初三上学期数学期中考试试卷(二)
四川省眉山市仁寿县2024届九年级上学期11月期中考试数学试卷(含答案)
A.∠D=∠B B.∠
10.学校图书馆去年年底有图书
平均增长率为x,则列出下列方程正确的是(
A.2:5B.2:3
12.如图,在菱形ABCD中,∠
一点(不与端点重合),连接线段
A.①②③B.①④
二、填空题(每小题4分,共
13.若3
x+是二次根式,则
17.若将一条线段AB 分割成长、短两条线段即PB AP AP AB =,则可得出这一比值等于段AB 的黄金分割点,黄金分割总能给人以美的享受,从人体审美学的角度看,若一个人上半身长与下半身长之比满足黄金比的话,则此人符合和谐完美的身体比例.一芭蕾舞演员的身高为18.如图,过线段34A A 、……1-n n A A 31n B B -=.
三、计算题(19题、20题各8分,19.(1)计算:()012132222
--++--()
(1)求证:2
=
CD AD
AC=,AB=
(2)若4
24.电商平台某服装销售商家在销售中发现某品牌童装平均每天可售出
了迎接“双11”,电商决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4
(1)求证:PBE QAB ∽△△.
(2)你认为PBE △和BAE 相似吗?如果相似,给出证明,如果不相似,请说明理由.
(3)如图(3),沿AG 折叠,使点E 落在AD 上为点H ,连结HG 交的中线等于斜边的一半)
∵
1
2
OQ AB OB
==,OB=
∴OQ OB BQ
==,
∴BOQ
△是等边三角形,。
河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)
2024--2025学年上期九年级期中考试数学试题考试范围:九年级上册考试时间:100分钟试卷满分:120分一、选择题(共10小题,每小题3分,共30分)1. 公元前5世纪,古希腊数学家毕达哥拉斯首次提出了关于一元二次方程的概念.下列关于x 的方程中,是一元二次方程的为( )A. x2+1xB.x²-xy=0C.x²+2x=1D.ax²+bx=0(a、b为常数)2.“斗”是我国古代称量粮食的量器,它无盖,其示意图如图所示,下列图形是“斗”的俯视图()3. 已知线段a 、b 、c, 作线段x, 使b:a=x:c, 则正确的作法是( )A B C D4.将标有“最”“美”“河”“南”的四个小球装在一个不透明的口袋中(每个小球上仅标一个汉字),这些小球除所标汉字不同外,其余均相同.从中随机摸出一个球,放回后再随机摸出一个球,则摸到的球上的汉字可以组成“河南”的概率是( )A. B. C. D5. 若把方程x²-4x-1=0 化为(x+m)²=n 的形式,则n的值是( )A.5B.2C.-2D.-56. 如图,已知矩形ABCD中,E 为BC 边上一点,DF⊥AE 于点F, 且AB=6,AD=12, AE=10, 则DF的长为( )A.5B.113 C.365D.8数学试卷第1页(共6页)7.如图是某地下停车场的平面示意图,停车场的长为40 m,宽 为22m. 停车场内车道的 宽都相等,若停车位的占地面积为520m ².求车道的宽度(单位:m). 设停车场内车道 的宽度为xm, 根据题意所列方程为( )A.(40-2x)(22-x)=520B.(40-x)(22-x)=520C.(40-x)(22-2x)=520D.(40x)(22+x)=520 8.下列给出的条件不能得出△ABD O △ACB 的是( )A.ADAB =BDBC B.∠ADB=∠ACB C.AB 2=AD.AC D.∠ADB=∠ABC9.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比13, 点A 、B 、E 在x 轴上,若正方形BEFG 的边长为6,则点D 的坐标为( )A. (12,2) B. (13,1) C. (14,2)D.(1,2)图一 图二第9题 第10题10.如图(1).正方形ABCD 的对角线相交于点O. 点 P 为OC 的中点,点M 为边BC 上的一个动点,连接OM,过 点O 作OM 的亚线交CD 于点N, 点 M 从点B 出发匀速 运动到点C, 设BM=x.PN=y.y 随 x 变化的图象如图(2)所示,图中m 的值为( )A.22B.1C.2D.2数学试卷第2页(共6页)二、填空题(共5小题,每小题3分,共15分)11.已 知x=1 是关于x 的一元二次方程x+kx-6=0 的一个根,则k 的值为12.工人师傅做铝合金窗框分下面三个步骤进行:先截出两对符合规格的铝合金窗料(如 图①),使AB=CD 、EF=GH:然后摆放成如图②四边形;将直角尺紧靠窗框的一 个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是 形,根据的数学原理是:13.如图,四边形ABCD 是菱形,∠DAB=46°, 对角线AC,BD 于点O ,DH ⊥AB 于H, 连接OH, 则∠DHO= 度.14.如图,在平行四边形ABCD 中 ,E 是线段AB 上一点,连接AC,DE,A C 与 DE 相交于点F,若AE EB=23则S △ADFS△AEF=15.如图,在矩形纸片ABCD 中,AD=22,AB=2, 点P 是AB 的中点,点Q 是BC边上的一个动点,将△PBQ 沿PQ 所在直线翻折,得到△PE Q,连 接DE,CE, 则当 △DEC 是以DE 为腰的等腰三角形时,BQ 的长是 三、解答题(共8小题,共75分) 16. (8分)解方程:(1)x ²-6x+3=0; (2)3x ²-2x-1=0.数学试卷第3页(共6页)17. (8分)在一个不透明的袋子里装了只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n1002003005008001000摸到黑球的次数m65118189310482602摸到黑球的频m0.590.630.620.6030.602n a(1)当n 很大时,摸到黑球的频率将会趋近(精确到0.1);(2)某小组成员从袋中拿出1个黑球,3个白球放入一个新的不透明袋子中,随机摸出两个球,请你用列表或树状图的方法求出随机摸出的两个球颜色不同的概率.18. (9分)一张矩形纸ABCD, 将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E. 将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F, 折叠出四边形AECF.(1)求证;AF//CE;(2)当∠BAC= _度时,四边形AECF是菱形.数学试卷第4页(共6页)19 . (9分)已知关于x 的一元二次方程x²-ax+a-1=0.(1)求证:该方程总有两个实数根;(2)若方程的两个实数根x1、x₂满足| x1-x₂|=3, 求a 的值;20 . (8分)2024年巴黎奥运会顺利闭幕,吉祥物“弗里热”深受奥运迷的喜爱,一商场以20元的进价进一批“弗里热”纪念品,以30元每个的价格售出,每周可以卖出500 个,经过市场调查发现,价格每涨10元,就少卖100个.若商场计划一周的利润达到 8000元,并且更大优惠让利消费者,售价应定为多少钱?21. (11分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A'B',∠A'(∠A'=∠A), 以线段A'B'为一边,在给出的图形上用尺规作出△AB'C, 使得△A'B'C'心△ABC, 不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线(不用尺规作图),并据此写出已知、求证和证明过程.数学试卷第5页(共6页)22. (10分)一数学兴趣小组为了测量校园内灯柱AB 的高度,设计了以下三个方案:方案一:在操场上点C 处放一面平面镜,从点C 处后退1m 到点D 处,恰好在平面镜中看到灯柱的顶部A 点的像;再将平面镜向后移动4m ( 即FC=4m)放 在F 处 . 从 点 F 处向后退1.8m 到 点H 处,恰好再次在平面镜中看到灯柱的顶部A 点的像,测得 的眼睛距地面的高度ED 、GH 为1.5m, 已 知 点B,C,D,F,H 在同一水平线上,且GH ⊥FH,ED ⊥CD,AB ⊥BH. (平面镜的大小忽略不计)方案二:利用标杆CD 测量灯柱的高度,已知标杆CD 高1.5m, 测 得DE=2m,CE= 2.5m.方案三:利用自制三角板的边CE 保持水平,并且边CE 与点M 在同一直线上,已知 两条边CE=0.4m,EF=0.2m,测得边CE 离地面距离DC=0.3m.三种方案中,方案 不可行,请根据可行的方案求出灯柱的高度.23 . (12分)在△ABC 中 ,AB=AC,∠BAC=α,点 D 为线段CA 延长线上一动点,连接 DB, 将线段DB 绕点D 逆时针旋转,旋转角为α,得到线段DE, 连 接 BE,CE.(1)如图1,当α=60°时, ADCE 的值是 ;∠DCE 的度数为 ;(2)如图2,当α=90°时,请写出 ADCE的值和∠DCE 的度数,并就图2的情形说明 理由;(3)如图3,当α=120°时,若AB=8,BD=7,请直接写出点E 到 CD 的距离.数学试卷第6页(共6页)参考答案1--10DCBDCBACB11.5 12.矩形 有一个角是90度的平行四边形是矩形 13.23度 14.5/2 15.1或216.x1=3+ 6 x2=3-617. (1)0.25 (2)略18.(1)【证明】∵四边形ABCD为矩形,∴AD//BC,∴∠DAC=∠BCA.由翻折知,, ∠BCE =∴∠HAF=∠MCE,∴AF//CE.(2)【解】当∠BAC=30° 时,四边形 A E CF 为菱形.理由如下:∵四边形AB CD是矩形,∴∠D=∠BAD=90°,AB// CD,由(1)得AF//CE,∴四边形A ECF 是平行四边形.∵当四边形AECF 是菱形时,CF=AF,∴∠FCA=∠FAC.∵FC//AE, ∴∠FCA=∠CAB.又∵∠DAF=∠FAC,∴∠DAF=∠FAC=∠CAB.∵∠DAB=90°,∴∠BAC=30° .(2)30度19.(1)证明:∵△=(-a)²-4(a- 1)=a²-4a+4=(a-2)²≥0,∴该方程总有两个实数根;……………(2)解:由根与系数的关系得x₁+x₂=a,x₁x₂= a-1,∵Ix₁-x₂I=√(x₁-x₂)²=√a²-4(a-1)=√(a-2)²=3, ∴a-2=3 或a-2=-3,解得a=5 或a=-1.20.(1)设售价应定为x元,由题意可得:c²-100x+2400=0,解得:x₁=40,X₂=60,更大优惠让利消费者,∴x=40,答:售价应定为40元;(2)设这两周的平均增长率为y,由题意:解得:y₁=0.1=10%,y2=-2.1 (不合题意舍去),答:这两周的平均增长率为10%.21.(1)如图所示,△A'B'C '即为所求;(2)已知,如图,△A B C∽△A'B'C',D 是AB 的中点,D'是A'B'的中点,求证:证明:∵·D是A B的中点,D'是A'B'的中点,△ABC∽△A'B'C',△A'C'D'△ACD,22. 方案二、三不可行选方案一,∵∠ECD=∠ACB,∠EDC=∠ABC, ∴△ABC∽△EDC,设BC=xm,则AB=1.5xm,同理可得△ABF∽△GHF,·AB=1.5cm,BF=BC+CF=(4+x)m,GH=1.5m ,FH=1.5m,解得:x=8,∴AB=1.5x=12(m).23.∴△ABC 是等边三角形,∴∠ACB=∠ABC=60°,AB=BC,同理可得:△BDE 是等边三角形,∴∠BDE=60°,BD=BE, ∴∠BDE=∠ABC,∴∠BDA=∠EBC,∴△ABD≌△CBE(SAS), ∴AD=CE,∠BCE=∠BAD=180°—∠BAC=120°,∠DCE=∠BCE一∠ACB=60°,故答案为:1,60;(2))∵AB=AC,∠BAC=90°, ∴∠ACB=∠ABC=45°,同理可得:∠BDE=40°,∴∠BDA=∠EBC, ∴△ABD∽△CBE,∠BCE=∠BAD=180°-∠BAC=90°, ∴∠DCE=∠BCE-∠ACB=45°;(3)如图1,图1作BF⊥CD于F,作EG⊥CD于G,作DHLCE, 交CE 的延长线于H,在Rt△AEF 中,AB=8,∠EAF=180°—∠BAC=60°, ∴AF=8·cos 60°=4,BF=8 sin 60°=4√3,在Rt△BDF 中,BD=7,BF=4√3,∵DF=√7²-(4√3)²=1,∴AD=AF 一DF=3, ∴CD=AD+AC=11,同理(2)可得:∠BCE=∠BAD=60°, ∴CE=√3AD=3√3,∠DCE=∠BCE—∠ACB=30°,在Rt△CDH 中,CD=11,∠DCE=30°,如图2,图2由上知:DF=1, AF=4,∴CD=13,AD=5,CE=√3AD=5√3,综上所述:点E 到CD 的距离为:。
湖北省恩施市沙地初中2024-2025学年九年级数学上学期期中考试题卷(含答案)
2024-2025学年九年级数学上学期期中考试题卷(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列方程中,属于一元二次方程的是( )A .x +2y =1B .ax 2+bx +c =0C .3x +=4D .x 2﹣2=02.抛物线的顶点坐标是( )A .B .C .D .3.已知x =2是一元二次方程x 2﹣2mx +4=0的一个解,则m 的值为( )A .2B .0C .0或2D .0或﹣24.抛物线经过点A (2,4),顶点在第四象限,则a 的取值范围是( )A .a >4B .0<a <4C .a >2D .0<a <25.若一元二次方程的两根之和是两根之积的2倍,则m 的值为( )A .3B .C .﹣3D .6.如图,二次函数的最大值为3,一元二次方程有实数根,则的取值范围是( )1x221y x =-+(2,0)-(0,1)(0,1)-()2,02=2y ax ax c -+230x x m +-=3232-2y ax bx c =++20ax bx c m ++-=mA .m ≥3B .m ≥-3C .m ≤3D .m ≤-37.一元二次方程的根是( )A .,B .,C .,D .,8.某厂1月印科技书籍40万册,第一季度共印140万册,问2月、3月平均每月增长率是多少?设平均增长率为,则列出下列方程正确的是( )A .B .C .D .9.抛物线过点 和点,且顶点在第三象限,设,则 的取值范围是( )A .B .C .D .10.如图所示,抛物线与轴交于点、,对称轴与此抛物线交于点,与轴交于点,在对称轴上取点,使,连接、、、,某同学根据图象写出下列结论:①;②当时,;③四边形是菱形;④.其中正确的个数有( )(7)(2)0x x +-=17x =-22x =17x =22x =-17x =22x =17x =-22x =-()401140x +=()2401140x +=()()240401401140x x ++++=()40401140x ++=2(0)y ax bx c a =++>(1,0)(0,3)-n a b c =-+31n -<<-30n -<<63n -<<-60-<<n ()20y ax bx c a =++≠()2,0A -()10B ,C M D MD MC =AC BC AD BD 0a b -=2<<1x -0y >ACBD 930a b c -+>A .个B .个C .个D .个第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
北京市第十四中学2024-2025学年九年级上学期期中考试数学试卷
北京市第十四中学2024-2025学年九年级上学期期中考试数学试卷一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的为()A .B .C .D .2.抛物线()2235y x =--+的顶点坐标是()A .()3,5-B .()3,5-C .()3,5D .()3,5--3.如图,在Rt ABC △中,90,30ACB ABC ∠=︒∠=︒,将ABC V 绕点C 顺时针旋转α角()0180a ︒<<︒至A B C ''△,使得点A '恰好落在AB 边上,则α等于()A .150︒B .90︒C .30︒D .60︒4.若关于x 的一元二次方程2210kx x --=有两个实数根,则k 的取值范围是()A .1k ≥B .1k ≥-C .1k ≥-且0k ≠D .1k ->且0k ≠5.如图,点A ,B ,C 都在O 上,OC OB ^,点A 在 BC上,且OA AB =,则ABC ∠的度数是()A .15︒B .20︒C .25︒D .30°6.某厂家2024年1—5月份的口罩产量统计如图所示,设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程()A .2180(1)442x -=B .2180(1)461x +=C .2137(1)461x +=D .2368(1)442x +=7.如图,抛物线y =﹣116x 2+1与x 轴交于A ,B 两点,D 是以点C (0,﹣3)为圆心,2为半径的圆上的动点,E 是线段BD 的中点,连接OE ,则线段OE 的最大值是()A .2B .72C .3D .528.计算机处理任务时,经常会以圆形进度条的形式显示任务完成的百分比.下面是同一个任务进行到不同阶段时进度条的示意图:若圆半径为1,当任务完成的百分比为x 时,线段MN 的长度记为d (x ).下列描述正确的是()A .()25%1d =B .当50%x >时,()1d x >C .当12x x >时,()()12d x d x >D .当12100%x x +=时,12dx d x =()()二、填空题9.在平面直角坐标系xOy 中,点()3,4P -关于原点O 的对称点的坐标为.10.若()2223my m x x -=-+是关于x 的二次函数,则m 的值为.11.如图,直线y mx n =+与抛物线2y x bx c =++交于A ,B 两点,其中点()2,3A -,点()5,0B ,不等式2x bx c mx n ++<+的解集为.12.如图是某停车场的平面示意图,停车场外围的长为30米,宽为18米.停车场内车道的宽都相等.停车位总占地面积为288平方米.设车道的宽为x 米,可列方程为.13.如图,C ,D 为AB 的三等分点,分别以C ,D 为圆心,CD 长为半径画弧,两弧交于点E ,F ,连接EF .若9AB =,则EF 的长为.14.已知函数2=23y x x --,当1x a -≤≤时,函数的最小值是-4,实数a 的取值范围是.15.在二次函数2(0)y ax bx c a =++≠中,y 与x 的部分对应值如表:x (1)-0 1.523…y…02mn…则m n ,的大小关系为mn .