴∠ABO =∠OBC ,∴∠BOC =∠OBC ,∴CB =OC ,设BC =OC =m ,∵BH ⊥OC ,AB ∥OC ,∴∠AOH =∠OHB =∠ABH =90°,∴四边形ABHO 是矩形,∴BH =OA =4,AB =OH =2,在Rt △BCH 中,则有m 2=42+(m ﹣2)2,∴m =5,∴C (5,0),∴直线B C 的解析式为42033=-+y x , ∵反比例函数k y x=经过点B (2,4), ∴k =8, 由842033y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得24x y =⎧⎨=⎩或383x y =⎧⎪⎨=⎪⎩, ∴D (3,83), ∴直线OD 的解析式为89y x =, ∵OE =EC ,∴E (52,0), ∴直线BE 的解析式为y =﹣8x +20, 由82089y x y x =-+⎧⎪⎨=⎪⎩,解得942x y ⎧=⎪⎨⎪=⎩, ∴F (94,2),∴S1=2×1﹣12×1×43﹣12×1×14﹣12×34×23=2324,S2=12×52×2=52,∴122323245602SS==,故答案为:2360.【点睛】本题考查了反比例函数与一次函数的综合问题,能够熟练的做出辅助线,通过矩形的性质进行分析,是解决问题的关键.19.4【分析】根据反比例函数系数k的几何意义求出S1+S阴影和S2+S阴影求出答案【详解】解:∵AB两点在双曲线上∴S1+S阴影=3S2+S阴影=3∴S1+S2=6-2=4故答案为:4【点睛】本题考查的解析:4【分析】根据反比例函数系数k的几何意义,求出S1+S阴影和S2+S阴影,求出答案.【详解】解:∵A、B两点在双曲线3yx=上,∴S1+S阴影=3,S2+S阴影=3,∴S1+S2=6-2=4,故答案为:4.【点睛】本题考查的是反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.20.<【分析】直接利用反比例函数的增减性分析得出答案【详解】∵反比例函数中k=﹣1<0∴在每个象限内y随x的增大而增大∵点A(﹣4y1)B(﹣2y2)都在反比例函数的图象上且﹣2>﹣4∴y1<y2故答案解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1y x =-中,k =﹣1<0, ∴在每个象限内,y 随x 的增大而增大, ∵点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,且﹣2>﹣4, ∴y 1<y 2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.三、解答题21.(1)画图见解析;(2)画图见解析.【分析】(1)根据题意画图即可;(2)由平行线性质得到MAQ NCQ ∠=∠,继而可证明AMQ CNQ ∽△△,再根据相似三角形的性质解得35CQ AC =,最后根据勾股定理解题即可. 【详解】(1)如图1所示,取格点D ,连接AD ,CD ,则四边形ABCD 为矩形,连接BD 交AC 于点P ,由于矩形对垂线互相平分,则点P 为AC 中点,故图1中直线BD ,格点D 即为所求.(2)如图2所示,找格点M ,N ,使得2AM =,3CN =,连接MN 与AC 交于点Q ,连接BQ 并延长交格点于点E ,则格点E 即为所求.∵//AM CN ,MAQ NCQ ∴∠=∠,又AQM CQN ∠=∠(对顶角相等)AMQ CNQ ∴∽△△,23AM AQ CN CQ ∴==, 即35CQ AC =, 由勾股定理得:222AC AB BC =+,又4AB =,3BC =,22435AC ∴=+=335355CQ AC CB ∴==⨯==, 故CQ CB =,∴格点E 即为所求.【点睛】本题考查网格作图,涉及相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)图见解析;(3,﹣3);(2)图见解析.【分析】(1)首先找到A 、B 、C 点对应点A 1、B 1、C 1,然后连接即可;(2)利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2即可【详解】解:(1)如图,△A 1B 1C 1所作,点A 1的坐标为(3,﹣3);(2)如图,△A 2B 2C 2为所作.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.23.(1)553y x =--;30y x =-;(2)ADE 的面积为15. 【分析】(1)根据题意求得OE =6,OC =3,Rt △COD 中,5tan 3DCO ∠=,OD =5,即可得到A (﹣6,5),D (0,﹣5,C (﹣3,0),运用待定系数法即可求得反比例函数与一次函数的解析式;(2)利用三角形面积公式即可求得.【详解】解:(1)由题意知:6OE =,3OC =,在Rt COD 中,5tan 3OD DCO CO ∠==, 5OD ∴=,()0,5D ∴-,()3,0C -,代入y=ax+b ,530b a b =-⎧∴⎨-+=⎩,解得535a b ⎧=-⎪⎨⎪=-⎩, ∴一次函数的解析式为553y x =--, 当6x =-时,()56553y =-⨯--=, ()6,5A ∴-,()6530k ∴=-⨯=-∴反比例函数解析式为30y x =-; (2)由题意知:3EC =,5AE =,5OD =ADE ACE DCE S S S ∴=+△△△1122EC AE EC OD =⋅+⋅ 11353522=⨯⨯+⨯⨯ =15.ADE ∴的面积为15【点睛】本题主要考查了反比例函数与一次函数的交点问题以及解直角三角形的应用,解决问题的关键是掌握待定系数法求函数解析式的方法.24.(1)点(2,1)A ,反比例函数2y x =;(2)点()P 12,或(-1,-2) 【分析】(1)代入坐标点先求坐标,再求反比例函数表达式;(2)作图,根据图像求出P 点纵坐标,再代入反比例函数即可求出坐标.【详解】(1)∵A 在y=x-1上,∴当x=2时,y=1,即m=1,点(2,1)A ,再把A 的坐标代入反比例函数解得:2y x=; (2)由函数表达式可求得点(1,0)B ,∵1OPB S =△,即12OB ||1p y =, ∴||1p y =,点()P 12,或(-1,-2); 【点睛】此题考查反比例函数与一次函数相关知识,结合图像是关键.25.(1)反比例函数8y x -=,一次函数y=-x-2;(2)6AOB S ∆=;(3)-4<x <0或x >2.【分析】(1)先根据点A 的坐标求出反比例函数的解析式,再求出B 的坐标是(2,-4),利用待定系数法求一次函数的解析式;(2)求出C 点坐标,再利OC 把△AOB 的面积分成两个部分求解;(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,直接根据图象得出x 的取值范围.【详解】解:(1)设反比例函数的解析式为k y x =,因为经过A (-4,2), ∴k=-8,∴反比例函数的解析式为8y x -=. 因为B (2,n )在8y x -=上, ∴842n ,∴B 的坐标是(2,-4)把A (-4,2)、B (2,-4)代入y=ax+b ,得4224a b a b -+=⎧⎨+=-⎩, 解得:12a b =-⎧⎨=-⎩, ∴y=-x-2;(2)y=-x-2中,当y=0时,x=-2;∴直线y=-x-2和x 轴交点是C (-2,0), ∴OC=2∴112422622AOB S ∆=⨯⨯+⨯⨯=; (3)由图象可知-4<x <0或x >2时一次函数的值<反比例函数的值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数综合.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.26.(1)证明见解析.(2)9.【分析】(1)根据两组角对应相等的两个三角形相似即可得到结论;(2)根据C ABD BA ∽△△求得BC=12,根据DC=BC-BD 即可求出答案.【详解】(1)如图所示:,BAD C B B ∠=∠∠=∠,∴C ABD BA ∽△△.(2)ABD CBA ∽,AB BD BC AB ∴=,即636BC =, 解得:12BC =,1239DC BC BD ∴=-=-=.【点睛】 此题考查相似三角形的判定及性质,熟记三角形的判定定理是解题的关键.。

【鲁教版】九年级全册英语期中试题(带答案)

【鲁教版】九年级全册英语期中试题(带答案)

一、选择题1.Some people are _________ power, wealth or fame, but all I want is only health and happiness.A.responsible for B.known for C.thirsty for D.thankful to 2.Everyone ______ the ability(能力)to learn.A.born B.is born C.is born with3.In my opinion, he doesn’t seem __________ to take this job.A.wisely enough B.enough wiselyC.wise enough D.enough wise4.___________ and be honest, Tom, or others won’t trust you.A.Keeping a secret B.Keep a secretC.Keeping secrets D.Keep secret5.I wonder___Tom had a good time having a picnic yesterday.A.that B.if C.what D.which6.Her father warned her _________ alone at night.A.not go out B.not to go out C.don’t go out D.to not go out 7.–Oh, my God! I have ______ five pounds.--Don’t worry. It’s normal for a growing t eenage girl.A.put up B.put off C.put on D.put down 8.—Lucy,who's the man you called up just now?—He's my uncle,a of mine.A.relative B.pupilC.stranger D.present9.He is just a small child, so you must be ________ him. Don’t shout at him.A.afraid of B.proud of C.patient with D.popular with 10.Can you tell me _____on the Internet?A.how can I use QQB.where can I use QQC.what I can use QQD.how to use QQ11.In those days bikes were not ______ used because few people could afford (负担起) to buy one.A.quickly B.hardly C.widely D.nearly12.I’m not sure whether I can hold a party in the open air, because it ______ the weather. A.stands for B.depends on C.lives on D.agrees with 13.—You’d better______ smoking. It’s bad for your health.A.put up B.give upC.make up D.stay up14.—I didn’t watch the match last week. Can you tell me what happened?—Our team _________ during the last few minutes and _________the match .A.beat;won B.beat; missed C.scored;won D.scored;missed 15.On National Day, nobody was in the school________the gate guarding.A.except B.except for C.include D.including 16.Not only the father but also his children by smoking.A.influence B.influencesC.is influenced D.are influenced17.- Are you _______? --- Yes, we are. ( )A.postman B.postmen C.the postman18.There is _____ international university in the city.A.the B.an C.a D.\19.—Last weekend, I went climbing with my friends.—________.A.Yes, I'd love to B.Sorry to hear that C.That sounds interesting D.That's all right 20.---I don’t know _____ next. ---You’d better finish your homework first.A.what to do B.how to do C.when to do D.where to do【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】句意:一些人渴望非常渴望权力,财富或名誉,但我想要的只有健康和开心。

【鲁教版】初三数学下期中试卷(及答案)

【鲁教版】初三数学下期中试卷(及答案)

