初三数学上学期期中考试试卷含答案
河北省唐山市路南区2023-2024学年九年级上学期期中数学试题(含答案)

2023-2024学年度第一学期期中学业评估九年级数学试卷2023.11注意事项:1.本次考试试卷共25个题,共6页,满分100分,考试时间为90分钟.2.用黑色水性笔答卷,答卷前务必将密封线内各项填写清楚.一、选择题(本大题共15个小题,每小题2分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程的二次项系数、一次项系数、常数项分别是( )A .1,1,0B .0,1,0C .0,,0D .1,,02.若方程有一根是1,则另一根是( )A .1B .2C .D .3.下列数学符号既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.如图,是由绕A 点旋转得到的,若,,,则旋转角的度数为()A .B .C .D .5.如图,某桨轮船的轮子被水面截得的弦AB 长8m ,轮子的吃水深度CD 为2m ,则该桨轮船的轮子直径为()A .10mB .8mC .6mD .5m 6.任意下列两个图形不一定相似的是( )A .正方形B .等腰直角三角形C .矩形D .等边三角形7.如图,已知的半径为6,AB ,BC 是的弦,若,则的长是()20x x -=1-1-230x x m -+=1-2-ADE △ABC △40C ∠=︒90B ∠=︒10CAD ∠=︒60︒50︒40︒10︒O O 60ABC ∠=︒ ACA .B .C .D .8.用配方法解方程,配方后的方程是( )A .B .C .D .9.亮亮在解一元二次方程时,不小心把常数项丢掉了,已知这个一元二次方程有实数根,则丢掉的常数项的最大值是( )A .1B .0C .7D .910.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .11.某商品原价200元,经连续两次降价后售价为162元,设平均每次降价的百分率为x ,则下面所列方程正确的是()A .B .C .D .12.下列关于二次函数的说法,正确的是( )A .图象的对称轴是直线B .抛物线的顶点为C .当时,函数y 有最大值D .当时,y 随x 的增大而增大13.如图,PA 、PB 分别与相切于A 、B 两点,点C 为上一点,连接AC 、BC ,若,则的度数为( )A .B .C .D .14.记实数、中的最小值为,例如,当x 取任意实数时,则的最大值为()3π4π10π12π2430x x --=()227x -=()227x +=()221x -=()221x +=260x x -+=□()1,2P --()1,2-()1,2-()1,2()2,1--()22001162x -=()21621200x -=()220012162x -=()216212200x -=()2231y x =--3x =-()3,1--3x =1-3x >O O 80P ∠=︒ACB∠80︒40︒50︒100︒1x 2x {}12min ,x x {}min 0,11-=-{}2min 4,3x x -+-A .B .C .2D .315.如图,锐角三角形ABC 中,点O 为AB 中点.甲、乙二人想在AC 上找一点P ,使得的外心为点O ,其作法分别如下.对于甲、乙二人的作法,下列判断正确的是()甲的作法过点B 作与AC 垂直的直线,交AC 于点P ,则P 即为所求乙的作法以O 为圆心,OA 长为半径画弧,交AC 于点P ,则P 即为所求A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)16.将抛物线向上平移3个单位长度,所得抛物线的解析式为________.17.若,则________.18.嘉淇同学将一张半径为16的圆形卡纸平均分成4份,用其中一份作一个圆锥的侧面,则这个圆锥的底面半径是________.19.如图,AB 是半圆O 的直径,点C 在半圆上,,,D 是上的一个动点,连接AD .过点C 作于E ,连接BE ,则BE 的最小值是________.三、解答题(本大题共6个小题,共58分.解答应写出文字说明、证明过程或演算步骤)20.解下列方程:(本题满分8分)(1);(2);21.(本题满分8分)如图,在中,,若,,求AC 的长.3-2-ABP △22y x =-()2242x ax x ++=+a =5AB =4AC = BCCE AD ⊥2412x x =2430x x ++=ABC △DE BC ∥14AD DB =2AE =22.(本题满分9分)已知二次函数的图象经过点.(1)求a 的值;(2)求此抛物线的对称轴;(3)直接写出函数y 随自变量的增大而减小的x 的取值范围.23.(本题满分10分)如图,AB 为的直径,OD 为的半径,的弦CD 与AB 相交于点F ,的切线CE 交AB 的延长线于点E ,.(1)求证:OD 垂直平分AB ;(2)若的半径长为3,且,求OF 的长.24.(本题满分11分)有一块长32cm ,宽14cm 的矩形铁皮.图1图2(1)如图1,如果在铁皮的四个角裁去四个边长一样的正方形后,将其折成底面积为的无盖长方体盒子,求裁去的正方形的边长.(2)由于需要,计划制作一个有盖的长方体盒子,为了合理利用材料,某学生设计了如图2的裁剪方案,阴影部分为裁剪下来的边角料,其中左侧的两个阴影部分为正方形,问能否折出底面积为的有盖盒子?如果能,请求出盒子的体积;如果不能,请说明理由.()2420y ax x a =++≠()3,4A -O O O O EF EC =O BF BE =2280cm 2180cm25.(本题满分12分)在平面直角坐标系中,已知二次函数,.(1)若点在二次函数的图象上,求二次函数的表达式;(2)当时,二次函数的图象与(t 为常数)的图象只有一个公共点,求t 的值;(3)已知点,,若二次函数的图象与线段AB 有两个不同的交点,直接写出m 的取值范围.2023-2024学年度第一学期期中学业评估九年级数学参考答案及评分标准2023.11说明:1.阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.解答右端所注分数,表示正确做到这一步应得的累加分数.3.只给整数分数.一.DBDAACBADC ADCDA 二.16.;17.4;18.4;19三.20.解:(1),,1分,2分解得,;4分(2),()210y mx x m =-+≠()2,314m =21y mx x =-+y t =()1,0A -()1,1B 21y mx x =-+223y x =-+2-2412x x =24120x x -=()430x x -=10x =23x =2430x x ++=,6分解得,;8分21.解:∵,∴2分∵,,4分∴6分∴,8分22.解:(1)∵二次函数的图象经过点,∴,2分解得:,4分∴a 的值为;(2)由(1)可知,,6分∴抛物线对称轴为直线;7分(3)∵抛物线开口向下,对称轴为,∴当时,y 随x 的增大而减小9分23.(1)证明:如图,连接OC ,∵CE 切于点C ,∴,∴,∵,,∴,,2分又∵,∴,∴,4分∴,∵,∴OD 垂直平分AB ;6分(2)解:设,则,,在中,,∴,8分()()130x x ++=11x =-23x =-DE BC ∥AD AEDB EC =14AD DB =2AE =214EC =8EC =10AC =242y ax x =++()3,4A -49122a -=++2a =-2-()22242214y x x x =-++=--+1x =1x =1x >O OC CE ⊥90OCF ECF ∠+∠=︒OC OD =EF EC =OCF ODF ∠=∠ECF EFC ∠=∠OFD EFC ∠=∠90ODF OFD ∠+∠=︒90DOF ∠=︒OD AB ⊥OA OB =BF BE x ==2EC EF x ==3OE x =+Rt OCE △222OC CE OE +=()()222323x x +=+解得:,(舍去),9分∴.10分24.解:(1)设截去的小正方形的边长为x cm1分,4分解得:,(舍去),6分∴截去的小正方形的边长2cm .(2)能.7分设左边的小正方形的边长为x cm ,根据题意得8分解得:或,9分经检验不符合题意,舍去,10分∴盒子的体积为:.11分25.解:(1)∵点在二次函数的图象上,∴,2分∴,4分∴二次函数的表达式为;5分(2)当时,二次函数关系式为,6分∵,7分∴抛物线的顶点为,8分∵二次函数的图象与(t 为常数)的图象只有一个公共点,∴;10分(3)m 的取值范围为或.12分12x =20x =321OF OB BF =-=-=()()322142280x x --=12x =221x =()3221421802xx --⋅=1x =22x =22x =31801180cm ⨯=()2,321y mx x =-+3421m =-+1m =21y x x =-+14m =2114y x x =-+()2124y x =-()2,021y mx x =-+y t =0t =2m ≤-918m ≤<。
湖北省武汉市洪山区2024届九年级上学期期中考试数学试卷(含解析)

2023-2024学年湖北省武汉市洪山区九年级第一学期期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.在下列代表体育运动的图标中,属于中心对称图形的是( )A.B.C.D.2.将一元二次方程x2+1=﹣6x化为一般形式后,常数项为1,二次项系数和一次项系数分别为( )A.1,6B.1,﹣6C.1,1D.﹣1,13.把抛物线y=2x2向上平移一个单位长度后,得到的抛物线是( )A.y=2x2+1B.y=2x2﹣1C.y=(x+1)2D.y=(x﹣1)24.亚洲青年运动会的图标如图所示,该图案绕中心旋转n°后,能与原来的图案重合,那么n的值可能是( )A.45B.30C.60D.1205.判断方程x2﹣9x+10=0的根的情况是( )A.有一个实根B.有两个相等实根C.有两个不等实根D.没有实根6.如图,点C是⊙O的优弧上一点,∠AOB=80°,则∠ACB的度数为( )A.40°B.140°C.80°D.60°7.某初中建成于2021年,9月新入校七年级学生100人(2021年该校无八、九年级学生).连续招生三年截至2023年9月新生报到后,该校三个年级合计共有364名学生.在不考虑学生转入或转出的情况下,设该校每年新生人数年平均增长率为x,则根据以上信息可以列出方程为( )A.100(1+x)2=364B.100+100(1+x)=364C.100+100(1+x)2=364D.100+100(1+x)+100(1+x)2=3648.已知点A(a,2),B(b,2),C(c,﹣1)都在抛物线y=m(x﹣2)2+m2+4上,若m<0,且点A在点B左侧,点C在第三象限,则下列选项正确的是( )A.a<b<c B.a<c<b C.b<a<c D.c<a<b9.已知函数y=x2﹣4x的图象上有两点A(m,1)和B(n,1),则的值等于( )A.22B.20C.17D.010.如图,在四边形ABCD中,AD∥BC,AB=1,AD=BD=CD=2,则AC=( )A.B.C.D.二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.点A(1,﹣2)关于原点对称的点A′的坐标为 .12.如图,在△ABC中,AB为⊙O直径,∠B=50°,∠C=60°,则∠BOD= °.13.抛物线y=x2+2x+3的顶点坐标是 .14.若小唐同学掷出的铅球在场地上砸出一个直径为8cm、深为2cm的小坑,则该铅球的直径为 cm.15.