材料学 复习题
材料科学基础综合复习题
B、无扩散型相变 C、半扩散型相变 8、过冷奥氏体等温转变温度越低,所得组织的硬度() A、越高 B、越低 C、变化不大 9、过冷奥氏体连续冷却,当冷却速度≤Vc 时,冷速越快,冷却 后所得硬度 () A、越高 B、越低 C、有时高有时低 10、高分子链的几何形态可分为三种() A、结晶型部分结晶型无定型 B、线型支链型体型 C、线型无定型体型 选择题(3) 1、T10 钢中的含碳量是() A、0.1% B、1% C、10% 2、40CrNiMo 中,含碳量是()
选择题(1) 1、塑料的使用状态为() A、粘流态 B、玻璃态 C、高弹态 2、按用途分,40Cr 钢属于() A、渗碳钢 B、调质钢 C、弹簧钢 3、40Cr 钢中,合金元素 Cr 的主要作用是() A、提高淬透性,强化铁素体 B、提高淬透性和红硬性 C、提高硬度,耐磨性 4、按用途分,ZoCrMnTi 钢属于() A、渗碳钢 B、调质钢 C、弹簧钢 5、ZoCrMnTi 钢中,加入 Ti 的主要目的是() A、提高耐磨性 B、提高淬透性 C、细化晶粒 6、按用途分,60SiZMn 钢属于()
2、在过冷奥氏体三种转变产物中,硬度由高到低依次是() A、珠光体>贝氏体>马氏体 B、贝氏体> 马氏体>珠光体 C、马氏体>贝氏体>珠光体 3、片状珠光体的性能主要取决于片层间距,片层间距越小,() A、强度、硬度越低,塑性越好; B、强度、硬度越高,塑性越低; C、强度、硬度越高,塑性越好; 4、同种钢,片状珠光体与粒状珠光体比较,片状珠光体的()A、 强度、硬度高,塑性、韧性差;B、强度、硬度低,塑性、韧性 好; C、强度、硬度高,塑性、韧性好; 5、下贝氏体与上贝氏体比较,下贝氏体的() A、硬度高,强度高,韧性好; B、硬度高,强度高,韧性差; C、硬度低,强度低,韧性好; 6、马氏体具有高硬度、高强度的主要原因是() A、固溶强化相变强化时效强化 B、固溶强化细晶强化淬火应力大 C、细晶强化位错强化淬火应力大 7、按相变过程中,形核和长大特点分,马氏体转变属于() A、扩散型相变
材料科学基础复习题
一名词解释1、致密度:表示晶胞中原子所占体积与晶胞体积的比值,是衡量原子排列紧密程度的参数,致密度越大,晶体中原子排列越紧密,晶体结构越致密。
2、相:合金中具有同一聚集状态、同一晶体结构、成分基本相同、并有明确界面与其他部分相分开的均匀组成部分。
3、固溶体:指以合金某一组元为溶剂,在其晶格中溶入其他组元原子(溶质)后所形成的一种合金相,其特征是仍保持溶剂晶格类型,结点上或间隙中含有其他组元原子。
4、离异共晶:成分点靠近共晶转变线两端的亚共晶和过共晶合金,结晶后组织中初晶量多,共晶体数量少,而且共晶体中与初晶相同的一相与初晶结合在一起,将共晶体中另一相推至晶界,造成的共晶体两相分离的非平衡组织。
5、平衡分配系数:固溶体合金在结晶过程中具有选分结晶的特点。
因此在一定温度下平衡时,固相成分与液相成分之比称为平衡分配系数。
该参数反映了溶质在固液两相中的分配系数及溶质对合金熔点的影响程度。
6、反应扩散:在固态扩散的过程中,如果渗入元素在金属中溶解度有限,随着扩散原子增多,当渗入原子的浓度超过饱和溶解度时则形成不同于原相的固液体或中间相,从而使金属表层分为出现新相和不出现新相的两层,这种通过扩散而形成新相的过程称为反应扩散。
7、固溶强化:当形成固溶体后,溶剂晶格中因溶有溶质原子而产生晶格畸变,溶质原子的应力场会与位错产生交互作用而阻碍位错运动,增大了位错运动的阻力,使得临界分切应力远比纯金属打,滑移系开动比纯金属困难,使材料的塑性变形抗力提高,硬度、强度上升,而塑性、韧性下降的现象称为固溶强化。
8、退火:将金属及其合金加热至相变温度以上,保温一段时间,然后以较为缓慢的速度冷却,以获得近于平衡组织的热处理工艺称为退火。
9、柏氏矢量:用来描述位错引起晶格畸变的物理量。
该矢量的模是位错的强度,表示晶格总畸变的大小,其方向表示晶格点畸变的方向。
一般情况下,该矢量越大,晶体畸变的程度越大。
10、成分过冷:固溶体合金凝固时,由于液相中溶质的分布发生变化,合金熔点也发生变化,即使实际温度分布不变,固液界面前沿的过冷度也会发生变化。
材料科学基础复习题及答案
单项选择题:(每一道题1分)第1章原子结构与键合1.高分子材料中的C-H化学键属于。
(A)氢键(B)离子键(C)共价键2.属于物理键的是。
(A)共价键(B)范德华力(C)氢键3.化学键中通过共用电子对形成的是。
(A)共价键(B)离子键(C)金属键第2章固体结构4.面心立方晶体的致密度为 C 。
(A)100% (B)68% (C)74%5.体心立方晶体的致密度为 B 。
(A)100% (B)68% (C)74%6.密排六方晶体的致密度为 C 。
(A)100% (B)68% (C)74%7.以下不具有多晶型性的金属是。
(A)铜(B)锰(C)铁8.面心立方晶体的孪晶面是。
(A){112} (B){110} (C){111}9.fcc、bcc、hcp三种单晶材料中,形变时各向异性行为最显著的是。
(A)fcc (B)bcc (C)hcp10.在纯铜基体中添加微细氧化铝颗粒不属于一下哪种强化方式?(A)复合强化(B)弥散强化(C)固溶强化11.与过渡金属最容易形成间隙化合物的元素是。
(A)氮(B)碳(C)硼12.以下属于正常价化合物的是。
(A)Mg2Pb (B)Cu5Sn (C)Fe3C第3章晶体缺陷13.刃型位错的滑移方向与位错线之间的几何关系?(A)垂直(B)平行(C)交叉14.能进行攀移的位错必然是。
(A)刃型位错(B)螺型位错(C)混合位错15.在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为。
(A)肖特基缺陷(B)弗仑克尔缺陷(C)线缺陷16.原子迁移到间隙中形成空位-间隙对的点缺陷称为(A)肖脱基缺陷(B)Frank缺陷(C)堆垛层错17.以下材料中既存在晶界、又存在相界的是(A)孪晶铜(B)中碳钢(C)亚共晶铝硅合金18.大角度晶界具有____________个自由度。
(A)3 (B)4 (C)5第4章固体中原子及分子的运动19.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。
(A)距离(B)时间(C)温度20.在置换型固溶体中,原子扩散的方式一般为。
材料科学基础复习题
名词解释1.空间点阵:是表示晶体结构中质点周期性重复规律得几何图形.2.同素异构:是指某些元素在t和p变化时,晶体结构发生变化得特征.3.固溶体:当一种组分(溶剂)内溶解了其他组分(溶质)而形成的单一、均匀的晶态固体,其晶体结构保持溶剂组元的晶体结构时,这种相就称固溶体。
4.电子浓度:固溶体中价电子数目e与原子数目之比。
5.间隙固溶体:溶质原子溶入溶剂间隙形成的固溶体6.晶胞:能完全反映晶格特征得最小几何单元7.清洁表面:是指不存在任何吸附、催化反应、杂质扩散等物理化学效应得表面,这种表面的化学组成与体内相同,但周期结构可以不同于体内。
8.润湿:是一种流体从固体表面置换另一种流体的过程。
9.表面改性:是利用固体表面的吸附特性,通过各种表面处理来改变固体表面得结构和性质以适应各种预期要求。
10.晶界:凡结构相同而取向不同的晶体相互接触,其接触面称为晶界。
11.相平衡:一个多相系统中,在一定条件下,当每一相的生成速度与它的消失速度相等时,宏观上没有任何物质在相间传递,系统中每一个相的数量均不随时间而变化,这时系统便达到了相平衡。
12.临界晶胚半径rk :新相可以长大而不消失的最小晶胚半径.13.枝晶偏析: 固溶体非平衡凝固时不同时刻结晶的固相成分不同导致树枝晶内成分不均匀的现象(或树枝晶晶轴含高熔点组元较多,晶枝间低熔点组元较多的现象).14.扩散:由构成物质的微粒得热运动而产生得物质迁移现象。
扩散的宏观表现为物质的定向输送。
15.反应扩散:在扩散中由于成分的变化,通过化学反应而伴随着新相的形成(或称有相变发生)的扩散过程称为“反应扩散”,也称为“相变扩散。
16.泰曼温度:反应开始温度远低于反应物熔点或系统低共熔温度,通常相当于一种反应物开始呈现显著扩散作用的温度,此温度称为泰曼温度或烧结温度。
18.相变:随自由能变化而发生的相的结构变化。
19.什么是相律:表示材料系统相平衡得热力学表达式,具体表示系统自由能、组元数和相数之间得关系。
