人教版九年级数学下册反比例函数知识点归纳及练习(含答案)

合集下载

2021年九年级数学下册第二十六章《反比例函数》知识点复习(答案解析)(1)

2021年九年级数学下册第二十六章《反比例函数》知识点复习(答案解析)(1)

一、选择题1.已知反比例函数13y x =-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭ B .y 随x 的增大而增大 C .图象在第二、四象限内D .若1x >,则103y -<< 2.将函数 6y x =的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( )A .61y x =+B .61y x =-C .61y x =+D .61y x =- 3.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x的图象经过A 、B 两点,则菱形ABCD 的面积是( )A .2B .4C .2D .2 4.在反比例函数13m y x-=图象上有两点()11,A x y ,()22,B x y ,120x x <<,12y y <,则m 的取值范围是( ) A .13m > B .13m < C .13m ≥ D .13m ≤ 5.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数 C .-1 D .不能确定 6.已知(5,-1)是双曲线(0)k y k x=≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2- 7.已知反比例函数ab y x =,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根8.已知反比例函数y=21k x+的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 9.同一坐标系中,函数()1y k x +=与k y x=的图象正确的是( ) A . B .C .D .10.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abc y x=在平面直角坐标系中的图象可能是( ).A .B .C .D .11.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y << 12.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D . 13.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 14.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .815.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)- B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.二、填空题16.如图,点 A 的坐标是(﹣2,0),点 B 的坐标是(0,6),C 为 OB 的中点,将△ABC 绕点 B 逆时针旋转 90°后得到△A′B′C′.若反比例函数 y =k x 的图象恰好经过 A′B 的中点 D ,则k _________.17.若点()()125,,3,A y B y --在反比例函数3y x =的图象上,则12,y y ,的大小关系是_________. 18.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0k y x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.19.已知()12,y -,()21,y -,()33,y 是反比例函数6y x=-的图象上的三个点,则1y ,2y ,3y 的大小关系是______.20.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.21.如图,点P ,Q 在反比例函数y=k x (k>0)的图像上,过点P 作PA ⊥x 轴于点A ,过点Q 作QB ⊥y 轴于点B .若△POA 与△QOB 的面积之和为4,则k 的值为_________.22.如图,点A 在曲线y =3x(x >0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB =1时,△ABC 的周长为_____.23.反比例函数2(0)m y x x+=<的图象如图所示,则m 的取值范围为__________.24.已知点(1,),(3,)A a B b 都在反比例函数4y x=的图像上,则,a b 的大小关系为____.(用“<”连接) 25.如图,点()11,P x y ,点()22,P x y ,…点(),n n P x y 在函数()90y x x =>的图象上, 112123231,,n n n POA P A A P A A P A A -⋅⋅⋅都是等腰直角三角形,斜边112231,,,n n OA A A A A A A -⋅⋅⋅都在x 轴上(n 是大于或等于2的正数数),则12n y y y ++⋅⋅⋅+=__________.(用含n 的式子表示)26.如图,已知反比例函数y =k x(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.三、解答题27.如图,一次函数3y x =-的图象与反比例函数(0)k y k x=≠的图象交于点A 与点(),4B a -.(1)求反比例函数的表达式;(2)根据图象,直接写出不等式3k x x>-的解集; (3)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若POC △的面积为3,求点P 的坐标. 28.如图,已知一次函数12y x b =+的图象与反比例函数()0k y x x=<的图象交于点A(-1,2)和点B .(1)求b 和k 的值;(2)请求出点B 的坐标,并观察图象,直接写出关于x 的不等式12k x b x+>的解集; (3)若点P 在y 轴上一点,当PA PB +最小时,求点P 的坐标.29.如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =6x 的图象相交于点A (m ,3)、B (–6,n ),与x 轴交于点C .(1)求一次函数y =kx +b 的关系式;(2)结合图象,直接写出满足kx +b >6x 的x 的取值范围; (3)若点P 在x 轴上,且S △ACP =32BOC S △,求点P 的坐标.30.如图所示,一次函数y kx b =+的图象与反比例函数m y x=的图象交于A(-2,1),B(1,n)两点.(1)求反比例函数和一次函数的表达式;(2)求ABO ∆的面积; (3)根据图像直接写出当一次函数的值大于反比例函数的值时x 的取值范围.。

九年级数学下册同步考点必刷基础练反比例函数章节复习巩固(解析版)

九年级数学下册同步考点必刷基础练反比例函数章节复习巩固(解析版)