二次函数y=ax2+bx+c的部分图象如图所示,图象过点A(3,0),对称轴为直线x=1,以下四个结论:①abc>0;②8a+c<0;③对于任意实数m,有am2+bm≥﹣4a﹣c;④对于实数,若(n,y1),(n+1,y2)为抛物线上两点,则y1<y2;其中正确的是 (填写序号).16.如图所示,直线l绕平行四边形ABCD顶点A转动,分别过点B,C,D作l的垂线段,垂足分别为M,N,P.已知∠ABC=60°,AB=6,BC=5,则BM+CN+DP的最大值为 .三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.解方程:x2﹣4x﹣5=0.18.如图,将△ABC绕点B旋转至△DBE,点E在边AC上.已知∠C=40°,求∠ABD的度数.19.一张小茶几的桌面长为6dm,宽为4dm,长方形桌布的面积为桌面面积的2倍,将桌布铺在桌子上,四边垂下的长度相同(四个角除外),求桌布的长和宽.20.如图所示,等边△ABC内接于⊙O,D为圆周上一点.(1)求证:BD平分∠ADC;(2)若CD=1,AD=2,求BD的长度.21.如图,在11×6长方形的网格中,每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,A,B,C均为格点.请你用一把无刻度直尺完成作图,保留作图痕迹.(1)以C为旋转中心,将线段AC逆时针旋转90°至线段CD,连接AD;(2)作CE⊥AD于E;(3)将△BCA绕C点顺时针旋转至△B'CA',旋转角度等于∠BAC.22.某桥梁因交通事故导致拥堵.根据车流量监控统计,7:00时该桥梁上车辆共计200辆,累计驶入车辆数y(单位:辆)与累计驶出车辆数w(单位:辆)随统计时间t(单位:min)变化的结果如表所示:统计时间t/min1234…累计驶入车辆数y/辆200380540680…累计驶出车辆数w/辆306090120…在当前时段,我们可以把累计驶入车辆数y与t之间看作二次函数关系,把累计驶出车辆数w与t之间看作一次函数关系.(1)直接写出y关于t的函数解析式和w关于t的函数解析式(不要求写出自变量的取值范围);(2)当桥梁上车辆累计到达760辆时,将触发拥堵黄色预警.按照当前车流量计算,第几分钟将触发拥堵黄色预警?(3)当桥梁上车辆累计到达1000辆时,将触发拥堵红色预警.从统计开始5分钟时(即7:05时),交通事故解除,驶出桥梁的车辆每min增加30辆.试计算拥堵红色预警是否会被触发?23.已知△ABC为等边三角形,D为平面内一点,连接BD,CD.【问题研究】如图1所示,当点D在△ABC内时,以B为旋转中心,将△BCD逆时计旋转60°至△BAE,连接ED,则△BED的形状为 ;延长CD交AE于M,求∠AMC的度数;【问题拓展】如图2所示,当点D在△ABC外时,取BD中点E,连接AE,作EM⊥AE交CD的垂直平分线于M,连接DM,CM,试求∠DMC的度数.24.如图1,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于C点.(1)直接写出A,B,C点的坐标;(2)点D是抛物线上一点,点E位于第四象限.若由B,C,D,E四点组成的平行四边形面积为30,求E点坐标;(3)如图2所示,过A作两条直线分别交抛物线于第一象限点P,Q,交y轴于M,N,OM•ON=n.当n为定值时,直线PQ是否必定经过某一定点?若经过,请你求出该定点坐标(用含n的式子表示);若不经过,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.解:选项A、B、D均不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;选项C能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;故选:C.2.解:一元二次方程x2+1=﹣6x化为一般形式是x2+6x+1=0,二次项系数和一次项系数分别为:1,6.故选:A.3.解:∵抛物线y=2x2的顶点坐标是(0,0),∴平移后的抛物线的顶点坐标是(0,1),∴得到的抛物线解析式是y=2x2+1.故选:A.4.解:该图形被平分成八部分,旋转45°的整数倍,就可以与自身重合,故n的最小值为45.故选:A.5.解:∵Δ=(﹣9)2﹣4×1×10=41>0,∴方程有两个不相等的实数根.故选:C.6.解:∵∠AOB=2∠ACB,∠AOB=80°,∴∠ACB=40°,故选:A.7.解:∵该校2021年9月新入校七年级学生100人,且该校每年新生人数年平均增长率为x,∴该校2022年9月新入校七年级学生100(1+x)人,2023年9月新入校七年级学生100(1+x)2人.根据题意得:100+100(1+x)+100(1+x)2=364.故选:D.8.解:∵抛物线y=m(x﹣2)2+m2+4(m<0),∴该抛物线的对称轴为直线x=2,抛物线开口向下,当x>2时,y随x的增大而减小,当x<2时,y 随x的增大而增大,∵点A(a,2),B(b,2),C(c,﹣1)都在抛物线y=m(x﹣2)2+m2+4上,点A在点B左侧,点C在第三象限,∴点A(a,2),C(c,﹣1)在对称轴的左侧,∴c<a<b;故选:D.9.解:∵函数y=x2﹣4x的图象上有两点A(m,1)和B(n,1),∴m2﹣4m=1,把y=1代入y=x2﹣4x得,x2﹣4x﹣1=0,∵函数y=x2﹣4x的图象上有两点A(m,1)和B(n,1),∴m,n是方程x2﹣4x=1的两个根,∴mn=﹣1,m+n=4,∴m=﹣,∴=2m2﹣3m+5n=2(m2﹣4m)+5(m+n)=2×1+5×4=22.故选:A.10.解:如图,以点D为圆心,DA为半径作⊙D,由于DA=DB=DC=2,所以点B、点C也在圆上,延长AD 交⊙D于点F,∵AD∥BC,∴=,∴AB=CF=1,∵AF是⊙D的直径,∴∠ACF=90°,在Rt△ACF中,AF=2AD=4,CF=1,∴AC==.故选:B.二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).12.解:∵∠B=50°,∠C=60°,∴∠A=180°﹣∠ABC﹣∠C=70°,∴∠BOD=2∠A=140°.13.解:∵y=x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,∴抛物线y=x2+2x+3的顶点坐标是(﹣1,2).故答案为:(﹣1,2).14.解:设该铅球的半径是rcm.在由铅球的半径、小坑的半径即半弦和弦心距组成的直角三角形中,根据勾股定理,得r2=(r﹣2)2+16,解得r=5,故2r=10.故答案为:10.15.解:由图象可知,a>0,c<0,∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a<0,∴abc>0.故①正确;∵二次函数y=ax2+bx+c的图象过点A(3,0),∴9a+3b+c=0,∵b=﹣2a,∴3a+c=0,∵a>0,∴8a+c=3a+c+5a>0,故②错误;由②知,c=﹣3a,∵a>0,对称轴为直线x=1,∴当x=1时,函数有最小值,最小值为a+b+c=a﹣2a﹣3a=﹣4a,∴对于任意实数m,有am2+bm+c≥﹣4a,即am2+bm≥﹣4a﹣c,故③正确;当n>时,n+1>∵对称轴为直线x=1,∴n+1﹣1>,1﹣n<,∴y1<y2.故④正确;故答案为:①③④.16.解:连接AC,BD交于点O,过点O作OT⊥直线l于T,在OT的延长线上截取TR=OT,连接RN,ON,过点C作CE⊥AB于E,如图所示:∵DP⊥直线l,BM⊥直线l,∴四边形BMPD为直角梯形,∵四边形ABCD为平行四边形,∴点O为BD,AC的中点,∵OT⊥直线l,∴OT∥BM∥DP,∴OT为梯形BMPD的中位线,∴BM+DP=2OT,∵TR=OT,∴OR=2OT=BM+DP,∵CN⊥直线l,在Rt△ACN中,点O为斜边AC的中点,∴ON=OA=OC,∴△OAN为等腰三角形,又∵OT⊥AN,∴AT=NT,在△OAT和△RNT中,,∴△OAT≌△RNT(SAS),∠AOT=∠R,∴OA∥RN,即OC∥RN,∵CN⊥直线l,OT⊥直线l,∴OR∥CN,∴四边形CNRO为平行四边形,∴CN=OR=BM+DP,∴BM+CN+DP=2CN,要求BM+CN+DP的最大值,只需求出CN的最大值即可,根据“垂线段最短”可知:CN≤CA,∴CN的最大值为线段CA的长,∵∠ABC=60°,BC=5,CE⊥AB,在Rt△CBE中,∠BCE=90°﹣∠ABC=30°,∴BE=BC=2.5,由勾股定理得:CE==,∵AB=6,BE=2.5,∴AE=AB﹣BE=6﹣2.5=3.5,在Rt△ACE中,由勾股定理得:CA==,∴CN的最大值为,∴BM+CN+DP的最大值为.故答案为:.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程. 17.解:(x+1)(x﹣5)=0,则x+1=0或x﹣5=0,∴x=﹣1或x=5.18.解:∵将△ABC绕点B旋转至△DBE,点E在边AC上,∴旋转角∠EBC=∠ABD,EB=EC,而∠C=40°,∴∠BEC=∠C=40°,∴∠EBC=∠ABD=180°﹣40°﹣40°=100°.19.解:设桌布垂下的长度为xdm,则由题意,得(6+2x)(4+2x)=2×4×6.整理方程,得4x2+20x﹣24,即x2+5x﹣6=0,解得x1=﹣6(不合题意,舍去),x2=1.当x=1时,桌布的长为2+6=8(dm),桌布的宽为2+4=6(dm).答:桌布的长和宽分别为8dm和6dm.20.【解答】(1)证明:∵△ABC为等边三角形,∴∠BAC=∠ACB=60°,∵∠ADB=∠ACB=60°,∠CBD=∠BAC=60°,∴∠ADB=∠CDB,即BD平分∠ADC;(2)解:在DB截取DE=DC=1,如图,∵∠CDE=60°,DE=DC,∴△DEC为等边三角形,∴CE=CD,∠DEC=60°,∵∠BEC=180°﹣∠DEC=120°,∠ADC=∠ADB+∠CDB=120°,∴∠BEC=∠ADC,∵∠CBE和∠CAD都对,∴∠CBE=∠CAD,∵△ABC为等边三角形,∴BC=CA,在△BCE和△ACD中,,∴△BCE≌△ACD(AAS),∴BE=AD=2,∴BD=BE+DE=2+1=3.21.解:(1)如图,线段CD即为所求;(2)如图,线段CE即为所求;(3)如图,△B'CA'即为所求.22.解:(1)设y关于t的函数解析式为y=at2+bt+c(a≠0),把(1,200),(2,380),(3,540)代入解析式得:,解得,∴y关于t的函数解析式为y=﹣10t2+210t;设w关于t的函数解析式为w=mx+n(m≠0),把(1,30),(2,60)代入解析式得:,解得,∴w关于t的函数解析式为w=30t;(2)当y﹣w+200=760时,即﹣10t2+210t﹣30t+200=760,解得t1=4,t2=14,∴从第4分钟将触发拥堵黄色预警;(3)设桥梁上车辆累计Q辆,当t≤5时,Q=y﹣w+200=﹣10t2+210t﹣30t+200=﹣10t2+180t+200=﹣10(t﹣9)2+1010,∵﹣10<0,∴当t<9时,Q随x的增大而增大,∴当t=5时,Q有最大值,最大值为850,850<1000,∴前5分钟会触发拥堵红色预警;当t>5时,w=60(t﹣5)=60t﹣300,Q=y﹣w+200=﹣10t2+210t﹣(60t﹣300)=﹣10t2+150t+300=﹣10(t﹣7.5)2+1062.5,∵﹣10<0,∴当t=7.5时,Q有最大值,最大值为1062.5,1062.5>100,∴会触发拥堵红色预警.23.