(暑假一日一练)2020高考物理一轮复习 专题 运动学基本公式题型荟萃
高考物理一轮复习《运动图象、运动学公式》典型题精排版(含答案)
高考物理一轮复习《运动图象、运动学公式》典型题精排版1.为了应对最新国际局势的变化,巴基斯坦高调举行了“高标”军事演习.空军飞行员展示了操控由中巴联合研制的“枭龙”(JF17,巴方代号“闪电”)战机的能力,并利用其外挂导弹精确击中“敌方目标”,把整个演习过程一次次推向高潮,获得了在场专家的高度评价.如图是“枭龙”战机在演练中竖直方向的速度—时间图象,则此过程关于飞机飞行情况的说法正确的是( )A.飞机在前100 s内的竖直方向的加速度大小为0.2 m/s2B.在100 s到200 s时间内飞机静止C.飞机在200 s到300 s内竖直方向的加速度大小为0.1 m/s2D.在400 s时,以地面为参考系,飞机的速度大小为02.甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻为计时起点,得到两车的位移—时间(xt)图象如图所示,则下列说法正确的是( )A.t1时刻乙车从后面追上甲车B.t1时刻两车相距最远C.t1时刻两车的速度刚好相等D.0到t1时间内,乙车的平均速度小于甲车的平均速度3.下图是甲、乙两物体做直线运动的vt图象.下列表述正确的是 ( ) A.乙做匀加速直线运动B.0~1 s内甲和乙的位移相等C.甲和乙的加速度方向相同D.甲的加速度比乙的小4.如图为两个物体A和B在同一直线上沿同一方向同时作匀加速运动的vt图象.已知在第3 s末两个物体在途中相遇,则下列说法正确的是( )A.两物体从同一地点出发B.出发时B在A前3 m处C.3 s末两个物体相遇后,两物体不可能再相遇D.运动过程中B的加速度大于A的加速度5.某物体运动的速度图象如图所示,根据图象可知( )A.0~2 s内的加速度为1 m/s2B.0~5 s内的位移为10 mC.第1 s末与第3 s末的速度方向相同D.第1 s末与第5 s末加速度方向相同6.四个质点作直线运动,它们的速度图象分别如下图所示,下列说法中正确的是( )A.四个质点在第1秒内的平均速度相同B.在第2秒末,质点(3)回到出发点C.在第2秒内,质点(1)(3)(4)做加速运动D.在第2秒末,质点(2)(3)偏离出发点位移相同7.汽车A在红绿灯前停住,绿灯亮起时启动,以0.4 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B 以8 m/s的速度从A车旁边驶过,且一直以此速度做匀速直线运动.运动方向与A 车相同.则从绿灯亮时开始 ( )A.A车在加速过程中与B车相遇B.A、B相遇时速度相同C.相遇时A车做匀速运动D.两车不可能再次相遇8.某物体运动的vt图象如图所示,根据图象可知( )A.前15 s内物体的平均速度是10 m/sB.第20 s末物体的加速度大小是1.0 m/s2C.0~10 s内物体的加速度等于10 s~15 s内物体的加速度D.10 s~15 s内合外力对物体做功为零9.在平直道路上,甲汽车以速度v匀速行驶.当甲车司机发现前方距离为d 处的乙汽车时,立即以大小为a1的加速度匀减速行驶,与此同时,乙车司机也发现了甲,立即从静止开始以大小为a2的加速度沿甲运动的方向匀加速运动,则( )A.甲、乙两车之间的距离一定不断减小B.甲、乙两车之间的距离一定不断增大C.若v>2a1+a2d,则两车一定不会相撞D.若v< 2a1+a2d,则两车一定不会相撞10.酒后驾车严重威胁交通安全.其主要原因是饮酒后会使人的反应时间(从发现情况到实施操作制动的时间)变长,造成反制距离(从发现情况到汽车停止的距离)变长,假定汽车以108 km/h的速度匀速行驶,刹车时汽车的加速度大小为8 m/s2,正常人的反应时间为0.5 s,饮酒人的反应时间为1.5 s,试问:(1)驾驶员饮酒后的反制距离比正常时多几米?(2)饮酒的驾驶员从发现情况到汽车停止需多少时间?11.一辆值勤的警车停在平直公路边,当警员发现从他旁边以v=8 m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经2.5 s,警车发动起来,以加速度a=2 m/s2做匀加速运动,试问:(1)警车发动起来后要多长的时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多少?(3)若警车的最大速度是12 m/s,则警车发动起来后要多长的时间才能追上违章的货车?高考物理一轮复习《运动图象、运动学公式》典型题精排版参考答案1.解析:由公式a =v t -v 0t得,前100 s 内的竖直方向的加速度大小为0.2 m/s 2,飞机在200 s 到300 s 内竖直方向的加速度大小为0.1 m/s 2,故A 、C 两项对;在100 s 到200 s 时间内,v y =20 m/s ,故B 项错;在400 s 时,尽管竖直速度v y =0,但v x 不一定为零,故D 项错.答案:AC2.解析:同时同地出发,t 1时刻甲、乙的位移相同,说明此时乙从后面追上甲,而斜率说明乙的速度在增大;在0~t 1这段时间内,v =x t,甲、乙的平均速度相等.答案:A3.解析:由题图可知,乙做匀加速直线运动而甲做匀减速直线运动,A 正确;由v t 图线的斜率的大小表示物体加速度的大小,正负表示加速度的方向可知,C 、D 错误;0~1 s 内甲的位移大,B 错误.答案:A4.解析:由v t 图象斜率表示加速度,则D 错;而所围面积为位移,故选BC. 答案:BC5.解析:0~2 s 内的加速度(即图象的斜率)a =ΔvΔt=1 m/s 2,故A 正确;0~5 s 内的位移为x =12×(2+5)×2 m =7 m ,故B 错误;从图象可以看出,第1 s末与第3 s 末物体的速度都为正值,即都与所设的正方向相同,故C 正确;在第5 s 末的加速度为负,所以D 错误.答案:AC6.解析:由v t 图象与t 轴所围面积表示位移,在t 轴上方位移为正值;在t 轴下方位移为负值.答案:CD7.解析:汽车A在匀加速的过程中的位移x A1=12aAt21=180 m,此过程中汽车B的位移xB1=v B t1=240 m>x A1,故A车在加速过程中没有与B车相遇,A错误,C 正确;之后因v A=a A t1=12 m/s>v B,故A车一定能追上B车,相遇之后不能再相遇,A、B相遇时的速度一定不相同,B错误,D正确.答案:CD8.解析:前15 s内x=12×10×20+(15-10)×20=200 m,v=20015m/s=13.3m/s,20 s时加速度a=30-2025-15m/s2=1 m/s2;C项中10 s~15 s物体为匀速运动,动能不变,外力做功为0.答案:BD9.解析:设经时间t甲、乙速度相等,则v-a1t=a2t,t=va1+a2,在这时刻之前甲的速度大,甲、乙之间的距离不断减小;这之后乙的速度大,甲、乙间的距离又不断增大,不相撞的条件为vt-12a1t2<d+12a2t2,所以v<2a1+a2d.答案:D10.解析:(1)汽车匀速行驶v=108 km/h=30 m/s正常情况与饮酒后,从刹车到车停止这段的运动是一样的,设饮酒后的刹车距离比正常时多Δs,反应时间分别为t1、t2,则Δs=v(t2-t1)代入数据得Δs=30 m(2)饮酒的驾驶员从实施操作制动到汽车停止所用时间t3=(v t-v0)/a解得t3=3.75 s所以饮酒的驾驶员从发现情况到汽车停止需时间t=t2+t3解得t=5.25 s答案:(1)30 m (2)5.25 s11.解析:Δs=Δt·v=2.5×8 m=20 m.(1)设警车发动起来后要时间t才能追上违章的货车,则12at2-vt=Δs,解得t=10 s或t=-2 s(舍去).(2)在警车追上货车之前,两车速度相等时,两车间的距离最大,设警车发动起来后经时间t′两车速度相等,两车间的距离最大为s m,则t′=va=4 s,s m=Δs+v·t′-12at′2=(20+8×4-12×2×42) m=36 m.(3)若警车的最大速度是12 m/s,则警车发动起来后加速的时间t0=vma=122s=6 s.设警车发动起来后经过时间t″追上违章的货车,则12at2+v m(t″-t0)-vt″=Δs,解得t″=14 s.答案:(1)10 s (2)36 m (3)14 s。
【2024寒假分层作业】专题02 匀变速直线运动基本运动规律公式(解析版)
2024年高考物理一轮大单元综合复习导学练专题02匀变速直线运动基本运动规律公式导练目标导练内容目标1匀变速直线运动的基本公式目标2匀变速直线运动三个推论目标3初速度为零的匀加速直线运动的比例关系目标4刹车类和双向可逆类问题【知识导学与典例导练】一、匀变速直线运动的基本公式1.四个基本公式及选取技巧题目涉及的物理量没有涉及的物理量适宜选用公式v 0,v ,a ,t x v =v 0+at v 0,a ,t ,x v x =v 0t +12at 2v 0,v ,a ,x t v 2-v 02=2ax v 0,v ,t ,xax =v +v 02t 2.运动学公式中正、负号的规定匀变速直线运动的基本公式和推论公式都是矢量式,使用时要规定正方向。
而直线运动中可以用正、负号表示矢量的方向,一般情况下规定初速度v 0的方向为正方向,与初速度同向的物理量取正值,反向的物理量取负值。
当v 0=0时,一般以加速度a 的方向为正方向。
【例1】(2023秋·河北沧州·高三统考期末)某新能源汽车的生产厂家为了适应社会的需求,在一平直的公路上对汽车进行测试,计时开始时新能源汽车a 、b 的速度分别满足10a v t =、105b v t =+,经时间1s t =两新能源汽车刚好并排行驶。
则下列说法正确的是()A .计时开始时,b 车在a 车后方5mB .从计时开始经2s 的时间两新能源汽车速度相同C .两新能源汽车速度相等时的距离为2mD .从第一次并排行驶到第二次并排行驶需要3s 的时间【答案】B【详解】A .根据题意可知,新能源汽车a 的初速度为零,加速度为210m/s ,新能源汽车b 的初速度为10m/s ,加速度为25m/s 。
0~1s ,根据212x at =可知21101m 5m 2a x =⨯⨯=;2110151m 12.5m 2b x =⨯+⨯⨯=已知在1s t =时两车并排行驶,故计时瞬间b 车在a 车后方7.5m b a x x -=故A 错误;B .由题中的关系式可知2s =t 时,两新能源汽车的速度均为20m/s ,即两新能源汽车的速度相等,故B 正确;C .1s ~2s 内,根据平均速度122v v x t +=⋅,可知10201m 15m 2a x +=⨯=;15201m 17.5m 2b x +=⨯=故两车相距2.5m ,故C 错误;D .设从第一次两车并排后再经时间t ,两车再次并排,根据平均速度可知()101012a t x t +⨯+=⋅;()5115102b x t t ⨯+++=⋅又由a b x x =解得t =2s 所以两新能源汽车两次并排行驶的时间间隔为2s ,故D 错误。
2020年 最新 物理高考 高中物理必备公式(打印背记版)