九年级数学下册考点必刷练精编讲义(人教版)基础第26章《反比例函数》章节复习巩固考试时间:100分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•沈河区校级期中)关于反比例函数下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣4解:A、∵(﹣2)×(﹣2)=4≠﹣4,∴图象不经过点(﹣2,﹣2),故本选项不符合题意;B、∵﹣4<0,∴图象分别在第二、四象限,故本选项不符合题意;C、∵﹣4<0,∴在每个象限内,y随x的增大而增大,故本选项符合题意;D、当0<y≤1时,x≤﹣4,故本选项不符合题意.故选:C.2.(2分)(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①;②;③xy=﹣1;④y=3x;⑤;⑥.A.2B.3C.4D.5解:①,符合反比例函数的定义,是反比例函数;②,符合反比例函数的定义,是反比例函数;③xy=﹣1,符合反比例函数的定义,是反比例函数;④y=3x,不符合反比例函数的定义,不是反比例函数;⑤,不符合反比例函数的定义,不是反比例函数;⑥,不符合反比例函数的定义,不是反比例函数.故选:B.3.(2分)(2022春•城关区月考)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大解:将(﹣1,﹣3)代入解析式,得﹣3=﹣3,故A正确,不符合题意;由于k=3>0,则函数图象过一、三象限,在每个象限内,y随x的增大而减小,故B正确,不符合题意、D错误,符合题意;∵x=1时,y=3,且当x>0时y随x的增大而减小∴当x>1时,0<y<3,故C正确,不符合题意,故选:D.4.(2分)(2022秋•岳阳县校级月考)若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣5的值为()A.﹣3B.0C.2D.﹣5解:∵点A(a,b)在反比例函数y=的图象上,∴ab=2,∴ab﹣5=2﹣5=﹣3.故选:A.5.(2分)(2022春•工业园区期中)下列函数中不是反比例函数的是()A.y=B.y=3x﹣1C.xy=1D.y=解:A、y=是反比例函数,不合题意;B、y=3x﹣1=是反比例函数,不合题意;C、xy=1变形为y=是反比例函数,不合题意;D、y=是正比例函数,不是反比例函数,故选:D.6.(2分)(2021秋•景德镇期末)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:∵反比例函数,∴k=m2+1>0,双曲线过一三象限,在每一个象限内y随x的增大而减小,∴0>y1>y2,∵C(2,y3),∴y3>0,∴y3>y1>y2,故选:B.7.(2分)(2022秋•涟源市期中)如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当I<0.25时,R<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.25解:设I与R的函数关系式是I=(R>0),∵该图象经过点P(880,0.25),∴=0.25,∴U=220,∴I与R的函数关系式是I=(R>0),故选项B不符合题意;当R=0.25时,I=880,当R=1000时,I=0.22,∵反比例函数I=(R>0)I随R的增大而减小,当R<0.25时,I>880,当R>1000时,I<0.22,故选项A,C不符合题意;∵R=0.25时,I=880,当R=1000时,I=0.22,∴当880<R<1000时,I的取值范围是0.22<I<0.25,故D符合题意;故选:D.8.(2分)(2022•蓬江区一模)如图,点P是函数y=图象上的一点,过点P作P A∥x轴,PB∥y轴,并分别交函数y=的图象于A、B两点,则四边形OAPB的面积为()A.2B.3C.6D.9解:如图,过点B作BD⊥x轴,过点A作AE⊥y轴,∵点P是函数y=图象上,∴矩形DPEO的面积=6,∵A,B在函数y=的图象上,∴S△OAE=S△OBD=×3=1.5,∴四边形OAPB的面积为6﹣1.5﹣1.5=3.故选:B.9.(2分)(2022秋•平桂区期中)关于反比例函数y=﹣的图象,下列说法正确的是()A.图象位于第二、四象限内B.图象位于第一、三象限内C.图象经过点(1,1)D.在每个象限内,y随x的增大而减小解:A、因为k=﹣1<0,所以函数图象位于二、四象限,故本选项符合题意;B、因为k=﹣1<0,所以函数图象位于二、四象限,故本选项不符合题意;C、当x=1时,y=﹣1,图象经过点(1,﹣1),故本选项不符合题意;D、因为k=﹣1<0,所以函数图象位于二、四象限,在每个象限内,y随x的增大而增大,故本选项不符合题意;故选:A.10.(2分)(2022秋•平桂区期中)若点A(﹣1,3)在反比例函数y=的图象上,则下列的点也在反比例函数y=图象上的是()A.(1,3)B.(﹣2,3)C.(,﹣2)D.(﹣3,)解:点A(﹣1,3)在反比例函数y=的图象上,∴k=﹣1×3=﹣3,∵1×3=3≠k,﹣2×3=﹣6≠k×(﹣2)=﹣3=k,﹣3×=﹣≠k,∴(,﹣2)也在反比例函数y=图象上,故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•平桂区期中)反比例函数y=的图象在第一、三象限,则m的取值范围是m>﹣1.解:根据题意得m+1>0,解得m>﹣1.故答案为:m>﹣1.12.(2分)(2022秋•银海区校级月考)若反比例函数y=的图象位于第二、四象限,则k的取值范围为k.解:∵反比例函数y=的图象位于第二、四象限,∴1﹣2k<0,解得k,故答案为:k.13.(2分)(2022秋•宁远县校级月考)已知点A(﹣2,a)、B(1,b)、C(3,c)都在反比例函数的图象上,则a、b、c间的大小关系为a<c<b(用“<”号连接).解:将点A(﹣2,a)、B(1,b)、C(3,c)分别代入反比例函数得,a==﹣;b==5;c=.∴a<c<b.故答案为:a<c<b.14.(2分)(2022秋•市中区期中)如图,平行四边形OABC的边04在x轴上,顶点C在反比例函数y=的图象上,BC与y轴相交于点D,且D为BC的中点,若平行四边形OABC的面积为8,则k=﹣4.解:∵D为BC的中点,平行四边形OABC的面积为8,∴△OCD的面积为8×=2,∴|k|=2,∵k<0,∴k=﹣4.故答案为:﹣4.15.(2分)(2022春•姑苏区校级期中)如图,平面直角坐标系中,点A、B分别在函数y=与y=﹣的图象上,点P在x轴上.若AB∥x轴.则△P AB的面积为5.解:连接OA、OB,设AB交y轴于点E,如图,∵AB∥x轴,∴S△OAE=×|3|=1.5,S△OBE=×|﹣7|=3.5,∴S△ABP=S△OAB=S△OAE=1.5+3.5=5.故答案为:5.16.(2分)(2022•来安县二模)如图,一次函数y=x+b(b>0)的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象交于点C,若AB=BC,则b的值为2.解:过点C作CD⊥x轴,垂足为D,如图:对于y=x+b,令y=0,则x=﹣b,令x=0,则y=b,∴A(﹣b,0),B(0,b),∵b>0,∴OA=b,OB=b,∵AB=BC,OB∥CD,∴OA=OD,CD=2OB,∴C(b,2b),∵点C在反比例函数的图象上,∴2b=,解得b=±2,∵b>0,∴b=2,故答案为:2.17.(2分)(2022秋•平桂区期中)如图,若反比例函数y=的图象上有一点B与原点和坐标轴上点A围成一个等腰三角形,则△AOB的面积是3.解:如图,作BC⊥OA于点C,∵B在反比例函数y=的图象上,∴S△BOC=×3=,∵BC=BA,BC⊥OA,∴S△AOB=2S△BOC=2×=3.故答案为:3.18.(2分)(2022秋•二道区校级月考)如图,点A在x轴正半轴上,点B在第二象限内,直线AB交y轴于点F,BC⊥x轴,垂足是C,反比例函数y=的图象分别交BC,AB 于点,D(﹣4,1),E,若AF=EF=BE,则△ABC的面积为9.解:∵反比例函数y=的图象过点D(﹣4,1),BC⊥x轴,∴k=﹣4×1=﹣4,C(﹣4,0),∴y=﹣,OC=4.过点E作EH⊥x轴于H,则EH∥BC∥y轴,∴OA:OH:HC=AF:EF:BE,∵AF=EF=BE,OC=4,∴OA=OH=HC=2,即AC=6,∴点E的横坐标为﹣2,又E在反比例函数y=﹣的图象上,∴x=﹣2时,y=2,∴E(﹣2,2),EH=2.∵EH∥BC,∴△AEH∽△ABC,∴=,即=,∴BC=3,∴△ABC的面积=AC•BC=×6×3=9.故答案为:9.19.(2分)(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为32.解:延长AC交x轴于E,如图所示:则AE⊥x轴,∵C的坐标为(4,3),∴OE=4,CE=3,∴OC==5,∵四边形OBAC是菱形,∴AB=OB=OC=AC=5,∴AE=5+3=8,∴点A的坐标为(4,8),把A(4,8)代入函数y=(x>0)得:k=4×8=32;故答案为:32.20.(2分)(2022秋•滁州期中)如图,双曲线y=(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=2.解:∵A(4,0),B(8,0),四边形ABCD是正方形,∴AB=4,则AD=BC=4,F点纵坐标为4,∵BE=3CE,∴BE=3,EC=1,∴E(8,3),故k=8×3=24,则设F点横坐标为m,故4m=24,解得:m=6,故FC=8﹣6=2.故答案为:2.三.解答题(共9小题,满分60分)21.(6分)(2022春•南安市期中)已知:如图,点A在反比例函数y=(x>0)的图象上,且点A的横坐标为2,作AH垂直于x轴,垂足为点H,S△AOH=4.(1)求AH的长;(2)求k的值;(3)若E(x1,y1),F(x2,y2)在该函数图象上,当0<x1<x2时,比较y1与y2的大小关系.解:(1)∵点A的横坐标为2,AH垂直于x轴,S△AOH=4,∴×2×AH=4,解得AH=4;(2)∵|k|=4,∴k=±8,又∵k>0,∴k=8;(3)∵k>0,∴在第一象限内,y随x的增大而减小,又∵0<x1<x2,∴y1与y2的大小关系为:y1>y2.22.(6分)(2022春•姑苏区校级期中)如图,在以O为原点的平面直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B(a,b)在第一象限,四边形OABC是矩形,反比例函数的图象与AB相交于点D,与BC相交于点E,且BE=2CE.(1)求证:BD=2AD;(2)若四边形ODBE的面积是6,求k的值.(1)证明:∵BE=2CE,B(,b),∴E的坐标为(a,b),又∵E在反比例函数y=的图象上,∴k=ab,∵D的横坐标为a,D在反比例函数y=的图象上,∴D的纵坐标为b,∴BD=2AD;(2)解:∵S四边形ODBE=6,∴S矩形ABCO﹣S△OCE﹣S△OAD=6,即ab﹣ab﹣ab=6,∴ab=9,∴k=ab=3.23.(6分)(2022春•芝罘区期末)一定电压(单位:V)下电流I(A)和电阻R(Ω)之间成反比例关系,小明用一个蓄电池作为电源组装了一个电路如图1所示,通过实验,发现电流I(A)随着电阻R(Ω)值的变化而变化的一组数据如表格所示.R(Ω)…234612…I(A)…24161284…请解答下列问题:(1)这个蓄电池的电压值是(2)请在图2的坐标系中,通过描点画出电流I和电阻R之间的关系图象,并直接写出I和R之间的函数关系式;(3)若该电路的最小电阻值为1.5Ω,请求出该电路能通过的最大电流是多少.解:(1)根据电压=电流×电阻,∴蓄电池的电压值是24×2=48(V).(2)设I=,将点(6,8)代入得8=,∴k=48,∴I=;(3)当R=1.5时,I==32,电路能通过的最大电流是32A.24.(6分)(2022秋•招远市期中)泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?解:(1)停止加热时,设y=,由题意得:50=,解得:k=900,∴y=,当y=100时,解得:x=9,∴C点坐标为(9,100),∴B点坐标为(8,100),当加热烧水时,设y=ax+20,由题意得:100=8a+20,解得:a=10,∴当加热烧水,函数关系式为y=10x+20(0≤x≤8);当停止加热,得y与x的函数关系式为(1)y=100(8<x≤9);y=(9<x≤45);(2)把y=90代入y=,得x=10,因此从烧水开到泡茶需要等待10﹣8=2分钟.25.(6分)(2021•西湖区校级三模)已知反比例函数y1=与一次函数y2=2x+k(k是常数),它们的图象有一个交点A,点A的横坐标是﹣2.(1)求k的值.(2)当y1<y2<0时,求x的取值范围.解:(1)∵反比例函数y1=与一次函数y2=2x+k图象有一个交点的横坐标是﹣2.∴=﹣4+k,解得k=3;(2)∵k=3,∴直线y2=2x+3与x轴交点为(﹣,0),结合图象可知:当y1<y2<0时,﹣2<x<﹣.26.(6分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy中,已知直线y=kx (k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,联结AC,若△ABC是等腰三角形,求k的值.解:∵点B是y=kx和y=的交点,则kx=,∴点B坐标为(,3),同理可求出点A的坐标为(,),∵BD⊥x轴,∴点C(,),∴BA=,AC=,BC=,∴BA2≠AC2,∴BA≠AC,若△ABC是等腰三角形,①AB=BC,则=,解得k=;②AC=BC,则=,解得k=;故k的值为或.27.(8分)(2022秋•招远市期中)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(n,3)两点.(1)求一次函数的解析式;(2)若M是x轴上一点,S△MOB=S△AOB,求点M的坐标;(3)当x>0时,根据图象直接写出kx+b﹣>0时,x的取值范围.解:(1)把点A代入得:6=,解得m=2,把点A代入得3=,解得n=4,∴A(2,6),B(4,3),设要求的一次函数的表达式为y=kx+b,由题意得:,解之得:,∴一次函数的表达式为y=x+9;(2)设直线AB交x轴于点P,则0=x+9,∴x=6,∴P(6,0),∴S△AOB=S△AOP﹣S△BOP=,∴S△MOB=9,设点M的坐标为(m,0),∴OM=|m|,∴,∴|m|=6,∴m=±6,∴点M的坐标为(6,0)或(﹣6,0);(3)观察图象可知,kx+b﹣>0时x的取值范围是2<x<4.28.(8分)(2022秋•沈河区校级期中)如图,在平面直角坐标系xOy中,一次函数y1=kx+b的图象与反比例函数y2=图象交于点A(﹣1,3)和B(3,c),与x轴交于点C.(1)求一次函数y1=kx+b和反比例函数y2=的解析式;(2)观察图象,请直接写出使y1>y2的x取值范围;(3)M是y轴上的一个动点,作MN⊥y轴,交反比例函数图象于点N,当由点O,C,M,N构成的四边形面积为时,直接写出点N的坐标.解:(1)将点A(﹣1,3)代入y2=得:m=﹣3,∴y2=﹣,将B(3,c)代入y2=﹣得:c=﹣1,则B(3,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y1=﹣x+2;(2)由图象得:使y1>y2的x取值范围是:x<﹣1或0<x<3;(3)如图,连接ON,在y1=﹣x+2中,令y=0,则x=2,∴C(2,0),∴OC=2,∵点O,C,M,N构成的四边形面积为时,∴S△OMN+S△OCN=,∵S△OMN=×|﹣3|=,∴S△OCN=OC•OM=2,∴OM=2,∴M(0,2)或(0,﹣2),把y=2代入y2=﹣,得x=﹣,∴此时N(﹣,2),把y=﹣2代入y2=﹣,得x=,∴此时N(,﹣2),∴点N的坐标为(﹣,2)或(,﹣2).29.(8分)(2022秋•碑林区校级期中)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交与A(1,a)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)点P在反比例函数第三象限的图象上,使得△P AB的面积最小,求满足条件的P点坐标及△P AB面积的最小值.解:(1)∵一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交与A(1,a).∴a=﹣1+4,k=1•a,∴a=3,k=3,∴点A坐标为(1,3),反比例函数的表达式为y=,联立方程组可得:,∴点B(3,1);(2)如图,将直线AB平移,当与双曲线第三象限的图象只有一个交点P时,此时△P AB 的面积有最小值,设平移的直线解析式为y=﹣x+b,由题意可得:﹣x+b=,∴x2﹣bx+3=0,∵两图象只有一个交点,∴Δ=b2﹣4×3=0,∴b=±2,∵直线y=﹣x+b与y轴交在负半轴,∴b=﹣2,∴平移后的解析式为y=﹣x﹣2,∴﹣x﹣2=,∴x=﹣,∴y=﹣,∴点P(﹣,﹣),过点P作PH⊥AB于H,设直线y=﹣x+4与x轴交于点D,与y轴交于点C,设直线y =﹣x﹣2与x轴交于点E,与y轴交于点F,∴点C(0,4),点D(4,0),点E(﹣2,0),点F(0,﹣2),∴CO=DO=4,EO=FO=2,∴CD=4,EF=2,△COD和△EOF是等腰直角三角形,∴点O到EF的距离为,点O到CD的距离为2,∴PH=+2,∵点A坐标为(1,3),点B(3,1),∴AB==2,∴△P AB面积的最小值=×2×(+2)=2+4。

