初三数学上学期期中考试试卷含答案

合集下载

河北省唐山市路南区2023-2024学年九年级上学期期中数学试题(含答案)

河北省唐山市路南区2023-2024学年九年级上学期期中数学试题(含答案)

2023-2024学年度第一学期期中学业评估九年级数学试卷2023.11注意事项:1.本次考试试卷共25个题,共6页,满分100分,考试时间为90分钟.2.用黑色水性笔答卷,答卷前务必将密封线内各项填写清楚.一、选择题(本大题共15个小题,每小题2分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程的二次项系数、一次项系数、常数项分别是( )A .1,1,0B .0,1,0C .0,,0D .1,,02.若方程有一根是1,则另一根是( )A .1B .2C .D .3.下列数学符号既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.如图,是由绕A 点旋转得到的,若,,,则旋转角的度数为()A .B .C .D .5.如图,某桨轮船的轮子被水面截得的弦AB 长8m ,轮子的吃水深度CD 为2m ,则该桨轮船的轮子直径为()A .10mB .8mC .6mD .5m 6.任意下列两个图形不一定相似的是( )A .正方形B .等腰直角三角形C .矩形D .等边三角形7.如图,已知的半径为6,AB ,BC 是的弦,若,则的长是()20x x -=1-1-230x x m -+=1-2-ADE △ABC △40C ∠=︒90B ∠=︒10CAD ∠=︒60︒50︒40︒10︒O O 60ABC ∠=︒ ACA .B .C .D .8.用配方法解方程,配方后的方程是( )A .B .C .D .9.亮亮在解一元二次方程时,不小心把常数项丢掉了,已知这个一元二次方程有实数根,则丢掉的常数项的最大值是( )A .1B .0C .7D .910.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .11.某商品原价200元,经连续两次降价后售价为162元,设平均每次降价的百分率为x ,则下面所列方程正确的是()A .B .C .D .12.下列关于二次函数的说法,正确的是( )A .图象的对称轴是直线B .抛物线的顶点为C .当时,函数y 有最大值D .当时,y 随x 的增大而增大13.如图,PA 、PB 分别与相切于A 、B 两点,点C 为上一点,连接AC 、BC ,若,则的度数为( )A .B .C .D .14.记实数、中的最小值为,例如,当x 取任意实数时,则的最大值为()3π4π10π12π2430x x --=()227x -=()227x +=()221x -=()221x +=260x x -+=□()1,2P --()1,2-()1,2-()1,2()2,1--()22001162x -=()21621200x -=()220012162x -=()216212200x -=()2231y x =--3x =-()3,1--3x =1-3x >O O 80P ∠=︒ACB∠80︒40︒50︒100︒1x 2x {}12min ,x x {}min 0,11-=-{}2min 4,3x x -+-A .B .C .2D .315.如图,锐角三角形ABC 中,点O 为AB 中点.甲、乙二人想在AC 上找一点P ,使得的外心为点O ,其作法分别如下.对于甲、乙二人的作法,下列判断正确的是()甲的作法过点B 作与AC 垂直的直线,交AC 于点P ,则P 即为所求乙的作法以O 为圆心,OA 长为半径画弧,交AC 于点P ,则P 即为所求A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)16.将抛物线向上平移3个单位长度,所得抛物线的解析式为________.17.若,则________.18.嘉淇同学将一张半径为16的圆形卡纸平均分成4份,用其中一份作一个圆锥的侧面,则这个圆锥的底面半径是________.19.如图,AB 是半圆O 的直径,点C 在半圆上,,,D 是上的一个动点,连接AD .过点C 作于E ,连接BE ,则BE 的最小值是________.三、解答题(本大题共6个小题,共58分.解答应写出文字说明、证明过程或演算步骤)20.解下列方程:(本题满分8分)(1);(2);21.(本题满分8分)如图,在中,,若,,求AC 的长.3-2-ABP △22y x =-()2242x ax x ++=+a =5AB =4AC = BCCE AD ⊥2412x x =2430x x ++=ABC △DE BC ∥14AD DB =2AE =22.(本题满分9分)已知二次函数的图象经过点.(1)求a 的值;(2)求此抛物线的对称轴;(3)直接写出函数y 随自变量的增大而减小的x 的取值范围.23.(本题满分10分)如图,AB 为的直径,OD 为的半径,的弦CD 与AB 相交于点F ,的切线CE 交AB 的延长线于点E ,.(1)求证:OD 垂直平分AB ;(2)若的半径长为3,且,求OF 的长.24.(本题满分11分)有一块长32cm ,宽14cm 的矩形铁皮.图1图2(1)如图1,如果在铁皮的四个角裁去四个边长一样的正方形后,将其折成底面积为的无盖长方体盒子,求裁去的正方形的边长.(2)由于需要,计划制作一个有盖的长方体盒子,为了合理利用材料,某学生设计了如图2的裁剪方案,阴影部分为裁剪下来的边角料,其中左侧的两个阴影部分为正方形,问能否折出底面积为的有盖盒子?如果能,请求出盒子的体积;如果不能,请说明理由.()2420y ax x a =++≠()3,4A -O O O O EF EC =O BF BE =2280cm 2180cm25.(本题满分12分)在平面直角坐标系中,已知二次函数,.(1)若点在二次函数的图象上,求二次函数的表达式;(2)当时,二次函数的图象与(t 为常数)的图象只有一个公共点,求t 的值;(3)已知点,,若二次函数的图象与线段AB 有两个不同的交点,直接写出m 的取值范围.2023-2024学年度第一学期期中学业评估九年级数学参考答案及评分标准2023.11说明:1.阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.解答右端所注分数,表示正确做到这一步应得的累加分数.3.只给整数分数.一.DBDAACBADC ADCDA 二.16.;17.4;18.4;19三.20.解:(1),,1分,2分解得,;4分(2),()210y mx x m =-+≠()2,314m =21y mx x =-+y t =()1,0A -()1,1B 21y mx x =-+223y x =-+2-2412x x =24120x x -=()430x x -=10x =23x =2430x x ++=,6分解得,;8分21.解:∵,∴2分∵,,4分∴6分∴,8分22.解:(1)∵二次函数的图象经过点,∴,2分解得:,4分∴a 的值为;(2)由(1)可知,,6分∴抛物线对称轴为直线;7分(3)∵抛物线开口向下,对称轴为,∴当时,y 随x 的增大而减小9分23.(1)证明:如图,连接OC ,∵CE 切于点C ,∴,∴,∵,,∴,,2分又∵,∴,∴,4分∴,∵,∴OD 垂直平分AB ;6分(2)解:设,则,,在中,,∴,8分()()130x x ++=11x =-23x =-DE BC ∥AD AEDB EC =14AD DB =2AE =214EC =8EC =10AC =242y ax x =++()3,4A -49122a -=++2a =-2-()22242214y x x x =-++=--+1x =1x =1x >O OC CE ⊥90OCF ECF ∠+∠=︒OC OD =EF EC =OCF ODF ∠=∠ECF EFC ∠=∠OFD EFC ∠=∠90ODF OFD ∠+∠=︒90DOF ∠=︒OD AB ⊥OA OB =BF BE x ==2EC EF x ==3OE x =+Rt OCE △222OC CE OE +=()()222323x x +=+解得:,(舍去),9分∴.10分24.解:(1)设截去的小正方形的边长为x cm1分,4分解得:,(舍去),6分∴截去的小正方形的边长2cm .(2)能.7分设左边的小正方形的边长为x cm ,根据题意得8分解得:或,9分经检验不符合题意,舍去,10分∴盒子的体积为:.11分25.解:(1)∵点在二次函数的图象上,∴,2分∴,4分∴二次函数的表达式为;5分(2)当时,二次函数关系式为,6分∵,7分∴抛物线的顶点为,8分∵二次函数的图象与(t 为常数)的图象只有一个公共点,∴;10分(3)m 的取值范围为或.12分12x =20x =321OF OB BF =-=-=()()322142280x x --=12x =221x =()3221421802xx --⋅=1x =22x =22x =31801180cm ⨯=()2,321y mx x =-+3421m =-+1m =21y x x =-+14m =2114y x x =-+()2124y x =-()2,021y mx x =-+y t =0t =2m ≤-918m ≤<。

湖北省武汉市洪山区2024届九年级上学期期中考试数学试卷(含解析)

湖北省武汉市洪山区2024届九年级上学期期中考试数学试卷(含解析)

2023-2024学年湖北省武汉市洪山区九年级第一学期期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.在下列代表体育运动的图标中,属于中心对称图形的是( )A.B.C.D.2.将一元二次方程x2+1=﹣6x化为一般形式后,常数项为1,二次项系数和一次项系数分别为( )A.1,6B.1,﹣6C.1,1D.﹣1,13.把抛物线y=2x2向上平移一个单位长度后,得到的抛物线是( )A.y=2x2+1B.y=2x2﹣1C.y=(x+1)2D.y=(x﹣1)24.亚洲青年运动会的图标如图所示,该图案绕中心旋转n°后,能与原来的图案重合,那么n的值可能是( )A.45B.30C.60D.1205.判断方程x2﹣9x+10=0的根的情况是( )A.有一个实根B.有两个相等实根C.有两个不等实根D.没有实根6.如图,点C是⊙O的优弧上一点,∠AOB=80°,则∠ACB的度数为( )A.40°B.140°C.80°D.60°7.某初中建成于2021年,9月新入校七年级学生100人(2021年该校无八、九年级学生).连续招生三年截至2023年9月新生报到后,该校三个年级合计共有364名学生.在不考虑学生转入或转出的情况下,设该校每年新生人数年平均增长率为x,则根据以上信息可以列出方程为( )A.100(1+x)2=364B.100+100(1+x)=364C.100+100(1+x)2=364D.100+100(1+x)+100(1+x)2=3648.已知点A(a,2),B(b,2),C(c,﹣1)都在抛物线y=m(x﹣2)2+m2+4上,若m<0,且点A在点B左侧,点C在第三象限,则下列选项正确的是( )A.a<b<c B.a<c<b C.b<a<c D.c<a<b9.已知函数y=x2﹣4x的图象上有两点A(m,1)和B(n,1),则的值等于( )A.22B.20C.17D.010.如图,在四边形ABCD中,AD∥BC,AB=1,AD=BD=CD=2,则AC=( )A.B.C.D.二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.点A(1,﹣2)关于原点对称的点A′的坐标为 .12.如图,在△ABC中,AB为⊙O直径,∠B=50°,∠C=60°,则∠BOD= °.13.抛物线y=x2+2x+3的顶点坐标是 .14.若小唐同学掷出的铅球在场地上砸出一个直径为8cm、深为2cm的小坑,则该铅球的直径为 cm.15.二次函数y=ax2+bx+c的部分图象如图所示,图象过点A(3,0),对称轴为直线x=1,以下四个结论:①abc>0;②8a+c<0;③对于任意实数m,有am2+bm≥﹣4a﹣c;④对于实数,若(n,y1),(n+1,y2)为抛物线上两点,则y1<y2;其中正确的是 (填写序号).16.如图所示,直线l绕平行四边形ABCD顶点A转动,分别过点B,C,D作l的垂线段,垂足分别为M,N,P.已知∠ABC=60°,AB=6,BC=5,则BM+CN+DP的最大值为 .三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.解方程:x2﹣4x﹣5=0.18.如图,将△ABC绕点B旋转至△DBE,点E在边AC上.已知∠C=40°,求∠ABD的度数.19.一张小茶几的桌面长为6dm,宽为4dm,长方形桌布的面积为桌面面积的2倍,将桌布铺在桌子上,四边垂下的长度相同(四个角除外),求桌布的长和宽.20.如图所示,等边△ABC内接于⊙O,D为圆周上一点.(1)求证:BD平分∠ADC;(2)若CD=1,AD=2,求BD的长度.21.如图,在11×6长方形的网格中,每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,A,B,C均为格点.请你用一把无刻度直尺完成作图,保留作图痕迹.(1)以C为旋转中心,将线段AC逆时针旋转90°至线段CD,连接AD;(2)作CE⊥AD于E;(3)将△BCA绕C点顺时针旋转至△B'CA',旋转角度等于∠BAC.22.某桥梁因交通事故导致拥堵.根据车流量监控统计,7:00时该桥梁上车辆共计200辆,累计驶入车辆数y(单位:辆)与累计驶出车辆数w(单位:辆)随统计时间t(单位:min)变化的结果如表所示:统计时间t/min1234…累计驶入车辆数y/辆200380540680…累计驶出车辆数w/辆306090120…在当前时段,我们可以把累计驶入车辆数y与t之间看作二次函数关系,把累计驶出车辆数w与t之间看作一次函数关系.(1)直接写出y关于t的函数解析式和w关于t的函数解析式(不要求写出自变量的取值范围);(2)当桥梁上车辆累计到达760辆时,将触发拥堵黄色预警.按照当前车流量计算,第几分钟将触发拥堵黄色预警?(3)当桥梁上车辆累计到达1000辆时,将触发拥堵红色预警.从统计开始5分钟时(即7:05时),交通事故解除,驶出桥梁的车辆每min增加30辆.试计算拥堵红色预警是否会被触发?23.已知△ABC为等边三角形,D为平面内一点,连接BD,CD.【问题研究】如图1所示,当点D在△ABC内时,以B为旋转中心,将△BCD逆时计旋转60°至△BAE,连接ED,则△BED的形状为 ;延长CD交AE于M,求∠AMC的度数;【问题拓展】如图2所示,当点D在△ABC外时,取BD中点E,连接AE,作EM⊥AE交CD的垂直平分线于M,连接DM,CM,试求∠DMC的度数.24.如图1,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于C点.(1)直接写出A,B,C点的坐标;(2)点D是抛物线上一点,点E位于第四象限.若由B,C,D,E四点组成的平行四边形面积为30,求E点坐标;(3)如图2所示,过A作两条直线分别交抛物线于第一象限点P,Q,交y轴于M,N,OM•ON=n.当n为定值时,直线PQ是否必定经过某一定点?若经过,请你求出该定点坐标(用含n的式子表示);若不经过,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.解:选项A、B、D均不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;选项C能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;故选:C.2.解:一元二次方程x2+1=﹣6x化为一般形式是x2+6x+1=0,二次项系数和一次项系数分别为:1,6.故选:A.3.解:∵抛物线y=2x2的顶点坐标是(0,0),∴平移后的抛物线的顶点坐标是(0,1),∴得到的抛物线解析式是y=2x2+1.故选:A.4.解:该图形被平分成八部分,旋转45°的整数倍,就可以与自身重合,故n的最小值为45.故选:A.5.解:∵Δ=(﹣9)2﹣4×1×10=41>0,∴方程有两个不相等的实数根.故选:C.6.解:∵∠AOB=2∠ACB,∠AOB=80°,∴∠ACB=40°,故选:A.7.解:∵该校2021年9月新入校七年级学生100人,且该校每年新生人数年平均增长率为x,∴该校2022年9月新入校七年级学生100(1+x)人,2023年9月新入校七年级学生100(1+x)2人.根据题意得:100+100(1+x)+100(1+x)2=364.故选:D.8.解:∵抛物线y=m(x﹣2)2+m2+4(m<0),∴该抛物线的对称轴为直线x=2,抛物线开口向下,当x>2时,y随x的增大而减小,当x<2时,y 随x的增大而增大,∵点A(a,2),B(b,2),C(c,﹣1)都在抛物线y=m(x﹣2)2+m2+4上,点A在点B左侧,点C在第三象限,∴点A(a,2),C(c,﹣1)在对称轴的左侧,∴c<a<b;故选:D.9.解:∵函数y=x2﹣4x的图象上有两点A(m,1)和B(n,1),∴m2﹣4m=1,把y=1代入y=x2﹣4x得,x2﹣4x﹣1=0,∵函数y=x2﹣4x的图象上有两点A(m,1)和B(n,1),∴m,n是方程x2﹣4x=1的两个根,∴mn=﹣1,m+n=4,∴m=﹣,∴=2m2﹣3m+5n=2(m2﹣4m)+5(m+n)=2×1+5×4=22.故选:A.10.解:如图,以点D为圆心,DA为半径作⊙D,由于DA=DB=DC=2,所以点B、点C也在圆上,延长AD 交⊙D于点F,∵AD∥BC,∴=,∴AB=CF=1,∵AF是⊙D的直径,∴∠ACF=90°,在Rt△ACF中,AF=2AD=4,CF=1,∴AC==.故选:B.二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).12.解:∵∠B=50°,∠C=60°,∴∠A=180°﹣∠ABC﹣∠C=70°,∴∠BOD=2∠A=140°.13.解:∵y=x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,∴抛物线y=x2+2x+3的顶点坐标是(﹣1,2).故答案为:(﹣1,2).14.解:设该铅球的半径是rcm.在由铅球的半径、小坑的半径即半弦和弦心距组成的直角三角形中,根据勾股定理,得r2=(r﹣2)2+16,解得r=5,故2r=10.故答案为:10.15.解:由图象可知,a>0,c<0,∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a<0,∴abc>0.故①正确;∵二次函数y=ax2+bx+c的图象过点A(3,0),∴9a+3b+c=0,∵b=﹣2a,∴3a+c=0,∵a>0,∴8a+c=3a+c+5a>0,故②错误;由②知,c=﹣3a,∵a>0,对称轴为直线x=1,∴当x=1时,函数有最小值,最小值为a+b+c=a﹣2a﹣3a=﹣4a,∴对于任意实数m,有am2+bm+c≥﹣4a,即am2+bm≥﹣4a﹣c,故③正确;当n>时,n+1>∵对称轴为直线x=1,∴n+1﹣1>,1﹣n<,∴y1<y2.故④正确;故答案为:①③④.16.解:连接AC,BD交于点O,过点O作OT⊥直线l于T,在OT的延长线上截取TR=OT,连接RN,ON,过点C作CE⊥AB于E,如图所示:∵DP⊥直线l,BM⊥直线l,∴四边形BMPD为直角梯形,∵四边形ABCD为平行四边形,∴点O为BD,AC的中点,∵OT⊥直线l,∴OT∥BM∥DP,∴OT为梯形BMPD的中位线,∴BM+DP=2OT,∵TR=OT,∴OR=2OT=BM+DP,∵CN⊥直线l,在Rt△ACN中,点O为斜边AC的中点,∴ON=OA=OC,∴△OAN为等腰三角形,又∵OT⊥AN,∴AT=NT,在△OAT和△RNT中,,∴△OAT≌△RNT(SAS),∠AOT=∠R,∴OA∥RN,即OC∥RN,∵CN⊥直线l,OT⊥直线l,∴OR∥CN,∴四边形CNRO为平行四边形,∴CN=OR=BM+DP,∴BM+CN+DP=2CN,要求BM+CN+DP的最大值,只需求出CN的最大值即可,根据“垂线段最短”可知:CN≤CA,∴CN的最大值为线段CA的长,∵∠ABC=60°,BC=5,CE⊥AB,在Rt△CBE中,∠BCE=90°﹣∠ABC=30°,∴BE=BC=2.5,由勾股定理得:CE==,∵AB=6,BE=2.5,∴AE=AB﹣BE=6﹣2.5=3.5,在Rt△ACE中,由勾股定理得:CA==,∴CN的最大值为,∴BM+CN+DP的最大值为.故答案为:.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程. 17.解:(x+1)(x﹣5)=0,则x+1=0或x﹣5=0,∴x=﹣1或x=5.18.解:∵将△ABC绕点B旋转至△DBE,点E在边AC上,∴旋转角∠EBC=∠ABD,EB=EC,而∠C=40°,∴∠BEC=∠C=40°,∴∠EBC=∠ABD=180°﹣40°﹣40°=100°.19.解:设桌布垂下的长度为xdm,则由题意,得(6+2x)(4+2x)=2×4×6.整理方程,得4x2+20x﹣24,即x2+5x﹣6=0,解得x1=﹣6(不合题意,舍去),x2=1.当x=1时,桌布的长为2+6=8(dm),桌布的宽为2+4=6(dm).答:桌布的长和宽分别为8dm和6dm.20.【解答】(1)证明:∵△ABC为等边三角形,∴∠BAC=∠ACB=60°,∵∠ADB=∠ACB=60°,∠CBD=∠BAC=60°,∴∠ADB=∠CDB,即BD平分∠ADC;(2)解:在DB截取DE=DC=1,如图,∵∠CDE=60°,DE=DC,∴△DEC为等边三角形,∴CE=CD,∠DEC=60°,∵∠BEC=180°﹣∠DEC=120°,∠ADC=∠ADB+∠CDB=120°,∴∠BEC=∠ADC,∵∠CBE和∠CAD都对,∴∠CBE=∠CAD,∵△ABC为等边三角形,∴BC=CA,在△BCE和△ACD中,,∴△BCE≌△ACD(AAS),∴BE=AD=2,∴BD=BE+DE=2+1=3.21.解:(1)如图,线段CD即为所求;(2)如图,线段CE即为所求;(3)如图,△B'CA'即为所求.22.解:(1)设y关于t的函数解析式为y=at2+bt+c(a≠0),把(1,200),(2,380),(3,540)代入解析式得:,解得,∴y关于t的函数解析式为y=﹣10t2+210t;设w关于t的函数解析式为w=mx+n(m≠0),把(1,30),(2,60)代入解析式得:,解得,∴w关于t的函数解析式为w=30t;(2)当y﹣w+200=760时,即﹣10t2+210t﹣30t+200=760,解得t1=4,t2=14,∴从第4分钟将触发拥堵黄色预警;(3)设桥梁上车辆累计Q辆,当t≤5时,Q=y﹣w+200=﹣10t2+210t﹣30t+200=﹣10t2+180t+200=﹣10(t﹣9)2+1010,∵﹣10<0,∴当t<9时,Q随x的增大而增大,∴当t=5时,Q有最大值,最大值为850,850<1000,∴前5分钟会触发拥堵红色预警;当t>5时,w=60(t﹣5)=60t﹣300,Q=y﹣w+200=﹣10t2+210t﹣(60t﹣300)=﹣10t2+150t+300=﹣10(t﹣7.5)2+1062.5,∵﹣10<0,∴当t=7.5时,Q有最大值,最大值为1062.5,1062.5>100,∴会触发拥堵红色预警.23.解:(1)延长CD交AE于M,如图:由旋转的性质可知:∠DBE=60°,△ABE≌△CDB,∴BD=BE,∠AEB=∠BDC,∴△BDE是等边三角形,∴∠BDE=∠BED=60°,∴∠AED=∠AEB﹣60°,∠EDM=180°﹣∠BDC﹣60°=120°﹣∠BDC,∴∠AMC=∠AED+∠EDM=∠AEB﹣60°+120°﹣∠BDC=60°;故答案为:等边三角形;(2)延长ME到N,使EN=EM,连接AM,AN,BN,延长BN与CM交于点O,BO与AM交于点Q,如图:∵E是BD中点,∴BE=DE,又∵EM=EN,∠BEN=∠DEM,∴△BEN≌△DEM(SAS),∴BN=DM,∠EBN=∠EDM,∴BN∥DM,∵D在CD的垂直平分线上,∴DM=CM,∴BN=CM,∵EM=EN,AE⊥EM,∴△AMN是等腰三角形,∴AM=AN,又∵△ABC是等边三角形,∴AB=AC,∴△ABN≌△ACM(SSS),∴∠ANB=∠AMC,∠BAN=∠CAM,∴∠ANO=∠AMO,又∵∠BAN+∠NAC=∠BAC=60°,∴∠NAC+∠CAM=∠NAM=60°,又∵∠AQN=∠OQM,∴∠O=∠NAM=60°,又∵BN∥DM,∴∠OMD=∠O=60°,∴∠DMC=180°﹣60°=120°.24.解:(1)对于y=﹣x2+2x+3,当x=0时,y=3,当y=﹣x2+2x+3=0时,x=﹣1或3,即点A、B、C的坐标分别为:(﹣1,0)、(3,0)、(0,3);(2)由点B、C的坐标得,直线BC的表达式为:y=﹣x+3,BC=3,①当BC是边时,如下图,当DE在BC下方时,设DE交y轴于点T,过点T作TG⊥BC于点G,则由B,C,D,E四点组成的平行四边形面积=BC×TG=3×GT=30,则GT=,由OB=OC=3知,∠TCG=45°,则CT=GT=10,则点T(0,﹣7),则直线DE的表达式为:y=﹣x﹣7,联立y=﹣x2+2x+3和y=﹣x﹣7并解得:x=5(舍去)或﹣2,即点D(﹣2,﹣5);点C向右平移3个单位向下平移3个单位得到点B,则点D向右平移3个单位向下平移3个单位得到点E,故点E(1,﹣8);当DE在BC上方时,同理可得:直线DE的表达式为:y=﹣x+13,经验证,该方程和抛物线无交点,即无解;②当BC是对角线时,如下图:则S△BCD=15,设点D(x,﹣x2+2x+3),则点H(x,﹣x+3),则DH=﹣x2+3x,则S△BCD=15=DH×OB=×(﹣x2+3x),该方程无解;综上,点E的坐标为:(1,﹣8);(3)经过定点,理由:设点P、Q的坐标分别为:(a,﹣a2+2a+3)、(b,﹣b2+2b+3),由点A、P坐标得,直线AP的表达式为:y=﹣(a﹣3)(x+1),当x=0时,y=3﹣a=OM,同理可得:ON=3﹣b,则(a﹣3)(b﹣3)=n,即ab﹣3(a+b)+9﹣n=0,设直线PQ的表达式为:y=kx+m,联立PQ和二次函数表达式并整理得:x2+(k﹣2)x+m﹣3=0,则a+b=2﹣k,ab=m﹣3,则m﹣3﹣3(2﹣k)+9﹣n=0,即m=n﹣3k,则PQ的表达式为:y=kx﹣3k+n=k(x﹣3)+n,则直线PQ过点(3,n).。

