STM32Uart串口中断响应、发送接收详细程序
stm32 的串口通信操作方法
一、概述在嵌入式系统开发中,串口通信是非常常见且重要的一种通信方式。
而对于使用STM32系列单片机的开发者来说,了解和掌握STM32的串口通信操作方法显得尤为重要。
本文将详细介绍在STM32上进行串口通信的方法和步骤,帮助开发者更好地应用串口通信功能。
二、认识STM32的串口通信1. 串口通信的基本原理串口通信是一种通过串行接口进行数据传输的通信方式。
在STM32中,串口通信可以通过UART、USART等外设来实现。
串口通信的基本原理是将数据串行发送和接收,通过设定波特率等参数来实现数据传输。
2. STM32的串口通信外设STM32系列单片机中,常用的串口通信外设有UART和USART。
它们可以通过配置相关寄存器和引脚,实现串口通信的功能。
开发者需要了解这些外设的功能和特点,才能正确地进行串口通信的操作。
三、配置串口通信的硬件1. 硬件连接在进行STM32的串口通信前,需要先连接好串口通信的硬件,包括连接好串口通信的引脚,以及通过适当的线序连接到外部设备或另一块开发板上。
2. 引脚复用设置在STM32中,很多引脚都具有多种功能,可以通过引脚复用功能来设置为串口通信功能。
开发者需要根据具体的芯片型号和引脚图来正确地设置引脚复用。
3. 时钟配置串口通信外设需要时钟信号来进行数据的同步和传输。
需要在STM32的时钟配置中确保串口通信外设的时钟信号正常。
四、配置串口通信的软件1. 寄存器配置通过配置相关的寄存器,来设置串口通信的参数,如波特率、数据位、停止位、校验位等。
不同的串口通信外设可能有不同的寄存器和参数设置方式,开发者需要根据具体的外设手册来完成寄存器的配置。
2. 中断或轮询方式在STM32中,可以通过中断或者轮询的方式来进行串口通信的数据传输。
中断方式通常可以提高系统的响应速度,而轮询方式则更加简单直接。
开发者可以根据需求选择合适的方式来进行串口通信操作。
3. 数据收发操作通过读写相应的寄存器,实现串口通信数据的发送和接收。
stm32跑RT-thread之串口操作简介
UART 设备 UART 简介UART( Uni versal Asynchronous Receiver/Tra nsmitter)通用异步收发传输器,UART 作为异步串口通信协议的一种,工作原理是将传输数据的每个字符 一位接一位地传输。
是在应用程序开发过程中使用频率最高的数据总线。
UART 串口的特点是将数据一位一位地顺序传送,只要 实现双向通信,一根线发送数据的同时用另一根线接收数据。
几个重要的参数,分别是波特率、起始位、数据位、停止位和奇偶检验位,对 于两个使用UART 串口通信的端口,这些参数必须匹配,否则通信将无法正常 完成。
UART 串口传输的数据格式如下图所示:2根传输线就可以UART 串口通信有? 起始位:表示数据传输的开始,电平逻辑为 “0 。
?数据位:可能值有5、6、7、8、9,表示传输这几个bit 取值为8,因为一个ASCII 字符值为8位。
?奇偶校验位:用于接收方对接收到的数据进行校验,校验 为偶数(偶校验)或奇数(奇校验),以此来校验数据传送的正确性, 要此位也可以。
? 停止位:表示一帧数据的结束。
电平逻辑为“ 1”。
?波特率:串口通信时的速率,它用单位时间内传输的二进制代码的有效位(bit)数来表示,其单位为每秒比特数 bit/s(bps)4800、9600、14400、38400、115200 等, 115200表示每秒钟传输115200位数据。
访问串口设备应用程序通过RT-Thread 提供的I 关接口如下所示:I/O 位数据。
一般 “ 1 ”的位数使用时不需。
常见的波特率值有 数值越大数据传输的越快,波特率为设备管理接口来访问串口硬件,相查找串口设备应用程序根据串口设备名称获取设备句柄,进而可以操作串口设备,查找 设备函数如下所示,rt_device_t rt_device_find( const char* name);描述返回©找到对应设备将返回相应的S 备句柄/*接收模式参数*/narrc设备名称IRT NULL没有找到拾应的设笛对觀一般情况下,注册到系统的串口设备名称为 uart0 如下所示: ,uartl 等,使用示例#defi ne SAMP LE_UART_NAME "uart2"/*串口设备名称*/static rt device t serial; /*串口设备句柄*//*查找串口设备*/serial = rt_device_fi nd(SA MP LE_UART_NAME);打开串口设备通过设备句柄,应用程序可以打开和关闭设备,打开设备时,会检测设备 是否已经初始化,没有初始化则会默认调用初始化接口初始化设备。
stm32串口通信死在接收中断中的解决方法
stm32串⼝通信死在接收中断中的解决⽅法现象: 使⽤stm32f0xx系列的芯⽚,串⼝1使⽤接收中断时,当接收到⼀个数据时死在串⼝中断中,发⽣了串⼝中断溢出。