解:(1)延长CD交AE于M,如图:由旋转的性质可知:∠DBE=60°,△ABE≌△CDB,∴BD=BE,∠AEB=∠BDC,∴△BDE是等边三角形,∴∠BDE=∠BED=60°,∴∠AED=∠AEB﹣60°,∠EDM=180°﹣∠BDC﹣60°=120°﹣∠BDC,∴∠AMC=∠AED+∠EDM=∠AEB﹣60°+120°﹣∠BDC=60°;故答案为:等边三角形;(2)延长ME到N,使EN=EM,连接AM,AN,BN,延长BN与CM交于点O,BO与AM交于点Q,如图:∵E是BD中点,∴BE=DE,又∵EM=EN,∠BEN=∠DEM,∴△BEN≌△DEM(SAS),∴BN=DM,∠EBN=∠EDM,∴BN∥DM,∵D在CD的垂直平分线上,∴DM=CM,∴BN=CM,∵EM=EN,AE⊥EM,∴△AMN是等腰三角形,∴AM=AN,又∵△ABC是等边三角形,∴AB=AC,∴△ABN≌△ACM(SSS),∴∠ANB=∠AMC,∠BAN=∠CAM,∴∠ANO=∠AMO,又∵∠BAN+∠NAC=∠BAC=60°,∴∠NAC+∠CAM=∠NAM=60°,又∵∠AQN=∠OQM,∴∠O=∠NAM=60°,又∵BN∥DM,∴∠OMD=∠O=60°,∴∠DMC=180°﹣60°=120°.24.解:(1)对于y=﹣x2+2x+3,当x=0时,y=3,当y=﹣x2+2x+3=0时,x=﹣1或3,即点A、B、C的坐标分别为:(﹣1,0)、(3,0)、(0,3);(2)由点B、C的坐标得,直线BC的表达式为:y=﹣x+3,BC=3,①当BC是边时,如下图,当DE在BC下方时,设DE交y轴于点T,过点T作TG⊥BC于点G,则由B,C,D,E四点组成的平行四边形面积=BC×TG=3×GT=30,则GT=,由OB=OC=3知,∠TCG=45°,则CT=GT=10,则点T(0,﹣7),则直线DE的表达式为:y=﹣x﹣7,联立y=﹣x2+2x+3和y=﹣x﹣7并解得:x=5(舍去)或﹣2,即点D(﹣2,﹣5);点C向右平移3个单位向下平移3个单位得到点B,则点D向右平移3个单位向下平移3个单位得到点E,故点E(1,﹣8);当DE在BC上方时,同理可得:直线DE的表达式为:y=﹣x+13,经验证,该方程和抛物线无交点,即无解;②当BC是对角线时,如下图:则S△BCD=15,设点D(x,﹣x2+2x+3),则点H(x,﹣x+3),则DH=﹣x2+3x,则S△BCD=15=DH×OB=×(﹣x2+3x),该方程无解;综上,点E的坐标为:(1,﹣8);(3)经过定点,理由:设点P、Q的坐标分别为:(a,﹣a2+2a+3)、(b,﹣b2+2b+3),由点A、P坐标得,直线AP的表达式为:y=﹣(a﹣3)(x+1),当x=0时,y=3﹣a=OM,同理可得:ON=3﹣b,则(a﹣3)(b﹣3)=n,即ab﹣3(a+b)+9﹣n=0,设直线PQ的表达式为:y=kx+m,联立PQ和二次函数表达式并整理得:x2+(k﹣2)x+m﹣3=0,则a+b=2﹣k,ab=m﹣3,则m﹣3﹣3(2﹣k)+9﹣n=0,即m=n﹣3k,则PQ的表达式为:y=kx﹣3k+n=k(x﹣3)+n,则直线PQ过点(3,n).。
湖北省荆州市监利市2024-2025学年上学期九年级期中学业水平监测数学试题(含答案)

监利市2024—2025学年度上学期九年级期中学业水平监测数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题要求)1.中秋节是中国的传统节日,有“团圆”、“丰收”的寓意.月饼是首选传统食品,不仅美味,而且设计多样,下列月饼图案中,为中心对称图形的是A. B. C. D.2.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下图代表“大雪”,此图绕着它的旋转中心,按下列角度旋转,能与其自身重合的是A. B. C. D.3.若是方程的一个根,则的值为A.-2B.2C.4D.-44.如图,内接于,是的直径,若,则A. B. C. D.5.关于二次函数的性质,下列说法错误的是A.该函数图象的开口向上B.该函数图象的对称轴是C.该函数的最小值为-1D.当时,随的增大而减小90︒60︒45︒30︒3x =230x bx +-=b ABC △O CD O 50B ∠=︒ACD ∠=30︒40︒50︒60︒()2321y x =--2x =2x >y x6.用配方法解方程时,配方正确的是A. B.C. D.7.若,是方程的两个根,则的值为A.2026B.C.2022D.-20268.如图,以原点为圆心的圆交轴于点,两点,交轴的正半轴于点,为第一象限内上的一点,若,则的度数是A. B. C. D.9.掷实心球是多地高中阶段学校招生体育考试选考项目.如图1是一名男生投实心球,实心球行进路线是一条抛物线,行进高度与水平距离之间的函数关系如图2所示,掷出时起点处高度为,当水平距离为时,实心球行进至最高点处.该男生在此项考试中的成绩是A. B. C.D.10.如图是抛物线的部分图象,其顶点坐标为,且与轴的一个交点在点和之间.则下列结论:①;②;③一元二次方程有两个不相等的实数根:④.其中正确的结论是A.①②B.②③④C.①②④ D.③④二、填空题(共5题,每题3分,共15分)11.抛物线的顶点坐标是________.2620x x +-=()2311x +=()237x +=()2638x +=()2634x +=m n 2220240x x +-=23m m n ++2022-O x A B y C D O 65OCD ∠=︒DAB ∠40︒20︒50︒25︒()m y ()m x 9m 54m 3m 10m()4m ()4m +()20y ax bx c a =++≠()1,n x ()3,0()4,0240b ac ->20a b +=21ax bx c n ++=+420a b c -+<()223y x =-++12.在平面直角坐标系中,若点与关于原点对称,则=________.13.如图,是的半径,弦于点,连接,若的长为8cm ,的长为,则的半径长为________cm.14.在本届全市青少年校园足球比赛中,每两支足球队之间都要进行一次主场比赛和一次客场比赛,共有30场比赛,则参加本届足球比赛的足球队共有________支.15.在矩形中,,点在上,点在平面内,,,连按,将线段绕着点顺时针旋转得到,则线段的最大值为________.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知函数是关于的二次函数.(1)求的值;(2)当为何值时,抛物线有最高点?并求出最高点的坐标.18.(6分)如图,在平面直角坐标系中,已知,,.(1)画出关于原点成中心对称的;(2)画出绕原点顺时针旋转后得到的.19.(8分)已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(),2m -()1,n m n +OA O BC OA ⊥D OB BC AD 2cm O ABCD 6AB =E BC F 2BE =3EF =AF AF A 90︒AP PE 2420x x +-=22150x x +-=()214m m y m xx -=-+x m m ()5,1A -()3,4B -()1,2C -ABC △O 111A B C △ABC △O 90︒222A B C △x ()222110x m x m --++=m(2)若该方程的两个实数根分别为,,且,求的值.20.(8分)如图,抛物线与直线相交于和,(1)求和的值,及抛物线的解析式:(2)结合图象直接写出不等式的解集.21.(8分)如图,是的直径,,是同侧圆上的两点,半径交于点,.(1)求证:;(2)若,求的半径.22.(10分)阳光玫瑰葡萄果肉鲜脆多汁,口感极佳,是一种比较畅销的水果,某水果店以16元/千克的价格购进某种阳光玫瑰葡萄,规定销售单价不低于成本价,且不高于28元/千克,试销期间发现,该种阳光玫瑰葡萄每周销售量(千克)与销售单价(元/千克)满足一次函数关系,部分数据如下表所示:销售单价(元/千克)222426销售量(千克)20018016(1)求与之间的函数关系式;(2)当销售单价定为多少时,水果店每周销售阳光玫瑰葡萄获利1600元?(3)当销售单价定为多少时,水果店每周销售阳光玫瑰葡萄获得的利润(元)最大?最大利润是多少元?23.(11分)【问题情境】活动课上,同学们以等边三角形为背景开展旋转探究活动,数学小组经过研究发现“等边三角形在旋转过程中,对应边所在直线的夹角与旋转角存在一定的数量关系”(注:平面内两直线的夹角是指两直线相交形成的小于或等于的角).如图1,将等边绕点逆时针旋转得到,则线段与线段的夹角.如图2,将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角.1x 2x 12111x x +=-m 21y ax bx =+22y kx =+()2,0-()1,n k n 12y y >AB O C D AB //OD BC AC E 30BAC ∠=︒ CDBC =AC =O y x x y y x w 90︒ABC △A 20︒ADE △BC DE 20BMD ∠=︒ABC △A 100︒ADE △BC DE 80BMD ∠=︒【特例分析】(1)如图1,若将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角度数为度;如图2,若将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角度数为度;【类比分析】(2)如图3,若将等边绕点逆时针旋转得到,连接交于,求与的数量关系;【延伸应用】(3)如图4,已知是等边三角形,,分别在边和上截取和,使得,连接.将绕点逆时针旋转,连接,当和所在直线互相垂直时,请直接写出的长.24.(12分)如图,抛物线交轴于,两点在左边),交轴于点,点是第二象限内抛物线上任意一点,其横坐标为.(1)直接写出点,,的坐标;(2)如图1,连接,过点作直线轴,交于点.当线段的长度最大时,求点的坐标;(3)如图2,连接,,过点作直线,交轴于点.若平分线段,求直线的解析式.ABC △A 30︒ADE △BC DE ABC △A 130︒ADE △BC DE ABC △A 120︒ADE △CE AB F AB CE ABC △6AB =AB AC ADAE AD AE ==DE ADE △A CD BC DE CD 211242y x x =--+x A B A B y C P n A B C AC P //PD y AC D PD P AC BC P //PQ BC y Q AC PQ PQ监利市2024-2025学年度上学期九年级期中学业水平监测九年级数学答案与评分说明(请各位教师在阅卷前先做题审答案)一、选择题1.C2.B3.A4.B5.D6.A7.C8.B9.D 10.C二、填空题11.(-2,3) 12.11 13.5 14.6 15.三、解答题(其他解法,正确即可.)16.解:(1),,,,……(1分),3分)(2)因式分解,得,……(4分)或,,.……(6分)17.解:(1)函数是关于的二次函数,,解得,;……(2分)(2)抛物线有最高点,,,当时,抛物线有最高点,……(4分)二次函数的解析式为,当时,取最大值为2,最高点的坐标为.……(6分)18.解:(1)如图,即为所求;……(3分)31a =4b =2c =-()2441224∆=-⨯⨯-=2x ==-12x =-22x =-()()350x x -+=30x -=50x +=13x =25x =- ()214m m y m x x -=-+x 22m m ∴-=12m =21m =- 10m ∴-<1m ∴<∴1m =-∴224y x x =-+∴4124b m a =-=-=-y ∴()1,2111A B C △(2)如图,即为所求.……(6分)19.解:(1)根据题意得,,……(2分)解得,所以的取值范围是;……(4分)(2)根据题意得,,,……(5分)所以,……(6分)解得,,……(7分)又,所以.