湖北省荆州市监利市2024-2025学年上学期九年级期中学业水平监测数学试题(含答案)

湖北省荆州市监利市2024-2025学年上学期九年级期中学业水平监测数学试题(含答案)

监利市2024—2025学年度上学期九年级期中学业水平监测数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题要求)1.中秋节是中国的传统节日,有“团圆”、“丰收”的寓意.月饼是首选传统食品,不仅美味,而且设计多样,下列月饼图案中,为中心对称图形的是A. B. C. D.2.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下图代表“大雪”,此图绕着它的旋转中心,按下列角度旋转,能与其自身重合的是A. B. C. D.3.若是方程的一个根,则的值为A.-2B.2C.4D.-44.如图,内接于,是的直径,若,则A. B. C. D.5.关于二次函数的性质,下列说法错误的是A.该函数图象的开口向上B.该函数图象的对称轴是C.该函数的最小值为-1D.当时,随的增大而减小90︒60︒45︒30︒3x =230x bx +-=b ABC △O CD O 50B ∠=︒ACD ∠=30︒40︒50︒60︒()2321y x =--2x =2x >y x6.用配方法解方程时,配方正确的是A. B.C. D.7.若,是方程的两个根,则的值为A.2026B.C.2022D.-20268.如图,以原点为圆心的圆交轴于点,两点,交轴的正半轴于点,为第一象限内上的一点,若,则的度数是A. B. C. D.9.掷实心球是多地高中阶段学校招生体育考试选考项目.如图1是一名男生投实心球,实心球行进路线是一条抛物线,行进高度与水平距离之间的函数关系如图2所示,掷出时起点处高度为,当水平距离为时,实心球行进至最高点处.该男生在此项考试中的成绩是A. B. C.D.10.如图是抛物线的部分图象,其顶点坐标为,且与轴的一个交点在点和之间.则下列结论:①;②;③一元二次方程有两个不相等的实数根:④.其中正确的结论是A.①②B.②③④C.①②④ D.③④二、填空题(共5题,每题3分,共15分)11.抛物线的顶点坐标是________.2620x x +-=()2311x +=()237x +=()2638x +=()2634x +=m n 2220240x x +-=23m m n ++2022-O x A B y C D O 65OCD ∠=︒DAB ∠40︒20︒50︒25︒()m y ()m x 9m 54m 3m 10m()4m ()4m +()20y ax bx c a =++≠()1,n x ()3,0()4,0240b ac ->20a b +=21ax bx c n ++=+420a b c -+<()223y x =-++12.在平面直角坐标系中,若点与关于原点对称,则=________.13.如图,是的半径,弦于点,连接,若的长为8cm ,的长为,则的半径长为________cm.14.在本届全市青少年校园足球比赛中,每两支足球队之间都要进行一次主场比赛和一次客场比赛,共有30场比赛,则参加本届足球比赛的足球队共有________支.15.在矩形中,,点在上,点在平面内,,,连按,将线段绕着点顺时针旋转得到,则线段的最大值为________.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知函数是关于的二次函数.(1)求的值;(2)当为何值时,抛物线有最高点?并求出最高点的坐标.18.(6分)如图,在平面直角坐标系中,已知,,.(1)画出关于原点成中心对称的;(2)画出绕原点顺时针旋转后得到的.19.(8分)已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(),2m -()1,n m n +OA O BC OA ⊥D OB BC AD 2cm O ABCD 6AB =E BC F 2BE =3EF =AF AF A 90︒AP PE 2420x x +-=22150x x +-=()214m m y m xx -=-+x m m ()5,1A -()3,4B -()1,2C -ABC △O 111A B C △ABC △O 90︒222A B C △x ()222110x m x m --++=m(2)若该方程的两个实数根分别为,,且,求的值.20.(8分)如图,抛物线与直线相交于和,(1)求和的值,及抛物线的解析式:(2)结合图象直接写出不等式的解集.21.(8分)如图,是的直径,,是同侧圆上的两点,半径交于点,.(1)求证:;(2)若,求的半径.22.(10分)阳光玫瑰葡萄果肉鲜脆多汁,口感极佳,是一种比较畅销的水果,某水果店以16元/千克的价格购进某种阳光玫瑰葡萄,规定销售单价不低于成本价,且不高于28元/千克,试销期间发现,该种阳光玫瑰葡萄每周销售量(千克)与销售单价(元/千克)满足一次函数关系,部分数据如下表所示:销售单价(元/千克)222426销售量(千克)20018016(1)求与之间的函数关系式;(2)当销售单价定为多少时,水果店每周销售阳光玫瑰葡萄获利1600元?(3)当销售单价定为多少时,水果店每周销售阳光玫瑰葡萄获得的利润(元)最大?最大利润是多少元?23.(11分)【问题情境】活动课上,同学们以等边三角形为背景开展旋转探究活动,数学小组经过研究发现“等边三角形在旋转过程中,对应边所在直线的夹角与旋转角存在一定的数量关系”(注:平面内两直线的夹角是指两直线相交形成的小于或等于的角).如图1,将等边绕点逆时针旋转得到,则线段与线段的夹角.如图2,将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角.1x 2x 12111x x +=-m 21y ax bx =+22y kx =+()2,0-()1,n k n 12y y >AB O C D AB //OD BC AC E 30BAC ∠=︒ CDBC =AC =O y x x y y x w 90︒ABC △A 20︒ADE △BC DE 20BMD ∠=︒ABC △A 100︒ADE △BC DE 80BMD ∠=︒【特例分析】(1)如图1,若将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角度数为度;如图2,若将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角度数为度;【类比分析】(2)如图3,若将等边绕点逆时针旋转得到,连接交于,求与的数量关系;【延伸应用】(3)如图4,已知是等边三角形,,分别在边和上截取和,使得,连接.将绕点逆时针旋转,连接,当和所在直线互相垂直时,请直接写出的长.24.(12分)如图,抛物线交轴于,两点在左边),交轴于点,点是第二象限内抛物线上任意一点,其横坐标为.(1)直接写出点,,的坐标;(2)如图1,连接,过点作直线轴,交于点.当线段的长度最大时,求点的坐标;(3)如图2,连接,,过点作直线,交轴于点.若平分线段,求直线的解析式.ABC △A 30︒ADE △BC DE ABC △A 130︒ADE △BC DE ABC △A 120︒ADE △CE AB F AB CE ABC △6AB =AB AC ADAE AD AE ==DE ADE △A CD BC DE CD 211242y x x =--+x A B A B y C P n A B C AC P //PD y AC D PD P AC BC P //PQ BC y Q AC PQ PQ监利市2024-2025学年度上学期九年级期中学业水平监测九年级数学答案与评分说明(请各位教师在阅卷前先做题审答案)一、选择题1.C2.B3.A4.B5.D6.A7.C8.B9.D 10.C二、填空题11.(-2,3) 12.11 13.5 14.6 15.三、解答题(其他解法,正确即可.)16.解:(1),,,,……(1分),3分)(2)因式分解,得,……(4分)或,,.……(6分)17.解:(1)函数是关于的二次函数,,解得,;……(2分)(2)抛物线有最高点,,,当时,抛物线有最高点,……(4分)二次函数的解析式为,当时,取最大值为2,最高点的坐标为.……(6分)18.解:(1)如图,即为所求;……(3分)31a =4b =2c =-()2441224∆=-⨯⨯-=2x ==-12x =-22x =-()()350x x -+=30x -=50x +=13x =25x =- ()214m m y m x x -=-+x 22m m ∴-=12m =21m =- 10m ∴-<1m ∴<∴1m =-∴224y x x =-+∴4124b m a =-=-=-y ∴()1,2111A B C △(2)如图,即为所求.……(6分)19.解:(1)根据题意得,,……(2分)解得,所以的取值范围是;……(4分)(2)根据题意得,,,……(5分)所以,……(6分)解得,,……(7分)又,所以.……(8分)20.解:(1)将代入得,,解得,……(1分),将代入得,,……(2分)将和分别代入得,解得,……(4分)抛物线的解析式为;……(5分)(2)不等式的解集为或.……(8分,答对一个结果得2分,答对两个结果得3分)21.解:(1)连接,222A B C △()()2221410m m ⎡⎤∆=---+>⎣⎦34m <-m 34m <-()1221211m x x m --+=-=-2212111m x x m +⋅==+1221212112111x x m x x x x m +-+===-+10m =22m =-34m <-2m =-()2,0-22y kx =+022k =-+1k =22y x ∴=+()1,n 22y x =+3n =()2,0-()1,321y ax bx =+0423a b a b =-⎧⎨=+⎩12a b =⎧⎨=⎩∴212y x x =+12y y >2x <-1x >OC是直径,,……(1分),,……(2分),……(3分),,,……(4分);……(5分)(2),,……(6分)设的半径为,则,在中,,即,……(7分)解得或(舍),答:的半径为2.……(8分)22.解:(1)设与之间的函数关系式为,将,和,分别代入得,解得,与之间的函数关系式为;……(3分)(2)根据题意得,……(4分)解得,(舍),……(5分)答:当销售单价定为26元时,水果店每周销售阳光玫瑰葡萄获利1600元;……(6分)(3)由题意得,……(7分),AB O 90ACB ∴∠=︒//OD BC OD AC ∴⊥ AD CD∴=30BAC ︒∠= 60AOD COD ∴∠=∠=︒260BOC BAC ∠=∠=︒ CDBC ∴=OD AC ⊥ AC =12AE AC ∴==O r 12OE r =Rt AOE △222AE OE AO +=22212r r ⎛⎫+= ⎪⎝⎭2r =2r =-O y x y kx b =+22x =200y =24x =180y =y kx b =+2002218024k b k b=+⎧⎨=+⎩10420k b =-⎧⎨=⎩y ∴x 10420y x =-+()()16104201600x x --+=126x =232x =()()21610420105806720w x x x x =--+=-+-100a =-<当时,取最大值,……(8分)当时,随的增大而增大,当时,最大为1680,……(9分)答:当销售单价定为28元时,水果店每周销售阳光玫瑰葡萄获得的利润最大,最大利润是1680元.……(10分)23.解:(1)30;50;……(2分)(2)根据旋转的性质可得,,,……(3分)是等边三角形,,,,,,……(5分),,在中,,即,,;……(7分)(3)如图,①当在直线的上方时,过点作于点,;……(9分)②当在直线的下方时,过点作于点,延长线交的延长线于点,……(11分)24.解:(1),,;……(3分)(2)设直线的解析式为,将代入得,解得,直线的解析式为,……(4分)点在第二象限的抛物线上,点在直线上,∴58029220bxa=-=-=-w∴1628x≤≤w x∴28x=w120EAC∠=︒ABC ADE△≌△ABC△60BAC∴∠=︒AB AC AE==60BAE EAC BAC BAC∴∠=∠-∠=︒=∠90AFE∴∠=︒EF CF=30AEF∴∠=︒2AE AF∴=Rt AEF△222AF EF AE+=()2222AF EF AF+=EF∴=2CE EF∴====DE AC D DH AC⊥H CD=DE AC D DH AC⊥H ED BC G CD=()4,0A-()2,0B()0,2CAC2y kx=+()4,0A-420k-+=12k=∴AC122y x=+P D AC,,,,……(5分)当时,最大,……(6分)此时点的坐标为;……(7分)(3)设直线的解析式为,将代入得,解得,直线的解析式为,……(8分),设直线的解析式为,将代入得,,,直线的解析式为,……(9分),线段的中点坐标为,……(10分)平分线段,线段的中点在直线上,将代入得,解得:,,(舍去)……(11分)直线的解析式为.……(12分)211,242P n n n ⎛⎫∴--+ ⎪⎝⎭()40n -<<1,22D n n ⎛⎫+ ⎪⎝⎭221111224224PD n n n n n ⎛⎫⎛⎫∴=--+-+=-- ⎪ ⎪⎝⎭⎝⎭∴12122b n a -=-=-=--PD P ()2,2-BC 2y mx =+()2,0B 220m +=1m =-∴BC 2y x =-+//PQ BC PQ y x b =-+211,242P n n n ⎛⎫--+ ⎪⎝⎭211242n n n b ∴--+=-+211242b n n ∴=-++∴PQ 211242y x n n =--++2110,242Q n n ⎛⎫∴-++ ⎪⎝⎭∴PQ 211,224n n ⎛⎫-+ ⎪⎝⎭AC PQ ∴PQ AC 211,224n n ⎛⎫-+ ⎪⎝⎭122y x =+2112244n n -+=+11n =-20n =∴PQ 54y x =-+。

湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)

湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)

2023—2024学年度九年级上学期期中测试数学试卷(考试时间为120分钟,满分为120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑1.将化成一般式后,,,的值分别是()A .1,2,B .1,,C .1,,5D .1,2,52.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线是中心对称图形的是()A .B .C .D .3.把抛物线向右平移2个单位,再向下平移3`个单位,得到抛物线为()A .B .C .D .4.将二次函数化成的形式应为()A .B .C .D .5.已知一元二次方程的两根分别为,,则的值是()A .B .C .3D .56.如图,在中,,,在同一平面内,将绕点顺时针旋转到的位置,连接,若,则的度数是()A .B .C .D .7.如图,有一张长12cm ,宽9cm的矩形纸片,在它的四个角各剪去一个同样大小的小正方形,然后折叠成()25x x +=20ax bx c ++=a b c 5-2-5-2-2y x =-()223y x =-++()223y x =--+()223y x =-+-()223y x =---262y x x =+-()2y x h k =-+()237y x =++()2311y x =-+()2311y x =+-()237y x =+-2410x x +-=m n m n mn ++5-3-ABC △AB AC =100BAC ∠=︒ABC △A 11AB C △1BB 11BB AC ∥1CAC ∠10︒20︒30︒40︒一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是,求剪去的小正方形的边长.设剪去的小正方形的边长是,根据题意,可列方程为()A .B .C .D .8.如图,圆内接四边形中,,连接,,,,.则的度数是()A .B .C .D .9.如图,在中,顶点,,.将与正方形组成的图形绕点逆时针旋转,每次旋转,则第2023次旋转结束时,点的坐标为()A .B .C .D .10.如图,平行四边形中,,,,是边上一点,且,是边上的一个动点,将线段绕点顺时针旋转,得到,连接、,则的最小值是()270cm cm x 1294970x ⨯-⨯=2129470x ⨯-=()()12970x x --=()()1229270x x --=ABCD 105BCD ∠=︒OB OC OD BD 2BOC COD ∠=∠CBD ∠20︒25︒30︒35︒OBC △()0,0O ()2,2B -()2,2C OBC △ABCD O 90︒A ()6,2()2,6-()6,2-()6,2--ABCD 12AB =10AD =60A ∠=︒E AD 6AE =F AB EF E 60︒EN BN CN BN CN +A .B .D .14C .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卡指定的位置。

山东省济宁市微山县2023-2024学年九年级上学期期中数学试题(含答案)