材料科学基础_综合复习题
材料科学基础复习题一、选择题1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是.(A) 金属键(B) 离子键(C) 分子键(D) 共价键2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是.(A) 氢键(B) 离子键(C) 分子键(D) 共价键3. 工业用硅酸盐属于.(A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料4. 布拉菲点阵共有中.(A) 8 (B) 10 (C) 12 (D) 145. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为.(A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 46. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是.(A) 在简单立方点阵中, 低指数的晶面间距较大(B) 在简单立方点阵中, 高指数的晶面间距较大(C) 晶面间距越大, 该晶面上原子排列越紧密(D) 晶面间距越大, 该晶面上原子排列越稀疏7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为.(A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 128. 密堆积结构的致密度为.(A) 0.68 (B) 0.74 (C) 0.82 (D) 1.09. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为.(A) 4 (B) 6 (C) 8 (D) 1010. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是.(A) 原子结合键为共价键(B) 原子配位数为4(C) 单位晶胞包含8个原子(D) 属于面心立方点阵, 为密堆积结构11. 下述晶体缺陷中属于点缺陷的是.(A) 空位(B) 位错(C) 相界面(D) 间隙原子12. 下述晶体缺陷中属于线缺陷的是.(A) 空位(B) 位错(C) 晶界(D) 间隙原子13. 下述晶体缺陷中属于面缺陷的是.(A) 表面(B) 位错(C) 相界面(D) 空位14. 下述界面中界面能最小的是.(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面15. 下述界面中界面能最大的是.(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面16. 理想密排六方金属的c/a为.(A) 1.6 (B)(C) (D) 117. 在晶体中形成空位的同时又产生间隙原子, 这样的缺陷称为.(A) 肖脱基空位(B) 弗兰克尔空位(C) 线缺陷(D) 面缺陷18. 面心立方晶体的挛晶面是.(A) {112} (B) {110} (C) {111} (D) {123}19. 体心立方晶体的挛晶面是.(A) {112} (B) {110} (C) {111} (D) {123}20. 铸铁与碳钢的区别在于有无.(A) 莱氏体(B) 珠光体(C) 铁素体(D) 渗碳体21. 在二元系合金相图中, 计算两相相对量的杠杆法则只能用于.(A) 单相区中(B) 两相区中(C) 三相平衡水平线上(D) 无限制22. Hume-Rothery提出有利于大量固熔的原子尺寸条件为两组元的原子半径差对熔剂原子半径的比不超过.(A) 10% (B) 14% (C) 15% (D) 20%23. 碳与钒结合形成金属化合物, 下述说法正确的是.(A) 该化合物属于简单间隙化合物(B) 该化合物属于复杂间隙化合物(C) 该化合物具有体心立方结构(D) 该化合物具有面心立方结构24. 以下关于渗碳体的描述中, 正确的是.(A) 渗碳体是钢中很重要的一种复杂间隙相(B) 渗碳体晶体结构非常复杂, 属于正交晶系(C) 渗碳体为铁与碳固熔形成的间隙固熔体(D) 渗碳体为铁与碳固熔形成的置换固熔体25. 下述关于Ni-Cu系二元合金的描述中, 正确的是.(A) 室温下组织为单相组织(B) 室温下组织为两相组织(C) 凝固时发生匀晶转变(D) 凝固时发生共晶转变26. 凝固后是否形成晶体, 主要由液态物质的决定.(A) 温度梯度(B) 粘度(C) 冷却速度(D) 压力27. 金属结晶形核时, 临界晶核半径r K与过冷度ΔT及表面自由能σ之间的关系为.(A) ΔT越大, r K越小(B) ΔT越大, r K越大(C) σ越大, r K越小(D) σ越大, r K越大28. 纯金属均匀形核, 形成临界晶核时体积自由能的减少只能补偿表面能的.(A) 13(B)23(C)34(D)4529. 原子扩散的驱动力是.(A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度(D) 表面张力30. 菲克第一定律描述了稳态扩散的特征, 即浓度不随变化.(A) 距离(B) 时间(C) 温度(D) 压力31. 在置换固熔体中, 原子扩散的方式一般为.(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制32. 在间隙固熔体中, 原子扩散的方式一般为.(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制33. 在科肯道尔效应中, 惰性标记发生移动的主要原因是扩散偶中.(A) 两组元的原子尺寸不同(B) 仅存在一组元的扩散(C) 两组元的扩散速率不同(D) 两组元的温度不同34. 晶体的类型与结构是影响固体材料中原子扩散的重要因素, 基本规律是.(A) 与金属相比, 晶态化合物的扩散系数低(B) 与金属相比, 晶态化合物的扩散系数高(C) 非密堆结构的晶体比密堆结构的晶体具有更高的扩散系数(D) 密堆结构的晶体比非密堆结构的晶体具有更高的扩散系数35. D L, D B, D S分别表示晶内扩散、晶界扩散和表面扩散的扩散系数, 则在一般情况下, 三者的大小关系为.(A) D L > D B > D S(B) D S > D B > D L(C) D B > D L > D S(D) D S > D L > D B36. 合金凝固时极易得到树枝晶组织, 其主要原因是.(A) 固-液界面前沿液相中存在正温度梯度(B) 固-液界面前沿液相中存在负温度梯度(C) 固-液界面前沿液相中存在成分过冷区(D) 固-液界面前沿液相中存在难熔质点37. 下述关于交滑移的描述中, 正确的是.(A) 发生交滑移时会出现曲折或波纹状的滑移带(B) 体心立方金属最容易发生交滑移(C) 层错能低的金属易发生交滑移(D) 交滑移必须通过刃型位错实现38. 多晶体发生塑性变形时, 为了满足协调变形, 每个晶粒至少需要开动个独立的滑移系.(A) 3 (B) 4 (C) 5 (D) 639. 再结晶后的晶粒长大是通过方式进行的.(A) 大晶粒吞食小晶粒(B) 小晶粒蚕食大晶粒(C) 晶界向曲率中心移动(D) 晶界背向曲率中心移动40. w C低于0.014的碳钢发生马氏体转变时, 马氏体M与奥氏体A有K-S取向关系, 即.(A) {110}M // {111}A, <111>M // <110>A(B) {111}M // {110}A, <111>M // <110>A(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A41. 含Ni约30% 的Fe-Ni合金发生马氏体相变时, 马氏体与奥氏体之间的位向关系为西山关系, 即.(A) {110}M // {111}A, <111>M // <110>A(B) {110}M // {111}A, <110>M // <112>A(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A42. 以下关于马氏体相变的描述中, 正确的是.(A) 马氏体相变为无扩散性相变(B) 马氏体相变是通过形核-长大方式进行的(C) 马氏体相变速率极低(D) 马氏体相变速率极高43. 