一、运动学公式1. 匀变速直线运动公式 (知三求二) (1)0t v v at =+ (无x )(2)2012x v t at =+ (无v t )(3)212t x v t at =- (无v 0) (4)2202t v v ax -= (无t ) (5)02tv v x t +=(无a ) 2.自由落体运动的规律 (1)速度公式t v gt = (2)下落高度212h gt =(3)下落时间t(4)落地速度v =3.竖直上抛运动的几个具体值上升过程是匀减速直线运动,下落过程是匀加速直线运动。
全过程是初速度为0v 、加速度为g -的匀减速直线运动。
(1)物体上升的时间:01v t g=(2)上升的最大高度: 220011122v H v t gt g=-=(3)物体运动的时间:02v t g=, (4)落回原地的速度:0002v v v gv g=-=-. (5)上升、下落经过同一位置时的加速度相同,而速度等值反向。
(6)上升、下落经过同一段位移的时间相等。
4. 匀变速直线运动的推论(1)在连续相等的时间内的位移之差为恒定值2x at ∆=(2)某段时间中间时刻的瞬时速度等于这段时间内的平均速度022tt v v v +=(3)某段位移内中间位置的瞬时速度等于2x v(4)初速度为零的匀加速直线运动:①在时间 2 3 t t t 、、…内位移之比为:222123::::1:2:3::n s s s s n =…… ②第一个t 内、第二个t 内、…位移之比为:::::1:3:5::(21)N s s s s n =-ⅠⅡⅢ……③在位移s 2s 3s 、、…内所用的时间之比为:… ④通过连续相等的位移所用时间之比为:123:::::n t t t t =……(5)对末速度为零的匀变速直线运动,可以相应的运用这些规律.①连续相等时间内的位移差:∆s aT =2②以加速度a 做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是321s s s 、、、……s n ,则2()m n s s m n aT -=-5. 打点计时器(1)连续相等时间内的位移差:2x aT ∆=(2)以加速度a 做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是123x x x 、、、……n x ,则2()mn x x m n aT -=-(3)常在打点计时器中进行考察①2ACB AC x v v T == ②2CED CE x v v T == ③4AEC AE x v v T==二、牛顿运动定律1.重力:G mg =(g 随高度、维度变化)2.胡克定律:F k x =∆(k 只与弹簧的原长、粗细和材料有关;x ∆是弹簧的形变量) 若弹簧伸长,则0-F k x x =()3.摩擦力(1)静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关。
2020年高考物理一轮复习热点题型归纳与变式演练专题20 电容器、带电粒子在电场中的运动(原卷版)
2020届高考物理一轮复习热点题型归纳与变式演练 专题20 电容器、带电粒子在电场中的运动【专题导航】目录热点题型一 平行板电容器及其动态分析问题 (1)U 不变时电容器的动态分析............................................................................................................................... 2 Q 不变时电容器的动态分析............................................................................................................................... 2 平行板电容器中带电粒子的问题分析 .............................................................................................................. 3 热点二 带电粒子在电场中的直线运动 (4)电容器中直线运动 .............................................................................................................................................. 4 带电粒子在匀强电场中的直线运动 .................................................................................................................. 4 带电粒子在交变电场中的直线运动 .................................................................................................................. 5 热点题型三 带电粒子在电场中的偏转运动 .......................................................................................................... 6 热点题型四 带电粒子在交变电场中的运动 . (7)粒子做直线往返运动 .......................................................................................................................................... 8 粒子做偏转运动问题 .......................................................................................................................................... 9 热点题型五 带电体在电场、重力场中的运动 . (10)带电体在电场、重力场中运动的动力学问题 ................................................................................................. 10 带电体在电场、重力场中运动的动量和能量问题 ......................................................................................... 11 【题型演练】 (11)【题型归纳】热点题型一 平行板电容器及其动态分析问题 1.分析思路(1)先确定是Q 还是U 不变:电容器保持与电源连接,U 不变;电容器充电后与电源断开,Q 不变. (2)用决定式C =εr S 4πkd确定电容器电容的变化.(3)用定义式C =QU判定电容器所带电荷量Q 或两极板间电压U 的变化.(4)用E =Ud 分析电容器极板间场强的变化.2.两类动态变化问题的比较U 不变时电容器的动态分析【例1】(2019·湖南长沙模拟)利用电容传感器可检测矿井渗水,及时发出安全警报,从而避免事故的发生;如图所示是一种通过测量电容器电容的变化来检测矿井中液面高低的仪器原理图,A 为固定的导体芯,B 为导体芯外面的一层绝缘物质,C 为导电液体(矿井中含有杂质的水),A 、C 构成电容器.已知灵敏电流表G 的指针偏转方向与电流方向的关系:电流从哪侧流入电流表则电流表指针向哪侧偏转.若矿井渗水(导电液体深度增大),则电流表( )A .指针向右偏转,A 、C 构成的电容器充电B .指针向左偏转,A 、C 构成的电容器充电 C .指针向右偏转,A 、C 构成的电容器放电D .指针向左偏转,A 、C 构成的电容器放电【变式】一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变 Q 不变时电容器的动态分析【例2】如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板间有一个固定在P 点的点电荷,以E 表示两板间的电场强度,E p 表示点电荷在P 点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则( )A.θ增大,E增大B.θ增大,E p不变C.θ减小,E p增大 D .θ减小,E不变【变式】(2019·西北师大附中模拟)如图所示,平行板电容器充电后与电源断开,正极板接地,两板间有一个带负电的试探电荷固定在P点.静电计的金属球与电容器的负极板连接,外壳接地.以E表示两板间的场强,φ表示P点的电势,E P表示该试探电荷在P点的电势能,θ表示静电计指针的偏角.若保持负极板将正极板缓慢向右平移一小段距离(静电计带电量可忽略不计),各物理量变化情况描述正确的是()A.E增大,φ降低,E P减小,θ增大B.E不变,φ降低,E P增大,θ减小C.E不变,φ升高,E P减小,θ减小D.E减小,φ升高,E P减小,θ减小平行板电容器中带电粒子的问题分析【例3】(2018·高考全国卷Ⅲ)如图,一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a、b 所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等.现同时释放a、b,它们由静止开始运动,在随后的某时刻t,a、b经过电容器两极板间下半区域的同一水平面,a、b间的相互作用和重力可忽略.下列说法正确的是()A.a的质量比b的大B.在t时刻,a的动能比b的大C.在t时刻,a和b的电势能相等D.在t时刻,a和b的动量大小相等【变式】如图所示,一种β射线管由平行金属板A、B和平行于金属板的细管C组成.放射源O在A极板左端,可以向各个方向发射不同速度、质量为m的β粒子(电子).若极板长为L,间距为d,当A、B板加上电压U时,只有某一速度的β粒子能从细管C水平射出,细管C离两板等距.已知元电荷为e,则从放射源O发射出的β粒子的这一速度为()A.2eU mB.Ld eU m C.1deU d 2+L 2m D.LdeU2m热点二 带电粒子在电场中的直线运动 1.用动力学观点分析 a =F 合m ,E =Ud ,v 2-v 20=2ad 2.用功能观点分析匀强电场中:W =qEd =qU =12mv 2-12mv 20非匀强电场中:W =qU =E k2-E k1 电容器中直线运动【例4】(多选)(2019·株洲检测)如图所示,在真空中倾斜平行放置着两块带有等量异号电荷的金属板A 、B , 板与水平方向的夹角为θ,一个电荷量q =1.41×10-4 C 、质量m =1 g 的带电小球,自A 板上的孔P 以水平速度v 0=0.1 m/s 飞入两板之间的电场,经0.02 s 后未与B 板相碰又回到孔P ,g 取10 m/s 2,则( )A .板间电场强度大小为100 V/mB .板间电场强度大小为141 V/mC .板与水平方向的夹角θ=30°D .板与水平方向的夹角θ=45°【变式】如图所示,电子由静止开始从A 板向B 板运动,到达B 板的速度为v ,保持两板间电压不变,则( )A .