人教版九年级数学反比例函数知识点归纳

人教版九年级数学反比例函数知识点归纳

人教版九年级数学反比例函数知识点归纳本文介绍了新人教版九年级数学下册第26章反比例函数的知识点和研究目标。

其中,重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用。

难点是反比例函数及其图象的性质的理解和掌握。

基础知识包括反比例函数的概念和反比例函数的图象。

反比例函数的图象与x轴、y轴无交点,称取点关于原点对称。

反比例函数的图象的形状是双曲线,与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。

图象关于原点对称,对称性是反比例函数的重要性质。

如图1所示,设点P(a,b)在双曲线上。

作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积等于三角形PAO和三角形PBO的面积之和。

由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上。

作QC⊥XXX的延长线于C,则三角形PQC的面积为(图2)。

需要注意的是,双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。

直线与双曲线的关系有两种情况:一种是两图象必有两个交点,另一种是两图象没有交点;当有交点时,这两个交点关于原点成中心对称。

反比例函数与一次函数有联系。

求函数解析式的方法有两种:待定系数法和根据实际意义列函数解析式。

需要注意学科间知识的综合,但重点放在对数学知识的研究上。

在解决问题时,可以充分利用数形结合的思想。

对于例题,若y是x的反比例函数,则应选C或A。

对于已知函数的图象在第二、四象限内和y随x的增大而减小的情况,可以求出k的值。

已知一次函数y=ax+b的图象经过第一、二、四象限时,可以确定它的图象位于第三象限。

若反比例函数经过点(a,b),则直线不经过的象限为第四象限。

若P (2,2)和Q(m,n)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过第一、三、四象限。

对于函数的增减性问题,需要分别讨论。

y轴作垂线,得到三个小矩形和一个三角形,它们的面积之和为20平方单位,求函数的解析式.2)已知函数y=f(x)的图象如图所示,其中ABCD为一矩形,E为函数图象上一点,且E在ABCD内部.若矩形ABCD的长为4,宽为2,求函数的解析式.答案:(1)设函数解析式为y=ax²+bx+c,由题意可列出方程组:a+b+c=54a+2b+c=2016a+4b+c=80解得a=2,b=-4,c=7,因此函数的解析式为y=2x²-4x+7.2)设函数解析式为y=f(x)=kx+m,由题意可得:f(0)=m=2f(2)=2k+m=4f(4)=4k+m=0解得k=-1/2,m=2,因此函数的解析式为y=-1/2x+2.1) 在图中,通过每个点作两条垂线段,分别与x轴和y轴围成一个矩形。

九年级数学反比例函数知识点归纳和典型例题(附答案解析)

九年级数学反比例函数知识点归纳和典型例题(附答案解析)

九年级数学反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。

《反比例函数》中考常考考点专题(1)(基础篇)九年级数学下册基础知识专项讲练(人教版)

《反比例函数》中考常考考点专题(1)(基础篇)九年级数学下册基础知识专项讲练(人教版)