(填“>”“=”或“<”)16.如图,已知Rt ACB △,90ACB ∠=︒,=60B ∠︒,AC =D 在CB 所在直线上运动,以AD 为边作等边三角形ADE ,则CB =.在点D 运动过程中,CE 的最小值.三、解答题17.解下列方程:(1)21610x -=(2)249211x x x +-=-(3)2210x -+=18.已知二次函数y =x 2-4x +3.((1)用配方法将y =x 2-4x +3化成y=a (x -h )2+k 的形式;(2)求抛物线与x 轴交点坐标;(3)在平面直角坐标系xOy 中,画出这个二次函数的图象;(4)结合图象直接写出y>0时,自变量x的取值范围是______;(5)当0<x<3时,y的取值范围是______.19.下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.已知:如图,⊙O及⊙O上一点P.求作:过点P的⊙O的切线.作法:如图,作射线OP;①在直线OP外任取一点A,以A为圆心,AP为半径作⊙A,与射线OP交于另一点B;②连接并延长BA与⊙A交于点C;③作直线PC;则直线PC即为所求.根据小元设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵BC是⊙A的直径,∴∠BPC=90°(填推理依据).∴OP⊥PC.又∵OP是⊙O的半径,∴PC是⊙O的切线(填推理依据).20.已知关于x的一元二次方程22-+=.40x mx m(1)求证:不论m 为何值,该方程总有两个实数根;(2)若=2是该方程的根,求代数式()()22223m m ---的值.21.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点分别为A (-3,4),B (-5,1),C (-1,2).(1)画出△ABC 关于原点对称的△A 1B 1C 1,并写出点B 1的坐标;(2)画出△ABC 绕原点逆时针旋转90°后的△A 2B 2C 2,并写出点B 2的坐标.22.如图1是博物馆展出的古代车轮实物,《周礼·考工记》记载:“……故兵车之轮六尺有六寸,田车之轮六尺有三寸……”据此,我们可以通过计算车轮的半径来验证车轮类型,请将以下推理过程补充完整.如图2所示,在车轮上取A 、B 两点,设 AB 所在圆的圆心为O ,半径为cm r .作弦AB 的垂线OC ,D 为垂足,则D 是AB 的中点.其推理的依据是:.经测量,90cm AB =,15cm CD =,则AD =cm ;用含r 的代数式表示OD ,OD =cm .在Rt OAD △中,由勾股定理可列出关于r 的方程:2r =,解得r =.通过单位换算,得到车轮直径约为六尺六寸,可验证此车轮为兵车之轮.23.小明进行铅球训练,他尝试利用数学模型来研究铅球的运动情况.他以水平方向为x 轴方向,1m 为单位长度,建立了如图所示的平面直角坐标系,铅球从y 轴上的A 点出手,运动路径可看作抛物线,在B 点处达到最高位置,落在x 轴上的点C 处.小明某次试投时的数据如图所示.(1)根据图中信息,求出铅球路径所在抛物线的表达式;(2)若铅球投掷距离(铅球落地点C 与出手点A 的水平距离OC 的长度)不小于10m ,成绩为优秀.请通过计算,判断小明此次试投的成绩是否能达到优秀.24.如图,四边形ABCD 是O 的内接四边形,BD 为直径,AE 是O 切线,且AE CD ⊥的延长线于点E .(1)求证:DA 平分BDE ∠;(2)若46AE CD ==,,求O 的半径和AD 的长.25.如图,已知点()()1122,,,M x y N x y 在二次函数2(2)1(0)y a x a =-->的图像上,且213x x -=.(1)若二次函数的图像经过点(3,1).①求这个二次函数的表达式;②若12y y =,求顶点到MN 的距离;(2)当12x x x ≤≤时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧,求a 的取值范围.26.已知:Rt △ABC 中,∠ACB =90°,AC =BC .(1)如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE .①若∠BAD =α,求∠DBE 的大小(用含α的式子表示);②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明.(2)如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE .①依题意补全图2;②直接写出线段EA ,EB 和EC 之间的数量关系.27.如图,在平面直角坐标系xOy 中的W 上,有弦MN ,取MN 的中点P ,将点P 绕原点O 顺时针旋转90︒得到点Q ,称点Q 为弦MN 的“中点对应点”.设W 是以()3,0W -为圆心,半径为2的圆.(1)已知弦MN 长度为2,点Q 为弦MN 的“中点对应点”.①当MN x ∥轴时,在图1中画出点Q ,并且直接写出线段OQ 的长度;②当MN 在圆上运动时,直接写出线段WQ 的取值范围.(2)已知点()5,0M -,点N 为W 上的一动点,设直线y x b =+与x 轴、y 轴分别交于点A 、点B ,若线段AB 上存在弦MN 的“中点对应点”点Q ,求出b 的取值范围.。
2024-2025学年九年级数学上学期期中测试卷(江苏通用,测试范围:苏科版九上第1章-第2章)解析
2024-2025学年九年级数学上学期期中模拟卷(江苏通用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版九年级上册第1章-第2章。
5.难度系数:0.75。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x 的一元二次方程23510x x a +++= 有一个根为0,则a 的值为( )A .1±B .1C .1-D .02.直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,则 r 的取值范围是( )A .6r <B .6r =C .6r >D .6r ³【答案】C【详解】解:∵直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,∴6r >.故选:C .3.关于x 的一元二次方程22310x kx +-=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +-=中,2a =,3b k =,1c =-,22Δ498b ac k =-=+,因为20k >,所以22Δ4980b ac k =-=+>,所以关于x 的一元二次方程22310x kx +-=根的情况是有两个不相等的实数根.故选A .4.如图,在 O e 中,A ,B ,D 为 O e 上的点,52AOB Ð=°,则ADB Ð的度数是 ( )A .104°B .52°C .38°D .26°5.若12x x ,是一元二次方程20x x +-=的两个实数根,则12124x x x x +-的值为( )A .4B .3-C .0D .7【答案】D【详解】解:∵12x x ,是一元二次方程220x x +-=的两个实数根,∴121x x +=-,122x x =-,∴()121241427x x x x +-=--´-=,故选:D .6.如图,等边三角形ABC 和正方形DEFG 均内接于O e ,若2EF =,则BC 的长为( )A.B.C D7.把一根长50cm的铁丝围成一个等腰三角形,使其中一边的长比另一边的2倍少5cm,则该三角形的边长不可能为()A .12cmB .19cmC .22.5cmD .13cm8.如图,AB 是O e 的直径,4AB =,点C 是上半圆AB 的中点,点D 是下半圆AB 上一点,点E 是BD的中点,连接AE CD 、交于点F .当点D 从点A 运动到点B 的过程中,点F 运动的路径长是( )A 2BC .πD .【答案】B【详解】解:连接,,,AC BC BD OE ,∵AB 是O e 的直径,点C 是上半圆 AB 的中点,∴ AC BC=,90ACB Ð=°,∴点F 的轨迹为 AB 的长90=故选B .第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
2024-2025学年北京北师大附中初三上学期期中数学试题及答案
2024北京北师大附中初三(上)期中数 学考生须知1.本试卷有三道大题,共10页.考试时长120分钟,满分100分. 2.考生务必将答案填写在答题纸上,在试卷上作答无效. 3.考试结束后,考生应将答题纸交回. 一、选择题(共8小题,共16分)1. 2023年5月30日神舟十六号载人飞船发射取得圆满成功,此次任务是我国载人航天工程进入空间站应用与发展阶段的首次载人飞行任务.下列有关航天的4个图标图案中是中心对称图形的是( )A. B. C. D .2. 把抛物线2y x =−向上平移3个单位长度,则乎移后抛物线的解析式为( ) A. ()23y x =−+ B. ()23y x =−− C. 23y x =−+D. 23=−−y x3. 将一元二次方程2810x x −+=通过配方转化为()2x a b +=的形式,下列结果中正确的是( ) A. ()2826x −= B. ()286x −= C. ()246x −=− D. ()246x −=4. 如图,在ABC 中,80B ∠=︒,65C =︒∠,将ABC 绕点A 逆时针旋转得到AB C ''△.当AB '落在AC 上时,BAC '∠的度数为( )A. 65︒B. 70︒C. 80︒D. 85︒5. 如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则该正六边形的边心距是( )A. 1cmB. 2cm6. 如图所示,用10米的铁丝网围成一个面积为15的矩形菜地,菜地的一边靠墙(不使用铁丝),如果设平行于围墙的一边为x 米,那么可列方程( )A. ()1015xx −=B.()10152xx −= C. 110152x x ⎛⎫−= ⎪⎝⎭D.()102152xx −= 7. 下面是“作ABC 的外接圆”的尺规作图方法.ABC 的外接圆O .上述方法由,得到OA OB OC ==,从而知O 经过A ,,三点.其中获得OA OB =的依据是( )A. 线段垂直平分线上的点与这条线段两个端点的距离相等B. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上C. 角平分线上的点到角的两边的距离相等D. 角的内部到角的两边距离相等的点在角的平分线上8. 二次函数()20y ax bx c a =++≠的对称轴是2x =−,该抛物线与x 轴的一个交点在点(4,0)−和点(3,0)−之间,其部分图象如图所示,下列结论:①40a b −=,②0a b c ++<,③2324b b ac +>,④若点()5,n −在二次函数的图像上,则关于x 的不等式20ax bx c n ++−>的解集是51x −<<,其中正确的是( )A. ①③B. ③④C. ①③④D. ①②③④二、填空题(共8小题,共16分)9. 若关于x 的一元二次方程220x x m +−=有一个根为1,则m 的值为_______. 10. 如图,点A ,B ,C 在O 上,55BAC ∠=︒,则BOC ∠的度数为_______︒.11. 若点()2,a ,()3,b 都在二次函数y =(x −1)2−1的图象上,则a _______b .(填<,=或>). 12. 请你写出一个二次函数,其图象满足条件:①开口向下,②顶点在y 轴上.此二次函数的解析式可以是_______.13. 如图,PA PB ,是O 的两条切线,切点分别为A ,B ,连接OA AB ,,若35OAB ∠=︒,则P ∠=________︒.14. 如图,抛物线2y ax bx =+与直线y mx n =+相交于点(3,6)A −−,(1,2)B −,则关于x 的方程2ax bx mx n +=+的解为_______________ .15. 无论非零实数m 取何值,抛物线()2211y mx m x =++−一定经过的定点的坐标是________.16. 如图,AB 是O 的直径,C 为O 上一点,AB OC ⊥,P 为圆上一动点,M 为AP 的中点,连接CM ,若O 的半径为4,则CM 长的最大值是________.三、解答题(共12小题,共68分.其中第17题8分,第18题4分,第19,21,22,23,25题每小题5分,第20,24,26,27题每小题6分,第28题7分)17. 解方程:(1)210x x +−=. (2)()()3121x x x +=+18. 如图,AB 是O 的弦,半径OC AB ⊥,垂足为D ,AB =(1)BD =________. (2)若D 为OC 中点,求O 的半径.19. 已知关于x 的一元二次方程()22210x m x m m −+++=. (1)求证:该方程总有两个不相等的实数根; (2)当该方程的两个实数根的和为0时,求m 的值. 20. 已知二次函数 2=23y x x −−.(1)求该二次函数的顶点坐标;(2)在平面直角坐标系 xOy 中,画出二次函数 2=23y x x −−的图象; (3)结合函数图象:直接写出当12x −<<时,y 的取值范围.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点0A ,B ,C 均为格点(每个小正方形的顶点叫做格点).(1)作点()01,1A −−关于原点O 的对称点A ; (2)连接AC ,AB 得ABC ,将ABC 绕点A 逆时针旋转90°得11AB C △.画出旋转后的11AB C △;(3)在(2)的条件下,点1B 的坐标是________,边AC 扫过区域的面积为________. 22. 下面是小于同学设计的“过直线外一点作这条直线的平行线”的尺规作图过程.(1)使用直尺和圆规,完成作图;(保留作图痕迹)(2)完成下面的证明,并在括号中填推理的依据: 证明:连接DP , ∵CP DQ = ∴________DQ = ∴PDC________.∴PQ l ∥(________).23. 如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.当拱门上的点到O 点的水平距离为x (单位:m )时,它距地面的竖直高度为y (单位:m ).(1)经过对拱门进行测量,发现x 与y 的几组数据如下:离),并求y 与x 满足的函数关系式.(2)在一段时间后,公园重新维修拱门.在同样的坐标系下,新拱门上的点距地面的竖直高度y (单位:m )与它到O 点的水平距离x (单位:m )近似满足函数关系()20.187.30y x h =−−+,若记原拱门的跨度为1d ,新拱门的跨度为2d ,则1d ______2d (填“>”,“=”或“<”). 24. 如图,AB 为O 的直径,点C 在O 上,ACB ∠的平分线CD 交O 于点D ,过点D 作DE AB ∥,交CB 的延长线于点E .(1)求证:DE 是O 的切线;(2)若60ADC ∠=︒,4BC =,求CD 的长. 25. 【项目式学习】 项目主题:车轮的形状项目背景:在学习完圆的相关知识后,九年级某班同学通过小组合作方式开展项目式学习,深入探究车轮制作成圆形的相关原理. 【合作探究】(1)探究A 组:车轮做成圆形的优点是:车轮滚动过程中轴心到地面的距离始终保持不变.另外圆形车轮在滚动过程中,最高点到地面的距离也是不变的.如图1,圆形车轮半径为4cm ,其车轮最高点到地面的距离始终为______cm ;(2)探究B 组:正方形车轮在滚动过程中轴心到地面的距离不断变化.如图2,正方形车轮的轴心为O ,若正方形的边长为6cm ,车轮轴心O 距离地面的最高点与最低点的高度差为______cm ;(3)探究C 组:如图3,有一个正三角形车轮,边长为6cm ,车轮轴心为O (三边垂直平分线的交点),车轮在地面上无滑动地滚动一周,求点O 经过的路径长.探究发现:车辆的平稳关键看车轮轴心是否稳定,即车轮的轴心是否在一条水平线上运动.【拓展延伸】如图4,分别以正三角形的三个顶点A ,B ,C 为圆心,以正三角形的边长为半径作60︒圆弧,这样形成的曲线图形叫做“莱洛三角形”.“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,但其车轴中心O 并不稳定.(4)探究D 组:使“莱洛三角形”以图4为初始位置沿水平方向向右滚动.在滚动过程中,其“最高点”和“车轮轴心O ”均在不断移动位置,那么在“莱洛三角形”滚动一周的过程中,其“最高点”和“车轮轴心O ”所形成的图形按上、下放置,应大致为______.26. 在平面直角坐标系xOy 中,点()1,m −,()3n ,在抛物线()2<0y ax bx c a =++上,设抛物线的对称轴为x t =.(1)当5c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点()()00,3x n x ≠在抛物线上,若m n c <<,求t 的取值范围及0x 的取值范围.27. 如图,在Rt ABC △中,90ABC ∠=︒,()030BAC a α∠=︒<<︒.将射线AC 绕点A 逆时针旋转2α得到射线l ,射线l 与射线BC 的交点为M .在射线BC 上截取MD AC =(点D 在点M 左侧),(1)如图1,当点D 与点C 重合时,此时α=_________°,ACB ∠的度数为_________°.(2)当点D 与点C 不重合时,在线段MA 上截取2ME BC =,连接DE .依题意补全图2,用等式表示EDM ∠与BAC ∠的数量关系,并证明.28. 在平面直角坐标系xOy 中,给定图形W 和点P ,若图形W 上存在两个不同的点S ,T 满足2ST PM =.其中点M 为线段ST 的中点,则称点P 是图形W 的相关点.(1)已知点(2A ,0)①在点1234113(,),(,(2,1)2222P P P P −−中,线段OA 的相关点是_______; ②若直线y x b =+上存在线段OA 的相关点,求b 的取值范围.(2)已知点(3Q −,0),线段的长度为d ,当线段CD 在直线2x =−上运动时,如果总能在线段CD 上找到一点K ,使得在y 轴上存在以QK 为直径的圆的相关点,直接写出d 的取值范围.参考答案一、选择题(共8小题,共16分)1. 【答案】C【分析】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:选项A 、B 、D 不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项C 能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形. 