山东省济宁市微山县2023-2024学年九年级上学期期中数学试题(含答案)

2023—2024学年度第一学期期中考试九年级数学试题注意事项:1.本试卷共6页,满分100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答选择题时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答非选择题时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.在回收、绿色包装、节水、低碳四个标志图案中,属于中心对称图形的是()A .B .C .D .2.下列方程是一元二次方程的是( )A .B .C .D .3.一元二次方程的根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法确定4.将抛物线向右平移2个单位长度,再向下平移3个单位长度,所得抛物线解析式为,则代数式的值为( )A .B .2C .4D .65.2021年某市GDP 约为115亿元,如果以后每年按相同的增长率增长,2023年该市GDP 约达135亿元.若设每年增长率为x ,则所列方程为( )A .B .C .D .6.如图,在中,,,将此三角形绕点B 沿逆时针方向旋转后得到,若点恰好落在线段AC 上,AB ,交于点D ,则等于()2x x=20ax bx c ++=1xy =11x x+=2321x x x -=+2y x bx c =++221y x x =-+b c -2-()1151151135x ++=()1151135x +=()21151135x +=()()211511151135x x +++=ABC △90ABC ∠=︒50C ∠=︒A BC ''△C 'A C ''A BD '∠A .B .C .D .7.一次函数和二次函数(k 是常数,且)在同一平面直角坐标系中的图象可能是()A .B .C .D .8.已知抛物线,,,是抛物线上三点,则,,的大小关系是( )A .B .C .D .9.如图,在平面直角坐标系中,的一条直角边OB 在x 轴上,点A 的坐标为;中,,,连接BC ,点M 是BC 中点,连接AM .将以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .C .D .210.如图所示是抛物线的部分图象,其顶点坐标为,且与x 轴的一个交点在点和之间,则下列结论:①;②;③;④一元二次方程有实数根.65︒70︒75︒80︒y kx k =+244y kx x =-++0k ≠()2230y ax ax a =-+>()11,A y -()22,B y ()34,C y 1y 2y 3y 123y y y <<213y y y <<312y y y <<231y y y <<Rt AOB △()6,4-Rt COD △90COD ∠=︒OD =30D ∠=︒Rt COD △4-2-()20y ax bx c a =++≠()1,n ()3,0()4,00a b c -+<30a c +>()24b a c n =-21ax bx c n ++=+其中正确的结论个数是( )A .①②B .①③C .②③D .②④二、填空题:本大题共5小题,每小题3分,共15分.11.已知函数为二次函数,则m 的值为________.12.已知a 是方程的一个根,则代数式的值是________.13.若点关于原点的对称点,那么________.14.如图,已知抛物线与x 轴交于A ,B 两点,顶点M 的纵坐标为,现将抛物线向右平移3个单位长度得到抛物线,则阴影部分的面积是________.15.如图,在直角坐标系中,线段是将绕着点逆时针旋转一定角度后得到的的一部分,则点A 的对应点的坐标是________.()1321m y m xx -=-+-2310110x x --=2261a a -+(),1P m ()2,Q n -m n +=2y mx nx c =++2-2111y m x n x c =++11B C ABC △()3,2D -111A B C △1A三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程.16.(本小题3分)用公式法解方程:.17.(本小题3分)用适当的方法解方程.18.(本小题4分)已知函数.(1)若这个函数是关于x 的一次函数,求m 的值.(2)若这个函数是关于x 的二次函数,求m 的取值范围.19.(本小题6分)已知如图1,图形A 是一个正方形,图形B 由三个图形A 构成,请用图形A 与B 拼接出符合要求的图形(每次拼接图形A 与B 只能使用一次),并分别画在指定的网格中.图1(1)在网格甲中画出:拼得图形是中心对称图形但不是轴对称图形;(2)在网格乙中画出:拼得图形是轴对称图形但不是中心对称图形;(3)在网格丙中画出:拼得图形既是轴对称图形又是中心对称图形.20.(本小题6分)已知二次函数的图象与x 轴两交点为、.(1)填空:________;(2)求代数式的值.21.(本小题6分)已知关于x 的一元二次方程,其中a ,b ,c 分别为三220x x --=()24520x x +=+()()2111y m x m x m =-+---233y x x =+-()1,0x ()2,0x 12x x +=1221x x x x +()()220b c x ax b c +-+-=ABC △边的长.(1)已知是方程的根,求证:是等腰三角形;(2)如果是直角三角形,其中,请你判断方程的根的情况,并说明理由.22.(本小题8分)某商家销售一种进价为10元/件的玩具.经调查发现,该玩具每天的销售量y (件)与销售单价x (元)满足下表:x 101112131415y400390380370360350设销售这种玩具每天的利润为w (元).(1)求w 与x 之间的函数关系式;(2)若销售单价不低于30元,且每天至少销售60件时,求此时w 的最大值.23.(本小题8分)阅读与理解图1是边长分别为m 和的两个正方形纸片ABCD 和EFCG 叠放在一起的图形(点F ,G 分别在BC ,CD 上).操作与证明(1)将图1中的正方形ABCD 固定,将正方形EFCG 绕点C 按顺时针方向旋转,连接BF ,DG ,如图2所示.猜想:线段BF 与DG 之间的大小关系,并证明你的猜想;(2)若将图1中的正方形EFCG 绕点C 按顺时针方向任意旋转一个角度,连接BF ,DG ,如图3所示.那么(1)中的结论还是否成立吗?请说明理由.操作与发现根据上面的操作过程发现,当为________度时,线段BF 的最大值是________;当为________度时,线段BF 的最小值是________?图1图2图324.(本小题11分)如图,抛物线交x 轴于A ,B 两点,交y 轴于点C ,直线经过点B ,C 两点.1x =ABC △ABC △90B ∠=︒()n m n >45︒()0360αα︒≤≤︒αα243y ax x =+-3y x =-备用图(1)求抛物线的解析式;(2)D 是直线BC 上方抛物线的一动点,当面积取最大值时,求点D 的坐标;(3)连接AC ,将绕点A 旋转一周,在旋转的过程中,点C ,B 的对应点分别为,,直线分别与直线BC 交于点E ,交y 轴于点F .那么在的整个旋转过程中,是否存在恰当的位置,使是以CE 为腰的等腰三角形?若存在,请求出所有符合条件的点E 的坐标;若不存在,请说明理由.2023—2024学年度第一学期期中考试九年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分1-5:DABAC6-10:DABDC二、填空题:本题共5小题,每题3分,共15分11.; 12.2023; 13.1; 14.6; 15..三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.解:(1),,,,,所以,;3分17.解:,DBC △ABC △C 'B 'AC 'ABC △CEF △1-()2,32220x x --=1a =2b =-2c =-()()22412120∆=--⨯⨯-=>1x ===11x =+21x =()()2454x x +=+,,或,所以,.3分18.解:(1)由题意得:且,解得:且,∴,∴当时,这个函数是关于x 的一次函数;2分(2)由题意得:,解得:,∴当,这个函数是关于x 的二次函数.4分19.(答案不唯一,每正确画出一个符合条件的图形得2分,满分6分)6分20.(1);2分(2)由题意知,,是一元二次方程的两个根,∴,.∴6分21.(1)证明:∵是一元二次方程的根,∴.∴.∴是等腰三角形;3分(2)解:方程有两个相等的实数根,理由如下:∵是直角三角形,其中,∴.∴,∴方程有两个相等的实数根6分()()24540x x +-+=()()4450x x ++-=40x +=450x +-=14x =-21x =10m -=10m -≠1m =±1m ≠1m =-1m =-10m -≠1m ≠±1m ≠±3-1x 2x 2330x x +-=123x x +=-123x x =-()()()222212121212211212232353x x x x x x x x x x x x x x +---⨯-++====--1x =()()220b c x ax b c +-+-=()()20b c a b c +-+-=a b =ABC △ABC △90B ∠=︒222b a c =+()()()2222244440a b c b c a b c ∆=--+-=-+=22.解:(1)根据题意,有:,化简,得:,根据,解得:,即函数关系为:;4分(2)根据题意有:,解得:,将化为顶点式为:,∵,,∴当时,函数值最大,最大为:.答:此时W 的最大值为4000元.8分23.解:操作与证明:(1).∵正方形EFCG 绕点C 按顺时针方向旋转,∴.∵四边形ABCD 和四边形EFCG 是正方形,∴,.∴.∴.3分(2).∵正方形EFCG 绕点C 按顺时针方向旋转,∴.∵四边形ABCD 和四边形EFCG 是正方形,∴,.∴.∴.6分猜想与发现:当为时,线段AD 的长度最大,等于;当为(或)时,线段AD 的长度最小,等于8分24.解:(1)∵直线经过点B ,C 两点,当时,,∴,当时,,∴.把点代入,得:,解得,∴;3分10500y x =-+()()()101050010W y x x x =⨯-=-+⨯-2106005000W x x =-+-1050000y x x =-+≥⎧⎨>⎩050x <≤()2106005000050W x x x =-+-<≤105006030y x x =-+≥⎧⎨≥⎩3044x ≤≤2106005000W x x =-+-()210304000W x =--+100-<3044x ≤≤30x =4000W =BF DG =45︒45BCF DCG ∠=∠=︒CB CD =CF CG =BCF DCG △≌△BF DG =BF DG =αBCF DCG α∠=∠=CB CD =CF CG =BCF DCG △≌△BF DG =α180︒m n +α0︒360︒m n -3y x =-0x =3y =-()0,3C -0y =3x =()3,0B ()3,0B 243y ax x =-+09123a =-+1a =-243y x x =-+-(2)设点D 的坐标为,过点D 作轴,交BC 于点E ,则点E 的坐标为,∴,∴.∴当时,的面积取最大值.此时.∴7分(3)设直线AC 的解析式为,则,联立直线BC 和直线AC ,得:,解得:,∴,由勾股定理得:,,,()()2,4303m m m m -+-<<DE y ∥(),3m m -()224333DE m m m m m =-+---=-+()()221332732228DBCB C S m m x x m ⎛⎫=-+-=--+⎪⎝⎭△32m =DBC S △233343224y ⎛⎫=-+⨯-= ⎪⎝⎭33,24D ⎛⎫⎪⎝⎭()1y k x =-()0,F k -()13y k x y x ⎧=-⎨=-⎩3121k x k k y k -⎧=⎪⎪-⎨⎪=-⎪-⎩32,11k k E k k -⎛⎫-⎪--⎝⎭22232311k k EC k k -⎛⎫⎛⎫=+-+ ⎪ ⎪--⎝⎭⎝⎭2223211k k EF k k k -⎛⎫⎛⎫=+-+ ⎪ ⎪--⎝⎭⎝⎭()223FC k =-+若,即,解得或当时,,当,若,即,解得或,当时,,当时,此时,不合题意,故舍去,综上,M 的坐标为或或或.11分FC EC =()222323311k k k k k -⎛⎫⎛⎫-+=+-+ ⎪ ⎪--⎝⎭⎝⎭1k =1k =-1k =+(12E --1k =(12E +-EC EF =2222323231111k k k k k k k k k --⎛⎫⎛⎫⎛⎫⎛⎫+-+=+-+ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭1k =-3k =1k =-()2,1E -3k =()0,3E -0EC EF ==()3,0()2,1-(12--(12-。

山西省大同市平城区三校联考2024届九年级上学期期中考试数学试卷(含答案)

山西省大同市平城区三校联考2024届九年级上学期期中考试数学试卷(含答案)

山西省大同市平城区2023-2024(1)初三阶段性测试(数学)试题一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.如图图案中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程x 2-8x =10化为一元次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A .-8、-10B .-8、10C .8、-10D .8、103.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A .2B .3C .4D .54.已知关于x 的一元二次方程(a -5)x 2-4x -1=0有实数根,则a 的取值范围是()A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠55.将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A .y =-2(x +1)2-1B .y =-2(x +1)2+3C .y =-2(x -1)2+1D .y =-2(x -1)2+36、4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()图(1)图(2)A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张7、如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =22.5°,OC =4,CD 的长为()A.B.4C.D.88.如图,AB,CD是⊙O的两条直径,E是劣弧 BC的中点,连接BC,DE.若∠ABC=22°,则∠CDE 的度数为()A.22°B.32°C.34°D.44°9、如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2,若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57010.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1,给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0,其中,正确的结论有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题,共90分)二、填空题(本大题共5小题,每小题3分,共15分)11、若x=2是方程x2-mx+2=0的根,则m=.12、某村种的水稻前年平均每公顷产7200kg,今年平均每公顷产8450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为.'''的位置,旋转角为α(0°<α<90°).若13、如图,将矩形ABCD绕点A顺时针旋转到矩形AB C D∠1=110°,则α=.14、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x +m解集为.15、如图,点P是等边三角形ABC内一点,且PA6,PB2,PC=2,则这个等边三角形ABC 的边长为.三、解答题(本题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16、(每小题4分,共8分)解下列方程:(1)x2-2x-1=0(2)(x-2)2=2x-417、(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,0),B(-4,1),C(-2,2).(1)直接写出点B关于点C对称的点B'的坐标:;A B C;(2)请画出△ABC关于点O成中心对称的△111A B C.(3)画出△ABC绕原点O逆时针旋转90°后得到的△22218、(6分)如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-0.5x2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=5米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.=,∠OPB=45°.19、(8分)如图,已知⊙O中,弦AB=8,点P是弦AB上一点,OP32(1)求OB的长;(2)过点P作弦CD与弦AB垂直,求证:AB=CD.20、(10分)如图,AB 为⊙O 的切线,B 为切点,过点B 作BC ⊥OA ,垂足为点E .交于点C ,延长CO 与AB 的延长线交于点D .(1)求证:AC 为⊙O 的切线;(2)若OC =2,OD =5,求线段AD 和AC 的长.21、(10)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当月利润为8750元时,每千克水果售价为多少元?(2)当每千克水果售价为多少元时,获得的月利润最大?22.(12分)在数学兴趣小组活动中,小明进行数学探究活动,如图①所示,已知直角三角形ABC 中,BC =AC ,点E ,D 为AC 、BC 边的中点.操作探究将△ECD 以点C 为旋转中心逆时针旋转,得到△E CD '',连接,AE BD ''.图①图②图③图④(1)如图②,判断线段AE '与BD '的数量关系与位置关系,并说明理由;(2)如图③,当B ,D ',E '三点在同一直线上时,∠E 'AC =20°,求旋转角的度数;(3)如图④,当旋转到某一时刻,CD BD ''⊥,延长BD '与AE '交于点F ,请判断四边形D CE F ''的形状,并说明理由;23、(13分)如图,在平面直角坐标系xOy 中,抛物线y =-x 2+bx +c 与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.2023-2024学年第一学期九年级数学期中考试答案一、选择题12345678910D A B C D AC C A C 二、填空题11.312.7200(1+x )2=845013.20°14.x <11或x >3三、解答题16.(8分)(1)x 2-2x -1=0x 2-2x -1+2=2x 2-2x +1=2(x -1)2=2x -1∴x -1或x -11211x x ==+(2)(x -2)2=2x -4(x -2)2-2x +4=0X 2-4x +4-2x +4=0X 2-6x +8=0(x -2)(x -4)=01224x x ==17.(8分)(1)(4,-1)(2)如图所示,△111A B C 为所求作的图形;(3)如图所示,△222A B C 为所求作的图形.18.(6分)(1)y =-0.5x 2+3x +1a =-12b =3c =1h =331222b a -=-=⎛⎫⨯- ⎪⎝⎭221413429112 5.5142242ac b k a ⎛⎫⨯-⨯- ⎪----⎝⎭=====--⎛⎫⨯- ⎪⎝⎭∴顶点(3,5.5)答:演员弹跳离地面的最大高度为5.5米.(2)当x =4,代入21312y x x =-++2143412y =-⨯+⨯+1161212=-⨯++=-8+12+1=5∵5=5∴这次表演成功了.19.(8分)(1)过O 作OH ⊥AB 90OHB OHA ∠∠∴==142AH BH AB ===45OPB ∠=∴△OHP 为等腰直角三角形设OH =PH =x在Rt △PHO 中OH 2+PH 2=OP 2222x x +=2x 2=18x 2=93x =±1233x x ==-(舍)∴OH =PH =3在Rt △DHB 中OB =5∴OB =5(2)过O 作OE ⊥CD ∴90OEP ∠= 190,2OEP BPC OHP CE DE CD ∠∠∠===== ∴四边形OEPH 为矩形又∵OH =PH∴四边形OEPH 为正方形∴OE =OH =3连接OC∴OC =OB =5在Rt △CEO 中CE ==4∴CD =2CE =8∴AB =CD =820.(10分)(1)连接OB∵OB ,OC 为⊙O 半径∴OB =OC∵CB ⊥OA∴∠OED =∠BEO =90°在Rt △CED 和Rt △BED 中CO BOOE OE=⎧⎨=⎩∴Rt △CED ≌Rt △BED (HL )COE BOE ∠∠∴=在△AOC 和△AOB 中OC OBCOE BOE AO AO∠∠=⎧⎪=⎨⎪=⎩∴△AOC ≌△AOB (SAS )90ACO ABO ∠∠∴== AC OC∴⊥∵OC 为⊙O 半径∴AC 为⊙O 的切线.(2)∵△AOC ≌△AOB∴AB =AC OB =OC =2∵AB 为⊙O 的切线90OBD ∠∴=在Rt △BOD 中BD ===设AB =AC =x ,则AD x+∵AC 为⊙O 的切线90ACD ∠∴=CD =OC +OD =2+5=7在Rt △ACD 中AC 2+CD 2=AD 22227)x x +=+224921x x +=++28=14=x =142121=2213=∴AC =AB 2213=∴AD =AB +BD 22152133==21.(10分)(1)解:设水果涨价了x 元,则少售出10x 千克(500-10x )(50+x -40)=8750(500-10x )(10+x )=87505000+500x -100x -10x 2=8750-10x 2+400x =3750-x 2+40x -375=0x 2-40x +275=0(x -25)(x -15)=0122515x x ==当x =25时,50+x =75当x =15时,50+x =65答:当月利润为8750元时,水果售价为75元或65元.(2)设月利润为WW =(500-10x )(50+x -40)=(500-10x )(10+x )=5000+500x -100x -10x 2=-10x 2+400x +5000a =-10b =400c =50004002022(10)b h a =-=-=⨯-∵a =-10开口向下∴当x =20时,月利润最大售价=50+20=70(元)答:当售价为70元时,获得的月利润最大.22.(12分)(1)AE BD AE BD ''=⊥''∵AB =AC ,E 、D 为AC 、BC 中点E C CD '∴='又∵△ABC 为Rt △∠C =90°90E CD ACB ∠∠'∴=='即1290ACD ACD ∠∠∠∠''+=+=12∠∠∴=在△ACE '与△BCD '中12AC BC E C D C ∠∠⎪'=⎧⎪=⎨'=⎩∴△ACE '≌△BCD '(SAS )AE BD EAC DBC∠∠'∴''∴==∵AC =BC ,∠ACB =90°∴∠CAB =∠CBA =45°反向延长BD ',交AE '于F45CBD ABF ∠∠'+= 45EAC ABF ∠∴∠+= ∴180()AFB EAC ABF CAB ∠∠∠∠'=-+- =180455049=--∴BF ⊥AF(2)由(1)知BD AE '⊥',设BD '交AC 于F 90AE B ∠∴='20E AC ∠'=180902070AFE ∠'∴=--=70CFD ACE ∠∠∴'=='CD CE ''= 90E CD ∠=''45CD E ∠'∴'=180704655ACD ∠'∴=--=90=906525D CB ACD ∠∠''∴=--= ∴旋转角为25°.(3)BD CD ''⊥ 90BD C ∠'∴'= 又90D CE ∠'='90BD C D CE ∠∠∴''=='' //CE BD ''∴由(1)知BD AE '⊥'90BFE ∠'∴=∵//CE BD ''180AE C BFE ∠∠''∴+= 90AE C BFE ∠∠'∴=='又90D CE ∠''=90AE C BFE D CE ∠∠∠''''∴=== 即四边形D CE F ''为矩形又CE CD ''= ∴四边形D CE F ''为正方形.23.(13分)(1)y =-x 2+bx +ca =-1设()()12y a x x x x =--设120,4x x ==代入y =-x (x -4)=-x 2+4x4222(1)24b h a =-=-=-=⨯--∴抛物线表达式:y =-x 2+4x 抛物线对称轴为直线x =2(2)将x =3代入y =-x 2+4x 2343y =-+⨯=-9+12=3∴A 的坐标为(3,3)设OA 的解析式为y =kx将点A (3,3)代入3=3kk =1∴OA 的解析式为y =x设P 的坐标为(x ,-x 2+4x )则Q 的坐标(x ,x )p y QP> P PQ y QP ∴=-=-x 2+4x -x 23PQ y x x=-+a =-1b =33322(1)2h b a =-=-=⨯-2243944(1)4ac b k a --===⨯-∴PQ 长度的最大值为94.(3)存在,N 的坐标为(2,,(2,0),.。