专题26.29《反比例函数》中考常考考点专题(1)(基础篇)(专项练习)一、单选题【知识点一】反比例函数定义的理解【考点一】反比例函➽➸描述性定义✮✮定义判断1.(2022·湖北宜昌·中考真题)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为()/A I 5…a………b…1/R Ω2030405060708090100A .a b >B .a b≥C .a b<D .a b≤2.(2021·北京石景山·一模)下列两个变量之间的关系为反比例关系的是()A .圆的周长与其半径的关系B .平行四边形面积一定时,其一边长与这边上的高的关系C .销售单价一定时,销售总价与销售数量的关系D .汽车匀速行驶过程中,行驶路程与行驶时间的关系【考点二】反比例函➽➸定义✮✮参数3.(2022·辽宁抚顺·二模)下列函数中,y 是x 的反比例函数的是()A .2xy =-B .21y x =C .13y x=D .12y x=-4.(2018·黑龙江哈尔滨·中考真题)已知反比例函数y =23k x-的图象经过点(1,1),则k 的值为()A .﹣1B .0C .1D .2【考点三】反比例函➽➸自变量✮✮因变量5.(2020·广西贺州·中考真题)在反比例函数2y x=中,当=1x -时,y 的值为()A .2B .2-C .12D .12-6.(2022·河南·郸城县光明学校二模)已知点A (x 1,﹣1),B (x 2,2),C (x 3,3)都在反比例函数y 1x=-的图象上,那么x 1,x 2,x 3的大小关系是()A .x 1>x 2>x 3B .x 1>x 3>x 2C .x 3>x 2>x 1D .x 2>x 3>x 1【知识点二】反比例函数的图象和性质【考点四】反比例函数的图象和性质➽➸图象✮✮解析式7.(2020·青海·中考真题)若0ab <,则正比例函数y ax =与反比例函数by x=在同一平面直角坐标系中的大致图像可能是()A .B .C .D .8.(2022·贵州黔西·中考真题)在平面直角坐标系中,反比例函数()0ky k x=≠的图象如图所示,则一次函数2y kx =+的图象经过的象限是()A .一、二、三B .一、二、四C .一、三、四D .二、三、四【考点五】反比例函数的图象和性质➽➸对称性9.(2018·浙江湖州·中考真题)如图,已知直线y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是()A .(﹣1,﹣2)B .(﹣1,2)C .(1,﹣2)D .(﹣2,﹣1)10.(2008·江苏连云港·中考真题)已知某反比例函数的图象经过点()m n ,,则它一定也经过点()A .()m n -,B .()n m ,C .()m n -,D .()m n ,【考点六】反比例函数的图象和性质➽➸位置✮✮参数11.(2021·山东济南·中考真题)反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是()A .B .C .D .12.(2020·黑龙江大庆·中考真题)已知正比例函数1y k x =和反比例函数2k y x=,在同一直角坐标系下的图象如图所示,其中符合120k k ⋅>的是()A .①②B .①④C .②③D .③④【考点七】反比例函数的图象和性质➽➸增减性✮✮参数13.(2021·贵州黔西·中考真题)对于反比例函数y =﹣5x,下列说法错误的是()A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大14.(2013·浙江衢州·中考真题)若函数2m y x+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是A .m <﹣2B .m <0C .m >﹣2D .m >0【考点八】反比例函数的图象和性质➽➸增减性✮✮比较大小15.(2020·天津·中考真题)若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是()A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<16.(2020·山西·中考真题)已知点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数ky x=()0k <的图像上,且1230x x x <<<,则1y ,2y ,3y 的大小关系是()A .213y y y >>B .321y y y >>C .123y y y >>D .312y y y >>【考点九】反比例函数的图象和性质➽➸比例系数✮✮特殊图形面积17.(2022·吉林长春·中考真题)如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()AB C .D .418.(2021·甘肃兰州·中考真题)如图,点A 在反比例函数()0ky x x=>图象上,AB x ⊥轴于点B ,C 是OB 的中点,连接AO ,AC ,若AOC 的面积为2,则k =()A.4B.8C.12D.16【考点十】反比例函数的图象和性质➽➸面积✮✮(比例系数)解析式19.(2020·贵州黔东南·中考真题)如图,点A是反比例函数y6x(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=2x的图象于点B,点P是x轴上的动点,则△PAB的面积为()A.2B.4C.6D.820.(2016·山东菏泽·中考真题)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36B.12C.6D.3二、填空题【知识点一】反比例函数定义的理解【考点一】反比例函➽➸描述性定义✮✮定义判断21.(2022·河南·柘城县实验中学一模)从1,2,3中任取一个数作为x,从4,6中任取一个数作为y ,则点(,)x y 在反比例函数12y x=图象上的概率为_________.22.(2019·黑龙江绥化·中考模拟)矩形的面积是240m ,设它的一边长为x (单位:m ),则矩形的另一边长y (单位:m )与x 的函数关系是__________.【考点二】反比例函➽➸定义✮✮参数23.(2012·山东滨州·中考真题)下列函数:①y=2x-1;②5y=x -;③y=x 2+8x-2;④22y=x;⑤1y=2x ;⑥a y=x中,y 是x 的反比例函数的有______(填序号)24.(2014·湖南邵阳·中考真题)若反比例函数的图象经过点(﹣1,2),则k 的值是_____【考点三】反比例函➽➸自变量✮✮因变量25.(2022·黑龙江哈尔滨·中考真题)已知反比例函数6y x=-的图象经过点()4,a ,则a的值为___________.26.(2022·北京石景山·一模)在平面直角坐标系xOy 中,点()2,A m ,(),3B n 都在反比例函数6y x=的图象上,则mn 的值为______.【知识点二】反比例函数的图象和性质【考点四】反比例函数的图象和性质➽➸图象✮✮解析式27.(2020·山东菏泽·中考真题)从1-,2,3-,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数aby x=,则这些反比例函数中,其图象在二、四象限的概率是______.28.(2012·湖南益阳·中考真题)反比例函数ky=x的图象与一次函数y=2x+1的图象的一个交点是(1,k ),则反比例函数的解析式是____.【考点五】反比例函数的图象和性质➽➸对称性29.(2020·北京·中考真题)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.30.(2019·北京·中考真题)在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2ky x =上,则12k k +的值为______.【考点六】反比例函数的图象和性质➽➸位置✮✮参数31.(2015·湖北黄石·中考真题)反比例函数21a y x-=的图象有一支位于第一象限,则常数a 的取值范围是______.32.(2022·四川成都·二模)有6张正面分别标有数字﹣2,﹣1,0,1,2,3的卡片,他们除了数字不同外,其余全部相同.现将他们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为k ,则使反比例函数y =1kx-的图象分布在第二、四象限的概率为_____.【考点七】反比例函数的图象和性质➽➸增减性✮✮参数33.(2021·湖南郴州·中考真题)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________.34.(2021·甘肃武威·中考真题)若点()()123,,4,A y B y --在反比例函数21a y x+=的图象上,则1y ____2y (填“>”或“<”或“=”)【考点八】反比例函数的图象和性质➽➸增减性✮✮比较大小35.(2022·青海·中考真题)如图,一块砖的A ,B ,C 三个面的面积之比是5:3:1,如果A ,B ,C 三个面分别向下在地上,地面所受压强分别为1P ,2P ,3P ,压强的计算公式为FP S=,其中P 是压强,F 是压力,S 是受力面积,则1P ,2P ,3P 的大小关系为______(用小于号连接).36.(2022·山东滨州·中考真题)若点123(1,)(2,)(3,)A y B y C y --,,都在反比例函数6y x=的图象上,则123,,y y y 的大小关系为_______.【考点九】反比例函数的图象和性质➽➸比例系数✮✮特殊图形面积37.(2020·湖南株洲·中考真题)如图所示,在平面直角坐标系Oxy 中,四边形OABC为矩形,点A 、C 分别在x 轴、y 轴上,点B 在函数1ky x=(0x >,k 为常数且2k >)的图象上,边AB 与函数22(0)y x x=>的图象交于点D ,则阴影部分ODBC 的面积为________(结果用含k 的式子表示)38.(2009·黑龙江鸡西·中考真题)如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=_______.【考点十】反比例函数的图象和性质➽➸面积✮✮(比例系数)解析式39.(2022·广西河池·中考真题)如图,点P (x ,y )在双曲线ky x=的图象上,PA ⊥x 轴,垂足为A ,若S △AOP =2,则该反比例函数的解析式为_____.40.(2022·辽宁锦州·中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.三、解答题41.(2016·甘肃白银·中考真题)如图,函数y1=﹣x +4的图象与函数2ky x(x >0)的图象交于A (m ,1),B (1,n )两点.(1)求k ,m ,n 的值;(2)利用图象写出当x ≥1时,y1和y2的大小关系.42.(2013·云南德宏·中考真题)如图,是反比例函数m 5y x-=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m 的取值范围;(2)在这个函数图象的某一支上取点A (x 1,y 1)、B (x 2,y 2).如果y 1<y 2,那么x 1与x 2有怎样的大小关系?43.(2021·浙江杭州·中考真题)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围.(2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值.44.(2021·湖北随州·一模)已知一次12y x a =-+的图象与反比例函数()20k y k x=≠的图象相交.(1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k ,且25a k +=.①求2y 的函数表达式.②当0x >时,比较1y ,2y 的大小.45.(2019·江西吉安·中考模拟)已知,如图,正比例函数y =ax 的图象与反比例函数图象交于A 点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.参考答案1.A【分析】根据电流I与电路的电阻R是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x 和y 的变化规律是单调的,即可判断解:∵电流I 与电路的电阻R 是反比例函数关系由表格:5,20I R ==;1,100I R ==∴在第一象限内,I 随R 的增大而减小∵204080100<<<∴51a b >>>故选:A【点拨】本题考查双曲线图像的性质;解题关键是根据表格判断出双曲线在第一象限,单调递减2.B【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:A.圆的周长与其半径是正比例关系,不符合题意,B.平行四边形面积一定时,其一边长与这边上的高成反比例关系,符合题意,C.销售单价一定时,销售总价与销售数量成正比例关系,不符合题意,D.汽车匀速行驶过程中,行驶路程与行驶时间成正比例关系,不符合题意,故选B .【点拨】本题主要考查成反比例函数关系的量,关键就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.D 【分析】根据反比例函数的定义即形如k y x =(k 是常数,且k ≠0)的函数,对各选项进行判断即可.解:A 选项中函数是正比例函数,故不符合题意;B 选项中函数不是反比例函数,故不符合题意;C 选项中函数是正比例函数,故不符合题意;D 选项中函数符合反比例函数的定义,故符合题意;故选:D .【点拨】本题考查了反比例函数的定义.解题的关键在于对反比例定义与形式的熟练掌握与灵活运用.4.D【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.解:∵反比例函数y =23k x-的图象经过点(1,1),∴代入得:2k -3=1×1,解得:k =2,故选D .【点拨】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k 的方程是解此题的关键.5.B【分析】把x=-1代入函数解析式可得y 的值.解:把=1x -代入2y x=得:=2y -,故选:B .【点拨】本题主要考查了反比例函数图象上点的坐标特征,图象上点的坐标适合解析式是关键.6.B【分析】根据函数解析式算出三个点的横坐标,再比较大小.解:∵点A (x 1,﹣1),B (x ,2),C (x 3,3)都在反比例函数y 1x =-的图象上,∴x 1=﹣1÷(﹣1)=1,x 2=﹣1÷212=-,x 3=﹣1÷313=-.∴x 1>x 3>x 2,故选:B .【点拨】本题考查反比例函数图象上点的坐标特征,熟练掌握根据函数析式,求点坐标.7.B【分析】由0ab <,得,a b 异号,若图象中得到的,a b 异号则成立,否则不成立.解:A.由图象可知:0,0a b >>,故A 错误;B.由图象可知:0,0a b <>,故B 正确;C.由图象可知:0,0a b ><,但正比例函数图象未过原点,故C 错误;D.由图象可知:0,0a b <<,故D 错误;故选:B .【点拨】本题考查了根据已知参数的取值范围确定函数的大致图象的问题,熟知参数对于函数图象的影响是解题的关键.8.B【分析】由图可知,反比例函数位于二、四象限,则根据反比例函数的性质可知k <0,再结合一次函数的图象和性质即可作答.解:由图可知,反比例函数位于二、四象限,∴k <0,∴y =kx +2经过一、二、四象限.故选:B .【点拨】本题主要考查了反比例函数的图象和性质以及一次函数的图象和性质,熟练掌握反比例函数和一次函数的图象和性质是解题的关键.9.A【分析】直接利用正比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.