校本作业第12章《全等三角形》(5)

合集下载

【初中教育】最新最新八年级数学上册第12章全等三角形课后作业题五新人教版

【初中教育】最新最新八年级数学上册第12章全等三角形课后作业题五新人教版

——教学资料参考参考范本——【初中教育】最新最新八年级数学上册第12章全等三角形课后作业题五新人教版______年______月______日____________________部门1.在△ABC中,AC=BC,∠ACB=90°,CE是过C点的一条直线,AD⊥CE于D,BE⊥CE于E,DE=4cm,AD=2cm,则BE=()A. 2cm B. 4cm C. 6cm或2cm D. 6cm2.在△ABC内部取一点P,使得点P到△ABC的三边的距离相等,则点P应是△ABC的下列哪三条线段的交点()A.高 B.中线 C.垂直平分线 D.角平分线3.如图,在和中,点在边上,边交边于点. 若,,,则等于()A. B. C. D.4.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值5.如图,△ABC中,D是BC的中点,过点D的直线MN交边AC于点M,交AC的平行线BN于点N,DE⊥MN,交边AB于点E,连结EM,下面有关线段BE,CM,EM的关系式正确的是()A.BE+CM=EM B.BE2+CM2=EM2C.BE+CM﹥EM D.EM-BE=MC126.在等腰梯形ABCD中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,如图所示,则图中的等腰三角形有( )A. 1个 B. 2个 C. 3个 D. 4个7.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A. 3 B. 4 C. 5 D. 68.如图,已知在中,是边上的高线,平分,交于点,,,则的面积等于().ABC CD AB BE ABCBC=2∠CD E5DE=BCEA. B. C. D.571049.如图是两个全等三角形,图中的字母表示三角形的边长,则的度数是()1∠A.54° B.60° C.66° D.76°10.如图,在RtΔABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE ⊥AD交AC的延长线于F,E为垂足.则结论:(1)AD=BF;(2)CF=CD;(3)AC +CD=AB;(4)BE=CF;(5)BF=2BE,其中正确的结论个数是().A. 2 B. 3 C. 4 D. 511.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED 为°.12.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有__个.13.如图,中,P、Q分别是BC、AC上的点,作,,垂足分别是R、S,若,,下面四个结论:①;②;③≌;④AP垂直平分其中正确结论的序号是______ 请将所有正确结论的序号都填上.14.如图,∠ACB=90°,AC=BC,BD⊥CE,AE⊥CE,垂足分别是D,E,BD=5,DE=3.则△BDC的面积是__________.15.如果∠和∠互补,且∠>∠,则下列表示的式子:①90°-∠ ②∠-90°③(∠+∠)④(∠-∠),其中,能表示∠的余角的是____________(填序号).αβαββα12αβ12αββ16.如图,若∠1=∠2,加上一个条件__,则有△AOC≌△BOC.17.如图,平分,那么等于______.18.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是________(写出一个即可)19.如图,△ABC中,AB=4,BC=3,∠ABC=45°,BC、AC两边上的高AD 与BE相交于点F,连接CF,则线段CF的长=_____________.20.在△ABC中,∠C=90°,BC=16,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为_____________.21.如图所示,OM平分∠AOB,ON平分∠COD,OM⊥ON,∠BOC=26°,求∠AOD的度数.22.如图,已知,,,,试猜想与的位置关系并说明理由.AB AC=AD AE⊥AB AC=AD AE=BD CE23.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE,BD交于点O;求证:△AEC≌△BED;24.如图,O为直线AB上一点,,OD平分,(1)求出的度数;(2)请通过计算说明OE是否平分.25.在直角中,,,AD,CE分别是和的平分线,AD,CE相交于点F.求的度数;判断FE与FD之间的数量关系,并证明你的结论.26.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.27.如图所示,铁路上A,B两站(视为直线上两点)相距14 km,C,D 为两村 (可视为两个点),DA⊥AB于A,CB⊥AB于B,已知DA=8 km,CB=6 km,现在要在铁路上建一个土特产品收购站E,使C,D两村到正站的距离相等,则E站应建在距A站多少千米处?28.如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.。

八年级数学上册 第12章 全等三角形 全等三角形的如何添加辅助线课后作业 (新版)新人教版-(新版)

八年级数学上册 第12章 全等三角形 全等三角形的如何添加辅助线课后作业 (新版)新人教版-(新版)