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。

一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。

2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。

3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。

4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。

5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。

6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。

7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。

河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)

河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)

2024-2025学年第一学期九年级期中考试数学试卷一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知的半径为,圆心O 到直线l 的距离为,则直线l 与的位置关系是( )A .相离 B .相交C .相切D .无法判断3.一元二次方程经过配方变形为,则k 的值是( )A .B .C .1D .74.如图,A 、B 、C 为圆O 上的三点,,则的度数是( )A .B .C .D .5.关于二次函数,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象的顶点坐标为C .与x 轴交于点和D .当时,y 随着x 的增大而减小6.如图,是由绕点O 顺时针旋转后得到的图形,若点D 恰好落在AB 上,且,则的度数是( )A .B .C .D .7.如果关于x 的一元二次方程有实数根,则a 的取值范围是()O e 5cm 4cm O e 2430x x -+=2(2)x k -=3-7-78AOB ∠=︒ACB ∠35︒36︒37︒39︒2(1)9y x =+-(1,9)-(2,0)-(4,0)1x <-ODC △OAB △40︒105AOC ∠=︒C ∠55︒45︒42︒40︒20x x a +-=A .B .C .D .8.如图,已知的半径为5,弦AB 的长为8,P 是AB 的延长线上一点,,则OP 等于()A . B .C.D .9.已知二次函数(m 为常数),当时,函数值y 的最小值为,则m 的值是( )A .或B .或C .2或D .2或10.如图1,动点P 从菱形ABCD 的点A 出发,沿边匀速运动,运动到点C时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )图1图2A .2 B .3 C D .二、填空题(每小题3分,共15分)11.把抛物线先向右平移1个单位再向上平移1个单位,所得到抛物线的解析式为________________.12.某种植物的主干长出若干个分支,每个支干又长出同样个数的小分支,主干、支干、小分支的总数是241,设每个支干长出小分支的个数是x ,则可列方程为________________。

四川省达州市高级中学校2024届九年级上学期期中考试数学试卷(含解析)

四川省达州市高级中学校2024届九年级上学期期中考试数学试卷(含解析)

数学试卷本试卷分为第Ⅰ卷(选择题、填空题)和第Ⅱ卷(解答题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页.考试时间120分钟,满分150分.第Ⅰ卷一、选择题:(每小题4分,共40分;每小题选出正确答案后,请用2B 铅笔把机读卡上对应题号的答案标号涂黑.否则不得分.)1.下列方程中是关于x 的一元二次方程的是()A.2210x x+= B.20ax bx c ++= C.()()121x x -+= D.223250x xy y --=答案:C 解析:详解:解:A 、2210x x+=是分式方程,选项说法错误,不符合题意;B 、当0a =时,20ax bx c ++=不是一元二次方程,选项说法错误,不符合题意;C 、(1)(2)1x x -+=,即230x x +-=是一元二次方程,选项说法正确,符合题意;D 、223250x xy y --=是二元二次方程,选项说法错误,不符合题意;故选C .2.已知四边形ABCD 是平行四边形,对角线AC 与BD 相交于点O ,下列结论中不正确的是()A.当AB BC =时,四边形ABCD 是菱形B.当AC BD ⊥时,四边形ABCD 是菱形C.当OA OB =时,四边形ABCD 是矩形D.当ABD CBD ∠=∠时,四边形ABCD 是矩形答案:D 解析:详解:解:如图:A 、∵四边形ABCD 是平行四边形,AB BC =,∴四边形ABCD 是菱形;A 选项正确;B 、∵四边形ABCD 是平行四边形,AC BD ⊥,∴四边形ABCD 是菱形;B 选项正确;C 、∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,又∵OA OB =,∴OA OB OC OD ===,∴四边形ABCD 是矩形;C 选项正确;D 、∵四边形ABCD 是平行四边形,∴AB CD ,∴ABD BDC ∠=∠,又∵ABD CBD ∠=∠,∴BDC CBD ∠=∠,∴BC CD =,∴四边形ABCD 是菱形;不能证明四边形ABCD 是矩形,D 选项错误,故选:D .3.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是()A.110B.15C.13D.12答案:B 解析:详解:解:根据概率的定义,一共有10只粽子,其中红豆粽有2个,所以吃到红豆粽的概率是21105=.故选B .4.如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值()A.2B.4C.D.答案:C 解析:详解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD 于P′,∵DD′⊥AE ,∴∠AFD=∠AFD′,∵AF=AF ,∠DAE=∠CAE ,∴△DAF ≌△D′AF ,∴D′是D 关于AE 的对称点,AD′=AD=4,∴D′P′即为DQ+PQ 的最小值,∵四边形ABCD 是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt △AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴,即DQ+PQ 的最小值为2,故答案为C .5.已知ABC 如图,则下列4个三角形中,与ABC 相似的是()A. B. C. D.答案:D 解析:详解:∵由图可知,675AB AC B ==∠=︒,,∴75C ∠=︒,18030A B C ∠=︒-∠-∠=︒,A .选项中三角形是等边三角形,各角的度数都为60︒,不与ABC 相似;B .选项中三角形各角的度数分别是52.5︒,52.5︒,75︒,不与ABC 相似;C .选项中三角形各角的度数分别为40︒,70︒,70︒,不与ABC 相似;D .选项中三角形各角的度数分别为30,︒75︒,75︒,与ABC 相似;故选:D .6.若578a b ck ===且323a b c -+=,则243a b c +-的值是()A.14 B.42C.7D.143答案:D 解析:详解:解:578a b ck ===,5,7,8a k b k c k ∴===,323a b c -+= ,352783k k k ∴⨯-⨯+=,解,得13k =,578,333a b c ∴===578142432433333a b c ∴+-=⨯+⨯-⨯=,故选:D .7.某市2020年底已有绿化面积300公顷,经过两年绿化、绿化面积逐年增加,到2022年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是()A.()3001363x +=B.()23001363x +=C.()30012363x += D.()23631300x -=答案:B 解析:详解:解:设绿化面积平均每年的增长率为x ,根据题意得,()23001363x +=故选:B .8.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子1x x +(0x >)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x,矩形的周长是12x x ⎛⎫+⎪⎝⎭;当矩形成为正方形时,就有1x x=(0x >),解得1x =,这时矩形的周长124x x ⎛⎫+= ⎪⎝⎭最小,因此1x x +(0x >)的最小值是2.模仿张华的推导,你求得式子225x x+(0x >)的最小值是()A.10B.5C.15D.20答案:A 解析:详解:解:∵0x >,∴在原式中分母分子同除以x ,即22525x x x x+=+;在面积是25的矩形中设矩形的一边长为x ,则另一边长是25x,矩形的周长是252x x ⎛⎫+⎪⎝⎭;当矩形成为正方形时,就有25x x=(0x >),解得:5x =,这时矩形的周长25220x x ⎛⎫+= ⎪⎝⎭最小,因此225x x+(0x >)的最小值是10.故选:A .9.如图,点C 是线段AB 的黄金分割点(AC BC >),下列结论错误的是()A.AC BCAB AC= B.2•BC AC AB =C.12AC AB -= D.0.618≈BCAC答案:B 解析:详解:解:∵AC >BC ,∴AC 是较长的线段,根据黄金分割的定义可知:AB :AC=AC :BC ,故A 正确,不符合题意;AC 2=AB•BC ,故B 错误,12AC AB -=,故C 正确,不符合题意;0.618≈BCAC,故D 正确,不符合题意.故选B .10.如图,在ABC 中60A ∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM PN ,,则下列结论:①PM PN =;②AM ANAB AC=;③PMN 为等边三角形;④当=45ABC ∠︒时,BN =.其中正确个数是()A.1个B.2个C.3个D.4个答案:D 解析:详解:解:①∵BM AC ⊥于点M ,CN AC ⊥于点N ,P 为BC 边的中点,∴点P 是Rt MBC 和Rt NBC 的斜边的中点,∴12MP NP BC ==,故①正确;②∵BM AC ⊥于点M ,CN AC ⊥于点N ,∴90AMB ANC ∠=∠=︒,又∵A A ∠=∠,∴AMB ANC ∽ ,∴AM ANAB AC=,故②正确;③∵BM AC ⊥于点M ,CN AC ⊥于点N ,P 为BC 边的中点,∴点P 是Rt MBC 和Rt NBC 的斜边的中点,∴12MP NP BP CP BC ====,∴点M ,N ,B ,C 共圆,∴2NPM ABM ∠=∠,在Rt ABM 中,60A ∠=︒,∴30ABM ∠=︒,∴60NPM ∠=︒,∵PN PM =,∴PMN 是等边三角形,故③正确;④当=45ABC ∠︒时,BNC 为以BC 为斜边的等腰直角三角形,∴22BN BC =,故④正确;故选:D .二、填空题:(本大题共6小题,每小题4分,满分24分,请把答案填写在答题卷上,否则不得分.)11.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为______.答案:24解析:详解:解:x 2﹣14x +48=0,则有(x -6)(x -8)=0解得:x =6或x =8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为:24.12.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m =___,另一个根是___.答案:①.1②.-3解析:详解:根据题意,得4+2m −6=0,即2m −2=0,解得,m =1,由韦达定理,知:12x x m +=-,∴221x +=-,解得:2 3.x =-故答案为:1,−3.13.关于x 的方程kx 2﹣2x +1=0有两个不相等的实数根,则k 的取值范围是_____.答案:k <1且k ≠0.解析:详解:解:∵关于x 的一元二次方程kx 2﹣2x +1=0有两个不相等的实数根,∴k ≠0且△>0,即(﹣2)2﹣4×k ×1>0,解得k <1且k ≠0.∴k 的取值范围为k <1且k ≠0.故答案为:k <1且k ≠0.14.如图,△ABC 中,DE ∥BC ,23DE BC =,△ADE 的面积为8,则△ABC 的面积为______答案:18.解析:详解:∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵23 DEBC=,∴2224()(39 ADEABCS DES BC===,∴9184ABC ADES S==.故选:18.15.将一副三角尺如图所示叠放在一起,则AEED的值是_______.答案:33133解析:详解:解:90BAC ACD∠=∠=︒,∴AB CD,∴30BAE EDC∠=∠=︒,45ABE ECD∠=∠=︒,∴ABE DCE∽,∴AE ABED CD=,∵AC AB=,∴AE ACED CD=,∵3tan 3AC D CD ∠==,∴3AE ED =,故答案为:33.16.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为()1,0,点D 的坐标为()0,2.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C 1…按这样的规律进行下去,第2014个正方形的面积为______答案:4026352⎛⎫⋅ ⎪⎝⎭解析:详解:解:∵正方形ABCD 的点A 的坐标为()1,0,点D 的坐标为()0,2.∴1OA =,2OD =,由勾股定理得,AD =12OA OD =,∵90ADO DAO ∠+=︒,190DAO BAA ∠+=︒,∴1ADO BAA ∠=,由题意得190DOA ABA ∠==︒,则1DOA ABA ∽,∴112A B OA AB OD ==,∵AD AB ==∴152A B =,则第二个正方形的面积为2221153522S A C ⎛⎫===⋅ ⎪⎝⎭⎭,同理可得第三个正方形的面积为2422215135352222S A C ⎛⎫⎛⎫==+⨯=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭,依此类推,第n 个正方形的面积为()21352n n S -⎛⎫=⋅ ⎪⎝⎭,则第2014个正方形的面积为:40262014352S ⎛⎫=⋅ ⎪⎝⎭.故答案为:4026352⎛⎫⋅ ⎪⎝⎭.第Ⅱ卷三、解答题:(本大题4个小题,共86分)解答时每小题需给出必要的演算过程或推理步骤.17.解方程:(1)22210x x --=(2)()()22320x x ---=答案:(1)112x +=,212x =(2)12x =,25x =解析:小问1详解:原方程变形为212x x -=配方得21344x x -+=,即21324x ⎛⎫-= ⎪⎝⎭,∴12x -=,∴1132x +=,2132x =.小问2详解:原方程可以变形为()()2230x x ---=,∴20x -=或230x --=,∴12x =,25x =.18.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (﹣1,2),B (﹣3,4)C (﹣2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.答案:(1)见解析;(2)见解析.解析:详解:(1)如图:△A 1B 1C 1即为所求;(2)如图:△A 2B 2C 2即为所求.19.已知关于x 的一元二次方程()22110x k x k +---=.(1)试判断此一元二次方程根的存在情况;(2)若方程有两个实数根x 1和x 2,且满足12111x x +=,求k 的值.答案:(1)有两个不相等的实数根(2)2k =解析:小问1详解:解:()()222Δ214144144450k k k k k k =----=-+++=+> ,()22110x k x k ∴+---=有两个不相等的实数根;小问2详解:由一元二次方程根与系数的关系可知:1212x x k +=-,121x x k ⋅=--,121212111x x x x x x ++==⋅ ,1211k k -∴=--,解得:2k =.20.第三届亚洲沙滩运动会服务中心要在某校选拔一名志愿者.经笔试、面试,结果小明和小颖并列第一.评委会决定通过抓球来确定人选.抓球规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小颖再取出一个球.若取出的球都是红球,则小明胜出;若取出的球是一红一绿,则小颖胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.答案:见解析解析:详解:解:根据题意,用A 表示红球,B 表示绿球,列表如下:A A BAA A A AB A AA A A AB A B A B A B B B由此可知,共有9种等可能的结果,其中,两红球及一红一绿各有4种结果,(P ∴都是红球)=49,(1P 红1绿球)=49.(P 都是红球)(1P =红1绿球),∴这个规则对双方是公平的.21.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)若商场只要求保证每天的盈利为4320元,同时又可使顾客得到实惠,每千克应涨价多少元?(2)若该商场经理想让这种水果每天的盈利为4600元,商场经理的想法能实现吗?如果能请求出每千克应涨价多少元,如果不能请说明理由.答案:(1)2元(2)不能,见解析解析:小问1详解:设每千克应涨价x 元,则()()10400204320x x =+-,解得2x =或8x =,为了使顾客得到实惠,所以2x =,所以每千克应涨价2元.小问2详解:该商场经理想法不能实现.设每千克应涨价x 元,则()()10400204600x x =+-,整理,得210300x x -+=,∵()2104130200∆=--⨯⨯=-<,∴该方程无解,∴不可能.22.如图,△ABC 中,AB =AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE =OD ,连接AE ,BE ,(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.答案:(1)证明见解析;(2)当∠BAC =90°时,矩形AEBD 是正方形.理由见解析.解析:详解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE =OD ,∴四边形AEBD 是平行四边形,∵AB =AC ,AD 是∠BAC 的角平分线,∴AD ⊥BC ,∴∠ADB =90°,∴平行四边形AEBD 是矩形;(2)当∠BAC =90°时,理由如下:∵∠BAC =90°,AB =AC ,AD 是∠BAC 的角平分线,∴AD =BD =CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.23.如图,在ABC 中,90C ∠=︒,AD 是CAB ∠的平分线,BE AE ⊥,垂足为点E .求证:2BE DE AE =⋅.答案:见详解解析:详解:证明:∵AD 是CAB ∠的平分线,∴CAD BAD ∠=∠,∵90C ∠=︒,∴90CAD ADC ∠+∠=︒,又∵BE AE ⊥,∴90E ∠=︒,∴90EBD BDE ∠+∠=︒,而ADC BDE ∠=∠,∴CAD DBE BAE ∠=∠=∠,∴BDE ABE ∽△△,∴::BE AE DE BE =,∴2BE DE AE =⋅.24.阅读理解:如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,55A B DEC ∠=∠=∠=︒,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2在矩形ABCD 中,52AB BC ==,,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个强相似点E ;拓展探究:(3)如图3,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处.若点E 恰好是四边形ABCM的边AB 上的一个强相似点,当BC =时,试求出AB 的值.答案:(1)是,理由见解析;(2)见解析;(3)2解析:详解:(1)点E 是四边形ABCD 的边AB 上的相似点.理由:55A ∠=︒ ,125ADE DEA ∴∠∠=︒+,55DEC ∠=︒ ,125BEC DEA ∴∠∠=︒+.ADE BEC ∴∠=∠,A B ∠=∠ ,ADE BEC ∴∽V V ,∴点E 是四边形ABCD 的AB 边上的相似点.(2)作图如下:点E 即为所求(下图中二选其一即可)(3)∵点E 是四边形ABCM 的边AB 上的一个强相似点,AEM BCE ECM ∴∽∽ ,BCE ECM AEM ∴∠=∠=∠,由折叠可知ECM DCM :≌, ECM DCM CE CD ∴∠=∠=,,1303BCE BCD ∴∠=∠=︒,111222BE CE DC AB ∴===.在Rt BCE 中,设BE 为x ,CE 为2x ,根据勾股定理,222BC BE EC +=,可得2234x x +=,解得1x =±,0x >,1x ∴=,2CE =∴,即2AB =.25.如图,在平面直角坐标系内,已知点()0,6A 、点()8,0B ,动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t秒.(1)求直线AB 的解析式;(2)当t 为何值时,APQ △与AOB 相似.(3)当t 为何值时,APQ △的面积为165个平方单位.答案:(1)y =-34x +6(2)3011秒或5013秒(3)1秒或4秒解析:小问1详解:解:设直线AB 的解析式为y kx b=+由题意,得680b k b =⎧⎨+=⎩,解得346k b ⎧=-⎪⎨⎪=⎩所以,直线AB 的解析式为364y x =-+.小问2详解:解:由68AO BO ==,得10AB =,∴102AP t AQ t ==-,,①当APQ AOB ∠=∠时,APQ AOB ∽.∴102610t t -=,解得3011t =②当AQP AOB ∠=∠时,AQP AOB ∽.∴102106t t -=,解得5013t =∴当t 为3011秒或5013秒时,APQ △与AOB 相似;小问3详解:解:过点Q 作QE 垂直AO 于点E .在Rt AOB △中,4sin 5BO BAO AB ∠==在Rt AEQ △中,()48·sin 102855QE AQ BAO t t =∠=-=-,21184168422555APQ S AP QE t t t t ⎛⎫=⋅=⨯-=-+= ⎪⎝⎭ 解得,1t =(秒)或4t =(秒)∴当1t =秒或4t =秒时,APQ △的面积为165个平方单位.。

重庆市江津区12校2024届九年级上学期期中考试数学试卷(含答案)

重庆市江津区12校2024届九年级上学期期中考试数学试卷(含答案)