解:∵直线y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点,∴M ,N 两点关于原点对称,∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故选A .【点拨】此题主要考查了反比例函数与一次函数的交点问题,正确得出M ,N 两点位置关系是解题关键.10.B解:设反比例函数解析式为为y =k x .∵反比例函数的图象经过点(m ,n ),∴k=mn ,满足条件的是B .11.D【分析】根据题意可得0k >,进而根据一次函数图像的性质可得y kx k =-的图象的大致情况.解: 反比例函数()0k y k x =≠图象的两个分支分别位于第一、三象限,0k ∴>∴一次函数y kx k =-的图象与y 轴交于负半轴,且经过第一、三、四象限.观察选项只有D 选项符合.故选D【点拨】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得0k >是解题的关键.12.B【分析】根据正比例函数和反比例函数的图象逐一判断即可.解:观察图像①可得120,0k k >>,所以120k k >,①符合题意;观察图像②可得120,0k k <>,所以120k k <,②不符合题意;观察图像③可得120,0k k ><,所以120k k <,③不符合题意;观察图像④可得120,0k k <<,所以120k k >,④符合题意;综上,其中符合120k k ⋅>的是①④,故答案为:B .【点拨】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限.13.C【分析】可以判断各个选项中的说法是否正确,从而可以解答本题.解:反比例函数y =﹣5x,A 、当x =1时,y =﹣51=﹣5,图像经过点(1,-5),故选项A 不符合题意;B 、∵k =﹣5<0,故该函数图象位于第二、四象限,故选项B 不符合题意;C 、当x <0时,y 随x 的增大而增大,故选项C 符合题意;D 、当x >0时,y 随x 的增大而增大,故选项D 不符合题意;故选C .【点拨】本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.14.A【分析】根据反比例函数的增减性列出关于的不等式,求出的取值范围即可.解:∵函数2m y x +=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,∴m +2<0,解得:m <﹣2.故选A .【点拨】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.15.C【分析】因为A ,B ,C 三点均在反比例函数上,故可将点代入函数,求解123,,x x x ,然后直接比较大小即可.解:将A ,B ,C 三点分别代入10y x=,可求得1232,5,2x x x =-==,比较其大小可得:132x x x <<.故选:C .【点拨】本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.16.A【分析】首先画出反比例函数k y x=()0k <,利用函数图像的性质得到当1230x x x <<<时,1y ,2y ,3y 的大小关系.解: 反比例函数k y x =()0k <,∴反比例函数图像在第二、四象限,观察图像:当1230x x x <<<时,则213y y y >>.故选A .【点拨】本题考查的是反比例函数的图像与性质,掌握反比例函数的图像与性质是解题的关键.17.C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2,由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点拨】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.18.B【分析】根据三角形中线的性质得出4AOB S =△,然后根据反比例函数k 的几何意义得解.解:∵点C 是OB 的中点,AOC 的面积为2,∴4AOB S =△,∵AB x ⊥轴于点B ,∴142AB OB ⋅=,∴8AB OB ⋅=,∴8k =,故选:B .【点拨】本题考查了反比例函数k 的几何意义以及三角形中线的性质,熟知反比例函数k 的几何意义是解本题的关键.19.A【分析】连接OA 、OB 、PC .由于AC ⊥y 轴,根据三角形的面积公式以及反比例函数比例系数k 的几何意义得到S △APC =S △AOC =3,S △BPC =S △BOC =1,然后利用S △PAB =S △APC ﹣S △APB 进行计算.解:如图,连接OA 、OB 、PC .∵AC ⊥y 轴,∴S △APC =S △AOC =12×|6|=3,S △BPC =S △BOC =12×|2|=1,∴S △PAB =S △APC ﹣S △BPC .故选:A .【点拨】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.20.D【分析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B 在反比例函数6y x =的第一象限图象上,∴(a +b )×(a ﹣b )=a 2﹣b 2=6.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×6=3.故选D.【点拨】本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.21.1 3【分析】画树状图可得所有xy的积的等可能结果,由点(x,y)在反比例函数12 yx=图象上可得xy=12,进而求解.解:画树状图如下,2×6=12,3×4=12,∵共有6种等可能的结果,点P在反比例函数12yx=的图象上的有2种情况,∴点(x,y)在反比例函数12yx=图象上的概率为2163=.故答案为:1 3.【点拨】本题考查反比例函数与概率的结合,解题关键是掌握反比例函数的性质,画树状图求概率的方法.22.40 yx =【分析】根据矩形面积等于矩形两邻边之积即可列出函数关系式.解:∵矩形的一边长为xm,另一边长ym,面积是240m,∴40xy=,即:40 yx =.故答案为40 yx =.【点拨】本题考查了列反比列函数关系式.从题中找出相等关系是解题的关键. 23.②⑤.解:反比例函数的定义.【分析】根据反比例函数的定义逐一作出判断:①y=2x ﹣1是一次函数,不是反比例函数;②5y=x-是反比例函数;③y=x 2+8x ﹣2是二次函数,不是反比例函数;④22y=x 不是反比例函数;⑤1y=2x 是反比例函数;⑥a y=x中,a≠0时,是反比例函数,没有此条件则不是反比例函数.故答案为②⑤.24.﹣2解:试题分析:解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为﹣2考点:待定系数法求反比例函数解析式25.32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可.解:把点()4,a 代入6y x=-得:6342a =-=-.故答案为:32-.【点拨】本题考查了反比例函数图像上点的坐标特征,明确函数图像经过一个点,这个点的坐标就符合函数解析式是解题关键.26.32【分析】把()2,A m ,(),3B n 代入反比例函数6y x =,求出m 、n 的值即可.解:∵点()2,A m ,(),3B n 都在反比例函数6y x=的图象上∴6263m n ⎧=⎪⎪⎨⎪=⎪⎩,解得32m n =⎧⎨=⎩∴32 mn=故答案为:3 2.【点拨】本题考查反比例函数解析式,把坐标代入解析式是解题的关键.27.23【分析】从1-,2,3-,4中任取两个数值作为a,b的值,表示出基本事件的总数,再表示出其积为负值的基础事件数,按照概率公式求解即可.解:从1-,2,3-,4中任取两个数值作为a,b的值,其基本事件总数有:共计12种;其中积为负值的共有:8种,∴其概率为:82 123=故答案为:2 3.【点拨】本题结合反比例函数图象的性质,考查了概率的计算,能准确写出基本事件的总数,和满足条件的基本事件数,是解题的关键.28.3 y= x解:将(1,k)代入一次函数y=2x+1得,k=2+1=3,则反比例函数解析式为3 y= x29.0【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.解:∵正比例函数和反比例函数均关于坐标原点O对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴120y y+=,故答案为:0.【点拨】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.30.0.【分析】由点A (a ,b )(a >0,b >0)在双曲线1k y x=上,可得k 1=ab ,由点A 与点B 关于x 轴的对称,可得到点B 的坐标,进而表示出k 2,然后得出答案.解:∵点A (a ,b )(a >0,b >0)在双曲线1k y x=上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称,∴B (a ,-b )∵点B 在双曲线2k y x =上,∴k 2=-ab ;∴k 1+k 2=ab+(-ab )=0;故答案为0.【点拨】考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0的性质.31.12a >【分析】由反比例函数的图象与性质可得210a ->,从而可得a 的取值范围.解:∵反比例函数的图象有一支位于第一象限,∴210a ->,解得:12a >.故答案为:12a >.【点拨】本题考查了反比例函数的图象与性质,掌握性质:对于反比例函数(0)k y k x=≠,当k >0时,函数图象位于第一、三象限,是解答的关键.32.13【分析】若双曲线y =1k x-过二、四象限,利用反比例函数的性质得出k >1,求得符合题意的数字为2,3,再利用随机事件的概率=事件可能出现的结果数÷所有可能出现的结果数即可求出结论.解:∵双曲线y =1k x -过二、四象限,∴1-k <0,即k >1∴符合题意的数字为2,3,∴该事件的概率为2163=,故答案为:13.【点拨】本题考查了概率公式,利用反比例函数的性质,找出使得事件成立的k 的值是解题的关键.33.m <3【分析】根据反比例函数的增减性,列出关于m 的不等式,进而即可求解.解:∵在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,∴m -3<0,即:m <3.故答案是:m <3.【点拨】本题主要考查反比例函数的性质,掌握反比例函数k y x =,在反比例函数的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则k <0,是解题的关键.34.<【分析】先确定21a y x+=的图像在一,三象限,且在每一象限内,y 随x 的增大而减小,再利用反比例函数的性质可得答案.解:21a + >0,∴21a y x+=的图像在一,三象限,且在每一象限内,y 随x 的增大而减小,3- >4,-1y ∴<2,y 故答案为:<【点拨】本题考查的是反比例函数的性质,掌握利用反比例函数的图像与性质比较函数值的大小是解题的关键.35.123P P P <<【分析】先根据这块砖的重量不变可得压力F 的大小不变,且0F >,再根据反比例函数的性质(增减性)即可得.解: 这块砖的重量不变,∴不管,,A B C 三个面中的哪面向下在地上,压力F 的大小都不变,且0F >,P ∴随S 的增大而减小,,,A B C 三个面的面积之比是5:3:1,123P P P ∴<<,故答案为:123P P P <<.【点拨】本题考查了反比例函数的性质,熟练掌握反比例函数的增减性是解题关键.36.y 2<y 3<y 1【分析】将点A (1,y 1),B (-2,y 2),C (-3,y 3)分别代入反比例函数6y x =,并求得y 1、y 2、y 3的值,然后再来比较它们的大小.解:根据题意,得当x =1时,y 1=661=,当x =-2时,y 2=632=--,当x =-3时,y 3623==--;∵-3<-2<6,∴y 2<y 3<y 1;故答案是y 2<y 3<y 1.【点拨】本题考查了反比例函数图象与性质,此题比较简单,解答此题的关键是熟知反比例函数的性质及平面直角坐标系中各象限内点的坐标特点,属较简单题目.37.1k -【分析】根据反比例函数k 的几何意义可知:△AOD 的面积为1,矩形ABCO 的面积为k ,从而可以求出阴影部分ODBC 的面积.解:∵D 是反比例函数22(0)y x x=>图象上一点∴根据反比例函数k 的几何意义可知:△AOD 的面积为122⨯=1,∵点B 在函数1k y x=(0x >,k 为常数且2k >)的图象上,四边形OABC 为矩形,∴根据反比例函数k 的几何意义可知:矩形ABCO 的面积为k ,∴阴影部分ODBC 的面积=矩形ABCO 的面积-△AOD 的面积=k-1.故答案为:k-1.【点拨】本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于中等题型.38.4解:∵点A、B是双曲线3yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=3,∴S1+S2=3+3-1×2=4.故答案为:439.4 yx =-【分析】根据反比例函数比例系数的几何意义,即可求解.解:根据题意得:122AOPS k==,∴4k=,∵图象位于第二象限内,∴4k=-,∴该反比例函数的解析式为4 yx =-.故答案为:4 yx =-【点拨】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.40.2【分析】作A过x轴的垂线与x轴交于C,证明△ADC≌△BDO,推出S△OAC=S△OAB=1,由此即可求得答案.解:设A(a,b),如图,作A过x轴的垂线与x轴交于C,则:AC=b,OC=a,AC∥OB,∴∠ACD=∠BOD=90°,∠ADC=∠BDO,∴△ADC≌△BDO,∴S△ADC=S△BDO,∴S△OAC=S△AOD+S△ADC=S△AOD+S△BDO=S△OAB=1,∴12×OC×AC=12ab=1,∴ab=2,∵A(a,b)在y=kx上,∴k=ab=2.故答案为:2.【点拨】本题考查了反比例函数的性质,三角形的面积公式,全等三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线进行解题.41.(1)m=3,k=3,n=3;(2)当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,将A坐标代入反比例解析式求出k的值;(2)利用图像,可知分x=1x=3,1<x<3与x>3三种情况判断出y1和y2的大小关系即可.解:(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=kx得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(2)∵A(3,1),B(1,3),∴根据图像得当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.42.(1)函数图象位于第二、四象限,m<5.(2)①当y1<y2<0时,x1<x2;②当0<y1<y2,x1<x2.解:试题分析:(1)根据反比例函数图象的对称性可知,该函数图象位于第二、四象限,则m﹣5<0,据此可以求得m的取值范围;(2)根据函数图象中“y值随x的增大而增大”进行判断.。