故选:C . 2. 【答案】C【分析】本题考查了二次函数图象的平移,掌握平移规律是解题的关键.根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:把抛物线2y x =−向上平移3个单位,则平移后抛物线的解析式为23y x =−+ 故选:C . 3. 【答案】D【分析】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.先把常数项移到方程右边,再把方程两边加上16 【详解】解:移项得2810x x −=−,配方得22284104x x −+=−+,即2(4)6x −=. 故选:D . 4. 【答案】B【分析】本题主要考查了旋转的性质,三角形内角和定理,由旋转的性质可得B AC BAC ''∠=∠, 由三角形内角和定理可得出35B AC BAC ∠=∠=''︒,最后根据角的和差关系即可得出答案. 【详解】解:由旋转的性质可得出B AC BAC ''∠=∠, ∵180BAC B C ∠+∠+∠=︒, ∴180806535BAC ∠=︒−︒−︒=︒, ∴35B AC BAC ∠=∠=''︒,∴70BAC BAC B AC ∠=∠+''∠='︒, 故选:B . 5. 【答案】D【分析】该题主要考查了正多边形与圆,构建直角三角形,利用直角三角形的边角关系求解是解题的关键.连接OA ,作OM AB ⊥,构造出直角OAM △,且根据正六边形的性质可知30AOM ∠=︒,即可解答; 【详解】解:连接,OA OB ,作OM AB ⊥于点M , ∵正六边形ABCDEF 的外接圆半径为2cm , ∴正六边形的半径为2cm , 即2cm OA =,在正六边形ABCDEF 中,360660AOB ∠=︒÷=︒, ∴30AOM ∠=︒,∴正六边形的边心距是)cos302cm 2OM OA =︒⨯=⨯=, 故选:D .6. 【答案】B【分析】平行于围墙的一边为x 米,则垂直于围墙的一边为()1102x −米,再根据矩形的面积公式列方程即可.()10152xx −=. 故选:B .【点睛】本题主要考查一元二次方程的应用,正确列出方程是解题的关键. 7. 【答案】A【分析】本题考查作图-复杂作图,线段的垂直平分线,解题的关键熟练掌握基本知识,属于中考常考题型.【详解】解:由作图可知直线1l 是线段AB 的垂直平分线,则OA OB =的依据是线段垂直平分线上的点与这条线段两个端点的距离相等, 故选:A . 8. 【答案】D【分析】本题考查了二次函数的图像与性质,熟练掌握对称轴,最值,相应方程的根是解题关键.根据抛物线的对称轴可判断①对错;根据图像利用抛物线的顶点坐标,得到2434ac b a−=,即可判断③对错;抛物线的对称性可知,当0x =时,0y <,得到0c <,即可判断②对错;根据二次函数2(0)y ax bx c a =++≠和直线y n =的交点,即可判断④对错.【详解】解:∵抛物线的对称轴为直线22b x a=−=−, 4b a ∴=,∴40a b −=,①正确;∵抛物线的顶线坐标为(2,3)−,2434ac b a−∴=, 2124b a ac ∴+=,4b a =,234b b ac ∴+=,0a <,40b a ∴=<,∴2b 2>b ,∴2b 2+b 2+2b >b +b 2+2b ,∴3b 2+2b >b 2+3b ,∴3b 2+2b >b 2+3b =4ac ,成立,故③正确;∵抛物线与x 轴的一个交点在点(4,0)−和点(3,0)−之间,∴由抛物线的对称性可知,另一个交点在(1,0)−和(0,0)之间,0x ∴=时,0y <,0c ∴<,0a <,40b a ∴=<,∴0a b c ++<,②正确;∵抛物线的顶线坐标为(2,3)−,点()5,n −在二次函数的图像,∴抛物线与直线y n =有两个交点,∴交点的横坐标即为方程2ax bx c n ++=的两个实数根,∵点()5,n −在二次函数的图像,∴5−为其中一个实数根,根据函数图像对称性,对称轴2x =−,∴另一个实数根是1,∴关于x 的不等式20ax bx c n ++−>的解集是51x −<<,∴④正确,故选:D .二、填空题(共8小题,共16分)9. 【答案】3【分析】本题考查了方程根的定义即使方程左右两边相等的未知数的值,转化求解是解题的关键. 把1x =代入220x x m +−=,转化为m 的方程求解即可.【详解】解:把1x =代入220x x m +−=,得210m +−=,解得:3m =,故答案为:3.10. 【答案】110【分析】本题考查的知识点是圆周角定理,熟记定理内容是解题的关键.根据同圆中同弧所对的圆周角等于圆心角的一半解答即可.【详解】解:∵点A 、B 、C 在O 上,55BAC ∠=︒,2110BOC A ∴∠=∠=︒,故答案为:110.11. 【答案】<【分析】本题考查了二次函数2()y a x h k =−+图象的性质,掌握二次函数2()y a x h k =−+图象的性质是解题的关键.根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断,a b 的大小关系.【详解】解:∵二次函数2(,1011)y x a =−=>−,开口向上,对称轴为1x =,当x >1时,y 随x 增大而增大,又点()2,a ,()3,b 都在二次函数y =(x −1)2−1的图象上,211,312−=−=,a b ∴<,故答案为:<.12. 【答案】23y x =−+(答案不唯一)【分析】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出0a <,0b =是解题的关键.根据二次函数的性质可得出0a <,利用二次函数图象顶点在y 轴上的特征可得出0b =,取取1a =−,0b =,c 为任何数即可得出结论.【详解】解:设二次函数的解析式为2y ax bx c =++.∵抛物线开口向下,∴0a <.∵抛物线顶点在y 轴上,∴0b =,c 为任何数,则取1a =−,0b =,3c =时,二次函数的解析式为23y x =−+.故答案为:23y x =−+(答案不唯一).13. 【答案】70【分析】先根据等边对等角和三角形内角和定理求出110AOB ∠=︒,再根据切线的性质得到90OAP OBP ∠=∠=︒,再根据四边形内角和定理求出P ∠的度数即可.【详解】解:∵OA OB =,∴35OAB OBA ∠=∠=︒,∴180110AOB OAB OBA ∠=︒−∠−∠=︒,∵PA PB ,是O 的两条切线,∴90OAP OBP ∠=∠=︒,∴36070P AOB OAP OBP =︒−−−=︒∠∠∠∠,故答案为:70.【点睛】本题主要考查了切线的性质,等边对等角,三角形内角和定理,四边形内角和定理,熟知切线的性质是解题的关键.14. 【答案】x 1=﹣3,x 2=1【分析】关于x 的方程ax 2+bx =mx +n 的解为抛物线y =ax 2+bx 与直线y =mx +n 交点的横坐标,由此即可得到答案.【详解】∵抛物线y =ax 2+bx 与直线y =mx +n 相交于点A (﹣3,﹣6),B (1,﹣2),∴关于x 的方程ax 2+bx =mx +n 的解为x 1=﹣3,x 2=1.故答案为x 1=﹣3,x 2=1.【点睛】本题考查了抛物线与直线的交点问题:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 15. 【答案】(2,3)−−,()01−,【分析】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.把含m 的项合并,只有当m 的系数为0时,不管m 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【详解】解:∵()2211y mx m x =++−, ()222121y mx mx x m x x x ∴=++−=++−,∴当220x x +=时,与m 的取值无关,即0x =或2x =−时,不管m 取何值时都通过定点,当2x =−时,()422113y m m =−+−=−,当x =0时,1y =−,故不管m 取何值时都通过定点(2,3)−−或()01−,. 故答案为:(2,3)−−,()01−,.16. 【答案】2+【分析】本题考查圆周角定理,勾股定理,由90OMA ∠=︒得出点M 的移动轨迹,再根据圆外一点到圆上一点最大距离进行计算即可.【详解】解:如图,取OA 中点O ',连接O C ',O M ',OM ,∵M 为AP 的中点,∴90OMA ∠=︒, ∴122O M O A O O OA '''====, ∴当点P 在O 上移动时,AP 的中点M 的轨迹是以OA 为直径的O ',∴'CO 交O '于点M ,此时CM 的值最大,由题意得,4OA OB OC ===,122OO OA O M ''===, 在Rt O OC '中,4OC =,2OO '=,∴O C '==,∴2CM CO O M ''=+=,故答案为:2+.三、解答题(共12小题,共68分.其中第17题8分,第18题4分,第19,21,22,23,25题每小题5分,第20,24,26,27题每小题6分,第28题7分)17. 【答案】(1)112x −=,212x −−= (2)11x =−,223x = 【分析】此题考查了一元二次方程的求解,解题的关键是掌握一元二次方程的求解方法.(1)利用公式法求解即可;(2)移项,利用因式分解法求解即可.【小问1详解】解:∵1,1,1a b c ===−,∴122b x a −−===,则112x −+=,212x −=; 【小问2详解】解:()()3121x x x +=+()()31210x x x +−+=()()1320x x +−=∴10x +=或320x −= 则11x =−,223x =. 18. 【答案】(1)√3 (2)2【分析】本题考查垂径定理,勾股定理.(1)根据垂径定理即可得到12AD BD AB ==即可得出结果; (2)连接OA ,设O 的半径为r ,在Rt AOD 中,利用勾股定理即可求解. 【小问1详解】解:∵AB 是O 的弦,半径OC AB ⊥,垂足为D ,AB =∴12AD BD AB === 【小问2详解】 解:连接OA ,如图所示:设O 的半径为r ,即OA OC r ==, 若D 为OC 中点,1122OD OC r ∴==,由(1)知12AD BD AB ===在Rt AOD 中,由勾股定理可知222AD OA OD =−,即22212r r ⎛⎫=− ⎪⎝⎭, 解得2r =(负值舍去), ∴O 的半径为2.19. 【答案】(1)见详解 (2)12m =− 【分析】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.(1)根据方程的系数结合根的判别式,可得出10∆=>,进而即可证出:方程总有两个不相等的实数根; (2)用根与系数的关系列式求得m 的值即可.【小问1详解】证明:∵[]22(21)41()10m m m ∆=−+−⨯⨯+=>.即0∆>,∴方程总有两个不相等的实数根.【小问2详解】解:设方程的两根为a 、b ,利用根与系数的关系得:210a b m +=+=, 解得:12m =−. 20. 【答案】(1)()1,4−(2)见解析 (3)40y −≤<【分析】本题主要考查了二次函数的图象和性质,做题的关键是通过数形结合去解题.(1)将二次函数表达式化为顶点式,即可进行解答;(2)由五点作图法即可画出二次函数图象;(3)根据图象即可求得y 的范围;【小问1详解】()222314y x x x =−−=−−, ∴该二次函数的顶点坐标为()1,4−;【小问2详解】列表如下,=23y x x 的图象如图,【小问3详解】由图象可知,当1x =−时,y 取得最大值,y 的最大值为0,当1x =时,y 取得最小值,y 的最小值为-4,∴当12x −<<时,y 的范围为40y −≤<.21. 【答案】(1)()1,1A(2)见详解 (3)()12,3B −,94π 【分析】本题主要考查对称性和旋转的性质.(1)根据一点关于原点对称点的性质即可求解;(2)结合旋转的性质即可得到旋转后的图形;(3)结合点A 的坐标和旋转的性质即可求得点1B ,利用旋转的性质和面积公式即可.【小问1详解】解:∵()01,1A −−,∴()1,1A ;【小问2详解】解:如图,【小问3详解】解:根据旋转得,13AC AC ==,12BC B C ==,∵点()1,1A ,∴点()12,3B −,∵将ABC 绕点A 逆时针旋转90°得11AB C △.∴边AC 扫过区域的面积为229019·336044AC πππ⨯=⨯=. 22. 【答案】(1)作图见解析(2)CP ,DPQ ∠,内错角相等,两直线平行【分析】本题考查的作已知直线的平行线,圆周角定理的应用,平行线的判定;(1)根据题干的作图语言逐步作图即可;(2)证明CP DQ =,可得PDC DPQ ∠=∠,结合平行线的判定可得结论.【小问1详解】解:如图,作图如下:.【小问2详解】证明:连接DP ,∵CP DQ =,∴CP DQ =,∴PDC DPQ ∠=∠.∴PQ l ∥(内错角相等,两直线平行).23. 【答案】(1)该拱门的高度为7.2m ,跨度为12m ,()20.267.2y x =−−+(2)<【分析】本题考查了二次函数的实际应用,(1)由表格得当0x =时,0y =,当12x =时,0y =,从而可求对称轴和顶点坐标,进而可求出拱门的高度和跨度,再把解析式设为顶点式利用待定系数法即可求解;(2)先把()0,0代入()20.187.30y x h =−−+中,求出h 的值,则可求出2d ,进行比较即可. 【小问1详解】解:由表格可知抛物线经过()0,0和()12,0,∴抛物线的对称轴为直线6x =,∵当6x =,7.2y =,∴该拱门的高度为7.2m ,∵12012−=,∴跨度为12m ;设抛物线解析式为()267.2y a x =−+,把()2,4代入()267.2y a x =−+中得:()2267.24a −+=, 解得:0.2a =−,∴()20.267.2y x =−−+;【小问2详解】解:把()0,0代入()20.187.30y x h =−−+中得()200.1807.30h =−−+,解得3h =或3h =−(舍去),∴抛物线()20.187.30y x h =−−+与x 轴的另一个交点坐标为,03⎛⎫ ⎪⎝⎭,∴2m 3d =, 由(1)可得110m d =, ∵222114601009d d =>=, ∴21d d >,故答案为:<.24. 【答案】(1)证明见解析(2)【分析】(1)连接OD .根据直径所对的圆周角是直角得90ACB ∠=︒,再根据角平分线得45ACD BCD ∠=∠=︒,进而得45ABD ACD ∠=∠=︒,又由45ODB OBD ∠=∠=︒,从而根据平行线的性质得45BDE OBD ︒∠=∠=,于是90ODE ODB BDE ∠=∠+∠=︒,得OD DE ⊥,根据切线的判定即可证明结论成立;(2)如图2,过点B 作BF CD ⊥于点F ,先证明BF CF =.再根据勾股定理得BF CF ==,根据直角三角形的性质得2BD BF ==【小问1详解】证明,如图1,连接OD .AB 是O 的直径,90ACB ∴∠=︒, CD 平分ACB ∠,45ACD BCD ∴∠=∠=︒45ABD ACD ∴∠=∠=︒OD OB =,45ODB OBD ∴∠=∠=︒, DE AB ∥,45BDE OBD ︒∴∠=∠=,90ODE ODB BDE ︒∴∠=∠+∠=, OD DE ∴⊥ OD 为O 的半径,∴直线DE 是O 的切线.【小问2详解】解:如图2,过点B 作BF CD ⊥于点F ,90BFC BFD ︒∴∠=∠=, ∵AB 为O 的直径,∴90ACB ∠=︒,∵ACB ∠的平分线CD 交O 于点D , ∴45ACD BCD ∠=∠=︒, 45CBF ∴∠=︒,BF CF ∴=.在Rt BFC △中,4BC =,根据勾股定理,得42BF CF ==⨯= ∵60ABC ADC ∠=∠=︒,∴906030BAC ∠=︒−︒=︒, BC BC =,30CDB BAC ︒∴∠=∠=,2BD BF ∴==在Rt BFD 中,根据勾股定理,得DF ==CD CF DF ∴=+=.【点睛】本题主要考查了勾股定理、圆周角角定理、直径所对的圆周角是直角、切线的判定以及平行线的性质,等腰三角形的判定与性质,熟练掌握圆周角角定理、直径所对的圆周角是直角以及切线的判定是解题的关键.25. 【答案】8;3−;;A【分析】本题主要考查圆的综合应用,主要考查了弧长公式,正方形的性质,等边三角形的性质,理解题意并画出图形是解题的关键.(1)利用正方形的性质解答即可;(2)画出图形,找到最高点和最低点即可得到答案; (3)分别求出三部分一定的距离,然后相加即可;(4)由题意知:最高点与水平面距离不变,即可得到结论. 【详解】解:(1)圆形车轮与地面始终相切,∴车轮轴心O 到地面的距离始终等于圆的直径,圆形车轮半径为4cm ,故车轮最高点到地面的距离始终为8cm ,故答案为:8;(2)如图所示,OC 为正方形车轮的轴心O 移动的部分轨迹,点D 为车轮轴心O 的最高点,点C 为车轮轴心O 的最低点,由题意得车轮轴心O 距离地面的最低高度为AD OA ==∴车轮轴心O 距离地面的最高点与最低点的高度差为3)cm ,故答案为:3);(3)点O 的运动轨迹为圆,以点C 为圆心,23=运动距离为2π⨯=故答案为:; (4)由题意知,当“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,故“最高点”和“最低点所形成的图案大致是”A ,故答案为:A .26. 【答案】(1)抛物线与y 轴交点的坐标为()0,5,1t =(2)010x −<<【分析】本题考查了二次函数图像的性质;运用二次函数的增减性按要求列出相应的不等式是解题的关键.(1)将5c =代入()20y ax bx c a =++<中,可得抛物线与y 轴交点的坐标,再根据m n =可得点()1,m −与()3,n 关于抛物线的对称轴对称,即132t −+=计算即可; (2)根据m n c <<,可确定出2a >−b >3a , 结合20a <,可得对称轴的取值范围,再利用对称轴可表示为直线032x x +=,进而可确定0x 的取值范围. 