2023-2024学年度上期期中测试数学题卷(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。

2.作答前认真阅读答题卡上的注意事项。

3.考试结束,监考人员将试题卷和答题卡一并收回。

4.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题(每小题4分,共40分)1.下列方程一定是一元二次方程的是()A .212023x x -=B .30y x -=C .2350x x -=D .3210x x ++=2.将抛物线y =x 2﹣1向上平移3个单位,再向右平移1个单位后,得到的抛物线所对应的函数表达式为()A .y =(x ﹣1)2﹣1B .y =(x ﹣1)2+2C .y =(x +1)2+2D .y =(x +1)2﹣13.下列方程中,没有实数根的是()A. B.C.D.4.下列关于抛物线()2314y x =+-的结论,正确的是()A .开口方向向下B .对称轴为直线x =-1C .顶点坐标是(1,-4)D .当x =-1时,函数有最大值为-45.一元二次方程x 2-6x +5=0配方可变形为()A.(x -3)2=14B.(x -3)2=4C.(x +3)2=14D.(x +3)2=46.点()()()11223331P y P y P y -,、,、2,均在二次函数244y x x =--的图象上,则y 1,y 2,y 3的大小关系是()A .123y y y >>B .312y y y >>C .231y y y >>D .213y y y >>7.已知二次函数y =ax 2+bx +c 的图象如图所示,根据图中提供的信息,可求得使y ≥1成立的x 的取值范围是()A .-1≤x ≤3B .x ≥3C .x ≤-1D .x ≤-1或x ≥38.关于x 的一元二次方程()22210x a a x a +-+-=两个实数根互为相反数,则a 的值为()A.2B.0C.1D.2或09.已知二次函数2y ax bx c =++的图象如图所示,顶点为(﹣1,0),则下列结论:①0abc <;②240b ac -=;③20a b -=;④2a >;⑤420a b c -+<.其中正确结论的个数是()A .2个B .3个C .4个D .5个10.对于实数a 、b ,定义新运算()()22*a ab a b a b b ab a b ⎧-≥⎪=⎨-<⎪⎩ ,若二次函数()2*1y x x =-,则下列结论正确的有()①方程()2*10x x -=的解为x =0或x =−1;②关于x 的方程()2*1x x m-=有三个解,则102m ≤<;③当x <−1时,y 随x 增大而增大;④当x >−1时,函数()2*1y x x =-有最大值0.A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.一元二次方程的解是.12.抛物线21252y x x =-+-的顶点坐标是.13.有一个人患了新冠病毒,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了个人.14.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是.15.已知m 、n 是一元二次方程2250x x +-=的两个实数根,则m 2+mn +2m 的值为.第7题图第9题图16.如图,已知二次函数223y x x =-的图象与正比例函数1y x =的图象在第一象限交于点,与轴正半轴交于点,若,则的取值范围是.17.使得关于x 的不等式组6101131282x a x x -≥-⎧⎪⎨-+<-+⎪⎩有且只有4个整数解,且关于x 的方程()25410a x x -++=有实数根的所有整数a 的值之和为.18.对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵716-=,312-=,∴7311是“天真数”;四位数8421,∵816-≠,∴8421不是“天真数”。

人教版九年级上学期期中考试数学试卷及答案(共6套)

人教版九年级上学期期中考试数学试卷及答案(共6套)

人教版九年级上学期期中考试数学试卷(一)满分 120 分,考试时间 120 分钟。

一、精心选一选(每小题 3 分,共 30 分,将答案填在相应的括号内) 1. 下列方程中不一定是一元二次方程的是 ()A.(a-3)x =8 (a≠3)B.ax +bx+c=02 2 3C.(x+3)(x-2)=x+5D. 32 2 0 x x 572.关于 的一元二次方程 1 1 0的一个根是 0,则 值为( )x a x x a 2a 2 12 A. 1 B. 1 C.1 或1D.y x 3.在抛物线 =- +1 上的一个点是 ( )2A .(1,0)B .(0,0)C .(0,-1)D .(1,1)y x x4.抛物线 = -2 +1 的顶点坐标是 ( ) 2 A .(1,0) B .(-1,0) C .(-2,1)D .(2,-1) 5.已知方程2 2,则下列说中,正确的是 ()x x A. 方程两根和是 1 B. 方程两根积是 2 C. 方程两根和是1D.方程两根积比两根和大 26.某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如 果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x) =10002B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) ]=100027. 若点(2,5),(4,5)在抛物线 y =ax +bx +c 上,则它的对称轴是 ()2b A . B .x =1 C .x =2 D .x =3xa8.用 10 米长的铝材制成一个矩形窗框,使它的面积为 6 平方米.若设它的一条 边长为 x 米,则根据题意可列出关于 x 的方程为( )A.x(5+x)=6B. x(5-x)=6C. x(10-x)=6D. x(10-2x)=6ht9.一小球被抛出后,距离地面的高度 (米)和飞行时间 (秒)满足下面函数关系 ht式: =-5( -1)2+6,则小球距离地面的最大高度是 ( )A .1 米B .5 米C .6 米D .7 米10.二次函数 y=x +bx+c ,若 b+c=0,则它的图象一定过点( )2A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)二、细心填一填(每小题 4 分,共 32 分) 11. 方程 x +x=0 的根是2.12.请你写出以 2 和-2 为根的一元二次方程 个即可).(只写一.13. 抛物线 y =-x +3 的对称轴是2,顶点坐标是14.函数 y=x +x-2 的图象与 y 轴的交点坐标是2.x x bx b15.已知 =-1 是方程 + -5=0 的一个根,则 =________,方程的另一根 2 为________.16.若 x 、x 是方程 x +4x-6=0 的两根,则 x +x =2.2 2 1212 x 2x m,若其顶点在 x 轴上,则 m=_________.2 x x k三、解答题(要求:写出必要的解题步骤和说理过程). x -2x-3 2 19.(满分 9 分)请画出二次函数y的图象,并结合所画图象回答问题:(1) 当 x 取何值时,y=0; (2) 当 x 取何值时,y <0.a ba b a a b20.(满分 6 分)现定义运算“★”,对于任意实数 、 ,都有 ★ = ﹣3 + .2 x x如:3★5=3 ﹣3×3+5,若 ★2=6,试求实数 的值.221. (满分 8 分)已知△ABC 的一条边 BC 的长为 5,另两边 AB 、AC 的长是关于 x 的一元二次方程 2 3 3 2 0 的两个实数根.x 2 k x k 2 k k(1)求证:无论 为何值时,方程总有两个不相等的实数根.k(2) 当 为何值时,△ABC 是以 BC 为斜边的直角三角形.y ax bx c a22. (满分 9 分)已知二次函数 =+ + ( ≠0)的图象如图所示,请结合图2 象,abc; a b c a b c判断下列各式的符号. ①;②b -4ac. ③ + + ;④ ﹣ + .2y ax bx c23.(满分 6 分)已知二次函数 = + + 的图象如图所示. 2 ①求这个二次函数的表达式; ②当 x 为何值时,y=3.24.(满分 7 分)如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样宽 的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的 面积为 570m ,道路应为多宽?225.(满分 13 分)在平面直角坐标系 xOy 中,顶点为 M 的抛物线是由抛物线 y=x 2﹣3 向右平移 1 个单位后得到的,它与 y 轴负半轴交于点 A ,点 B 在该抛物线上, 且横坐标为 3.(1)求点 M 、A 、B 坐标;(2)若顶点为 M 的抛物线与 x 轴的两个交点为 B 、C ,试求线段 BC 的长.参考答案及评分标准一、选择题(每小题 3 分,共 3 0 分) 1-5 小题 BBAAC6-10 小题 DDBCD二、填空题(每小题 4 分,共 32 分) 11. 0 或-112.答案不唯一,如 x -4=0 等.213. 直线 x=0(或 y 轴) (0,3) 14. (0,-2) 15. -4, 5 16. 2817. -118. 1 19.用描点法正确画出函数图象 得3分;(1)因为抛物线与 x 轴交于(-1,0)、(3,0),所以当 x=-1 或 3 时,y=0;…………(3 分) (2) 由图象知,当-1<x <3 时,y <0; …………(6 分) …………(4 分) ………… (6 分)20. x -3x+2=62解得:x=﹣1 或 421. (1)证明:∵ △= (2 3) 4( 3 2) 1 0k 2 k 2 k k∴ 无论 为何值方程总有两个不相等的实数根。

人教版九年级上册数学期中考试试卷及答案详解

人教版九年级上册数学期中考试试卷及答案详解

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2﹣5x +6=0的解为()A .x 1=2,x 2=﹣3B .x 1=﹣2,x 2=3C .x 1=﹣2,x 2=﹣3D .x 1=2,x 2=33.二次函数2(1)(0)y a x b a =-+≠的图像经过点(0,2),则a+b 的值是()A .-3B .-1C .2D .34.如图所示,△ABC 内接于⊙O ,∠C =45°.AB =4,则⊙O 的半径为()A .B .4C .D .55.如图,ABC 和111A B C 关于点E 成中心对称,则点E 坐标是()A .() 3,1--B .() 3,3--C .()3,0-D .()4,1--6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:x …-10245…y 1…01356…y 2…-159…当y 2>y 1时,自变量x 的取值范围是A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >47.已知如图,PA 、PB 切O 于A 、B ,MN 切O 于C ,交PB 于N ;若7.5PA cm =,则PMN 的周长是()A .7.5cmB .10cmC .15cmD .12.5cm8.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,将△ABC 绕点C 顺时针旋转40°得到△A'B'C ,CB'与AB 相交于点D ,连接AA',则∠B'A'A 的度数为()A .10°B .15°C .20°D .30°9.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E .F 分别在BC 和CD上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+,其中正确的序号是()A .①②④B .①②C .②③④D .①③④10.已知二次函数2y x bx 1=-+,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是()A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动二、填空题11.若关于x 的方程220x ax +-=有一个根是1,则a =_________.12.将抛物线y =x 2+1向下平移3个单位长度得到的抛物线的解析式为__________.13.由于受“一带一路”国家战略策略的影响,某种商品的进口关税连续两次下调,由4000美元下调至2560美元,则平均每次下调的百分率为_____.14.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为_____.15.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是_____.16.如图,在矩形ABCD 中,4AB =,2AD =,点E 在CD 上,1DE =,点F 在边AB 上一动点,以EF 为斜边作Rt EFP ∆.若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是__________.三、解答题17.解下列方程(1)2450x x --=(2)()22(3)33x x -=-18.图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB 的端点均在格点上.按要求在图①,图②,图③中画图.(1)在图①中,以线段AB 为斜边画一个等腰直角三角形,且直角的顶点为格点;(2)在图②中,以线段AB 为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.19.为响应“美丽台州,美化环境”的号召,某校开展“美丽台州,清洁校园”的活动,该校经过精心设计,在绿化工作中设计一块170m2的矩形场地,矩形的长比宽的2倍长3m ,则这块矩形场地的长和宽各是多少米?20.如图,已知AB 是⊙O 中一条固定的弦,点C 是优弧AB 上一个动点(点C 不与A ,B 重合).(1)设∠ACB 的角平分线与劣弧AB 交于点P ,试猜想点P 在弧AB 上的位置是否会随点C 的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O 的半径为5,在(1)的条件下,四边形ACBP 的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.21.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值.(2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.22.如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论.23.如图,已知AB是⊙O的直径,C是圆周上的动点,P是优弧ABC的中点.(1)如图①,求证:OP∥BC;(2)如图②,PC交AB于点D,当△ODC是等腰三角形时,求∠PAO的度数.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为()()1010x xyx x⎧-+<⎪=⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数21 42y x x=-+-.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数21 42y x x=-+-的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数24y x x m =-++的相关函数的图象有两个公共点时m 的取值范围.答案与详解1.C 【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项正确;D 、不是轴对称图形,不是中心对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D 【分析】利用因式分解法解方程.解:(x ﹣2)(x ﹣3)=0,x ﹣2=0或x ﹣3=0,∴x 1=2,x 2=3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.C 【分析】根据二次函数图象上点的坐标特征,把点(0,2)直接代入解析式即可得到答案.【详解】∵二次函数2(1)(0)y a x b a =-+≠的图象经过点(0,2),∴22(01)a b =⋅-+,∴2a b +=.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.A 【详解】试题解析:连接OA ,OB .45,C ∠=︒ 90AOB ∴∠=︒,∴在Rt AOB △中,OA OB ==点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5.A【分析】先求出△ABC和△A1B1C1中对应的两点坐标,连接此两点坐标则E点必在其中点上,求出其中点坐标即可.【详解】由图可知:因为B、B1点的坐标分别是:B(-5,1)、B1(-1,-3),所以BB1的中点坐标为(512--,132-),即(-3,-1),则点E坐标是(-3,-1),故选A.【点睛】本题考查了坐标与图象变化-旋转,用到的知识点是图形旋转对称的性质等,图形旋转后时,其旋转中心必是其对应点连线的中点坐标.6.D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.C【分析】已知MN、PA、PB是⊙O的三条切线,于是可得MA=MC、NC=NB、PA=PB;从而可得△PMN的周长用AP、BP来表示,代入数值即可求解.【详解】∵直线PA、PA、MN分别于圆相切于点A、B、C,∴MA=MC,NC=NB,PA=PB,∴△PMN的周长=PM+PN+MN=PM+AM+PN+BN=PA+PB=7.5+7.5=15.故选C.【点睛】考查圆的切线的性质定理,关键是掌握切线长定理;8.C【分析】先确定旋转角∠A′CA,根据旋转的性质A′C=AC,可求∠AA′C,∠B′A′C要求的∠B′A′A=∠B′A′C-∠AA′C即可.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴∠A′CA=40º,∵A′C=AC,∴∠AA′C=180-40=702︒︒︒,∵∠BAC=∠B′A′C==90°,∴∠B′A′A=∠B′A′C-∠AA′C=90º-70º=20º.故选择:C .【点睛】本题考查图形旋转的性质和等腰三角形的性质等问题,掌握旋转的性质和等腰三角形的性质,会找旋转角,会利用等腰三角形求∠AA′C ,找到∠B′A′A 与∠AA′C 的关系是解题关键.9.A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD=BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩,∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF,CE=CF,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,故③错误;∵△AEF是边长为2的等边三角形,∠ACB=∠ACD=45°,AC⊥EF,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=CG=112EF=,∴31;故④正确.综上,①②④正确故选:A.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.10.C【分析】先分别求出当b=-1、0、1时函数图象的顶点坐标即可得出答案.【详解】当b=-1时,此函数解析式为:y=x2+x+1,顶点坐标为:13 24⎛⎫- ⎪⎝⎭,;当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2-x+1,顶点坐标为:13 24⎛⎫ ⎪⎝⎭,.故函数图象应先往右上方移动,再往右下方移动.故选C .【点睛】本题考查的是二次函数的图象与几何变换,解答此题的关键是熟练掌握二次函数的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭.11.1【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a 的一次方程,然后解此一次方程即可.【详解】解:把x=1代入方程220x ax +-=得1+a-2=0,解得a=1.故答案是:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.y =x 2﹣2【分析】根据抛物线平移的规律(左加右减,上加下减)求解.【详解】抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1﹣3,即y =x 2﹣2.故答案为y =x 2﹣2.【点睛】本题考查了二次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.13.20%.【分析】设平均每次下调的百分率为x,则第一次下调后的关税为4000(1-x),第二次下调的关税为40002(1)x -,根据题意可列方程为40002(1)x -=2560求解即可.【详解】解:设平均每次下调的百分率为x,根据题意得:(1)x =2560,40002解得:1x=0.2=20%,2x=1.8=180%(舍去),即:平均每次下调的百分率为20%.故答案是:20%.【点睛】本题主要考查一元二次方程的实际应用,根据已知条件列出方程是解题的关键.14.4秒或8秒【分析】⊙P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在M,N两点.当P在M点时,根据切线的性质,在直角△OME中,根据30度的角所对的直角边等于斜边的一半,即可求得OM的长,进而求得PM的长,从而求得由P 到M移动的时间;根据ON=OM,即可求得PN,也可以求得求得由P到M移动的时间.【详解】①当⊙P在射线OA上,设⊙P于CD相切于点E,P移动到M时,连接ME.∵⊙P与直线CD相切,∴∠OEM=90°,∵在直角△OPM中,ME=1cm,∠AOC=30°,∴OM=2ME=2cm,则PM=OP-OM=6-2=4cm,∵⊙P以1cm/s的速度沿由A向B的方向移动,∴⊙P移动4秒时与直线CD相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.15.4.8【详解】设EF的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形PC+PD=EF,由三角形的三边关系知,PC+PD>CD;只有当点P在CD上时,PC+PD=EF有最小值为CD的长,即当点P在直角三角形ABC的斜边AB的高CD上时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC·AC÷AB=4.8.故答案为:4.8.考点:切线的性质;垂线段最短;勾股定理的逆定理16.0或1113AF <<或4【详解】【分析】在点F 的运动过程中分别以EF 为直径作圆,观察圆和矩形矩形ABCD 边的交点个数即可得到结论.【解答】当点F 与点A 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.当点F 从点A 向点B 运动时,当01AF <<时,共有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1AF =时,有1个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1113AF <<时,有2个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当113AF =时,有3个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1143AF <<时,有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当点F 与点B 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.故答案为0或1113AF <<或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.17.(1)1251x x ,==-;(2)12932x x ==,【分析】(1)利用因式分解法解方程得出答案;(2)移项变形,利用因式分解法解方程得出答案.【详解】(1)2450x x --=,因式分解得:()()510x x -+=,解得:1251x x ,==-;(2)()22(3)33x x -=-,移项得:()22(3)330x x ---=,因式分解得:()()3290x x --=,∴30x -=或290x -=,解得:12932x x ==,.【点睛】本题主要考查了因式分解法解方程,正确掌握一元二次方程的解法是解题关键.18.(1)见解析;(2)见解析;(3)见解析【分析】(1)作AB 的垂直平分线,垂直平分线在端点处的点即为顶点;(2)如下图所示,满足面积条件和直角条件;(3)以AB 为对角线,绘制平行四边形即可【详解】(1)如下图,过线段AB 作垂直平分线,与网络交于格点C ,则点C 为等腰直角三角形顶点根据勾股定理,可求得,根据勾股定理逆定理,可得△ABC 是直角三角形,满足条件(2)图形如下:根据勾股定理,可求得:10,2,BC=22根据勾股定理逆定理,可判断△ACB是直角三角形面积=122×22=2,成立(3)平行四边形满足是中心对称图形,不是轴对称图形,图形如下:(答案不唯一)【点睛】本题考查格点问题,解题过程中,一方面需要结合几何特征,另一方面,还要敢于尝试19.这块矩形场地的长是23米、宽是10米.【分析】阅读试题,理解含义,分清题意,找出等量关系设矩形场地的宽为x米,则矩形场地的长为(2x+3)米,利用面积得:x(2x+3)=170,解方程要检验,负根舍去,最后作答即可.【详解】设这块矩形场地的宽为x米,则矩形场地的长为(2x+3)米,由面积得:x(2x+3)=170,因式分解得:(2x+17)(x-10)=0,∴x=10,x=-172(舍),∴2x+3=23,答:这块矩形场地的长是23米、宽是10米.【点睛】本题考查面积问题应用题,抓住矩形的长比宽的2倍长3m 来设元,抓住一块170m 2的矩形场地列方程是解题关键,掌握列方程解应用题的步骤与要求,分析题意,恰当设元,列出方程,解方程,检验,作答.20.(1)不变化,理由见详解;(2)8<S 四边形A′C′B′P′≤40【分析】(1)由∠ACP=∠BCP 得 AP BP=,P 为 AB 的中点,P 在弧AB 上的位置不动,p 点不变化,(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP =,OP 为半径,由垂经定理知OP ⊥AB ,AB=BD ,由勾股定理得OD=,进而S △APB =12AB DP ,当PC 为直径时,S △ABC 最大=12AB DC 则0<S △ABC ≤32即可求出S 四边形ACBP =S △ABC +S △PAB =S △ABC +8的范围,即S 四边形A′C′B′P′的范围.【详解】(1)∵∠ACB 的角平分线与劣弧AB 交于点P ,∴∠ACP=∠BCP ,∴ AP BP=,∴P 为 AB 的中点,∴P 在弧AB 上的位置不动,为此不随点C 的运动而发生变化,P 点不变化.(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP=,OP 为半径,∴OP ⊥AB ,AB=BD=4,OA=5,∴由勾股定理得3==,∴DP=OP-OD=5-3=2,∴S △APB =1182822AB DP =⨯⨯= ,当PC 为直径时,交AB 于点D ,则CD=PC-PD=10-2=8,S △ABC 最大=11883222AB DC =⨯⨯= ,0<S △ABC ≤32,S 四边形ACBP =S △ABC +S △PAB =S △ABC +8,8<S 四边形ACBP ≤40,即8<S 四边形A′C′B′P′≤40.【点睛】本题考查了圆周角定理,垂径定理,三角形面积,勾股定理等内容,熟练掌握圆周角定理是解题关键.21.(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.【解析】试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解.(2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).将B 、C 的坐标代入2y ax c =+,得6,0100.c a c =⎧⎨=+⎩解得3650a c =-=.∴抛物线的表达式是23650y x =-+.(2)可设N (5,N y ),于是2356 4.550N y =-⨯+=.从而支柱MN 的长度是10-4.5=5.5米.(3)设DE 是隔离带的宽,EG 是三辆车的宽度和,则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.22.(1)AE ;(2)AE ,证明见解析.【详解】解:(1)如图①中,∵四边形ABFD 是平行四边形,∴AB=DF ,∵AB=AC ,∴AC=DF ,∵DE=EC ,∴AE=EF ,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AE .(2)如图②中,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE ,∵∠DKC=∠C ,∴DK=DC ,∵DF=AB=AC ,∴KF=AD ,在△EKF 和△EDA 中,{EK DKEKF ADE KF AD=∠=∠=,∴△EKF ≌△EDA ,∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE.23.(1)证明见详解;(2)36º或1807︒.【分析】(1)连接PC ,由 AP PC=得AOP COP ∠=∠,利用△AOP ≌△COP ,得出∠APO=∠CPO ,由OA=OP 得∠APO=∠OAP ,由∠PCB=∠OAP 得∠PCO=∠PCB 即可;(2)如图,△OCD 是等腰三角形①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∠POD=∠OBC ,易证△POD ≌ΔOBC ,BC=OD=CD ,∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º即x+2x+2x=180;②当OC=CD 时由OP ∥BC ,∠OPC=∠DCB ,由OP=OC ,∠OCP=∠OPC=∠DCB ,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC 是ΔCDB 的外角,得∠COD=∠ODC=3xº,由∠OCD+∠COD+∠ODC=180º即x+3x+3x=180.【详解】(1)连接PC ,∵ AP PC =,∴AOP COP ∠=∠,在△AOP 和△COP 中,,,,OP OP AOP COP OA OC =⎧⎪∠=∠⎨⎪=⎩∴△AOP ≌△COP ,∴∠APO=∠CPO ,∵OA=OP ,∴∠APO=∠OAP ,又∵∠PCB=∠OAP ,∴∠PCO=∠PCB ,∴OP ∥BC,(2)如图,△OCD 是等腰三角形,①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∴∠POD=∠OBC,∵OP=OC,∴∠OPD=∠OCD=BOC=xº,∴△POD≌ΔOBC,∴BC=OD=CD,∴∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º,x+2x+2x=180,x=36,∠PAB=∠PCB=36º,②当OC=CD时由OP∥BC,∠OPC=∠DCB,OP=OC,∠OCP=∠OPC=DCB,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC是ΔCDB的外角,∠ODC=∠DCB+∠DBC=3xº,∠COD=∠ODC=3xº,在ΔOCD中,∠OCD+∠COD+∠ODC=180º,x+3x+3x=180,x=1807,∴∠PAB=∠PCB=1807︒,综合∠PAO=36º或1807︒.【点睛】不本题考查园中平行与等腰三角形中角度问题,掌握圆心角、圆周角、弧的关系,会利用全等三角形证相关的结论,会证等腰三角形,利用内角与外角关系,求角的度数,本题是一道有关圆的综合应用题,作出恰当的辅助线是解答本题的关键.24.(1)1;(2)①m =2m或m =2﹣;②最大值为432,最小值为﹣12;(3)﹣3<n ≤﹣1或1<n ≤54.【分析】(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将然后将点A (﹣5,8)代入y =﹣ax +3求解即可;(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当﹣3≤x <0时,2142y x x =-+-,然后可此时的最大值和最小值,当0≤x ≤3时,函数2142y x x =-+-,求得此时的最大值和最小值,从而可得到当﹣3≤x ≤3时的最大值和最小值;(3)首先确定出二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将点A (﹣5,8)代入y =﹣ax +3得:5a +3=8,解得:a =1.(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩;①当m <0时,将B (m ,32)代入2142y x x =-+得213422m m -+=,解得:m=2+(舍去)或m =2当m ≥0时,将B (m ,32)代入2142y x x =-+-得:213422m m -+-=,解得:m=2+或m =2.综上所述:m =2m或m =2.②当﹣3≤x <0时,2142y x x =-+,抛物线的对称轴为x =2,此时y 随x 的增大而减小,∴此时y 的最大值为432.当0≤x ≤3时,函数2142y x x =-+-,抛物线的对称轴为x =2,当x =0有最小值,最小值为﹣12,当x =2时,有最大值,最大值y =72.综上所述,当﹣3≤x ≤3时,函数2142y x x =-+-的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有1个公共点.所以当x =2时,y =1,即﹣4+8+n =1,解得n =﹣3.如图2所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点∵抛物线24y x x n =-++与y 轴交点纵坐标为1,∴﹣n =1,解得:n =﹣1,∴当﹣3<n ≤﹣1时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点.∵抛物线24y x x n =-++经过点(0,1),∴n =1.如图4所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.∵抛物线24y x x n =--经过点M (﹣12,1),∴14+2﹣n =1,解得:n =54,∴1<n ≤54时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n ≤﹣1或1<n ≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.。