原因解释:在使⽤⼀个串⼝发数据的传感器过程中,发现程序第⼀次进⼊串⼝中断之后不再执⾏主函数的内容,中断中的内容也不执⾏。
查询⼤量资料后发现:串⼝在接收数据过多时,会出现串⼝溢出错误,并进⼊溢出中断(ORE中断)。
接下来是错误产⽣原因以及解决⽅法。
(1)什么是ORE中断?为什么会产⽣?产⽣原因如上所述。
ORE标志位在USART_SR寄存器,但值得注意的是,当我们打开串⼝接收中断时,同时也就打开了ORE中断。
(2)如何解决?看了上⾯的资料之后,我知道程序是死在了串⼝溢出中断。
处理中断时,我⾸先想到的是清除这个中断标志位,但是遇到了很多⿇烦。
解决⽅法: void USART1_IRQHandler(void){ /* 加⼊清除标志位,否则会卡死在串⼝中断服务函数中 */ uint8_t ucTemp; if(USART_GetITStatus(DEBUG_USARTx,USART_IT_RXNE)!=RESET) //检查 USART 是否发⽣中断 { USART_ClearITPendingBit(DEBUG_USARTx,USART_IT_RXNE); // 清中断标志 ucTemp=USART_ReceiveData(DEBUG_USARTx); } if(USART_GetFlagStatus(DEBUG_USARTx,USART_FLAG_ORE) == SET) // 检查 ORE 标志 { USART_ClearFlag(DEBUG_USARTx,USART_FLAG_ORE); USART_ReceiveData(DEBUG_USARTx); }}。
STM32UART详细使用说明整理
STM32UART详细使用说明整理1.引脚和时钟配置:首先,需要配置UART的引脚和时钟。
在STM32的引脚复用配置中选择UART功能,并配置GPIO的工作模式和引脚配置,使其与UART通信引脚相对应。
然后,配置UART的时钟源和时钟分频系数。
时钟源可以选择为系统时钟或外部时钟源。
2.初始化和配置:使用STM32提供的库函数,初始化UART控制寄存器。
配置波特率、数据位数、停止位数、奇偶校验位以及流控制等参数。
可以使用HAL库函数来完成配置,例如:```c/*初始化UART控制寄存器*/UART_HandleTypeDef huart;huart.Instance = USARTx;huart.Init.WordLength = UART_WORDLENGTH_8B;huart.Init.StopBits = UART_STOPBITS_1;huart.Init.Parity = UART_PARITY_NONE;huart.Init.Mode = UART_MODE_TX_RX;huart.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart.Init.OverSampling = UART_OVERSAMPLING_16;HAL_UART_Init(&huart);```3.数据发送:使用HAL库函数发送数据。
可以选择使用轮询方式还是中断方式发送数据。
轮询方式:```cuint8_t data[] = "Hello, World!";HAL_UART_Transmit(&huart, data, sizeof(data), HAL_MAX_DELAY);```中断方式:```cuint8_t data[] = "Hello, World!";HAL_UART_Transmit_IT(&huart, data, sizeof(data));```需要在发送数据之前开启UART的发送中断,并处理发送完成中断回调函数。
STM32实现USART DMA接收未知长度的数据和发送
前言:开始学USART DMA的时候看到帖子《STM32 UART DMA实现未知数据长度接收》,觉得方法妙极了。
此下出自此帖子——(整体的思路是这样的,一开始设置好DMA接收,可以把缓冲区长度设置为帧最大长度,我们可以把RX连接到定时器的管脚输入端,并且一开始设置输入并且使能引脚下降沿中断,当帧的第一个字节发送时,因为起始位为低电平,空闲时UART为高电平,满足条件,进入中断,禁止中断,并且在中断中开启定时器,该定时器工作在复位模式,上升沿复位,并且设置好定时器输出比较值为超时时间,比如20ms,这样,在传输后面字节时,肯定会有高低电平出现,即便是传输的是0x00,0xFF,虽然UART 数据区不变,但是都为1,或都为0,但是因为起始位为低电平,停止位是高电平,所以肯定会有上升沿,定时器会一直复位,输出定时器的计数器一直到达不了输出比较值,当一帧传输结束后,定时在最后一个字节复位后,由于没有数据继续到达,无法复位,则计数器就能计到输出比较值,这时发出中断,在定时器中断中可以计算出接收数据的长度,并且通知外部数据已经接收完毕。