一、选择题1.如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于G ,则下列式子一定正确的是( )A .AE EFEC CD= B .BF EGCD AB= C .AF BCFD GC= D .CG AFBC AD= 2.下列各组线段能成比例的是( ) A .1.5cm ,2.5cm , 3.5cm ,4.5cm B .1cm ,2cm ,3cm ,4cmC .3cm , 6cm , 4cm , 8cmD .2cm ,10cm ,5cm ,15cm3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC 相似的是( )A .B .C .D .4.如图,已知在ABC ∆中,点D 、E 分别是AB 和AC 的中点,BE 、CD 相交于点O ,若2DOE S ∆=,则BOC S ∆=( )A .4B .6C .8D .105.如图,菱形ABCD 的边长为10,面积为80,∠BAD <90°,⊙O 与边AB ,AD 都相切菱形的顶点A 到圆心O 的距离为5,则⊙O 的半径长等于( )A .2.5B .5C .22D .36.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .47.已知反比例函数13y x=-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭B .y 随x 的增大而增大C .图象在第二、四象限内D .若1x >,则103y -<< 8.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数()0ky x x=>的图象经过菱形对角线的交点,A 且与边BC 交于点F ,点C 的坐标为()8,4,则OBF ∆的面积为( )A .104B .83C .103D .1149.反比例函数y =kx的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( )A .(3,2)B .(﹣3,﹣2)C .(﹣3,2)D .(﹣2,﹣3)10.如图,已知正比例函数y 1=x 与反比例函数y 2=9x的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =32;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④11.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣412.如图,点A 、C 为反比例函数y=(0)kx x图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为32时,k 的值为( )A .4B .6C .﹣4D .﹣6二、填空题13.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个.14.如图,△ABC 中,D 在AC 上,且AD :DC=1:n ,E 为BD 的中点,AE 的延长线交BC 于F ,那么FC:BF 的值为______(用含有n 的代数式表示).15.如图,在矩形ABCD 中,M N 、分别是边AD BC 、的中点,点P Q 、在DC 边上,且14PQ DC =.若8,10AB BC ==,则图中阴影部分的面积是_____________16.已知13x y =,则x y y-的值为______ 17.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.18.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)19.如图,矩形ABCD 的边AB 与x 轴平行,顶点A 的坐标为(2,1),点B ,D 都在反比例函数6y x=的图像上,则矩形ABCD 的面积为_____.20.如图,点A 在反比例函数ky x=(x>0)图象上,AB ⊥x 轴于点B ,点C 在x 轴负半轴上,且BO=2CO ,若△ABC 的面积为18,则k 的值为_______.三、解答题21.已知:△ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度) (1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1;(2)以B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比2:1,直接写出C 2点坐标是 ; (3)△A 2BC 2的面积是 平方单位.22.如图,在等边ABC ∆中,点D 是边AC 上一动点(不与点,A C 重合),连接BD ,作AH BD ⊥于点H ,将线段AH 绕点A 逆时针旋转60︒至线段AE ,连接CE (1)①补全图形;②判断线段BH 与线段CE 的数量关系,并证明; (2)已知4AB =,点M 在边AB 上,且1BM =,作直线HE .①是否存在一个定点P ,使得对于任意的点D ,点P 总在直线HE 上,若存在,请指出点P 的位置,若不存在,请说明理由;②直接写出点M 到直线HE 的距离的最大值.23.如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=(k >0)的图象与BC 边交于点E . (1)写出B 的坐标;(2)当F 为AB 的中点时,求反比例函数的解析式; (3)求当k 为何值时,△EFA 的面积最大,最大面积是多少?24.在平面直角坐标系xOy 中,函数()20=>y x x 的图象与直线11:(0)2l y x k k =+>交于点A ,与直线2:l x k =交于点B ,直线1l 与2l 交于点C .说明:直线x k =是指经过点(),0k 且平行于y 轴的直线,如直线2x =是指经过点()2,0且平行于y 轴的直线.(1)当点A 的横坐标为1时,求此时k 的值; (2)横、纵坐标都是整数的点叫做整点.记函数()20=>y x x的图象在点A 、B 之间的部分与线段AC ,线段BC 围成的区域(不含边界)为W . ①当3k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内只有2个整点,直接写出k 的取值范围.25.为了探索函数1(0)y x x x=+>的图象与性质,我们参照学习函数的过程与方法. 列表:x14 13121 234 5y174 10352252103174265x y 为纵坐标,描出相应的点,如图1所示:(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象; (2)已知点1122(,),(,)x y x y 在函数图象上,结合表格和函数图象,回答下列问题: 若1201x x <<≤,则1y 2y ; 若121x x <<,则1y 2y ;若121x x ⋅=,则1y 2y (填“>”,“=”,“<”).(3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为0.5千元/平方米,设水池底面一边的长为x 米,水池总造价为y 千元. ①请写出y 与x 的函数关系式;②若该农户预算不超过3.5千元,则水池底面一边的长x 应控制在什么范围内? 26.如图所示,在平行四边形ABCD 中,E 是CD 的延长线上一点,12DE CD =,连接BE 与AC ,AD ,FE 分别交于点O ,F .(1)若DEF ∆的面积为2,求平行四边形ABCD 的面积. (2)求证2·OB OE OF =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据平行线分线段成比例性质进行解答便可. 【详解】 解:∵EF ∥BC , ∴AF AEFD EC=, ∵EG ∥AB , ∴AE BGEC GC=, ∴AF BCFD GC =, 故选:C . 【点睛】本题考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.2.C解析:C 【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段. 【详解】解:A 、1.5×4.5≠2.5×3.5,故本选项错误; B 、1×4≠2×3,故本选项错误; C 、3×8=4×6,故本选项正确;D 215105≠,故本选项错误.故选:C . 【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.3.B解析:B 【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案. 【详解】解:由勾股定理得:AB,BC =2,AC, ∴AC :BC :AB =1A 、三边之比为1,图中的三角形(阴影部分)与△ABC 不相似; B 、三边之比:1△ABC 相似; C3,图中的三角形(阴影部分)与△ABC 不相似; D 、三边之比为2△ABC 不相似. 故选:B . 【点睛】此题考查三角形相似判定定理的应用,解答关键是应用勾股定理求出边长.4.C解析:C 【分析】根据三角形中位线定理得到DE=12BC ,DE ∥BC ,得到△DOE ∽△COB ,根据相似三角形的面积比等于相似比的平方计算,得到答案. 【详解】∵D 、E 分别是AB 和AC 的中点, ∴12DE BC =,//DE BC , ∴DOE COB ∆∆∽,∴2DOE COB S DE S BC ∆∆⎛⎫= ⎪⎝⎭,即BOC214S ∆=, 解得,8BOC S ∆=, 故选:C . 【点睛】本题考查了相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.5.B解析:B 【分析】如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得=OA OFBD BH,即可解决问题. 【详解】解:如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=10,面积为80, ∴AB•DH=80, ∴DH=8,在Rt △ADH 中,226AH AD DH =-=,∴HB=AB-AH=4, 在Rt △BDH 中,2245BD DH BH +=,设⊙O 与AB 相切于F ,与AD 相切于J ,连接OF ,OJ ,则OF ⊥AB ,OJ ⊥AD ,OF=OJ ,∴OA 平分∠DAB , ∵AD=AB , ∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°, ∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°, ∴△AOF ∽△DBH , ∴=OA OFBD BH, ∴445OF, ∴5 故选:B . 【点睛】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.D解析:D【分析】证明△ABE ≌△DCE ,可得结论①正确;由正方形的性质可得AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE ≌△DCE ,△ABG ≌△CBG ,可得∠BCF=∠CDE ,由余角的性质可得结论②;证明△DCE ≌△CBF 可得结论③,证明△CHF ∽△CBF 即可得结论④正确.【详解】解:∵四边形ABCD 是正方形,点E 是BC 的中点,∴AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE ≌△DCE (SAS )∴∠DEC=∠AEB ,∠BAE=∠CDE ,DE=AE ,故①正确,∵AB=BC ,∠ABG=∠CBG ,BG=BG ,∴△ABG ≌△CBG (SAS )∴∠BAE=∠BCF ,∴∠BCF=∠CDE ,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF ⊥DE ,故②正确,∵∠CDE=∠BCF ,DC=BC ,∠DCE=∠CBF=90°,∴△DCE ≌△CBF (ASA ),∴CE=BF ,∵CE=12BC=12AB , ∴BF=12AB , ∴AF=BF ,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF ∽△CBF ∴CH CE BC CF= ∵BC=2CE , ∴2BC CE CE CE CH CF CF == ∴22CE CH CF =⋅故选:D .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.7.B解析:B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k ,可以判断出A 的正误;根据反比例函数的性质:k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大可判断出B 、C 、D 的正误.【详解】A 选项:将1x =-代入得13y =故过11,3⎛⎫-- ⎪⎝⎭,故A 正确;B 选项:103k =-<,故在每个象限内y 随x 的增大而增大,故B 错误; C 选项:103k =-<,故图象过二、四象限,故C 正确; D 选项:若1x >,则103y -<<,故D 正确. 故选:B .【点睛】 此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y =k x(k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大. 8.C解析:C【分析】根据菱形的性质可求出点A 坐标,将点A 的坐标代入到反比例函数解析式可求得k 值,即可确定函数的解析式,过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图,首先在Rt △CNB 中,根据勾股定理建立方程求出OB 的长,进而可求得点B 的坐标,然后利用待定系数法可求得直线BC 的解析式,再联立直线和双曲线的解析式求出交点F 坐标,然后根据三角形的面积公式求解可.【详解】解:∵四边形OBCD 是菱形,∴OA =AC ,∵C (8,4),∴A (4,2),把点A (4,2)代入反比例函数()0k y x x =>,得到k =8, ∴反比例函数的解析式为y =8x;过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,如图,设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为(5,0),设直线BC的函数表达式为y=ax+b,把点B(5,0),C(8,4)代入得:∴5084a ba b+=⎧⎨+=⎩,解得:43203ab⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC的解析式为42033y x=-,解方程组420338y xyx⎧=-⎪⎪⎨⎪=⎪⎩,得:18xy=-⎧⎨=-⎩或643xy=⎧⎪⎨=⎪⎩,∴点F的坐标为F(6,43),作FH⊥x轴于H,连接OF,∴S△OBF=12OB•FH=14105233⨯⨯=,故选:C.【点睛】本题考查了菱形的性质、利用待定系数法求函数的解析式、两个函数的交点问题以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.9.C解析:C【分析】根据反比例函数图象上点的坐标特征即可求解.【详解】解:∵反比例函数y=kx的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,将四个选项代入反比例函数y=kx的解析式,只有C选项符合题意,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据A点的坐标求出k值.10.C解析:C【分析】先求出AC两点的坐标,再根据平行四边形的判定定理与函数图象进行解答即可.【详解】解:∵正比例函数y1=x与反比例函数y2=9x的图象交于A、C两点,∴A(3,3)、C(-3,-3),AB⊥x轴,垂足为B,CD⊥x轴,垂足为D,∴AB=CD,AB∥CD,∴四边形ABCD是平行四边形.∴S▱ABCD=3×6=18,故①正确;②∵A(3,3)、C(-3,-3),∴AC=22(33)(33)62+++=,故本小题错误;③由图可知,-3≤x<0或x≥3时,y1≥y2,故本小题正确;④当x逐渐增大时,y1随x的增大而增大,在每一象限内y2随x的增大而减小故本小题错误.故选:C.【点睛】本题考查的是反比例函数综合题,涉及到平行四边形的判定、一次函数及反比例函数的特点等知识,难度适中.11.B解析:B【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|k|.【详解】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|k|,∴|k|=8,而k <0∴k=-8.故选:B .【点睛】本题考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|. 12.C解析:C【分析】设点C 的坐标为,k m m ⎛⎫ ⎪⎝⎭,则点E 1,22k m m ⎛⎫ ⎪⎝⎭,A 12,2k m m ⎛⎫ ⎪⎝⎭,根据三角形的面积公式求出k 即可.【详解】解:设点C 的坐标为,k m m ⎛⎫ ⎪⎝⎭,则点E 1,22k m m ⎛⎫ ⎪⎝⎭,A 12,2k m m ⎛⎫ ⎪⎝⎭, ∵S △AEC =111233222282k k BD AE m m k m m ⎛⎫⎛⎫⋅=-⋅-=-= ⎪ ⎪⎝⎭⎝⎭, 解得:k=-4,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C 的坐标,利用点C 的横坐标表示出A 、E 点的坐标.二、填空题13.3【分析】根据∠BEO=∠CDO=90°可证同理可证从而得出答案;【详解】是的高又∵综上与相似的三角形有3个故答案为:3【点睛】本题考查了相似三角形的判定解题的关键是找出两个对应角相等即可;解析:3【分析】根据∠BEO=∠CDO=90°,BOE COD ∠=∠可证BOE COD ∽△△,同理可证BOE CAE ∽△△,BOE BAD ∽△△,从而得出答案;【详解】 BD ,CE 是ABC 的高,90BEO CEA BDC BDA ∴∠=∠=∠=∠=︒,BEO CDO ∠=∠,BOE COD ∠=∠,BOE COD ∴∽△△,90EBO A ∠+∠=︒,90ACE A ∠+∠=︒,EBO ECA ∴∠=∠,又∵BEO CEA ∠=∠,BOE CAE ∴∽△△,BEO BDA ∠=∠,∠=∠OBE ABD ,BOE BAD ∴∽△△,综上与BOE △相似的三角形有3个.故答案为:3.【点睛】本题考查了相似三角形的判定,解题的关键是找出两个对应角相等即可;14.n+1【分析】作DG 平行于AF 交BC 于G 由平行线分线段成比例定理比例的性质求得;然后根据三角形中位线的定义知BF=FG 所以由等量代换证得结论【详解】证明:如图作交BC 于G ∵AD :DC=1:n ∴AD :解析:n+1【分析】作DG 平行于AF 交BC 于G .由平行线分线段成比例定理、比例的性质求得1AC FC n AD FG==+;然后根据三角形中位线的定义知BF=FG ,所以由等量代换证得结论. 【详解】证明:如图,作//DG AF 交BC 于G∵AD :DC=1:n ,∴AD :AC=1:(n+1).∵//DG AF ,∴AC FC CD GC=, 根据比例的性质知,1AC FC n AD FG ==+, 又E 是BD 的中点,∴EF 是△BGD 的中位线,∴BF=FG .∴FC:BF=FC BF =1FC n FG=+.故填:n+1.【点睛】本题考查了平行线分线段成比例.列比例式时,一定要找准对应线段,以防错解. 15.【分析】连接MN 过点O 作于点E 交CD 于点F 先证明得到相似比是然后求出和的面积用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积【详解】解:如图连接MN 过点O 作于点E 交CD 于点F ∵四边形ABC 解析:23【分析】连接MN ,过点O 作OE MN ⊥于点E ,交CD 于点F ,先证明OMN PQO ,得到相似比是4:1,然后求出OMN 和PQO 的面积,用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积.【详解】解:如图,连接MN ,过点O 作OE MN ⊥于点E ,交CD 于点F ,∵四边形ABCD 是矩形,∴//AD BC ,AD BC =,∵M 、N 分别是边AD 、BC 的中点,∴DM CN =,∴四边形MNCD 是平行四边形,∴//MN CD ,∴OMN PQO ,相似比是:4:1MN PQ =,∴:4:1OE OF =, ∵152EF BC ==, ∴4OE =,1OF =, ∴184162MNO S =⨯⨯=,12112PQOS =⨯⨯=,8540MNCD S =⨯=, ∴4016123S =--=阴影.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 16.【分析】可得y=3x 代入所求式子可得结论【详解】解:∵∴y=3x ∴=故答案是:【点睛】本题主要考查了比例的性质解题时注意:内项之积等于外项之积 解析:23- 【分析】可得y=3x ,代入所求式子可得结论.【详解】解:∵13x y =, ∴y=3x , ∴x y y -=3233x x x -=-, 故答案是:23-. 【点睛】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.17.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++= ∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+ ∴()7436255x x k x x ++=⋅=⋅+ ∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.18.【解析】根据题意得xy =025×400=100∴ 解析:100y x=【解析】根据题意得xy=0.25×400=100,∴100yx =.19.8【分析】根据A点坐标及反比例解析式求出B和D点坐标进而得到矩形的长和宽即可求出面积【详解】解:∵A点坐标为(21)∴D点横坐标为2又D点在反比例函数上∴D(23)B点纵坐标为1又B点在反比例函数上解析:8【分析】根据A点坐标及反比例解析式求出B和D点坐标,进而得到矩形的长和宽,即可求出面积.【详解】解:∵A点坐标为(2,1)∴D点横坐标为2,又D点在反比例函数6yx=上,∴D(2,3)B点纵坐标为1,又B点在反比例函数6yx=上,∴B(6,1)∴AB=6-2=4,AD=3-1=2∴矩形ABCD的面积=AB×AD=4×2=8.故答案为8.【点睛】本题考查了反比例函数上点的坐标的求法及矩形的面积公式,熟练掌握反比例函数的图形性质是解决此类题的关键.20.24【分析】根据BO=2CO可得出△AOB的面积然后根据k的几何意义得出k的值【详解】如下图连接AO∵BO=2CO△ABC的面积为18∴△AOB的面积=18×18×=12∴k=12×2=24故答案为解析:24【分析】根据BO=2CO,可得出△AOB的面积,然后根据k的几何意义,得出k的值.【详解】如下图,连接AO∵BO=2CO,△ABC的面积为18∴△AOB的面积=18×OBCB =18×23=12∴k=12×2=24故答案为:24.【点睛】本题考查反比例函数k的几何意义,将△AOB的面积与k联系上,是解题的关键.三、解答题21.(1)图见解析;(2)图见解析,2C(1,0);(3)10【分析】(1)利用平移的性质得出对应点的坐标即可画出平移后的图形;(2)利用位似图形的性质得出对应点的坐标即可画出平移后的图形,进而可得点C2的坐标;(3)根据所画图形判断出△A2BC2为等腰直角三角形,利用三角形的面积公式即可求解.【详解】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2BC2即为所求,C2点坐标为(1,0),故答案为:(1,0);(3)∵A2C2=BC2=22+=,A2B=224225+=,62210∴A2C22+BC22= A2B2,∴△A2BC2是等腰直角三角形,且∠A2C2B=90°,∴△A2BC2的面积位为:1×(25)2=10平方单位,2故答案为:10.【点睛】本题考查平移变换和位似变换的性质、勾股定理及其逆定理、三角形的面积公式,掌握变换性质,正确得出变换后的对应点的位置是解答的关键.=,证明见解析;(2)①存在,点P是边BC的中22.(1)①见解析;②BH CE点;3【分析】(1)①按要求画出图形即可;②根据全等三角形对应边相等来回答;(2)①点P 为直线HE 与BC 的交点;②通过△BPM ∽△BAP 问题可解;【详解】(1)①如图;②BH CE =证明ABH ACE ∆≅∆即可(2)①存在点P 是边BC 的中点,理由:设直线HE 与边BC 交于点P可由60ACB AEP ︒∠=∠=得点,,,A E C P 共圆,因为90AEC ︒∠=,所以90APC ︒∠=,即P 是BC 的中点.②如图, 当MP ⊥HE 时,MP 最大,理由:4,2,1AB BP BM ===, BM BP BP AB ∴=, B B ∠∠=,∴△BPM ∽△BAP ,∴∠BMP=∠BPA=90︒ ,2222213BP BP BP ∴=-=-=【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,点到直线的距离,旋转,相似三角形的判定和性质,勾股定理和圆的有关知识知识,综合性较强.23.(1)B 的坐标为(3,2);(2)函数的解析式为3y x =;(3)当3k =时,S 有最大值,最大值为34. 【分析】(1)根据矩形的性质即可写出B 的坐标; (2)当F 为AB 的中点时,点F 的坐标为(3,1),代入求得函数解析式即可;(3)根据图中的点的坐标表示出三角形的面积,得到关于k 的二次函数,利用二次函数求出最值即可.【详解】(1)∵在矩形OABC 中,OA=3,OC=2,∴B (3,2);(2)∵F 为AB 的中点,∴F (3,1),∵点F 在反比例函数k y x=的图象上, ∴k=3,∴该函数的解析式为3y x =; (3)由题意知E ,F 两点坐标分别为E(2k ,2),F(3,3k ), ∴EFA 12S =AF•BE 13232k k ⎛⎫=⨯- ⎪⎝⎭ 211212k k =- ()2169912k k =--+- 213(3)124k =--+, 当3k =时,S 有最大值,34S =最大值. 【点睛】 本题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.24.(1)32k;(2)①3,②522k << 【分析】(1)由反比例函数解析式求出A 点的坐标,再把A 点坐标代入一次函数12y x k =+中求得k ;(2)①根据题意作出函数图象便可直接观察得答案;②找出临界点作两直线,进行比较便可得k 的取值范围.【详解】(1)当1x =时,22y x ==, ∴A (1,2),把A (1,2)代入12y x k =+中,得122k =+, 解得:32k =; (2)①当3k =时,则直线1l :132y x =+,直线2l :3x =, 当3x =时,19322y x =+=, ∴C (3,92), 作出图象如图:∴区域W 内的整点个数为3;②如图,当直线1l :12y x k =+过(1,3)点,区域W 内只有2个整点,此时,132k =+,解得52k =,当直线1l :12y x k =+过(2,3)点,区域W 内只有1个整点, 此时,1322k =⨯+,解得2k =, ∴当522k <<时,区域W 内只有2个整点, 【点睛】 本题考查了反比例函数与一次函数的交点问题,待定系数法,正确画出函数图象,数形结合,是解答本题的关键.25.(1)见解析;(2)>;<;=;(3)①11y x x =++;②122x ≤≤. 【分析】(1)用一条光滑曲线将点顺次连接起来,作出函数图象即可;(2)观察函数图象可以看出有最低点,即函数有最小值,结合表格提供的信息即可解决问题;(3)①根据底面面积可求出底面另一条边长,进而可求出水池的侧面积,分别表示出底面和侧面的造价,从而可表示出y 与x 的函数关系式;②根据函数关系式结合表格可得出x 的控制范围.【详解】(1)如图1所示;(2)根据图象和表格可知,当1201x x <<≤时,1y >2y ;当121x x <<,则1y <2y ;当121x x ⋅=,则1y =2y ;(3)①∵底面面积为1平方米,一边长为x 米,∴与之相邻的另一边长为1x米, ∴水池侧面面积的和为:1112122()x x x x ⨯⨯+⨯⨯=+∵底面造价为1千元/平方米,侧面造价为0.5千元/平方米, ∴11112()0.51y x x xx=⨯++⨯=++ 即:y 与x 的函数关系式为:11y x x=++; ②∵该农户预算不超过3.5千元,即y≤3.5 ∴11 3.5x x++≤ ∴1 2.5x x +≤, 根据图象或表格可知,当2≤y≤2.5时,122x ≤≤, 因此,该农户预算不超过3.5千元,则水池底面一边的长x 应控制在122x ≤≤. 【点睛】本题考查反比例函数的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.(1)平行四边形ABCD 的面积为24;(2)见解析.【分析】(1)由平行四边形的性质可得对边相等,对边分别平行,从而可判定△DEF ∽△ABF ,△DEF ∽△CEB ,从而可得相似比,利用相似三角形的面积比等于相似比的平方及△DEF 的面积为2,可求得答案.(2)由AD ∥BC ,AB ∥DC ,分别判定△AOF ∽△COB ,△ABO ∽△CEO ,从而可得比例式,等量代换,再变形即可得出结论.【详解】解:(1)四边形ABCD 是平行四边形,AB CD ∴=, 12DE CD =, ∴21AB CD DE DE ==, 四边形ABCD 是平行四边形,//AB DC ∴,DEF ABF ∴∆∆∽,∴24()1ABF DEF S AB S DE ∆∆==, 又2DEF S ∆=,8ABF S ∆∴=;四边形ABCD 是平行四边形,//AD BC ∴,DEF CEB ∴∆∆∽, ∴2211()()39DEF CBE S DE S CE ∆∆===, 9218CBE S ∆∴=⨯=,18216CBE DEF BCDF S S S ∆∆∴=-=-=四边形,∴平行四边形ABCD 的面积为:81624+=.(2)证明://AD BC ,AOF COB ∴∆∆∽, ∴AO OF CO OB=, //AB DC ,ABO CEO ∴∆∆∽, ∴AO OB CO OE=, ∴OF OB OB OE=, 2·OB OE OF ∴=.【点睛】本题考查了平行四边形的性质与相似三角形的判定与性质等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.。