……(8分)20.解:(1)将代入得,,解得,……(1分),将代入得,,……(2分)将和分别代入得,解得,……(4分)抛物线的解析式为;……(5分)(2)不等式的解集为或.……(8分,答对一个结果得2分,答对两个结果得3分)21.解:(1)连接,222A B C △()()2221410m m ⎡⎤∆=---+>⎣⎦34m <-m 34m <-()1221211m x x m --+=-=-2212111m x x m +⋅==+1221212112111x x m x x x x m +-+===-+10m =22m =-34m <-2m =-()2,0-22y kx =+022k =-+1k =22y x ∴=+()1,n 22y x =+3n =()2,0-()1,321y ax bx =+0423a b a b =-⎧⎨=+⎩12a b =⎧⎨=⎩∴212y x x =+12y y >2x <-1x >OC是直径,,……(1分),,……(2分),……(3分),,,……(4分);……(5分)(2),,……(6分)设的半径为,则,在中,,即,……(7分)解得或(舍),答:的半径为2.……(8分)22.解:(1)设与之间的函数关系式为,将,和,分别代入得,解得,与之间的函数关系式为;……(3分)(2)根据题意得,……(4分)解得,(舍),……(5分)答:当销售单价定为26元时,水果店每周销售阳光玫瑰葡萄获利1600元;……(6分)(3)由题意得,……(7分),AB O 90ACB ∴∠=︒//OD BC OD AC ∴⊥ AD CD∴=30BAC ︒∠= 60AOD COD ∴∠=∠=︒260BOC BAC ∠=∠=︒ CDBC ∴=OD AC ⊥ AC =12AE AC ∴==O r 12OE r =Rt AOE △222AE OE AO +=22212r r ⎛⎫+= ⎪⎝⎭2r =2r =-O y x y kx b =+22x =200y =24x =180y =y kx b =+2002218024k b k b=+⎧⎨=+⎩10420k b =-⎧⎨=⎩y ∴x 10420y x =-+()()16104201600x x --+=126x =232x =()()21610420105806720w x x x x =--+=-+-100a =-<当时,取最大值,……(8分)当时,随的增大而增大,当时,最大为1680,……(9分)答:当销售单价定为28元时,水果店每周销售阳光玫瑰葡萄获得的利润最大,最大利润是1680元.……(10分)23.解:(1)30;50;……(2分)(2)根据旋转的性质可得,,,……(3分)是等边三角形,,,,,,……(5分),,在中,,即,,;……(7分)(3)如图,①当在直线的上方时,过点作于点,;……(9分)②当在直线的下方时,过点作于点,延长线交的延长线于点,……(11分)24.解:(1),,;……(3分)(2)设直线的解析式为,将代入得,解得,直线的解析式为,……(4分)点在第二象限的抛物线上,点在直线上,∴58029220bxa=-=-=-w∴1628x≤≤w x∴28x=w120EAC∠=︒ABC ADE△≌△ABC△60BAC∴∠=︒AB AC AE==60BAE EAC BAC BAC∴∠=∠-∠=︒=∠90AFE∴∠=︒EF CF=30AEF∴∠=︒2AE AF∴=Rt AEF△222AF EF AE+=()2222AF EF AF+=EF∴=2CE EF∴====DE AC D DH AC⊥H CD=DE AC D DH AC⊥H ED BC G CD=()4,0A-()2,0B()0,2CAC2y kx=+()4,0A-420k-+=12k=∴AC122y x=+P D AC,,,,……(5分)当时,最大,……(6分)此时点的坐标为;……(7分)(3)设直线的解析式为,将代入得,解得,直线的解析式为,……(8分),设直线的解析式为,将代入得,,,直线的解析式为,……(9分),线段的中点坐标为,……(10分)平分线段,线段的中点在直线上,将代入得,解得:,,(舍去)……(11分)直线的解析式为.……(12分)211,242P n n n ⎛⎫∴--+ ⎪⎝⎭()40n -<<1,22D n n ⎛⎫+ ⎪⎝⎭221111224224PD n n n n n ⎛⎫⎛⎫∴=--+-+=-- ⎪ ⎪⎝⎭⎝⎭∴12122b n a -=-=-=--PD P ()2,2-BC 2y mx =+()2,0B 220m +=1m =-∴BC 2y x =-+//PQ BC PQ y x b =-+211,242P n n n ⎛⎫--+ ⎪⎝⎭211242n n n b ∴--+=-+211242b n n ∴=-++∴PQ 211242y x n n =--++2110,242Q n n ⎛⎫∴-++ ⎪⎝⎭∴PQ 211,224n n ⎛⎫-+ ⎪⎝⎭AC PQ ∴PQ AC 211,224n n ⎛⎫-+ ⎪⎝⎭122y x =+2112244n n -+=+11n =-20n =∴PQ 54y x =-+。
湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)

2023—2024学年度九年级上学期期中测试数学试卷(考试时间为120分钟,满分为120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑1.将化成一般式后,,,的值分别是()A .1,2,B .1,,C .1,,5D .1,2,52.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线是中心对称图形的是()A .B .C .D .3.把抛物线向右平移2个单位,再向下平移3`个单位,得到抛物线为()A .B .C .D .4.将二次函数化成的形式应为()A .B .C .D .5.已知一元二次方程的两根分别为,,则的值是()A .B .C .3D .56.如图,在中,,,在同一平面内,将绕点顺时针旋转到的位置,连接,若,则的度数是()A .B .C .D .7.如图,有一张长12cm ,宽9cm的矩形纸片,在它的四个角各剪去一个同样大小的小正方形,然后折叠成()25x x +=20ax bx c ++=a b c 5-2-5-2-2y x =-()223y x =-++()223y x =--+()223y x =-+-()223y x =---262y x x =+-()2y x h k =-+()237y x =++()2311y x =-+()2311y x =+-()237y x =+-2410x x +-=m n m n mn ++5-3-ABC △AB AC =100BAC ∠=︒ABC △A 11AB C △1BB 11BB AC ∥1CAC ∠10︒20︒30︒40︒一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是,求剪去的小正方形的边长.设剪去的小正方形的边长是,根据题意,可列方程为()A .B .C .D .8.如图,圆内接四边形中,,连接,,,,.则的度数是()A .B .C .D .9.如图,在中,顶点,,.将与正方形组成的图形绕点逆时针旋转,每次旋转,则第2023次旋转结束时,点的坐标为()A .B .C .D .10.如图,平行四边形中,,,,是边上一点,且,是边上的一个动点,将线段绕点顺时针旋转,得到,连接、,则的最小值是()270cm cm x 1294970x ⨯-⨯=2129470x ⨯-=()()12970x x --=()()1229270x x --=ABCD 105BCD ∠=︒OB OC OD BD 2BOC COD ∠=∠CBD ∠20︒25︒30︒35︒OBC △()0,0O ()2,2B -()2,2C OBC △ABCD O 90︒A ()6,2()2,6-()6,2-()6,2--ABCD 12AB =10AD =60A ∠=︒E AD 6AE =F AB EF E 60︒EN BN CN BN CN +A .B .D .14C .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卡指定的位置。
山东省济宁市微山县2023-2024学年九年级上学期期中数学试题(含答案)

2023—2024学年度第一学期期中考试九年级数学试题注意事项:1.本试卷共6页,满分100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答选择题时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答非选择题时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.在回收、绿色包装、节水、低碳四个标志图案中,属于中心对称图形的是()A .B .C .D .2.下列方程是一元二次方程的是( )A .B .C .D .3.一元二次方程的根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法确定4.将抛物线向右平移2个单位长度,再向下平移3个单位长度,所得抛物线解析式为,则代数式的值为( )A .B .2C .4D .65.2021年某市GDP 约为115亿元,如果以后每年按相同的增长率增长,2023年该市GDP 约达135亿元.若设每年增长率为x ,则所列方程为( )A .B .C .D .6.如图,在中,,,将此三角形绕点B 沿逆时针方向旋转后得到,若点恰好落在线段AC 上,AB ,交于点D ,则等于()2x x=20ax bx c ++=1xy =11x x+=2321x x x -=+2y x bx c =++221y x x =-+b c -2-()1151151135x ++=()1151135x +=()21151135x +=()()211511151135x x +++=ABC △90ABC ∠=︒50C ∠=︒A BC ''△C 'A C ''A BD '∠A .B .C .D .7.一次函数和二次函数(k 是常数,且)在同一平面直角坐标系中的图象可能是()A .B .C .D .8.已知抛物线,,,是抛物线上三点,则,,的大小关系是( )A .B .C .D .9.如图,在平面直角坐标系中,的一条直角边OB 在x 轴上,点A 的坐标为;中,,,连接BC ,点M 是BC 中点,连接AM .将以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .C .D .210.如图所示是抛物线的部分图象,其顶点坐标为,且与x 轴的一个交点在点和之间,则下列结论:①;②;③;④一元二次方程有实数根.65︒70︒75︒80︒y kx k =+244y kx x =-++0k ≠()2230y ax ax a =-+>()11,A y -()22,B y ()34,C y 1y 2y 3y 123y y y <<213y y y <<312y y y <<231y y y <<Rt AOB △()6,4-Rt COD △90COD ∠=︒OD =30D ∠=︒Rt COD △4-2-()20y ax bx c a =++≠()1,n ()3,0()4,00a b c -+<30a c +>()24b a c n =-21ax bx c n ++=+其中正确的结论个数是( )A .①②B .①③C .②③D .②④二、填空题:本大题共5小题,每小题3分,共15分.11.已知函数为二次函数,则m 的值为________.12.已知a 是方程的一个根,则代数式的值是________.13.若点关于原点的对称点,那么________.14.