)今天我在工作中调通了另一种USART DMA接收未知数据长度的接收,使用的是USRAT空闲总线中断接收,这种方法也在网站上比较多见,以前没试过,今天才知道如此的爽,另外我使用DMA发送USART数据替代了以前的查询法发送,发现更加爽了。
其速度快了很多,尤其是在大量数据传输与发送的时候其优势更加明显。
我举个例子:1、后台数据->USART1-> USART2->其它设备,其它设备数据->USART2-> USART1->后台,这两个数据过程也可能同时进行。
2、由于硬件的限制,USART1和USART2的传输波特率不一样,比如USART1使用GPRS通信,USART2使用短距离无线通信;或者USART1使用以太网通信,USART2使用485总线通信。
串口中断接收数据流程
串口中断接收数据流程串口(UART)中断接收数据是一个异步的过程,涉及一系列离散事件。
它允许微控制器在不连续地轮询串口状态的情况下接收串行数据。
1. 数据帧接收传输器将数据帧以串行比特流的形式发送到接收器。
数据帧由一个起始位、一个或多个数据位、一个奇偶校验位和一个停止位组成。
2. 起始位检测微控制器检测到串口线上电平从高转低,这表示起始位的开始。
3. 数据位接收微控制器在每个时钟周期采样串口线并读取数据位。
数据位数取决于串口配置,通常为 5、6、7 或 8 位。
4. 奇偶校验(可选)如果启用奇偶校验,微控制器会检查接收到的数据位的奇偶性和期望的奇偶性是否匹配。
5. 停止位检测接收器检测到串口线上电平从低转高,这表示停止位的开始。
6. 中断触发当接收到一个完整的帧时,微控制器会触发一个中断。
7. 中断服务程序(ISR)ISR负责读取接收到的数据帧并将其存储在缓冲区中。
ISR还可能会重置一些标志位,如数据溢出标志位,以确保正确接收后续数据帧。
影响因素串口中断接收数据流程的效率和可靠性受以下因素影响:波特率:波特率越低,接收数据所需的时间就越长。
数据位数:数据位数越多,每个帧的传输时间就越长。
奇偶校验:奇偶校验增加了额外的开销,但可以提高数据的可靠性。
中断响应时间:中断响应时间应足够快,以免丢失数据。
优化策略为了优化串口中断接收数据流程,可以采用以下策略:使用合适的波特率和数据位数:选择最能满足特定应用需求的波特率和数据位数。
仅在需要时启用奇偶校验:奇偶校验提供了可靠性,但增加了开销。
优化ISR:确保ISR高效且快速,以避免丢失数据。
使用正确的中断优先级:赋予串口接收中断一个适当的优先级,以确保它在需要时得到正确处理。
STM32 HAL库USART中断接收不定长数据——空闲中断法
STM32 HAL库USART中断接收不定长数据——空闲中断法STM32cubeMX软件配置好串口中断,导出工程并打开,定义串口接收缓冲区和接收长度的全局变量:uint8_t RX_data[1000];uint16_t RX_len;在main函数的初始化中开启IDLE中断并首次打开中断接收函数://开启IDLE中断__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//中断接收函数,这里设置最大接收长度为1000HAL_UART_Receive_IT(&huart1, (uint8_t*)RX_data, 1000);添加IDLE中断处理函数:void UsartReceive_IDLE(UART_HandleTypeDef *huart){__HAL_UART_CLEAR_IT(&huart1,UART_CLEAR_IDLEF); //清除中断RX_len = 1000 - huart1.RxXferCount; //计算接收数据长度HAL_UART_AbortReceive_IT(huart); //终止接收// 用户数据处理,如将接收到的内容重新发送// HAL_UART_Transmit_IT(&huart1, (uint8_t*)RX_data, RX_len);HAL_UART_Receive_IT(&huart1, (uint8_t*)RX_data, 1000); //接收完数据后再次打开中断接收函数}打开stm32fXxx_it.c文件(X视具体芯片系列),在USART1_IRQHandler()函数中添加IDLE中断服务:if(__HAL_UART_GET_IT(&huart1,UART_IT_IDLE) != RESET) //判断是否为IDLE中断{UsartReceive_IDLE(&huart1); //调用IDLE中断处理函数}。
stm32串口中断原理
stm32串口中断原理
STM32串口中断是指在串口收发数据时,通过中断方式进行
数据的处理和传输。
在STM32单片机中,串口通信是通过UART或USART模块实现的。
UART(Universal Asynchronous Receiver/Transmitter)是一种
通用异步收发器,主要用于串行通信。
USART(Universal Synchronous/Asynchronous Receiver/Transmitter)是一个更加