【小问1详解】解:当5c =时,抛物线:25y ax bx =++当0x = 时,5y =;∴ 抛物线与y 轴交点的坐标为:()0,5;∵m n =,∴点()1,m −与()3,n 关于抛物线的对称轴对称, ∴1312x t −+===; 【小问2详解】解:∵m n c <<,∴93a b c a b c c −+<++<,解得23a b a −<<−,∴2a >−b >3a , 而20a <, ∴3122b a <−<,即312t <<, ∵点()3,n ,()()00,3x n x ≠在抛物线上, ∴抛物线的对称轴为直线032x x +=, ∴033122x +<<, 解得:010x −<<,∴0x 的取值范围010x −<<.27. 【答案】(1)18︒,72°(2)补全图形见解析,2EDM BAC ∠=∠,证明见解析【分析】(1)当点D 与点C 重合时,由等腰三角形等边对等角,得到 2AMC CAM α∠=∠=,再根据直角三角形的性质可得590AMC CAM BAC α∠+∠+∠==︒,进而求出18α=︒,可求ACB ∠的度数; (2)根据题意补全图形,在CB 的延长线上截取BF BC =,连接AF ,在AF 上取点N ,使得CF CN =, 连接CN , 证明DME ACN ≌可得EDM CAN ∠=∠,即可得到EDM ∠与BAC ∠的等量关系.【小问1详解】解:∵点D 与点C 重合,,2MD AC CAM α=∠=,∴2AMC CAM α∠=∠=,在Rt ABC △中,90ABC ∠=︒,∴90AMC MAB ∠+∠=︒,∵BAC α∠=,∴590AMC CAM BAC α∠+∠+∠==︒,∴18α=︒,∴236MAC AMC α∠=∠==︒,∴22472ACB MAC MAC a αα∠=∠+∠=+==︒;【小问2详解】解:补全图形如图;2EDM BAC ∠=∠,理由如下:如图, 在CB 的延长线上截取BF BC =,连接AF ,在AF 上取点N ,使得CF CN =, 连接CN ,∵,90BF BC ABC =∠=︒,∴AC AF =,∴22CAN BAC α∠=∠=, ∴()1180902AFC ACF CAN α∠=∠=︒−∠=︒−, ∵CF CN =,∴90CNF AFC α∠=∠=︒−,∴1802FCN AFC CNF α∠=︒−∠−∠=,∴903ACN ACF FCN α∠=∠−∠=︒−,∵22MAC BAC α∠=∠=,∴90903AMD MAC BAC α∠=︒−∠−∠=︒−,∴ACN AMD ∠=∠,∵2ME BC =,2CF CN BC ==,∴ME CN =,∵MD AC =,∴()SAS DME ACN ≌,∴22EDM CAN BAC α∠=∠==∠.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,直角三角形的性质.关键是添加辅助线构造全等三角形,找到线段的等量关系.28. 【答案】(1)①1P ,3P ;②1−b ≤≤1(2)d ≥【分析】(1)①根据新定义得出P 点在以OA 为直径的圆上及其内部,以OA 为直径,()1,0为圆心作圆,在圆上或圆内的点即为所求;②根据①可得P 点在以OA 为直径的圆上及其内部,作出图形,进而根据直线y x b =+上存在线段OA 的相关点,求得相切时的临界值,即可求解;(2)设点K 是直线2x =−上一点,且点K ,使得在y 轴上存在以QK 为直径的圆的唯一相关点,设()2,K k −,则以QK 为直径的圆上两点ST 为直径的圆与y 轴相切于点P ,且ST y ∥轴,当ST CP ⊥且ST PC =时,y 轴上存在以QK 为直径的圆的唯一相关点P ,勾股定理求得KB 的值,进而根据对称性可得当K 点在x 轴的下方时,符合题意,即可求解.【小问1详解】解:①∵(2A ,0),∴2OA =,∵P 是线段OA 的相关点,∵2ST PM =,若点,S T 分别与点()()0,0,2,0A 重合,则中点为()1,0,∴P 在以OA 为直径的圆上,∵,S T 是线段OA 上的点,∴P 点在以OA 为直径的圆上及其内部,故答案为: 1P ,3P. ②由题意可得线段OA 的所有相关点都在以OA 为直径的圆上及其内部,如图.设这个圆的圆心是H .(2A ,0),∴ (1H ,0).当直线y x b =+与H 相切,且0b >时,将直线y x b =+与x 轴的交点分别记为B ,则点B 的坐标是(b −,0).∴ 1BH b =+.BH =,∴1b +=1b =.当直线y x b =+与H 相切,且0b <时,同理可求得1b =−.所以b 的取值范围是1−b ≤≤1.【小问2详解】解:设点K 是直线2x =−上一点,且点K ,使得在y 轴上存在以QK 为直径的圆的唯一相关点, 设()2,K k −,则以QK 为直径的圆上两点ST 为直径的圆与y 轴相切于点P ,且ST y ∥轴,如图所示,设以QK 为直径的圆,圆心是C .则5,22k C ⎛⎫− ⎪⎝⎭, ∴52CP = M 是ST 的中点,2ST PM =,∴SP =当ST CP ⊥且ST PC =时,y 轴上存在以QK 为直径的圆的唯一相关点P ,在Rt CSM 中,52224CS CP ===,∴22QK CS ==,∴2KB ===, 根据对称性可得当K 点在x 轴的下方时,也符合题意,∴d ≥.【点睛】本题考查了几何新定义,切线的性质,垂径定理,勾股定理,理解新定义是解题的关键.。
上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)
2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。
重庆市重点中学九年级上学期期中考试数学试卷及答案(共三套)
重庆市重点中学九年级上学期期中考试数学试卷(一)时间:120分钟总分:150分一.选择题(每题4分,共48分)1.实数﹣5,0,﹣,3中最大的数是A.﹣5 B.0 C.﹣ D.32.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠23.如图图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为A.20° B.40° C.60° D.80°5.计算(﹣2x2y)2的结果是()A.﹣2x4y2 B.4x4y2 C.﹣4x2y D.4x4y6.估计+1的值应在()(第4题图)A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间7.将抛物线y=x2向上平移3个单位后所得的解析式为()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)28.下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑥个图形中正方形的个数为()A.50 B.48 C.43 D.409.在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A. B. C. D.10.已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y 1),N(﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y211.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度(第11题图) 约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.8.1米 B.17.2米C.19.7米 D.25.5米12.若整数a使关于x的不等式组无解,且使关于x的分式方程=﹣2有整数解,那么所有满足条件的a值的和是()A.﹣20 B.﹣19 C.﹣15 D.﹣13二.填空题(每题4分,共16分)13.我国参加今年北京田径世锦赛的志愿者超过3500000人,把3500000用科学记数法表示为.14.已知二次函数y=(m﹣2)x2的图象开口向下,则m的取值范围是.15.如图是某市1月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择1月1日至1月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量是重度污染的概率是.(第15题)(第16题)16.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)17.甲、乙两车在依次连通A、B、C三地的公路上行驶,甲车从B地出发匀速向C地行驶,同时乙车人B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头按原速向C地行驶.在两车行驶的过程中,甲、乙两车与B地的距离y (千米)与行驶时间x(小时)之间的函数图象如图所示,当甲、乙两车相遇时,所用时间为小时.(第17题)(第18题)18.如图,正方形ABCD的边长为3,延长CB到点M,使BM=1,连接AM,过点B 作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为.三.解答题(每题8分,共16分)19.如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.(第19题)20.有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议“每人少开一天车,共建绿色家园”,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,扇形统计图中“骑自行车”所在扇形的圆心角度数是度,请补全条形统计图;(2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.(第20题)四、解答题(每题10分,共40分)21.化简:(1)(x+2y)2﹣(x+2y)(x﹣2y);(2)÷(+﹣1)22.如图,已知一次函数y1=k1x+6与反比例函数y2=相交于A、B,与x轴交于点C,过点B作BD⊥x轴于点D,已知sin∠DBC=,OC:CD=3:1.(1)求y1和y2的解析式;(2)连接OA,OB,求△AOB的面积.23.服装厂准备生产某种样式的服装40000套,分黑色和彩色两种.(1)若生产黑色服装的套数不多于彩色服装套数的,问最多生产多少套黑色服装?(2)目前工厂有100名工人,平均每人生产400套,由于展品会上此种样式服装大受欢迎,工厂计划增加产量;由于条件发生变化,人均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则工人需增加2.4a%,求a的值.24.如图,在正方形ABCD的对角线AC上取点E,使得∠CDE=15°,连接BE.延长BE到F,连接CF,使得CF=BC.(1)求证:DE=BE;(2)求证:EF=CE+DE.五、解答题(25题10分,26题12分,共22分)25.任意写一个个位数字不为零的四位正整数A,将该正整数A的各位数字顺序颠倒过来,得到四位正整数B,则称A和B为一对四位回文数.例如A=2016,B=6102,则A和B就是一对四位回文数,现将A的回文数B从左往右,依次顺取三个数字组成一个新数,最后不足三个数字时,将开头的一个数字或两个数字顺次接到末尾,在组成三位新数时,如遇最高位数字为零,则去掉最高位数字,由剩下的两个或一个数字组成新数,将得到的所有新数求和,把这个和称为A的回文数B作三位数的和.例如将6102依次顺取三个数字组成的新数分别为:610,102,26,261,它们的和为:610+102+26+261=999,把999称为2016的回文数作三位数的和.(1)请直接写出一对四位回文数:猜想一个四位正整数的回文数作三位数的和能否被111整除?并说明理由;(2)已知一个四位正整数(千位数字为1,百位数字为x且0≤x≤9,十位数字为1,个位数字为y且0≤y≤9)的回文数作三位数的和能被27整除,请求出x与y的数量关系.26.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A (﹣1,0),且tan∠ABC=(1)求抛物线的解折式.(2)在直线BC下方抛物线上一点P,当四边形OCPB的面积取得最大值时,求此时点P的坐标.(3)在y轴的左侧抛物线上有一点M,满足∠MBA=∠ABC,若点N是直线BC上一点,当△MNB为等腰三角形时,求点N的坐标.数学试题答案一.选择题(共12小题)1.D.2.D.3.D.4.D.5.B.6.B.7.A.8.C.9.C.10.B.11.A.12.D 二.填空题(共6小题)13. 3.5×106. 14.m<2 . 15..16.π+2.. 17.10 小时. 18..17解:由题意可得,甲车的速度为:600÷12=50千米/时,乙车的速度为:(200×2+600)÷(11﹣1)=100千米/时,乙车从B地到A地然后回到B地用的时间为:200×2÷100+1=5(小时),设甲乙两车相遇用的时间为x小时,50x=100(x﹣5),解得,x=10,18题详解解:∵AB=3,BM=1,∴AM=,∵∠ABM=90°,BN⊥AM,∴△ABN∽△BNM∽△AMB,∴AB2=AN×AM,BM2=MN×AM,∴AN=,MN=,∵AB=3,CD=3,∴AC=,∴A O=,∵,,∴,且∠CAM=∠NAO∴△AON∽△AMC,∴,∴ON=.三.解答题(共8小题)19.解:∵AB∥CD,∠1=50°,∴∠CFE=∠1=50°. --------------2分∵∠CFE+∠EFD=180°,∴∠EFD=180°﹣∠CEF=130°.---------4分∵FG平分∠EFD,∴∠DFG=∠EFD=65°.--------------6分∵AB∥CD,∴∠BGF+∠DFG=180°,∴∠BGF=180°﹣∠DFG=180°﹣65°=115°.-----------8分20.解:(1)本次接受调查的总人数为160÷40%=400(人),扇形统计图中“骑自行车”所在扇形的圆心角度数为×360°=54°,--2分乘私家车的人数=400﹣60﹣160﹣80=100(人),补全条形统计图为:----------------4分(2)画树状图为:共有20种等可能的结果数,其中选出1名男生和1名女生的结果数为12种,---------6分所以恰好选出1名男生和1名女生的概率==. --------8分21.化简:(1)(x+2y)2﹣(x+2y)(x﹣2y);(2)÷(+﹣1)解:(1)原式=x2+4xy+4y2﹣(x2﹣4y2)-----------2分=x2+4xy+4y2﹣x2+4y2 ----- ---------------------3分=4xy+8y2; ----------------5分(2)原式=÷--------------7分=•--------------------------9分=.-----------------------------10分22.解:(1)y1=k1x+6与y轴的交点E的坐标为(0,6),∴OE=6,-----------------------------1分∵BD⊥x轴,∴OE∥BD,∴==,∴BD=2,------------------------2分∵sin∠DBC=,∴设CD=x,则BC=5x,由勾股定理得,(5x)2=(x)2+4,解得,x=,则CD=x=1,则BC=5x=,∴点B的坐标为(4,﹣2),----------------4分﹣2=k1×4+6,解得,k1=﹣2,则y1=﹣2x+6,y2=﹣;------------------6分(2),解得,,,-----------------8分则△AOB的面积=×3×8+3×2=15.-------------------10分23.解:(1)设生产黑色服装x套,则彩色服装为(40000﹣x)套-------1分由题意得:x≤(40000﹣x),---------------------------3分解得x≤8000.--------------------------------------4分故最多生产黑色服装8000套.--------------------------------5分(2)40000(1+10%)=400(1﹣1.25a%)100(1+2.4a%),--------8分设t=a% 化简得:60t2﹣23t+2=0…(8分)解得t1=(舍去),t2=.a%=, a=25.------------------------9分答:a的值是25.-----------------------10分24.证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=45°.∵在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),---------3分∴BE=DE.-------------------------4分(2)在EF上取一点G,使EG=EC,连结CG,-----------5分∵△ABE≌△ADE,∴∠ABE=∠ADE.∴∠CBE=∠CDE,∵BC=CF,∴∠CBE=∠F,∵∠CDE=15°,∴∠CBE=15°,∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.-----------7分∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=GCF.∵在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.------------------------------------9分∵EF=EG+GF,∴EF=CE+ED.-------------------------------------10分25.解:(1)一个四位正整数的回文数作三位数的和能否被111整除.例如A=1234和B=4321是一对四位回文数,------------------2分设一个4位数为(A,B,C,D为整数),则这个数的回文数为,则由题知这个回文数作三位数的和为+++=111(A+B+C+D),∵A,B,C,D为整数,∴A+B+C+D为整数,∴一个四位正整数的回文数作三位数的和能被111整除;---------4分(2)正整数的回文数是y1x1,则回文数作三位数的和为:100y+10+x+100+10x+1+100x+10+y+100+10y+1=100x+100y+222=111(x+y+2),----------7分由题意得,x+y+2=9或x+y+2=18,则x+y=7或x+y=16.------------10分26.解:(1)由抛物线y=ax2+bx﹣2可知C的坐标为(0,﹣2),∴OC=2,∵tan∠ABC==∴OB=3,∴B(3,0),------2分∵A(﹣1,0),把A、B的坐标代入y=ax2+bx﹣2得:解得,∴抛物线的解折式为y=x2﹣x﹣2;-----------4分(2)过点P作y轴的平行线与BC交于点Q,与OB交于点E,设P(x,x2﹣x﹣2),-------------------------5分由B(3,0),C(0,﹣2)可求得直线BC的解析式为y=x﹣2.