当减小两板间的距离时,速度v 增大B .当减小两板间的距离时,速度v 减小C .当减小两板间的距离时,速度v 不变D .当减小两板间的距离时,电子在两板间运动的时间变长 带电粒子在匀强电场中的直线运动【例5】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点【变式】如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球( )A .做直线运动B .做曲线运动C .速率先减小后增大D .速率先增大后减小 带电粒子在交变电场中的直线运动【例6】.如图甲所示,A 板电势为0,A 板中间有一小孔,B 板的电势变化情况如图乙所示,一质量为m 、电荷量为q 的带负电粒子在t =T4时刻以初速度为0从A 板上的小孔处进入两极板间,仅在电场力作用下开始运动,恰好到达B 板.则( )A .A 、B 两板间的距离为qU 0T 28mB .粒子在两板间的最大速度为 qU 0mC .粒子在两板间做匀加速直线运动D .若粒子在t =T8时刻进入两极板间,它将时而向B 板运动,时而向A 板运动,最终打向B 板【变式】如图(a)所示,两平行正对的金属板A 、B 间加有如图(b)所示的交变电压,一重力可忽略不计的带 正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动, 并最终打在A 板上.则t 0可能属于的时间段是( )A .0<t 0<T 4 B.T 2<t 0<3T 4 C.3T 4<t 0<T D .T <t 0<9T8热点题型三 带电粒子在电场中的偏转运动 1.带电粒子在电场中的偏转规律2.处理带电粒子的偏转问题的方法 (1)运动的分解法一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动. (2)功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Ud y ,指初、末位置间的电势差.3.计算粒子打到屏上的位置离屏中心的距离的方法 (1)y =y 0+L tan θ(L 为屏到偏转电场的水平距离); (2)y =(l2+L )tan θ(l 为电场宽度);(3)y =y 0+v y ·Lv 0;(4)根据三角形相似y y 0=l 2+L l2.【例6】(2019·江西吉安一中段考)如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚 线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场 E 2平行的屏.现将一电子(电荷量为e ,质量为m ,不计重力)无初速度地放入电场E 1中的A 点,A 点到MN 的距离为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间t;(2)电子刚射出电场E2时的速度方向与AO连线夹角θ的正切值tan θ;(3)电子打到屏上的点P′(图中未标出)到点O的距离x.【变式1】如图所示,在竖直放置的平行金属板A、B之间加上恒定电压U,A、B两板的中央留有小孔O1、O2,在B的右侧有平行于极板的匀强电场E,电场范围足够大,感光板MN垂直于电场方向放置,第一次从小孔O1处从静止释放一个质子11H,第二次从小孔O1处从静止释放一个α粒子24He,关于这两个粒子在电场中运动的判断正确的是()A.质子和α粒子打到感光板上时的速度之比为2∶1 B.质子和α粒子在电场中运动的时间相同C.质子和α粒子打到感光板上时的动能之比为1∶2 D.质子和α粒子在电场中运动的轨迹重叠在一起【变式2】(2019·洛阳一模)如图所示,氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E1之后进入电场线竖直向下的匀强电场E2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么()A.偏转电场E2对三种粒子做功一样多B.三种粒子打到屏上时的速度一样大C.三种粒子运动到屏上所用时间相同D.三种粒子一定打到屏上的同一位置热点题型四带电粒子在交变电场中的运动1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等.2.常见的试题类型 此类题型一般有三种情况:(1)粒子做单向直线运动(一般用牛顿运动定律求解). (2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究). 3.解答带电粒子在交变电场中运动的思维方法(1)注重全面分析(分析受力特点和运动规律),抓住粒子的运动具有周期性和在空间上具有对称性的特征, 求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件.(2)分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系. (3)注意对称性和周期性变化关系的应用. 粒子做直线往返运动利用速度图象分析带电粒子的运动过程时的注意事项 (1)带电粒子进入电场的时刻; (2)速度图象的切线斜率表示加速度;(3)图线与坐标轴围成的面积表示位移,且在横轴上方所围成的面积为正,在横轴下方所围成的面积为负; (4)注意对称性和周期性变化关系的应用;(5)图线与横轴有交点,表示此时速度改变方向,对运动很复杂、不容易画出速度图象的问题,还应逐段分析求解.【例7】如图(a)所示,两平行正对的金属板A 、B 间加有如图(b)所示的交变电压,一重力可忽略不计的带 正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动, 并最终打在A 板上.则t 0可能属于的时间段是( )A .0<t 0<T 4 B.T 2<t 0<3T 4 C.3T 4<t 0<T D .T <t 0<9T 8【变式】制备纳米薄膜装置的工作电极可简化为真空中间距为d 的两平行极板,如图甲所示.加在极板A 、 B 间的电压U AB 做周期性变化,其正向电压为U 0,反向电压为-kU 0(k >1),电压变化的周期为2τ,如图乙所 示.在t =0时,极板B 附近的一个电子,质量为m 、电荷量为e ,受电场作用由静止开始运动.若整个运动过程中,电子未碰到极板A ,且不考虑重力作用.若k =54,电子在0~2τ时间内不能到达极板A ,求d 应满足的条件.粒子做偏转运动问题交变电压的周期性变化,势必会引起带电粒子的某个运动过程和某些物理量的周期性变化,所以应注意: (1)分过程解决.“一个周期”往往是我们的最佳选择.(2)建立模型.带电粒子的运动过程往往能在力学中找到它的类似模型.(3)正确的运动分析和受力分析:合力的变化影响粒子的加速度(大小、方向)变化,而物体的运动性质则由加速度和速度的方向关系确定.【例8】(2019·福建厦门一中期中)相距很近的平行板电容器,在两板中心各开有一个小孔,如图甲所示,靠 近A 板的小孔处有一电子枪,能够持续均匀地发射出电子,电子的初速度为v 0,质量为m ,电荷量为-e , 在A 、B 两板之间加上如图乙所示的交变电压,其中0<k <1,U 0=mv 206e ;紧靠B 板的偏转电压也等于U 0,板长为L ,两极板间距为d ,距偏转极板右端L2处垂直放置很大的荧光屏PQ ,不计电子的重力和它们之间的相互作用,电子在电容器中的运动时间可以忽略不计.(1)试求在0~kT 与kT ~T 时间内射出B 板电子的速度各是多大?(2)在0~T 时间内,荧光屏上有两个位置会发光,试求这两个发光点之间的距离.(结果用L 、d 表示) 【变式】如图甲所示,两水平金属板间距为d ,板间电场强度的变化规律如图乙所示.t =0时刻,质量为m 的带电微粒以初速度v 0沿中线射入两板间,0~T3时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g .关于微粒在0~T 时间内运动的描述,正确的是( )甲 乙 A .末速度大小为 2v 0 B .末速度沿水平方向 C .重力势能减少了12mgdD .克服电场力做功为mgd热点题型五 带电体在电场、重力场中的运动 带电体在电场、重力场中运动的动力学问题 1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的竖直向下方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小(称为临界速度)的点.【例9】(2019·福建厦门一中期中)如图,光滑斜面倾角为37°,一质量m =10 g 、电荷量q =+1×10-6 C 的小物块置于斜面上,当加上水平向右的匀强电场时,该物体恰能静止在斜面上,g 取10 m/s 2,求:(1)该电场的电场强度;(2)若电场强度变为原来的12,小物块运动的加速度大小; (3)在(2)前提下,当小物块沿斜面下滑L =23m 时,机械能的改变量. 带电体在电场、重力场中运动的动量和能量问题动量、能量关系在电学中应用的题目,一般过程复杂且涉及多种性质不同的力.因此,通过审题,抓住受力分析和运动过程分析是关键,然后根据不同的运动过程中各力做功的特点来选择相应规律求解.动能定理和能量守恒定律在处理电场中能量问题时仍是首选.【例10】如图所示,LMN 是竖直平面内固定的光滑绝缘轨道,MN 水平且足够长,LM 下端与MN 相切.质 量为m 的带正电小球B 静止在水平面上,质量为2m 的带正电小球A 从LM 上距水平面高为h 处由静止释 放,在A 球进入水平轨道之前,由于A 、B 两球相距较远,相互作用力可认为零,A 球进入水平轨道后,A 、 B 两球间相互作用视为静电作用,带电小球均可视为质点.已知A 、B 两球始终没有接触.重力加速度为g . 求:(1)A 球刚进入水平轨道的速度大小;(2)A 、B 两球相距最近时,A 、B 两球系统的电势能E p ;(3)A 、B 两球最终的速度v A 、v B 的大小.【题型演练】1.(多选)(2019·湖北六校联考)一带电小球在空中由A 点运动到B 点的过程中,只受重力、电场力和空气阻力三个力的作用.若重力势能增加5 J ,机械能增加1.5 J ,电场力做功2 J ,则小球( )A .重力做功为5 JB .电势能减少2 JC .空气阻力做功0.5 JD .动能减少3.5 J 2.(多选)(2016·高考全国卷Ⅰ)如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直平面(纸面)内,且相对于过轨迹最低点P 的竖直线对称.忽略空气阻力.由此可知 ( )A .Q 点的电势比P 点高B .油滴在Q 点的动能比它在P 点的大C .油滴在Q 点的电势能比它在P 点的大D .油滴在Q 点的加速度大小比它在P 点的小3.(多选)如图所示为匀强电场的电场强度E随时间t变化的图象.当t=0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是()A.带电粒子将始终向同一个方向运动B.2 s末带电粒子回到原出发点C.3 s末带电粒子的速度为零D.0~3 s内,电场力做的总功为零4.