【鲁教版】初三数学下期中试卷(带答案)(1)

【鲁教版】初三数学下期中试卷(带答案)(1)

一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4 2.如图,在ABC 中,AB AC ≠,AC 3AD =,3AB AE =,点F 为边BC 上一点,则下列条件不能保证FDB △与ADE 相似的是( )A .A BFD ∠=∠B .//DF AC C .BD DF DE AD = D .BD BF AE DE = 3.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=2CE ,AB=12,则AD 的长为( )A .4B .6C .5D .8 4.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC的值为( )A .10B .11C .12D .13 5.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( )A .72︒B .63︒C .45︒D .不能确定 6.如图,在△ABC 中,DE ∥BC ,12AD BD =,则AE EC=( )A .13B .12C .23D .327.下列函数中,y 总随x 的增大而减小的是( ) A .4y x =- B .4y x =- C .4y x = D .4y x =-8.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .y=5x 2C .y=21xD .y=13x9.关于反比例函数3y x =,下列说法错误的是( ) A .图象关于原点对称 B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab = 10.如图,函数y =kx (k >0)与函数2y x=的图象相交于A ,C 两点,过A 作AB ⊥y 轴于B ,连结BC ,则三角形ABC 的面积为( )A .1B .2C .k 2D .2k 211.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小 12.如图直线y 1=x+1与双曲线y 2=k x交于A (2,m )、B (﹣3,n )两点.则当y 1>y 2时,x 的取值范围是( )A .x >﹣3或0<x <2B .﹣3<x <0或x >2C .x <﹣3或0<x <2D .﹣3<x <2二、填空题13.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个.14.已知::3:2:1x y z =,则x y z x y z+--+的值为________. 15.如图,一个半径为2的圆P 与x 正半轴相切,过原点O 作圆P 的切线OT ,切点为T ,直线PT 分别交x y ,轴的正半轴于A B 、两点,且P 是线段AB 的三等分点,则圆心P 的坐标为__________.16.已知⊙O 的半径为2,A 为圆上一定点,P 为圆上一动点,以AP 为边作等腰Rt △APG ,P 点在圆上运动一周的过程中,OG 的最大值为____.17.已知函数3(2)m y m x -=-是反比例函数,则m =_________.18.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;19.如果反比例函数y 2m x-=的图象在第一、三象限,那么m 的取值范围是____. 20.如图,反比例函数( 0)k y x x=>经过,A B 两点,过点A 作 AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.三、解答题21.如图,AB 是ABC 的内接圆O 的直径,点D 在半圆上,DC 与AB 交于点E ,12∠=∠,过点C 作CF DC ⊥交DB 的延长线于点F ,交圆O 于点G .(1)当105DF =,:1:2AE EC =时,求圆O 的半径.(2)在(2)的条件下,连接DG 交BC 于点M ,则:OMB DGF S S =△△______.(直接写出答案)22.已知:△ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1;(2)以B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比2:1,直接写出C 2点坐标是 ;(3)△A 2BC 2的面积是 平方单位.23.如图,Rt ABC ∆中,90ACB ∠=︒,顶点A 、B 都在反比例函数()0k y x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,使OA AB ⊥于A ,连结OC ,并延长交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若()1,A n .(1)求反比例函数的解析式;(2)求EOD∠的度数.24.小明根据学习函数的经验,对函数y=x+1x的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=x+1x的自变量x的取值范围是.(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=.(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象.(4)结合函数的图象,请完成:①当y=52时,x=;②写出该函数的一条性质;③若方程x+1x=t有两个相等的实数根,则t的值是.x…﹣3﹣2﹣112-13-13121234…y…103-52-﹣252-103-m52252n174…25.如图,直线y=12x与双曲线y=kx(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=kx(k>0)上一点C的纵坐标为8,求△AOC的面积.26.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.如图,煅烧时温度y(℃)与时间x min()成一次函数关系:锻造时,温度y(℃)与时间x min()成反比例函数关系。

【鲁教版】九年级数学下期中试题(含答案)

【鲁教版】九年级数学下期中试题(含答案)