如图,已知抛物线与x 轴交于A ,B 两点,顶点M 的纵坐标为,现将抛物线向右平移3个单位长度得到抛物线,则阴影部分的面积是________.15.如图,在直角坐标系中,线段是将绕着点逆时针旋转一定角度后得到的的一部分,则点A 的对应点的坐标是________.()1321m y m xx -=-+-2310110x x --=2261a a -+(),1P m ()2,Q n -m n +=2y mx nx c =++2-2111y m x n x c =++11B C ABC △()3,2D -111A B C △1A三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程.16.(本小题3分)用公式法解方程:.17.(本小题3分)用适当的方法解方程.18.(本小题4分)已知函数.(1)若这个函数是关于x 的一次函数,求m 的值.(2)若这个函数是关于x 的二次函数,求m 的取值范围.19.(本小题6分)已知如图1,图形A 是一个正方形,图形B 由三个图形A 构成,请用图形A 与B 拼接出符合要求的图形(每次拼接图形A 与B 只能使用一次),并分别画在指定的网格中.图1(1)在网格甲中画出:拼得图形是中心对称图形但不是轴对称图形;(2)在网格乙中画出:拼得图形是轴对称图形但不是中心对称图形;(3)在网格丙中画出:拼得图形既是轴对称图形又是中心对称图形.20.(本小题6分)已知二次函数的图象与x 轴两交点为、.(1)填空:________;(2)求代数式的值.21.(本小题6分)已知关于x 的一元二次方程,其中a ,b ,c 分别为三220x x --=()24520x x +=+()()2111y m x m x m =-+---233y x x =+-()1,0x ()2,0x 12x x +=1221x x x x +()()220b c x ax b c +-+-=ABC △边的长.(1)已知是方程的根,求证:是等腰三角形;(2)如果是直角三角形,其中,请你判断方程的根的情况,并说明理由.22.(本小题8分)某商家销售一种进价为10元/件的玩具.经调查发现,该玩具每天的销售量y (件)与销售单价x (元)满足下表:x 101112131415y400390380370360350设销售这种玩具每天的利润为w (元).(1)求w 与x 之间的函数关系式;(2)若销售单价不低于30元,且每天至少销售60件时,求此时w 的最大值.23.(本小题8分)阅读与理解图1是边长分别为m 和的两个正方形纸片ABCD 和EFCG 叠放在一起的图形(点F ,G 分别在BC ,CD 上).操作与证明(1)将图1中的正方形ABCD 固定,将正方形EFCG 绕点C 按顺时针方向旋转,连接BF ,DG ,如图2所示.猜想:线段BF 与DG 之间的大小关系,并证明你的猜想;(2)若将图1中的正方形EFCG 绕点C 按顺时针方向任意旋转一个角度,连接BF ,DG ,如图3所示.那么(1)中的结论还是否成立吗?请说明理由.操作与发现根据上面的操作过程发现,当为________度时,线段BF 的最大值是________;当为________度时,线段BF 的最小值是________?图1图2图324.(本小题11分)如图,抛物线交x 轴于A ,B 两点,交y 轴于点C ,直线经过点B ,C 两点.1x =ABC △ABC △90B ∠=︒()n m n >45︒()0360αα︒≤≤︒αα243y ax x =+-3y x =-备用图(1)求抛物线的解析式;(2)D 是直线BC 上方抛物线的一动点,当面积取最大值时,求点D 的坐标;(3)连接AC ,将绕点A 旋转一周,在旋转的过程中,点C ,B 的对应点分别为,,直线分别与直线BC 交于点E ,交y 轴于点F .那么在的整个旋转过程中,是否存在恰当的位置,使是以CE 为腰的等腰三角形?若存在,请求出所有符合条件的点E 的坐标;若不存在,请说明理由.2023—2024学年度第一学期期中考试九年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分1-5:DABAC6-10:DABDC二、填空题:本题共5小题,每题3分,共15分11.; 12.2023; 13.1; 14.6; 15..三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.解:(1),,,,,所以,;3分17.解:,DBC △ABC △C 'B 'AC 'ABC △CEF △1-()2,32220x x --=1a =2b =-2c =-()()22412120∆=--⨯⨯-=>1x ===11x =+21x =()()2454x x +=+,,或,所以,.3分18.解:(1)由题意得:且,解得:且,∴,∴当时,这个函数是关于x 的一次函数;2分(2)由题意得:,解得:,∴当,这个函数是关于x 的二次函数.4分19.(答案不唯一,每正确画出一个符合条件的图形得2分,满分6分)6分20.(1);2分(2)由题意知,,是一元二次方程的两个根,∴,.∴6分21.(1)证明:∵是一元二次方程的根,∴.∴.∴是等腰三角形;3分(2)解:方程有两个相等的实数根,理由如下:∵是直角三角形,其中,∴.∴,∴方程有两个相等的实数根6分()()24540x x +-+=()()4450x x ++-=40x +=450x +-=14x =-21x =10m -=10m -≠1m =±1m ≠1m =-1m =-10m -≠1m ≠±1m ≠±3-1x 2x 2330x x +-=123x x +=-123x x =-()()()222212121212211212232353x x x x x x x x x x x x x x +---⨯-++====--1x =()()220b c x ax b c +-+-=()()20b c a b c +-+-=a b =ABC △ABC △90B ∠=︒222b a c =+()()()2222244440a b c b c a b c ∆=--+-=-+=22.解:(1)根据题意,有:,化简,得:,根据,解得:,即函数关系为:;4分(2)根据题意有:,解得:,将化为顶点式为:,∵,,∴当时,函数值最大,最大为:.答:此时W 的最大值为4000元.8分23.解:操作与证明:(1).∵正方形EFCG 绕点C 按顺时针方向旋转,∴.∵四边形ABCD 和四边形EFCG 是正方形,∴,.∴.∴.3分(2).∵正方形EFCG 绕点C 按顺时针方向旋转,∴.∵四边形ABCD 和四边形EFCG 是正方形,∴,.∴.∴.6分猜想与发现:当为时,线段AD 的长度最大,等于;当为(或)时,线段AD 的长度最小,等于8分24.解:(1)∵直线经过点B ,C 两点,当时,,∴,当时,,∴.把点代入,得:,解得,∴;3分10500y x =-+()()()101050010W y x x x =⨯-=-+⨯-2106005000W x x =-+-1050000y x x =-+≥⎧⎨>⎩050x <≤()2106005000050W x x x =-+-<≤105006030y x x =-+≥⎧⎨≥⎩3044x ≤≤2106005000W x x =-+-()210304000W x =--+100-<3044x ≤≤30x =4000W =BF DG =45︒45BCF DCG ∠=∠=︒CB CD =CF CG =BCF DCG △≌△BF DG =BF DG =αBCF DCG α∠=∠=CB CD =CF CG =BCF DCG △≌△BF DG =α180︒m n +α0︒360︒m n -3y x =-0x =3y =-()0,3C -0y =3x =()3,0B ()3,0B 243y ax x =-+09123a =-+1a =-243y x x =-+-(2)设点D 的坐标为,过点D 作轴,交BC 于点E ,则点E 的坐标为,∴,∴.∴当时,的面积取最大值.此时.∴7分(3)设直线AC 的解析式为,则,联立直线BC 和直线AC ,得:,解得:,∴,由勾股定理得:,,,()()2,4303m m m m -+-<<DE y ∥(),3m m -()224333DE m m m m m =-+---=-+()()221332732228DBCB C S m m x x m ⎛⎫=-+-=--+⎪⎝⎭△32m =DBC S △233343224y ⎛⎫=-+⨯-= ⎪⎝⎭33,24D ⎛⎫⎪⎝⎭()1y k x =-()0,F k -()13y k x y x ⎧=-⎨=-⎩3121k x k k y k -⎧=⎪⎪-⎨⎪=-⎪-⎩32,11k k E k k -⎛⎫-⎪--⎝⎭22232311k k EC k k -⎛⎫⎛⎫=+-+ ⎪ ⎪--⎝⎭⎝⎭2223211k k EF k k k -⎛⎫⎛⎫=+-+ ⎪ ⎪--⎝⎭⎝⎭()223FC k =-+若,即,解得或当时,,当,若,即,解得或,当时,,当时,此时,不合题意,故舍去,综上,M 的坐标为或或或.11分FC EC =()222323311k k k k k -⎛⎫⎛⎫-+=+-+ ⎪ ⎪--⎝⎭⎝⎭1k =1k =-1k =+(12E --1k =(12E +-EC EF =2222323231111k k k k k k k k k --⎛⎫⎛⎫⎛⎫⎛⎫+-+=+-+ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭1k =-3k =1k =-()2,1E -3k =()0,3E -0EC EF ==()3,0()2,1-(12--(12-。
山西省大同市平城区三校联考2024届九年级上学期期中考试数学试卷(含答案)

山西省大同市平城区2023-2024(1)初三阶段性测试(数学)试题一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.如图图案中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程x 2-8x =10化为一元次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A .-8、-10B .-8、10C .8、-10D .8、103.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A .2B .3C .4D .54.已知关于x 的一元二次方程(a -5)x 2-4x -1=0有实数根,则a 的取值范围是()A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠55.将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A .y =-2(x +1)2-1B .y =-2(x +1)2+3C .y =-2(x -1)2+1D .y =-2(x -1)2+36、4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()图(1)图(2)A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张7、如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =22.5°,OC =4,CD 的长为()A.B.4C.D.88.如图,AB,CD是⊙O的两条直径,E是劣弧 BC的中点,连接BC,DE.若∠ABC=22°,则∠CDE 的度数为()A.22°B.32°C.34°D.44°9、如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2,若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57010.