全等三角形的如何添加辅助线1. 如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,则AC的长与AE+CD 的关系是()A.AC=AE+CDB.AC>AE+CDC.AC<AE+CDD.无法确定2. 如图所示,△ABC中,AB=3,AC=7,则BC边上的中线AD的取值X围是()A. 4<AD<10B. 0<AD<10C. 3<AD<7D. 2<AD<53.如图,AC平分∠BAD,CM⊥AB,且AB+AD=2AM,那么∠ADC与∠ABC()A.相等B.互补C.和为150°D.和为165°4. 在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个,大家一起热烈地讨论交流,小英第一个得出正确答案,是()(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.1个B.2个C.3个D.4个5.△ABC中,AD是∠BAC的平分线,且AB=AC+CD. 若∠BAC=60°,则∠ABC的大小为()A. 40°B. 60°C. 80°D. 100°6.在△ABC中,AD是∠BAC的平分线,且AB=AC+CD,若∠BAC=75°,则∠ABC的大小为()A. 25°B. 35°C. 37.5°D. 45°7.如图,△ABC中,M为BC中点,D、E分别在AB、AC上,DM⊥ME,则BD+CE________DE (用“>”“<”“=”填空)8. 如图,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,若AC=5,BD+BC=18,则AB=9.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是度.10. 如图,已知△ABC中,AB>AC,AD是中线,AE是角平分线.求证:(1)2AD<AB+AC;(2)∠BAD>∠DAC;(3)AE<AD.11.如图,梯形ABCD中,AB∥CD,∠D=90°,M为BC上一点,且BM=MC=DC,∠DAM=50°,求∠AMC的度数.12.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.全等三角形的如何添加辅助线课后作业参考答案1. 解析:由题中条件可得△APE≌△APF,再通过角之间的转化可得出△CPF≌△CPD,进而可得出线段之间的关系,即可得出结论.解:如图,在AC上截取AF=AE,连接PF(设AD与CE交于点P)∵AD平分∠BAC,∴∠BAD=∠CAD,∵AP=AP,∴△APE≌△APF(SAS),得出∠APE=∠APF,∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,∴∠APC=120°,∠APE=60°,∴∠APF=∠CPD=60°=∠CPF,故可证△CPF≌△CPD(ASA)∴CF=CD,∴AC=AF+CF=AE+CD. 故选A.2. 解析:延长AD到E,使AD=DE,连接CE,根据SAS证△ABD≌△ECD,得出AB=CE=3,在△ACE中,根据三角形的三边关系定理求出AE的X围,即可求出AD的X围.解:延长AD到E,使AD=DE,连接CE,∵AD是△ABC中线,∴BD=DC,∵在△ABD和△ECD中,AD=DE, ∠ADB=∠EDC, BD=DC∴△ABD≌△ECD,∴AB=CE=3,∵在△ACE中,AC=7,CE=3,由三角形的三边关系定理得:7-3<AE<7+3,∴4<AE<10,∵AE=2AD,∴2<AD<5,故选D.3.可过点C作⊥AD,交AD的延长线于点N,通过作辅助线得出Rt△ACM≌Rt△A,Rt△BCM ≌Rt△D,得出对应角相等,进而再通过角之间的转化,即可得出结论.解:过点C作⊥AD,交AD的延长线于点N,∵AC平分∠BAD,CM⊥AB,⊥AD,∴CM=,在Rt△ACM≌Rt△A中,∵CM=, AC=A C∴Rt△ACM≌Rt△A,∴AM=AN,又∵AB+AD=2AM,∴BM=DN,在Rt△BCM与Rt△D,∵BM=DN, ∠BMC=∠N, CM=∴Rt△BCM≌Rt△D(SAS),∴∠ABC=∠CDN,∴∠ADC+∠ABC=∠ADC+∠CDN=180°,∴∠ADC与∠ABC互补.故选B4. 解析:此题可以通过作辅助线来得解,取AD的中点F,连接EF. 根据平行线的性质可证得(1)(4)(5),根据梯形中位线定理可证得(3)正确. 根据全等三角形全等的判定可证得(2)的正误,即可得解.解:如图:取AD的中点F,连接EF.∵∠B=∠C=90°,∴AB∥CD;[结论(5)]∵E是BC的中点,F是AD的中点,∴EF∥AB∥CD,2EF=AB+CD(梯形中位线定理)①;∴∠CDE=∠DEF(两直线平等,内错角相等),∵DE平分∠ADC,∴∠CDE=∠FDE=∠DEF,∴DF=EF;∵F是AD的中点,∴DF=AF,∴AF=DF=EF②,由①得AF+DF=AB+CD,即AD=AB+CD;[结论(3)]由②得∠FAE=∠FEA,由AB∥EF可得∠EAB=∠FEA,∴∠FAE=∠EAB,即EA平分∠DAB;[结论(1)]由结论(1)和DE平分∠ADC,且DC∥AB,可得∠EDA+∠DAE=90°,则∠DEA=90°,即AE⊥DE;[结论(4)].