∴Q点的坐标为(x,x﹣2),------------------6分∴S四边形OBPC =S△OBC+S△BPQ+S△CPQ=OB•OC+QP•OE+QP•EB=×3×2+(2x﹣x2)×3=﹣x2+3x+3=﹣(x﹣)2+,∴当x=时,四边形ABPC的面积最大. 此时P点的坐标为(,﹣).-----------8分(3)设直线AM交y轴于D,∵∠MBA=∠ABC,∴OD=OC=2,∴D(0,2),设直线AM的解析式为y=mx+2,代入B(3,0)得0=3m+2,解得m=﹣,∴直线AM的解析式为y=﹣x+2,解得或,∴M(﹣2,),设N(x,x﹣2),∵BM2=(3+2)2+()2,MN2=(x+2)2+(x﹣2﹣)2,BN2=(x﹣3)2+(x﹣2)2,当MB=BN时,N(﹣2,﹣)或(8,);当MB=MN时,则(3+2)2+()2=(x+2)2+(x﹣2﹣)2,整理得13x2﹣28x﹣33=0,解得x1=3,x2=﹣,∴N(﹣,﹣);当BN=MN时,(x+2)2+(x﹣2﹣)2=(x﹣3)2+(x﹣2)2,整理得10x=﹣35,解得x=﹣∴N(﹣,﹣);综上,点N的坐标为(﹣2,﹣)或(8,)或(﹣,﹣)或(﹣,﹣).-------------12分重庆市重点中学九年级上学期期中考试数学试卷(二)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D.的四个答案,其中只有一个是正确的,请将正确答案填写在答题卡上.1.4的倒数是()A.﹣4 B.4 C.﹣D.2.下列交通指示标识中,不是轴对称图形的是()A.B. C.D.3.下列方程中,是关于x的一元二次方程为()A.x2﹣4x+5=0 B.x2+x+1=y C.+8x﹣5=0 D.(x﹣1)2+y2=34.抛物线y=﹣(x+1)2﹣2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)5.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥16.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对7.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1488.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠39.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A.43 B.45 C.51 D.5312.如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.计算:|﹣3|+(﹣1)2﹣= .15.若函数y=x2﹣6x+m的图象与x轴只有一个公共点,则m= .16.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是.17.甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发分钟时,乙追上了甲.18.如图,正方形ABCD的边长为4+2,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.(8分)解方程(1)x2﹣2x=5(2)2(x﹣3)=3x(x﹣3)20.(8分)如图,AB∥CD,BD=CD,∠D=36°,求∠ABC的度数.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.(10分)2016年9月,某手机公司发布了新款智能手机,为了调查某小区业主对该款手机的购买意向,该公司在某小区随机对部分业主进行了问卷调查,规定每人只能从A类(立刻去抢购)、B类(降价后再去买)、C类(犹豫中)、D类(肯定不买)这四类中选一类,并制成了以下两幅不完整的统计图,由图中所给出的信息解答下列问题:(1)扇形统计图中B类对应的百分比为%,请补全条形统计图;(2)若该小区共有4000人,请你估计该小区大约有多少人立刻去抢购该款手机.22.(10分)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD 沿CE折叠后,点B落在AD边的点F上,求DF的长为多少?23.(10分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m 的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.24.(10分)设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2=﹣5,(x2+1)⊕(x﹣1)=(因为x2+1>0)参照上面材料,解答下列问题:(1)2⊕4= ,(﹣2)⊕4= ;(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.五、解答题:(本题共2小题,25题10分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(10分)某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克.若销售价每涨1元,则月销售量减少10千克.(1)要使月销售利润达到最大,销售单价应定为多少元?(2)要使月销售利润不低于8000元,请画出草图结合图象说明销售单价应如何定?26.(12分)如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的解析式;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.2017-2018学年重庆市江北区联盟校九年级(上)期中数学试卷参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D.的四个答案,其中只有一个是正确的,请将正确答案填写在答题卡上.1.D;2.C;3.A;4.D;5.C;6.B;7.B;8.A;9.C;10.A;11.C;12.C;二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.1.1×104; 14.6; 15.9; 16.15; 17.; 18.2;三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.20.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.22.23.24.五、解答题:(本题共2小题,25题10分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.26.;重庆市重点中学九年级上学期期中考试数学试卷(三) 考试时间120分钟 总分 150分一、选择题(4x12分)1、一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D 2、有下列判断:(1)直径是圆的对称轴。
湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)
2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。
一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。
四川省达州市高级中学校2024届九年级上学期期中考试数学试卷(含解析)
数学试卷本试卷分为第Ⅰ卷(选择题、填空题)和第Ⅱ卷(解答题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页.考试时间120分钟,满分150分.第Ⅰ卷一、选择题:(每小题4分,共40分;每小题选出正确答案后,请用2B 铅笔把机读卡上对应题号的答案标号涂黑.否则不得分.)1.下列方程中是关于x 的一元二次方程的是()A.2210x x+= B.20ax bx c ++= C.()()121x x -+= D.223250x xy y --=答案:C 解析:详解:解:A 、2210x x+=是分式方程,选项说法错误,不符合题意;B 、当0a =时,20ax bx c ++=不是一元二次方程,选项说法错误,不符合题意;C 、(1)(2)1x x -+=,即230x x +-=是一元二次方程,选项说法正确,符合题意;D 、223250x xy y --=是二元二次方程,选项说法错误,不符合题意;故选C .2.已知四边形ABCD 是平行四边形,对角线AC 与BD 相交于点O ,下列结论中不正确的是()A.当AB BC =时,四边形ABCD 是菱形B.当AC BD ⊥时,四边形ABCD 是菱形C.当OA OB =时,四边形ABCD 是矩形D.当ABD CBD ∠=∠时,四边形ABCD 是矩形答案:D 解析:详解:解:如图:A 、∵四边形ABCD 是平行四边形,AB BC =,∴四边形ABCD 是菱形;A 选项正确;B 、∵四边形ABCD 是平行四边形,AC BD ⊥,∴四边形ABCD 是菱形;B 选项正确;C 、∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,又∵OA OB =,∴OA OB OC OD ===,∴四边形ABCD 是矩形;C 选项正确;D 、∵四边形ABCD 是平行四边形,∴AB CD ,∴ABD BDC ∠=∠,又∵ABD CBD ∠=∠,∴BDC CBD ∠=∠,∴BC CD =,∴四边形ABCD 是菱形;不能证明四边形ABCD 是矩形,D 选项错误,故选:D .3.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是()A.110B.15C.13D.12答案:B 解析:详解:解:根据概率的定义,一共有10只粽子,其中红豆粽有2个,所以吃到红豆粽的概率是21105=.故选B .4.如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值()A.2B.4C.D.答案:C 解析:详解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD 于P′,∵DD′⊥AE ,∴∠AFD=∠AFD′,∵AF=AF ,∠DAE=∠CAE ,∴△DAF ≌△D′AF ,∴D′是D 关于AE 的对称点,AD′=AD=4,∴D′P′即为DQ+PQ 的最小值,∵四边形ABCD 是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt △AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴,即DQ+PQ 的最小值为2,故答案为C .5.已知ABC 如图,则下列4个三角形中,与ABC 相似的是()A. B. C. D.答案:D 解析:详解:∵由图可知,675AB AC B ==∠=︒,,∴75C ∠=︒,18030A B C ∠=︒-∠-∠=︒,A .选项中三角形是等边三角形,各角的度数都为60︒,不与ABC 相似;B .选项中三角形各角的度数分别是52.5︒,52.5︒,75︒,不与ABC 相似;C .选项中三角形各角的度数分别为40︒,70︒,70︒,不与ABC 相似;D .选项中三角形各角的度数分别为30,︒75︒,75︒,与ABC 相似;故选:D .6.若578a b ck ===且323a b c -+=,则243a b c +-的值是()A.14 B.42C.7D.143答案:D 解析:详解:解:578a b ck ===,5,7,8a k b k c k ∴===,323a b c -+= ,352783k k k ∴⨯-⨯+=,解,得13k =,578,333a b c ∴===578142432433333a b c ∴+-=⨯+⨯-⨯=,故选:D .7.某市2020年底已有绿化面积300公顷,经过两年绿化、绿化面积逐年增加,到2022年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是()A.()3001363x +=B.()23001363x +=C.()30012363x += D.()23631300x -=答案:B 解析:详解:解:设绿化面积平均每年的增长率为x ,根据题意得,()23001363x +=故选:B .8.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子1x x +(0x >)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x,矩形的周长是12x x ⎛⎫+⎪⎝⎭;当矩形成为正方形时,就有1x x=(0x >),解得1x =,这时矩形的周长124x x ⎛⎫+= ⎪⎝⎭最小,因此1x x +(0x >)的最小值是2.模仿张华的推导,你求得式子225x x+(0x >)的最小值是()A.10B.5C.15D.20答案:A 解析:详解:解:∵0x >,∴在原式中分母分子同除以x ,即22525x x x x+=+;在面积是25的矩形中设矩形的一边长为x ,则另一边长是25x,矩形的周长是252x x ⎛⎫+⎪⎝⎭;当矩形成为正方形时,就有25x x=(0x >),解得:5x =,这时矩形的周长25220x x ⎛⎫+= ⎪⎝⎭最小,因此225x x+(0x >)的最小值是10.故选:A .9.如图,点C 是线段AB 的黄金分割点(AC BC >),下列结论错误的是()A.AC BCAB AC= B.2•BC AC AB =C.12AC AB -= D.0.618≈BCAC答案:B 解析:详解:解:∵AC >BC ,∴AC 是较长的线段,根据黄金分割的定义可知:AB :AC=AC :BC ,故A 正确,不符合题意;AC 2=AB•BC ,故B 错误,12AC AB -=,故C 正确,不符合题意;0.618≈BCAC,故D 正确,不符合题意.故选B .10.如图,在ABC 中60A ∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM PN ,,则下列结论:①PM PN =;②AM ANAB AC=;③PMN 为等边三角形;④当=45ABC ∠︒时,BN =.其中正确个数是()A.1个B.2个C.3个D.4个答案:D 解析:详解:解:①∵BM AC ⊥于点M ,CN AC ⊥于点N ,P 为BC 边的中点,∴点P 是Rt MBC 和Rt NBC 的斜边的中点,∴12MP NP BC ==,故①正确;②∵BM AC ⊥于点M ,CN AC ⊥于点N ,∴90AMB ANC ∠=∠=︒,又∵A A ∠=∠,∴AMB ANC ∽ ,∴AM ANAB AC=,故②正确;③∵BM AC ⊥于点M ,CN AC ⊥于点N ,P 为BC 边的中点,∴点P 是Rt MBC 和Rt NBC 的斜边的中点,∴12MP NP BP CP BC ====,∴点M ,N ,B ,C 共圆,∴2NPM ABM ∠=∠,在Rt ABM 中,60A ∠=︒,∴30ABM ∠=︒,∴60NPM ∠=︒,∵PN PM =,∴PMN 是等边三角形,故③正确;④当=45ABC ∠︒时,BNC 为以BC 为斜边的等腰直角三角形,∴22BN BC =,故④正确;故选:D .二、填空题:(本大题共6小题,每小题4分,满分24分,请把答案填写在答题卷上,否则不得分.)11.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为______.答案:24解析:详解:解:x 2﹣14x +48=0,则有(x -6)(x -8)=0解得:x =6或x =8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为:24.12.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m =___,另一个根是___.答案:①.1②.-3解析:详解:根据题意,得4+2m −6=0,即2m −2=0,解得,m =1,由韦达定理,知:12x x m +=-,∴221x +=-,解得:2 3.x =-故答案为:1,−3.13.关于x 的方程kx 2﹣2x +1=0有两个不相等的实数根,则k 的取值范围是_____.答案:k <1且k ≠0.解析:详解:解:∵关于x 的一元二次方程kx 2﹣2x +1=0有两个不相等的实数根,∴k ≠0且△>0,即(﹣2)2﹣4×k ×1>0,解得k <1且k ≠0.∴k 的取值范围为k <1且k ≠0.故答案为:k <1且k ≠0.14.如图,△ABC 中,DE ∥BC ,23DE BC =,△ADE 的面积为8,则△ABC 的面积为______答案:18.解析:详解:∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵23 DEBC=,∴2224()(39 ADEABCS DES BC===,∴9184ABC ADES S==.故选:18.15.将一副三角尺如图所示叠放在一起,则AEED的值是_______.答案:33133解析:详解:解:90BAC ACD∠=∠=︒,∴AB CD,∴30BAE EDC∠=∠=︒,45ABE ECD∠=∠=︒,∴ABE DCE∽,∴AE ABED CD=,∵AC AB=,∴AE ACED CD=,∵3tan 3AC D CD ∠==,∴3AE ED =,故答案为:33.16.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为()1,0,点D 的坐标为()0,2.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C 1…按这样的规律进行下去,第2014个正方形的面积为______答案:4026352⎛⎫⋅ ⎪⎝⎭解析:详解:解:∵正方形ABCD 的点A 的坐标为()1,0,点D 的坐标为()0,2.