固态相变的阻力一般包括.(A) 新、旧相比体积差所增加的应变能(B) 新、旧相为维持共格/半共格关系所增加的应变能(C) 新、旧相界面增加的表面能(D) 新、旧相之间的体积自由能差44. 固态相变的驱动力是.(A) 新、旧相比体积差所增加的应变能(B) 新、旧相为维持共格/半共格关系所增加的应变能(C) 新、旧相界面增加的表面能(D) 新、旧相之间的体积自由能差45. 固态相变时空位处易于形核的主要原因是.(A) 空位促进熔质原子的扩散(B) 空位释放的能量可提供形核驱动力(C) 空位阻碍熔质原子的扩散(D) 空位群凝聚成位错, 促进形核46. 下述固态相变中属于扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变47. 下述固态相变中属于无扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变48. 下述固态相变中属于半扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变49. 时效型合金发生脱熔转变期间容易产生过渡相, 其特征是.(A) 过渡相与母相之间形成共格或半共格界面(B) 过渡相与母相之间形成非共格界面(C) 过渡相一般呈盘片状(D) 过渡相一般呈球状50. 调幅分解的特点是.(A) 成分改变(B) 成分不变(C) 有核相变(D) 无核相变选择题参考答案1. ABD2. AC3. B4. D5. A6. AC7. D8. B9. C 10. ABC11. AD 12. B 13. AC 14. A 15. C16. B 17. B 18. C 19. A 20. A21. B 22. C 23. AD 24. AB 25. AC26. BC 27. AD 28. B 29. B 30. B31. C 32. B 33. C 34. AC 35. B36. C 37. ABC 38. C 39. AC 40. A41. B 42. ABD 43. ABC 44. D 45. ABD46. AD 47. B 48. C 49. AC 50. AD二、简答题1. 固态相变基本特点.答: 固态相变的特点是:(1) 相变阻力大. 固态相变时的阻力包括新、旧相之间的表面能以及新、旧相由于比体积差或新、旧相界面原子错配而额外增加的弹性应变能; 另外, 固相中原子扩散速率极低也是造成固态相变阻力大的一个重要原因.(2) 新相晶核与母相之间存在一定的晶体学位向关系. 固态相变时, 为了减少新、旧两相之间的界面能, 新相晶核与母相晶体之间往往存在一定的晶体学位向关系, 常以低指数、原子密度大且匹配较好的晶面和晶向互相平行; 并且, 新相往往在母相的某一特定晶面(惯习面)上形成.(3) 母相晶体缺陷对相变起促进作用. 由于母相晶体中存在的各种缺陷(如晶界、相界、位错、空位等)周围晶格有畸变, 自由能较高, 因此容易在这些区域优先形核.(4) 易于出现过渡相. 过渡相是为了克服相变阻力而形成的一种协调性中间转变产物. 通常首先在母相中形成成分与母相相近的过渡相, 然后在一定条件下由过渡相逐渐转变为稳定相.2. 位错促进固态相变形核的主要原因.答: 由于固态相变阻力大, 固相中的形核几乎总是非均匀的, 往往借助晶体中的结构缺陷(空位,位错,晶界等)形核.新相在位错处形核有三种情况: 一是新相在位错线上形核, 新相形成处, 位错消失, 释放的能量使形核功降低而促进形核; 二是位错不消失, 而且依附在新相界面上, 成为半共格界面中的位错部分, 补偿了失配, 因而降低了能量, 使生成晶核时所消耗的能量减少而促进形核; 三是当新相与母相成分不同时, 由于熔质原子在位错线附近偏聚(形成柯氏气团)有利于新相沉淀析出, 也对形核起促进作用.3. 非扩散型相变的基本特征.答: 无扩散型相变的基本特点是:(1) 存在由于均匀切变引起的形状改变, 使晶体发生形状改变.(2) 由于相变过程无扩散, 新相与母相的化学成分相同.(3) 新相与母相之间有一定的晶体学位向关系.(4) 相界面移动速度极快, 可接近声速.4. 说明Al-Cu等时效型合金脱熔过程出现过渡相的原因.答: 时效处理时脱熔的一般顺序为:偏聚区(或称G.P.区) →过渡相(亚稳相) →平衡相.脱熔时不直接析出平衡相的原因, 是由于平衡相一般与基体形成新的非共格界面, 界面能大, 而亚稳定的脱熔产物往往与基体完全或部分共格, 界面能小. 在相变初期, 界面能起决定性作用, 界面能小的相, 形核功小, 容易形成. 所以首先形成形核功最小的过渡结构, 再演变成平衡稳定相.5. 调幅分解的主要特征.答: (1) 调幅分解过程的成分变化是通过上坡扩散实现的. 首先出现微区的成分起伏, 随后通过熔质原子从低浓度区向高浓度区扩散, 使成分起伏不断增幅, 直至分解为成分不同的两平衡相为止.(2) 调幅分解不经历形核阶段, 新、旧相结构相同, 不存在明显的相界面. 由于无需形核, 所以分解速度很快.6. 脱熔相颗粒粗化机理.答: 参见教材P292-293的“8.4.3.2 颗粒粗化”一节. (需要画图!!)7. 零件热处理的作用.答: 零件热处理的作用如下:(1) 通过适当的热处理可以显著提高零件的力学性能, 延长机器零件的使用寿命.(2) 恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷, 细化晶粒, 消除偏析, 降低内应力, 使零件的组织和性能更加均匀.(3) 热处理也是机器零件加工工艺过程中的重要工序.(4) 此外, 通过热处理还可使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能.8. 过共析钢淬火时加热温度的选择依据.答: 过共析钢的淬火加热温度限定在Ac1以上30~50℃是为了得到细小的奥氏体晶粒和保留少量渗碳体质点, 淬火后得到隐晶马氏体和其上均匀分布的粒状碳化物, 从而不但可以使钢具有更高的强度、硬度和耐磨性, 而且也具有较好的韧性. 如果过共析钢淬火加热温度超过Ac cm, 碳化物将全部熔入奥氏体中, 使奥氏体中的含碳量增加, 降低钢的M s和M f 点, 淬火后残留奥氏体量增多, 会降低钢的硬度和耐磨性; 淬火温度过高, 奥氏体晶粒粗化、含碳量又高, 淬火后易得到含有显微裂纹的粗片状马氏体, 使钢的脆性增大; 此外, 高温加热淬火应力大、氧化脱碳严重, 也增大钢件变形和开裂倾向.9. 马氏体相变的基本特征.答: (1) 无扩散性. 马氏体转变的过冷度很大, 转变温度低, 原子扩散无法进行, 因此是非扩散型相变.(2) 切变共格性. 马氏体转变是新相在母相特定的晶面(惯习面)上形成, 并以母相的切变来保持共格关系的相变过程.(3) 变温形成. 马氏体转变有其开始转变温度(M s点)与转变终了温度(M f点). 当过冷奥氏体冷到M s点, 便发生马氏体转变, 转变量随温度的下降而不断增加, 一旦冷却中断, 转变便很快停止.(4) 高速长大. 马氏体转变没有孕育期, 形成速度很快, 瞬间形核, 瞬间长大.(5) 不完全性. 一般来说, 奥氏体向马氏体的转变是不完全的, 即使冷却到M f点, 也不能获得100%的马氏体, 即总有一部分残余奥氏体.10. 细晶强化/固熔强化/弥散强化/加工硬化机理.答: (关于弥散强化机理)由塑性相与硬脆相组成的(两相)合金, 倘若硬脆的第二相呈弥散粒子均匀地分布在塑性相基体上, 则可显著提高合金的强度, 此即弥散强化. 这种强化的主要原因是由于弥散细小的第二相粒子与位错的交互作用(位错绕过或切过第二相粒子), 阻碍了位错的运动, 从而提高了合金的塑性变形抗力.(关于加工硬化机理)在塑性变形过程中, 随着金属内部组织的变化, 金属的力学性能也将产生明显的变化, 即随着变形程度的增加, 金属的强度、硬度增加, 而塑性、韧性下降, 这一现象即为加工硬化或形变强化.关于加工硬化的原因, 目前普遍认为与位错的交互作用有关. 随着塑性变形的进行, 位错密度不断增加, 因此位错在运动时的相互交割加剧, 产生固定割阶、位错缠结等障碍, 使位错运动的阻力增大, 引起变形抗力的增加, 从而提高了金属的强度.11. 孪生变形特点.答: 孪生变形是金属塑性变形的基本方式之一, 是指在切应力的作用下, 晶体的一部分沿一定的晶面(孪生面)和一定的晶向(孪生方向)相对于另一部分晶体作均匀地切变, 在切变区域内, 与孪生面平行的每层原子的切变量与它距孪生面的距离成正比, 并且不是原子间距的整数倍. 