由以上结论及三角形全等的判定方法,无法证明△EBA≌△DCE.正确的结论有4个,故选D.5. 解析:可在AB上取AC′=AC,则由题中条件可得BC′=C′D,即∠C=∠AC′D=2∠B,再由三角形的内角和即可求解∠B的大小.解:在AB上取AC′=AC,∵AD是角平分线,∴△ACD≌△AC′D,又AB=AC+CD,得AB=AC′+C′D,故BC′=C′D,∴∠C=∠AC'D=2∠B,又∠B+∠C=180°-∠A=120°,故∠B=40°. 选A.6. 解析:可在AB上取AC′=AC,则由题中条件可得BC′=C′D,即∠C=∠AC′D=2∠B,再由三角形的内角和即可求解∠B的大小.解:在AB上取AC′=AC,在△ACD和△AC′D中,AC′=AC,∠C′AD=∠CAD, AD=AD∴△ACD≌△AC′D(SAS),又∵AB=AC+CD,得AB=AC′+C′D,∴BC′=C′D,∴∠C=∠AC'D=2∠B,又∵∠B+∠C=180°-∠BAC=105°,∴∠B=35°. 故选B7. 解析:延长DM到F,使MF=DM,连接EF、CF,易证△BDM≌△CFM(SAS),所以BD=CF,易证△DEM≌△FEM(SAS)所以DE=FE,在△ECF中,EC+FC>EF,即可得解.解:延长DM到F,使MF=DM,连接EF、CF(如图)∵BM=CM,∠BMD=∠CMF,∴△BDM≌△CFM(SAS)∴BD=CF,∵DM⊥ME,DM=FM,ME是公共边,∴△DEM≌△FEM(SAS),∴DE=FE,在△ECF中,EC+FC>EF,∴BD+EC>DE故答案为:>.8. 解析:在BC上截取CE=CA,连结DE,根据SAS可证△ACD≌△ECD,根据全等三角形的性质和已知条件,由边与边之间的关系即可求出AB的长.解:在BC上截取CE=AC,连结DE.∵CD是∠ACB的平分线,∴∠ACD=∠ECD,∵在△ACD与△ECD中,CE=AC, ∠ACD=∠ECD, CD=CD∴△ACD≌△ECD(SAS),∴AD=ED,AC=CE,∠A=∠CED,∵∠A=2∠B,∴∠CED=2∠B,∴∠EDB=∠B,∴AD=ED=EB∴BC=CE+EB=AC+AD,∵AC=5,BD+BC=18,∴AB=AD+BD=BD+BC-AC=18-5=13.故答案为:139. 解析:过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°-35°=55°,即可求得∠EAB的度数.解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°-35°=55°,即∠CDA=110°,∠DAB=70°,∴∠EAB=35°10. 解析:(1)可延长AD到F,使DF=AD,在△ABF中,由三边关系即可得出结论;(2)由△ADC≌△FDB,得∠CAD=∠F,在△ABF中,由边的大小关系即可得出角之间的关系;(3)同(2),由角的关系亦可求解边的大小.证明:延长AD到F,使DF=AD,连接BF(如图),易证△ADC≌△FDB,所以AC=BF,(1)在△ABF中,AB+BF>AD+DF,所以2AD<AB+AC;(2)因为△ADC≌△FDB,所以∠CAD=∠F,因为AB >AC ,所以AB >BF ,所以∠F >∠BAD ,所以∠CAD <∠BAD ;(3)由(2),∠BAD <∠DAC 及∠BAE=∠EAC=21∠BAC , 所以∠BAD <∠EAC ,因为AB >AC 所以∠C >∠B ,所以∠BAD+∠B <∠EAC+∠C ,所以∠ADE <∠AED ,所以AE <AD11. 解析:可以通过作辅助线解决,延长AM 交DC 延长线于E ,连接DM ,根据条件易证得△ABM ≌△ECM ,可得AM=ME ;根据直角三角形斜边的中线等于其斜边的一半,可得到DM=ME ,即可得各角的关系. 根据三角形外角的性质即可得解.解:如图,延长AM 交DC 延长线于E ,连接DM ,∵AB ∥CD ,∴∠E=∠BAM=∠DAB-∠DAM=90°-50°=40°,∵BM=MC ,∠ABM=∠EMC ,∴△ABM ≌△ECM (AAS ),∴AM=ME ,即M 为AE 的中点,∵∠ADC=90°,∴MD=ME ;又∵CD=CM ,所以∠1=∠2=∠E=40°,∴∠AMD=∠1+∠E=40°=80°,∴∠AMC=∠AMD+∠DMC=80°+40°=120°12.解析:作∠BAC的平分线交BC于M,交DC的延长线于F,进而求证△ABM≌△ANM,进而可得△ABN≌△ADQ,Rt△PMN≌Rt△PMC,△ABM≌△ADQ进而可得出结论.解:作∠BAP的平分线交BC于M,作MN⊥AP,垂足为N,连接MP∵AF是∠BAP的平分线,MN⊥AP,∴∠BAM=∠MAP,∠B=∠ANM=90°,AM=AM,∴△ABM≌△ANM(AAS),∴MB=MN,AB=AN,∵AP=PC+CB=PC+AB,又AP=AN+NP=AB+NP∴NP=PC,∵PM=PM,∴Rt△PMN≌Rt△PMC(HL),∴MN=MC,∴MB=MC,∴△ABM≌△ADQ(SAS),∴∠QAD=∠BAM,∴∠BAP=2∠QADword 11 / 11。