∴1OA =,2OD =,由勾股定理得,AD =12OA OD =,∵90ADO DAO ∠+=︒,190DAO BAA ∠+=︒,∴1ADO BAA ∠=,由题意得190DOA ABA ∠==︒,则1DOA ABA ∽,∴112A B OA AB OD ==,∵AD AB ==∴152A B =,则第二个正方形的面积为2221153522S A C ⎛⎫===⋅ ⎪⎝⎭⎭,同理可得第三个正方形的面积为2422215135352222S A C ⎛⎫⎛⎫==+⨯=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭,依此类推,第n 个正方形的面积为()21352n n S -⎛⎫=⋅ ⎪⎝⎭,则第2014个正方形的面积为:40262014352S ⎛⎫=⋅ ⎪⎝⎭.故答案为:4026352⎛⎫⋅ ⎪⎝⎭.第Ⅱ卷三、解答题:(本大题4个小题,共86分)解答时每小题需给出必要的演算过程或推理步骤.17.解方程:(1)22210x x --=(2)()()22320x x ---=答案:(1)112x +=,212x =(2)12x =,25x =解析:小问1详解:原方程变形为212x x -=配方得21344x x -+=,即21324x ⎛⎫-= ⎪⎝⎭,∴12x -=,∴1132x +=,2132x =.小问2详解:原方程可以变形为()()2230x x ---=,∴20x -=或230x --=,∴12x =,25x =.18.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (﹣1,2),B (﹣3,4)C (﹣2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.答案:(1)见解析;(2)见解析.解析:详解:(1)如图:△A 1B 1C 1即为所求;(2)如图:△A 2B 2C 2即为所求.19.已知关于x 的一元二次方程()22110x k x k +---=.(1)试判断此一元二次方程根的存在情况;(2)若方程有两个实数根x 1和x 2,且满足12111x x +=,求k 的值.答案:(1)有两个不相等的实数根(2)2k =解析:小问1详解:解:()()222Δ214144144450k k k k k k =----=-+++=+> ,()22110x k x k ∴+---=有两个不相等的实数根;小问2详解:由一元二次方程根与系数的关系可知:1212x x k +=-,121x x k ⋅=--,121212111x x x x x x ++==⋅ ,1211k k -∴=--,解得:2k =.20.第三届亚洲沙滩运动会服务中心要在某校选拔一名志愿者.经笔试、面试,结果小明和小颖并列第一.评委会决定通过抓球来确定人选.抓球规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小颖再取出一个球.若取出的球都是红球,则小明胜出;若取出的球是一红一绿,则小颖胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.答案:见解析解析:详解:解:根据题意,用A 表示红球,B 表示绿球,列表如下:A A BAA A A AB A AA A A AB A B A B A B B B由此可知,共有9种等可能的结果,其中,两红球及一红一绿各有4种结果,(P ∴都是红球)=49,(1P 红1绿球)=49.(P 都是红球)(1P =红1绿球),∴这个规则对双方是公平的.21.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)若商场只要求保证每天的盈利为4320元,同时又可使顾客得到实惠,每千克应涨价多少元?(2)若该商场经理想让这种水果每天的盈利为4600元,商场经理的想法能实现吗?如果能请求出每千克应涨价多少元,如果不能请说明理由.答案:(1)2元(2)不能,见解析解析:小问1详解:设每千克应涨价x 元,则()()10400204320x x =+-,解得2x =或8x =,为了使顾客得到实惠,所以2x =,所以每千克应涨价2元.小问2详解:该商场经理想法不能实现.设每千克应涨价x 元,则()()10400204600x x =+-,整理,得210300x x -+=,∵()2104130200∆=--⨯⨯=-<,∴该方程无解,∴不可能.22.如图,△ABC 中,AB =AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE =OD ,连接AE ,BE ,(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.答案:(1)证明见解析;(2)当∠BAC =90°时,矩形AEBD 是正方形.理由见解析.解析:详解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE =OD ,∴四边形AEBD 是平行四边形,∵AB =AC ,AD 是∠BAC 的角平分线,∴AD ⊥BC ,∴∠ADB =90°,∴平行四边形AEBD 是矩形;(2)当∠BAC =90°时,理由如下:∵∠BAC =90°,AB =AC ,AD 是∠BAC 的角平分线,∴AD =BD =CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.23.如图,在ABC 中,90C ∠=︒,AD 是CAB ∠的平分线,BE AE ⊥,垂足为点E .求证:2BE DE AE =⋅.答案:见详解解析:详解:证明:∵AD 是CAB ∠的平分线,∴CAD BAD ∠=∠,∵90C ∠=︒,∴90CAD ADC ∠+∠=︒,又∵BE AE ⊥,∴90E ∠=︒,∴90EBD BDE ∠+∠=︒,而ADC BDE ∠=∠,∴CAD DBE BAE ∠=∠=∠,∴BDE ABE ∽△△,∴::BE AE DE BE =,∴2BE DE AE =⋅.24.阅读理解:如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,55A B DEC ∠=∠=∠=︒,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2在矩形ABCD 中,52AB BC ==,,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个强相似点E ;拓展探究:(3)如图3,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处.若点E 恰好是四边形ABCM的边AB 上的一个强相似点,当BC =时,试求出AB 的值.答案:(1)是,理由见解析;(2)见解析;(3)2解析:详解:(1)点E 是四边形ABCD 的边AB 上的相似点.理由:55A ∠=︒ ,125ADE DEA ∴∠∠=︒+,55DEC ∠=︒ ,125BEC DEA ∴∠∠=︒+.ADE BEC ∴∠=∠,A B ∠=∠ ,ADE BEC ∴∽V V ,∴点E 是四边形ABCD 的AB 边上的相似点.(2)作图如下:点E 即为所求(下图中二选其一即可)(3)∵点E 是四边形ABCM 的边AB 上的一个强相似点,AEM BCE ECM ∴∽∽ ,BCE ECM AEM ∴∠=∠=∠,由折叠可知ECM DCM :≌, ECM DCM CE CD ∴∠=∠=,,1303BCE BCD ∴∠=∠=︒,111222BE CE DC AB ∴===.在Rt BCE 中,设BE 为x ,CE 为2x ,根据勾股定理,222BC BE EC +=,可得2234x x +=,解得1x =±,0x >,1x ∴=,2CE =∴,即2AB =.25.如图,在平面直角坐标系内,已知点()0,6A 、点()8,0B ,动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t秒.(1)求直线AB 的解析式;(2)当t 为何值时,APQ △与AOB 相似.(3)当t 为何值时,APQ △的面积为165个平方单位.答案:(1)y =-34x +6(2)3011秒或5013秒(3)1秒或4秒解析:小问1详解:解:设直线AB 的解析式为y kx b=+由题意,得680b k b =⎧⎨+=⎩,解得346k b ⎧=-⎪⎨⎪=⎩所以,直线AB 的解析式为364y x =-+.小问2详解:解:由68AO BO ==,得10AB =,∴102AP t AQ t ==-,,①当APQ AOB ∠=∠时,APQ AOB ∽.∴102610t t -=,解得3011t =②当AQP AOB ∠=∠时,AQP AOB ∽.∴102106t t -=,解得5013t =∴当t 为3011秒或5013秒时,APQ △与AOB 相似;小问3详解:解:过点Q 作QE 垂直AO 于点E .在Rt AOB △中,4sin 5BO BAO AB ∠==在Rt AEQ △中,()48·sin 102855QE AQ BAO t t =∠=-=-,21184168422555APQ S AP QE t t t t ⎛⎫=⋅=⨯-=-+= ⎪⎝⎭ 解得,1t =(秒)或4t =(秒)∴当1t =秒或4t =秒时,APQ △的面积为165个平方单位.。
温州2024年九年级上学期期中数学模拟试卷(答案版)
温州2024年九年级上学期期中考试数学模拟试卷答案一.选择题(每小题3分,共30分)1.【答案】D【详解】解:∵O 的半径为3,点P 在O 外,∴3OP >,∴OP 的长可能是4,故选:D .2. 【答案】D【详解】解: 二次函数的顶点式为2225y x =−−(),∴其顶点坐标为:(2,5)−.故选:D3. 【答案】A【详解】解:A 、守株待兔是随机事件,故A 符合题意;B 、种豆得豆是必然事件,故B 不符合题意;C 、水中捞月是不可能事件,故C 不符合题意;D 、水涨船高是必然事件,故D 不符合题意;故选:A .4. 【答案】C【详解】解:抛物线2y x 向右平移3个单位长度得到的抛物线是()23yx =−. 故选:C5. 【答案】D【详解】解:∵圆被等分成4份,其中白色区域占3份, ∴指针落在白色区域的概率为34, 故选:D .6. 【答案】D【详解】解:∵∠BOC 与∠D 是同弧所对的圆心角与圆周角,∠D =32°,∴264BOC D ∠=∠=°, =180=18064=116AOC BOC ∴∠°−∠°−°°,故选:D .7. 【答案】C【详解】解:由25(2)y x m =−−+得图象开口向下,对称轴为直线2x =,∵二次函数25(2)y x m =−−+的图象经过1(0,)A y ,2(1,)B y ,3(4,)C y ,∴点A 、C 关于直线xx =2对称,则31y y =,∵当xx <2时,y 随x 的增大而增大,01<,∴12y y <,∴312y y y =<.故选:C .8. 【答案】A【详解】解:根据题意得,()30wx y =−,即()()=30280w x x −−+,故选:A .9. 【答案】C【解析】 【详解】解:连接OD ,如图,设O 的半径为r ,∵CD AB ⊥,∴ BCBD =,CG DG =, ∵点C 是弧BE 的中点,∴ CECB =, ∴ BECD =, ∴8CD BE ==, ∴142DG CD ==,在Rt ODG △中,∵3,OG r OD r =−=, ∴()22243r r +−=,解得256r =, 即O 的半径为256. 故选:C .10. 【答案】D【详解】解:∵()224321y x x x =−+=−−,10a =>,∴抛物线的开口向上,顶点坐标为()2,1−,对称轴是直线2x =,∴当2x =时,y 取得最小值1−,∵当4m x ≤≤时,总有14y m −≤≤, ∴124m −≤≤, 若02m <≤,则当4x =时,4y m =,即有244443m −×+, 解得:34m =; 若104m −≤≤,则当x m =时,4y m =, 即有2443m m m =−+解得:4m =±,不合题意,∴这种情况不存在,综上所述,当4m x ≤≤时,总有14y m −≤≤,则34m =. 故选:D 二.填空题(每小题4分,共24分)11. 【答案】59【解析】【详解】点()3,5代入2y ax =得:95a =∴59a = 故答案为:59 12. 【答案】0.2【详解】解:根据表格数据,纸杯的杯口朝上的频率稳定在0.2左右,故任意抛掷一只纸杯的杯口朝上的概率为0.2,故答案为:0.213. 【答案】6【详解】解:如图所示,连接OC ,OB ,∵ BC BC =,30BAC ∠=°,∴260COB BAC ∠=∠=°,又∵6OC OB ==,∴OCB 是等边三角形,∴6BC =,故答案为:6.14. 【答案】40°##40度【详解】解:∵C C AB ′∥,∴70ACC CAB ′∠=∠=°, ∵将ABC 绕点A 旋转到AB C ′′△的位置,∴AC AC ′=,CAC BAB ′′∠=∠,∴70ACC AC C ′′∠=∠=°,∴180707040CAC ′∠=°−°−°=°,∴40BAB ′∠=°,故答案为:40°.15. 【答案】24m <<【详解】解:如图,以AO 所在直线为y 轴,以地面所在的直线为x 轴建立平面直角坐标系,由题意可知()()3,1.80,0.9C A ,,设抛物线的解析式为()23 1.8y a x =−+,把()0,0.9A 代入()23 1.8y a x =−+,得: ()20.903 1.8a =−+解得0.1a =−,∴所求的抛物线的解析式是()20.13 1.8y x =−−+, 当 1.7y =时,()20.13 1.8 1.7x −−+=, 解得1224x x ==,, ∴则m 的取值范围是24m <<.故答案为:24m <<.16. 【答案】23或54【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =, 当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−,在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23或54 三.解答题17. 【答案】(1)2,3b c =−= (2)对称轴为直线1x =【解析】【小问1详解】解:由题意,将点()0,3A ,点()1,2B 代入2y x bx c =++得:312c b c = ++=, 解得23b c =− = . 【小问2详解】解:由(1)可知,二次函数的解析式为()222312y x x x =−+=−+, 所以该二次函数的对称轴为直线1x =.18. 【答案】(1)23 (2)49【解析】【小问1详解】解:23P =; 【小问2详解】解:两次摸到红球的概率为49P =. 19. 【答案】(1)见解析 (2)见解析【解析】【小问1详解】解:如图,AB C ′′△即为所求;【小问2详解】 解:如图,点O 即所求.20. 【答案】(1)见解析 (2)20【解析】小问1详解】证明:∵AB 是O 的直径,∴90ACB ∠=°,∵∥OD BC ,∴90OFA ACB ∠=∠=°,∴OF AC ⊥,∴ AD CD=, ∴点D 为 AC 的中点;【小问2详解】为【解:∵OF AC ⊥,16AC =, ∴182AF AC ==, 在Rt AFO 中,222AO AF OF =+, ∴()22=64OA OD DF +−,∴()22=644OA OA +−,∴10OA =,∴O 的直径为20.21. 【答案】(1)y 关于x 的函数表达式为24852793y x x =−++; (2)该女生在此项考试中是得满分,理由见解析.【解析】【小问1详解】解:∵当水平距离为3m 时,实心球行进至最高点3m 处, ∴设()233y a x =−+,∵()233y a x =−+经过点53 0,, ∴()250333a =−+, 解得:427a =− ∴224485(3)3272793y x x x =−−+=−++, ∴y 关于x 的函数表达式为24852793y x x =−++; 【小问2详解】解:该女生在此项考试中是得满分,理由如下∶ ∵对于二次函数24852793y x x =−++,当0y =时,有248502793x x −++=, ∴2424450x x −−=, 解得∶1152x =,232x =−(舍去), ∵15 6.92>, ∴该女生在此项考试中是得满分.22. 【答案】(1)见解析 (2)O 的半径为5【解析】【小问1详解】证明:延长CO 交O 于F ,C 为 ABD 的中点, AC CD ∴=,,AC DC OC AD ∴=⊥, AB 是O 的直径, 90ADB ∴∠=°,BE AD ∴⊥,OC BE ∴∥;【小问2详解】解:连接BC ,则90ACB ∠=°,OC OA = ,OAC OCA ∴∠=∠, OC BE ∥ ,OCA E ∴∠=∠,OAC E ∴∠=∠,EB AB ∴=,90ACB ∠=° ,BC AE ∴⊥,CA CE ∴==2AE CE ∴ 设O 的半径r ,则2EB AB r ==,62DE BD EB r ∴=+=+, 22222AB BD AE DE AD −=−= ,2222(2)6(62)r r ∴−=−+, 整理得23400r r +−=,解得125,8r r ==−(舍去), ∴ O 的半径为5. 23. 【答案】(1)2244y x x =−+ (2)4a =(3)见解析【解析】【小问1详解】解:∵此函数图象过点(2,4), ∴44324a a a −+−=, 解得2a =,∴这个二次函数的表达式为2244y x x =−+;【小问2详解】解:由()22232122y ax ax a a x a =−+−=−+−得,该函数的图象的对称轴为直线1x =, ∵若123x x =时,127y y ==, ∴点A 、B 关于直线1x =对称, ∴12223122x xx x ++==,解得212x =, 将1,72 代入函数表达式中,得2112272a a −+−=,解得4a =;【小问3详解】证明:由题意,21y y −()()222211232232ax ax a ax ax a =−+−−−+− ()()2221212a x x a x x =−−−()()21212a x x x x =−+−,∵12x x <,∴210x x −>,∵121x x a +=−,∴1223x x a +−=−,∵0<<3a ,∴30a −<,则1220x x +−<,∴210y y −<,∴12y y >.24. 【答案】(1)见解析 (2(3)125或9625【解析】【小问1详解】证明:连接AEAB 是直径,90AEB ∴∠=°,∴90EAD ADE ∠+∠=°,AF BC ⊥ ,90FAB ∴∠=°,∴90B F ∠+∠=°,点E 为弧AC 得中点,B EAD ∴∠=∠,F ADE ∴∠=∠,AD AF ∴=.【小问2详解】解:3,4AF AB ==,AF AB ⊥,∴在Rt ABF 中,5FB =, ∵1122ABF S AB AF BF AE =⋅=⋅ , ∴345AE ×=, 解得:125AE =,在Rt ABE △中,根据勾股定理可得:165BE , ∵3AD AF ==,∴在Rt AED △中,95ED =, 75BD BE ED ∴=−=, ABD ∴ 的周长7424355AB AD BD =++=++=. 【小问3详解】解:①当AE AP =时,125AP AE ==,②当AE PE =时, P 与C 重合,过点F 作FH AD ⊥于点H ,连接BC ,∵,AF AD AE DF =⊥, ∴1825DF DE ==, ∵1122ADF S DF AE AD FH =⋅=⋅ , ∴1812355FH ×=, 解得:7225FH =, ∵,BCD FHD BDC FDH ∠=∠∠=∠, ∴BCD FHD ∽, ∴DF FH BD BC=,则187252575BC =, 解得:2825BC =,根据勾股定理可得:2125CD =, ∴9625AP AC AD CD ==+=;③当AP PE =时,连接,OE OA ,连接OP 交AE 于点G , ∵AP PE =,OE OA =,∴OP 垂直平分AE , ∴1625AG AE ==,根据勾股定理可得:85OG ==, ∴11185PG OG OP =+=,2225P G OG OP =−=,根据勾股定理可得:1AP 2AP =,综上所述:125AP =或9625.。