一、选择题1.如图,在平行四边形ABCD 中,:2:1AE BE =,F 是AD 的中点,射线EF 与AC 交于点G ,与CD 的延长线交于点P ,则AG GC 的值为( ).A .5:8B .3:8C .3:5D .2:52.如图,在四边形ABCD 中,对角线BD 平分∠ABC ,∠DBC =30°,∠BAD =∠BDC =90°,E 为BC 的中点,AE 与BD 相交于点F ,若CD =2,则BF 的长为( )A .23B .23C .63D .43 3.如图,已知△ABC 和△EDC 是以点C 为位似中心的位似图形,且△ABC 和△EDC 的周长之比为1:2,点C 的坐标为(﹣2,0),若点A 的坐标为(﹣4,3),则点E 的坐标为( )A .(52,﹣6)B .(4,﹣6)C .(2,﹣6)D .3(,6)2- 4.如图,在ABC ∆中,E 为BC 边上的一点,F 为AC 边上的一点,连接BF ,AE ,交于点D ,若D 为BF 的中点,CF 2AF =,则:BE CE 的值为( )A .1:2B .1:3C .1:4D .2:35.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .25B .2C .4D .5 6.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .45 7.反比例函数(0)k y k x=≠图象在二、四象限,则二次函数22y kx x =-的大致图象是( ) A . B . C . D . 8.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .y=5x 2C .y=21xD .y=13x 9.在同一坐标系中,y kx k =-与()0k y k x=≠的图象大致是( ) A . B .C .D .10.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数C .-1D .不能确定11.如图,函数k y x=与2(0)y kx k =-+≠在同一平面直角坐标系中的图像大致( ) A . B .C .D .12.如图,菱形ABCD 的边AD y ⊥轴,垂足为点E ,顶点A 在第二象限,顶点B 在y轴的正半轴上,反比例函数k y x=(0k ≠,0x >)的图像同时经过顶点C 、D ,若点D 的横坐标为1,3BE DE =.则k 的值为( )A .52B .3C .154D .5二、填空题13.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .14.如图,在四边形ABCD 中,AC 平分∠BAD ,AD=AC ,以A 为圆心,AB 长为半径画弧,交AC 于点E ,连接DE 、BE ,并延长BE 交CD 于点F ,下列结论:①△BAC ≌ △EAD ,②BC+CF=DE+EF ,③∠ABE+∠ADE=∠BCD ,其中正确的有____(填序号)15.如图,Rt △ABC 中,AC =5,BC =12,O 为BC 上一点,⊙O 分别与边AB 、AC 切于E 、C ,则⊙O 半径是________.16.已知b c c a a b a b c+++===k ,则k =______.参考答案17.已知()12,y -,()21,y -,()33,y 是反比例函数6y x =-的图象上的三个点,则1y ,2y ,3y 的大小关系是______.18.在平面直角坐标系中,若直线2y x =-+与反比例函数k y x =的图象有2个公共点,则k 的取值范围是_________.19.已知反比例函数3y x=-,当1x >时,y 的取值范围是____ 20.如图,点A 在反比例函数k y x=的图象上,AB 垂直x 轴于B ,若AOB S ∆=2,则这个反比例函数的解析式为_______________.三、解答题21.如图,王华同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行12 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6 m ,两个路灯的高度都是9.6 m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD 处时,他在路灯AC 下的影子长是多少?22.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式;(3)观察图象,请直接写出不等式k 1x+b >2k x的解集.23.如图,在平面直角坐标系xOy 中,反比例函数y =m x的图象与一次函数y =k (x -2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.24.如图,已知△ABC 中,BC =10,BC 边上的高AH =8,四边形DEFG 为内接矩形. (1)当矩形DEFG 是正方形时,求正方形的边长.(2)设EF =x ,矩形DEFG 的面积为S ,求S 关于x 的函数关系式,当x 为何值时S 有最大值,并求出最大值.25.如图所示,在平行四边形ABCD 中,E 是CD 的延长线上一点,12DE CD =,连接BE 与AC ,AD ,FE 分别交于点O ,F .(1)若DEF ∆的面积为2,求平行四边形ABCD 的面积.(2)求证2·OB OE OF =.26.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min 时,材料温度降为600℃.如图,煅烧时温度y (℃)与时间x min ()成一次函数关系:锻造时,温度y (℃)与时间x min ()成反比例函数关系。

【鲁教版】九年级数学下期中模拟试题及答案

【鲁教版】九年级数学下期中模拟试题及答案

一、选择题1.下列各组线段的长度成比例的是( )A .2cm ,4cm ,6cm ,8cmB .10cm ,20cm ,30cm ,40cmC .2.2cm ,3.3cm ,5cm ,8cmD .20cm ,30cm ,60cm ,40cm 2.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924C .8425 D .91253.若234a b c ==,则a b b c +-的值为( ) A .5 B .15 C .-5 D .-154.如图,在Rt △ABC 中,∠B=90⁰,34BC AB =,D 是AB 边上一点,过D 作DE ⊥AB 交AC 于点E ,过D 作DF ∥AC 交BC 于点F ,连接BE 交DF 于H .若DH=DE ,则DEH FBHS S ∆∆为( )A .23B .34C .49D .9165.已知a 3b 4=,则下列变形错误的是( ) A .34a b = B .34a b = C .4a=3b D .43b a = 6.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( )A .72︒B .63︒C .45︒D .不能确定 7.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .12 8.反比例函数y=kb x的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .9.反比例函数k y x =经过点(2,1),则下列说法错误..的是( ) A .2k = B .函数图象分布在第一、三象限 C .当0x >时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小 10.如图,函数k y x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .11.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小 12.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .8二、填空题13.已知a c b d ==12020(b +d ≠0),则a c b d ++的值为_______ . 14.在四边形ABCD 中,//AB DC ,90B ∠=︒,3AB =,11BC =,6DC =,点P 在BC 上,连接AP ,DP ,若ABP △与PCD 相似,则BP 的长为___________. 15.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.16.如图,AB 是⊙O 的直径,AB =20cm ,弦BC =12cm ,F 是弦BC 的中点.若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,设运动时间为t (s )(0≤t≤10),连接EF ,当△BEF 是直角三角形时,t (s )的值为_______.17.如果反比例函数2k y x-=的图像在第二、四象限内,那么k 的取值范围是______. 18.如图,已知双曲线()0k y x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.19.如图,在平面直角坐标系中,直线36y x =-+与x 轴,y 轴分别交于A 、B 两点,以AB 为边在第一象作正方形ABCD ,则过D 的反比例函数解析式为________.20.如图,点M 是反比例函数k y x=(0k >)的图像上一点,MP x ⊥轴,垂足为点P ,如果MOP △的面积为7,那么k 的值是___________.三、解答题21.如图,在平面直角坐标系xoy 中,直线2y x b =+经过点()2,0A -,与y 轴交于点B ,与反比例函数()0k y x x =>的图象交于点C(m ,6),过B 作BD y ⊥轴,交反比例函数()0k y x x=>的图象于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)在坐标轴上是否存在点E(除点O 外),使得△ABE 与△AOB 相似,若存在,请求出点E 的坐标;若不存在,请说明理由.22.如图,AB 是O 的直径,C ,D 是O 上两点,且AD 平分CAB ∠,作DE AB⊥于E .(1)求证://AC OD ;(2)求证:12OE AC =. 23.如图是一块三角形钢材ABC ,其中边60cm BC =,高40cm AD =,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,这个正方形零件的边长是多少?24.如图(1),点A 是反比例函数4y x=的图象在第一象限内一动点,过A 作AC x ⊥轴于点C ,连接OA 并延长到点B ,过点B 作BD x ⊥轴于点D ,交双曲线于点E ,连结OE .(1)若6OBE S =△,求经过点B 的反比例函数解析式.(2)如图(2),过点B 作BF y ⊥轴于点F ,交双曲线于点G .①延长OA 到点B ,当AB OA =时,请判断FG 与BG 之间的数量关系,并说明理由.②当AB nOA时,请直接写出FG与BG之间的数量关系.25.小芳从家骑自行车去学校,所需时间y(min)与骑车速度x(/m min)之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出y与x的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?26.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象只有一个交点,求交点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【详解】解:A、2×8≠4×6,故本选项错误;B、10×40≠20×30,故选项错误;C、2.2×8≠3.3×5,故选项错误;D、20×60=30×40,故本选项正确.故选:D.【点睛】此题考查了比例线段,用到的知识点是成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.2.D解析:D【分析】过点D 作DF ⊥AB 于F ,易证四边形EFDC´是矩形,可得C´E=DF ,由勾股定理求得AB 的长,根据已知和相似三角形的判定可证明△ACB ∽△DFB ,可得AC AB DF BD=,J 进而求得DF 值,由A´E=A´C´﹣C´即可求解.【详解】解:过点D 作DF ⊥AB 于F ,则∠DFB=90°,∵△ABC 绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',∴∠C=∠C´=∠A´EB=90°,AC=A´C´=7,CD=BD=12,∴四边形EFDC´为矩形,∴C´E=DF ,∵在Rt △ACB 中,∠C=90°,AC=7,BC=24, ∴222272425AC BC +=+=,∵∠C=∠DFE ,∠B=∠B ,∴△ACB ∽△DFB ,∴AC AB DF BD =即72512DF =, ∴DF=8425=C´E , ∴A´E=A´C´﹣C´E=7﹣8425=9125, 故选:D .【点睛】本题考查了旋转的性质、矩形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握这些知识的灵活运用,添加恰当的辅助线是解答的关键.3.C解析:C【分析】设234a b c k ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】解:设234a b c k ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-k k=﹣5, 故选:C .【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.4.C解析:C【分析】易证DE ∥BC ,可得34BC DE AB AD ==,因为DH=DE ,得35DE DH AE AE ==,又因为DF ∥AC ,所以35BH DH BE AE ==,所以32BH HE =,根据相似三角形的面积比等于相似比的平方即可求得.【详解】∵DE ⊥AB ,∴∠ADE=90°,∵∠B=90°,∴∠ADE=∠B ,∴DE ∥BC ∴34BC DE AB AD ==,△DEH ∽△FBH ∴35DE AE = 又∵DH=DE ∴35DE DH AE AE == ∵DF ∥AC ∴35BH DH BE AE == ∴32BH HE = ∴4=9DEH FBH S S ∆∆ 故选C【点睛】本题考查相似三角形的性质与判定,掌握相似三角形的面积比等于相似比的平方是解题关键.5.A解析:A【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】 解:由34a b =得,4a=3b , A 、由等式性质可得:ab=12,原变形错误,故这个选项符合题意;B 、由等式性质得到4a=3b ,原变形正确,故这个选项不符合题意;C 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;D 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;故选:A .【点睛】本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.6.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒︒,则另一个三角形的第三个内角为180726345︒-︒-︒=︒,因此,另一个三角形的最小内角为45︒,故选:C .【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.7.B解析:B【分析】根据平移和平行四边形的性质将点D 也用a 、b 表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a 、b ,再由点坐标求出k 的值.【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.8.D解析:D【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=kb x的图象经过第一、三象限, ∴kb >0,∴k ,b 同号, 选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.9.C解析:C【分析】将点(2,1)代入k y x=中求出k 值,再根据反比例函数的性质对四个选项逐一分析即可. 【详解】 将点(2,1)代入k y x=中,解得:k=2, A .k=2,此说法正确,不符合题意; B .k=2﹥0,反比例函数图象分布在第一、三象限,此书说法正确,不符合题意; C .k=2﹥0且x ﹥0,函数图象位于第一象限,且y 随x 的增大而减小,此说法错误,符合题意;D .k=2﹥0且x ﹥0,函数图象位于第一象限,且y 随x 的增大而减小,此说法正确,不符合题意;故选:C .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质,理解函数图象上的点与解析式的关系是解答的关键.10.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 11.A解析:A【分析】根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE SCOF S = 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S COF S = 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.12.B解析:B【分析】 设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭ ∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭ ∵BC OC ⊥,点D 在双曲线k y x =上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆= ∴3642k =÷= 故答案为:B .【点睛】 本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.二、填空题13.【分析】根据已知条件求出abcd 之间的关系再代入计算即可【详解】∵=∴∴故答案为【点睛】本题考查比例的性质熟练根据比例性质把比例式转换成乘积式是解题的关键 解析:12020【分析】根据已知条件求出ab 、cd 之间的关系,再代入计算即可.【详解】 ∵a cb d ==12020∴2020,2020b a d c == ∴1202020202020()2020a c a c a cb d ac a c +++===+++ 故答案为12020【点睛】 本题考查比例的性质。

【鲁教版】九年级数学下期中试卷(附答案)

【鲁教版】九年级数学下期中试卷(附答案)