(典型题)人教版八年级上册数学第十二章 全等三角形含答案

(典型题)人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、如图,平分交于点, 于点,若,, ,则的长为()A. B. C. D.2、如图,已知△ABC≌△ADC,∠B=30°,∠DAC=25°,则∠ACB=()A.55°B.60°C.120°D.125°3、如图,在正方形中,E为边上一点,F为延长线上一点,且,连接.给出下列至个结论:① ;② ;③ ;④ ;⑤ .其中正确结论的个数是()A. B. C. D.4、如图,在△AOB中,∠OAB=∠AOB=15°,OB=8,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则PA+PQ的最小值是()A.3B.4C.4D.35、如图所示,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.①②③都带去6、请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSSB.SASC.ASAD.AAS7、如图,AB=AD,添加下面的一个条件后.仍无法判定△ABC≌△ADC的是 ( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°8、如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心 D.∠ACB=90°9、下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;是真命题的有()个A.1B.2C.3D.410、如图,在CD上求一点P,使它到边OA,OB的距离相等,则点P是( )A.线段CD的中点B.CD与∠AOB的平分线的交点C.CD与过点O作的CD的垂线的交点D.以上均不对11、如图,中,于D,于E,AD交BE于点F,若,则等于A. B. C. D.12、如图,已知:∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AEB.AB=AD,BC=DEC.AC=AE,BC=DED.以上都不对13、如图,一块三角形玻璃不小心摔碎成如图三片,只需带上其中的一片,玻璃店的师傅就能重新配一块与原来相同的三角形玻璃,你知道应带碎玻璃.()A.③B.②C.①D.都不行14、规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:① AB=A1B1, AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;② AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③ AB=A1B1, AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④ AB=A1B1, CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个A.1B.2C.3D.415、如图,已知,添加下列条件后,仍无法判定△ ≌△的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=________cm,∠ADC=________.17、如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=2,P为AB上一动点,则PD的最小值为________.18、已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=________19、如图,已知∠1=∠2,请添加一个条件________使得△AOC≌△BOC.20、如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为________.21、如图,已知△ABC≌△DCB,若∠ABC=50°,∠ACB=40°,则∠D=________.22、如图,四边形ABCD是正方形,边长为4,点G在边BC上运动,DE⊥AG于E,BF∥DE交AG于点F,在运动过程中存在BF+EF的最小值,则这个最小值是________.23、如图,锐角三角形ABC和锐角三角形A'B'C'中,AD、A'D'分别是边BC、B'C'上的高,且AB=A'B',AD=A'D'.要使△ABC≌△A'B'C',则应补充条件:________(填写一个即可)24、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P点坐标为________.25、如图,将边长都为2 cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则2014个这样的正方形重叠部分的面积和为________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、已知,,,,证明:.28、如图,CD是线段AB的垂直平分线,则∠CAD= ∠CBD.请说明理由:解:∵CD是线段AB的垂直平分线,∴AC=▲ ,▲ =BD..在△ACD和△BCD中,. ▲ =BC,AD= ▲,CD=CD,∴△ACD≌▲ ( ) .∴∠CAD=∠CBD()29、如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E,试说明DE=DC+BE.30、已知:如图,△ABC中,点D、E分别为BC、AC边中点,连接AD,连接DE,过A 点作AF∥BC,交DE的延长线于F.连接CF,(1)求证:四边形ADCF是平行四边形;(2)对△ABC添加一个条件 ,使得四边形ADCF是矩形,并进行证明;(3)在(2)的基础上对△ABC再添加一个条件 ,使得四边形ADCF是正方形,不必证明.参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、C5、C6、A7、C8、A9、C10、B11、A12、C13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