山东省泰安第一中学2024届九年级上学期期中考试数学试卷(含解析)
山东省泰安市泰山区泰安第一中学2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.反比例函数y=中,当x>0时,y随x的增大而增大,则m的取值范围是()A.m>B.m<2C.m<D.m>22.在中,,已知a和A,则下列关系式中正确的是( )A.B.C.D.3.将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过()A.B.C.D.4.如图,点的坐标是,是等边三角形,点在第一象限.若反比例函数的图象经过点,则的值是()A.1B.2C.D.5.如图,在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为( )A.6cm B.7cm C.8cm D.9cm6.如图,从某建筑物高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙,离地面,则水流落地点B离墙的距离是()A.B.C.D.7.如图,是电杆一根拉线,米,,则拉线长为()A.米B.米C.米D.米8.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小D.的最小值为-39.如图,为了测量某建筑物的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A 点出发,沿斜坡行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡的坡度.根据小颖的测量数据,计算出建筑物的高度约为()(参考数据:)A.136.6米B.86.7米C.186.7米D.86.6米10.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A.B.C.D.11.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图像的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤12.某炮兵试射一枚导弹,在空中飞行后精确地击中地面目标.导弹飞行的时间(秒)与高度的关系为.已知导弹在第7秒与第16秒时的高度相等,则下列时间中导弹所在高度最高的是( )A.第11秒B.第13秒C.第15秒D.第17秒二、填空题13.已知点,,都在二次函数的图象上,则的大小关系是.14.如图,轮船从处以每小时60海里的速度沿南偏东方向匀速航行,在处观测灯塔位于南偏东方向上,轮船航行40分钟到达处,在处观测灯塔位于北偏东方向上,则处与灯塔的距离是.15.如图,抛物线与交于点,过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,的值总是正数;②;③当时,;④;其中正确结论是.16.若函数y=mx+(m+2)x+m+1的图象与x 轴只有一个交点,那么m的值为.17.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=9,则AB= .三、解答题18.计算:(1)(2)(3)在中,,,的平分线交于,,求,,.19.如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,参考数据:tan53°≈,cos53°≈0.60)20.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.21.如图,一次函数的图象与反比例函数的图象分别交于点,点,与轴,轴分别交于点,点,作轴,垂足为点,.(1)求反比例函数的表达式;(2)在第二象限内,当时,直接写出的取值范围;(3)点在轴负半轴上,连接,且,求点坐标.22.如图,抛物线经过点,与轴负半轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)点D在y轴上,且,求点D的坐标;(3)点M在抛物线上,点在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在.求出所有符合条件的点M的坐标;若不存在,请说明理由.23.如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x 轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6(1)求k值和点D的坐标;(2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD 面积的2倍,求点E的坐标.24.过点A的抛物线与x轴的另一交点为C,,与y轴交于点.(1)求抛物线的解析式;(2)若Q是抛物线上一个动点,设Q的横坐标为m(),连接,当的面积等于面积的2倍时,求m的值.25.如图,抛物线的顶点是,交y轴于点C.(1)求抛物线的表达式;(2)D是直线上方抛物线上一动点,连接交于点N,当的值最大时,求点D的坐标;(3)P为抛物线第一象限内一点,连接,交于点E,若.当S最大时,当直接写出点P的坐标和S的最大值.26.如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.参考答案1.A解:∵反比例函数y=,当x>0时y随x的增大而增大,∴1-2m<0,∴m>.故选A.2.B解:∵在中,,已知a和A,∴,,∴,故选:B.3.B解:将抛物线化为顶点式,即:,将抛物线的图象向右平移1个单位,再向下平移2个单位,根据函数图像平移性质:左加右减,上加下减得:,A选项代入,,不符合;B选项代入,,符合;C选项代入,,不符合;D选项代入,,不符合;故选:B.4.C解:过点作垂直于,点的坐标是,,是等边三角形,,,点的坐标是,把代入,得.故选:C.5.C解析:已知sinA=,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故选:C.6.B解:设抛物线的解析式为,由题意得:,,∴抛物线的解析式为:,当时,,解得:(舍去),,∴,故B正确.故选:B.7.B解析:由题意可知.∵,米,∴米.故选B.8.D解析:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选:D.9.A解析:如图,作DF⊥AB于F点,EG⊥BC于G点,则四边形DFBG为矩形,DF=BG,∵斜坡的坡度,∴,∵AD=130,∴DF=50,AF=120,∴BG=DF=50,由题意,∠CEG=60°,∠BEG=45°,∴△BEG为等腰直角三角形,BG=EG=50,在Rt△CEG中,CG=EG=50,∴米,故选:A.10.A解析:点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b-1)x+c=0有两个正实数根.∴函数y=ax2+(b-1)x+c与x轴有两个交点,又∵->0,a>0∴-=-+>0∴函数y=ax2+(b-1)x+c的对称轴x=->0,∴A符合条件,故选A.11.A解∶∵对称轴∴,2a+b=0;故②正确;∴a、b异号,∴ab<0,故①正确;∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故③错误;根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故④正确.如图,当﹣1<x<3时,y不只是大于0.故⑤错误.故选:A.12.A解析:∵导弹在第7秒与第16秒时的高度相等,∴抛物线对称轴为直线,∵导弹飞行高度与时间的函数为开口向下的二次函数,∴离对称轴越近,函数值越大,即高度越高,∵,∴四个时间中,第11秒的高度最高,故选A.13./解:二次函数的图象的对称轴为直线,因为点到直线的距离最小,点到直线的距离最大,且抛物线的开口向上,所以.故答案为:.14.海里解:如图,过点作于,由题意得,,,(海里),,则.,,,,,于,(海里).在直角中,,,(海里).故答案为:海里.15.①④解:①∵抛物线开口向上,顶点坐标在轴的上方,∴无论取何值,的值总是正数,故本结论正确;②把代入,抛物线得,,解得,故本结论错误;③由两函数图象可知,抛物线解析式为,当时,,故,故本结论错误;④∵抛物线与交于点,∴的对称轴为的对称轴为,∴∴,∴,故本结论正确.故答案为:①④.16.0,2,-2解:①当m=0时,函数为y=2x+1,此时图象与x轴有一个交点;②当m≠0时,函数y=mx+ (m+2)x+m+1的图象是抛物线,若抛物线的图象与x轴只有一个交点,则方程mx+ (m+2)x+m+1=0只有一个根,即△=0,可得△=(m+2)-4m(m+1)=0,解得=2,=-2.综上可得m的值为0,2,-2.17.8解:作DE⊥AB于点E,CF⊥DE于F,则有四边形BCFE为矩形,BC=EF,BE=CF,∵∠A=60,∴∠ADE=30,∵∠ADC=90,∴∠CDE=60,∠DCF=30,在△CDF中,∵CD=9,∴DF=CD=,CF=CD=,∵EF=BC=6,∴DE=EF+DF=6+=,则AE==,∴AB=AE+BE=+=8.故答案为8.18.(1)解:;(2);(3)在中,,,为的平分线,,,,,,则,.19.解:过B作BG⊥DE于G,BH⊥AE,Rt△ABH中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5米;∴AH=5米,∴BG=HE=AH+AE=(5+21)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(5+21)米.Rt△ADE中,∠DAE=53°,AE=21米,∴DE=AE=28米,∴CD=CG+GE﹣DE=26+5﹣28=(5﹣2)m.答:宣传牌CD高为()米.20.解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x==1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则,解得.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2).21.(1)∵,轴,∴,点的纵坐标为,∵点在图象上,∴当时,,解得:,∴点坐标为,∵反比例函数的图象过点,∴,∴反比例函数的表达式为:;(2)如图,在第二象限内,当时,,(3)如图,过作轴于点,∵轴,∴,∴四边形是矩形,∴,,∵,∴,即:,∵,∴,∴,∴,∴,由得:时,,解得:,∴点,∴,,∴,∴,∴点.22.(1)由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1);(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴于E,AF⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=4或a=﹣2,∴M(4,5)或(﹣2,5);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,5)或(0,﹣3).23.解∶(1)设点D坐标为(m,n),由题意得.∵点D在的图象上,.∵直线的图象与轴交于点A,∴点A的坐标为(-4,0).∵CH x轴,CH//y轴..点D在反比例函数的图象上,点D坐标为(4,3)(2)由(1)知轴,..过点E作EF CD,垂足为点F,交y轴于点M,..∴点E的横坐标为-8.∵点E在直线上,∴点E的坐标为(-8,2).24.(1)解:∵,,∴,∵抛物线经过,,∴,解得:,∴该抛物线的解析式为;(2)解:令,,∴,令抛物线的解析式为;解得,,∴,,∴.设直线解析式为,将代入得,解得,∴直线解析式为,过点Q作y轴的平行线交于点F,设,则点,则∴解得或.25.(1)抛物线可得,根据题意设抛物线解析式为:,把点代入,解得:,∴抛物线的解析式为;(2)过点D作轴,交于点H,如图所示:设,直线的解析式为,由(1)可得:,由可解得:;∴,解得:,∴直线的解析式为,∴,∴,∵轴,∴,∴,∵,∴当时,的值最大,∴;(3)由图可得,,,,,,当S最大时,最大即可,此时P在抛物线顶点,坐标为,.26.(1)由抛物线的解析式y=﹣x2+2x+3,∴C(0,3),令y=0,﹣x2+2x+3=0,解得x=3或x=﹣1;∴A(﹣1,0),B(3,0).(2)设直线BC的解析式为:y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+3.设P(x,﹣x+3),则M(x,﹣x2+2x+3),∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.∴S△BCM=S△PMC+S△PMB=PM•(xP﹣xC)+PM•(xB﹣xP)=PM•(xB﹣xC)=PM.∴S△BCM=(﹣x2+3x)=﹣(x﹣)2+.∴当x=时,△BCM的面积最大.此时P(,),∴PN=ON=,∴BN=OB﹣ON=3﹣=.在Rt△BPN中,由勾股定理得:PB=.C△BCN=BN+PN+PB=3+.∴当△BCM的面积最大时,△BPN的周长为3+.(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线的对称轴为直线x=1.在Rt△CNO中,OC=3,ON=,由勾股定理得:CN=.设点D为CN中点,则D(,),CD=ND=.如解答图,△CNQ为直角三角形,①若点Q为直角顶点.作Rt△CNO的外接圆⊙D,与对称轴交于Q1、Q2两点,由圆周角定理可知,Q1、Q2两点符合题意.连接Q1D,则Q1D=CD=ND=.过点D(,)作对称轴的垂线,垂足为E,则E(1,),Q1E=Q2E,DE=1﹣=.在Rt△Q1DE中,由勾股定理得:Q1E==.∴Q1(1,),Q2(1,);②若点N为直角顶点.过点N作NF⊥CN,交对称轴于点Q3,交y轴于点F.易证Rt△NFO∽Rt△CNO,则,即,解得OF=.∴F(0,﹣),又∵N(,0),∴可求得直线FN的解析式为:y=x﹣.当x=1时,y=﹣,∴Q3(1,﹣);③当点C为直角顶点时.过点C作Q4C⊥CN,交对称轴于点Q4.∵Q4C∥FN,∴可设直线Q4C的解析式为:y=x+b,∵点C(0,3)在该直线上,∴b=3.∴直线Q4C的解析式为:y=x+3,当x=1时,y=,∴Q4(1,).综上所述,满足条件的点Q有4个,其坐标分别为:Q1(1,),Q2(1,),Q3(1,﹣),Q4(1,)..。
四川省自贡市富顺第一中学校2023-2024学年九年级上学期期中考试数学试卷(含答案)