一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:42.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB ADAC AB= D .AB BCAC BD= 3.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3OB OC =),然后张开两脚,使A 、B 两个尖端分别在线段I 的两个端点上.若12AB cm =,则CD 的长是( )A .3cmB .4cmC .6cmD .8cm4.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AEAC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个5.如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且,AE EB >若1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,则32:S S 的值为( )A .512- B .512+ C .352D .352+ 6.如图,要使ABC ACD ∆∆,需补充的条件不能是( )A .ADC ACB ∠=∠ B .ABC ACD ∠=∠ C .AD ACAC AB= D .AD BC AC DC ⋅=⋅7.反比例函数(0)ky k x=≠图象在二、四象限,则二次函数22y kx x =-的大致图象是( )A .B .C .D .8.一次函数y kx b =+和反比例函数xby k =的部分图象在同一坐标系中可能为( ) A . B . C . D .9.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-10.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)ky x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .511.已知反比例函数aby x=,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根12.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x=D .22y x x =-二、填空题13.如图1,课本中有一道例题:有一块三角形余料ABC ,它的边120BC mm =,高80AD mm =.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.设PN xmm =,用x 的代数式表示AE =________mm ,由//PN BC ,可得APN ABC ∽△△,再利用相似三角形对应高的比等于相似比,可求得PN =________mm .拓展:原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,PN =________mm .14.在四边形ABCD 中,//AB DC ,90B ∠=︒,3AB =,11BC =,6DC =,点P 在BC 上,连接AP ,DP ,若ABP △与PCD 相似,则BP 的长为___________.15.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,AH 交OB 于点E ,若OB =4,S 菱形ABCD =24,则OE 的长为_____.16.如图,在△ABC 中,AEAFEB FC=,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =13CE 时,EP +BP =20,则BC 的长为________.17.某药品研究所开发一种抗新冠肺炎的新药,经大量动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间的函数关系如图所示,即2,(04)32,(4)x x y x x≤≤⎧⎪=⎨>⎪⎩,若血液中药物浓度不低于4微克/毫升的持续时间不低于7小时,则称药物治疗有效.请根据图中信息计算并判断:血液中药物浓度不低于4微克/毫升的持续时间为______个小时,这种抗菌新药________(“可以”或“不可以”)作为有效药物投入生产.18.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表). 售价x (元/双) 200 240 250 400销售量y (双)30 252415已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为_______元.19.如图,一次函数1y kx b =+的图象与反比例函数24y x=的图象交于A (1,m ),B (4,n )两点.则不等式40kx b x+-≥的解集为______.20.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k ,则既能使函数y =k x的图象经过第一、第三象限,又能使关于x 的一元二次方程x 2﹣kx +1=0有实数根的概率为_____.参考答案三、解答题21.如图,在等边ABC 中,点D ,E 分别在AB ,AC 上,连接DE ,DC (E ,C 两点不重合),当AED DCB ∠=∠时,我们把AE EC称为ADDB 的“类似比”,(1)若12AD DB =,则“类似比”AE EC=___________; (2)若(1)ADk k DB =<时,求“类似比”AE EC的值(用含k 的代数式表示); (3)直接写出AED ∠和“类似比”AEEC的取值范围. 22.如图,在ABC 和ADE 中,BAD CAE ∠=∠,ABC ADE ∠=∠.求证:ABD ACE .23.图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,点A 、B 、C 、D 均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,不要求写画法,要求保留必要的作图痕迹.(1)在图①中以线段AD 为边画一个三角形,使它与ABC 相似. (2)在图②中画一个三角形,使它与ABC 相似(不全等). (3)在图③中的线段AB 上画一个点P ,使23AP PB =. 24.如图,一次函数()0y ax b a =+≠的图象与反比例函数()0ky k x=≠的图象相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,5tan 3DCO ∠=,过点A 作AE x ⊥轴于点E ,若点C 是OE 的中点,且点A 的横坐标为-6.(1)求该反比例函数和一次函数的解析式; (2)连接ED ,求ADE 的面积.25.如图,一次函数y=ax+b 的图象与反比例函数y=kx的图象交于M (-3,1),N (1,n )两点.(1)求这两个函数的表达式;(2)过动点C (m ,0)且垂直于x 轴的直线与一次函数及反比例函数的图象分别交于D 、E 两点,当点E 位于点D 上方时,直接写出m 的取值范围. 26.如图,一次函数y 1=kx +b (k ≠0)和反比例函数()20my m x=≠的图象相交于点A (﹣4,2),B (n ,﹣4)(1)求一次函数和反比例函数的表达式; (2)观察图象,直接写出不等式y 1<y 2的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【分析】根据题意易得ADFAEGABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABCS S =,最后即可求出结果.【详解】 ∵DF ∥EG ∥BC , ∴ADF AEG ABC ,∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =, ∴119ABC S S =,49AEGABCSS =.∵21411993AEG ABCABCABCS S S S S S =-=-=,34599ABC AEGABCABCABCS S SSS S =-=-=.∴123115::::1:3:5939ABCABCABCS S S S S S ==.故选C . 【点睛】本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键.2.D解析:D 【分析】根据三角形相似的判定方法一一判断即可. 【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ; B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ; C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ; D 、无法判断三角形相似. 故选:D . 【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.3.B解析:B首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解. 【详解】∵OA =3OD ,OB =3OC , ∴3OA OBOD OC==, ∵AD 与BC 相交于点O , ∴∠AOB =∠DOC , ∴△AOB ∽△DOC , ∴3AB OADC OD==, ∵12AB cm =∴CD=12433AB ==cm, 故选B. 【点睛】本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题,属于中考常考题型.4.B解析:B 【分析】根据相似三角形的判定逐个判断即可得. 【详解】①在ADE 和ACB △中,AED BA A ∠=∠⎧⎨∠=∠⎩,ADEACB ∴,则条件①能满足;②//DE BC ,ADE ABC ∴,则条件②不能满足;③在ADE 和ACB △中,AD AEAC AB A A⎧=⎪⎨⎪∠=∠⎩,ADEACB ∴,则条件③能满足;④由AD BC DE AC ⋅=⋅得:AD DEAC BC=, 对应的夹角ADE ∠与C ∠不一定相等,∴此时ADE 和ACB △不一定相似,则条件④不能满足; 综上,能满足的条件有2个, 故选:B .本题考查了相似三角形的判定,熟练掌握判定方法是解题关键.5.A解析:A 【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到51AE AB 和BEAE =,用a 表示出1S 、2S 和3S 的面积,再求比例. 【详解】解:设正方形ABCD 的边长为a , ∵点E 是AB 上的黄金分割点,∴51AEAB ,则AE =,∴12BE AE =,则21322BE a a ⎛⎫== ⎪ ⎪⎝⎭,∵22211322S AE a a ⎛⎫-===⎪ ⎪⎝⎭,22S BE BC =⋅=,∴)222232S a a =-=,∴)223231:2:22S S a a ==. 故选:A . 【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.6.D解析:D 【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例. 【详解】 ∵∠DAC=∠CAB∴当∠ACD=∠ABC 或∠ADC=∠ACB 或AD :AC=AC :AB 时,△ABC ∽△ACD . 故选:D 【点睛】本题考查相似三角形的判定方法的开放性的题,相似三角形的判定方法:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.7.A解析:A【分析】首先根据反比例函数所在象限确定k <0,再根据k <0确定抛物线的开口方向和对称轴,即可选出答案.【详解】解:∵反比例函数(0)k y k x=≠图象在二、四象限, ∴k <0,∴二次函数y=kx 2-2x 的图象开口向下, 对称轴=-212k k-=, ∵k <0, ∴1k<0, ∴对称轴在x 轴的负半轴,故选:A .【点睛】本题考查了反比例函数的性质,以及二次函数图象,解题的关键是根据反比例函数的性质确定k 的正负.8.C解析:C【分析】运用一次函数和反比例函数的图象性质逐项分析即可.先观察反比函数看k 、b 是同号还是异号,再由一次函数图象判断k 、b 是同号还是异号,如果两者相一致就是正确选项,否则是错误选项.【详解】【点睛】 此题考查反比例函数和一次函数的图象特点.其关键是要弄清图象特点与关系式中k 、b 同号还是异号.9.C解析:C【详解】∵A (﹣3,4), ∴,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 10.C解析:C 【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k ,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k , ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4,故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,11.C解析:C【分析】先根据反比例函数的性质得到0ab <,再利用根的判别式进行判断.【详解】 解:因为反比例函数ab y x =,当x >0时,y 随x 的增大而增大, 所以0ab <,所以△440ab =->,所以方程有两个实数根, 再根据120b x x a=<, 故方程有一个正根和一个负根.故选C .12.B解析:B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”.【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x ,A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合;B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.二、填空题13.48【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算然后根据矩形的性质可设则进行求解即可;【详解】设则∵PN ∥BC ∴∴即解得∴拓展:设则∵PN ∥BC ∴∴∴解得∴;故答案是:;48;【点睛解析:80x -484807【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算,然后根据矩形的性质可设BQ x =,则2PN x =,80AE x =-,进行求解即可;【详解】设PN xmm =,则PN PQ ED xmm ===,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, 即8012080x x -=,解得48x =, ∴48PN mm =,拓展:设PQ xmm =,则2PN xmm =,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, ∴28012080x x -=,解得2407x =, ∴48027PN x ==; 故答案是:80x -;48;4807. 【点睛】 本题主要考查了相似三角形的应用,准确分析计算是解题的关键.14.或2或9【分析】先根据平行线的性质可得再分和两种情况然后分别利用相似三角形的性质即可得【详解】设则如图因此分以下两种情况:(1)若则即解得或经检验或均是所列方程的根则此时或;(2)若则即解得经检验是 解析:113或2或9 【分析】 先根据平行线的性质可得90C B ∠=∠=︒,再分ABP PCD △△和ABP DCP △△两种情况,然后分别利用相似三角形的性质即可得.【详解】设BP x =,则11CP BC BP x =-=-,如图,//,90AB DC B =︒∠,90C B ∴∠=∠=︒,因此,分以下两种情况:(1)若ABP PCD △△, 则AB BP PC CD =,即3116x x =-, 解得2x =或9x =,经检验,2x =或9x =均是所列方程的根,则此时2BP =或9BP =;(2)若ABP DCP △△,则AB BP DC CP =,即3611x x=-, 解得113x =, 经检验,113x =是所列方程的根, 则此时113BP =; 综上,BP 的长为113或2或9, 故答案为:113或2或9.【点睛】本题考查了相似三角形的性质、平行线的性质、分式方程的几何应用,依据题意,正确分两种情况讨论是解题关键.15.225【分析】依据菱形的面积即可得到AH=48进而得出BH 的长再根据相似三角形的对应边成比例即可得到BE 的长进而得出OE 的长【详解】解:∵菱形ABCD 的对角线ACBD 相交于点OOB =4∴BD =8又∵解析:2.25【分析】依据菱形的面积,即可得到AH=4.8,进而得出BH 的长,再根据相似三角形的对应边成比例,即可得到BE 的长,进而得出OE 的长.【详解】解:∵菱形ABCD的对角线AC,BD相交于点O,OB=4,∴BD=8,又∵S菱形ABCD=24,∴2 241BD AC,∴AC=6,CO=3,∴Rt△BCO中,BC=5,又∵AH⊥BC,∴24BC AH,∴ 4.8AH,∴Rt ABH中,2222548 1.4BH AB AH.,∵∠EBH=∠CBO,∠BHE=∠BOC=90°,∴△BEH∽△BCO,∴BH BEBO BC ,即1.445BE,∴ 1.75BE,∴4 1.75 2.25EO BO BE,故答案为:2.25.【点睛】本题主要考查了菱形的性质以及相似三角形的判定与性质,利用相似三角形的性质是解决问题的关键.16.10【分析】延长BQ交射线EF于点M先证明△BCQ∽△MEQ然后可得=根据EM=20即可得出答案【详解】解:如图延长BQ交射线EF于点M∵EF是ABAC的中点∴EF是△ABC的中位线∴EF∥BC∴∠解析:10【分析】延长BQ交射线EF于点M,先证明△BCQ∽△MEQ,然后可得EMBC=2EQCQ,根据EM=20,即可得出答案.【详解】解:如图,延长BQ交射线EF于点M,∵E,F是AB,AC的中点,∴EF 是△ABC 的中位线,∴EF ∥BC ,∴∠BME=∠MBC ,∵BQ 平分∠CBP ,∴∠PBM=∠MBC ,∴∠BME=∠PBM ,∴BP=PM ,∴EP+BP=EM=20,∵CQ =13CE , ∴2EQ CQ=, ∵EF ∥BC ,∴△BCQ ∽△MEQ , ∴EM BC =2EQ CQ=, ∵EM=20, ∴202BC=,即BC=10, 故答案为:10.【点睛】 本题考查了相似三角形的判定和性质,三角形中位线定理,判定△BCQ ∽△MEQ 是解题关键.17.6不可以【分析】分别求出y =4时的两个函数值再求时间差即可解决问题【详解】解:当y =4则4=2x 解得:x =2当y =4则4=解得:x =8∵8﹣2=6<7∴血液中药物浓度不低于4微克/毫升的持续时间为6解析:6, 不可以【分析】分别求出y =4时的两个函数值,再求时间差即可解决问题.【详解】解:当y =4,则4=2x ,解得:x =2,当y =4,则4=32x,解得:x =8, ∵8﹣2=6<7, ∴血液中药物浓度不低于4微克/毫升的持续时间为6小时,这种抗菌新药不可以作为有效药物投入生产.故答案为:6,不可以.【点睛】本题考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活应用待定系数法解决问题,学会利用函数图象解决实际问题,属于中考常考题型.18.300【分析】先利用待定系数法求出再根据利润(售价进价)销量建立方程然后解方程即可得【详解】由题意设将代入得:解得则设要使该款运动鞋每天的销售利润达到元其售价应定为元则整理得:解得经检验是所列方程的 解析:300【分析】 先利用待定系数法求出6000y x =,再根据“利润=(售价-进价)⨯销量”建立方程,然后解方程即可得.【详解】 由题意,设k y x=, 将(200,30)代入得:30200k =,解得6000k =, 则6000y x=, 设要使该款运动鞋每天的销售利润达到2400元,其售价应定为a 元,则()60001802400a a-⋅=, 整理得:()51802a a -=,解得300a =,经检验,300a =是所列方程的解,故答案为:300.【点睛】本题考查了利用待定系数法求反比例函数的解析式、分式方程的应用,正确求出售价与销量之间的反比例函数关系式是解题关键.19.【分析】将不等式变形为根据AB 两点的横坐标和图象直观得出一次函数值大于或等于反比例函数值时自变量的取值范围即为不等式的解集【详解】解:由则实际上就是一次函数的值大于或等于反比例函数值时自变量x 的取值 解析:0x <,14x ≤≤【分析】 将不等式变形为4kx b x+≥,根据A 、B 两点的横坐标和图象,直观得出一次函数值大于或等于反比例函数值时自变量的取值范围,即为不等式的解集.【详解】 解:由40kx b x+-≥,则4kx b x +≥ 实际上就是一次函数的值大于或等于反比例函数值时自变量x 的取值范围,根据图象可得,其解集有两部分,即:0x <,14x ≤≤.故答案为:0x <,14x ≤≤.【点睛】本题考查反比例函数、一次函数的图象和性质,利用数形结合思想,通过图象直接得出一次函数的值大于或等于反比例函数值时自变量x 的取值范围是解题关键.20.【分析】确定使函数的图象经过第一三象限的k 的值然后确定使方程有实数根的k 值找到同时满足两个条件的k 的值即可【详解】解:这6个数中能使函数y =的图象经过第一第三象限的有12这2个数∵关于x 的一元二次方 解析:16【分析】确定使函数的图象经过第一、三象限的k 的值,然后确定使方程有实数根的k 值,找到同时满足两个条件的k 的值即可.【详解】解:这6个数中能使函数y =k x的图象经过第一、第三象限的有1,2这2个数, ∵关于x 的一元二次方程x 2﹣kx +1=0有实数根,∴k 2﹣4≥0,解得k ≤﹣2或k ≥2,能满足这一条件的数是:﹣3、﹣2、2这3个数,∴能同时满足这两个条件的只有2这个数, ∴此概率为16, 故答案为:16. 三、解答题21.(1)1;(2)1k k -;(3)3060AED ︒<∠≤︒,0AE EC ≥. 【分析】(1)先根据“类似比”的定义、等边三角形的性质可得ADE BDC ,再根据相似三角形的性质即可得;(2)参照(1)的方法,利用相似三角形的判定与性质即可得; (3)先根据0,0AD AE BD EC≥≥求出k 的取值范围,再根据等边三角形的性质可求出DCB ∠的取值范围,由此即可得.【详解】 (1)ABC 是等边三角形,60,ACB A B AC BC ∴∠=∠=∠=︒=,由“类似比”的定义得:AED DCB ∠=∠,在ADE 和BDC 中,A B AED BCD∠=∠⎧⎨∠=∠⎩, ADEBDC ∴, 12AE AD BC BD ∴==, 又BC AC AE EC ==+,12AE AE EC ∴=+,即AE EC =, 1AE EC∴=, 故答案为:1;(2)由(1)已证:AE AD k BC BD==, BC AC AE EC ==+,AE k AE EC∴=+, 解得1AE k EC k=-; (3)由题意得:001AD k BD AE k EC k ⎧=≥⎪⎪⎨⎪=≥⎪-⎩, 解得01k ≤<,01AD BD∴≤<,即0AD BD ≤<, 当0AD =,即点D 与点A 重合时,60DCB ACB ∠=∠=︒, 当AD BD =,即点D 是AB 的中点时,1302DCB ACB ∠=∠=︒, 3060DCB ∴︒<∠≤︒,又AED DCB ∠=∠,3060AED ∴︒<∠≤︒,综上,AED ∠的取值范围为3060AED ︒<∠≤︒,“类似比”AE EC 的取值范围为0AE EC ≥. 【点睛】本题考查了相似三角形的判定与性质、等边三角形的性质等知识点,熟练掌握相似三角形的判定方法是解题关键.22.证明见解析【分析】根据相似三角形的判定和性质定理即可得到结论.【详解】证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC ,即∠BAC =∠DAE ,又∵∠ABC =∠ADE ,∴△ABC ∽△ADE , ∴AB AC AD AE =. 又∵∠BAD =∠CAE ,∴△ABD ∽△ACE .【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 23.(1)见解析;(2)见解析;(3)见解析【分析】(1)连接DE ,则DE//BC ,由相似三角形的判定方法可知△ADE ∽△ABC ;(2)如图②,根据勾股定理和相似三角形的判定方法可知△DEF ∽△ABC ;(3)连接DE ,BE ,DE 交AB 于点P ,则DE//BC ,根据平行线分线段成比例定理可知23AP AD PB DC ==. 【详解】解:(1)如图①;(2)如图②;(3)如图③.【点睛】本题考查了相似三角形的判定,平行四边形的判定与性质,以及勾股定理等知识,熟练掌握相似三角形的判定方法是解答本题的管家.①两角分别相等的两个三角形相似;②两边成比例,且夹角相等的两个三角形相似;③三边成比例的两个三角形相似. 24.(1)553y x =--;30y x=-;(2)ADE 的面积为15. 【分析】(1)根据题意求得OE =6,OC =3,Rt △COD 中,5tan 3DCO ∠=,OD =5,即可得到A (﹣6,5),D (0,﹣5,C (﹣3,0),运用待定系数法即可求得反比例函数与一次函数的解析式;(2)利用三角形面积公式即可求得.【详解】解:(1)由题意知:6OE =,3OC =,在Rt COD 中,5tan 3OD DCO CO ∠==, 5OD ∴=,()0,5D ∴-,()3,0C -,代入y=ax+b ,530b a b =-⎧∴⎨-+=⎩,解得535a b ⎧=-⎪⎨⎪=-⎩, ∴一次函数的解析式为553y x =--, 当6x =-时,()56553y =-⨯--=, ()6,5A ∴-,()6530k ∴=-⨯=-∴反比例函数解析式为30y x=-; (2)由题意知:3EC =,5AE =,5OD =ADE ACE DCE S S S ∴=+△△△1122EC AE EC OD =⋅+⋅ 11353522=⨯⨯+⨯⨯ =15.ADE ∴的面积为15【点睛】本题主要考查了反比例函数与一次函数的交点问题以及解直角三角形的应用,解决问题的关键是掌握待定系数法求函数解析式的方法.25.(1)y=3x-;2y x =--;(2)m >1或-3<m <0 【分析】(1)把M 代入反比例函数的解析式即可求得k 的值,然后求得n 的值,利用待定系数法即可求得一次函数的解析式;(2)先画出两函数的图象,再根据两函数图象的上下位置关系结合交点的横坐标即可得出m 的取值范围.【详解】(1)∵点M (-3,1)和N (1,n )在反比例函数k y x =的图象上, ∴3k =-,3n =-.∴反比例函数表达式为3x=-, 点N 的坐标为N (1,3-),∵点M (-3,1)和N (1,3-)在一次函数y ax b =+的图象上,∴313a b a b -+=⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴一次函数表达式为2y x =--;(2)一次函数2y x =--的图象与反比例函数3y x=-的图象相交于点M (-3,1)和N (1,3-),观察函数图象可知:若过动点C (m ,0)且垂直于x 轴的直线分别与反比例函数图象和一次函数图象交于E 、D 两点,当点E 位于点D 上方时,则m 的取值范围是:m >1或-3<m <0.【点睛】本题是反比例函数与一次函数的综合题,考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.26.(1) y =﹣x ﹣2,;(2) x >2或﹣4<x <0【分析】将点A (﹣4,2)代入2m y x=,求反比例函数解析式,再求得B 的坐标,将A 与B 两点坐标代入y 1=kx +b ,即可求解;(2)y 1<y 2,在图象中找反比例函数图象在一次函数图象上方的部分即可.【详解】(1)将点A (﹣4,2)代入2m y x =, ∴m =﹣8,∴y =8x -,将B (n ,﹣4)代入y =8x -,∴n =2,∴B (2,﹣4), 将A (﹣4,2),B (2,﹣4)代入y 1=kx +b ,得到2442k b k b =-+⎧⎨-=+⎩, ∴12k b =-⎧⎨=-⎩, ∴y =﹣x ﹣2,(2)由图象直接可得:x >2或﹣4<x <0;【点睛】本题考查一次函数和反比例函数图象和性质;熟练待定系数法求函数解析式是解题的关键.。