人教版八年级上册 第十二章 《全等三角形》单元练习题(配套练习附答案)

人教版八年级上册 第十二章 《全等三角形》单元练习题(配套练习附答案)
【Leabharlann 解】解:(1)∵△BAD≌△ACE,
∴BD=AE,AD=CE,
∴BD=AE=AD+DE=CE+DE,
即BD=DE+CE;
(2)△ABD满足∠ADB=90°时,BD∥CE,
理由是:∵△BAD≌△ACE,
∴∠E=∠ADB=90°,
∴∠BDE=180°−90°=90°=∠E,
∴BD∥CE.
【点睛】本题考查了全等三角形的性质和平行线的判定等的应用,关键是通过三角形全等得出正确的结论,通过做此题培养了学生分析问题的能力.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
12.下列条件中,能判定两个直角三角形全等的个数有_____个.①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一条直角边对应相等;④面积相等.
【答案】3
【解析】
【分析】
【详解】根据到角 两边距离相等的点在角的平分线上,
故选D.
【点睛】此题主要考查角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上;做题时要明确题目中有什么条件,要达到什么目的.
3.如图,P是∠AOB平分线上一点,CD⊥OP于P,并分别交OA、OB于C D,则CD_____点P到∠AOB两边距离之和.( )
第十二章 《全等三角形》单元练习题
一、选择题
1.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是( )
A.4B.3C.6D.5
【答案】B
【解析】
过点D作DF⊥AC于F,
∵AD是△ABC的角平分线,DE⊥AB,
∴DE=DF=2,

(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)

(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒D解析:D【分析】 先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB 即可得出∠BAD 的度数.【详解】解:∵△ABC ≌△ADE ,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D .【点睛】本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.3.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > A解析:A【分析】 当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.4.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = D解析:D【分析】 根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.5.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4B解析:B【分析】 先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边. 6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒C解析:C【分析】 先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA C解析:C【分析】 根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.9.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD C解析:C【分析】 利用全等三角形的判断方法进行求解即可.【详解】A 、因为 BM ∥CN ,所以∠ABM=∠DCN ,又因为∠A=∠D , AM=DN ,所以△ABN ≅△DCN(AAS),故A 选项不符合题意;B 、因为∠M=∠N ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(ASA),故B 选项不符合题意;C 、BM=CN ,不能判定△ABN ≅△DCN ,故C 选项符合题意;D 、因为AB=CD ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(SAS),故D 选项不符合题意.故选:C .【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④B解析:B【分析】 由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】 本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.二、填空题11.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角 解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.12.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.15【分析】如图过点D 作DE ⊥AB 于E 首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D 作DE ⊥AB 于E 由作图可知AD 平分∠CAB ∵CD ⊥ACDE ⊥AB ∴DE=CD=3∴S △ 解析:15【分析】如图,过点D 作DE ⊥AB 于E .首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D 作DE ⊥AB 于E .由作图可知,AD 平分∠CAB ,∵CD ⊥AC ,DE ⊥AB ,∴DE=CD=3,∴S △ABD =12•AB•DE=12×10×3=15, 故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.13.如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D,若∠D=20°,则∠A=_____.40°【分析】利用角平分线的性质可知∠ABC=2∠DBC∠ACE=2∠DCE再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE∠A=∠ACE﹣∠ABC即得出∠A=2∠D即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC=2∠DBC,∠ACE=2∠DCE.再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE,∠A=∠ACE﹣∠ABC.即得出∠A=2∠D,即得出答案.【详解】∵∠ABC的平分线交∠ACE的外角平分线∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE﹣∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE﹣∠ABC=2∠DCE﹣2∠DBE=2(∠DCE﹣∠DBE),∴∠A=2∠D=40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.≅,延长BC,分别交AD,ED于点F,G,若14.如图,ABC ADE∠=________︒.∠=︒,10B∠=︒,30EAB120CAD∠=︒,则CFD95【分析】根据全等三角形的性质得∠BAC=∠DAE 结合三角形外角的性质和三角形内角和定理即可求解【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查全等三角形的性质三角形外角的性质和三角形内角和定解析:95【分析】根据全等三角形的性质,得∠BAC=∠DAE ,结合三角形外角的性质和三角形内角和定理,即可求解.【详解】解:∵ABC ADE ≅,∴()12010255BAC DAE ∠=∠=-÷=,∴85ACF BAC B ∠=∠+∠=,∴18085CFA ACF CAD ∠=-∠-∠=,∴1808595CFD ∠=-=.故答案为:95.【点睛】本题主要考查全等三角形的性质,三角形外角的性质和三角形内角和定理,熟练掌握上述定理和性质,是解题的关键.15.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.3【分析】由AD ⊥CEBE ⊥CE 可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD 从而求得△CEB ≌△ADC 然后利用全等三角形的性质可以求得BE 的长【详解】解:∵∠A解析:3【分析】由AD ⊥CE ,BE ⊥CE ,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD ,从而求得△CEB ≌△ADC ,然后利用全等三角形的性质可以求得BE 的长.【详解】解:∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD ,在△CEB 和△ADC 中,BCE CAD BEC CDA AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△ADC (AAS );∴BE=CD ,CE=AD=9.∵DC=CE-DE ,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC =AC 然后即可得到使得△ABC ≌△ADC 需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC =AC ∴若添加条件AB =A解析:AB =AD (答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC =AC ,然后即可得到使得△ABC ≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC =AC ,∴若添加条件AB =AD ,则△ABC ≌△ADC (SAS );若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,AB=8cm,AC=5cm,∠A=∠B,点P在线段AB上以2cm/s的速度由点A向B 运动,同时,点Q以x cm/s的速度从点B出发在射线BD上运动,则△ACP与△BPQ全等时,x的值为_____________2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.19.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为___.cm2【分析】如图延长AP 交BC 于T 利用全等三角形的性质证明AP=PT 即可解决问题【详解】解:如图延长AP 交BC 于T ∵BP ⊥AT ∴∠BPA=∠BPT=90°∵BP=BP ∠PBA=∠PBT ∴△BPA ≌ 解析:12 cm 2 【分析】如图,延长AP 交BC 于T .利用全等三角形的性质证明AP=PT 即可解决问题.【详解】解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==,1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.或【分析】对点P 和点Q 是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或7 2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.(1)如图,∠MAB=30°,AB=2cm,点C在射线AM上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .解析:(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可; (2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数.解析:(1)见解析;(2)66°【分析】(1)根据三角形内角和定理说明∠CDE=∠CBE ,再证明∠ABC=∠DBE ,根据AAS 可证明△ABC ≌△DBE ;(2)根据∠ABE 和∠DBC 的度数可以算出∠CBE 和∠ABD 的度数,从而得到∠CDE .【详解】解:(1)∵∠C=∠E ,∠CPD=∠EPB ,∴∠CDE=∠CBE ,∵∠CDE=∠ABD ,∴∠CBE=∠ABD ,∴∠CBE+∠CBD=∠ABD+∠CBD ,即∠ABC=∠DBE ,又∠C=∠E ,AB=DB ,∴△ABC ≌△DBE (AAS );(2)∵162ABE ∠=︒,30DBC ∠=︒,∴∠ABD=∠CBE=(162°-30°)÷2=66°,∴∠CDE=∠CBE=66°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,寻找三角形全等的条件是解题的关键.23.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.24.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB =90°,在图中动手画图(不用写画法).在∠AOB 内部任意画一条射线OC ;画∠AOC 的平分线OM ,画∠BOC 的平分线ON ;用量角器量得∠MON =______. (2)如图2,∠AOB =90°,将OC 向下旋转,使∠BOC =30°,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.解析:(1)作图见解析,45;(2)能,45【分析】(1)以点O 为圆心,任意长为半径,画圆弧,并分别交OA 、OC 于点H 、点G ;再分别以点H 、点G 为圆心,以大于12HG 的长度为半径画圆弧并相较于点P ,过点P 作射线OM 即为∠AOC 的平分线;同理得∠BOC 的平分线ON ;通过量角器测量即可得到∠MON ;(2)根据题意,得114522COM AOC BOC ∠=∠=+∠,12CON BOC ∠=∠,结合MON COM CON ∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON =45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90°∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.25.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .解析:见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.26.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.解析:证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.27.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 28.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.解析:(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。