2023-2024上初三期中考试数学试题一、单选题(共48分)1. 下列交通标志图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.答案:B2. 一元二次方程的解是()A. B. C. , D. ,答案:C3. 将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则的大小为()A. 80°B. 100°C. 120°D. 不能确定答案:B4. 如果0是关于的一元二次方程的一个根,那么的值是()A. 3B.C.D.答案:A5. 将抛物线向左平移2个单位,再向上平移1个单位,得到抛物线的解析式为()A. B. C. D.答案:B6. 已知一元二次方程,根据下列表格中的对应值:… 3.09 3.10 3.11 3.12……0.11…可判断方程的一个解的范围是()A. B.C. D.答案:D7. 函数与在同一坐标系内的图象是图中的()A. B.C. D.答案:B8. 一部售价为4000元的手机,一年内连续两次降价,如果每次降价的百分率都是x,则两次降价后的价格y(元)与每次降价的百分率x之间的函数关系式是()A. B. C. D.答案:B9. 某地有两人患了流感,经过两轮传染后又有70人患了流感,每轮传染中平均一个人传染的人数为()A. 5人B. 6人C. 7人D. 8人答案:A10. 如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )A. 2B.C.D.答案:C11. 已知二次函数的图象如图所示,有下列4个结论:①;②;③;④关于的方程有四个根,且这四个根的和为4,其中正确的结论有()A. ①②③B. ②③④C. ①④D. ②③答案:B12. 经过两点的抛物线(为自变量)与轴有交点,则线段长为()A. 10B. 12C. 13D. 15答案:B二、填空题(共24分)13. 点关于原点的对称点是,则______.答案:14. 抛物线的对称轴是______.答案:直线15. 关于x的一元二次方程有实数根,则k的取值范围是______.答案:且16. 将二次函数的图象绕着顶点旋转后得到的新图象的解析式是___________.答案:17. 已知a,b是一元二次方程两个实数根,则的值为_____.答案:718. 在实数范围内定义一种运算“*”,其运算法则为.根据这个法则,下列结论中错误的是______.(只填写番号)①;②若,则;③是一元二次方程;④方程有一个解是.答案:①③④三、解答题(共78分)19. 解方程:答案:,解:,,,,,解得:,.20. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点,,均在格点上,(1)画出将向下平移4个单位长度得到;(2)画出绕点C逆时针旋转后得到的,并写出点的坐标;答案:(1)画图见解析(2)画图见解析,点的坐标【小问1详解】解:如图,即为所求;【小问2详解】解:如图,即为所求;∴点的坐标.21. 已知关于x的方程x2+ax+a-1=0.(1)若方程有一个根为1,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有实数根.答案:(1)a=0,x2=-1;(2)见解析.(1)因为x=1是方程x2+ax+a-1=0的解,所以把x=1代入方程x2+ax+a-1=0得,1+a+a-1=0,解得a=0∵x1+x2=-a,∴1+x2=0,∴x2=-1(2)∵△=a2-4(a-1)=a2-4a+4=(a-2)2≥0,∴无论a何值,此方程都有实数根.22. 某公司设计了一款工艺品,每件的成本是元,为了合理定价,投放市场进行试销:据市场调查,销售单价是元时,每天的销售量是件,而销售单价每提高元,每天就减少售出件,但要求销售单价不得超过元.要使每天销售这种工艺品盈利元,那么每件工艺品售价应为多少元?答案:元解:设每件工艺品售价为元,则每天的销售量是件,依题意得:,整理得:,解得:,(不符合题意,舍去).故每件工艺品售价应为元.23. 如图,用长为的篱笆,一面利用墙(墙的最大可用长度是),围成中间有一道篱笆的矩形花圃,设花圃的一边长是(单位:),面积是(单位:).(1)求与的函数关系式及的取值范围;(2)如果要围成面积为的花圃,的长为多少米?(3)长为多少时,花圃面积最大,最大面积是多少?答案:(1)(2)要围成面积为的花圃,的长为9米.(3),最大面积为:.【小问1详解】解:根据题目数量关系得,,根据题意,,∴,∴.【小问2详解】将代入得,整理得:,∴,∵,则不符合题意舍去,∴要围成面积为的花圃,的长为9米.【小问3详解】∵,,∴抛物线的对称轴为直线,当时,随的增大而减小,∴当时,面积最大,此时,最大面积为:;24. 如图1,是抛物线形的拱桥,当拱顶高离水面2米时,水面宽4米,如图建立平面直角坐标系,解答下列问题:(1)如图2,求该抛物线的函数解析式.(2)当水面下降1米,到处时,水面宽度增加多少米?(保留根号)答案:(1);(2)水面宽度增加米【小问1详解】解:根据题意可设该抛物线的函数解析式为,∵当拱顶高水面2米时,水面宽4米.∴点,,把点代入得:,解得:,∴该抛物线的函数解析式为;【小问2详解】解:∵水面下降1米,到处,∴点D的纵坐标为,当时,,解得:,∴此时水面宽度为米,∴水面宽度增加米.25. 已知关于x的方程(1)求证此方程总有实数根(2)若方程的两个实数根都为整数,求k的值.答案:(1)详见解析.(2)或或或.【小问1详解】证明:当时,方程为一元一次方程,此方程有一个实数根;当时,方程为一元二次方程,,即,当k取除以外的任意实数时,此方程总有两个实数根.综上可得,不论k取何值,此方程总有实数根.【小问2详解】方程的两个实数根都为整数,且方程的两个解之和也为整数,即是整数,即是整数,或或或.26. 如图,抛物线与x轴交于,两点,与轴交于点.(1)求抛物线解析式及,两点坐标;(2)以,,,为顶点的四边形是平行四边形,求点坐标;(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.答案:(1)抛物线解析式为,,(2)或或(3)【小问1详解】解:∵抛物线与x轴交于,∴解得:,∴抛物线解析式为,当时,,∴,当时,解得:,∴【小问2详解】∵,,,设,∵以,,,为顶点的四边形是平行四边形当为对角线时,解得:,∴;当为对角线时,解得:∴当为对角线时,解得:∴综上所述,以,,,为顶点的四边形是平行四边形,或或【小问3详解】解:如图所示,作交于点,为的中点,连接,∵∴是等腰直角三角形,∴在上,∵,,∴,,∵,∴在上,设,则解得:(舍去)∴点设直线的解析式为∴解得:.∴直线的解析式∵,,∴抛物线对称轴为直线,当时,,∴.。
山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷(含答案)
2024—2025学年度第一学期期中九年级数学(满分120分,练习时间120分钟)第I 卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.是同类二次根式的是( )2.已知关于x 的一元二次方程,若,则下列各数中是该方程的根的是( )A.1B.C.2D.03.在数学史上,有很多著名的几何图形用来验证数学知识的产生过程.如图所示的图案,是由一连串公共顶点为O 的直角三角形拼接而成,若,则图中直角三角形之间存在的变换关系是( )A.图形的平移B.图形的旋转C.图形的全等D.图形的相似4.利用配方法解方程时,将该方程化为的形式,然后利用直接开平方法求解,这个过程体现的数学思想是( )A.数形结合思想B.转化思想C.整体思想D.公理化思想5.如果,那么下列比例式正确的是( )A. B. C. D.6.若等腰三角形一条边的长为3,另两条边的长分别是关于x 的一元二次方程的两个根,则k 的值是( )A.27B.36C.27或36D.187.我国古代数学《九章算术》中有一道“井深几何”的问题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1尺等于10寸),问井深几何?”根据题意画出如图示意图,则并深为( )20x bx c ++=10b c ++=1-30AOB BOC COD LOM ∠=∠=∠==∠=︒ 2680x x ++=()231x +=:5:3a b =35a b a -=32b a b =+14a b a b -=+223a b=2120x x k -+=A.56.5尺B.57.5尺C.6.25尺D.1.25尺8.如图,在中,点D 是上一点,且,若,,则与的面积比为( )A. B. C. D.9.对于实数a ,b ,定义运算“( )”:若,例如:.已知关于x 的一元二次方程有实数根,则m 的取值范围为( )A. B. C. D.10.如图,在中,,,点D ,E 分别是,边上的动点,连结,F ,M 分别是,的中点,则的最小值为( )A.12B.10C.9.6D.4.8第II 卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.的结果是________.ABC △AC ABD C ∠=∠2AD =3AB =ABD △BCD△4:54:92:32:1()*a b a a b =-()2*32232=-=-211*(2)724x m m m -=-13m ≥-13m ≤-16m ≤-16m ≥-ABC △10AB BC ==12AC =AB BC DE AD DE FM12.如图,直线,若,,,那么的长为________.13.某种小家电在两年内提价两次后每个的价格比两年前增加了44%,则平均每次提价的百分率为________.14.如图,小明在A 时测得某树的影长为3m ,B 时又测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为________m.15.如图,在中,,,,点D 是边上的一点,过点D 作,交于点F ,作的平分线交于点E ,连接.若的面积是2,则的值是________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题5分,共10分)(1(2)解方程:17.(本题10分)图①、图②、图③都是的网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.点A ,B ,C 均在格点上.在图①、图②、图③给定的网格中,仅用无刻度的直尺,按下列要求完成作图,并保留作图痕迹.AB CD EF ∥∥12AD =4DF =15BE =CE Rt ABC △90C ∠=︒3AC =4BC =AC DF AB ∥BC BAC ∠DF BE ABE △DE EF221)(2)--+-()()325211x x x -+=+66⨯图① 图② 图③(1)在图①中,以点C 为位似中心,将放大到原来的2倍;(2)在图②中,在线段上作点D ,使得;(3)在图③中,作,且相似比为.18.(本题8分)玉米俗称玉米棒子、苞米,是我国第一大粮食作物,也是全世界公认的“黄金作物”.政府鼓励农民种植玉米,一亩地每年补贴300元.经调查:我省玉米实验田平均亩产量约1300千克,市场销售价为每千克1.2元,除购买种子、播种、施肥、浇水、收割等成本费用外(随种植亩数的变化而变化),种植一亩玉米的净利润达到1360元.(1)求种植一亩玉米的成本需要多少元;(2)某农场现有15亩实验田,计划种植玉米和蔬菜,根据经验调查发现:按2023年种植一亩玉米的成本来计算,以后每多种植1亩,平均每亩的成本会减少20元,2024年农场计划投入3200元的成本种植玉米,问:该农场计划种植几亩玉米?19.(本题7分)如图,在中,点D 在边上,,点E 在边上,.(1)求证:.(2)若,,求的长.20.(本题8分)项目化学习项目主题:测量树的高度.分析探究:树的高度不能直接测量,需要借助一些工具,比如小镜子,标杆,皮尺,小木棒,自制的直角三角形硬纸板,确定方案后,还要画出测量示意图,并实地进行测量,得到具体数据,从而计算出树的高ABC △BC 3CD BD =BEF BAC △∽△3:4ABC △BC DAC B ∠=∠AD CD CE =ABD CAE △△∽9AB =6AC BD ==AE度.成果展示:下面是某小组进行交流展示时的部分测量方案及测量数据:测量工具标杆,皮尺测量方案选一名同学作为观测者,在观测者与树之间的地面直立一根标杆,使树的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上.这时再测出观测者的脚到树底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段表示树,标杆,观测者的眼睛到地面的距离,观测者的脚到树底端的距离,观测者的脚到标杆底端的距离.……请同学们继续完善上述成果展示:任务一:根据测量数据,求出树的高度;任务二:写出求树的高度时所利用的数学知识________________________________________.(写出一个即可)21.(本题8分)阅读下列材料,并按要求完成相应的任务.两千多年前,古希腊数学家欧多克索斯(Eudoxus ,约前400-前347)发现:如图1,将一条线段分割成长、短两条线段,,若较短线段与较长线段的比等于较长线段与原线段的比,即(此时线段叫做线段,的比例中项)比值为黄金比,P 为线段的黄金分割点. 图1采用如下方法可以得到黄金分割点:如图2,设是已知线段,经过点B 作,且,连接,在上截取,在上截取,则C 就是线段的黄金分割点.任务:AB 3.2m EF = 1.7m CD =14m DB =2m DF =AB AB AP BP BP AP AP AB =AP BP AB AB AB BD AB ⊥12BD AB =AD AD DE DB =AB AC AE =AB图2(1)求证:C 是线段的黄金分割点.(2)若,则的长为________.22.(本题12分)综合与实践(1)如图①,在中,,,点D 在边上,点E 在边上.若,求证:.图①(2)如图②,在矩形中,,,点E 在边上,连接,过点E 作,交于点F .图②i )若,求的长;ii )若点F 恰好与点D 重合,求的长.23.(本题12分)综合与探究如图1,在矩形中,,,点E 是对角线上任意一点,交于点G ,交于点F .(1)当点E 为的中点时,________. 图1(2)如图2,将四边形绕点B 逆时针旋转,连结,.在旋转过程中,是否发生变化,若不变化,求出的值,若发生变化,请说明理由.AB 1BD =BC Rt ABC △90ACB ∠=︒AC BC =AB BC 45CDE ∠=︒ACD BDE △∽△ABCD 4cm AB =10cm BC =BC AE EF AE ⊥CD :1:9BE EC =CF BE ABCD 6cm AB =4cm AD =BD EG CD ∥BC EF AD ∥AB BD DE CG=BFEG CG DE DE CG DE CG图2(3)如图3,将四边形绕点B 逆时针旋转,连结,.请直接写出旋转过程中的值. 图3BFEG AF DE DE AF九年级数学答案一、1、C2、A3、D4、B5、C6、B7、B8、A9、D10、D二、11、412、13、20%1415、三、16、解:(1(2),,,,,.17、(1)如图,即为所求(2)如图,点D 即为所求(3)如图,即为所求18、(1)设种植一亩玉米的成本需要x 元,154372211111)(2)(21)21444---+-=--+=-+-+=-2315210211x x x x +--=+238110x x --=14∆==81423x ±=⨯1113x =21x =-11A B C △BEF △依题意得:,解得.答:种植一亩玉米的成本最高需要500元.(2)设该农场计划种植y 亩玉米,则每亩的成本为依题意得:,整理得:,解得:,(不合题意,舍去)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大庆市第五十五中学上学期初三数学期中考试试卷(二)
出题人:黑龙江省大庆市第五十五中学 马亚珍
一、请完成下列各题(每空2分.共计28分)
1.sin30°=
2.已知x 1.x 2是方程2x 2+3x -4=0的两个根,那么|x 1-x 2|= .
3.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,.则平均每次降低成本 .
4.在 ABCD 中,两条邻边AB ﹕BC=2﹕3 ∠B=,且平行四边形的面积为315,则AB= ,BC= .
5.已知方程5x 2+mx -10=0的一根是-5,求方程的另一根及m 的值 .
6.若关于y 的方程y 2-my +n =0的两个根中只有一个根为0,那么m ,n 应满足 .
7.不解方程,判断方程x 2+3x +1=0的两根之和与两根之积分别为 ; .
8.若α.β为实数且|α +β-3|+(2-αβ)2=0,则以α.β为根的一元二次方程为 . 9.若关于x 方程01322
=++-m x x 没有实数根,则m 范围为 . 10.关于X 方程()032222=-++-m x m x 的两个根互为倒数,则m 值 . 11.已知7,4==n m
a a
求n m a -2= ;()
bz a c b a 32436÷-= .
二、请选出最佳答案(每题3分.共计42分)
12.如果K 是实数,且不等式(K+1)X >K+1的解集是X <1,那么关于X 的方程
()04
1
12=+
++k x k kx 的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定
13.一元二次方程()0122
=+++m x m mx 有实数根,则m 的取值范围是( )
A.m ≥41-
B.m ≤41-
C.m ≥41-且 m ≠0
D.m ≤4
1
-且 m ≠0 14.当4c >b 2
时,方程02
=+-c bx x 的根的情况是()
A.有两个不等实根
B.有两个相等实根
C.没有实根
D.不能确定有无实根 15.若关于X 的方程01322
=--x k x 有实数根,则K 的取值范围是( ) A.K ≥0 B.K >0 C.K >-8/9 D. K ≥-8/9 16.方程()
0132=+++mx m
x
m 是关于x 的一元二次方程,则( )
A.2±≠m
B.m =2
C.m =-2
D.2±=m 17.关于X 的一元二次方程()01221=-++-a x x
a 的一个根是0,则a 的值为()
A.1
B.-1
C.1或-1
D.
2
1 18.在Rt ΔABC 中,CD 是斜边AB 上的高,若AD=8,BD=4,则tanA=( ) (A )
22(B )32(C )42(D )8
2 19.当锐角A>30°时,cosA 的值( )
(A )小于
21(B )小于23(C )大于21(D )大于2
3 20.0.000082用科学技术法表示为( )
A.5102.8-⨯
B.4102.8-⨯
C.51082-⨯
D.4
1082-⨯ 21.在①()110
=-,②()111
-=-,③2
2
313a
a
=
-,④()()23
5x x x -=-÷-中,其中正确的式子有( )
A.1个
B.2个
C.3个
D.4个 22.方程()x x -=-112
的根是( )
A.0
B.1
C.-1或0
D.1或0 23.要使6
42
9+-n n
a 与n
a 3是同类项,则n 等于( )
A.2
B.3
C.0
D.2或3
24.如果代数式3x 2
-6的值为21,则x 值一定是( ) A.3 B.3± C.-3 D.3± 25.方程x 2
=0的实数根的个数为( ) A.0个 B.1个 C.2个 D.无数个 26.(8分)用适当方法解方程
(1)()()2
2
32932+=-x x (2)0682
=+-x x
27.(7分)已知方程422
=+-a ax x (1)说明方程根的情况.
(2)a 取何值时两根异号,并且负根的绝对值较大.
28.(7分)某省重视治理水土流失问题,2001年治理了水土流失面积400平方公里,该省逐年加大治理力度,计划今明两年每年治理水土流失面积都比前一年增长一个相同的百分数,到2003年底,使这三年治理的
水土流失面积达到1324平方公里.求该省今明两年治理水土流失面积每年增长的百分数.
29.(8分)如图(1)所示的是某立式家具(角书柜厨)的横断面,请你设计一个方案(角书柜厨高2米,房间高2.6米,所以不必从高度方面考虑方案的设计).按此方案,可使该家具通过(2)中的长廊搬入房间,在图(2)中把你设计的方案画成草图,并说明按此方案能否把家具搬入房间的理由(注:搬运过程中,不准拆卸家具,不准损坏墙壁)(单位:米)
看看我们的能力!(每题10分,共计20分)
一、在生产中,为了节约原材料,加工某些零件时常利用一些边角废料,如
图所示,△ABC为锐角三角形废材料,其中BC= 12cm,BC边上的高
1.5
1.5
0.5
0.5
(1)(2)
³¤ÀÈ
1.45
3
·¿¼ä
AD=8cm.在△ABC上截取矩形PQMN,使QM边与BC边重合.画草图说明,P,N落在什么位置上,才可能使它的面积最大?求出它的最大值.并求出此时矩形的长和宽. 二、如图,直角坐标系中,点A(x
1
,-3)在第3象限,点B(x
2
,-1)在第4象限,线段AB交y
轴于点D,∠AOB=90°,(1)当x
2
=1时,求经过A,B的一次函数解析式;(2)当S
AOB
=9时,设∠AOD=a ,求sinα×cos a的值。
A
B
D C。