部编数学九年级下册专项26反比例函数图像和性质(3大类型)(解析版)含答案

部编数学九年级下册专项26反比例函数图像和性质(3大类型)(解析版)含答案

专项26 反比例函数图像和性质(3大类型)【考点1 反比例函数性质】1.若反比例函数y=的图象经过点(2,﹣3),则k= .【答案】﹣6【解答】解:∵反比例函数y=的图象经过点(2,﹣3),∴﹣3=,解得,k=﹣6,故答案为:﹣6.2.若反比例函数的图象在第二、四象限,m的值为 .【答案】-2【解答】解:∵是反比例函数,∴3﹣m2=﹣1.解得:m=±2.∵函数图象在第二、四象限,∴m+1<0,解得:m<﹣1.∴m=﹣2.故答案为:﹣2.3.已知反比例函数y=图象位于一、三象限,则m的取值范围是 .【答案】m<6【解答】解:∵反比例函数y=图象位于一、三象限,∴﹣(m﹣6)>0,解得m<6.故答案是:m<6.4.在反比例函数y=的图象的每一支上,y都随x的增大而增大,则m的取值范围是 .【答案】m<2 【解答】解:依题意得:m﹣2<0,解得m<2故答案是:m<2.5.已知点A(2,a)、B(b,﹣3)都在函数的图象y=上,若将这个函数图象向左平行3个单位长度,则曲线AB所扫过的图形的面积是 .【答案】9【解答】解:将A、B两点代入函数解析式,得:a=﹣6,b=4,∴A(2、﹣6)、B(4,﹣3),∴向左平行3个单位长度后A的对应点A'(﹣1,﹣6),B的对应点B'(1,﹣3).∴平行四边形ABB'A'的底=3,高=﹣3﹣(﹣6)=3,∴平行四边形ABB'A'的面积=3×3=9,∴曲线AB所扫过的图形的面积=平行四边形ABB'A'的面积=9.故答案为:9.【考点2 反比例大小比较】6.若点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为 .【答案】y2<y1<y3【解答】解:∵反比例函数y=(k为常数),k2+1>0,∴该函数图象在第一、三象限,在每个象限内y随x的增大而减小,∵点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,﹣1<﹣,点A、B在第三象限,点C在第一象限,∴y2<y1<y3,故答案为:y2<y1<y3.7.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣2,2),B(n,﹣1).当y1<y2时,x的取值范围是 .【答案】﹣2<x<0或x>4【解答】解:∵反比例函数y2=的图象经过点A(﹣2,2),B(n,﹣1),∴﹣1×n=(﹣2)×2,∴n=4.∴B(4,﹣1).由图象可知:第二象限中点A的右侧部分和第四象限中点B右侧的部分满足y1<y2,∴当y1<y2时,x的取值范围是﹣2<x<0或x>4.故答案为:﹣2<x<0或x>4.8.如图,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象相交于A,B 两点,其中点A的横坐标为1.当k1x<时,x的取值范围是 .【答案】0<x<1或x<﹣1【解答】解:由正比例函数与反比例函数的对称性可得点B横坐标为﹣1,由图象可得当k1x<时,x的取值范围是0<x<1或x<﹣1.故答案为:0<x<1或x<﹣1.【考点3 反比例函数与其他综合运用】9.在一个不透明的纸箱内装有形状、质地、大小、颜色完全相同的5张卡片,卡片上分别标有数字﹣3,﹣1,0,1,2,将它们洗匀后,背面朝上,从中随机抽取1张,把抽得的数字记作a,再从剩下的卡片中随机抽取1张,把抽得的数字记作b,则使得反比例函数的图象经过第一、三象限的概率为 .【答案】【解答】解:∵反比例函数的图象经过第一、三象限,∴ab>0,画树状图得:则共有20种等可能的结果,ab为正数的所有可能值为:3,3,2,2;∴使得反比例函数的图象经过第一、三象限的概率为=.故答案为:.10.反比例函数y=(k为整数,且k≠0)在第一象限的图象如图所示,已知图中点A的坐标为(2,1),则k的值是 .【答案】1【解答】解:假设点A(2,1)在反比例函数y=(k为正整数)第一象限的图象上,则1=,∴k=2,但是点A在反比例函数y=(k为正整数)第一象限的图象的上方,∴k<2,∵k为整数,且k≠0,k>0,∴k=1,故答案为:1.11.当≤x≤2时,函数y=的图象为曲线段CD,y=﹣2x﹣b的图象分别与x轴、y轴交于A、B两点,若曲线段CD在△AOB的内部(且与三条边无交点),则b的取值范围为 .【答案】b<﹣ 【解答】解:反比例函数y=,当≤x≤2时,≤y≤2,∵曲线段CD在△AOB的内部(且与三条边无交点),∴当x=,﹣2×﹣b>2 ①,当x=2时,﹣2×2﹣b>②,解①得b<﹣3,解②得b<﹣,因此,b的取值范围为b<﹣.故答案为:b<﹣.12.当1≤x≤2时,反比例函数y=(k>﹣3且k≠0)的最大值与最小值之差是1,则k 的值是 .【答案】±2【解答】解:当k>0时,在其每一象限内,反比例函数y随x的增大而减小.∴,解得k=2,当﹣3<k<0时,在其每一象限内,反比例函数y随x的增大而增大.,解得k=﹣2,综上所述,k=±2.答案:±2.13.如图,曲线AB是抛物线y=﹣4x2+8x+1的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线y=(k≠0)的一部分.曲线AB与BC组成图形W.由点C开始不断重复图形W形成一组“波浪线”.若点P(2020,m),Q(x,n),在该“波浪线”上,则m的值为 ,n的最大值为 .【答案】1,5【解答】解:∵y=﹣4x2+8x+1=﹣4(x﹣1)2+5,∴当x=0时,y=1,∴点A的坐标为(0,1),点B的坐标为(1,5),∵点B(1,5)在y=的图象上,∴k=5,∵点C在y=的图象上,点C的横坐标为5,∴点C的纵坐标是1,∴点C的坐标为(5,1),∵2020÷5=404,∴P(2020,m)在抛物线y=﹣4x2+8x+1的图象上,m=﹣4×0+8×0+1=1,∵点Q(x,n)在该“波浪线”上,∴n的最大值是5,故答案为:1,5.14.如图,在△ABO中,∠ABO=90°,点A的坐标为(3,4).写出一个反比例函数y=(k≠0),使它的图象与△ABO有两个不同的交点,这个函数的表达式为 .【答案】y=(答案不唯一)【解答】解:∵∠ABO=90°,点A的坐标为(3,4),反比例函数y=(k≠0),使它的图象与△ABO有两个不同的交点,∴这个函数的表达式为:y=(答案不唯一).故答案为:y=(答案不唯一).15.如图,点P(4a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为17π,则反比例函数的解析式为 .【答案】y=【解答】解:∵图中阴影部分的面积为17π,∴圆的面积=4×17π=68π,∴圆的半径=2,∵P(4a,a)在圆上,∴16a2+a2=(2)2,解得a=2或﹣2(舍去),∴P点坐标为(8,2),把P(8,2)代入y=得k=8×2=16,∴反比例函数的解析式为y=.故答案为y=.16.如图,在平面直角坐标系xOy中,矩形OABC,OA=2,OC=1,写出一个函数y=,使它的图象与矩形OABC的边有两个公共点,这个函数的表达式可以为 (答案不唯一).【答案】y=,(答案不唯一,0<k<2的任何一个数)【解答】解:∵矩形OABC,OA=2,OC=1,∴B点坐标为(2,1),当函数y=(k≠0)过B点时,k=2×1=2,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,(答案不唯一,0<k<2的任何一个数);17.给定函数y=,下列说法正确的有 .①不等式y>0的解为:x<或x>1;②无论t为何值,方程y=t一定有解;③若点(x1、y1),(x2,y2)在该函数图象上而且x1<x2,则y1>y2;④经过原点的直线和该函数的图象一定有交点;⑤该函数的图象既是中心对称图形,又是轴对称图形.【答案】①④⑤ 【解答】解:函数y=可化为:y==3+①当y>0时,或解得:x>1或x<故①正确;②∵y=3+∴y≠3∴当t=3时,y=3,方程无解;故②错误;③若取x=0,则y=1;x=3,y=40<3,1<4,故③错误;④∵y=3+可看作由y=向右平移一个单位,再向上平移三个单位∴经过原点的直线和该函数的图象一定有交点故④正确;⑤∵y=既是轴对称图形,也是中心对称图形,y=3+是y=平移之后的图形,故其既是轴对称图形,也是中心对称图形故⑤正确综上,正确的选项有:①④⑤故答案为:①④⑤.18.函数y1=x与y2=的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 .【答案】①③【解答】解:①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;③y=x+=(﹣)2+4≥4,当且仅当x=2时取“=”.即在第一象限内,最低点的坐标为(2,4),故正确;∴正确的有①③.故答案为:①③.19.如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为 .【答案】2【解答】解:过点C作CH⊥x轴于点H.∵直线y=x+1与x轴,y轴分别交于点A,B,∴A(﹣1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(1,2),∵点C在y=的图象上,∴k=2,故答案为:2.20.已知点A在反比例函数y=(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为 .【答案】5或2或【解答】解:当AO=AB时,AB=5;当AB=BO时,AB=5;当OA=OB时,设A(a,)(a>0),B(5,0),∵OA=5,∴=5,解得:a1=3,a2=4,∴A(3,4)或(4,3),∴AB==2或AB==;综上所述,AB的长为5或2或.故答案为:5或2或.21.已知点A为直线y=﹣2x上一点,过点A作AB∥x轴,交双曲线y=于点B.若点A 与点B关于y轴对称,则点A的坐标为 .【答案】(,﹣2)或(﹣,2)【解答】解:因为点A为直线y=﹣2x上,因此可设A(a,﹣2a),则点A关于y轴对称的点B(﹣a,﹣2a),由点B在反比例函数y=的图象上可得2a2=4,解得a=±所以A(,﹣2)或(﹣,2),故答案为:(,﹣2)或(﹣,2).22.如图,在平面直角坐标系中,直线y=x与函数y=(x>0)的图象交于点A,直线y=x﹣1与函数y=(x>0)的图象交于点B,与x轴交于点C.若点B的横坐标是点A的横坐标的2倍,则k的值为 .【答案】【解答】解:直线y=x与函数y=(x>0)的图象交于点A,∴k>0,设A(a,a),则B(2a,2a﹣1),代入y=,,即a=2a﹣1,解得,a=,把a=,代入a=,得k=,故答案为:.23.已知点A是反比例函数y=﹣(x<0)的图象上的一个动点,连接OA,若将线段OA 绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数关系式是 .【答案】y=(x>0)【解答】解:如图,∵点A是反比例函数y=﹣(x<0)的图象上∴S△OAM=|k|=,∵线段OB是由线段OA绕点O顺时针旋转90°得到的,∴OA=OB,∠AOB=90°,又∵∠AOM+∠OAM=90°,∠AOM+∠BON=180°﹣90°=90°,∵∠AMO=∠ONB=90°,∴△AOM≌△OBN(AAS),∴S△OBN =S△AOM==|k|,又∵k>0,∴k=3,∴过点B的反比例函数关系式为y=(x>0),故答案为:y=(x>0).24.如图,△OA1B1,△A1A2B2,△A2A3B3…是分别以A1,A2,A3…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1,C2,C3…均在反比例函数y=(x>0)的图象上,则点A2021的坐标为 .【答案】(2,0)【解答】解:设点C1的坐标为(x,),∵点C1是OB1的中点,∴点B1的坐标为(2x,),∴A1的坐标为(2x,0),∴OA1=2x,A1B1=,∵△OA1B1是等腰直角三角形,∴OA1=A1B1,即2x=,解得:x=1或x=﹣1(舍),∴点A1的坐标为(2,0);设点C2的坐标为(a,),∵点C2是A1B2的中点,∴点B2的坐标为(2a﹣2,),点A2的坐标为(2a﹣2,0),∴A1A2=2a﹣4,A2B2=,∵△A1B2A2是等腰直角三角形,∴A1A2=A2B2,即2a﹣4=,解得:a=1+或a=1﹣(舍),∴点A2的坐标为(2,0),设点C3的坐标为(m,),∵点C3是A2B3的中点,∴点B3的坐标为(2m﹣2,),点A3的坐标为(2m﹣2,0),∴A2A3=2m﹣4,A3B3=,∵△A2B3A3是等腰直角三角形,∴A2A3=A3B3,即2m﹣4=,解得:m=+或m=﹣(舍),∴点A3的坐标为(2,0),…,点A2021的坐标为(2,0),故答案为:(2,0).。