九年级(上)期中数学试卷(答案解析版)

九年级(上)期中数学试卷(答案解析版)

九年级(上)期中数学试卷一、选择题:(每题3分共30分)1.下列图形中即是轴对称图形,又是中心对称图形的是()A.B.C.D.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.0.53.抛物线y=﹣2x2+4x+3的顶点坐标是()A.(﹣1,﹣5)B.(1,5)C.(﹣1,﹣4)D.(﹣2,﹣7)4.已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为()A.7 B.5 C.D.5或5.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张6.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.正三角形 B.正五边形 C.等腰梯形 D.菱形7.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.D.8.某超市一月份的营业额为100万元,第一季度的营业额共800万元.如果平均每月增长率为x,则所列方程应为()A.100(1+x)2=800 B.100+100×2x=800C.100+100×3x=800 D.100[1+(1+x)+(1+x)2]=8009.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有()A.②③B.②④C.①③D.①④二、填空题(每题3分共24分)10.点(4,﹣3)关于原点对称的点的坐标是.11.将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是.12.如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC的度数是度.13.在半径为2的⊙O中,弦AB的长为2,则弦AB所对的圆周角的度数为.14.有一个班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了1560张,这个班的人数是.15.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为cm.16.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为度.17.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为.三、解答题(共66分)18.解下列方程(1)y2﹣2y+3=0(2)4(x﹣1)2=5(3)3(x﹣1)2=x(x﹣1)(4)x2﹣x+=0.19.如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD.20.已知一抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),求该抛物线的解析式.21.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.22.设a,b,c是△ABC的三条边,关于x的方程x2+x+c﹣a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx﹣3m=0的两个根,求m的值.23.如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.24.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.参考答案与试题解析一、选择题:(每题3分共30分)1.下列图形中即是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,结合所给图形的特点进行判断即可.【解答】解:A不是轴对称图形,是中心对称图形,不符合题意;B是轴对称图形,也是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D是中心对称图形,也是轴对称图形,符合题意;综上可得符合题意的有2个.故选:B、D.【点评】本题考查了轴对称及中心对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.0.5【考点】一元二次方程的解;一元二次方程的定义.【专题】计算题.【分析】先把x=0代入方法求出a的值,然后根据一元二次方程的定义确定满足条件的a的值.【解答】解:把x=0代入方程得a2﹣1=0,解得a=1或﹣1,由于a﹣1≠0,所以a的值为﹣1.故选A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.3.抛物线y=﹣2x2+4x+3的顶点坐标是()A.(﹣1,﹣5)B.(1,5)C.(﹣1,﹣4)D.(﹣2,﹣7)【考点】二次函数的性质.【分析】利用顶点公式(﹣,)解题.也可以用配方法求顶点坐标.【解答】解:∵x=﹣=﹣=1,y===5.∴顶点坐标为(1,5).故选B.【点评】熟练运用顶点公式进行解题.4.已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为()A.7 B.5 C.D.5或【考点】勾股定理;解一元二次方程-因式分解法.【专题】分类讨论.【分析】求出方程的解,得出直角三角形的两边长,分为两种情况:①当3和4是两直角边时,②当4是斜边,3是直角边时,根据勾股定理求出第三边即可.【解答】解:x2﹣7x+12=0,(x﹣3)(x﹣4)=0,x﹣3=0,x﹣4=0,解得:x1=3,x2=4,即直角三角形的两边是3和4,当3和4是两直角边时,第三边是=5;当4是斜边,3是直角边时,第三边是=,即第三边是5或,故选D.【点评】本题考查了解一元二次方程和勾股定理,注意:解此题时要进行分类讨论.5.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张【考点】中心对称图形.【专题】压轴题.【分析】本题主要考查了中心对称图形的定义,根据定义即可求解.【解答】解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A.【点评】当所有图形都没有变化的时候,旋转的是成中心对称图形的,有变化的时候,旋转的便是有变化的.6.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.正三角形 B.正五边形 C.等腰梯形 D.菱形【考点】中心对称图形;轴对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:正三角形不是中心对称图形,是轴对称图形;正五边形不是中心对称图形,是轴对称图形;等腰梯形不是中心对称图形,是轴对称图形;菱形是中心对称图形,是轴对称图形;故选:D.【点评】此题主要考查了中心对称图形和轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.D.【考点】垂径定理;勾股定理.【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故选:C.【点评】注意由题目中的折叠即可发现OD=OA=1.考查了勾股定理以及垂径定理.8.某超市一月份的营业额为100万元,第一季度的营业额共800万元.如果平均每月增长率为x,则所列方程应为()A.100(1+x)2=800 B.100+100×2x=800C.100+100×3x=800 D.100[1+(1+x)+(1+x)2]=800【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=800,把相关数值代入即可.【解答】解:∵一月份的营业额为100万元,平均每月增长率为x,∴二月份的营业额为100×(1+x),∴三月份的营业额为100×(1+x)×(1+x)=100×(1+x)2,∴可列方程为100+100×(1+x)+100×(1+x)2=800,故选D.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有()A.②③B.②④C.①③D.①④【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】①由二次函数y=ax2+bx+c(a≠0)的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于当x=﹣1时,y=a﹣b+c,而根据图象知道当x=﹣1时y<0,由此即可判定a﹣b+c的符号;③根据图象知道当x<﹣1时抛物线在x轴的下方,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,∴a<0,∵与y轴交点在x轴上方,∴c>0,∴ac<0;②∵当x=﹣1时,y=a﹣b+c,而根据图象知道当x=﹣1时y<0,∴a﹣b+c<0;③根据图象知道当x<﹣1时抛物线在x轴的下方,∴当x<﹣1,y<0;④从图象可知抛物线与x轴的交点的横坐标都大于﹣1,∴方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.故错误的有①③.故选C.【点评】此题主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子,如:当x=1时,y>0,a+b+c>0;x=﹣1时,y<0,a﹣b+c<0.二、填空题(每题3分共24分)10.点(4,﹣3)关于原点对称的点的坐标是(﹣4,3).【考点】关于原点对称的点的坐标.【分析】点关于原点的对称点,横、纵坐标都互为相反数,据此知道(x,y)关于原点的对称点是(﹣x,﹣y).【解答】解:点(4,﹣3)关于原点对称的点的坐标是(﹣4,3).故答案为:(﹣4,3).【点评】本题主要是通过作图总结规律,记住,然后应用.11.将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是y=6(x+2)2+3.【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=6x2先向左平移2个单位得到解析式:y=6(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=6(x+2)2+3.故答案为:y=6(x+2)2+3.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.12.如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC的度数是25度.【考点】圆周角定理.【分析】先求出∠ACB的度数,圆周角∠ACB等于圆心角∠AOB的一半,再根据平行,得到内错角∠OAC=∠ACB.【解答】解:∵AO∥BC,∴∠OAC=∠ACB.又∠AOB与∠ACB都是弧AB所对的角,∴∠ACB=∠AOB=25°,∴∠OAC的度数是25°.故答案为:25.【点评】本题利用了圆周角定理和两直线平行内错角相等求解.13.在半径为2的⊙O中,弦AB的长为2,则弦AB所对的圆周角的度数为30°或150°.【考点】圆周角定理;圆内接四边形的性质.【专题】计算题;分类讨论.【分析】根据弦长等于半径,得这条弦和两条半径组成了等边三角形,则弦所对的圆心角是60°,要计算它所对的圆周角,应考虑两种情况:当圆周角的顶点在优弧上时,则根据圆周角定理,得此圆周角是30°;当圆周角的顶点在劣弧上时,则根据圆内接四边形的对角互补,得此圆周角是150°.【解答】解:根据题意,弦AB与两半径组成等边三角形,∴先AB所对的圆心角=60°,①圆周角在优弧上时,圆周角=30°,②圆周角在劣弧上时,圆周角=180°﹣30°=150°.∴圆周角的度数为30°或150°.【点评】注意:弦所对的圆周角有两种情况,且两种情况的角是互补的.14.有一个班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了1560张,这个班的人数是40.【考点】一元二次方程的应用.【分析】设这个班的人数是x,则每人需送出(x﹣1)张照片,共送出x(x﹣1)张,结合题意即可列出方程,进而求出答案.【解答】解:设这个班的人数是x,根据题意得:x(x﹣1)=1560,解得x1=40,x2=﹣39(舍去)答:这个班的人数是40.故答案为:40.【点评】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送x﹣1张相片,有x个人是解决问题的关键.15.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为6cm.【考点】垂径定理;勾股定理.【专题】动点型.【分析】根据垂线段最短,可以得到当OP⊥AB时,点P到圆心O的距离最短.根据垂径定理和勾股定理即可求解.【解答】解:根据垂线段最短知,当点P运动到OP⊥AB时,点P到到点O的距离最短,由垂径定理知,此时点P为AB中点,AP=8cm,由勾股定理得,此时OP==6cm.【点评】本题利用了垂线段最短和垂径定理及勾股定理求解.16.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为15度.【考点】圆周角定理.【专题】压轴题.【分析】根据量角器的读数,可求得圆心角∠AOB的度数,然后利用圆周角与圆心角的关系可求出∠1的度数.【解答】解:∵∠AOB=70°﹣40°=30°;∴∠1=∠AOB=15°(圆周角定理).故答案为:15°.【点评】本题主要考查的是圆周角定理:同弧所对的圆周角是圆心角的一半.17.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为﹣2.【考点】二次函数的定义;二次函数的性质.【分析】先依据二次函数的定义知,系数1﹣m一定不为0,1﹣m>0,再得出m 2﹣2=2,求出m的值即可.【解答】解:由题意:∴1﹣m≠1,1﹣m>0,m<1,m 2﹣2=2,解得:m=±2,∴m=﹣2.故答案为:﹣2.【点评】此题主要考查了二次函数的定义以及二次函数的性质,根据性质得出m的值是解题关键.三、解答题(共66分)18.解下列方程(1)y2﹣2y+3=0(2)4(x﹣1)2=5(3)3(x﹣1)2=x(x﹣1)(4)x2﹣x+=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)利用直接开平方法解方程;(3)先移项得到3(x﹣1)2﹣x(x﹣1)=0,然后利用因式分解法解方程;(4)利用配方法解方程.【解答】解:(1)(y﹣3)(y﹣1)=0,y﹣3=0或y﹣1=0,所以y1=3,y2=1;(2)(x﹣1)2=,x﹣1=±,所以x1=1+,x2=1﹣;(3)3(x﹣1)2﹣x(x﹣1)=0,(x﹣1)(3x﹣3﹣x)=0,x﹣1=0或3x﹣3﹣x=0,所以x1=1,x2=;(4)x2﹣x+()2=0,(x﹣)2=0,所以x1=x2=.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.19.如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD.【考点】圆心角、弧、弦的关系.【专题】证明题.【分析】根据圆心角、弧、弦的关系定理,弦AD=BC,则弧AD=弧BC,则弧AB=弧CD,则AB=CD.【解答】证明:∵AD=BC,∴=,∴+=+,即=.∴AB=CD.【点评】本题考查了圆心角、弦、弧之间的关系定理,在同圆或等圆中,两个圆心角、两条弧、两个弦中有一组量相等,它们所对应的其余各组量也相等.20.已知一抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),求该抛物线的解析式.【考点】待定系数法求二次函数解析式.【分析】由抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),设解析式为一般式或交点式用待定系数法求得二次函数的解析式.【解答】解:设这个抛物线的解析式为y=ax2+bx+c.由已知,抛物线过A(﹣2,0),B(1,0),C(2,8)三点,得,①+③得,8a+2c=8,即4a+c=4④,①+②×2得6a+3c=0⑤,④×3﹣⑤得,6a=12,即a=2,把a=2代入④得,c=﹣4,把a=6,c=﹣4代入②得,b=2,故.∴所求抛物线的解析式为y=2x2+2x﹣4.【点评】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.21.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.【解答】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=﹣70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【点评】本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.22.设a,b,c是△ABC的三条边,关于x的方程x2+x+c﹣a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx﹣3m=0的两个根,求m的值.【考点】一元二次方程的应用.【分析】(1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a,c的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可求出a,b,c的关系;(2)根据(1)求出的a,b的值,可以关于m的方程,解方程即可求出m.【解答】解:(1)∵关于x的方程x2+x+c﹣a=0有两个相等的实数根,∴△=1﹣4×(c﹣a)=0,整理得4a﹣4c+1=0 ①,∴a≠c,又∵3cx+2b=2a的根为x=0,∴a=b ②,∴△ABC为等腰三角形;(2)a,b是方程x2+mx﹣3m=0的两个根,∴方程x2+mx﹣3m=0有两个相等的实数根,∴△=m2﹣4×(﹣3m)=0,即m2+12m=0,∴m1=0,m2=﹣12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=﹣12.【点评】本题考查了一元二次方程的应用,一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23.如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.【考点】圆心角、弧、弦的关系;垂径定理.【分析】(1)根据等腰三角形性质和平行线性质推出∠BAC=∠OAC即可;(2)根据平行得出相似,根据相似得出比例式,代入求出即可.【解答】(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠O AC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)解:∵OE⊥AB,∴AE=BE=AB=1.又∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.∴OE=AB•cos60°=2×=.【点评】本题考查了垂径定理,相似三角形的性质和判定,平行线的性质,等腰三角形的性质,勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)根据图象可得出A、B两点的坐标,然后将其代入抛物线的解析式中即可求得二次函数的解析式.(2)根据(1)得出的抛物线的解析式,用配方法或公式法即可求出对称轴和顶点坐标.(3)将P点坐标代入抛物线的解析式中,即可求出m的值,P,Q关于抛物线的对称轴对称,那么两点的纵坐标相等,因此P点到x轴的距离同Q到x轴的距离相等,均为m的绝对值.【解答】解:(1)将x=﹣1,y=﹣1;x=3,y=﹣9,分别代入y=ax2﹣4x+c得,解得,∴二次函数的表达式为y=x2﹣4x﹣6.(2)对称轴为x=2;顶点坐标为(2,﹣10).(3)将(m,m)代入y=x2﹣4x﹣6,得m=m2﹣4m﹣6,解得m1=﹣1,m2=6.∵m>0,∴m1=﹣1不合题意,舍去.∴m=6,∵点P与点Q关于对称轴x=2对称,∴点Q到x轴的距离为6.【点评】本题考查二次函数的有关知识,通过数形结合来解决.。

四川省自贡市富顺第一中学校2023-2024学年九年级上学期期中考试数学试卷(含答案)

四川省自贡市富顺第一中学校2023-2024学年九年级上学期期中考试数学试卷(含答案)