其特点为:(1) 孪生变形引起的切变不会改变晶体的点阵类型, 但可使变形部分的位向发生变化, 并且与未变形部分的晶体以挛晶界为分界面构成了镜面对称的位向关系.(2) 一般说来, 孪生的临界分切应力要比滑移的临界分切应力大得多, 只有在滑移很难进行的条件下, 晶体才进行孪生变形.(3) 孪生对塑性变形的贡献比滑移小得多, 例如镉单纯依靠孪生变形只能获得7.4% 的伸长率. 但是, 由于孪生变形后晶体位向发生变化, 可能使原来取向不利的滑移系转变为新的有利取向, 从而引发晶体的进一步滑移, 提高金属的塑性变形能力.(4) 孪生变形的速度极快, 常引起冲击波, 发出音响.12. 根据阿累尼乌斯(Arrhenius)公式: D = D0exp(-Q/RT), 分析影响扩散的主要因素.答: 上述公式中, Q为原子扩散激活能, T为温度, 它们是影响扩散的主要因素. 很显然, Q 越小, 或扩散温度T 越高, 则D越大, 扩散越易进行. 而扩散激活能Q取决于材料的键能. 高熔点纯金属的键能高于低熔点的, 因此前者的激活能较高, 其自扩散系数较小; 通常致密度大的晶体结构中, 原子扩散激活能较高, 扩散系数较小; 不同类型的固熔体, 熔质原子的扩散激活能不同, 间隙原子的扩散激活能都比置换原子的小, 所以扩散速度比较大; 晶体缺陷处, 原子排列混乱, 能量较高, 激活能往往较低, 因此扩散容易. 对于一定的晶体结构来说, 表面扩散最快, 晶界次之, 亚晶界又次之, 晶内最慢; 在位错、.空位等缺陷处的原子比完整晶格处的原子扩散容易得多.13. (扩散的微观机理)间隙/空位机制.答: (1) 间隙机制: 晶体中存在的间隙原子通过晶格间隙之间的跃迁实现的扩散; 间隙固熔体中间隙原子(C,H,N,O等)的扩散就是这种机制; 为了实现这种扩散, 扩散原子必须具有越过能垒的自由能.(2) 空位机制: 晶体中扩散原子离开自己的点阵位置去填充空位, 而原先的点阵位置形成了新的空位, 如此反复, 实现原子的扩散; 置换固熔体(或纯金属)中原子的扩散即为空位扩散; 在空位扩散中, 扩散原子除具有越过能垒的自由能外, 还必须具有空位形成能.14. 简述Cu-Ni 扩散偶惰性标记移动规律及其原因.答: Cu-Ni 扩散偶惰性标记会向Ni 棒一侧移动. 由于Ni 的熔点(1452℃)比Cu 的熔点(1083℃)高, 表明Ni 原子的结合能高于Cu 原子的, 因此, 扩散偶中Ni 原子进入Cu 晶体点阵要比Cu 原子进入Ni 晶体点阵容易, 即Ni 原子在Cu 棒中的扩散速度要快于Cu 原子在Ni 棒中的扩散速度, Ni 原子向Cu 棒一侧发生了物质的净输送, 其结果就是惰性标记往Ni 棒一侧移动.15. 成分过冷条件及其影响因素.16. 包晶反应速度慢的原因.17. 正常凝固合金圆棒宏观偏析规律.18. 纯金属晶体长大形态与温度梯度的关系.19. 纯金属晶体长大机制.20. 润湿角对异质形核功的影响规律.21. 均匀形核率与过冷度的关系及其原因.答: 均匀形核时, 形核率方程为exp()exp()A Q N C kT kT=-- 式中, A 为临界晶核的形核功; Q 为原子越过液-固界面的扩散激活能; T 为温度.上式表明, 过冷度对形核率的影响受形核功和原子扩散激活能控制: 一方面, 当过冷度较小时, N 与exp(-A / kT ) 成正比, 故随着过冷度的增大, exp(-A / kT ) 数值也增大, 形核率就越大; 另一方面, 当过冷度足够大时, 随着过冷度的增大, 原子扩散速度要减慢, 此时, N 主要受exp(-Q / kT ) 数值影响, 而Q 值随温度改变很小, 故随着过冷度的增大, 形核率反而减小.22. 金属结晶的热力学、动力学、结构和能量条件.23. 间隙固熔体两组元不能无限互熔的原因.24. 分析γ-Fe 熔碳量高于α-Fe 的原因.三、作图/计算题类型1. 晶面/晶向绘制(应掌握三轴系统的).2. 典型结构金属滑移系表示及绘制.3. 典型二元合金相图绘制(共晶型/包晶型).4. 合金平衡凝固冷却曲线绘制.5. 合金平衡结晶金相组织图绘制.6. 根据点阵类型, 参数及原子量计算晶体材料的密度.12、已知Cu的原子量为63.5,原子半径是0.1278 nm。
材料学复习题
1.名词解释(15分)2.判断题(20)3.单项选择题(20)4.简答题(19)5.综合分析题(画图与相图分析)(26)空间点阵:阵点在空间呈周期性规则排列,并具有等同的周围环境的模型晶胞:在空间点阵中,能代表空间点阵结构特点的小平行六面体。
置换固溶体:溶质原子占据溶剂晶格中的结点位置而形成的固溶体间隙固溶体:溶质原子占据溶剂晶格中的间隙位置而形成的固溶体。
晶体缺陷:晶体缺陷就是指实际晶体中与理想的点阵结构发生偏差的区域。
肖特基缺陷:由于晶体表面附近的原子热运动到表面,在原来的原子位置留出空位,弗仑克尔缺陷:指晶体结构中由于原先占据一个格点的原子(或离子)离开格点位置,成为间隙原子(或离子),并在其原先占据的格点处留下一个空位空位形成能:在晶体内取出一个原子放在晶体表面上(但不改变晶体的表面能和表面积)所需要的能量。
伯氏矢量:反映位错周围点阵畸变总积累的重要物理量刃型位错:在金属晶体中,由于某种原因,晶体的一部分相对于另一部分出现一个多余的半原子面。
这个多余的半原子面又如切入晶体的刀片,刀片的刃口线即为位错线螺型位错“一个晶体的某一部分相对于其余部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原子面上升一个晶面间距。
在中央轴线处即为一螺型位错。
滑移:是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。
攀移:刃型位错在垂直与滑移面的方向上运动稳态扩散:是指在扩散系统中,任一体积元在任一时刻,流入的物质量与流出的物质量相等,即任一点的浓度不随时间变化。
非稳态扩散:即任一点的浓度随时间的变化而变化??扩散激活能:指杂质原子或者母体原子在固体(包括半导体)中扩散的激活能。
上坡扩散:是指物质从低浓度区向高浓度区扩散,扩散的结果提高了浓度梯度。
弹性形变:外力撤消后,物体能恢复原状的形变塑性形变:如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变的形变软取向:晶体中有些滑移系与外力的取向接近45o角,处于易滑移的位向,具有较小的σs值硬取向:晶体中有些滑移系与外力取向偏离45o很远,需要较大的σs值才能滑移临界分切应力:把滑移系开动所需要的最小分切应力滑移系:一个滑移面和此面上的一个滑移方向组成回复:冷变形金属在退火时发生组织性能变化的早起阶段,在此阶段内物理或力学性能的回复程度是随温度和时间而变化的。
材料概论复习题及答案
材料概论复习题及答案一、选择题(每题2分,共20分)1. 材料科学中,下列哪一项不是材料的基本性能?A. 力学性能B. 热学性能C. 光学性能D. 经济性能答案:D2. 材料的微观结构对其宏观性能的影响主要体现在哪些方面?A. 力学性能B. 热学性能C. 电学性能D. 所有以上选项答案:D3. 以下哪种材料不属于金属材料?A. 钢铁B. 铝合金C. 陶瓷D. 铜合金答案:C4. 材料的断裂韧性通常用来描述材料的哪种特性?A. 硬度B. 韧性C. 脆性D. 弹性答案:B5. 材料的疲劳寿命主要受哪些因素的影响?A. 材料的强度B. 材料的硬度C. 应力集中D. 所有以上选项答案:D6. 材料的热处理过程中,淬火的主要目的是?A. 提高硬度B. 提高韧性C. 提高耐腐蚀性D. 提高导电性答案:A7. 以下哪种材料具有最好的导电性能?A. 塑料B. 橡胶C. 玻璃D. 银答案:D8. 材料的塑性变形通常发生在哪个温度区间?A. 低于玻璃化转变温度B. 在玻璃化转变温度附近C. 高于玻璃化转变温度D. 以上都不对答案:C9. 材料的断裂模式主要分为哪两种?A. 拉伸断裂和压缩断裂B. 剪切断裂和拉伸断裂C. 脆性断裂和韧性断裂D. 疲劳断裂和蠕变断裂答案:C10. 材料的硬度通常通过哪种测试来测量?A. 拉伸测试B. 压缩测试C. 硬度测试D. 冲击测试答案:C二、填空题(每空1分,共20分)1. 材料的_______性能是指材料在受到外力作用时,抵抗变形和破坏的能力。