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1,给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0,其中,正确的结论有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题,共90分)二、填空题(本大题共5小题,每小题3分,共15分)11、若x=2是方程x2-mx+2=0的根,则m=.12、某村种的水稻前年平均每公顷产7200kg,今年平均每公顷产8450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为.'''的位置,旋转角为α(0°<α<90°).若13、如图,将矩形ABCD绕点A顺时针旋转到矩形AB C D∠1=110°,则α=.14、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x +m解集为.15、如图,点P是等边三角形ABC内一点,且PA6,PB2,PC=2,则这个等边三角形ABC 的边长为.三、解答题(本题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16、(每小题4分,共8分)解下列方程:(1)x2-2x-1=0(2)(x-2)2=2x-417、(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,0),B(-4,1),C(-2,2).(1)直接写出点B关于点C对称的点B'的坐标:;A B C;(2)请画出△ABC关于点O成中心对称的△111A B C.(3)画出△ABC绕原点O逆时针旋转90°后得到的△22218、(6分)如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-0.5x2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=5米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.=,∠OPB=45°.19、(8分)如图,已知⊙O中,弦AB=8,点P是弦AB上一点,OP32(1)求OB的长;(2)过点P作弦CD与弦AB垂直,求证:AB=CD.20、(10分)如图,AB 为⊙O 的切线,B 为切点,过点B 作BC ⊥OA ,垂足为点E .交于点C ,延长CO 与AB 的延长线交于点D .(1)求证:AC 为⊙O 的切线;(2)若OC =2,OD =5,求线段AD 和AC 的长.21、(10)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当月利润为8750元时,每千克水果售价为多少元?(2)当每千克水果售价为多少元时,获得的月利润最大?22.(12分)在数学兴趣小组活动中,小明进行数学探究活动,如图①所示,已知直角三角形ABC 中,BC =AC ,点E ,D 为AC 、BC 边的中点.操作探究将△ECD 以点C 为旋转中心逆时针旋转,得到△E CD '',连接,AE BD ''.图①图②图③图④(1)如图②,判断线段AE '与BD '的数量关系与位置关系,并说明理由;(2)如图③,当B ,D ',E '三点在同一直线上时,∠E 'AC =20°,求旋转角的度数;(3)如图④,当旋转到某一时刻,CD BD ''⊥,延长BD '与AE '交于点F ,请判断四边形D CE F ''的形状,并说明理由;23、(13分)如图,在平面直角坐标系xOy 中,抛物线y =-x 2+bx +c 与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.2023-2024学年第一学期九年级数学期中考试答案一、选择题12345678910D A B C D AC C A C 二、填空题11.312.7200(1+x )2=845013.20°14.x <11或x >3三、解答题16.(8分)(1)x 2-2x -1=0x 2-2x -1+2=2x 2-2x +1=2(x -1)2=2x -1∴x -1或x -11211x x ==+(2)(x -2)2=2x -4(x -2)2-2x +4=0X 2-4x +4-2x +4=0X 2-6x +8=0(x -2)(x -4)=01224x x ==17.(8分)(1)(4,-1)(2)如图所示,△111A B C 为所求作的图形;(3)如图所示,△222A B C 为所求作的图形.18.(6分)(1)y =-0.5x 2+3x +1a =-12b =3c =1h =331222b a -=-=⎛⎫⨯- ⎪⎝⎭221413429112 5.5142242ac b k a ⎛⎫⨯-⨯- ⎪----⎝⎭=====--⎛⎫⨯- ⎪⎝⎭∴顶点(3,5.5)答:演员弹跳离地面的最大高度为5.5米.(2)当x =4,代入21312y x x =-++2143412y =-⨯+⨯+1161212=-⨯++=-8+12+1=5∵5=5∴这次表演成功了.19.(8分)(1)过O 作OH ⊥AB 90OHB OHA ∠∠∴==142AH BH AB ===45OPB ∠=∴△OHP 为等腰直角三角形设OH =PH =x在Rt △PHO 中OH 2+PH 2=OP 2222x x +=2x 2=18x 2=93x =±1233x x ==-(舍)∴OH =PH =3在Rt △DHB 中OB =5∴OB =5(2)过O 作OE ⊥CD ∴90OEP ∠= 190,2OEP BPC OHP CE DE CD ∠∠∠===== ∴四边形OEPH 为矩形又∵OH =PH∴四边形OEPH 为正方形∴OE =OH =3连接OC∴OC =OB =5在Rt △CEO 中CE ==4∴CD =2CE =8∴AB =CD =820.(10分)(1)连接OB∵OB ,OC 为⊙O 半径∴OB =OC∵CB ⊥OA∴∠OED =∠BEO =90°在Rt △CED 和Rt △BED 中CO BOOE OE=⎧⎨=⎩∴Rt △CED ≌Rt △BED (HL )COE BOE ∠∠∴=在△AOC 和△AOB 中OC OBCOE BOE AO AO∠∠=⎧⎪=⎨⎪=⎩∴△AOC ≌△AOB (SAS )90ACO ABO ∠∠∴== AC OC∴⊥∵OC 为⊙O 半径∴AC 为⊙O 的切线.(2)∵△AOC ≌△AOB∴AB =AC OB =OC =2∵AB 为⊙O 的切线90OBD ∠∴=在Rt △BOD 中BD ===设AB =AC =x ,则AD x+∵AC 为⊙O 的切线90ACD ∠∴=CD =OC +OD =2+5=7在Rt △ACD 中AC 2+CD 2=AD 22227)x x +=+224921x x +=++28=14=x =142121=2213=∴AC =AB 2213=∴AD =AB +BD 22152133==21.(10分)(1)解:设水果涨价了x 元,则少售出10x 千克(500-10x )(50+x -40)=8750(500-10x )(10+x )=87505000+500x -100x -10x 2=8750-10x 2+400x =3750-x 2+40x -375=0x 2-40x +275=0(x -25)(x -15)=0122515x x ==当x =25时,50+x =75当x =15时,50+x =65答:当月利润为8750元时,水果售价为75元或65元.(2)设月利润为WW =(500-10x )(50+x -40)=(500-10x )(10+x )=5000+500x -100x -10x 2=-10x 2+400x +5000a =-10b =400c =50004002022(10)b h a =-=-=⨯-∵a =-10开口向下∴当x =20时,月利润最大售价=50+20=70(元)答:当售价为70元时,获得的月利润最大.22.(12分)(1)AE BD AE BD ''=⊥''∵AB =AC ,E 、D 为AC 、BC 中点E C CD '∴='又∵△ABC 为Rt △∠C =90°90E CD ACB ∠∠'∴=='即1290ACD ACD ∠∠∠∠''+=+=12∠∠∴=在△ACE '与△BCD '中12AC BC E C D C ∠∠⎪'=⎧⎪=⎨'=⎩∴△ACE '≌△BCD '(SAS )AE BD EAC DBC∠∠'∴''∴==∵AC =BC ,∠ACB =90°∴∠CAB =∠CBA =45°反向延长BD ',交AE '于F45CBD ABF ∠∠'+= 45EAC ABF ∠∴∠+= ∴180()AFB EAC ABF CAB ∠∠∠∠'=-+- =180455049=--∴BF ⊥AF(2)由(1)知BD AE '⊥',设BD '交AC 于F 90AE B ∠∴='20E AC ∠'=180902070AFE ∠'∴=--=70CFD ACE ∠∠∴'=='CD CE ''= 90E CD ∠=''45CD E ∠'∴'=180704655ACD ∠'∴=--=90=906525D CB ACD ∠∠''∴=--= ∴旋转角为25°.(3)BD CD ''⊥ 90BD C ∠'∴'= 又90D CE ∠'='90BD C D CE ∠∠∴''=='' //CE BD ''∴由(1)知BD AE '⊥'90BFE ∠'∴=∵//CE BD ''180AE C BFE ∠∠''∴+= 90AE C BFE ∠∠'∴=='又90D CE ∠''=90AE C BFE D CE ∠∠∠''''∴=== 即四边形D CE F ''为矩形又CE CD ''= ∴四边形D CE F ''为正方形.23.(13分)(1)y =-x 2+bx +ca =-1设()()12y a x x x x =--设120,4x x ==代入y =-x (x -4)=-x 2+4x4222(1)24b h a =-=-=-=⨯--∴抛物线表达式:y =-x 2+4x 抛物线对称轴为直线x =2(2)将x =3代入y =-x 2+4x 2343y =-+⨯=-9+12=3∴A 的坐标为(3,3)设OA 的解析式为y =kx将点A (3,3)代入3=3kk =1∴OA 的解析式为y =x设P 的坐标为(x ,-x 2+4x )则Q 的坐标(x ,x )p y QP> P PQ y QP ∴=-=-x 2+4x -x 23PQ y x x=-+a =-1b =33322(1)2h b a =-=-=⨯-2243944(1)4ac b k a --===⨯-∴PQ 长度的最大值为94.(3)存在,N 的坐标为(2,,(2,0),.。
湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。
一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。