(2019·贵州三校联考)在地面附近,存在着一个有界电场,边界MN将空间分成左、右两个区域,在右区域中有水平向左的匀强电场,在右区域中离边界MN某一位置的水平地面上由静止释放一个质量为m的带电滑块(滑块的电荷量始终不变),如图甲所示,滑块运动的v-t图象如图乙所示,不计空气阻力,则()A.滑块在MN右边运动的位移大小与在MN左边运动的位移大小相等B.在t=5 s时,滑块经过边界MNC.滑块受到的滑动摩擦力与电场力之比为2∶5D.在滑块运动的整个过程中,滑动摩擦力做的功小于电场力做的功5.(2019·湖北孝感模拟)静电计是在验电器的基础上制成的,用其指针张角的大小来定性显示其金属球与外壳之间的电势差大小.如图所示,A、B是平行板电容器的两个金属板,D为静电计,开始时开关S闭合,静电计指针张开一定角度,为了使指针张开的角度减小些,下列采取的措施可行的是()A.断开开关S后,将A、B两极板分开B.断开开关S后,增大A、B两极板的正对面积C.保持开关S闭合,将A、B两极板靠近些D.保持开关S闭合,将滑动变阻器的滑片向右移动6.(2019·福建龙岩模拟)如图,带电粒子P所带的电荷量是带电粒子Q的5倍,它们以相等的速度v0从同一点出发,沿着跟电场强度垂直的方向射入匀强电场,分别打在M、N点,若OM=MN,则P和Q的质量之比为(不计重力)()A.2∶5 B.5∶2 C.4∶5 D.5∶47.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则下列说法正确的()A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒8.如图所示,第一象限中有沿x轴的正方向的匀强电场,第二象限中有沿y轴负方向的匀强电场,两电场的电场强度大小相等.一个质量为m,电荷量为-q的带电质点以初速度v0从x轴上P(-L,0)点射入第二象限,已知带电质点在第一和第二象限中都做直线运动,并且能够连续两次通过y轴上的同一个点Q(未画出),重力加速度g为已知量.求:(1)初速度v0与x轴正方向的夹角;(2)P、Q两点间的电势差U PQ;(3)带电质点在第一象限中运动所用的时间.9.(2019·安徽合肥模拟)如图甲所示,A、B是两块水平放置的足够长的平行金属板,组成偏转匀强电场,B 板接地,A板电势φA随时间变化的情况如图乙所示,C、D两平行金属板竖直放置,中间有两正对小孔O1′和O2,两板间电压为U2,组成减速电场.现有一带负电粒子在t=0时刻以一定初速度沿A、B两板间的中轴线O1O1′进入,并能从O1′沿O1′O2进入C、D间.已知带电粒子带电荷量为-q,质量为m,(不计粒子重力)求:(1)该粒子进入A、B间的初速度v0为多大时,粒子刚好能到达O2孔;(2)在(1)的条件下,A、B两板长度的最小值;(3)A、B两板间距的最小值.10.(2019·河南南阳一中模拟)如图所示,质量为m、电荷量为e的电子,从A点以速度v0垂直于电场方向射入一个电场强度为E的匀强电场中,从B点射出电场时的速度方向与电场线成120°角,电子重力不计.求:(1)电子在电场中的加速度大小a及电子在B点的速度大小v B;(2)A、B两点间的电势差U AB;(3)电子从A运动到B的时间t AB.。
2020年高考物理一轮复习考点归纳专题1:运动的描述、匀变速直线运动
2020年高考一轮复习知识考点归纳专题01 运动的描述、匀变速直线运动目录第一节描述运动的基本概念 (2)【基本概念、规律】 (2)【重要考点归纳总结】 (2)考点一对质点模型的理解 (2)考点二平均速度和瞬时速度 (2)考点三速度、速度变化量和加速度的关系 (3)【思想方法与技巧】 (3)第二节匀变速直线运动的规律及应用 (3)【基本概念、规律】 (4)【重要考点归纳】 (4)考点一匀变速直线运动基本公式的应用 (4)考点二匀变速直线运动推论的应用 (5)考点三自由落体运动和竖直上抛运动 (5)【思想方法与技巧】 (6)第三节运动图象追及、相遇问题 (6)【基本概念、规律】 (6)【重要考点归纳】 (6)考点一运动图象的理解及应用 (7)考点二追及与相遇问题 (7)【思想方法与技巧】 (8)方法技巧——用图象法解决追及相遇问题 (8)巧解直线运动六法 (8)实验一研究匀变速直线运动 (8)第一节 描述运动的基本概念【基本概念、规律】一、质点、参考系1.质点:用来代替物体的有质量的点.它是一种理想化模型.2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.二、位移和速度 1.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =xt ,是矢量.(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度1.定义式:a =ΔvΔt ;单位是m/s 2.2.物理意义:描述速度变化的快慢.3.方向:与速度变化的方向相同. 【重要考点归纳总结】 考点一 对质点模型的理解1.质点是一种理想化的物理模型,实际并不存在.2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点.(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点.考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.2.平均速度与瞬时速度的联系(1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系 1.速度、速度变化量和加速度的比较2.物体加、减速的判定(1)当a 与v 同向或夹角为锐角时,物体加速. (2)当a 与v 垂直时,物体速度大小不变. (3)当a 与v 反向或夹角为钝角时,物体减速 【思想方法与技巧】物理思想——用极限法求瞬时物理量1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况. 2.用极限法求瞬时速度和瞬时加速度 (1)公式v =ΔxΔt 中当Δt →0时v 是瞬时速度.(2)公式a =ΔvΔt中当Δt →0时a 是瞬时加速度.第二节 匀变速直线运动的规律及应用【基本概念、规律】一、匀变速直线运动的基本规律 1.速度与时间的关系式:v =v 0+at . 2.位移与时间的关系式:x =v 0t +12at 2.3.位移与速度的关系式:v 2-v 20=2ax . 二、匀变速直线运动的推论 1.平均速度公式:v =v t 2=v 0+v2. 2.位移差公式:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 可以推广到x m -x n =(m -n )aT 2. 3.初速度为零的匀加速直线运动比例式 (1)1T 末,2T 末,3T 末……瞬时速度之比为: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)1T 内,2T 内,3T 内……位移之比为: x 1∶x 2∶x 3∶…∶x n =1∶22∶32∶…∶n 2.(3)第一个T 内,第二个T 内,第三个T 内……位移之比为: x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1). (4)通过连续相等的位移所用时间之比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 三、自由落体运动和竖直上抛运动的规律 1.自由落体运动规律 (1)速度公式:v =gt . (2)位移公式:h =12gt 2.(3)速度—位移关系式:v 2=2gh . 2.竖直上抛运动规律 (1)速度公式:v =v 0-gt . (2)位移公式:h =v 0t -12gt 2.(3)速度—位移关系式:v 2-v 20=-2gh . (4)上升的最大高度:h =v 202g .(5)上升到最大高度用时:t =v 0g .【重要考点归纳】考点一 匀变速直线运动基本公式的应用1.速度时间公式v =v 0+at 、位移时间公式x =v 0t +12at 2、位移速度公式v 2-v 20=2ax ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v 0=0时,一般以a 的方向为正方向.3.求解匀变速直线运动的一般步骤画过程分析图→判断运动性质→选取正方向→选用公式列方程→解方程并讨论4.应注意的问题①如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带. ②对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.③物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.考点二 匀变速直线运动推论的应用1.推论公式主要是指:①v =v t 2=v 0+v t 2,②Δx =aT 2,①②式都是矢量式,在应用时要注意v 0与v t 、Δx与a 的方向关系.2.①式常与x =v ·t 结合使用,而②式中T 表示等时间隔,而不是运动时间. 考点三 自由落体运动和竖直上抛运动1.自由落体运动为初速度为零、加速度为g 的匀加速直线运动. 2.竖直上抛运动的重要特性 (1)对称性①时间对称物体上升过程中从A →C 所用时间t AC 和下降过程中从C →A 所用时间t CA 相等,同理t AB =t BA .②速度对称物体上升过程经过A 点的速度与下降过程经过A 点的速度大小相等. (2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.3.竖直上抛运动的研究方法【思想方法与技巧】物理思想——用转换法求解多个物体的运动在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.第三节运动图象追及、相遇问题【基本概念、规律】一、匀变速直线运动的图象1.直线运动的x-t图象(1)物理意义:反映了物体做直线运动的位移随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体速度的大小,斜率正负表示物体速度的方向.2.直线运动的v-t图象(1)物理意义:反映了物体做直线运动的速度随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体加速度的大小,斜率正负表示物体加速度的方向.(3)“面积”的意义①图线与时间轴围成的面积表示相应时间内的位移大小.②若面积在时间轴的上方,表示位移方向为正方向;若面积在时间轴的下方,表示位移方向为负方向.二、追及和相遇问题1.两类追及问题(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度.(2)若追不上前者,则当后者速度与前者相等时,两者相距最近.2.两类相遇问题(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.【重要考点归纳】考点一运动图象的理解及应用1.