鲁教版化学九年级下册期中综合检测第一~三单元.docx

鲁教版化学九年级下册期中综合检测第一~三单元.docx

期中综合检测第一~三单元(60分钟100分)一、选择题(本大题包括15小题,每小题3分,共45分)1.(2014·重庆一中质检)庆祝国庆的精彩表演中,发生化学变化的是( )A.焰火表演B.霓虹灯表演C.音乐喷泉D.气球升空【解析】选A。

焰火是物质燃烧产生的一种现象,属于化学变化,霓虹灯表演只是彩色灯光旋转或多种方式的排列与组合,同音乐喷泉、气球升空一样都无新物质生成,属于物理变化。

2.(2013·荆门中考)造成非吸烟者在公共场所吸食“二手烟”的主要原因是( ) A.分子很小 B.分子在不断运动C.分子之间有间隙D.分子由原子构成【解析】选B。

由于烟燃烧生成有毒物质的分子在不断运动,所以在公共场所不能吸烟危害环境。

3.家庭装修材料中的有害物质会影响人体健康,如某些花岗岩石材中含有放射性元素氡,一种氡原子的质子数为86,中子数为136,这种氡原子的核外电子数为 ( ) A.50 B.86 C.136 D.222【解析】选B。

根据核电荷数=质子数=电子数,由题意知氡原子的质子数为86,故氡原子核外电子数为86。

故选B。

4.(2013·柳州中考)下列实验基本操作正确的是( )【解析】选B。

用燃着的酒精灯引燃另一酒精灯容易引起火灾;用胶头滴管向试管中滴加液体时应竖直悬空在试管的正上方;向试管中倾倒液体时瓶塞应该倒放;向试管中加入铁钉时应先将试管倾斜,否则容易使试管底部破裂。

5.下列有关蜡烛燃烧时的实验现象描述中不正确的是( )A.火焰分为三层,外层最亮B.熄灭后有白烟产生C.燃烧时生成了二氧化碳和水D.罩在火焰上的干而冷的烧杯内壁出现水雾【解析】选C。

蜡烛的火焰分为三层,外焰最亮,内焰最暗;蜡烛熄灭时,没有燃烧的石蜡蒸气遇冷变为石蜡固体小颗粒,故产生白烟;燃烧时生成二氧化碳和水是通过对实验现象的分析得出的结论;蜡烛燃烧生成的水蒸气遇冷的烧杯会液化成小水滴,因此出现水雾。

6.关于溶液的说法正确的是( )A.溶液的体积等于溶质的体积与溶剂体积之和B.溶液的质量等于溶质的质量与溶剂质量之和C.溶液的性质上部和下部不一定相同D.油水中油是溶质,水是溶剂【解析】选B。

【鲁教版】九年级数学下期中模拟试卷(含答案)

【鲁教版】九年级数学下期中模拟试卷(含答案)