2023-2024上初三期中考试数学试题一、单选题(共48分)1. 下列交通标志图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.答案:B2. 一元二次方程的解是()A. B. C. , D. ,答案:C3. 将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则的大小为()A. 80°B. 100°C. 120°D. 不能确定答案:B4. 如果0是关于的一元二次方程的一个根,那么的值是()A. 3B.C.D.答案:A5. 将抛物线向左平移2个单位,再向上平移1个单位,得到抛物线的解析式为()A. B. C. D.答案:B6. 已知一元二次方程,根据下列表格中的对应值:… 3.09 3.10 3.11 3.12……0.11…可判断方程的一个解的范围是()A. B.C. D.答案:D7. 函数与在同一坐标系内的图象是图中的()A. B.C. D.答案:B8. 一部售价为4000元的手机,一年内连续两次降价,如果每次降价的百分率都是x,则两次降价后的价格y(元)与每次降价的百分率x之间的函数关系式是()A. B. C. D.答案:B9. 某地有两人患了流感,经过两轮传染后又有70人患了流感,每轮传染中平均一个人传染的人数为()A. 5人B. 6人C. 7人D. 8人答案:A10. 如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )A. 2B.C.D.答案:C11. 已知二次函数的图象如图所示,有下列4个结论:①;②;③;④关于的方程有四个根,且这四个根的和为4,其中正确的结论有()A. ①②③B. ②③④C. ①④D. ②③答案:B12. 经过两点的抛物线(为自变量)与轴有交点,则线段长为()A. 10B. 12C. 13D. 15答案:B二、填空题(共24分)13. 点关于原点的对称点是,则______.答案:14. 抛物线的对称轴是______.答案:直线15. 关于x的一元二次方程有实数根,则k的取值范围是______.答案:且16. 将二次函数的图象绕着顶点旋转后得到的新图象的解析式是___________.答案:17. 已知a,b是一元二次方程两个实数根,则的值为_____.答案:718. 在实数范围内定义一种运算“*”,其运算法则为.根据这个法则,下列结论中错误的是______.(只填写番号)①;②若,则;③是一元二次方程;④方程有一个解是.答案:①③④三、解答题(共78分)19. 解方程:答案:,解:,,,,,解得:,.20. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点,,均在格点上,(1)画出将向下平移4个单位长度得到;(2)画出绕点C逆时针旋转后得到的,并写出点的坐标;答案:(1)画图见解析(2)画图见解析,点的坐标【小问1详解】解:如图,即为所求;【小问2详解】解:如图,即为所求;∴点的坐标.21. 已知关于x的方程x2+ax+a-1=0.(1)若方程有一个根为1,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有实数根.答案:(1)a=0,x2=-1;(2)见解析.(1)因为x=1是方程x2+ax+a-1=0的解,所以把x=1代入方程x2+ax+a-1=0得,1+a+a-1=0,解得a=0∵x1+x2=-a,∴1+x2=0,∴x2=-1(2)∵△=a2-4(a-1)=a2-4a+4=(a-2)2≥0,∴无论a何值,此方程都有实数根.22. 某公司设计了一款工艺品,每件的成本是元,为了合理定价,投放市场进行试销:据市场调查,销售单价是元时,每天的销售量是件,而销售单价每提高元,每天就减少售出件,但要求销售单价不得超过元.要使每天销售这种工艺品盈利元,那么每件工艺品售价应为多少元?答案:元解:设每件工艺品售价为元,则每天的销售量是件,依题意得:,整理得:,解得:,(不符合题意,舍去).故每件工艺品售价应为元.23. 如图,用长为的篱笆,一面利用墙(墙的最大可用长度是),围成中间有一道篱笆的矩形花圃,设花圃的一边长是(单位:),面积是(单位:).(1)求与的函数关系式及的取值范围;(2)如果要围成面积为的花圃,的长为多少米?(3)长为多少时,花圃面积最大,最大面积是多少?答案:(1)(2)要围成面积为的花圃,的长为9米.(3),最大面积为:.【小问1详解】解:根据题目数量关系得,,根据题意,,∴,∴.【小问2详解】将代入得,整理得:,∴,∵,则不符合题意舍去,∴要围成面积为的花圃,的长为9米.【小问3详解】∵,,∴抛物线的对称轴为直线,当时,随的增大而减小,∴当时,面积最大,此时,最大面积为:;24. 如图1,是抛物线形的拱桥,当拱顶高离水面2米时,水面宽4米,如图建立平面直角坐标系,解答下列问题:(1)如图2,求该抛物线的函数解析式.(2)当水面下降1米,到处时,水面宽度增加多少米?(保留根号)答案:(1);(2)水面宽度增加米【小问1详解】解:根据题意可设该抛物线的函数解析式为,∵当拱顶高水面2米时,水面宽4米.∴点,,把点代入得:,解得:,∴该抛物线的函数解析式为;【小问2详解】解:∵水面下降1米,到处,∴点D的纵坐标为,当时,,解得:,∴此时水面宽度为米,∴水面宽度增加米.25. 已知关于x的方程(1)求证此方程总有实数根(2)若方程的两个实数根都为整数,求k的值.答案:(1)详见解析.(2)或或或.【小问1详解】证明:当时,方程为一元一次方程,此方程有一个实数根;当时,方程为一元二次方程,,即,当k取除以外的任意实数时,此方程总有两个实数根.综上可得,不论k取何值,此方程总有实数根.【小问2详解】方程的两个实数根都为整数,且方程的两个解之和也为整数,即是整数,即是整数,或或或.26. 如图,抛物线与x轴交于,两点,与轴交于点.(1)求抛物线解析式及,两点坐标;(2)以,,,为顶点的四边形是平行四边形,求点坐标;(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.答案:(1)抛物线解析式为,,(2)或或(3)【小问1详解】解:∵抛物线与x轴交于,∴解得:,∴抛物线解析式为,当时,,∴,当时,解得:,∴【小问2详解】∵,,,设,∵以,,,为顶点的四边形是平行四边形当为对角线时,解得:,∴;当为对角线时,解得:∴当为对角线时,解得:∴综上所述,以,,,为顶点的四边形是平行四边形,或或【小问3详解】解:如图所示,作交于点,为的中点,连接,∵∴是等腰直角三角形,∴在上,∵,,∴,,∵,∴在上,设,则解得:(舍去)∴点设直线的解析式为∴解得:.∴直线的解析式∵,,∴抛物线对称轴为直线,当时,,∴.。

河南省洛阳市涧西区2023-2024学年九年级上学期期中数学试题(含答案)

河南省洛阳市涧西区2023-2024学年九年级上学期期中数学试题(含答案)

洛阳市涧西区2023-2024学年第一学期期中考试九年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .赵爽弦图B .笛卡尔心形线C .斐波那契螺旋线D .科克曲线2.下列关于x 的方程一定是一元二次方程的是( )A .B .C .D .3.方程的二次项系数、一次项系数和常数项分别是( )A .5,-6,-1B .5,6,1C .1,-6,1D .1,6,-14.关于函数的性质表述正确的一项是( )A .无论x 为任何实数,y 的值总为正数B .它的图象关于y 轴对称C .当x 的值增大时,y 的值也增大D .它的图象在第一、三象限内5.将抛物线向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )A .B .C .D .6.如图,在4×4的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心是( )(第6题)A .点AB .点BC .点CD .点D7.在一幅长80cm ,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如图所示,如果要使()2421x x x x +=+-12x x+=()()513x x -+=()212y x =-+25610x x --=24y x =()232y x =-+2y x =()264y x =-+()26y x =-24y x =+MNP △111M N P △整个挂图的面积是5400cm,设金色纸边的宽为x cm,那么x满足的方程是()(第7题)A.B.C.D.8.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球被踢出7s时,距离地面的高度是14m;③足球飞行路线的对称轴是直线;④足球被踢出9s时落地,其中正确结论的个数是()A.1B.2C.3D.49.我国古代数学家赵爽在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程即为例说明,记载的方法是:构造如图正方形,大正方形的面积是,同时它又等于四个矩形的面积加上中间小正方形的面积,即,因此.在下面四个选项中,能正确说明方程解法的构图是()(第9题)A.B.C.D.()()5028025400x x--=()()5028025400x x++=()()50805400x x--=()()50805400x x++=92t=22350x x+-=()235x x+=()22x x++24352⨯+5x=2560x x--=10.如图,在四边形ABCD 中,,,,,.动点P 沿路径从点A 出发,以每秒1个单位长度的速度向点D 运动.过点P 作,垂足为H .设点P 运动的时间为x (单位:s ),的面积为y ,则y 关于x 的函数图象大致是()(第10题)A .B .C .D .二、填空题(每小题3分,共15分)11.已知关于x 的方程有两个不相等的实数根,则a 的取值范围是_____.12.如果二次函数的图象经过原点,那么______.13.一个小球以5m/s 的速度开始向前滚动,小球滚动的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是,则小球从开始滚动到完全停止所用的时间是______秒.14.如图,在中,,将绕点A 逆时针旋转,得到,连接.若,则______.(第14题)15.如图,已知二次函数的图象交x 轴于,对称轴为.下列结论:①;②;③若,是图象上的两点,则;④若,则.其中正确结论为______.//AD BC 90D ∠=︒4AB =6BC =30BAD ∠=︒A B C D →→→PH AD ⊥APH △220x x a +-=()2²24104y m x x m =-++-m =2558s t t =-ABC △65BAC ∠=︒ABC △AB C ''△C C '//C C AB 'BAB '∠=2y ax bx c =++()3,0-1x =-0abc >420a b c ++>13,2y ⎛⎫- ⎪⎝⎭21,2y ⎛⎫⎪⎝⎭12y y >y c ≤20x -≤≤(第15题)三、解答题(共8小题,满分75分)16.(10分)解下列方程:(1);(2).17.(9分)如图,的顶点都在方格线的交点(格点)上.(1)若将绕点旋转180°,点A 的对应点的坐标是(______,______);(2)将绕C 点按逆时针方向旋转90°得到,请在图中画出并写出点,的坐标.(第17题)18.(9分)已知二次函数的图象过点,.(1)求这个二次函数的解析式;(2)已知二次函数与直线交于点,,请结合图象直接写出方程的解.(第18题)19.(9分)某商店准备销售一种多功能文件夹,计划从厂家以每个8元的价格进货,经过市场调研发现,当每个文件夹的售价为10元时,月均销量为100个,售价每增长1元,月均销量就相应减少10个.(1)若使这种文件夹的月均销量不低于50个,每个文件夹售价应不高于多少元?()()273273x x +=+2640x x --=ABC △ABC △()0,21A ABC △A B C '''△A B C '''△A 'B '2y x bx c =++()0,3A ()1,0B 2y x bx c =++y mx n =+()1,0B ()4,3C 2x bx c mx n ++=+(2)在(1)的条件下,当这种文件夹销售单价为多少元时,销售利润是320元.20.(9分)阅读材料:材料1:若关于x 的一元二次方程的两个根为,,则:..材料2:已知一元二次方程的两个实数根分别为m ,n ,求的值.解:∵一元二次方程的两个实数根分别为m ,n .∴,,则.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程的两个根为,,则______;______.(2)类比应用:已知一元二次方程的两根分别为m ,n ,求的值.21.(9分)如图,排球运动场的场地长18m ,球网高度2.43m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2.2m ,当排球飞行到距离球网3m 时达到最大高度2.8m .小洛在下图中建立了平面直角坐标系,求得该抛物线的表达式为.根据以上信息,解答下列问题:(1)请在下图中画出小洛建立的平而直角坐标系;(2)判断排球能否过球网,并说明理由;(3)判断排球是否会出界,并说明理由.22.(10分)对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足,那么称这个函数是有上界函数.在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,函数是有上界函数,其上确界是2.(1)函数①,②,③中是有上界函数的为______(只填序号即可),请挑选其中的任意一个有上界函数并求出其上确界;()200ax bx c a ++=≠1x 2x 12b x x a +=-12cx x a=210x x --=22m n mn +210x x --=1m n +=1mn =-()22111m n mn mn m n +=+=-⨯=-22510x x --=1x 2x 12x x +=12x x =2350x x --=n mm n+21 2.860x y =-+y M ≤()232y x =--+()235y x x =-+≥234y x x =++2241y x x =-++(2)如果函数是以3为上确界的有上界函数,求实数a 的值.23.(10ABCD 与边长为的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与AC 在同一直线上.连接DG ,BE ,易得且(不需要说明理由).(1)如图2,小明将正方形ABCD 绕点A 逆时针旋转,旋转角为.①连接DG ,BE ,判断DG 与BE 的数量关系和位置关系,并说明理由;②在旋转过程中,如图3,连接BG ,GE ,ED .DB ,求四边形BGED 面积的最大值.(2)如图4,分别取BG ,GE ,ED ,DB 的中点M ,N ,P ,Q ,连接MN ,NP ,PQ ,QM ,则四边形MNPQ 的形状为______,四边形MNPQ 面积的最大值是______.()22315y x ax x =-+≤≤DG BE =DG BE ⊥()15165αα︒<<︒洛阳市涧西区2023—2024学年第一学期期中考试九年级数学参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅。