对运动图象的理解(1)无论是x-t图象还是v-t图象都只能描述直线运动.(2)x-t图象和v-t图象都不表示物体运动的轨迹.(3)x-t图象和v-t图象的形状由x与t、v与t的函数关系决定.2.应用运动图象解题“六看”考点二1.分析追及问题的方法技巧可概括为“一个临界条件”、“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断问题的切入点.(2)两个等量关系:时间关系和位移关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口.2.能否追上的判断方法(1)做匀速直线运动的物体B追赶从静止开始做匀加速直线运动的物体A:开始时,两个物体相距x0.若v A =v B时,x A+x0<x B,则能追上;若v A=v B时,x A+x0=x B,则恰好不相撞;若v A=v B时,x A+x0>x B,则不能追上.(2)数学判别式法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.3.注意三类追及相遇情况(1)若被追赶的物体做匀减速运动,一定要判断是运动中被追上还是停止运动后被追上.(2)若追赶者先做加速运动后做匀速运动,一定要判断是在加速过程中追上还是匀速过程中追上.(3)判断是否追尾,是比较后面减速运动的物体与前面物体的速度相等的位置关系,而不是比较减速到0时的位置关系.4.解题思路分析物体运动过程→画运动示意图→找两物体位移关系→列位移方程(2)解题技巧①紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式.②审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件.【思想方法与技巧】方法技巧——用图象法解决追及相遇问题(1)两个做匀减速直线运动物体的追及相遇问题,过程较为复杂.如果两物体的加速度没有给出具体的数值,并且两个加速度的大小也不相同,如果用公式法,运算量比较大,且过程不够直观,若应用v-t图象进行讨论,则会使问题简化.(2)根据物体在不同阶段的运动过程,利用图象的斜率、面积、交点等含义分别画出相应图象,以便直观地得到结论.巧解直线运动六法在解决直线运动的某些问题时,如果用常规解法——一般公式法,解答繁琐且易出错,如果从另外角度入手,能够使问题得到快速、简捷解答.下面便介绍几种处理直线运动的巧法.一、平均速度法在匀变速直线运动中,物体在时间t内的平均速度等于物体在这段时间内的初速度v0与末速度v的平均值,也等于物体在t时间内中间时刻的瞬时速度,即v=xt=v0+v2=vt2.如果将这两个推论加以利用,可以使某些问题的求解更为简捷.二、逐差法匀变速直线运动中,在连续相等的时间T内的位移之差为一恒量,即Δx=x n+1-x n=aT2,一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用Δx=aT2求解.三、比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.四、逆向思维法把运动过程的末态作为初态的反向研究问题的方法.一般用于末态已知的情况.五、相对运动法以系统中的一个物体为参考系研究另一个物体运动情况的方法.六、图象法应用v-t图象,可把较复杂的问题转变为较简单的数学问题解决.尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.实验一研究匀变速直线运动一、实验目的1.练习使用打点计时器,学会用打上点的纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v-t图象,根据图象求加速度.二、实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.三、实验步骤1.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.2.把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见上图,放手后,看小车能否在木板上平稳地加速滑行.3.把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次.4.从几条纸带中选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地方找一个开始点,以后依次每五个点取一个计数点,确定好计数始点,并标明0、1、2、3、4、…,测量各计数点到0点的距离x,并记录填入表中.5.1236.利用一段时间内的平均速度等于这段时间中间时刻的瞬时速度求得各计数点1、2、3、4、5的瞬时速度,填入上面的表格中.7.增减所挂钩码数,再做两次实验.四、注意事项1.纸带、细绳要和长木板平行.2.释放小车前,应使小车停在靠近打点计时器的位置.3.实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带.一、数据处理1.匀变速直线运动的判断:(1)沿直线运动的物体在连续相等时间T 内的位移分别为x 1、x 2、x 3、x 4、…,若Δx =x 2-x 1=x 3-x 2=x 4-x 3=…则说明物体在做匀变速直线运动,且Δx =aT 2.(2)利用“平均速度法”确定多个点的瞬时速度,作出物体运动的v -t 图象.若v -t 图线是一条倾斜的直线,则说明物体的速度随时间均匀变化,即做匀变速直线运动.2.求速度的方法:根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度v n =x n +x n +12T .3.求加速度的两种方法:(1)逐差法:即根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点之间的时间间隔),求出a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,再算出a 1、a 2、a 3的平均值 a =a 1+a 2+a 33=13×⎝⎛⎭⎫x 4-x 13T 2+x 5-x 23T 2+x 6-x 33T 2=x 4+x 5+x 6-x 1+x 2+x 39T 2,即为物体的加速度.(2)图象法:以打某计数点时为计时起点,利用v n =x n +x n +12T 求出打各点时的瞬时速度,描点得v -t 图象,图象的斜率即为物体做匀变速直线运动的加速度.二、误差分析1.纸带上计数点间距测量有偶然误差,故要多测几组数据,以尽量减小误差.2.纸带运动时摩擦不均匀,打点不稳定引起测量误差,所以安装时纸带、细绳要与长木板平行,同时选择符合要求的交流电源的电压及频率.3.用作图法作出的v -t 图象并不是一条直线.为此在描点时最好用坐标纸,在纵、横轴上选取合适的单位,用细铅笔认真描点.4.在到达长木板末端前应让小车停止运动,防止钩码落地,小车与滑轮碰撞. 5.选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.在坐标纸上,纵、横轴选取合适的单位(避免所描点过密或过疏,而导致误差过大),仔细描点连线,不能连成折线,应作一条平滑曲线,让各点尽量落到这条曲线上,落不到曲线上的各点应均匀分布在曲线的两侧.。
高三物理第一轮复习运动学部分专题
高三物理第一轮复习运动学部分专题高三物理:运动学部分专题复资料一、平均速度平均速度公式适用于任意运动,其中普遍适用的公式为v=S/t。
而只适用于加速度恒定的匀变速直线运动的公式为v=(v1+v2)/2.另外,对于物体由A沿直线运动到B,在前一半时间内是速度为v1的匀速运动,在后一半时间内是速度为v2的匀速运动的情况,其平均速度为(v1+v2)/2.如果一个物体做变速直线运动,前一半路程的平均速度是v1,后一半路程的平均速度是v2,则全程的平均速度为2v1v2/(v1+v2)。
如果一辆汽车以速度v1行驶了1/3的路程,接着以速度v2=20km/h跑完了其余的2/3的路程,且汽车全程的平均速度v=27km/h,则v1的值为56km/h。
甲乙两车沿平直公路通过同样的位移,甲车在前半段位移上以v1=40km/h的速度运动,后半段位移上以v2=60km/h的速度运动;乙车在前半段时间内以v1=40km/h的速度运动,后半段时间以v2=60km/h的速度运动,则甲、乙两车在整个位移中的平均速度大小的关系为无法确定,因为没有给出位移和时间。
二、加速度公式加速度公式为a=(vt-v)/t,其中v为末速度,v0为初速度,t为时间。
对于匀加速运动,速度随时间均匀增加,vt>v,a为正,此时加速度方向与速度方向相同。
对于匀减速运动,速度随时间均匀减小,vt<v,a为负,此时加速度方向与速度方向相反。
对于质点的运动,质点运动的加速度越大,它的速度变化量也越大。
因此,正确的说法是质点运动的加速度越大,它的速度变化量也越大。
三.物理图象的识图方法:运动学图象主要有x-t图象和v-t图象。
解题时可以使用"六看"方法:1.看"轴":确定图象描述的是哪两个物理量间的关系,注意单位和标度。
2.看"线":图象上的一个点反映两个量的瞬时对应关系,直线和曲线所代表的含义不同。
2020年高考物理一轮复习热点题型归纳与变式演练专题01匀变速直线运动的规律(含解析)
专题01 匀变速直线运动的规律【专题导航】目录热点题型一 匀变速直线运动的基本规律及应用 ................................................ 1 热点题型二 匀变速直线运动的推论及应用 (3)(一)比例法的应用 .................................................................... 4 (二)Δx =aT 2推论法的应用 ............................................................. 6 (三)平均速度公式的应用 .............................................................. 7 (四)图象法的应用 .................................................................... 8 热点题型三 自由落体和竖直上抛运动 . (8)拓展点:双向可逆运动类竖直上抛运动.................................................... 11 热点题型四 物体运动的多过程问题 .. (12)(一):多过程运动之-----“先以1a 由静止加速在以2a 匀减至速度为零”模型 ................. 12 (二)多过程运动之“先加后匀”模型(限速问题) ........................................ 14 (三)多过程运动之“返回出发点”模型.................................................. 15 (四)多过程运动之“反应时间(先匀后减)”模型 ........................................ 