九年级数学下册第二十六章反比例函数基本知识过关训练(带答案)

九年级数学下册第二十六章反比例函数基本知识过关训练(带答案)

九年级数学下册第二十六章反比例函数基本知识过关训练单选题1、函数y=kx﹣k与y=mx在同一坐标系中的图象如图所示,下列结论正确的是()A.k<0B.m>0C.km>0D.km<0答案:D分析:根据一次函数与反比例函数图象的特点与系数的关系解答即可.解:由图象可知双曲线过二、四象限,m<0;一次函数过一、三,四象限,所以k>0.故选:D.小提示:本题主要考查了反比例函数的图象性质和一次函数的图象性质,解题的关键是熟练掌握一次函数和反比例函数的性质.2、如图,在同一平面直角坐标系中,直线y=t(t为常数)与反比例函数y1=4x ,y2=−1x的图象分别交于点A,B,连接OA,OB,则△OAB的面积为()A.5t B.5t2C.52D.5答案:C分析:由反比例函数y =k x 中的k 的几何意义直接可得特定的三角形的面积,从而可得答案.解:如图,记直线y =t 与y 轴交于点M,由反比例函数的系数k 的几何意义可得:S △OBM =12×|−1|=12,S △OAM =12×|4|=2,∴S △AOB =12+2=52, 故选:C.小提示:本题考查的是反比例函数的系数k 的几何意义,掌握反比例函数的系数k 与特定的图形的面积之间的关系是解题的关键.3、如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x 的图象经过点C 和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)答案:B分析:作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标.解:作CE ⊥OA 于E ,如图,∵B (5,4),四边形AOCB 为平行四边形,∴CE =4,∵反比例函数y =8x 的图象经过点C , ∴S △COE =12OE •CE =12×8,∵CE =4∴OE =2,∴C (2,4),OA =BC =5-2=3,∴A (3,0),∵点D 是AB 的中点∴点D 的坐标为(3+52,0+42),即D (4,2),故选:B .小提示:本题考查了平行四边形的性质,反比例函数系数k 的几何意义等,求得点C 和点A 的坐标是解题的关键.4、已知反比例函数y =k x (k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( )A .(2,3)B .(-2,3)C .(3,0)D .(-3,0)答案:B分析:根据反比例函数性质求出k <0,再根据k =xy ,逐项判定即可.解:∵反比例函数y =k x (k ≠0),且在各自象限内,y 随x 的增大而增大,,∴k =xy <0,A 、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;B 、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;C 、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;D 、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;故选:B .小提示:本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.5、反比例函数y =−3x (x <0)的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .6答案:B分析:根据反比例函数系数k 的几何意义可得S △AOB =12|k |=12×3=32,再根据同底等高的三角形面积相等,可求出答案.解:连接OA ,由反比例函数系数k 的几何意义得S △AOB =12|k |=12×3=32,又∵AB ⊥x 轴,∴S △ABC =S △AOB =3,故选:B.小提示:本题考查反比例函数系数k的几何意义,理解反比例函数系数k的几何意义是正确解答的前提,掌握同底等高的三角形面积相等是解决问题的关键.6、下列函数中,y与x之间是反比例函数关系的是()A.xy=√2B.3x+2y=0C.y=kx D.y=2x+1答案:A分析:根据反比例函数定义判定即可.A、xy=√2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),故该项不属于反比例函数,此选项错误;D、y=2x+1,是y与x+1成反比例,故此选项错误.故选A.小提示:此题考查反比例函数的定义,注意反比例函数的三种形式,y=kx,xy=k,y=kx−1,熟记这三种形式即可正确判断.7、如图,点A为函数y=kx(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为()A.1B.2C.3D.4答案:D设点A坐标为(m,n),则有AB=m,OB=n,由题意可得:12mn=2,所以mn=4,又点A在双曲线y=k上,所以k=mn=4,故选D.8、对于反比例函数y=﹣5,下列说法错误的是()xA.图象经过点(1,﹣5)B.图象位于第二、第四象限C.当x<0时,y随x的增大而减小D.当x>0时,y随x的增大而增大答案:C分析:根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.,解:反比例函数y=﹣5xA、当x=1时,y=﹣5=﹣5,图像经过点(1,-5),故选项A不符合题意;1B、∵k=﹣5<0,故该函数图象位于第二、四象限,故选项B不符合题意;C、当x<0时,y随x的增大而增大,故选项C符合题意;D、当x>0时,y随x的增大而增大,故选项D不符合题意;故选C.小提示:本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.9、列车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在2.5h内到达,则速度至少需要提高到()km/h.A.180B.240C.280D.300答案:B分析:】依据行程问题中的关系:时间=路程÷速度,即可得到汽车行驶完全程所需的时间t (h )与行驶的平均速度v (km/h )之间的关系式,把t =2.5h 代入即可得到答案.解:∵从甲地驶往乙地的路程为200×3=600(km ),∴汽车行驶完全程所需的时间t (h )与行驶的平均速度v (km/h )之间的关系式为t =600v 当t =2.5h 时,即2.5=600v∴v =240,答:列车要在2.5h 内到达,则速度至少需要提高到240km/h .故选:B .【小提示】本题考查了反比例函数的应用,找出等量关系是解决此题的关键.10、下列函数中,图象经过点(1,﹣2)的反比例函数关系式是( )A .y =−1xB .y =1xC .y =2xD .y =−2x答案:D分析:设反比例函数解析式为y =k x (k ≠0),将点(1,2)代入进行求解即可得.设反比例函数解析式为y =k x (k ≠0),把(1,﹣2)代入得:k =﹣2,则反比例函数解析式为y =﹣2x , 故选D .小提示:本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定符合该函数的解析式是解题的关键.填空题11、在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积V 时,气体的密度ρ也随之改变.在一定范围内,密度ρ是容积V 的反比例函数.当容积为5 m 3时,密度是1.4 kg/m 3,则ρ与V 的函数关系式为_________________.答案:ρ=7V分析:根据等量关系“密度=质量÷体积”,故先求得质量,再列出P与V的函数关系式.解:∵密度ρ是容积V的反比例函数,∴设ρ=kv,由于(5,1.4)在此函数解析式上,∴k=1.4×5=7,∴ρ=7v.故本题答案为:ρ=7v.小提示:本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.12、如图,直线l1:y=13x+72交反比例函数y=kx(x>0)的图象于点A,交y轴于点B,将直线l1向下平移52个单位后得到直线l2,l2交反比例函数y=kx (x>0)的图象于点C.若△ABC的面积为158,则k的值为____.答案:6分析:l1向下平移52个单位后得到直线l2,可得到l2的函数表达式,将点A和点C的坐标分别表示出来.过点A和点C分别作y轴得垂线,与y轴交于点P和点Q,则S△ABC=S梯形PQCA−S△APB−S△BQC,即可求出点A的坐标,最后将点A的坐标代入反比例函数的表达式,求出k即可.∵l1向下平移52个单位后得到直线l2∴直线l2:y=13x+1把x=0代入l1得;y=72∴B(0,72)令点A的横坐标为m,则A(m,1m+7)令点B 的横坐标为n ,则B (n ,13n +1)AP =m ,CQ =n ,PQ =13m +72-(13n +1)=13m −13n +52PB =13m +72−72=13m ,BQ =72−(13n +1)=52−13nS △ABC =S 梯形PQCA −S △APB −S △BQCS 梯形PQCA =(AP +CQ)×PQ ×12=(m +n )(13m −13n +52)×12=16m 2−16n 2+54m +54n S △APB =12AP ×BP =16m 2 S △BQC =12BQ ×CQ =54n −16n 2∵△ABC 的面积为158∴S △ABC =S 梯形PQCA −S △APB −S △BQC =54m =158解得m =32∴A (32,4) 把A (32,4)代入y =k x解得:k =6所以答案是:6小提示:本题主要考查了与一次函数和反比例函数相关的几何面积问题,用割补法将三角形的面积表示出来以及引入参数表示未知点的坐标是解题的关键.13、在平面直角坐标系xOy中,点A(2,m),B(m,n)在反比例函数y=k(k≠0)的图象上,则n的值为x____________.答案:2分析:把点A(2,m)代入函数表达式即可求得k,从而得到含m的函数表达,再将B(m,n)代入含m的函数表达中即可求得答案.得,解:把点A(2,m)代入y=kx,即k=2m,m=k2,∴y=2mx将B(m,n)代入y=k得,x,解得n=2,n=2mm所以答案是:2.小提示:本题考查了待定系数法求函数的解析式,代入点求得含参数的函数解析式是解题的关键.14、已知函数y=(m+2)x|m|−3是关于x的反比例函数,则实数m的值是________.答案:2分析:根据反比函数的定义得出|m|−3=−1且m+2≠0,计算即可得出结论.解:∵函数y=(m+2)x|m|−3是关于x的反比例函数,∴|m|−3=−1且m+2≠0,∴m=2或﹣2,且m≠−2,∴m=2.所以答案是:2小提示:本题考查了反比例函数的定义,判断一个函数是否是反比例函数,首先看看两个变量是否具有反比(k为常数,k≠0)或y=kx−1(k为常数,例关系,然后根据反比例函数的意义去判断,其形式为y=kxk≠0).15、如图,点B为反比例函数y=k(k<0,x<0)上的一点,点A为x轴负半轴上一点,连接AB,将线段AB绕点xA逆时针旋转90°,点B的对应点为点C,若点C恰好也在反比例y=k的图象上,已知B、C纵坐标分别为3,1,x则k=______________.答案:-6分析:如图过点C作CE⊥x轴于E,过点B作BF⊥x轴于F,求得∠BAF+∠ABF=90°,根据旋转的性质得到AB=AC,∠BAC=90°,根据全等三角形的性质得到AF=CE,BF=AE,设B(x,3)则C(x-4,1),根据点B、点C在反比例函数y=k的图象上,得到3x=x-4,于是得到结论.x解:如图,过点C作CE⊥x轴于E,过点B作BF⊥x轴于F,∴∠AEC=∠BFA=90°,∴∠BAF+∠ABF=90°,由旋转知,AB=AC,∠BAC=90°,∴∠CAE+∠BAF=90°,∴∠ABF=∠CAE,∴△ABF≌△CAE(AAS),∴AF=CE,BF=AE,∵B、C的纵坐标分别为3、1,∴CE=1,BF=3,∴AF=1,AE=3,设B(x,3)则C(x-4,1),∵点B、点C在反比例函数y=k的图象上,x∴3x=x-4,∴x=-2,∴B(-2,3),∴k=-6,所以答案是:-6.小提示:此题主要考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,构造出△ABF≌△CAE是解本题的关键.解答题16、将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y=kx-7的图像与x、y轴分别交于点A、B,那么△ABO为此一次函数的坐标三角形(也称为直线AB的坐标三角形).(1)如果点C在x轴上,将△ABC沿着直线AB翻折,使点C落在点D(0,18)上,求直线BC的坐标三角形的面积;(2)如果一次函数y=kx-7的坐标三角形的周长是21,求k值;(3)在(1)(2)条件下,如果点E的坐标是(0,8),直线AB上有一点P,使得△PDE周长最小,且点P正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.答案:(1)84(2)k=−43(3)y =−45x 分析:(1)先求出点B 坐标,继而可得OB ,由翻折性质可得:BC =BD =25,根据勾股定理可得OC 的长,根据三角形面积公式即可求解;(2)设OA =x ,AB =14−x ,在Rt △AOB 中,由勾股定理可得OA 的长,从而得到点A 坐标,将点A (−214,0)代入y =kx −7可得k 的值;(3)连接CE 交AB 于点P ,由轴对称的性质可得当点P 、C 、E 在一条直线上时,△DPE 的周长最小,将直线AB 和直线CE 的解析式联立可得点P ,继而即可求得反比例函数解析式.(1)∵将x =0代入y =kx −7,得:y =−7,∴点B (0,-7),∴OB =7,又∵点D (0,18),即OD =18,∴BD =OB +OD =7+18=25,由翻折的性质可得:BC =BD =25,在Rt △BOC 中,由勾股定理可得:OC =√BC 2−OB 2=√252−72=24,∴直线BC 的坐标三角形的面积12OC ·OB =12×24×7=84;(2)设OA =x ,AB =14−x ,∵在Rt △AOB 中,由勾股定理可得:AB 2=OA 2+OB 2,即(14−x )2=x 2+72,解得:x =214, ∴点A (−214,0),∵将点A (−214,0)代入y =kx −7,得:−214k −7=0,∴k =−43,(3)如图,连接CE 交AB 于点P ,∵点C 与点D 关于直线AB 对称,∴PC =PD ,∴PC +PE =PD +PE ,∴当点P 、C 、E 在一条直线上时,PC +PE 有最小值,又∵DE 的长度不变,∴当点P 、C 、E 在一条直线上时,△DPE 的周长最小,设直线CE 的解析式y =kx +b ,将点C (-24,0)、E (0,8)代入上式,得:{0=−24k +b 8=b, 解得:{k =13b =8, ∴直线CE 的解析式y =13x +8,联立{y =13x +8y =−43x −7, 解得:{x =−9y =5, ∴点P (-9,5),设反比例函数解析式为y =k x ,∴k =xy =−9×5=−45,∴反比例函数解析式为y=−45.x小提示:本题考查一次函数的综合运用,涉及到翻折的性质、勾股定理、待定系数法求解析式、方程组与交点坐标、轴对称路径最短等知识点,解题的关键是求得各直线解析式,明确当点P、C、E在一条直线上时,△DPE的周长最小.(k为常数,k≠1);17、已知反比例函数y=k−1x(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.答案:(1)k=3(2)k<1分析:(1)根据题意,把A(1,2)代入到反比例函数y=k−1中,进而求解;x(2)根据这个函数图象的每一分支上,y随x的增大而增大,可知k−1<0,进而求出k的取值范围.(1)∵点A(1,2)在这个函数的图象上,∴k−1=2,1解得k=3.故答案是k=3.(2)图象的每一分支上,y随x的增大而增大,在函数y=k−1x∴k−1<0,∴k<1.故答案是:k<1.小提示:本题考查的是反比例函数图象的性质,会灵活运用反比例函数图象的性质是解本题的关键.18、如图,一次函数y=kx+2(k≠0)的图像与反比例函数y=m(m≠0,x>0)的图像交于点A(2,n),与yx轴交于点B,与x轴交于点C(−4,0).(1)求k与m的值;时,求a的值.(2)P(a,0)为x轴上的一动点,当△APB的面积为72,m的值为6答案:(1)k的值为12(2)a=3或a=−11分析:(1)把C(−4,0)代入y=kx+2,先求解k的值,再求解A的坐标,再代入反比例函数的解析式可得答案;(2)先求解B(0,2).由P(a,0)为x轴上的一动点,可得PC=|a+4|.由S△CAP=S△ABP+S△CBP,建立方程求解即可.(1)解:把C(−4,0)代入y=kx+2,.得k=12∴y=1x+2.2把A(2,n)代入y=1x+2,2得n=3.∴A(2,3).,把A(2,3)代入y=mx得m=6.∴k的值为1,m的值为6.2(2)当x=0时,y=2.∴B(0,2).∵P(a,0)为x轴上的一动点,∴PC=|a+4|.∴S△CBP=12PC⋅OB=12×|a+4|×2=|a+4|,S△CAP=12PC⋅y A=12×|a+4|×3=32|a+4|.∵S△CAP=S△ABP+S△CBP,∴32|a+4|=72+|a+4|.∴a=3或a=−11.小提示:本题考查的是利用待定系数法求解反比例函数与一次函数的解析式,坐标与图形面积,利用数形结合的思想,建立方程都是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上. 图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图 1图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠)k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。