通用且功能更强大的串行通信接口,可同时支持异步和同步通信。
在STM32中,串口通信一般使用USART模块。
通过配置USART的寄存器,设置波特率、数据位、停止位、校验位等
参数。
然后,通过使能USART接收中断和发送中断,可以实
现接收和发送数据时的中断处理。
当有新的数据要发送时,CPU会将数据写入USART的发送缓冲区,并启动发送操作。
当发送操作完成后,USART会触发
发送完成中断,通知CPU可以继续发送下一个数据。
当收到新的数据时,USART会将数据存入接收缓冲区,并触
发接收完成中断,通知CPU可以读取接收到的数据。
在中断服务函数中,我们可以根据需要处理发送和接收的数据。
比如,可以通过发送中断函数来发送下一个数据,或者在接收中断函数中进行数据的处理和分析。
总的来说,STM32串口中断通过配置USART的相关寄存器和使能中断,实现了在数据收发过程中的中断处理。
这种方式可以提高效率和可靠性,使程序可以及时响应串口数据的变化。
stm32串口通信工作原理
stm32串口通信工作原理一、引言串口通信是一种常见的数据交换方式,在嵌入式系统中扮演着重要的角色。
本文将介绍s t m32单片机上串口通信的基本原理以及其工作流程。
二、串口通信概述串口通信是指通过串行通信接口,按照一定的协议和规则,将数据传输到另一个设备。
常用的串口通信接口有R S-232、R S-485和UA RT等。
三、s t m32串口通信的基本原理s t m32单片机具有多个串口外设,每个串口包含了发送和接收数据的功能。
串口的工作原理可以简述为以下几个步骤:1.配置串口参数在使用s tm32串口通信之前,需要先对串口进行配置。
包括波特率、数据位、停止位、校验位等参数的设定。
这些参数会影响数据的传输速率和可靠性。
2.发送数据当需要发送数据时,首先将待发送的数据写入发送缓冲区。
数据会按照之前设定的参数进行编码并传输出去。
发送完成后,会产生发送完成中断。
3.接收数据接收数据时,st m32单片机会将接收到的数据存储到接收缓冲区。
当接收缓冲区有数据时,会触发接收完成中断,应用程序可以读取缓冲区中的数据。
4.中断处理s t m32单片机支持中断功能,通过设置相应的中断使能标志位,可以实现在数据发送和接收过程中对中断的响应。
中断处理函数负责对中断进行处理,以确保数据的正确传输。
四、s t m32串口通信的工作流程下面将详细介绍s tm32串口通信的工作流程:1.配置串口参数:使用st m32提供的库函数,根据需求设置波特率、数据位、停止位和校验位等参数。
2.初始化串口:调用库函数进行串口初始化,包括G PI O引脚设置、时钟使能等。
3.发送数据:将待发送的数据写入发送缓冲区。
4.等待发送完成中断:等待发送完成中断的触发,表示数据发送完成。
5.接收数据:接收到数据后,存储到接收缓冲区。
6.判断是否有数据可读:检测接收缓冲区是否有数据可读。
7.读取数据:读取接收缓冲区中的数据。
8.中断处理:根据需要进行中断处理,如错误处理、数据处理等。
使用STM32CubeMX实现中断模式下的串口收发
单击 UART 按钮弹出设置窗口。
Baud Rate :波特率:此后生成的初始化程序会对波特率和 APB 总线频率进行自动换算。 Word Length:字长
Parity:校验位 Stop Bits:停止位 Data Direction:设置发送接收模式 Over Sampling:对接收信号的采样倍率。如果软件模拟串口一般 3 次采样/位就够了,这里 默认即可。
C)串口接收的实现方法 在 main.c 的 while(1)前执行
if(HAL_UART_Receive_IT(&huart5,aRxBuffer,1)!=HAL_OK)Error_Handler();开启接收中 断,准备接收。
在 main.c 中重写串口接收回调函数如下: void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) {
Uart5Ready_R = SET; Rx_Num_UART5 = ++Rx_count_UART5; Rx_count_UART5 = 0; } else Rx_count_UART5++; HAL_UART_Receive_IT(&huart5,aRxBuffer,1); //开启下一次接收中断 } } 在此回调函数中,每次接收到的字节 aRxBuffer[0]都会存入 Rxbuff[ ] ,Rx_count_UART5 自动加 1。结束字节为 0x0D 0x0A。一组字节接收结束后,Uart5Ready_R 将赋值为 SET, 接收字节数保存在 Rx_Num_UART5。 因为在调用 HAL_UART_IRQHandler(&huart5);时,调用了 UART_Receive_IT(),其中 执行了 __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE),所以接收中断必须在回调函 数中重新开启,最简单的就是重复调用 HAL_UART_Receive_IT(&huart5,aRxBuffer,1)了。