初中数学人教版八年级上册第十二章《全等三角形》练习册(含答案12.2 三角形全等的判定

初中数学人教版八年级上册第十二章《全等三角形》练习册(含答案12.2   三角形全等的判定

初中数学人教版八年级上册实用资料12.2三角形全等的判定基础巩固1.(题型三)如图12-2-1,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )______A.带①去B.带②去C.带③去D.带①和②去图12-2-12.(题型一)如图12-2-2,在∆ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )图12-2-2A.∆ABD≌∆ACDB.∆BDE≌∆CDEC.∆ABE≌∆ACED.以上都不对3.(题型一、四)如图12-2-3,∆BDC′是将长方形纸片ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )图12-2-3A.1对B.2对C.3对D.4对4.(题型三)如图12-2-4,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE,AD=8,则AC= .图12-2-45.(题型二、三、四、五)如图12-2-5,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请你添加一个适当的条件,使∆ABC≌∆DEF.添加的条件是.图12-2-56.(题型三)如图12-2-6,AB∥CD,AD,BC交于点O,EF过点O分别交AB,CD于点E,F,且AE=DF.求证:O是EF的中点.图12-2-67.(题型二)[福建泉州中考]如图12-2-7,∆ABC,∆CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:∆CDA≌∆CEB.图12-2-7能力提升8.(题型一、二)下列说法中,正确的是()A.两边及一组角对应相等的两个三角形全等B.有两边分别相等,且有一角为30°的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等9.(题型四)如图12-2-8,在∆ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,AD=3,则点D到BC的距离是( )图12-2-8A.3B.4C.5D.610.(题型二)如图12-2-9,在∆ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.图12-2-9(1)求证:∆ABE≌∆CBD.(2)若∠CAE=30°,求∠BDC的度数.11.(题型三)[湖北宜昌中考]杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图12-2-10,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.图12-2-1012.(题型四、五)如图12-2-11,CD⊥AB于点D,BE⊥AC于点E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.图12-2-1113.(题型二、三)如图12-2-12,AB∥CD,OA=OD,AE=DF.求证:EB∥CF.图12-2-1214.(题型四)在数学习题课后,老师布置了一道课后练习题:如图12-2-13,在Rt∆ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC 于点E.求证:∆BPO≌∆PDE.图12-2-13(1)理清思路,完成解答,本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论:若PB平分∠ABO,其余条件不变.求证:AP=CD.答案基础巩固1. C 解析:③保留了原来三角形的两个角和它们的夹边,可以根据“ASA”来配一块与原来一样的玻璃,所以应带③去.故选C.2. C 解析:∵AB=AC,EB=EC,AE=AE,∴△ABE≌△ACE(SSS).故选C.3. D 解析:∵△BDC′是将长方形纸片ABCD沿对角线BD折叠得到的,∴△C′DB≌△CDB.∵AB=DC,AD=BC,BD=BD,∴△ABD≌△CDB(SSS),∴△ABD≌△C′DB.在△ABO和△C′DO中,易知AB=C′D,∠A=∠C′=90°.又∵∠AOB=∠C′OD,∴△ABO≌△C′DO(AAS).故选D.4. 8 解析:∵∠CBE=∠DBE,∴∠ABC=∠ABD.在△ABC和△ABD中,,,, ABC ABDAB ABCAB DAB∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC≌△ABD(ASA),∴AC=AD=8.5. BC=EF(或BF=CE或AC=DF或∠A=∠D或∠C=∠F或AC∥DF,答案不唯一) 解析:∵AB⊥CF,DE⊥CF,∴△ABC和△DEF都是直角三角形.又∵AB=DE,∴可以添加的条件有:BC=EF(或BF=CE),△ABC≌△DEF(SAS);AC=DF,Rt△ABC≌Rt△DEF (HL);∠A=∠D,△ABC≌△DEF(ASA);∠C=∠F(或AC∥DF),△ABC≌△DEF(AAS).6. 证明:∵AB∥CD,∴∠EAO=∠FDO,∠AEO=∠DFO.在△AEO和△DFO中,,,, EAO FDOAE DFAEO DFO ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△AEO≌△DFO(ASA),∴OE=OF. ∴O是EF的中点.7.证明:∵△ABC,△CDE均为等腰直角三角形,且∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∠ACB-∠ACE=∠DCE-∠ACE, ∴∠ECB=∠DCA.在△CEB和△CDA中,,,,BC ACECB DCA EC DC=∠=∠=⎧⎪⎨⎪⎩∴△CEB≌△CDA(SAS).能力提升8. C 解析:选项A属于“SSA”,不是判定三角形全等的条件,错误;选项B,如图D12-2-1的两个等腰三角形的腰长相等,且有一角为30°,但这两个等腰三角形不全等,错误;选项C可利用“SSS”和“SAS”证明两个三角形全等,正确;选项D中的高有可能在三角形内部,也有可能在三角形外部,是不确定的,不符合全等的条件,D错误.故选C.图D12-2-1图D12-2-29. A 解析:如图D12-2-2,过点D作DE⊥BC,垂足为E,则DE的长即是点D到BC的距离.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,90,,,A DEBABD EBDBD BD∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△ABD≌△EBD(AAS),∴DE=AD=3,即点D到BC的距离是3.故选A.10.(1)证明:∵∠ABC=90°,D为AB的延长线上一点,∴∠ABE=∠CBD=90°.在△ABE和△CBD中,,,,AB CBABE CBD BE BD=∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△CBD(SAS).(2)解:∵AB=CB,∠ABC=90°,∴∠CAB=45°.∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°.∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.∴∠BDC=90°-∠BCD=90°-15°=75°.11. 解:∵AB∥CD,∴∠ABO=∠CDO.∵OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.∵相邻两平行线间的距离相等,∴OD=OB.在△ABO和△CDO中,,,,ABO CDOAOB COD OB OD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABO≌△CDO(ASA),∴CD=AB=20米.12. 证明:∵OD⊥AB,OE⊥AC,∴∠BDO=∠CEO=90°.在△BOD和△COE中,90,,,BDO CEOBOD COEBD CE∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△BOD≌△COE(AAS),∴OD=OE.在Rt△AOD和Rt△AOE中,OA=OA, OD=OE,∴Rt△AOD≌Rt△AOE(HL),∴∠DAO=∠EAO,即AO平分∠BAC.13. 证明:∵AB∥CD(已知),∴∠3=∠4(两直线平行,内错角相等).在△DCO和△ABO中,34(),,12, OD OA∠=∠=∠=∠⎧⎪⎨⎪⎩已证(已知)(对顶角相等)∴△DCO≌△ABO(ASA),∴OC=OB(全等三角形的对应边相等). ∵AE=DF,OA=OD,∴OD+DF=OA+AE,即OF=OE.在△COF和△BOE中,(),(),12, OC OBOF OE==∠=∠⎧⎪⎨⎪⎩已证已证(对顶角相等)∴△COF≌△BOE(SAS),∴∠F=∠E(全等三角形的对应角相等).∴EB∥CF(内错角相等,两直线平行).14. 证明:(1)∵PB=PD,∴∠2=∠PBD.∵AB=BC,∠ABC=90°,∴∠C=45°.∵BO⊥AC,∴∠1=45°.∴∠1=∠C=45°.∵∠3=∠PBC-∠1,∠4=∠2-∠C,∴∠3=∠4.∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°.在△BPO和△PDE中,34,,,BOP PED BP PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△BPO≌△PDE(AAS).(2)由(1)得,∠3=∠4.∵BP平分∠ABO,∴∠ABP=∠3.∴∠ABP=∠4.在△ABP和△CPD中,,4,,A CABPPB PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABP≌△CPD(AAS),∴AP=CD.。

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。

人教版数学八年级上第十二章全等三角形知识点+题案+作业(精品学案)

人教版数学八年级上第十二章全等三角形知识点+题案+作业(精品学案)

第十二章 全等三角形一、全等三角形【全等三角形的概念和性质】 1. 全等形:能够重合的两个图形. 2. 全等三角形:能够重合的两个三角形.把两个全等的三角形重合到一起时,重合的顶点称为对应点..., 重合的边称为对应边...,重合的角称为对应角...。

3. 全等三角形的性质:全等三角形的对应边相等,对应角相等; 表示方法:“全等”用“≌”表示,读作:_________; 【例题一】(1)如图所示,△OCA ≌△OBD ,对应顶点有:点 和点 ,点 和点 ,点 和点 ; 对应角有: 和, 和 ,和 ;对应边有: 和 , 和 , 和 .(2)如图△ABD ≌△CDB,若AB=4,AD=5,BD=6,∠ABD=50°,∠ADB=30°,则BC= ,CD= ,∠BDC= ,∠C= .【基础练习一】1. 已知∆ABC ≌∆EFD ,若59A ∠=︒,31B ∠=︒,8DE =,10EF =,则AB = ,D ∠= .2. 如图,△AOB ≌△ADC ,点B 和点C 是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC ∥OA 时,α与β之间的数量关系为( )A 、α=βB 、α=2βC 、α+β=90°D 、α+2β=180°3. 下列说法错误的是( )DBACOA、全等三角形的公共角是对应角,对顶角也是对应角B、全等三角形的公共边也是对应边C、全等三角形的公共点是对应顶点D、全等三角形中相等的边所对的角是对应角,相等的角所对的边是对应边。

4.如图,已知△ABD≌△ACE,AD=3cm,BD=1cm,BC=6cm,求△ADE的周长.5.如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,求AB的长.【全等三角形的判定】1. 全等三角形的判定1:三边分别相等的两个三角形全等(简写“SSS ”)2. 全等三角形的判定2:两边和它们的夹角分别相等的两个三角形全等(简写“SAS ”)3. 证明三角形全等:判断两个三角形全等的推理过程,叫做证明三角形全等 【例题二】1. 如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .证明:∵D 是BC ∴ =∴在△和△ 中AB= BD= AD=∴△ABD △ACD( )提示:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好; ②三角形全等书写三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论。