答案:力学2. 材料的热膨胀系数是指材料在单位温度变化下长度变化的_______。
答案:比例3. 金属材料的强化机制主要包括_______强化、_______强化和_______强化。
答案:固溶,加工,沉淀4. 陶瓷材料的主要特点是_______、_______和_______。
答案:高硬度,高熔点,低热导率5. 聚合物材料的玻璃化转变温度是指聚合物从_______状态转变为_______状态的温度。
材料科学基础复习题库
解释下列名词1、奥氏体本质晶粒度是根据标准实验条件,在930±10℃,保温足够时间(3~8小时)后,测定的钢中奥氏体晶粒的大小。
2、奥氏体实际晶粒度指在某一热处理加热条件下,所得到的晶粒尺寸。
3、珠光体晶粒在片状珠光体中,片层排列方向大致相同的区域称为珠光体团4、二次珠光体转变由于贝氏体转变的不完全性,当转变温度较高时,未转变的奥氏体在随后的保温过程中有可能会发生珠光体转变,此时的珠光体转变称为二次珠光体转变。
5、马氏体转变是一种固态相变,是通过母相宏观切变,原子整体有规律迁移完成的无扩散相变。
6、形变马氏体由形变诱发马氏体转变生成的马氏体称为形变马氏体。
7、马氏体异常正方度“新形成的马氏体”,正方度与碳含量的关系并不符合公式给出的关系,这种现象称为马氏体的异常正方度。
8、马氏体相变塑性相变塑性:金属及合金在相变过程中塑性增长,往往在低于母相屈服极限的条件下即发生了塑性变形,这种现象称为相变塑性。
钢在马氏体转变时也会产生相变塑性现象,称为马氏体的相变塑性。
9、相变冷作硬化马氏体形成时的体积效应会引起周围奥氏体产生塑性变形,同时马氏体相变的切变特性,也将在晶体内产生大量微观缺陷,如位错、孪晶、层错等。
这些缺陷在马氏体逆转变过程中会被继承,结果导致强度明显升高,而塑性韧性下降,这种现象被称为相变冷作硬化。
10、位向关系在固态相变母相与新相之间所保持的晶体学空间取向关系称为位向关系。
11、K-S关系在固态相变母相与新相之间所保持的晶体学位向关系,例如:奥氏体向马氏体转变时新旧两相之间就维持这种位向关系(111)γ∥(110)α,〈110〉γ∥〈111〉α12、组织遗传;指非平衡组织重新加热淬火后,其奥氏体晶粒大小仍然保持原奥氏体晶粒大小和形状的现象。
13、相遗传;母相将其晶体学缺陷遗传给新相的现象称为相遗传。
14、反稳定化在热稳定化上限温度M C以下,热稳定程度随温度的升高而增加;但有些钢,当温度达到某一温度后稳定化程度反而下降的现象。
纺织材料学复习题答案
纺织材料学复习题答案一、单选题1. 纺织材料学是一门研究什么的学科?A. 纺织材料的加工技术B. 纺织材料的化学性质C. 纺织材料的结构、性能及其应用D. 纺织材料的物理性质答案:C2. 以下哪项不是天然纤维?A. 棉花B. 羊毛C. 丝D. 聚酯纤维答案:D3. 纺织材料的哪些特性是影响其使用性能的主要因素?A. 颜色B. 强度和弹性C. 手感D. 重量答案:B4. 纤维的细度通常用哪种单位来表示?A. 米B. 克/米C. 德克萨尔D. 牛顿答案:C5. 以下哪种织物结构属于机织物?A. 针织物B. 非织造布C. 机织物D. 编织物答案:C二、多选题6. 纺织材料的分类包括以下哪些类型?A. 天然纤维B. 人造纤维C. 合成纤维D. 金属纤维答案:A, B, C7. 影响纺织材料强度的因素包括:A. 纤维的细度B. 纤维的长度C. 纤维的截面形状D. 纤维的化学结构答案:A, B, C, D8. 以下哪些是纺织材料的常规测试项目?A. 强度测试B. 弹性测试C. 耐磨性测试D. 耐热性测试答案:A, B, C, D三、判断题9. 所有合成纤维都具有优异的耐热性。
答案:错误(并非所有合成纤维都具有优异的耐热性,这取决于具体的化学结构和制造工艺。
)10. 纺织材料的吸湿性对其舒适性有直接影响。
答案:正确四、简答题11. 简述纺织材料的三大性能指标。
答案:纺织材料的三大性能指标通常指的是强度、弹性和耐磨性。
强度是指材料在受到外力作用时不发生断裂的能力;弹性是指材料在受力后能够恢复原状的能力;耐磨性是指材料在反复摩擦下不发生损伤的能力。
12. 描述天然纤维和人造纤维的区别。
答案:天然纤维是从自然界中直接获取的纤维,如棉花、羊毛和丝等,具有生物可降解性和较好的舒适性。
人造纤维是通过化学或物理方法人工制造的纤维,如粘胶纤维和醋酯纤维等,通常成本较低,生产可控性高,但可能在生物降解性和舒适性方面不如天然纤维。
材料概论复习题及答案
材料概论复习题及答案一、选择题1. 材料科学的主要研究内容是什么?A. 材料的加工工艺B. 材料的性能与应用C. 材料的微观结构与宏观性能的关系D. 所有以上选项答案:D2. 金属材料的强化机制主要包括哪些?A. 固溶强化B. 细晶强化C. 相变强化D. 所有以上选项答案:D3. 非晶态材料的特点是什么?A. 具有长程有序性B. 具有短程有序性C. 没有固定的熔点D. 具有规则的晶体结构答案:C二、填空题4. 材料的力学性能主要包括________、________和________。
答案:硬度、韧性、弹性5. 陶瓷材料通常具有________、________和________等特性。
答案:高硬度、高熔点、耐腐蚀三、简答题6. 简述材料的分类及其特点。
答案:材料通常分为金属材料、无机非金属材料、有机高分子材料和复合材料。
金属材料具有良好的导电性和导热性,较高的强度和韧性。
无机非金属材料如陶瓷和玻璃,具有高硬度、高熔点和耐腐蚀性。
有机高分子材料具有良好的弹性和可塑性,易于加工。
复合材料结合了两种或两种以上材料的优点,具有更优异的性能。
四、论述题7. 论述材料科学在现代科技发展中的重要性。
答案:材料科学是现代科技发展的重要基础和推动力。
随着科技的进步,对材料的性能要求越来越高,新材料的研究和开发成为科技发展的关键。
例如,在航空航天领域,轻质高强度的材料是实现飞行器性能提升的关键;在电子行业,高性能的半导体材料是推动电子设备小型化、功能化的重要保障;在生物医学领域,生物兼容性好的材料对于人工器官的制造至关重要。
因此,材料科学的发展直接关系到科技进步和人类生活质量的提高。
五、计算题8. 某金属材料的屈服强度为300 MPa,抗拉强度为500 MPa,若要计算其弹性模量,需要知道其应力-应变曲线上的哪两个点?答案:要计算弹性模量,需要知道屈服点的应力和应变,以及弹性极限的应力和应变。
屈服强度为300 MPa时对应的应变点,以及抗拉强度为500 MPa时对应的应变点。
材料科学基础复习题
材料科学基础复习题第一章原子结构一判断题1.共价键是由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。
2. 范德华力既无方向性亦无饱和性,氢键有方向性但无饱和性。
3. 绝大多数金属均以金属键方式结合,它的基本特点是电子共有化。
4. 离子键这种结合方式的基本特点是以离子而不是以原子为结合单元。
5. 范德华力包括静电力、诱导力、但不包括色散力。
二、简答题原子间的结合键对材料性能的影响第二章晶体结构一、填空1.按晶体的对称性和周期性,晶体结构可分为7 空间点阵,14 晶系, 3 晶族。
2.晶胞是能代表晶体结构的最小单,描述晶胞的参数是a ,b ,c ,α,β,γ。
3. 在立方,菱方,六方系中晶体之单位晶胞其三个轴方向中的两个会有相等的边长。
4. 方向族<111>的方向在铁的(101)平面上,方向族<110>的方向在铁的(110)平面上。
5. 由hcp(六方最密堆积)到之同素异形的改变将不会产生体积的改变,而由体心最密堆积变成即会产生体积效应。
6. 晶体结构中最基本的结构单元为,在空间点阵中最基本的组元称之为。
7.某晶体属于立方晶系,一晶面截x轴于a/2、y轴于b/3、z轴于c/4,则该晶面的指标为8. 硅酸盐材料最基本的结构单元是,常见的硅酸盐结构有、、、。
9. 根据离子晶体结构规则-鲍林规则,配位多面体之间尽可能和连接。
二判断题1.在所有晶体中只要(hkl)⊥(uvw)二指数必然相等。
2. 若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。
3. 所谓原子间的平衡距离或原子的平衡位置是吸引力与排斥力的合力最小的位置。
4.晶体物质的共同特点是都具有金属键。