STM32 USART 串口 DMA 接收和发送的源码详解!
void DMA_Uart_Init(void) {
DMA_InitTypeDef DMA_InitStructure;
/* DMA clock enable */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // 开启 DMA1 时钟
// 优先级设置
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the USART Interrupt */ NVIC_InitStructure.NVIC_IRQChannel = LUMMOD_UART_IRQn;
生的,产生的条件是这样的,当清除 IDLE 标志位后,必须有接收到第一个数据
后,才开始触发,一断接收的数据断流,没有接收到数据,即产生 IDLE 中断。
USART 和 DMA 硬件初始化配置
/*--- LumModule Usart Config ---------------------------------------*/
/* Enable GPIO clock */ RCC_APB2PeriphClockCmd(LUMMOD_UART_GPIO_CLK , ENABLE ); // 开启串口所在 IO 端口的时钟 /* Enable USART Clock */ RCC_APB1PeriphClockCmd(LUMMOD_UART_CLK, ENABLE); // 开始串口时钟
否则当 DMA 接收计数器递减到 0 的时候,又会重载这个计数值,重新循环递
STM32串口中断接受数据教程
STM32串口中断接受数据教程在STM32系列微控制器中,使用串口接收数据可以通过中断方式实现,这种方式对于实时性要求较高的应用非常有用。
本教程将介绍如何在STM32中配置串口接收中断,并编写相应的中断服务程序来处理接收到的数据。
首先,我们需要初始化串口硬件和中断。
在STM32CubeIDE中,可以使用CubeMX来生成初始化代码。
在"Pinout & Configuration"选项卡中,选择所需的串口引脚,并设置相应的参数(如波特率、数据位、停止位等)。
然后,在"Configuration"选项卡中,启用串口的中断功能。
接下来,需要在代码中创建串口接收中断的回调函数。
在CubeMX生成的代码中,可以找到一个名为"USARTx_IRQHandler"的函数,其中"x"是串口的编号。
在这个函数中,可以添加处理接收数据的代码。
在回调函数中,可以使用HAL库提供的函数来判断是否接收到了新的数据。
例如,可以使用"__HAL_UART_GET_FLAG"函数来检查接收寄存器非空标志位,并使用"__HAL_UART_CLEAR_FLAG"函数清除该标志位。
然后,可以使用"__HAL_UART_GET_IT_SOURCE"函数来检查是否使能了接收中断。
如果使能了接收中断且接收寄存器非空,可以使用"__HAL_UART_CLEAR_IT"函数清除接收中断标志位,并使用"HAL_UART_RxCpltCallback"函数来处理接收到的数据。
在回调函数中,可以通过使用"HAL_UART_Receive_IT"函数来继续接收更多的数据。
此函数可以在接收完成后自动调用回调函数,以便连续接收数据。
在主函数中,可以使用"HAL_UART_Receive_IT"函数启动接收数据。
STM32 串口中断处理方法
调试发现是串口中断硬件 BUG:
1. USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);使能了接收中断,那么 ORE 中断也同 时被开启了。
2. ORE 中断只能使用 USART_GetFlagStatus(USART1, USART_FLAG_ORE) 读到(没有使 能 USART_IT_ERR 中断时) 解决办法:
4.找资料 STM32F10x 微控制器参考手册(2009 年 12 月第 10 版)P541 发现如下说明:
也就是说只要接收中断打开,即 RXNEIE 设置为 1,那么 ORE 中断也自动打开了。 可是 USART_GetITStatus(USART1, USART_IT_ORE )== RESET!!!! 找到 USART_GetITStatus(USART1, USART_IT_RXNE)函数,发现只有当 USART_IT_ERR 中断使 能时,才能读到 ORE 中断。 在这里要指出这个 BUG:产生 ORE 中断了,但使用 USART_GetITStatus()函数却无法读到这个中断被 SET 起来!