九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级第一学期期中数学试卷一、选择题:(每小题3分,10小题,共30分)1.(3分)下列各组数中,相等的一组是()A.﹣2和﹣(﹣2)B.﹣|﹣2|和﹣(﹣2)C.2和|﹣2|D.﹣2和|﹣2|2.(3分)下列各式中,正确的是()A.=﹣8B.﹣=﹣8C.=±8D.=±83.(3分)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)4.(3分)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度5.(3分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分6.(3分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.77.(3分)已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个8.(3分)如图所示,是反比例函数y=与y=在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于A点和B点,若点P在x轴上运动,则△ABP的面积等于()A.5B.4C.10D.209.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是()A.4B.6C.8D.1010.(3分)如图所示为二次函数y=ax2+bx+c(a≠0)图象一部分,则以下正确的有:①b>2a;②ax2+bx+c =0的两根分别为﹣3和1;③a﹣2b+c<0;④a+b+c=0;⑤8a+c>0,其中正确的有()A.①②B.②③C.②③④D.②③④⑤二、填空题:(每小题3分,10小题,共30分)11.(3分)在Rt△ABC中,∠C=90°,sin A=,则tan A=.12.(3分)单项式﹣π2x2y的系数是,次数是.13.(3分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于.14.(3分)计算﹣2+7=.15.(3分)在反比例函数y=(x<0)中,函数值y随着x的增大而减小,则m的取值范围是.16.(3分)一条抛物线,顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,则它的函数表达式是.17.(3分)若(x+y)(x+2+y)=15,则x+y=.18.(3分)如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m﹣n=.19.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).20.(3分)如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=.三、解答题:(本题共7小题,总分60分.其中第21题6分,第22题8分,第23题8分,第24题9分,第25题9分,第26题10分,第27题10分.)21.(6分)计算:()﹣2+|﹣2|﹣+6cos30°+(π﹣3.14)0.22.(8分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k ≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.23.(8分)如图,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.求证:四边形OBDC是菱形.24.(9分)已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.25.(9分)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙,O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AE的长.26.(10分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)填空:在秒时,△PCQ的面积为△ACB的面积的;(2)经过几秒,以P、C、Q为顶点的三角形与△ACB相似?(3)如图2,设CD为△ACB的中线,则在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.27.(10分)如图,抛物线y=x2+2x﹣3的图象与x轴交于点A、B(A在B左侧),与y轴交于点C,点D 为抛物线的顶点.(1)求△ABC的面积;(2)P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标;(3)若抛物线上只有三个点到直线CD的距离为m,求m的值.参考答案与试题解析一、选择题:(每小题3分,10小题,共30分)1.(3分)下列各组数中,相等的一组是()A.﹣2和﹣(﹣2)B.﹣|﹣2|和﹣(﹣2)C.2和|﹣2|D.﹣2和|﹣2|【分析】运用相反数和绝对值的知识,先化简﹣(﹣2)、﹣|﹣2|、|﹣2|,再判断相等的一组.【解答】解:因为﹣(﹣2)=2,﹣|﹣2|=﹣2,|﹣2|=2,所以选项A、B、D中的两个数均不相等,只有选项D中的两个数相等.故选:C.【点评】本题考查了相反数和绝对值的化简,题目难度不大.2.(3分)下列各式中,正确的是()A.=﹣8B.﹣=﹣8C.=±8D.=±8【分析】直接利用二次根式的性质化简得出答案.【解答】解:A、=8,故此选项错误;B、﹣=﹣8,故此选项错正确;C、=8,故此选项错误;D、=8,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质化简,正确化简二次根式是解题关键.3.(3分)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x(1﹣4x2)=x(1+2x)(1﹣2x),故选:C.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.(3分)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度【分析】小宇所列方程是依据相等关系:原计划所用时间﹣实际所用时间=6,可知方程中未知数x所表示的量.【解答】解:设原计划每天铺设管道x米,则实际每天铺设管道(1+10%)x,根据题意,可列方程:﹣=6,所以小宇所列方程中未知数x所表示的量是原计划每天铺设管道的长度,故选:D.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.5.(3分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分【分析】根据平行四边形、菱形的判定和性质一一判断即可;【解答】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.7.(3分)已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个【分析】根据锐角函数的正弦是增函数,余弦是减函数,正切是增函数,可得答案.【解答】解:由0<α<45°,得0<sinα<,故①正确;cosα>sinα,故②错误;sin2α=2sinαcosα<2sinα,故③错误;0<tanα<1,故④正确;故选:B.【点评】本题考查了锐角函数的增减性,熟记锐角函数的正弦是增函数,余弦是减函数,正切是增函数是解题关键.8.(3分)如图所示,是反比例函数y=与y=在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于A点和B点,若点P在x轴上运动,则△ABP的面积等于()A.5B.4C.10D.20【分析】设点A(a,),可得点B坐标(﹣,),即可求△ABP的面积.【解答】解:设点A(a,)∵AB∥x轴∴点B纵坐标为,且点B在反比例函数y=图象上,∴点B坐标(﹣,)∴S△ABP=(a+)×=5故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,设点A(a,),利用字母a表示AB的长度和线段AB上的高,是本题的关键.9.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是()A.4B.6C.8D.10【分析】连接OC,根据题意得出OC=5,再由垂径定理知,点E是CD的中点,CE=CD,在直角△OCE中,由勾股定理得出CE,从而得出CD的长.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD,在Rt△OCE中,OC2=OE2+CE2,∵AE=2,AB=10,∴OC=5,OE=3,∴CE=4,∴CD=8,故选:C.【点评】本题考查了垂径定理,掌握垂径定理的内容是解题的关键.10.(3分)如图所示为二次函数y=ax2+bx+c(a≠0)图象一部分,则以下正确的有:①b>2a;②ax2+bx+c=0的两根分别为﹣3和1;③a﹣2b+c<0;④a+b+c=0;⑤8a+c>0,其中正确的有()A.①②B.②③C.②③④D.②③④⑤【分析】①由抛物线的对称轴为直线x=﹣1,可得出b=2a,结论①错误;②由抛物线的对称轴及抛物线与x轴一个交点的坐标,可求出另一交点坐标,进而可得出ax2+bx+c=0的两根分别为﹣3和1,结论②正确;③由抛物线的开口方向及抛物线与y轴交点的位置可得出a>0,c<0,结合b=2a,即可得出a﹣2b+c=﹣3a+c<0,结论③正确;④由当x=1时y=0,可得出a+b+c=0,结论④正确;⑤由当x =2时y>0结合b=2a,可得出4a+2b+c=8a+c>0,结论⑤正确.综上即可得出结论.【解答】解:①∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,结论①错误;②∵抛物线的对称轴为直线x=﹣1,抛物线与x轴一个交点的坐标为(1,0),∴抛物线与x轴另一交点的坐标为(﹣3,0),∴ax2+bx+c=0的两根分别为﹣3和1,结论②正确;③∵抛物线开口向上,与y轴交于负半轴,∴a>0,c<0,∴a﹣2b+c=a﹣4a+c=﹣3a+c<0,结论③正确;④∵当x=1时,y=0,∴a+b+c=0,结论④正确;⑤∵当x=2时,y>0,∴4a+2b+c=8a+c>0,结论⑤正确.综上所述:正确的结论有②③④⑤.故选:D.【点评】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征以及抛物线与x轴的交点,观察函数图象,逐一分析五个结论的正误是解题的关键.二、填空题:(每小题3分,10小题,共30分)11.(3分)在Rt△ABC中,∠C=90°,sin A=,则tan A=.【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,运用三角函数的定义解答.【解答】解:由sin A=知,可设a=4x,则c=5x,b=3x.∴tan A=.故答案为:.【点评】本题考查了同角三角函数的关系.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.12.(3分)单项式﹣π2x2y的系数是﹣π2,次数是3.【分析】直接利用单项式的定义分析得出答案.【解答】解:单项式﹣π2x2y的系数是:﹣π2,次数是:3.故答案为:﹣π2,3.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.13.(3分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于7或﹣1.【分析】根据已知完全平方式得出2(m﹣3)x=±2•x•4,求出即可.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)x=±2•x•4,解得:m=7或﹣1,故答案为:7或﹣1.【点评】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.14.(3分)计算﹣2+7=37.