北京市海淀区北京大学附属中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

北京市海淀区北京大学附属中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024~2025学年度第一学期期中练习九年级数学学科试卷2024年11月考生须知:1.本试卷共8页,共三道大题,28道小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写班级、姓名.3.答案一律填涂或书写在答题卡相应位置上,用黑色字迹签字笔作答.4.考试结束,只交答题卡,并妥善保管试卷.一、选择题(共16分,每题2分)第1~8题均有四个选项,符合题意的选项只有一个.1.下列图形中,既是中心对称图形也是轴对称图形的是( ).A .B .C .D .2.在平面直角坐标系内,点关于原点的对称点Q 的坐标为( ).A .B .C .D .3.一元二次方程的解是( ).A .,B .C .,D .,4.抛物线的顶点坐标是( ).A .B .C .D .5.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是( ).A .B .C .D .6.北京市2021年人均可支配收入为7.5万元,2023年达到8.18万元,若2021年至2023年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( ).A .B.()3,2P -()3,2-()3,2()2,3-()3,2--20x x +=10x =21x =121x x ==11x =-21x =10x =21x =-()212y x =-+()1,2()1,2-()1,2-()1,2--144︒90︒72︒60︒()28.1817.5x +=()27.518.18x +=C .D .7.如图所示,在4×4的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心是( ).A .点AB .点BC .点CD .点D8.如图,是边长为4的等边三角形,D 是BC 的中点,E 是直线上的一个动点,连接,将线段绕点C 逆时针旋转得到,连接.下列说法中正确的个数是( ).①;②;③;④点E 的运动过程中,的最小值是1.A .1个B .2个C .3个D .4个二、填空题(共16分,每题2分)9.请写出一个图象开口向上,且与y 轴交于点)的二次函数的解析式__________.10.关于x 的一元二次方程有一个根是,则__________.11.若关于x 的方程有两个相等的实数根,则实数a 的值是__________.12.如图,为的直径,点C 是上的一点,,则__________°.13.点,在抛物线上,则__________(填“>”“<”或“=”).14.如图,在平面直角坐标系中,点,,以点B 为旋转中心,把线段顺时针旋转得到线段,则点C 的坐标为__________.()27.518.18x -=+()28.1817.5x -=MNP △111M N P △ABC △AD EC EC 60︒FC DF 2DC =FCD ECA ∠=∠CE CF =DF ()0,1230x x m -+=1x =m =20x x a -+=AB O e O e 70ABC ∠=︒BAC ∠=()13,A y -()22,B y 22y x =1y 2y xOy ()0,2A ()1,0B BA 90︒BC15.如图,将绕顶点C 逆时针旋转得到,且点B 刚好落在上,若,,则等于__________°.16.已知函数,下列结论:①若该函数图象与x 轴只有一个交点,则;②方程至少有一个整数根;③若,则的函数值都是负数;④不存在实数a ,使得对任意实数x 都成立.所有正确结论的序号是__________.三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:(1);(2).18.如图,在平面直角坐标系中,抛物线的部分图象经过点,.(1)求该抛物线的解析式;(2)结合函数图象,直接写出时,x 的取值范围.19.已知m 是方程的一个根,求代数式的值.20.已知:如图,为锐角三角形,.求作:一点P ,使得.ABC △A B C ''△A B ''25A ∠=︒45BCA =∠'︒A BA '∠()211y ax a x =-++1a =()2110ax a x -++=11x a<<()211y ax a x =-++()2110ax a x -++≤24250x -=2280x x +-=xOy 22y ax x c =++()0,3A -()1,0B 0y <2220x x --=()()()22111m m m -+-+ABC △AB AC =APC BAC ∠=∠作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点C ,D 两点;③连接并延长交于点P .点P 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接,.∵,∴点C 在上.∵,∴∠______=∠______.∴.∵点D ,P 在上,∴.(__________)(填推理的依据)∴.21.如图,是等边三角形,点D 在边上,以为边作等边,连接,.求证:.22.已知关于x 的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程两个根差为1,求此时m 的值.23.学校计划利用一片空地建一个长方形自行车车棚,其中一面靠墙,墙的长度为8米.在与墙平行的一面开一个2米宽的门,已知现有的木板材料可修建的总长为26米,且全部用于除墙外其余三面外墙的修建.(1)长方形车棚与墙垂直的一面至少为__________米;(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路(如图中阴影),若车棚与墙AB BC A e DA A e PC BD AB AC =A e BC BD =12BAC CAD ∠=∠A e 12CPD CAD ∠=∠APC BAC ∠=∠ABC △AC CD CDE △BD AE BD AE =()2320m x x m -+++=垂直的一面长按(1)中的最小长度,则停放电动车的区域面积能否达到54平方米,若能,此时小路的宽度是多少米?若不能,请说明理由.24.如图,是直径,是的一条弦,且于点E ,连接、和.(1)求证:;(2)若,,求的半径.25.有机肥作为一种富含有机质及多样营养元素的优质肥料,对于土壤改良及肥力提升具有显著效果.将其应用于小树施肥,不仅能有效供给必要的养分,还能优化土壤结构,进而促进小树的茁壮成长.在针对金叶女贞和连翘这两种植物的培育过程中,我们统一施用了A 种有机肥,并确保了它们在浇水、松土、除草等抚育管理措施上的一致性.以下表格详细记录了A 种有机肥对这两种植物增长高度的影响:天数t /天1530456090金叶女贞增长的高度 3.3 6.39.612.615.919.3连翘增长的高度 1.14.09.115.636.2(1)通过分析数据,发现与t 之间近似满足正比例函数关系.请在给出的平面直角坐标系中,画出关于t 的函数的图象;(2)观察图象,补全表格(结果保留小数点后一位);(3)实验前,测量金叶女贞的高度为,连翘的高度为,大概在第__________天时,连翘和金叶女贞一样高(结果保留到整数).26.已知关于x 的二次函数上两个不同的点,.(1)求顶点坐标;(2)若且时,总有,求m 的取值范围.27.已知,点D 是直线上一动点(不含B 点),连接,将线段绕点A 逆时针旋转得到线段,连接线段,过点E 作交直线于点F .AB O e CD O e CD AB ⊥AC BD OC ACO D ∠=∠2BE =CD =O e 1cm h 2cmh 1h 2h 43.6cm 31.2cm 221y mx mx m =-+-()11,A x y ()22,B x y 145x <<221x m =-12y y <60ABC ∠=︒BC AD AD 60︒AE ED EF AB ⊥AB图1备用图(1)如图1,点D 在点B 右侧时,①依题意补全图形;②用等式表示与的数量关系,并证明;③用等式表示线段,,之间的数量关系,并证明;(2)当点D 在直线上运动时,请直接写出线段,,之间的数量关系.28.在平面直角坐标系中,点,点为定点,对于点P 作如下变换,将点P 绕点M 逆时针旋转得到点,再将点绕点N 逆时针旋转后得到点Q ,则称点Q 为点P 的“双逆转点”.备用图1 备用图2(1)若点P 为线段上的一点,则在点,,中,点P 的“双逆转点”可能为__________;(2)若点P 的“双逆转点”在x 轴上,请写出一个满足条件的点P 的坐标__________;(3)若点P 坐标为,点Q 为点P 的“双逆转点”,①当长度最短时,求m 的值;②已知半径为2,若存在过点Q 的直线被所截得的弦长为2,则m 的取值范围为__________.EAB ∠EDB ∠BF BD AB BC BF BD AB xOy ()0,2M ()1,0N 90︒1P 1P 90︒MN ()1,1A --()1,0B -()2,1C -(),4m m +PQ N e N e初三第一学期期中练习答案和评分标准数学2024.11一、选择题(本题共6分,每小题2分)题号12345678答案CADACBBD二、填空题(本题共16分,每小题2分)9.(答案不唯一) 10.2 11.12.2013.>14.15.40 16.②④(答对一个给1分,多选或错选不得分)三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)17.(1)(一个答案2分,如果只会移项给1分)(2),,.(不限方法,不全对的酌情给分)18.(1)由题意知,(2分)解得,解析式为.(3分)(2).(5分)19.解.原式.(3分)∵,∴,(4分)∴原式.(5分)20.(1)如图所示.(2分)(2),,一条弧所对的圆周角等于它所对圆心角的一半.(5分)21.证明:∵,均为等边三角形,∴,,.21y x =+14()3,152x =±2280x x +-=14x =-22x =3230c a =-⎧⎨+-=⎩31c a =-⎧⎨=⎩223y x x =+-31x -<<()()222212123m m m m m =--++=--2220m m --=222m m -=231=-=-BAC BAD ABC △CDE △AC BC =CD CE =60ACB ACE ∠=∠=︒在与中,,∴≌(SAS ),(4分)∴.(5分)22.(1)∵,∴方程总有两个实数根.(2分)(2)解:∵,∴,∴,.∵方程两个根的差为1,∴或0.∴或.(5分)23.解:(1).(2分)(2)设小路的宽为a 米,根据题意得,.(4分)整理得;,解得:(舍去),.(5分)答:小路的宽为1米.24.(1)证明;∵,∴,∵,∴.(2分)(2)解,设的半轻为r ,则.∵,∴(3分)在中,,解得.( 5分)25.(1)(2分)(2)23~30之间均可.(4分)(3)78~86之间均可.(5分)26.(1)由题意可知:,∵,∴顶点坐标为.(2分)BCD △ACE △60AC BC ACB ACE CD CE =⎧⎪∠=∠=︒⎨⎪=⎩BCD △ACE △BD AE =()()()234210m m m ∆=+-+=+≥()2320x m x m -+++=()()210x m x ---=12x m =+21x =22m +=0m =2-10x ≥()()821054a a --=214130a a -+=13a =1a =OA OC =ACO A ∠=∠A D ∠=∠ACO D ∠=∠O e 2OE r =-CD AB ⊥1122CE DE CD ===⨯=Rt OCE △(()2222r r +-=3r =0m ≠()()2222121111y mx mx m m x x m x =-+-=-+-=--()1,1-法2:对称轴,当时,,∴顶点坐标为.(2分)(2)当时,对称轴是直线,当时,y 随x 的增大而增大;当时,y 随x 的增大而减小.∵,∴点始终在对称轴右侧,若A 、B 在对称轴右侧,,即时,∵,∴,∴,若A 、B 在对称轴异侧,,即时,关于对称轴的对称点是.∵,∴,即,∴(舍) .综上所述:.(4分)当时,对称轴是直线,当时,y 随x 的增大而减小;当时,y 随x 的增大而增大.∵,,∴,,关于对称轴的对称点是 .∵,∴,即,2122b m x a m-=-=-=1x =211y m m m =-+-=-()1,1-0m >1x =1x ≥1x <145x <<()11,A x y 2211x m =->1m >12y y <215m -≥3m ≥2211x m =-<1m <()22,B x y ()222,B x y '-12y y <225x -≥()2215m --≥1m ≤-3m ≥0m <1x =1x ≥1x <221x m =-145x <<2211x m =-<1145x <<<()22,B x y ()222,B x y '-12y y <224x -≤()2214m --≤∴,∴.(6分)综上所述:或.27.(1)①补全图形,如图所示(1分)②,(2分)理由如下:∵线段绕点A 逆时针旋转得到线段,∴,,∴是等边三角形,∴.∵,∴.∵在四边形中,,∴,∴.(3分)③,理由如下:(4分)延长线段至点G 使得,连结,.∵,,∴.∵是等边三角形,∴.在和中,,∴≌(SAS ),(5分),∴.∵,∴.∵,,,∴.(6分)(2)当点D 在点B 右侧时,,当点D 在点B 左侧时,.(7分)12m ≥-102m -≤<102m -≤<3m ≥180EAB BDE ∠+∠=︒AD 60︒AE AE AD =60EAD ∠=︒AED △60AED ∠=︒60ABC ∠=︒180120ABD ABC ∠=︒-∠=︒ABDE 360EAB ABD BDE DEA ∠+∠+∠+∠=︒12060360EAB BDE ∠+︒+∠+︒=︒180EAB BDE ∠+∠=︒2BF AB BD =+BA AG BD =EG EB 180EAG EAB ∠+∠=︒180EAB EDB ∠+∠=︒EAG EDB ∠=∠AED △EA ED =EGA △EBD △EA EDEAG EDB GA BD =⎧⎪∠=∠⎨⎪=⎩EGA △EBD △EG EB =EF BF ⊥GF FB =BG BA GA =+GA BD =2BG BF =2BF BA BD =+2BF AB BD =+2BF AB BD =-28.(1)A ,C .(2分)(2)答案不唯一,纵坐标为1即可.(3分)(3)①(5分)②或(7分)2m =-m≥m ≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级第一学期期中数学试卷一、选择题:(每小题3分,10小题,共30分)1.(3分)下列各组数中,相等的一组是()A.﹣2和﹣(﹣2)B.﹣|﹣2|和﹣(﹣2)C.2和|﹣2|D.﹣2和|﹣2|2.(3分)下列各式中,正确的是()A.=﹣8B.﹣=﹣8C.=±8D.=±83.(3分)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)4.(3分)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度5.(3分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分6.(3分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.77.(3分)已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个8.(3分)如图所示,是反比例函数y=与y=在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于A点和B点,若点P在x轴上运动,则△ABP的面积等于()A.5B.4C.10D.209.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是()A.4B.6C.8D.1010.(3分)如图所示为二次函数y=ax2+bx+c(a≠0)图象一部分,则以下正确的有:①b>2a;②ax2+bx+c =0的两根分别为﹣3和1;③a﹣2b+c<0;④a+b+c=0;⑤8a+c>0,其中正确的有()A.①②B.②③C.②③④D.②③④⑤二、填空题:(每小题3分,10小题,共30分)11.(3分)在Rt△ABC中,∠C=90°,sin A=,则tan A=.12.(3分)单项式﹣π2x2y的系数是,次数是.13.(3分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于.14.(3分)计算﹣2+7=.15.(3分)在反比例函数y=(x<0)中,函数值y随着x的增大而减小,则m的取值范围是.16.(3分)一条抛物线,顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,则它的函数表达式是.17.(3分)若(x+y)(x+2+y)=15,则x+y=.18.(3分)如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m﹣n=.19.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).20.(3分)如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=.三、解答题:(本题共7小题,总分60分.其中第21题6分,第22题8分,第23题8分,第24题9分,第25题9分,第26题10分,第27题10分.)21.(6分)计算:()﹣2+|﹣2|﹣+6cos30°+(π﹣3.14)0.22.(8分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k ≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.23.(8分)如图,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.求证:四边形OBDC是菱形.24.(9分)已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.25.(9分)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙,O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AE的长.26.(10分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)填空:在秒时,△PCQ的面积为△ACB的面积的;(2)经过几秒,以P、C、Q为顶点的三角形与△ACB相似?(3)如图2,设CD为△ACB的中线,则在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.27.(10分)如图,抛物线y=x2+2x﹣3的图象与x轴交于点A、B(A在B左侧),与y轴交于点C,点D 为抛物线的顶点.(1)求△ABC的面积;(2)P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标;(3)若抛物线上只有三个点到直线CD的距离为m,求m的值.参考答案与试题解析一、选择题:(每小题3分,10小题,共30分)1.(3分)下列各组数中,相等的一组是()A.﹣2和﹣(﹣2)B.﹣|﹣2|和﹣(﹣2)C.2和|﹣2|D.﹣2和|﹣2|【分析】运用相反数和绝对值的知识,先化简﹣(﹣2)、﹣|﹣2|、|﹣2|,再判断相等的一组.【解答】解:因为﹣(﹣2)=2,﹣|﹣2|=﹣2,|﹣2|=2,所以选项A、B、D中的两个数均不相等,只有选项D中的两个数相等.故选:C.【点评】本题考查了相反数和绝对值的化简,题目难度不大.2.(3分)下列各式中,正确的是()A.=﹣8B.﹣=﹣8C.=±8D.=±8【分析】直接利用二次根式的性质化简得出答案.【解答】解:A、=8,故此选项错误;B、﹣=﹣8,故此选项错正确;C、=8,故此选项错误;D、=8,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质化简,正确化简二次根式是解题关键.3.(3分)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x(1﹣4x2)=x(1+2x)(1﹣2x),故选:C.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.(3分)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度【分析】小宇所列方程是依据相等关系:原计划所用时间﹣实际所用时间=6,可知方程中未知数x所表示的量.【解答】解:设原计划每天铺设管道x米,则实际每天铺设管道(1+10%)x,根据题意,可列方程:﹣=6,所以小宇所列方程中未知数x所表示的量是原计划每天铺设管道的长度,故选:D.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.5.(3分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分【分析】根据平行四边形、菱形的判定和性质一一判断即可;【解答】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.7.(3分)已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个【分析】根据锐角函数的正弦是增函数,余弦是减函数,正切是增函数,可得答案.【解答】解:由0<α<45°,得0<sinα<,故①正确;cosα>sinα,故②错误;sin2α=2sinαcosα<2sinα,故③错误;0<tanα<1,故④正确;故选:B.【点评】本题考查了锐角函数的增减性,熟记锐角函数的正弦是增函数,余弦是减函数,正切是增函数是解题关键.8.(3分)如图所示,是反比例函数y=与y=在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于A点和B点,若点P在x轴上运动,则△ABP的面积等于()A.5B.4C.10D.20【分析】设点A(a,),可得点B坐标(﹣,),即可求△ABP的面积.【解答】解:设点A(a,)∵AB∥x轴∴点B纵坐标为,且点B在反比例函数y=图象上,∴点B坐标(﹣,)∴S△ABP=(a+)×=5故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,设点A(a,),利用字母a表示AB的长度和线段AB上的高,是本题的关键.9.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是()A.4B.6C.8D.10【分析】连接OC,根据题意得出OC=5,再由垂径定理知,点E是CD的中点,CE=CD,在直角△OCE中,由勾股定理得出CE,从而得出CD的长.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD,在Rt△OCE中,OC2=OE2+CE2,∵AE=2,AB=10,∴OC=5,OE=3,∴CE=4,∴CD=8,故选:C.【点评】本题考查了垂径定理,掌握垂径定理的内容是解题的关键.10.(3分)如图所示为二次函数y=ax2+bx+c(a≠0)图象一部分,则以下正确的有:①b>2a;②ax2+bx+c=0的两根分别为﹣3和1;③a﹣2b+c<0;④a+b+c=0;⑤8a+c>0,其中正确的有()A.①②B.②③C.②③④D.②③④⑤【分析】①由抛物线的对称轴为直线x=﹣1,可得出b=2a,结论①错误;②由抛物线的对称轴及抛物线与x轴一个交点的坐标,可求出另一交点坐标,进而可得出ax2+bx+c=0的两根分别为﹣3和1,结论②正确;③由抛物线的开口方向及抛物线与y轴交点的位置可得出a>0,c<0,结合b=2a,即可得出a﹣2b+c=﹣3a+c<0,结论③正确;④由当x=1时y=0,可得出a+b+c=0,结论④正确;⑤由当x =2时y>0结合b=2a,可得出4a+2b+c=8a+c>0,结论⑤正确.综上即可得出结论.【解答】解:①∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,结论①错误;②∵抛物线的对称轴为直线x=﹣1,抛物线与x轴一个交点的坐标为(1,0),∴抛物线与x轴另一交点的坐标为(﹣3,0),∴ax2+bx+c=0的两根分别为﹣3和1,结论②正确;③∵抛物线开口向上,与y轴交于负半轴,∴a>0,c<0,∴a﹣2b+c=a﹣4a+c=﹣3a+c<0,结论③正确;④∵当x=1时,y=0,∴a+b+c=0,结论④正确;⑤∵当x=2时,y>0,∴4a+2b+c=8a+c>0,结论⑤正确.综上所述:正确的结论有②③④⑤.故选:D.【点评】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征以及抛物线与x轴的交点,观察函数图象,逐一分析五个结论的正误是解题的关键.二、填空题:(每小题3分,10小题,共30分)11.(3分)在Rt△ABC中,∠C=90°,sin A=,则tan A=.【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,运用三角函数的定义解答.【解答】解:由sin A=知,可设a=4x,则c=5x,b=3x.∴tan A=.故答案为:.【点评】本题考查了同角三角函数的关系.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.12.(3分)单项式﹣π2x2y的系数是﹣π2,次数是3.【分析】直接利用单项式的定义分析得出答案.【解答】解:单项式﹣π2x2y的系数是:﹣π2,次数是:3.故答案为:﹣π2,3.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.13.(3分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于7或﹣1.【分析】根据已知完全平方式得出2(m﹣3)x=±2•x•4,求出即可.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)x=±2•x•4,解得:m=7或﹣1,故答案为:7或﹣1.【点评】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.14.(3分)计算﹣2+7=37.【分析】直接化简二次根式进而利用二次根式的加减运算法则计算得出答案.【解答】解:﹣2+7=4﹣2+7×5=37.故答案为:37.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15.(3分)在反比例函数y=(x<0)中,函数值y随着x的增大而减小,则m的取值范围是m>1.【分析】根据反比例函数的性质,构建不等式即可解决问题.【解答】解:∵反比例函数y=(x<0)中,函数值y随着x的增大而减小,∴m﹣1>0,∴m>1,故答案为m>1.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.16.(3分)一条抛物线,顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,则它的函数表达式是y =±(x﹣4)2﹣2.【分析】直接利用抛物线形状相同,则|a|的值相等,进而结合函数顶点坐标得出答案.【解答】解:由题意可得:顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,它的函数表达式是:y=±(x﹣4)2﹣2.故答案为:y=±(x﹣4)2﹣2.【点评】此题主要考查了二次函数的性质,正确得出a的值是解题关键.17.(3分)若(x+y)(x+2+y)=15,则x+y=﹣5或3.【分析】令x+y=a,将原等式变形为a2+2a﹣15=0,解此一元二次方程可得答案.【解答】解:令x+y=a,则a(a+2)=15,∴a2+2a﹣15=0,∴(a+5)(a﹣3)=0,则a+5=0或a﹣3=0,解得:a=﹣5或a=3,即x+y=﹣5或x+y=3,故答案为:﹣5或3.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及换元思想的运用.18.(3分)如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m﹣n=17.【分析】设阴影部分面积为x,根据空白部分面积表示出两个矩形的面积,相减即可求出所求.【解答】解:设阴影部分面积为x,根据题意得:m+x=26,n+x=9,∴m﹣n=17,故答案为:17【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.20.(3分)如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=2﹣..【分析】探究规律,利用规律即可解决问题;【解答】解:∵∠MON=45°,∴△C1B2C2为等腰直角三角形,∴C1B2=B2C2=A2B2.∵正方形A1B1C1A2的边长为2,∴OA3=AA3=A2B2=A2C1=1.OA1=4,OM=OB1==2同理,可得出:OA n=A n﹣1A n=A n﹣2A n﹣1=,∴OA2018=A2018A2017=,∴A2018M=2﹣.故答案为2﹣.【点评】本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.三、解答题:(本题共7小题,总分60分.其中第21题6分,第22题8分,第23题8分,第24题9分,第25题9分,第26题10分,第27题10分.)21.(6分)计算:()﹣2+|﹣2|﹣+6cos30°+(π﹣3.14)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=9+2﹣﹣2+6×+1=12.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k ≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)根据函数图象,写出反比例函数的图象在菱形内部的自变量的取值范围即可;【解答】解:(1)∵点E(﹣4,)在y=上,∴k=﹣2,∴反比例函数的解析式为y=﹣,∵F(m,2)在y=上,∴m=﹣1.(2)函数y=图象在菱形ABCD内x的取值范围为:﹣4<x<﹣1或1<x<4.【点评】本题考查反比例函数图象上点的特征、菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(8分)如图,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.求证:四边形OBDC是菱形.【分析】连接OD,证明△BOD和△COD都是等边三角形,得OB=BD=DC=OC,所以四边形OBDC 是菱形.【解答】证明:连接OD,∵∠BAC=60°,∴∠BOC=120°,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠CAD,∴,∴∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD和△COD都是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形.【点评】此题考查圆周角定理、角平分线的定义、等边三角形的判定、菱形的判定,关键是熟知有一个角是60度的等腰三角形是等边三角形以及菱形的判定解答.24.(9分)已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【分析】(1)根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围;(2)根据根与系数的关系结合x1+x2=x1x2+2,即可得出关于k的分式方程,解之经检验后即可得出k值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.【点评】本题考查了根的判别式、根与系数的关系以及一元二次方程的定义,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x1+x2=x1x2+2,找出关于k的分式方程.25.(9分)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙,O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AE的长.【分析】(1)连接OC,由AC平分∠EAP,得到∠DAC=∠OAC,由等腰三角形的性质得到∠CAO=∠ACO,等量代换得到∠DAC=∠ACO,根据平行线的性质得到∠E=∠OCP=90°,于是得到结论;(2)设PB=x,PC=2x,根据勾股定理得到PC=,PB=,求得AP=,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OC,∵AC平分∠EAP,∴∠DAC=∠OAC,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴AE∥OC,∴∠E=∠OCP=90°,∴PE是⊙O的切线;(2)∵PB:PC=1:2,∴设PB=x,PC=2x,∵OC2+PC2=OP2,即()2+(2x)2=(+x)2,∴x=,∴PC=,PB=,∴AP=,∵OC∥AE,∴△PCO∽△PEA,∴,∴AE=4.【点评】本题考查了切线的判定,相似三角形的判定和性质,勾股定理,熟记切线的判定是解题的关键.26.(10分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)填空:在2或4秒时,△PCQ的面积为△ACB的面积的;(2)经过几秒,以P、C、Q为顶点的三角形与△ACB相似?(3)如图2,设CD为△ACB的中线,则在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ =∠B,则有或,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么,依此列出比例式,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;故答案为:2或4;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有或,所以,或,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;(3)有可能.在Rt△ABC中,∠C=90°,AC=8m,BC=6m,由勾股定理得AB==10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又∵PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴,,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,在(2)中体现了分类讨论的思想.27.(10分)如图,抛物线y=x2+2x﹣3的图象与x轴交于点A、B(A在B左侧),与y轴交于点C,点D 为抛物线的顶点.(1)求△ABC的面积;(2)P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标;(3)若抛物线上只有三个点到直线CD的距离为m,求m的值.【分析】(1)先求出点A,B,C坐标,最后用三角形的面积公式即可得出结论;(2)①当点P在第三象限时,先作出图形,再构造出全等三角形,设出点M的坐标,进而表示出点P 坐标,即可得出结论,当点P在第二象限时,同①的方法即可得出结论;(3)先判断出直线CD下方的抛物线上只有一个点到直线CD的距离为m,再求出直线CD解析式,进而求出直线EG的解析式,最后判断出△CFE∽△COH,即可得出结论.【解答】解:(1)针对于抛物线y=x2+2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x2+2x﹣3=0,∴x=﹣3或x=1,∴A(﹣3,0),B(1,0),∴S△ABC=AB×|y C|=6;(2)如图,①点P在第三象限时,∵抛物线y=x2+2x﹣3的对称轴为直线x=﹣1,∴AQ=2过点P作PG⊥DM于G,∴∠PGM=∠MQA=90°,∴∠MPG+∠PMG=90°,∵∠AMP=90°,∴∠PMG+∠AMQ=90°,∴∠MPG=∠AMQ,在△PGM和△MQA中,,∴△PGM≌△MQA(AAS),∴MG=AQ=2,PG=QM,设M(﹣1,m)(m<0),∴QM=﹣m,∴PG=﹣m,QG=QM+MG=2﹣m,∴P(m﹣1,m﹣2),∵点P在抛物线y=x2+2x﹣3上,∴(m﹣1)2+2(m﹣1)﹣3=m﹣2,∴m﹣1=﹣2或m﹣1=1(舍),∴P(﹣2,﹣3).②当点P在第二象限时,同①的方法得,P(﹣4,5);(3)∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),∵C(0,﹣3),∴直线CD的解析式为y=x﹣3,如图1,作直线EG∥CD交y轴于E,交x轴于G,设直线EG的解析式为y=x+b①,∵抛物线上只有三个点到直线CD的距离为m,∴在直线CD下方的抛物线上只有一个点到直线CD的距离为m,即直线EG与抛物线y=x2+2x﹣3②只有一个交点,联立①②得,x2+2x﹣3=x+b,∴x2+x﹣3﹣b=0,∴△=1+4(b+3)=0,∴b=﹣,∴直线EG的解析式为y=x﹣,∴E(0,﹣),∴OE=,∵直线CD的解析式为y=x﹣3,∴H(3,0),∴OH=3,OC=3,∴CH=3,CE=﹣3=,直线过点E作EF⊥CD于F,∴∠CFE=∠COH,∵∠ECF=∠HCO,∴△CFE∽△COH,∴,∴,∴EF=,即:m=.【点评】此题是二次函数综合题,主要考查了三角形的面积公式,全等三角形的判定和性质,相似三角形的判定和性质,利用方程的思想解决问题是解本题的关键.。

相关文档
最新文档