}
2.为什么会一直跑到接收中断? 断点之后发现(USART_GetITStatus(USART1, USART_IT_RXNE)==RESET 的,也就是说没有数据 接收到也进了中断,而且在 USART 配置中我也只打开了接收中断!没有数据送过来应该是不可能进入中断 的!
3.响应了什么中断? 我想通过函数(USART_GetITStatus()把所有中断状态都读出来,但失败了,USART_IT_XXX 所有中断 状态都是 RESET!也就是说没有中断也进入到这个中断服务程序来了!?
STM32中断法USART串口简单使用
STM32中断法USART串口简单使用
1.初始化USART外设:首先需要在STM32的寄存器中对USART进行初始化。
具体的步骤包括:选择时钟源、配置波特率、设置数据长度、设置停止位、设置校验位等。
这些设置都可以在USART的控制寄存器中进行。
2.配置串口引脚:需要将USART的引脚与STM32的GPIO引脚进行连接。
具体的配置方法包括将GPIO引脚设置为复用功能,并且选择对应的USART信号。
3.编写中断服务函数:为了使用中断方式接收和发送数据,需要编写中断服务函数。
中断服务函数通常由硬件自动调用,当USART接收到数据或发送数据完成时触发。
在中断服务函数中,我们可以读取接收到的数据或者发送下一个数据。
4.使能中断:要使能USART的串口接收中断,需要在USART的控制寄存器中设置相应的位。
通常有RXNE和TC中断位,分别表示接收缓冲区非空和发送完成。
5.启动USART:启动USART外设,使其处于工作状态。
可以在相应的控制寄存器中设置TE(发送使能)和RE(接收使能)位。
6.外部中断配置:在STM32中,需要在NVIC寄存器中配置和使能USART接收中断的优先级。
这样才能通过中断向量表触发中断。
通过上述步骤,可以完成USART串口的简单使用,实现数据的接收和发送。
在编写中断服务函数时,可以根据实际需求进行数据处理,例如打印接收的数据或根据接收到的数据触发其他功能。
stm32hal库uart中断接收修改步骤(适合GPS数据处理)
实际使用中gsp数据解析是单个字符操作,串口接收中断需要一直打开,而hal库的中断接收配置(指定接收长度,和接收数据区域,数据区域满,会关闭接收中断,触发接收回调函数,需要人工再次打开接收中断(HAL_UART_Receive_IT函数)),而处理gps数据无法事先确定接收的长度,因此这种使用方式不合适。
因此有如下文处理办法(串口数据发送我用的是普通发送(非中断,非DMA));
定义全局的接收缓存区,数据区域满,自动复写而不停止接收中断。
1. 定义全局空间存储串口中断接收的数据(建议配置一个结构体,有读写指针,我的操作如“段二”)
2. 串口中断功能已经打开
3. 初始化调用一次HAL_UART_Receive_IT函数(打开接收中断);
4. 在如下图一函数中修改为如图二;
图一
图二
段二:
缓存区写指针指向的缓存区内的位置 = DEBUGPORTRECVBUFFLEN - *pWriteCount;写已经做好了(在中断中进行),下面是关于读的:
如下是在主循环中查询缓存区是否有数据,和一个字节一个字节读取数据;。
STM32串口接收流程-串口接收中断
STM32串⼝接收流程-串⼝接收中断串⼝接收串⼝接收流程1. 编程USARTx_CR1的M位来定义字长。
2. 编程USARTx_CR2的STOP位来定义停⽌位位数。
3. 编程USARTx_BRR寄存器确定波特率。
4. 使能USARTx_CR1的UE位使能USARTx。
5. 如果进⾏多缓冲通信,配置USARTx_CR3的DMA使能(DMAT)。
6. 使能USARTx_CR1的RE位为1使能接收器。
7. 如果要使能接收中断(接收到数据后产⽣中断),使能USARTx_CR1的RXNEIE位为1。
当串⼝接收到数据时1. USARTx_SR(ISR)的RXNE位置1。
表明移位寄存器内容已经传输到RDR(DR)寄存器。
已经接收到数据并且等待读取。
2. 如果开启了接收数据中断(USARTx_CR1寄存器的RXNEIE位为1),则会产⽣中断。
(程序上会执⾏中断服务函数)3. 如果开启了其他中断(帧错误等),相应标志位会置1。
4. 读取USARTx_RDR(DR)寄存器的值,该操作会⾃动将RXNE位清零,等待下次接收后置位。