5.若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。
6. 在立方晶系中若将三轴系变为四轴系时,(hkIl)之间必存在I=-(h+k)的关系与X1,X2,X3,X4间夹角无关。
7.亚晶界就是小角度晶界,这种晶界全部是由位错堆积而形成的。
材料科学基础 复习题
材料科学基础复习题材料科学基础复习题介绍一、填空题1.材料科学的核心问题是结构和性能之间的关系。
材料的结构是理解和控制性能的中心环节,结构的最微细水平是原子结构,第二个水平是原子排列方式,第三个水平是显微组织。
2.根据材料的性能特点和用途,材料分为结构材料和功能材料。
根据原子间的键合特性,材料可分为四类:金属、陶瓷、聚合物和复合材料。
第一章材料的原子结构一、填空1.金属材料中原子结合以金属键为主,陶瓷材料(无机非金属材料)以共价键和离子键是主要的键,而高分子材料主要是共价键、氢键和范德华键。
第二章材料的结构一、填空1、晶体是基元(原子团)以周期性重复方式在三维空间作有规则的排列的固体。
2、晶体与非晶体的最根本区别是晶体原子排布长程有序,而非晶体是长程无序短程有序。
3.晶胞是晶体结构中最小的单元。
4、根据晶体的对称性,晶系有三大晶族,七大晶系,十四种布拉菲bravais点阵,三十二种点群,230种空间群。
5.常见的金属晶格类型有体心立方、面心立方和紧密排列的六边形。
6.FCC晶体最紧密排列的方向是<110>,最紧密排列的表面是{111},最紧密排列的表面的堆叠顺序是ABCABC。
7、fcc晶体的致密度为0.74,配位数为12,原子在(111)面上的原子配位数为6。
8.BCC晶体最紧密排列的方向为<111>,最紧密排列的表面为{110},密度为0.68,配位数为8。
9、晶体的宏观对称要素有对称点、对称轴、对称面。
10.CSCL型结构属于简单立方晶格,NaCl型结构属于面心立方晶格,CaF2型结构属于面心立方格子。
11.MgO晶体为NaCl型结构,对称型为3l44l36l29pc,晶系为高级晶系,晶系为立方晶系,晶体键型为离子键。
12、硅酸盐晶体结构中的基本结构单元是硅氧四面体[sio4]。
13.几种硅酸盐晶体的复合阴离子为[Si2O7]6-,[si2o6]4-,[si4o10]4-,[alsi3o8]1-。
材料科学基础复习资题答案
材料科学基础复习题一、单项选择()1、面心立方(fcc)结构的铝晶体中,每个铝原子在本层(111)面上的原子配位数为__B_。
A、12B、6C、4D、32、面心立方金属发生形变孪生时,则孪晶面为__ A _。
A、{111}B、{110}C、{112}3、铸锭凝固时如大部分结晶潜热可通过液相散失时,则固态显微组织主要为___ A _____。
A、树枝晶B、柱状晶C、球晶4、立方晶体中(110)和(211)面同属于__ D ______晶带。
A、[110]B、[100]C、5、根据三元相图的垂直截面图__ B ______。
A、可分析相成分变化规律B、可分析材料的平衡凝固过程C、可用杠杆定律计算各相的相对量6、凝固时不能有效降低晶粒尺寸的是以下哪种方法? BA、加入形核剂B、减小液相的过冷度C、对液相实施搅拌答案:B7、三种组元组成的试样在空气中用X射线衍射(XRD)分析其随温度变化而发生相变的情况,则最多可记录到___ C _____共存。
A、2相B、3相C、4相D、5相8、fcc、bcc、hcp三种晶体结构的材料中,塑性形变时最容易生成孪晶的是__ C ______。
A、fccB、bccC、hcp9、A和A-B合金焊合后发生柯肯达尔效应,测得界面向A试样方向移动,则___ A _____。
A、A组元的扩散速率大于B组元B、与A相反C、A、B两组元的扩散速率相同10、简单立方晶体的致密度为___ C _____。
A、100%B、65%C、52%D、58%11、不能发生攀移运动的位错是___ A _____。
A、肖克利不全位错B、弗兰克不全位错C、刃型全位错12、fcc结构中分别在(111)和(111)面上的两个肖克利位错(分别是1/6[211]和1/6[121])相遇时发生位错反应,将生成_ CA、刃型全位错B、刃型弗兰克位错C、刃型压杆位错D、螺型压杆位错13。
A、刃型位错、混合位错14、对离异共晶和伪共晶的形成原因,下述说法正确的是___ B ____。
材料科学基础复习题
5、Al-w Cu4%合金在130~150℃人工时效发生的相变顺序为:α相→α相+ →α相+ →α相+θ'相→α相+ 。
、固态相变时,非均匀形核时体系自由能变化由四部分组成:缺陷处体系自由能降低的部分、、、。
在一定条件下固体中的扩散的快慢与激活能Q有关,影响激活能Q的主要因素有扩散机制、、、。
1.扩散按是否有新相生成可分为______________和___________。
马氏体按其基本形态可分为____________和_____________。
7、马氏体相变和 Al—Cu合金的淬火时效分别属于______________和___________相变。
()5、调幅分解不存在形核势垒,新旧两相完全共格,因此,在形核和长大时不存在界面能和应变能。
()6、扩散的根本驱动力是扩散前后体积自由能差,与界面能无关。
()8、扩散型相变中往往先产生亚稳定的过渡相,过渡相与母相的界面能一般很低,保持共格与半共格的关系。
9、()固态相变中的4()结晶、重结晶、再结晶、二次再结晶都是形核-长大过程。
非均匀形核,一般在不平衡缺陷处,如晶界、层错、夹杂物等能量较高的位置处形成。
5、()固态相变均匀形核与结晶的均匀形核相比,相变阻力有一定的区别,结晶的均匀形核没有。
A.界面能 B.内能 C.弹性应变能 D.共格弹性应变能8、()原子在纯材料中的扩散,属于空位扩散,其扩散激活能有两项构成,分别为空位形成能和。
A .空位迁移能 B.自扩散形成能 C.界面能 D.弹性应变能7、()固态相变均匀形核与结晶的均匀形核相比,相变阻力有一定的区别,固态相变中增加了一项。
A.界面能 B.内能 C.弹性应变能 D.共格弹性应变能9、()间隙原子或空位在晶体内部点阵中的扩散,通常称为或点阵扩散。
A.间隙扩散 B.互扩散 C.体扩散 D.自扩散10、()固态相变非均匀形核时,体系自由能变化由四部分组成,既包括动力又包括阻力,其中为阻力。
材料科学基础复习题及部分答案
材料科学基础复习题及部分答案单项选择题:第1章原子结构与键合1.高分子材料中的C-H化学键属于。
(A)氢键(B)离子键(C)共价键2.属于物理键的是。
(A)共价键(B)范德华力(C)离子键3.化学键中通过共用电子对形成的是。
(A)共价键(B)离子键(C)金属键第2章固体结构4.以下不具有多晶型性的金属是。
(A)铜(B)锰(C)铁5.fcc、bcc、hcp三种单晶材料中,形变时各向异性行为最显著的是。
(A)fcc(B)bcc(C)hcp6.与过渡金属最容易形成间隙化合物的元素是。
(A)氮(B)碳(C)硼7.面心立方晶体的孪晶面是。
(A){112}(B){110}(C){111}8.以下属于正常价化合物的是。
(A)Mg2Pb(B)Cu5Sn(C)Fe3C第3章晶体缺陷9.在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为。
(A)肖特基缺陷(B)弗仑克尔缺陷(C)线缺陷10.原子迁移到间隙中形成空位-间隙对的点缺陷称为。
(A)肖脱基缺陷(B)Frank缺陷(C)堆垛层错11.刃型位错的滑移方向与位错线之间的几何关系是?(A)垂直(B)平行(C)交叉12.能进行攀移的位错必然是。
(A)刃型位错(B)螺型位错(C)混合位错13.以下材料中既存在晶界、又存在相界的是(A)孪晶铜(B)中碳钢(C)亚共晶铝硅合金14.大角度晶界具有____________个自由度。
(A)3(B)4(C)5第4章固体中原子及分子的运动15.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。
(A)距离(B)时间(C)温度16.在置换型固溶体中,原子扩散的方式一般为。
(A)原子互换机制(B)间隙机制(C)空位机制17.固体中原子和分子迁移运动的各种机制中,得到实验充分验证的是(A)间隙机制(B)空位机制(C)交换机制18.原子扩散的驱动力是。