15 (六)多过程运动之“耽误时间(先减后加)”模型 ........................................ 17 【题型演练】 . (18)【题型归纳】热点题型一 匀变速直线运动的基本规律及应用 1.基本规律⎭⎪⎬⎪⎫(1)速度—时间关系:v =v 0+at(2)位移—时间关系:x =v 0t +12at 2(3)速度—位移关系:v 2-v 2=2ax ――――→初速度为零v 0=0⎩⎪⎨⎪⎧v =atx =12at 2v 2=2ax 2.对于运动学公式的选用可参考下表所列方法【例1】短跑运动员完成100 m 赛跑的过程可简化为匀加速直线运动和匀速直线运动两个阶段.一次比赛中, 某运动员用11.00 s 跑完全程.已知运动员在加速阶段的第2 s 内通过的距离为7.5 m ,则该运动员的加速度及在加速阶段通过的距离为( ).A. 5 m/s 210 m B. 5 m/s 211 m C. 2.5 m/s 210 m D. 2.5 m/s 210 m 【答案】 A【解析】 根据题意,在第1 s 和第2 s 内运动员都做匀加速直线运动,设运动员在匀加速阶段的加速度为a ,在第1 s 和第2 s 内通过的位移分别为s 1和s 2,由运动学规律得:s 1=12at 20 s 1+s 2=12a (2t 0)2 t 0=1 s联立解得:a =5 m/s 2设运动员做匀加速运动的时间为t 1,匀速运动的时间为t 2,匀速运动的速度为v ,跑完全程的时间为t ,全程的距离为s ,依题意及运动学规律,得t =t 1+t 2 v =at 1 s =12at 21+vt 2设加速阶段通过的距离为s ′, 则s ′=12at 21求得s ′=10 m【变式1】(2019·河南十校联考)汽车在水平面上刹车,其位移与时间的关系是x =24t -6t 2,则它在前3 s内的平均速度为( )A .6 m/sB .8 m/sC .10 m/sD .12 m/s【答案】B【解析】将题目中的表达式与x =v 0t +12at 2比较可知:v 0=24 m/s ,a =-12 m/s 2.所以由v =v 0+at 可得汽车从刹车到静止的时间为t =0-24-12 s =2 s ,由此可知第3 s 内汽车已经停止,汽车运动的位移x =24×2 m-6×22m =24 m ,故平均速度v =x t ′=243m/s =8 m/s. 【变式2】(2019·福建泉州名校联考)某质点的位移随时间变化规律的关系是s =4t +2t 2,s 与t 的单位分别为m 和s ,则质点的初速度与加速度分别为( ) A .4 m/s 与2 m/s 2B .0与4 m/s 2C .4 m/s 与4 m/s 2D .4 m/s 与0【答案】C【解析】根据匀变速直线运动的位移公式s =v 0t +12at 2,与质点运动的位移随时间变化的关系式s =4t +2t2相对比可以得到,物体的初速度的大小为v 0=4 m/s ,加速度的大小为a =4 m/s 2,选项C 正确.【变式3】(2019·广西钦州模拟)以36 km/h 的速度沿平直公路行驶的汽车,遇障碍物刹车后获得大小为4 m/s 2的加速度,刹车后第3 s 内汽车的位移大小为( ) A .12.5 m B .2 m C .10 m D .0.5 m【答案】D【解析】据v =at 可得由刹车到静止所需的时间t =2.5 s ,则第3 s 内的位移,实际上就是2~2.5 s 内的位移,x =12at ′2=0.5 m.热点题型二 匀变速直线运动的推论及应用 1.三个推论(1)连续相等的相邻时间间隔T 内的位移差相等, 即x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度.平均速度公式:v =v 0+v2=2v t .(3)位移中点速度2x v =v 02+v 22.2.初速度为零的匀加速直线运动的四个重要推论(1)T 末、2T 末、3T 末、…、nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)前T 内、前2T 内、前3T 内、…、前nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2. (3)第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(2-3)∶…∶(n -n -1). 3.思维方法(一)比例法的应用【例2】.(多选)北京时间2017年3月26日世界女子冰壶锦标赛决赛在北京首都体育馆举行.加拿大以8比3战胜了俄罗斯队,时隔九年再次夺冠,比赛中一冰壶以速度v 垂直进入三个相等宽度的矩形区域做匀减速直线运动,且在刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是( )A .v 1∶v 2∶v 3=3∶2∶1B .v 1∶v 2∶v 3=3∶2∶1C .t 1∶t 2∶t 3=1∶2∶3D .t 1∶t 2∶t 3=(3-2)∶(2-1)∶1【解析】.因为冰壶做匀减速直线运动,且末速度为零,故可以视为反向的匀加速直线运动来研究,通过连续相等位移所用的时间之比为1∶(2-1)∶(3-2)…,故冰壶匀减速通过三段连续相等位移所用的时间之比为(3-2)∶(2-1)∶1,选项C 错误,D 正确;初速度为零的匀加速直线运动在各位移等分点的速度之比为1∶2∶3…,则冰壶匀减速进入每个矩形区域时的速度之比为3∶2∶1,选项A 错误,B 正确.【变式1】(2019·新课标全国Ⅰ卷)如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H 。
高考物理一轮复习4 匀变速线运动公式的综合用练习
权掇市安稳阳光实验学校专题4 匀变速直线运动公式的综合应用1.[2020·哈尔滨测试]如图所示,竖井中的升降机可将地下深处的矿石快速运送到地面,某一竖井的深度为104 m,升降机运行的最大速度为8 m/s,加速度大小不超过1 m/s2.假定升降机到井口的速度为0,则将矿石从井底提升到井口的最短时间是( )A.13 s B.16 sC.21 s D.26 s2.一个质点做直线运动,其位移随时间变化的规律为x=4t-t2(m),其中时间t的单位为s,则当质点的速度为2 m/s时,质点运动的位移为( ) A.-2 m B.2 mC.-3 m D.3 m3.(多选)质点做直线运动的位置坐标x与时间t的关系为x=5+5t+t2(各物理量均采用国际单位制单位),则该质点( )A.第1 s内的位移是11 mB.第2 s内的平均速度是8 m/sC.任意相邻1 s内的位移差都是1 mD.任意1 s内的速度增量都是2 m/s4.[2020·辽宁实验中学期中]酒后驾驶员的反应时间会变长,反应时间是指从驾驶员发现情况到采取制动的时间,表中“思考距离”是指从驾驶员发现情况到采取制动的时间内汽车行驶的距离;“制动距离”是指从驾驶员发现情况到汽车停止行驶的距离(假设汽车以不同速度行驶时制动的加速度大小都相同)分析表中数据,下列说法不正确的是( )A.B.驾驶员采取制动措施后汽车刹车的加速度大小为7.5 m/s2C.若汽车的初速度增加一倍,酒后驾车的制动距离也增加一倍D.若汽车以25 m/s的速度行驶时发现前方60 m处有险情,酒后驾驶不能安全停车5.[2020·吉林二调]一种比飞机还要快的旅行工具即将诞生,称为“第五类交通方式”,它就是“Hyperloop(超级高铁)”.如果乘坐Hyperloop从赫尔辛基到斯德哥尔摩,600公里的路程需要40分钟,Hyperloop先匀加速运动,达到最大速度1 200 km/h后匀速运动,快进站时再匀减速运动,且加速与减速的加速度大小相等,则下列关于Hyperloop的说法正确的是( ) A.加速与减速的时间不相等B.加速时间为10分钟C.加速时加速度大小为2 m/s2D.如果加速度大小为10 m/s2,题中所述运动最短需要32分钟6.(多选)如图所示,两个光滑斜面在B处平滑连接,小球在A点获得大小为8 m/s的速度沿斜面向上运动,到达B点时速度大小为6 m/s,到达C点时速度减为0.已知AB=BC,下列说法正确的是( )A.小球在AB、BC段的加速度大小之比为9:16B.小球在AB、BC段的运动时间之比为3:7C.小球经过BC中间位置时速度大小为3 m/sD.小球由A运动到C的平均速率为4.2 m/s7.卡车以v0=10 m/s的速度在平直的公路上匀速行驶,因为路口出现红灯,司机立即刹车,使卡车做匀减速直线运动直至停止.停止等待6 s时,交通信号灯变为绿灯,司机立即使卡车做匀加速运动.已知从开始刹车到恢复原来的速度所用的时间t0=12 s,匀减速的加速度大小是匀加速的2倍,反应时间不计.则下列说法正确的是( )A.卡车匀减速所用时间t1=2 sB.卡车匀加速运动的加速度大小为5 m/s2C.卡车刹车过程通过的位移大小为20 mD.卡车从开始刹车到速度刚恢复到10 m/s的过程中位移大小为40 m8.[2020·河南洛阳高三测试]随着我国经济的快速发展,汽车的人均拥有率也快速增加,为了避免交通事故的发生,交通管理部门在市区很多主干道上都安装了固定雷达测速仪,可以准确抓拍超速车辆以及测量运动车辆的加速度.如图所示,一辆汽车正从A点迎面驶向测速仪B,若测速仪与汽车相距x0=355 m时发出超声波,同时汽车由于紧急情况而急刹车做匀减速直线运动,当测速仪接收到反向回来的超声波信号时,汽车恰好停止于D点,且此时汽车与测速仪相距x=335 m,已知超声波的速度为340 m/s,试求汽车刹车过程中的加速度大小.专题4 匀变速直线运动公式的综合应用1.C 升降机以最大加速度运动用时间最短,达到最大速度时间t=va=8 s,x=v2t=32 m,由减速过程时间,位移与加速相同,Δx=(104-32×2) m=40 m 的距离为匀速,Δt=Δxv=5 s,所以最短时间为21 s,C正确.2.D 把题中位移与时间变化规律与x=vt+12at2对比可得v0=4 m/s,a =-2 m/s2,由v=v0+at得速度为2 m/s的时间为1 s,代入x=4t-t2得x =3 m,D正确.3.BD t=0时的位置坐标x0=5 m,t=1 s时的位置坐标x1=11 m,第1s 内位移为Δx 1=6 m ,A 错误;同理得第2 s 内的位移为Δx 2=8 m ,v =Δx 2Δt =81 m/s =8 m/s ,B 正确;与x =v 0t +12at 2对比可知v 0=5 m/s ,a =2 m/s 2,由Δx =at 2可得Δx =2 m ,C 错误;由Δv =at 得Δv =2 m/s ,D 正确.4.C 5.B6.BD 设小球在AB 段的加速度大小为a 1,在BC 段的加速度大小为a 2,对小球由A 点到达B 点的过程,由运动学公式可知v 2A -v 2B =2a 1x AB ,对小球由B 点到达C 点的过程,同理v 2B -v 2C =2a 2x BC ,又x AB =x BC ,解得a 1a 2=79,A 错误;小球在AB 段的平均速度大小为v -1=v A +v B2=7 m/s ,小球在BC 段的平均速度大小为v -2=v B +v C2=3 m/s ,由t =xv,可解得小球在AB 、BC 段的运动时间之比为3:7,B 正确;小球在BC 段中间时刻的速度大小为3 m/s ,而小球在位移中点的速度大小大于3 m/s ,C 错误;小球在整个过程中的平均速率为v -3=x AB +x BCx AB v 1+x BCv 2,解得v-3=4.2 m/s ,D 正确.7.A 匀减速运动的加速度大小是匀加速运动加速度大小的2倍,根据v=at ,得匀减速运动的时间是匀加速运动时间的12,匀加速和匀减速运动的时间之和为Δt =12 s -6 s =6 s ,则匀减速运动的时间t 1=13Δt =2 s ,匀加速运动的时间t 2=4 s ,故卡车匀加速运动的加速度大小为a 0=v 0t 2=104 m/s 2=2.5m/s 2,A 正确,B 错误;卡车刹车过程的位移大小x 1=v 02t 1=5×2 m=10 m ,做匀加速直线运动的位移大小x 2=v 02t 2=20 m ,则s =x 1+x 2=30 m ,CD 错误.8.10 m/s 2解析:设汽车与超声波相遇在C 点,用时为t ,汽车从C 到D 用时仍为t ,减速到零,x AC =20 m ,汽车匀减速运动,由逆向思维得x AC :x CD =3:1,x CD =5 m ,x AC =15 m ,对超声波t =x +x CD v =340 m 340 m/s =1 s ,对汽车刹车x CD =12at 2,a =10 m/s 2.。