人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、在正方形ABCD中,E、F分别为BC、CD边上的两个动点,∠EAF=45°,下列几个结论中:①EF=BE+DF;②MN2=BM2+DN2;③FA平分∠DFE;④连接MF,则△AMF为等腰直角三角形;⑤∠AMN=∠AFE. 其中一定成立的结论有()A.2个B.3个C.4个D.5个2、已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围是()A. B. C.D.3、如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC4、如图,为等边三角形,是边上一点,在上取一点,使,在边上取一点,使,则的度数为()A. B. C. D.5、如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E 为垂足,连接DF,则∠CDF=()A.50°B.40°C.30°D.15°6、AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△=7,DE=2,AB=4,则AC长是()ABCA.4B.3C.6D.27、如图,△ABC和△DEF中,AB=DE,∠B=∠DEF,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AC=DFB.AC∥DFC.∠A=∠DD.∠ACB=∠F8、两个直角三角形全等的条件是()A.一个锐角对应相等B.一条边对应相等C.两条直角边对应相等 D.两个角对应相等9、如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BDB.AC=ADC.∠ACB=∠ADBD.∠CAB=∠DAB10、如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是( )A. ACB. ABC. BCD. AB11、如图,是的角平分线,,垂足为E,,,,则长为()A. B. C. D.12、如图,在Rt△ABC中,∠ACB=90°,AE为△ABC的角平分线,且ED⊥AB,若AC=6,BC=8,则BD的长()A.2B.3C.4D.513、如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x -1,若这两个三角形全等,则x等于()A. B.3 C.4 D.514、下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形15、下列命题中正确的命题有()个①两个全等的三角形一定关于某直线对称;②等腰三角形的高、中线、角平分线互相重合;③等腰三角形的对称轴是顶角的平分线④顶角和底边对应相等的两个等腰三角形全等;A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是________.17、如图,已知≌,点B,E,C,F在同一条直线上,若,则=________.18、如图,∠C=∠D=90º,添加一个条件:________ (写出一个条件即可),可使 Rt△ABC 与Rt△ABD 全等.19、如图,△ABC,点E是AB上一点,D是BC的中点,连接ED并延长至点F,使DF=DE,连接CF,则线段BE与线段CF的关系为________.20、如图(1)~(12)中全等的图形是________ 和________ ;________ 和________ ;________ 和________;________ 和________ ;________和________ ;________ 和________ ;(填图形的序号)21、如图,D为等边△ABC中边BC的中点,在边DA的延长线上取一点E,以CE 为边、在CE的左下方作等边△CEF,连结AF.若AB=4,AF=,则CF的值为________.22、如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥DA于Q,PQ=3,EP=1,则DA的长是________.23、如图,在平面直角坐标系中,经过点A的双曲线同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则的值为________.24、如图,点P是的平分线上一点,PB AB与B,且PA=5cm,AC=12cm,则的面积是________ .25、如图, AB = 4cm , AC = BD = 3cm . ∠CAB = ∠DBA ,点 P 在线段 AB 上以1cm / s 的速度由点 A 向点 B 运动,同时,点Q 在线段 BD 上由点 B 向点 D 运动.设运动时间为t(s) ,则当点Q 的运动速度为________cm / s 时, DACP 与DBPQ 全等.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:DF=BE.28、如图,AB∥CD,AB=CD,点E、F在AD上,且AE=DF.求证:△ABE≌△DCF.29、提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P 在对角线AC上,一条直角边经过点B,另一条直角边交边DC于点E,求证:PB=PE分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.30、写出命题:“等腰三角形两腰上的高相等”的逆命题,并证明其逆命题是真命题.(要求写出已知、求证和证明过程).参考答案一、单选题(共15题,共计45分)1、D2、A3、A4、C5、C6、B7、A8、C9、B10、C11、B12、C13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

人教版数学《第十二章全等三角形》知识点梳理及同步训练

人教版数学《第十二章全等三角形》知识点梳理及同步训练

人教版数学《第十二章全等三角形》知识点梳理及同步训练知识梳理一.全等三角形概念1.全等形的概念:能够完全重合的两个图形叫做全等形.2.全等形的性质:(1)形状相同.(2)大小相等.3.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.4.全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,和全等,记作.通常对应顶点字母写在对应位置上.二.全等三角形的性质:1.全等三角形的对应边相等;全等三角形的对应角相等.2.全等三角形的周长、面积相等.三.全等的变换1.全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.2.全等三角形基本图形翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素四.两个三角形全等的条件1.全等三角形的判定1——边边边公理三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架).2.全等三角形的判定2——边角边公理两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.3.全等三角形的判定3——角边角公理两角和它们的夹边对应相等的两个三角形全等.简写为“角边角”或“ASA”.4.全等三角形的判定4——角角边推论两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”.5.直角三角形全等的判定——斜边直角边公理斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边直角边”或“HL”.判定直角三角形全等的方法:①一般三角形全等的判定方法都适用;②斜边-直角边公理五.判定三角形全等方法的选择:1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

第十二章 全等三角形共3节课作业

第十二章 全等三角形共3节课作业

第十二章全等三角形第1节全等三角形(时间60分钟,总分100分)一、本节课的知识点1.基本定义:(1)全等形:能够完全重合的两个图形叫做全等形.(2)全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上)(3)对应顶点:全等三角形中互相重合的顶点叫做对应顶点.(4)对应边:全等三角形中互相重合的边叫做对应边.(5)对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:全等三角形的性质:全等三角形的对应边相等,对应角相等.二、对理解本节课知识点的例题及其解析【例题1】已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF答案:C.解析:A.∵△ABC≌△DEF,∴AC=DF,故此结论正确;B.∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;C.∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;D.∵△ABC≌△DEF,∴BC=EF,故此结论正确。