(4.2非授课内容)(A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度19.A和A-B合金焊合后发生柯肯达尔效应,测得界面向A试样方向移动,则。
材料科学基础复习题及答案(1)
一、填空题1.铸锭的宏观组织是由表层细晶区、柱状晶区、中心等轴晶区三个区组成。
2. 每个面心立方晶胞中的原子数为 4 ,其配位数为12 。
3a, 配3.晶格常数为a的体心立方晶胞, 其原子数为 2 , 原子半径为4/位数为 8 ,致密度为 0.68 。
4. 根据参数相互关系,可将全部点阵归属于7 种晶系,14 种布拉维点阵。
5. 刃型位错的柏氏矢量与位错线互相垂直 , 螺型位错的柏氏矢量与位错线互相平行。
螺型位错的位错线平行于滑移方向,位错线的运动方向垂直于位错线。
6. 扩散的驱动力是__化学势梯度____。
分别以D L、D S和D B表示晶内、表面和界面的扩散系数,则三者大小的一般规律是D L<D B<D S 。
7. 在过冷液体中,晶胚尺寸小于临界尺寸时不能自发长大。
8. 均匀形核既需要结构起伏,又需要能量起伏。
9. 蠕变是指在某温度下恒定应力下所发生的缓慢而连续的塑性流变现象。
10. 再结晶形核机制包括晶界弓出和亚晶形核两种,其中亚晶形核机制又分为亚晶合并和亚晶迁移两种。
11. 纯金属结晶时,固液界面按微观结构分为光滑界面和粗糙界面。
12.纯金属的实际开始结晶温度总是低于理论结晶温度,这种现象称为过冷,理论结晶温度与实际开始结晶温度之差称为过冷度。
13.合金中的基本相结构,有固溶体和金属化合物两类,其中前者具有较高的综合机械性能,适宜做基体相;后者具有较高的熔点和硬度,适宜做强化相。
14. 刃型位错的割阶部分仍为刃型位错,扭折部分则为螺型位错;螺形位错中的扭折和割阶部分均属于刃型位错。
15. 再结晶的驱动力是变形金属经回复后未被释放的储存能。
16. 为了使材料获得超塑性,通常应满足三个条件:具有等轴细小两相组织、在(0.5~0.65)Tm 温度范围内和在10-2~10-4 s-1 应变率范围内进行。
17. 非稳态扩散可用菲克第一定律结合质量守恒条件推导出的菲克第二定律描述。
18. 间隙相和间隙化合物主要受组元的 原子尺寸 因素控制。
(完整版)材料力学复习题(附答案)
一、填空题1.标距为100mm的标准试件,直径为10mm,拉断后测得伸长后的标距为123mm,缩颈处的最小直径为6.4mm,则该材料的伸长率δ=23%,断面收缩率ψ=59.04%。
2、构件在工作时所允许产生的最大应力叫许用应力σ,极限应力与许用应力的比叫安全系数n。
3、一般来说,脆性材料通常情况下以断裂的形式破坏,宜采用第一二强度理论。
塑性材料在通常情况下以流动的形式破坏,宜采用第三四强度理论。
4、图示销钉的切应力τ=(Pπdh ),挤压应力σbs=(4Pπ(D2-d2))(4题图)(5题图)5、某点的应力状态如图,则主应力为σ1=30Mpa,σ2=0,σ3=-30Mpa。
6、杆件变形的基本形式有拉伸或压缩、剪切、扭转和弯曲四种。
7、低碳钢在拉伸过程中的变形可分为弹性阶段、屈服阶段、强化阶段和局部变形阶段四个阶段。
8、当切应力不超过材料的剪切比例极限时,切应变γ和切应力τ成正比。
9、工程实际中常见的交变应力的两种类型为对称循环,脉动循环。
10、变形固体的基本假设是:连续性假设;均匀性假设;各向同性假设。
11、低碳钢拉伸时大致分为以下几个阶段:弹性;屈服;强化;缩颈。
12、通常计算组合变形构件应力和变形的过程是:先分别计算每种基本变形各自引起的应力和变形,然后再叠加。
这样做的前提条件是构件必须为线弹性、小变形杆件。
13、剪切胡克定律的表达形式为τ=Gγ。
14、通常以伸长率 <5%作为定义脆性材料的界限。
15、提高梁弯曲刚度的措施主要有提高抗弯刚度EI、减少梁的跨度、改善梁的载荷作用方式。
16、材料的破坏按其物理本质可分为屈服和断裂两类。
二、选择题1、一水平折杆受力如图所示,则AB杆的变形为(D)。
(A)偏心拉伸;(B)纵横弯曲;(C)弯扭组合;(D)拉弯组合。
2、铸铁试件试件受外力矩Me作用,下图所示破坏情况有三种,正确的破坏形式是(A)3、任意图形的面积为A,Z0轴通过形心O,Z1轴与Z0轴平行,并相距a,已知图形对Z1轴的惯性矩I1,则对Z0轴的惯性矩I Z0为:(B)(A )00Z I =;(B )20Z Z I I Aa =-;(C )20Z Z I I Aa =+;(D )0Z Z I I Aa =+。
无机材料科学基础复习题
无机材料科学基础复习题一、选择题1. 无机材料的分类包括以下哪些选项?A. 金属材料B. 陶瓷材料C. 玻璃材料D. 所有以上选项答案:D2. 陶瓷材料的主要成分是什么?A. 金属元素B. 非金属元素C. 有机元素D. 金属和非金属元素答案:B3. 玻璃材料的制造过程中,以下哪个步骤是必不可少的?A. 熔融B. 冷却C. 固化D. 所有以上步骤答案:D二、填空题1. 无机材料的强度通常与其______结构有关。
答案:晶体2. 陶瓷材料的硬度通常比金属材料______。
答案:高3. 玻璃材料的透光性是由其______结构决定的。
答案:无定形三、简答题1. 简述无机材料的一般特性。
答案:无机材料通常具有高硬度、高熔点、良好的化学稳定性和热稳定性等特点。
2. 描述陶瓷材料在现代工业中的应用。
答案:陶瓷材料在现代工业中广泛应用于电子、化工、航空航天、医疗等领域,如电子器件的绝缘体、化工设备的耐腐蚀材料、航空航天器的热防护材料以及医疗领域的人工骨骼等。
3. 阐述玻璃材料的制造过程。
答案:玻璃材料的制造过程主要包括原料的混合、高温熔融、成型、退火和冷却等步骤。
四、论述题1. 论述无机材料科学在新材料研究中的重要性。
答案:无机材料科学是研究无机材料的组成、结构、性能及其加工工艺的科学,它在新材料研究中具有重要的地位。
无机材料的广泛应用推动了材料科学的发展,同时新材料的不断涌现也为无机材料科学提供了新的研究领域和挑战。
2. 分析无机材料在环境友好型材料开发中的作用。
答案:无机材料在环境友好型材料开发中起着至关重要的作用。
例如,陶瓷材料和玻璃材料可以替代一些对环境有害的材料,减少污染。
此外,无机材料的回收和再利用也是环境友好型材料开发的重要组成部分。
材料科学考试试题
材料科学考试试题
1. 问答题
1.1 介绍金属晶体的晶体系和点阵结构。
1.2 什么是晶体缺陷?列举并简要描述几种常见的晶体缺陷。
1.3 什么是金属材料的弹性变形?它的原理是什么?
2. 简答题
2.1 请解释热处理对金属的影响以及其应用。
2.2 介绍金属材料的断裂方式及其相关理论。
2.3 什么是塑性变形?请说明金属材料的塑性变形机制。
3. 计算题
3.1 某一种金属的密度为7.87 g/cm³,原子量为63.55。
计算该金属的晶格常数。
3.2 一个长度为2 cm,宽度为1 cm,高度为0.5 cm的金属样品,
质量为10 g。
以该金属的密度和弹性模量,计算其Young氏弹性模量。
3.3 一个拉伸试验样品的长度为200 mm,直径为10 mm,抗拉强
度为400 MPa。
计算其屈服强度。
4. 综合题
4.1 请以金属焊接为例,说明材料科学在工程应用中的重要性。
4.2 分析金属材料的导热性能和导电性能与其晶体结构的关系。
4.3 以金属腐蚀为例,探讨材料科学在延长金属材料使用寿命中的应用。
以上为材料科学考试试题,希望能够全面展示学生对材料科学基础知识的掌握和应用能力。
祝考生取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷1
一、名词解释:(20分)
合金同素异晶转变铁素体再结晶淬透性
合金:由两种或两种以上金属元素;或金属与非金属元素熔炼、烧结或通过其方法由化学键组合而成的具有金属特性的物质。
同素异晶转变:在固态下,同一种元素由一种晶体结构转变为另一种晶体结构的转变。
铁素体:碳溶解在α-Fe中形成的间隙固溶体。
再结晶:冷变形金属在加热时其组织和性能都恢复到变形前的软化状态的过程。
淬透性:一种热处理工艺性能,表示材料在淬火时获得淬硬层深度的能力。
二、试计算面心立方(FCC)晶体的晶格致密度。
(5分)
三、铁碳相图知识测验:(25分)
1.默画出铁碳相图,并标注出所有温度和成分点;
2.40、60、T12钢的室温平衡组织是什么?它们从高温液态平衡冷却到室温要经过哪些转变?