一、选择题1.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:42.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3OB OC =),然后张开两脚,使A 、B 两个尖端分别在线段I 的两个端点上.若12AB cm =,则CD 的长是( )A .3cmB .4cmC .6cmD .8cm 3.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°,现给出以下四个结论:①∠A =45°;②AC =AB ;③AE =BE ;④2CE •AB =BC 2,其中正.确.结论有( )A .1个B .2个C .3个D .4个4.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm ,光源到屏幕的距离为90cm ,且幻灯片中的图形的高度为7cm ,则屏幕上图形的高度为( )A .21cmB .14cmC .6cmD .24cm5.如图,菱形ABCD 的边长为10,面积为80,∠BAD <90°,⊙O 与边AB ,AD 都相切菱形的顶点A 到圆心O 的距离为5,则⊙O 的半径长等于( )A .2.5B .5C .22D .36.如图,11AOB 与22A OB 位似,位似中心为O 且11AOB 与22A OB 在原点O 的两侧,若11AOB 与22A OB 的周长之比为1:2,点1A 的坐标为()1,2-,则点1A 的对应点2A 的坐标为( )A .()1,4-B .()2,4-C .()4,2-D .()2,1- 7.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .58.一次函数y kx b =+和反比例函数xb y k =的部分图象在同一坐标系中可能为( ) A . B . C . D . 9.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=k x (x >0)的图象上,若AB=2,则k 的值为( )A .4B .22C .2D .210.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数在第一象限内的图像与△ABC 有交点,则的取值范围是A .2≤≤B .6≤≤10C .2≤≤6D .2≤≤ 11.函数y kx k =-+与k y x=在同一坐标系中的图象可能是( ) A . B . C . D . 12.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .二、填空题13.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.14.如图,在四边形ABCD中,AC平分∠BAD,AD=AC,以A为圆心,AB长为半径画弧,交AC于点E,连接DE、BE,并延长BE交CD于点F,下列结论:①△BAC ≌△EAD,②BC+CF=DE+EF,③∠ABE+∠ADE=∠BCD,其中正确的有____(填序号)15.如图,已知CD为O的直径,弦AB CD⊥交CD于点E,连接BD,OB,AC,若8AB=,2DE=,则O的半径为______.16.如图,已知△ABC中,∠B=90°,BC=3,AB=4,D是边AB上一点,DE∥BC交AC于点E,将△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,则AD长为_____.17.如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=4x(x>0)的图象上,则y1+y2+…+y100的值为_____.18.如图,已知正比例函数11(0)y k x k =≠与反比例函数22(0)k y k x=≠的图像交于两点M ,N ,若点N 的坐标是(1,2)--,则点M 的坐标为________19.过原点直线l 与反比例函数k y x=的图像交于点(2,)A a -,(,3)B b -,则k 的值为____. 20.如图,点A 在反比例函数k y x=(x>0)图象上,AB ⊥x 轴于点B ,点C 在x 轴负半轴上,且BO=2CO ,若△ABC 的面积为18,则k 的值为_______.三、解答题21.已知:△ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1;(2)以B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比2:1,直接写出C 2点坐标是 ;(3)△A 2BC 2的面积是 平方单位.22.如图,已知O 的半径长为1,AB 、AC 是O 的两条弦,且=AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ABD ∽△△.(2)当OCD 是直角三角形时,求B 、C 两点的距离.(3)记AOB 、AOD △、COD △的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.23.如图,正方形ABCD 的边长为4,E 是CD 中点,点P 在射线AB 上,过点P 作线段AE 的垂线段,垂足为F .(1)求证:PAF AED △∽△;(2)连接PE ,若存在点P 使PEF 与AED 相似,直接写出PA 的长____.24.如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数k y x=(k >0)的图象与BC 边交于点E . (1)写出B 的坐标;(2)当F 为AB 的中点时,求反比例函数的解析式;(3)求当k 为何值时,△EFA 的面积最大,最大面积是多少?25.如图,一次函数y =kx +b 的图象与反比例函数y =m x 的图象相交于A (1,a ),B (﹣3,c ),直线y =kx +b 交x 轴、y 轴于C 、D .(1)求m a c+的值; (2)求证:AD =BC ;(3)直接写出不等式0m kx b x-->的解集. 26.小芳从家骑自行车去学校,所需时间y (min )与骑车速度x (/m min )之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出y 与x 的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意可得DN=NM=MB ,据此可得DF :BE=DN :NB=1:2,再根据BE :DC=BM :MD=1:2,AB=DC ,故可得出DF :FC 的值.【详解】解:由题意可得DN=NM=MB ,AB//CD ,AB//BC∴△DFN ∽△BEN ,△DMC ∽△BME ,∴DF :BE=DN :NB=1:2,BE :DC=BM :MD=1:2,又∵AB=DC ,∴DF :AB=1:4,∴DF :FC=1:3故选:B .【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用. 2.B解析:B【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA =3OD ,OB =3OC , ∴3OA OB OD OC==, ∵AD 与BC 相交于点O ,∴∠AOB =∠DOC ,∴△AOB ∽△DOC , ∴3AB OA DC OD==, ∵12AB cm =∴CD=12433AB ==cm, 故选B.【点睛】 本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题,属于中考常考题型.3.B解析:B【分析】连结AD、BE,DE,如图,根据圆周角定理得∠ADB=90°,则AD⊥BC,加上CD=BD,根据等腰三角形的判定即可得到AC=AB;再根据等腰三角形的性质和三角形内角和定理可计算出∠BAC=40°;由AB为直径得到∠AEB=90°,则∠ABE=50°,根据圆周角定理可判断AE BE≠;接着证明△CED∽△CBA,利用相似比得到CD CEAC BC=,然后利用等线段代换即可判断④.【详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵CD=BD,∴AD是BC的垂直平分线,∴AC=AB,故②正确;∵AC=AB,∴∠ABC=∠C=70°,∴∠BAC=40°,故①错误;连接BE,DE,∵AB为⊙O的直径,∴∠AEB=90°,∵∠BAC=40°,∴∠ABE=50°,∴∠BAC≠∠ABE,∴AE≠BE,∴AE BE≠,故③错误;∵四边形ABDE是圆内接四边形,∴∠CDE=∠CAB,∴△CDE∽△CAB,∴CD CEAC BC=,∴CE•AC=CD·BC,∴CE•AB=12BC·BC,∴2CE•AB=BC2,故④正确.故选B .【点睛】本题考查了相似三角形的判定和性质,圆周角定理,根据题意作出辅助线,构造出圆周角是解题的关键.4.A解析:A【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答即可.【详解】解:如图所示,∵DE ∥BC ,∴△AED ∽△ABC , ∴AE DE AC BC =, 设屏幕上的图形高是x cm ,则30790x=, 解得:x=21. 答:屏幕上图形的高度为21cm ,故选:A .【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.5.B解析:B【分析】如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得=OA OF BD BH,即可解决问题.【详解】解:如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=10,面积为80,∴AB•DH=80,∴DH=8,在Rt △ADH 中,6AH ==, ∴HB=AB-AH=4,在Rt △BDH 中,BD =, 设⊙O 与AB 相切于F ,与AD 相切于J ,连接OF ,OJ ,则OF ⊥AB ,OJ ⊥AD ,OF=OJ , ∴OA 平分∠DAB ,∵AD=AB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH , ∴=OA OF BD BH , ∴4OF , ∴故选:B .【点睛】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.B解析:B【分析】根据位似变换的概念得到△A 1OB 1∽△A 2OB 2,△A 1OB 1与△A 2OB 2的相似比为1:2,根据位似变换的性质计算,得到答案.【详解】解:∵△A 1OB 1与△A 2OB 2位似,∴△A 1OB 1∽△A 2OB 2,∵△A 1OB 1与△A 2OB 2的周长之比为1:2,∴△A 1OB 1与△A 2OB 2的相似比为1:2,∵A 1的坐标为(-1,2),△A 1OB 1与△A 2OB 2在原点O 的两侧,∴点A 1的对应点A 2的坐标为(2,-4),故选:B .【点睛】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .7.C解析:C【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值.【详解】解:∵点A 在反比例函数k y x=的图象上,且AB x ⊥轴于点B , ∴设点A 坐标为(,)x y ,即||k xy =, ∵点A 在第一象限,x y ∴、都是正数,1122AOB S OB AB xy ∴=⋅=, 2AOB S =,4k xy ∴==.故选:C .【点睛】本题考查了反比例函数的性质以及反比例函数系数k 的几何意义,解题的关键是找出关于k 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k 的几何意义找出关于k 的含绝对值符号的一元一次方程是关键. 8.C解析:C【分析】运用一次函数和反比例函数的图象性质逐项分析即可.先观察反比函数看k 、b 是同号还是异号,再由一次函数图象判断k 、b 是同号还是异号,如果两者相一致就是正确选项,否则是错误选项.【详解】D 由反比例函数的性质知k、b异号,由一次函数图象得k>0,b>0,k、b同号,两者不一致.误【点睛】此题考查反比例函数和一次函数的图象特点.其关键是要弄清图象特点与关系式中k、b同号还是异号.9.A解析:A【解析】【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.10.A解析:A【分析】把A点的坐标代入即可求出k的最小值;当反比例函数和直线BC相交时,求出b2﹣4ac的值,得出k的最大值.【详解】把点A(1,2)代入kyx=得:k=2;C的坐标是(6,1),B的坐标是(2,5),设直线BC的解析式是y=kx+b,则25 61 k bk b+=⎧⎨+=⎩,解得:17kb=-⎧⎨=⎩,则函数的解析式是: y=﹣x+7,根据题意,得:kx=﹣x+7,即x2﹣7x+k=0,△=49﹣4k≥0,解得:k≤494.则k的范围是:2≤k≤494.故选A.考点:反比例函数综合题.11.D解析:D【分析】根据题意,分类讨论k>0和k<0,两个函数图象所在的象限,即可解答本题.【详解】解:当k>0时,函数y=-kx+k的图象经过第一、二、四象限,函数kyx=(k≠0)的图象在第一、三象限,故选项A、选项C错误,当k<0时,函数y=-kx+k的图象经过第一、三、四象限,函数kyx=(k≠0)的图象在第二、四象限,故选项B错误,选项D正确,故选:D.【点睛】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论,数形结合的思想解答.12.C解析:C【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.二、填空题13.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD 解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP , ∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC , ∴23PQ BP CD BD ==, ∵CD=2,∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 14.①②③【分析】先由已知条件利用SAS 证明△BAC ≌△EAD 得到①;由全等得到BC=DE 然后再通过证明△ABE ∽△ACD 得到∠ABE=∠ACD=∠AEB 进而再得到CF=EF 得到BC+CF=DE+EF 即解析:①②③【分析】先由已知条件利用SAS 证明△BAC ≌ △EAD ,得到①;由全等得到BC=DE ,然后再通过证明△ABE ∽△ACD ,得到∠ABE=∠ACD=∠AEB ,进而再得到CF=EF ,得到BC+CF=DE+EF ,即②正确;由∠ABE=∠ACD ,∠BCA=∠EDA ,可得到∠ABE+∠ADE=∠BCD ,即③正确.【详解】解:由题意可知,∠BAC=∠CAD ,AB=AE ,在△BAC 和△EAD 中,AB AE BAC CAD AC AD =⎧⎪=⎨⎪=⎩∠∠∴△BAC ≌ △EAD ,故①正确;∵△BAC ≌ △EAD ,∴BC=ED ,∠BCA=∠EDA ,由于AB=AE ,AC=AD ,∠BAC=∠CAD ,∴AB AE AC AD=, ∴△ABE ∽△ACD ,且△ABE 和△ACD 都为等腰三角形,∴∠ABE=∠ACD=∠AEB ,∵∠AEB=∠CEF ,∴∠ECF=∠CEF ,∴CF=EF ,∴BC+CF=DE+EF ,故②正确;由以上过程知道∠ABE=∠ACD ,∠BCA=∠EDA ,∴∠ABE+∠ADE=∠ACD+∠BCA=∠BCD ,故③正确.故答案为:①②③.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,正确找到全等三角形是解题的关键.15.5【分析】设的半径为则由垂径定理得证明根据对应边成比例列式求出r 的值【详解】解:∵∴∵∴∴设的半径为则∵∴∴解得故答案是:5【点睛】本题考查圆的性质和相似三角形的性质和判定解题的关键是掌握圆周角定理 解析:5【分析】设O 的半径为r ,则22CE r =-,由垂径定理得142AE BE AB ===,证明AEC DEB ,根据对应边成比例列式求出r 的值.【详解】 解:∵AB CD ⊥,∴90ACE DBE ∠=∠=︒,∵AEC DEB ∠=∠,∴AEC DEB , ∴AE EC DE EB=, 设O 的半径为r ,则22CE r =-, ∵AB CD ⊥, ∴142AE BE AB ===, ∴42224r -=,解得=5r . 故答案是:5.【点睛】本题考查圆的性质和相似三角形的性质和判定,解题的关键是掌握圆周角定理和垂径定理,以及相似三角形对应边成比例的性质.16.或【分析】先根据勾股定理得到AC =5再根据平行线分线段成比例得到AD :AE =AB :AC =4:5设AD =x 则AE =A′E =xEC =5﹣xA′B =2x ﹣4在Rt △A′BC 中根据勾股定理得到A′C 再根据△ 解析:78或258 【分析】 先根据勾股定理得到AC =5,再根据平行线分线段成比例得到AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =2x ﹣4,在Rt △A ′BC 中,根据勾股定理得到A ′C ,再根据△A ′EC 是直角三角形,根据勾股定理得到关于x 的方程,解方程即可求解.【详解】解:在△ABC 中,∠B =90°,BC =3,AB =4, ∴AC =5,∵DE ∥BC ,∴AD :AB =AE :AC ,即AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =24x ﹣, 在Rt △A ′BC 中,A ′C =22(24)3x -+,∵△A ′EC 是直角三角形,∴①当A '落在边AB 上时,∠EA ′C =90°,∠BA ′C =∠ACB ,A ′B =3×cot ∠ACB =39344⨯=, ∴AD =1974248⎛⎫-= ⎪⎝⎭;②点A 在线段AB 22(24)3x -+2+(5﹣54x )2=(54x )2, 解得x 1=4(不合题意舍去),x 2=258.故AD长为78或258.故答案为:78或258.【点晴】本题考查了勾股定理和平行线等分线段成比例定理,掌握相关知识是解决问题的关键.17.20【分析】根据点C1的坐标确定y1可求反比例函数关系式由点C1是等腰直角三角形的斜边中点可以得到OA1的长然后再设未知数表示点C2的坐标确定y2代入反比例函数的关系式建立方程解出未知数表示点C3的解析:20【分析】根据点C1的坐标,确定y1,可求反比例函数关系式,由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点C3的坐标,确定y3,……然后再求和.【详解】解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…则∠OD1C1=∠OD2C2=∠OD3C3=90°,∵三角形OA1B1是等腰直角三角形,∴∠A1OB1=45°,∴∠OC1D1=45°,∴OD1=C1D1,其斜边的中点C1在反比例函数y=4x,∴C(2,2),即y1=2,∴OD1=D1A1=2,∴OA1=2OD1=4,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=4x得:a(4+a)=4,解得:a =22﹣2,即:y 2=22﹣2,同理:y 3=23﹣22,y 4=24﹣23,……y 100=2100﹣299∴y 1+y 2+…+y 100=2+22﹣2+23﹣22……2100﹣299=20,故答案为:20.【点睛】本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.18.(12)【分析】直接利用正比例函数与反比例函数的性质得出MN 两点关于原点对称进而得出答案【详解】解:∵正比例函数y =k1x (k1≠0)与反比例函数y =(k2≠0)的图象交于MN 两点∴MN 两点关于原点解析:(1,2)【分析】直接利用正比例函数与反比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.【详解】解:∵正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点, ∴M ,N 两点关于原点对称,∵点N 的坐标是(﹣1,﹣2),∴点M 的坐标是(1,2).故答案为:(1,2).【点睛】此题主要考查了反比例函数与正比例函数的交点问题,正确得出M ,N 两点位置关系是解题关键. 19.-6【分析】由AB 在过原点的直线l 上且在反比例函数的图像上可得AB 关于原点对称根据关于原点对称的点的坐标特征可求出ab 的值把a 值代入反比例函数解析式即可得答案【详解】∵过原点的直线l 与反比例函数y=解析:-6【分析】由A、B在过原点的直线l上且在反比例函数的图像上可得A、B关于原点对称,根据关于原点对称的点的坐标特征可求出a、b的值,把a值代入反比例函数解析式即可得答案.【详解】∵过原点的直线l与反比例函数y=kx的图象交于点A(−2,a),B(b,−3),∴A、B两点关于原点对称,∵关于原点对称的点的横坐标和纵坐标都互为相反数,A(−2,a),B(b,−3),∴a=3,b=2,把A(-2,3)代入y=kx得3=k−2,解得k=-6,故答案为:-6【点睛】本题考查反比例函数图象的性质,反比例函数的图象关于原点对称,熟练掌握图象性质是解题关键.20.24【分析】根据BO=2CO可得出△AOB的面积然后根据k的几何意义得出k的值【详解】如下图连接AO∵BO=2CO△ABC的面积为18∴△AOB的面积=18×18×=12∴k=12×2=24故答案为解析:24【分析】根据BO=2CO,可得出△AOB的面积,然后根据k的几何意义,得出k的值.【详解】如下图,连接AO∵BO=2CO,△ABC的面积为18∴△AOB的面积=18×OBCB 18×23=12∴k=12×2=24故答案为:24.【点睛】本题考查反比例函数k的几何意义,将△AOB的面积与k联系上,是解题的关键.三、解答题21.(1)图见解析;(2)图见解析,2C(1,0);(3)10【分析】(1)利用平移的性质得出对应点的坐标即可画出平移后的图形;(2)利用位似图形的性质得出对应点的坐标即可画出平移后的图形,进而可得点C2的坐标;(3)根据所画图形判断出△A2BC2为等腰直角三角形,利用三角形的面积公式即可求解.【详解】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2BC2即为所求,C2点坐标为(1,0),故答案为:(1,0);(3)∵A2C2=BC2=224225+=,A2B=2262210+=,∴A2C22+BC22= A2B2,∴△A2BC2是等腰直角三角形,且∠A2C2B=90°,∴△A2BC2的面积位为:12×(25)2=10平方单位,故答案为:10.【点睛】本题考查平移变换和位似变换的性质、勾股定理及其逆定理、三角形的面积公式,掌握变换性质,正确得出变换后的对应点的位置是解答的关键.22.(1)见解析;(2)3BC=2;(3)512OD=.【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=AC•CD,列出方程即可解决问题;【详解】解:(1)在AOB和AOC△中,OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩,∴AOB AOC △≌△,C B ∴∠=∠,又∵OA OC =,OAC C B ∴∠=∠=∠,而ADO ADB ∠=∠,OAD ABD ∴∽△△.(2)如图:①当90ODC ∠=︒时,BD AC ⊥,OA OC =,AD DC ∴=,BA BC AC ∴==,ABC ∴是等边三角形,在Rt OAD 中,1OA =,30OAD ∠=︒,1122OD OA ∴==, 2232AD OA OD ∴=-=, 23BC AC AD ∴===.②90COD ∠=︒,90BOC ∠=°,22112BC =+=.③OCD ∠显然90≠︒,不需要讨论.综上所述,3BC =2.(3)如图:作OH AC ⊥于H ,设OD x =,DAO DBA ∽△△,AD OD OA DB AD AB∴==. 11AD x x AD AB∴==+. (1)AD x x ∴=+,(1)x x AB +=. 又2S 是1S 和3S 的比例中项,2213S S S ∴=⋅, 而212S AD OH =⋅,112OAC S S AC OH ==⋅△,312S CD OH =⋅⨯, 2111222AD OH AC OH CD OH ⎛⎫⎛⎫∴⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 即2AD AC CD =⋅,又AC AB =,(1)(1)x x CD AC AD x x +=-=+, 代入上式可得:210x x +-=, 求得512x =,或512-, 经检验,51x -=512OD ∴=. 【点睛】 本题属于圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.23.(1)见解析;(2)2或5【分析】(1)根据两角对应相等两三角形相似证明即可.(2)分两种情形:当PA=PB=2时,易知PE ∥AD ,此时∠DAE=∠PEF ,∠D=∠PFE=90°,可得△PEF ∽△EAD .当∠AED=∠PEF ,∠D=∠PFE 时,△ADE ∽△PFE ,分别求解即可.【详解】(1)证明:在正方形ABCD 中,90D ∠=︒,//CD AB ,∴DEA PAE ∠=∠.∵PF AE ⊥,∴D AFP ∠=∠.∴PAF AED △∽△.(2)当PA=PB=2时,∵DE=EC ,AP=PB ,∴PE ∥AD ,此时∠DAE=∠PEF ,∠D=∠PFE=90°,可得△PEF ∽△EAD .当∠AED=∠PEF ,∠D=∠PFE 时,△ADE ∽△PFE ,∵CD ∥AB ,∴∠AED=∠EAP=∠AEP ,∴PA=PE ,∵PF ⊥AE ,∴AF=FE ,∵AD=4,DE=EC=2,∠D=90°,∴===AE ∴AF =∵△PAF ∽△AED , ∴PA AF AE DE =,∴2=, ∴PA=5,综上所述,满足条件的PA 的值为2或5.故答案为:2或5.【点睛】本题考查相似三角形的判定和性质,正方形的性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.24.(1)B 的坐标为(3,2);(2)函数的解析式为3y x =;(3)当3k =时,S 有最大值,最大值为34. 【分析】(1)根据矩形的性质即可写出B 的坐标;(2)当F 为AB 的中点时,点F 的坐标为(3,1),代入求得函数解析式即可;(3)根据图中的点的坐标表示出三角形的面积,得到关于k 的二次函数,利用二次函数求出最值即可.【详解】(1)∵在矩形OABC 中,OA=3,OC=2,∴B (3,2);(2)∵F 为AB 的中点,∴F (3,1),∵点F 在反比例函数k y x=的图象上, ∴k=3,∴该函数的解析式为3y x =; (3)由题意知E ,F 两点坐标分别为E(2k ,2),F(3,3k ), ∴EFA 12S =AF•BE 13232k k ⎛⎫=⨯- ⎪⎝⎭ 211212k k =- ()2169912k k =--+- 213(3)124k =--+, 当3k =时,S 有最大值,34S =最大值. 【点睛】 本题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.25.(1)32m a c =+;(2)见解析;(3)0m kx b x -->的解集为x >3或﹣1<x <0. 【分析】 (1)点A 、B 都在反比例函数y=m x 的图象上,则a=-3c=m ,故m a c +=33c c c --+=32; (2)求出D (0,-2c ),C (-2,0),则AD 2=1+9c 2;BC 2=1+9c 2,即可证明;(3)观察函数图象即可求解.【详解】 解:(1)∵点A 、B 都在反比例函数y =m x 的图象上, ∴a =﹣3c =m , ∴3332m c a c c c -==+-+;(2)将A (1,﹣3c )、B (﹣3,c ),分别代入y =kx +b 得33k b c k b c +=-⎧⎨-+=⎩,解得2k c b c =-⎧⎨=-⎩, ∴y =﹣cx ﹣2c ,令x =0,y =﹣2c ,令y =0,即y =﹣cx ﹣2c =0,解得x =﹣2,∴D (0,﹣2c ),C (﹣2,0),∴AD 2=1+9c 2;BC 2=1+9c 2,∴AD =BC ;(3)∵y =kx ﹣b =﹣cx +2c ,∴点(3,﹣c )、(﹣1,3c )为直线y =kx ﹣b =﹣cx +2c 与双曲线m y x =的交点, ∴0m kx b x -->的解集为x >3或﹣1<x <0. 【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,使用一次函数,体现了方程思想,综合性较强.26.(1)1400m ;(2)1400y x=;(3)小芳的骑车速度至少为175/m min . 【分析】(1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;(2)利用待定系数法求出反比例函数解析式;(3)利用y=8进而得出骑车的速度.【详解】(1)小芳家与学校之间的距离是:101401400⨯=(m ); (2)设k y x=,当140x =时,10y =, 解得:1400k =, 故y 与x 的函数表达式为:1400y x=; (3)当8y =时,175x =, 0k >,∴在第一象限内y 随x 的增大而减小,∴小芳的骑车速度至少为175/m min .【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2
B
C
D
A
O
2011-2012学年度第二学期期中考试八年级
数学试题
一、选择题(每小题只有一个正确选项,将答案填在题后面答题栏内对应位置。