串⼝接收流程(HAL库)配置过程:接收配置步骤①~⑥和发送流程⼀样,调⽤HAL_UART_Init函数HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart);步骤⑦开启接收中断:HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef*huart, uint8_t *pData, uint16_t Size);接收数据过程:步骤①获取状态标志位通过标识符实现:__HAL_UART_GET_FLAG //判断状态标志位__HAL_UART_GET_IT_SOURCE //判断中断标志位步骤②~③中断服务函数:void USARTx_IRQHandler(void) ;//(x=1~3,6)void UARTx_IRQHandler(void) ;//(x=4,5,7,8)在启动⽂件startup_stm32fxxx.s中查找。
STM32串口接收、发送数据实验-程序代码分析
STM32串⼝接收、发送数据实验-程序代码分析串⼝通信实验Printf⽀持printf向串⼝发送⼀些字符串数据。
如果使⽤串⼝2,可以修改while((USART1->SR&0X40)==0);和USART1->DR = (u8) ch; 中的USART1为USART2.//加⼊以下代码,⽀持printf函数,⽽不需要选择use MicroLIB#if 1#pragma import(__use_no_semihosting)//解决HAL库使⽤时,某些情况可能报错的bugint _ttywrch(int ch){ch=ch;return ch;}//标准库需要的⽀持函数struct __FILE{int handle;/* Whatever you require here. If the only file you are using is *//* standard output using printf() for debugging, no file handling *//* is required. */};/* FILE is typedef’ d in stdio.h. */FILE __stdout;//定义_sys_exit()以避免使⽤半主机模式void _sys_exit(int x){x = x;}//重定义fputc函数int fputc(int ch, FILE *f){while((USART1->SR&0X40)==0);//循环发送,直到发送完毕USART1->DR = (u8) ch;return ch;}#endif实验现象从电脑串⼝助⼿发送长度为200以内任意长度的字符串给STM32串⼝1(字符串以回车换⾏标识结束),STM32接收到字符串之后,⼀次性通过串⼝1把所有数据返回给电脑。
实现过程把每个接收到的数据保存在⼀个程序定义的Buffer数组中(数组长度为200),同时把接收到的数据个数保存在定义的变量中。
STM32HAL库使用中断实现串口接收不定长数据
STM32HAL库使用中断实现串口接收不定长数据要在STM32HAL库中实现串口接收不定长数据超过1200字,您可以使用中断来接收。
以下是一个简单的示例代码,演示了如何设置串口接收中断,并处理超过1200个字的数据:```c#include "stm32xxxx.h" // 根据您的STM32型号进行包含适当的头文件#define RX_BUFFER_SIZE 2000 // 定义接收缓冲区的大小//定义接收缓冲区和相关变量uint8_t rxBuffer[RX_BUFFER_SIZE];volatile uint16_t rxIndex = 0;volatile uint8_t rxDataAvailable = 0;//初始化串口void UART_Ini//串口GPIO引脚配置//串口时钟配置//串口配置//使能接收中断__HAL_UART_ENABLE_IT(&huart1, UART_IT_RXNE);//中断处理函数void USART1_IRQHandler(void)if ((__HAL_UART_GET_FLAG(&huart1, UART_FLAG_RXNE) != RESET)) rxBuffer[rxIndex++] = huart1.Instance->DR;if (rxIndex >= RX_BUFFER_SIZE)//接收超过1200字,进行处理//在这里添加您的处理代码//重置接收缓冲区和相关变量rxIndex = 0;rxDataAvailable = 0;} else//未达到1200字,继续接收rxDataAvailable = 1;}}int main(void)//初始化硬件//...//初始化串口UART_Init(;while (1)if (rxDataAvailable)//执行接收数据处理//在这里添加您的处理代码//重置接收缓冲区和相关变量rxIndex = 0;rxDataAvailable = 0;}//执行其他任务//...}```在上述代码中,我们首先定义了一个接收缓冲区 `rxBuffer`,并使用 `rxIndex` 变量来跟踪接收到的字节数。