3.画出纯铁、40钢、T12钢的室温平衡组织,并标注其中的组织。
2.
1.
四、钢的热处理知识测验:(10分)
1.T8钢经淬火后得到什么组织?经退火后得到什么组织?
2.T8钢淬火后分别在200℃、400℃、600℃回火又得到什么组织?
1.答:
淬火后组织为马氏体;(2分)
退火后组织为珠光体。
(2分)
2.
200℃回火后为回火马氏体;(2分)
400℃回火后为回火托氏体;(2分)
600℃回火后为回火索氏体。
(2分)
五、要制造齿轮、连杆、热锻模具、弹簧、冷冲压模具、滚动轴承、车刀、锉刀、机床床身等零件,试从下列牌号中分别选出合适的材料并叙述所选材料的名称、成分、热处理工艺和零件制成后的最终组织。
(20分)
T10 65Mn HT300 W6Mo5Cr4V2 GCr15Mo 40Cr 20CrMnTi Cr12MoV 5CrMnMo
答:
齿轮:20CrMnTi渗碳钢;C%=0.2%,Cr,Mn,Ti<1.5%;渗碳+淬火+低温回火;组织为回
火马氏体。
(3分)
连杆:40Cr调质钢;C%=0.4%,Cr<1.5%;调质处理(淬火+高温回火);组织为回火索氏体。
(2分)
弹簧:65Mn弹簧钢;C%=0.65%,Mn<1.5%;淬火+中温回火;组织为回火托氏体。
(2分)
冷冲压模具:Cr12MoV冷变形模具钢;C%>1%,Cr=12%,Mo,V<1.5%;淬火+低温回火;组织为回火马氏体。
(2分)
滚动轴承:GCr15Mo轴承钢;C%=1%,Cr=1.5%,Mo<1.5%;球化退火+淬火+低温回火;组织为回火马氏体。
(2分)
车刀:W6Mo5Cr4V2高速钢;W%=6%,Mo%=5%,Cr%=4%,V%=2%;淬火+560℃三次回火;组织为回火马氏体+碳化物。
(3分)
锉刀:T10碳素工具钢;C%=1%;淬火+低温回火;组织为回火马氏体+碳化物。
(2分)
热锻模具:5CrMnMo热变形模具钢;C%=0.5%,Cr,Mn,Mo<1.5%;淬火+高温回火;组织为回火索氏体。
(2分)
机床床身:HT300灰口铁;无需热处理。
(2分)
六、叙述铸铁不同阶段石墨化程度与其最终组织的关系。
(10分)
七、用一根冷拉钢丝绳吊装一大型工件进入热处理炉,并随工件一起加热到1000℃保温,当出炉后再次吊装工件时,钢丝绳发生断裂,试分析其原因。
(10分)
答:冷拉钢丝绳是利用加工硬化效应提高其强度的,在这种状态下的钢丝中晶体缺陷密度增大,强度增加,处于加工硬化状态。
在1000℃时保温,钢丝将发生回复、再结晶和晶粒长大过程,组织和结构恢复到软化状态。
在这一系列变化中,冷拉钢丝的加工硬化效果将消失,强度下降,在再次起吊时,钢丝将被拉长,发生塑性变形,横截面积减小,强度将比保温前低,所以发生断裂。
试卷2
第一部分金属学(62分)
一、解释下列名词并说明其性能特点(本大题共2小题,每小题3分,总计6分)
1、渗碳体
2、铁素体
1.Fe3C为复杂晶体结构的间隙化合物,其硬度高,脆性大,塑性几乎等于零,硬脆相,是钢中主要强化相。
2. α-Fe中溶入溶质元素而构成的固溶体,铁素体仍保持α-Fe的体心立方晶格,由于间隙小,溶碳极少,力学性能与纯铁相同,强度、硬度不高,具有良好的塑性,770 oC以下为铁磁性。
二、问答题(本大题共5小题,总计40分)
∙写出Fe-Fe3C相图中共析和共晶转变式,并说明含碳量及温度。
(8分)
∙写出Fick第一定律和第二定律的表达式,并说明应用范围、区别及联系。
(8分)∙图示并说明什么是热过冷。
(4分)
∙何谓加工硬化?产生原因是什么?有何利弊?(12分)
∙无论臵换固溶体还是间隙固溶体都会引起强度升高,试分析其原因。
(8分)
1.A0.77 (F0.0218+Fe3C)共析L4.3(A
2.11+Fe3C)共晶;
2.稳态
非稳态
第一扩散定律是第二扩散定律的特例。
3.
ΔT=T0 - T1
过冷是由液固界面前沿实际温度分布与平衡凝固温度之差,称热过冷。
4. 冷加工变形后,金属材料强度、硬度升高而塑性下降的现象叫加工硬化。
是由于塑变中产生了大量位错等晶体缺陷,相互交互作用,使位错运动阻力增大,变形抗力增加,加工硬化是强化金属材料重要方法,尤其是热处理不能强化材料更重要,使材料在加工中成为
可能。
但同时变形抗力增加,进一步变形必消耗动力,塑性大幅下降,会导致开裂,有时为继续变形必加中间再结晶退火,增加生产成本。
5. 一是溶质原子的溶入使晶格畸变,阻碍滑移面上位错运动。
二是位错线上偏聚的溶质原子对位错的钉扎作用,形成“柯氏气团”对位错起钉扎作用。
三、计算题(本大题共2小题,每小题5分,总计10分)
1、计算莱氏体中Fe3C的相对含量。
2、已知Cu的熔点为1083℃,试估算其再结晶温度。
(δ≈0.35)
1.
2.T再=δTm=0.35(1083+273)=474.6K,即201.6 oC
四、实验题(本大题共2小题,每小题3分,总计6分)
1、试画出含碳量为0.45%的铁碳合金金相显微组织示意图;
2、试分析含碳量分别为0.20%、0.45%、0.65%的铁碳合金在组织和力学性能上有何不同?
1、0.45%的铁碳合金金相显微组织示意图;
2、随含碳量↑,F↓,Fe3C↑。
塑性、韧性下降,强度硬度↑
第二部分热处理原理(38分)
一、名词解释(本大题共3小题,每小题2分,总计6分)
1、热处理
2、马氏体
3、实际晶粒度
1、热处理:将钢在固态下进行加热、保温,冷却,以改变其组织而得到所需性能的工艺方法。
2、马氏体:C在α-Fe中的过饱和固溶体。
3、实际晶粒度:在某一加热条件下(实际热处理)所得到的实际奥氏体晶粒大小。
二、填空题(本大题共16个空,每空1分,总计16分)
1、马氏体的基本形态有和,此外还有、和。
通常低碳钢所形成的马氏体为,高碳钢所形成的马氏体为.
2、按回火温度不同,通常将回火分为、和;
回火温度分别是、和;其回火组织分别为、和。
1、板条状、片状,此外还有蝶状、薄片状和ε马氏体。
板条状,片状.
2、低温、中温、高温;150~250℃,350~500℃,500~650℃;回火M,回火T,回火S 。
三、何谓奥氏体?简述奥氏体的转变的形成过程及影响奥氏体晶粒长大的因素。
(本大题6分)奥氏体:C溶解在γ-Fe中的固溶体。
形成过程:奥氏体生核、长大、残余渗碳体溶解、奥氏体均匀化。
影响因素:加热温度、保温时间,加热速度,含碳量,合金元素,冶炼方法,原始组织等。
四、问答题:(本大题共2小题,每小题5分,总计10分)
将共析钢加热至780℃,经保温后,请回答:
1、若以图示的V1、V
2、V
3、V
4、V5和V6的速度进行冷却,各得到什么组织?
2、如将V1冷却后的钢重新加热至530℃,经保温后冷却又将得到什么组织?力学性能有何变化?
1、V1:M+A残余、V2:T+M、V3:S+T+M+A残余、V4:S+T、V5:S,V6:S。
2、S回火,硬度有所下降,塑性、韧性等上升,综合力学性能提高。