) 1、等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于( ) A 、60° B 、90° C 、120° D 、150° 2.如图,要使ABCD 成为矩形,需添加的条件是( ) A .AB BC = B .AC BD ⊥ C .90ABC ∠=° D .12∠=∠
3、如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,若BD 、AC 的和为cm 18,
CD :DA=2:3,△AOB 的周长为cm 13,那么BC 的长是( ) A cm 6 B cm 9 C cm 3 D cm 12 4、下列命题中不成立...的是( ) A .矩形的对角线相等
B .三边对应相等的两个三角形全等
C .两个相似三角形面积的比等于其相似比的平方
D .一组对边平行,另一组对边相等的四边形一定是平行四边形
5、给出下列命题:①平行四边形的对角线互相平分;②对角线互相平分的四边形
是平行四边形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形。

其中真命题的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个
6、顺次连接梯形四边中点得到的四边形是矩形,则梯形应满足( ) A.等腰梯形 B 直角梯形 C 对角线互相垂直 D 对角线相等且垂直
7、用两个全等的直角三角形拼成下列图形:①平行四边形;②矩形;③菱形;④正方形 ⑤等腰三角形⑥等边三角形,其中一定可以拼成的图形是 ( ) A. ①④⑤ B. ②⑤⑥ C. ①②③ D. ①②⑤
8、△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则CD 等于( ) A.
21
a B.
23a C.2
3
a D. 3a 9、为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,
2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为,根据题意所列方程为( ) A .
B .
C .
D .
10、若关于的一元二次方程有两个不相等的实数根,则的
取值范围是
(A)
(B)

(c) (D) 且
11、用配方法解方程时,原方程应变形为( )
A .
B .

2题图 第3题图
A
B
C
D
O
班级: 姓名: 考号:
C .
D .
12、方程的两个根是等腰三角形的底和腰,则这个三角形的周长为()
A.12 B.12或15 C.15 D.不能确定
选择题答题栏:
二、填空题:
13、把方程(1-2x)(1+2x)=2x2-1化为一般形式:
14、等腰△ABC底边上任意一点D,AB=AC=5cm,过D作DE∥AC交AB于E,DF∥AB 交AC于F,则四边形AEDF的周长为
15、已知方程230
x x k
-+=有两个相等的实数根,则k=
16、已知x1、x2是方程x2+6x+3=0的两实数根,则
2
1
1
1
x
x
+的值为.
17、BD是平行四边形ABCD的对角线,点E、F在
BD上,要使四边形AECF是平行四边形,
还需要增加的一个条件是___________.
三、解答题
18、(1) 解一元二次方程:0
3
2
32=
-
+
-)
(
)
(x
x
x
(2)用配方法解一元二次方程:x
x3
1
22=
+
19、如图:四边形ABCD是平行四边形,AE=CF,AE、CF分别为∠BAD、∠BCD
的角平分线.
求证:四边形BEDF是平行四边形


线





20、关于x 的方程04
22=+++k
x k kx )(有两个不相等的实数根. (1)求k 的取值范围。

(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由
21、已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,
AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .
(1)求证:四边形ADCE 为矩形;
(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?
22、某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
(1)该企业每年盈利的年增长率是多少? (2)该企业从2006年至2008年总盈利多少万元?
班级: 姓名: 考号:
B
C
D
N
23、如图l -3-32,已知在等腰梯形ABCD 中,AD ∥BC . ⑴若AD =5,BC =11,梯形的高是4,求梯形的周长; ⑵若AD=3,BC=7,BD=5 2 ,求证AC ⊥BD .
(备用图)
24、如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠= ,.将BOC △绕点C 按顺时针方向旋转60 得ADC △,连接OD . (1)求证:COD △是等边三角形;
(2)当150α= 时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?

封线内禁
止作答
A
B
C
D
O
110 α。

相关文档
最新文档