【分析】直接化简二次根式进而利用二次根式的加减运算法则计算得出答案.【解答】解:﹣2+7=4﹣2+7×5=37.故答案为:37.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15.(3分)在反比例函数y=(x<0)中,函数值y随着x的增大而减小,则m的取值范围是m>1.【分析】根据反比例函数的性质,构建不等式即可解决问题.【解答】解:∵反比例函数y=(x<0)中,函数值y随着x的增大而减小,∴m﹣1>0,∴m>1,故答案为m>1.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.16.(3分)一条抛物线,顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,则它的函数表达式是y =±(x﹣4)2﹣2.【分析】直接利用抛物线形状相同,则|a|的值相等,进而结合函数顶点坐标得出答案.【解答】解:由题意可得:顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,它的函数表达式是:y=±(x﹣4)2﹣2.故答案为:y=±(x﹣4)2﹣2.【点评】此题主要考查了二次函数的性质,正确得出a的值是解题关键.17.(3分)若(x+y)(x+2+y)=15,则x+y=﹣5或3.【分析】令x+y=a,将原等式变形为a2+2a﹣15=0,解此一元二次方程可得答案.【解答】解:令x+y=a,则a(a+2)=15,∴a2+2a﹣15=0,∴(a+5)(a﹣3)=0,则a+5=0或a﹣3=0,解得:a=﹣5或a=3,即x+y=﹣5或x+y=3,故答案为:﹣5或3.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及换元思想的运用.18.(3分)如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m﹣n=17.【分析】设阴影部分面积为x,根据空白部分面积表示出两个矩形的面积,相减即可求出所求.【解答】解:设阴影部分面积为x,根据题意得:m+x=26,n+x=9,∴m﹣n=17,故答案为:17【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.20.(3分)如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=2﹣..【分析】探究规律,利用规律即可解决问题;【解答】解:∵∠MON=45°,∴△C1B2C2为等腰直角三角形,∴C1B2=B2C2=A2B2.∵正方形A1B1C1A2的边长为2,∴OA3=AA3=A2B2=A2C1=1.OA1=4,OM=OB1==2同理,可得出:OA n=A n﹣1A n=A n﹣2A n﹣1=,∴OA2018=A2018A2017=,∴A2018M=2﹣.故答案为2﹣.【点评】本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.三、解答题:(本题共7小题,总分60分.其中第21题6分,第22题8分,第23题8分,第24题9分,第25题9分,第26题10分,第27题10分.)21.(6分)计算:()﹣2+|﹣2|﹣+6cos30°+(π﹣3.14)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=9+2﹣﹣2+6×+1=12.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k ≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)根据函数图象,写出反比例函数的图象在菱形内部的自变量的取值范围即可;【解答】解:(1)∵点E(﹣4,)在y=上,∴k=﹣2,∴反比例函数的解析式为y=﹣,∵F(m,2)在y=上,∴m=﹣1.(2)函数y=图象在菱形ABCD内x的取值范围为:﹣4<x<﹣1或1<x<4.【点评】本题考查反比例函数图象上点的特征、菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(8分)如图,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.求证:四边形OBDC是菱形.【分析】连接OD,证明△BOD和△COD都是等边三角形,得OB=BD=DC=OC,所以四边形OBDC 是菱形.【解答】证明:连接OD,∵∠BAC=60°,∴∠BOC=120°,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠CAD,∴,∴∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD和△COD都是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形.【点评】此题考查圆周角定理、角平分线的定义、等边三角形的判定、菱形的判定,关键是熟知有一个角是60度的等腰三角形是等边三角形以及菱形的判定解答.24.(9分)已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【分析】(1)根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围;(2)根据根与系数的关系结合x1+x2=x1x2+2,即可得出关于k的分式方程,解之经检验后即可得出k值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.【点评】本题考查了根的判别式、根与系数的关系以及一元二次方程的定义,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x1+x2=x1x2+2,找出关于k的分式方程.25.(9分)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙,O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AE的长.【分析】(1)连接OC,由AC平分∠EAP,得到∠DAC=∠OAC,由等腰三角形的性质得到∠CAO=∠ACO,等量代换得到∠DAC=∠ACO,根据平行线的性质得到∠E=∠OCP=90°,于是得到结论;(2)设PB=x,PC=2x,根据勾股定理得到PC=,PB=,求得AP=,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OC,∵AC平分∠EAP,∴∠DAC=∠OAC,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴AE∥OC,∴∠E=∠OCP=90°,∴PE是⊙O的切线;(2)∵PB:PC=1:2,∴设PB=x,PC=2x,∵OC2+PC2=OP2,即()2+(2x)2=(+x)2,∴x=,∴PC=,PB=,∴AP=,∵OC∥AE,∴△PCO∽△PEA,∴,∴AE=4.【点评】本题考查了切线的判定,相似三角形的判定和性质,勾股定理,熟记切线的判定是解题的关键.26.(10分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)填空:在2或4秒时,△PCQ的面积为△ACB的面积的;(2)经过几秒,以P、C、Q为顶点的三角形与△ACB相似?(3)如图2,设CD为△ACB的中线,则在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ =∠B,则有或,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么,依此列出比例式,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;故答案为:2或4;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有或,所以,或,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;(3)有可能.在Rt△ABC中,∠C=90°,AC=8m,BC=6m,由勾股定理得AB==10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又∵PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴,,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,在(2)中体现了分类讨论的思想.27.(10分)如图,抛物线y=x2+2x﹣3的图象与x轴交于点A、B(A在B左侧),与y轴交于点C,点D 为抛物线的顶点.(1)求△ABC的面积;(2)P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标;(3)若抛物线上只有三个点到直线CD的距离为m,求m的值.【分析】(1)先求出点A,B,C坐标,最后用三角形的面积公式即可得出结论;(2)①当点P在第三象限时,先作出图形,再构造出全等三角形,设出点M的坐标,进而表示出点P 坐标,即可得出结论,当点P在第二象限时,同①的方法即可得出结论;(3)先判断出直线CD下方的抛物线上只有一个点到直线CD的距离为m,再求出直线CD解析式,进而求出直线EG的解析式,最后判断出△CFE∽△COH,即可得出结论.【解答】解:(1)针对于抛物线y=x2+2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x2+2x﹣3=0,∴x=﹣3或x=1,∴A(﹣3,0),B(1,0),∴S△ABC=AB×|y C|=6;(2)如图,①点P在第三象限时,∵抛物线y=x2+2x﹣3的对称轴为直线x=﹣1,∴AQ=2过点P作PG⊥DM于G,∴∠PGM=∠MQA=90°,∴∠MPG+∠PMG=90°,∵∠AMP=90°,∴∠PMG+∠AMQ=90°,∴∠MPG=∠AMQ,在△PGM和△MQA中,,∴△PGM≌△MQA(AAS),∴MG=AQ=2,PG=QM,设M(﹣1,m)(m<0),∴QM=﹣m,∴PG=﹣m,QG=QM+MG=2﹣m,∴P(m﹣1,m﹣2),∵点P在抛物线y=x2+2x﹣3上,∴(m﹣1)2+2(m﹣1)﹣3=m﹣2,∴m﹣1=﹣2或m﹣1=1(舍),∴P(﹣2,﹣3).②当点P在第二象限时,同①的方法得,P(﹣4,5);(3)∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),∵C(0,﹣3),∴直线CD的解析式为y=x﹣3,如图1,作直线EG∥CD交y轴于E,交x轴于G,设直线EG的解析式为y=x+b①,∵抛物线上只有三个点到直线CD的距离为m,∴在直线CD下方的抛物线上只有一个点到直线CD的距离为m,即直线EG与抛物线y=x2+2x﹣3②只有一个交点,联立①②得,x2+2x﹣3=x+b,∴x2+x﹣3﹣b=0,∴△=1+4(b+3)=0,∴b=﹣,∴直线EG的解析式为y=x﹣,∴E(0,﹣),∴OE=,∵直线CD的解析式为y=x﹣3,∴H(3,0),∴OH=3,OC=3,∴CH=3,CE=﹣3=,直线过点E作EF⊥CD于F,∴∠CFE=∠COH,∵∠ECF=∠HCO,∴△CFE∽△COH,∴,∴,∴EF=,即:m=.【点评】此题是二次函数综合题,主要考查了三角形的面积公式,全等三角形的判定和性质,相似三角形的判定和性质,利用方程的思想解决问题是解本题的关键.。