stm32 hal库 串口中断接收函数
stm32 hal库串口中断接收函数在STM32开发中,使用串口通信是很常见的一种方式。
而在使用STM32 HAL库进行开发时,我们可以方便地使用HAL库提供的接口来进行串口通信。
其中,使用串口中断接收数据可以提高数据的实时性和稳定性,因此本文将介绍STM32 HAL库中串口中断接收函数的使用方法。
1. 串口中断接收函数的定义首先,我们需要了解一下STM32 HAL库中串口中断接收函数的定义。
在HAL库中,串口中断接收函数的定义如下:void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) 该函数是由HAL库提供的一个回调函数,即当串口接收到数据后,会自动调用该函数。
其中,参数huart是串口句柄,用于标识当前是哪个串口接收到了数据。
2. 串口中断接收函数的使用方法在使用串口中断接收函数时,我们需要按照以下步骤进行操作:(1)使能串口中断在使用串口中断接收函数之前,我们需要先使能串口中断。
具体地,可以使用HAL库提供的函数HAL_UART_Receive_IT()来使能串口中断,代码如下:HAL_UART_Receive_IT(&huart1, uart1_rx_data, 1);其中,第一个参数是串口句柄,第二个参数是接收缓存区,第三个参数是接收数据的长度。
(2)编写串口中断接收函数接下来,我们需要编写串口中断接收函数。
在该函数中,我们可以对接收到的数据进行处理。
例如,将接收到的数据存储到一个全局变量中,代码如下:void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {if(huart == &huart1){uart1_rx_buf[uart1_rx_len++] = uart1_rx_data[0];}}在该函数中,我们首先通过判断huart参数来确定是哪个串口接收到了数据,然后将接收到的数据存储到全局变量uart1_rx_buf中,并将接收数据的长度uart1_rx_len自增1。
STM32-实现串口中断接收和发送数据
STM32-实现串⼝中断接收和发送数据⼀、⼯具 1、硬件:STM32L053R8单⽚机(HAL库) 2、编译环境:Atollic TrueSTUDIO for STM32 9.3.0 3、辅助⼯具:STM32CubeMX⼆、单⽚机系统时钟配置 1、系统时钟配置(没有显⽰的默认),这⾥选择的是内部的⾼速时钟(HSI)作为时钟源,系统时钟频率配置到24MHz。
三、串⼝配置 1、选⽤的是串⼝1,模式是异步通讯,波特率为38400,数据位长度为8,⽆校验位,⼀个停⽌位,接收和发送都打开,其它默认。
2、使能串⼝中断四、⽣成⼯程并进⾏完善 1、⼯程⽣成设置 2、完善代码 在配置完串⼝后,要以中断的⽅式接收数据,后⾯新增的接收⼀个字节数据函数主要是为了打开串⼝中断并等待有数据发来,剩下的字节由中断的回调函数控制接收。
/*** @brief USART1 Initialization Function* @param None* @retval None*/static void MX_USART1_UART_Init(void){/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 38400 ;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 */HAL_UART_Receive_IT(&huart1, &r_data, 1);/* USER CODE END USART1_Init 2 */} 当有数据发来,会响应中断接收数据,接收完后会关闭中断然后调⽤⼀个回调函数,如果想接收多个数据,就需要在回调函数中重新开启接收中断,回调函数的内容可以由⽤户⾃⼰添加(该函数名为固定写法不能随意更改)。