①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k<时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大。

注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

反比例函数图像的位置和函数的增减性,是有反比例函数系数k 的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k 的符号。

如xky =在第一、第三象限,则可知0k >。

☆反比例函数xky =(0k ≠)中比例系数k 的绝对值k 的几何意义。

如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足, 则OEPF S PE PF y x xy 矩形=⋅=⋅==k ☆ 反比例函数x k y =(0k ≠)中,k 越大,双曲线x k y =越远离坐标原点;k 越小,双曲线xky =越靠近坐标原点。

☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x 和直线y=-x 。

练习一、选择题(每小题3分,共30分)1、下列函数中 y 是x 的反比例函数的是( )A 21xy = B xy=8 C 52+=x y D 53+=x y2、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、1 3、函数与在同一平面直角坐标系中的图像可能是( )。

4、、若点A(x 1,1)、B(x 2,2)、C(x 3,-3)在双曲线上,则( )A 、x 1>x 2>x 3B 、x 1>x 3>x 2C 、x 3>x 2>x 1D 、x 3>x 1>x 2 5、如图4,A 、C 是函数y=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1, Rt △COD 的面积为S 2,则( )图4 A 、S 1>S 2; B 、S 1<S 2; C 、S 1 =S 2; D 、S 1和S 2的大小关系不能确定6、在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( )A .1-B .0C .1D .27、如图2,正比例函数y=x 与反比例y=的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为( )A 、1B 、C 、2D 、8、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21D 、m >219、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限10、若反比例函数 的图象经过点(a ,-a ),则a 的值为( )A 、2;B 、±2;C 、-2;D 、±4 二、填空题(每小题4分,共40分)11、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 .ABC y xOD x y 4-=12、函数22)2(--=ax a y 是反比例函数,则a 的值是13、正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ), 则k = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若x x 120<<时,y y 12>, 则k 的取值范围是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 .轴、y 轴作17、如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x垂线段,若1S =阴影,则12SS +=.18、点P 在反比例函数1y x =(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是___________.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图5,A 、B 是函数2y x =的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,则△ABC 的面积S =___________三、解答题(共50分)21、(8分)已知 21y y y += 若1y 与2x 成正比例关系 ,2y 与x 成反比例关系 ,且当X=-1时,y=3.由x=1时,y=-5时, 求y与x的函数关系式?O BxyC A 图5xyABO1S 2S 17题图22、(10分)如图所示:已知直线y=x 21与双曲线y=)0(>k xk交于A B两点,且点A的横坐标为4⑴ 求k的值⑵ 若双曲线y=)0(>k xk上的一点C 的纵坐标为8,求△AOC 的面积23、(8分)在反比例函数xky =的图像的每一条曲线上,y 都随x 的增大而减小.在曲线上取一点A ,分别向x 轴、y 轴作垂线段,垂足分别为B 、C ,坐标原点为O ,若四边形ABOC 面积为6,求k 的值24、(24分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由. (4)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.xyA BO参考答案1、B2、D3、B4、C5、C6、D7、C8、D9、D 10、B 11、(2,1)12、-1 , 13、-5 14、-3 , 15、K <-116、y=x 5, 17、418、y=x6, 19、420、4 , 21、y=-x 2- x422、k=8, △AOC 的面积=15 23、k=6,24、(1) y=x 4, y=2x-2(2) =3, (3)在, (4)、x <-1 或 0< x <2。

相关文档
最新文档