高三物理一轮总复习 专题1.1 运动学基本概念(含解析)
专题1.1 运动学基本概念【题型归纳与分析】考试的题型:选择题、实验题与解答题考试核心考点与题型:(1)选择题:运动图像的分析与应用(2)解答题:单独考察“匀变速直线运动的相关规律”或者“与牛顿定律的综合”(3)实验题:单独考察或者与牛顿定律的综合直线运动是高中物理的基础,在高中物理教材中占有很重要的地位,也是高考重点考查的内容之一。
近几年对直线运动单独命题较多,直线运动毕竟是基础运动形式,所以一直是高考热点,但不是难点,对本章内容的考查则以图像问题和运动学规律的应用为主,题型通常为选择题,分值一般为6分。
本章规律较多,同一试题往往可以从不同角度分析,得到正确答案,多练习一题多解,对熟练运用公式有很大帮助。
注意本章内容与生活实例的结合,通过对这些实例的分析、物理情境的构建、物理过程的认识,建立起物理模型,再运用相应的规律处理实际问题。
近年高考图像问题频频出现,且要求较高,考查的重点是v-t图像和匀变速运动的规律。
本章知识还较多地与牛顿运动定律、电场中带电粒子运动的等知识结合起来进行考查,并多与实际生活和现实生产实际密切地结合起来,考查学生综合运用知识解决实际问题的能力。
今后将会越来越突出地考查运动规律、运动图像与实际生活相结合的应用,在2018高考复习中应多加关注。
第01讲运动学基本概念课前预习● 自我检测1、判断正误,正确的划“√”,错误的划“×”(1)质点是一种理想化模型,实际并不存在。
(√)(2)体积很大的物体,不能视为质点。
(×)(3)参考系必须是静止不动的物体。
(×)(4)做直线运动的物体,其位移大小一定等于路程。
(×)(5)平均速度的方向与位移方向相同。
(√)(6)瞬时速度的方向就是物体在该时刻或该位置的运动方向。
(√)(7)物体的速度很大,加速度不可能为零。
(×)(8)甲的加速度a甲=2 m/s2,乙的加速度a乙=-3 m/s2,a甲>a乙。
2020届高考物理一轮复习知识点总结及典例训练:第1课 描述运动的基本概念及匀变速直线运动规律
第1课描述运动的基本概念匀变速直线运动规律一、知识梳理夯实基础知识点1 参考系、质点Ⅰ1.参考系(1)定义:在描述物体的运动时,用来作的物体。
(2)参考系的选取①参考系的选取是的,既可以是的物体,也可以是的物体,通常选为参考系。
②比较两物体的运动情况时,必须选。
③对于同一物体,选择不同的参考系结果一般。
2.质点(1)定义:用来代替物体的有的点。
(2)把物体看作质点的条件:物体的和对研究的问题的影响可以忽略不计。
知识点2 位移、速度Ⅱ1.位移和路程路程是物体运动轨迹的,位移是用来表示物体(质点)的的物理量,位移只与物体的有关,而与质点在运动过程中所经历的无关。
物体的位移可以这样表示:从到___ 作一条有向线段,有向线段的长度表示位移的,有向线段的方向表示位移的。
2.速度和速率(1)平均速度:物体的与发生这个位移所用的比值。
公式v=Δx,单位:m/s。
Δt平均速度是,方向就是物体位移的方向,表示物体在时间Δt内的平均快慢程度。
(2)瞬时速度:运动物体在或的速度,表示物体在某一位置或某一时刻的快慢程度,瞬时速度是矢量,方向即物体的运动方向。
(3)速率:瞬时速度的大小叫速率,是标量。
(4)平均速率指物体通过的路程和所用时间的比值,是标量。
知识点3 加速度Ⅱ1.定义速度的与发生这一变化所用的比值。
2.定义式a=,单位:。
3.方向加速度为矢量,方向与的方向相同。
4.物理意义描述物体 的物理量。
知识点4 匀变速直线运动及其公式 Ⅱ1.定义和分类(1)匀变速直线运动:物体在一条直线上运动,且 不变。
(2)分类⎩⎨⎧ 匀加速直线运动:a 与v 同向。
匀减速直线运动:a 与v 反向。
2.三个基本公式(1)速度公式: 。
(2)位移公式: 。
(3)位移速度关系式: 。
3.两个重要推论(1)物体在一段时间内的平均速度等于这段时间 的瞬时速度,还等于初末时刻速度矢量和的 ,即:v =v t 2=v 0+v 2。
(2)任意两个连续相等的时间间隔T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1= 。
2020高考物理运动学专题练习.docx
直线运动规律及追及问题一、例题例题 1. 一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为 10m/s ,在这1s 内该物体的()A. 位移的大小可能小于 4mB. 位移的大小可能大于 10mC. 加速度的大小可能小于 4m/sD. 加速度的大小可能大于10m/s析:同向时 a 1v tv 0 10 426m / s 2t1 m / ss 1v 0 v t t410 m 7 m22 1反向时 a 2v tv 010 4 m / s 214m / s 2t1s 2v 0 v t t4 10 mm 2213式中负号表示方向跟规定正方向相反答案: A 、 D例题 2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ()A 在时刻 t 2 以及时刻 t 5 两木块速度相同B 在时刻 t1 两木块速度相同C 在时刻 t 3 和时刻 t 4 之间某瞬间两木块速度相同D 在时刻 t 4 和时刻 t 5 之间某瞬间两木块速度相同解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。
由于t 2 及 t 3 时刻两物体位置相同,说明这段时间内它们的位移相等, 因此其中间时刻的t 2t 3t 4t 56t 7t 1t即时速度相等,这个中间时刻显然在 t 3 、t 4之间答案: Ct 1t 2t 3t 4t 5t 6t 7例题 3 一跳水运动员从离水面10m 高的平台上跃起, 举双臂直立身体离开台面, 此时中心位于从手到脚全长的中点, 跃起后重心升高 0.45m达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取 10m/s 2 结果保留两位数字)解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向2的 运 动 , 因 此 运 动 员 做 的 是 竖 直 上 抛 运 动 , 由 hv 0可求出刚离开台面时的速度2gv0 2 gh 3m/ s ,由意知整个程运的位移-10m(以向上正方向),由s v0 t 1at 2得:2- 10=3t - 5t 2解得: t ≈ 1.7s思考:把整个程分上升段和下降段来解,可以?例 4. 如所示,有若干相同的小球,从斜面上的某一位置每隔0.1s 放一,在放若干球后斜面上正在的若干小球下照片如,得AB=15cm, BC=20cm,求:(1)拍照 B 球的速度;(2) A 球上面有几正在的球ABCD解析:拍得到的小球的照片中,A、B、C、D⋯各小球的位置,正是首先放的某球每隔0.1s 所在的位置 . 就把本成一个物体在斜面上做初速度零的匀加速运的了。
高三物理第一轮复习课时跟踪练:高中物理公式集锦
Ek=hν-W0
W0为逸出功
能级跃迁
hν=Em-En(m>n)
爱因斯坦
质能方程
E=mc2ΔE=Δmc2
Δm为质量亏损
元素衰变
后的质量
m剩=m原
τ为半衰期,
t为衰变时间
热力学定律
热力学第一定律
ΔU=Q+W
三种特殊情况
①内能不变:ΔU=0,即W+Q=0
②绝热膨胀或压缩:Q=0,即W=ΔU
③等容变化:W=0,即Q=ΔU
电阻定律
R=ρ
ρ为电阻率
电流
I= =nqSv
-
电源电动势
E= =U内+U外
欧姆定律
I=
部分电路欧姆定律
I=
闭合电路欧姆定律
路端电压
U=E
断路时
U=0
短路时
U=IR=E-U内=E-Ir
通路时
电功
W=UIt
适用于一切电路
W=I2Rt= t
适用于纯电阻电路
焦耳定律
Q=I2Rt
-
电源功率
P=EI
用电器功率
P= =UI
波长、渡速、周期、频率的关系
v=λ·f=
适用于一切波
电磁振荡和电磁波
LC振荡电路
T=π f=
-
电磁波的波长、波速、周期、频率的关系
c=λ·f=
-
光 学
折射定律
=n12
折射率
n=
-
临界角
sinC=
光从光密介质射入光疏介质
光的波长
λ=
ν为光的频率
双缝干涉
Δx= λ
Δx是相邻两个亮条纹或暗条纹的中心间距
适用条件:静止在真空中的点电荷
2020年高考物理一轮复习考点归纳:专题(06)动量守恒定律(含答案)
2020年高考一轮复习知识考点专题06 《动量守恒定律》【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.(2)动能和动量的关系:E k=p2 2m.二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类【重要考点归纳】考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二动量守恒定律与碰撞1.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m1v 21=12m1v′21+12m2v′22②由①②得v′1=m1-m2v1m1+m2v′2=2m1v1m1+m2结论:①当m1=m2时,v′1=0,v′2=v1,两球碰撞后交换了速度.②当m1>m2时,v′1>0,v′2>0,碰撞后两球都向前运动.③当m1<m2时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.考点五实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.。
2020高考物理一轮复习 专题 运动学基本公式题型荟萃
【2019最新】精选高考物理一轮复习 专题 运动学基本公式题型荟萃
题型特色
该题型考查匀变速直线运动及其公式的应用;考查推理能力,以及应用数学工具解决物理问题的能力.