【例题2】如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35° B.45° C.60° D.100°答案:D.解析:∵△ABC≌△DEF,∠A=45°,∠F=35°∴∠D=∠A=45°∴∠E=180°﹣∠D﹣∠F=100°.【例题3】一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= .答案:11解析:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.【例题4】已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB= 度.答案:120°.解析:∵△OAD≌△OBC,∴∠D=∠C=25°,∴∠CAE=∠O+∠D=95°,∴∠AEB=∠C+∠CAE=25°+95°=120°.【例题5】如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.答案:(1)∠EBG=138°;(2)CE=3.解析:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.三、本节课的课时作业1.已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°答案:D.解析:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°2.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等。

第十二章 《全等三角形》 校本作业

第十二章 《全等三角形》 校本作业

9.如图,AB=AC,BD=CD,∠B=20°,则∠C=
°。
3
10.如图,△ABC 中,AB=AC,AE=CF,BE=AF,则∠E=∠____,∠CAF=∠_______。
三、解答题(共 50 分) 11.尺规作图:如图线段 a、b、c。 (1)以线段 a、b、c 为边,作△ABC; (2)过点 A 直线 m∥BC。
是---------------------------------------------------------------------------------------------------------------( )
A.∠A=∠D
B.∠B=∠E
C.∠C=∠F
D.以上三个均可以
2.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件---------------------------------( )
AE=6cm,如果点 P 从点 B 出发在线段 BC 上以 2cm/s 的速度向点 C 向运动,
同时,点 Q 在线段 CD 上从点 C 到点 D 运动.则当△BPE 与△CQP 全等时,
时间 t 为

三、解答题(共 50 分)
11.如图,△ABE≌△ACD,点 B、D、E、C 在一条直线上.
(1)∠BAD 与∠CAE 有何关系?请说明理由.
在边 OA、OB 上分别取 OM=ON,移动角尺,使角尺两边相同的刻度分别与 M、
N 重合 ,过角尺顶点 C 作射线 OC。由做法得△MOC≌△NOC 的依据
是:

7.如图,AC=FE,BC=DE ,点 A、D、B、F 在一条直线上,要使△ABC ≌△FDE,
还需添加一.个.条件,这个条件可以是

八年级数学上册第十二章全等三角形专题五构造全等三角形常用的辅助线作业课件新版新人教版

八年级数学上册第十二章全等三角形专题五构造全等三角形常用的辅助线作业课件新版新人教版
-AC<AE<CE+AC,即 6-2<2AD<6+2,∴4<2AD<8,∴2<AD<4.
2.如图,AD是△ABC的中线,E是AC上的一点,BE交AD于点F,已 知AC=BF,∠DAC=35°,∠EBC=40°,求∠C的度数.
解:如图,延长 AD 到点 M,使得 DM=AD,连接 BM.∵AD 是△ABC
(2)证明:如图,在 AB 上截取 AF=AC,连接 EF,在△ACE 和△AFE 中,
A∠CC=AEA=F,∠FAE, ∴ △ ACE ≌ △ AFE(SAS).∴CE = FE , ∠ CEA = AE=AE,
∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.
类型二:利用角平分线截长补短构造全等 方法技巧:因角平分线已具备全等三个条件中的两个(角等、公共边等) 条件,故在角的两边截取相等的线段构造SAS全等三角形.
5.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线 段CD上.
(1)求∠AEB的度数; (2)求证:CE=DE.
解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE 平分∠CAB,BE 平分∠DBA,∴∠EAB=12 ∠CAB,∠EBA=12 ∠ABD.∴∠EAB+∠EBA =90°,∴∠AEB=90°.
解:已知:如图,在△ABC与△A1B1C1中,AB=A1B1,AC=A1C1, AM和A1M1分别为中线,AM=A1M.求证:△ABC≌△A1B1C1.
证 明 : 如 图 , 延 长 AM 至 点 D , 使 AM = MD , 延 长 A1M1 至 点 D1 , 使 A1M1 = M1D1 , 连 接 DC , D1C1 , 分 别 证 明 △ ABM≌△DCM , △ A1B1M1≌△D1C1M1 , 得 AB = CD , A1B1 = C1D1 , ∠ BAM = ∠ D , ∠B1A1M1=∠D1,再证△ACD≌△A1C1D1,得∠1=∠2,从而∠BAC= ∠B1A1C1,再用SAS证△ABC≌△A1B1C1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§12.2 全等三角形的判定(4)
班级__________姓名___________________座号___________
1.如图,要用“HL”判断Rt△ABC和Rt△DEF全等的条件是( )
A.AC=DF,BC=EF B.∠A=∠D,AB=DE C.AC=DF,AB=DE D.∠B=∠E,BC=EF
2.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;
③△BPR≌△QPS中( )
A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确
3.AC,BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
A.1个B.2个C.3个D.4个
第1题第2题第3题第4题第5题4.如图所示,在△ABC中,∠C=90°,DE⊥AB于D,BC=BD,如果AC=3 cm,那么AE+DE等于( ) A.2 cm B.3 cm C.4 cm D.5 cm
5.如图,E是正方形ABCD的边DC上一点,过点A作FA⊥AE交CB的延长线于点F.若AB=4,则四边形AFCE的面积是( )
A.4B.8C.16D.32
6.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.
7.如图,在△ABC中,DE⊥BC于点E,BE=CE,AC=6,AB=10,则△ADC的周长是.
第6题第7题
8.如图,∠C=∠D=90°,请再添加一个条件,使△ABD≌△BAC,并写出判定全等的依据.
(1)条件,依据. (2)条件,依据.
(3)条件,依据. (4)条件,依据.
9.如图,AC=AD,∠C,∠D是直角, BC=12 cm,则BD的长为_________.
10.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=________°.
第8题第9题第10题
11. 如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB,BC于点G,H.
(1)请根据题意用实线补全图形.
(2)求证:△AFB≌△AGE.
12.如图,AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,试说明BE与AC的
位置关系.
13.已知,如图1,E,F分别为线段AC上的两个动点,且DE⊥AC于E点,
BF⊥AC于F点,若AB=CD,AF=CE,BD交AC于M点.
(1)求证:MB=MD,ME=MF.
(2)当E,F两点移动至如图2所示的位置时,其余条件不
变,上述结论能否成立?若成立,请给出你的证明.若不
成立,请说明你的理由.。

相关文档
最新文档