考点回归
(1)匀变速直线运动的五大公式.
①速度公式: .0 v v at x =+→缺少
②位移公式: .2012
t x v t at v =+→缺少
③速度-位移公式:。
220=2v v ax -→缺少t
④面积公式:。
022t v v x t vt v t +===→缺少a ⑤导出公式:。
2012
t x v t at v =-→缺少
注 面积公式和导出公式是为了方便记忆而取的名字.
(2)五大公式的快速选择法。
五个公式共涉及五个物理量,每一个公式都缺少一个物理量,而且缺少的物理量各不相同,是很有特点的。
为了避免使用公式的盲目性而快速准确地做出选择,可通过如下口诀来记忆:0t x a 、v 、v 、和t
多匀变速直线运动五大公式的快速选择法
速位缺少时间t ,缺少a 时用面积,
速度公式缺位移,位移公式缺,t v
若是缺少初速度,导出公式最相宜。
典例精讲 例1.一辆卡车急刹车时的加速度大小是5m/s2 .如果要求它在急刹车后2.5m 内必须停下,它的行驶速度不能超过多少千米每小时?
只要根据匀变速直线运动五大公式的特点和以上口诀,就能迅速地选择恰当的公式,从而径直解决物理问题。
习题连接。
2020高考物理必考知识点公式
2020高考物理必考知识点公式高考物理在理综中是很重要的一门学科。
要想学好高中物理,必须掌握物理知识点和常用的公式,下面是小编为大家整理的关于高考物理必考知识点公式,希望对您有所帮助。
欢迎大家阅读参考学习!高考物理质点的运动公式1)匀变速直线运动1.平均速度v平=s/t(定义式)2.有用推论vt2-vo2=2as2.中间时刻速度vt/2=v平=(vt+vo)/2 4.末速度vt=vo+at3.中间位置速度vs/2=[(vo2+vt2)/2]1/2 6.位移s=v平t=vot+at2/2=vt/2t4.加速度a=(vt-vo)/t {以vo为正方向,a与vo同向(加速)a>0;反向则af2)5.互成角度力的合成:f=(f12+f22+2f1f2cosα)1/2(余弦定理) f1⊥f2时:f=(f12+f22)1/26.合力大小范围:|f1-f2|≤f≤|f1+f2|7.力的正交分fx=fcosβ,fy=fsinβ(β为合力与x轴之间的夹角tgβ=fy/fx)高考物理动力学公式知识点1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:f合=ma或a=f合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:f=-f?{负号表示方向相反,f、f?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡f合=0,推广 {正交分解法、三力汇交原理}5.超重:fn>g,失重:fnr}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,a=max,共振的防止和应用〔见第一册p175〕5.机械波、横波、纵波〔见第二册p2〕6.波速v=s/t=λf=λ/t{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册p21〕}高考物理必备基础公式匀速直线运动的位移公式:x=vt匀变速直线运动的速度公式:v=v0+at匀变速直线运动的位移公式:x=v0t+at2/2向心加速度的关系:a=ω2r a=v2/r a=4π2r/t2力对物体做功的计算式:w=fl牛顿第二定律:f=ma曲线运动的线速度:v=s/t曲线运动的角速度:ω=θ/t线速度和角速度的关系:v=ωr周期和频率的关系:tf=1功率的计算式:p=w/t动能定理:w=mvt2/2-mv02/2重力势能的计算式:ep=mgh高中物理知识点总结一:直线运动理解口诀:1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
高考物理一轮复习第一章匀变速直线运动基本公式的应用备考精炼
1 匀变速直线运动基本公式的应用[方法点拨] (1)匀变速直线运动的基本公式(v-t关系、x-t关系、x-v关系)原则上可以解决任何匀变速直线运动问题.因为那些导出公式是由它们推导出来的,在不能准确判断用哪些公式时可选用基本公式.(2)未知量较多时,可以对同一起点的不同过程列运动学方程.(3)运动学公式中所含x、v、a等物理量是矢量,应用公式时要先选定正方向,明确已知量的正负,再由结果的正负判断未知量的方向.1.一小球以3 m/s的初速度沿一光滑斜面向上做加速度恒定为4 m/s2、方向沿斜面向下的匀变速直线运动,起始点为A,小球运动到A点沿斜面下方2 m处的B点时的速度及所用的时间为(沿斜面向上为正方向)( )A.5 m/s 2 s B.-5 m/s 2 sC.5 m/s 0.5 s D.-5 m/s 0.5 s2.(2020·湖北荆州质检)“蛟龙号”是我国首台自主研制的作业型深海载人潜水器,它是目前世界上下潜能力最强的潜水器.假设某次海试活动中,“蛟龙号”完成海底任务后竖直上浮,从上浮速度为v时开始计时,此后“蛟龙号”匀减速上浮,经过时间t上浮到海面,速度恰好减为零,则“蛟龙号”在t0(t0<t)时刻距离海面的深度为( )A.vt2B.vt0(1-t02t)C.vt022tD.v(t-t0)22t3.(2020·吉林长春质检)一列火车从静止开始做匀加速直线运动,一人站在第一节车厢前端的旁边观测,第一节车厢通过他历时2 s,整列车厢通过他历时8 s,则这列火车的车厢有( )A.16节 B.17节 C.18节 D.19节4.(多选)一滑块在粗糙程度相同的水平面上滑行,通过频闪照片分析得知,滑块在最开始2 s内的位移是最后2 s内位移的两倍,已知滑块最开始1 s内的位移为2.5 m,由此可求得( )A.滑块的加速度为5 m/s2B.滑块的初速度为5 m/sC.滑块运动的总时间为3 sD.滑块运动的总位移为4.5 m5.(2020·山东济南模拟)如图1所示,甲从A地由静止匀加速跑向B地,当甲前进距离为s1时,乙从距A地s2处的C点由静止出发,加速度与甲相同,最后二人同时到达B地,则AB两地距离为( )图1A.s1+s2 B.(s1+s2)24s1C.s124(s1+s2)D.(s1+s2)2s1(s1-s2)6.(2020·河南洛阳期中)如图2所示,一汽车停在小山坡底,突然司机发现在距坡底240 m的山坡处泥石流以8 m/s 的初速度、0.4 m/s2的加速度匀加速倾泄而下,假设泥石流到达坡底后速率不变,在水平地面上做匀速直线运动.已知司机的反应时间为1 s,汽车启动后以0.5 m/s2的加速度一直做匀加速直线运动.试分析汽车能否安全脱离?图2答案精析1.B2.D [“蛟龙号”上浮时的加速度大小a =v t,根据逆向思维,可知“蛟龙号”在t 0时刻距离海面的深度h =12a(t -t 0)2=v (t -t 0)22t,故A 、B 、C 错误,D 正确.] 3.A [火车做初速度为零的匀加速直线运动,则第一节车厢通过时有L =12at 12,全部车厢通过时nL =12at n 2,解得n =16,故选项A 正确.]4.CD [设滑块运动的加速度大小为a ,运动总时间为t ,把滑块的运动看成反向的初速度为0的匀加速直线运动,则最后2 s 内的位移为x 1=12a×22=2a ,最初2 s 内的位移为x 2=12at 2-12a(t -2)2=2at -2a ,又x 2∶x 1=2∶1,解得总时间t =3 s ,故C 正确;第1 s 的位移为x 3=12at 2-12a(t -1)2=2.5 m ,解得a =1 m/s 2,故A 错误;总位移x =12at 2=4.5 m ,故D 正确;滑块的初速度v 0=at =3 m/s ,故B 错误.] 5.B6.见解析解析 设泥石流到达坡底的时间为t 1,速率为v 1,则x 1=v 0t 1+12a 1t 12,v 1=v 0+a 1t 1 代入数据得t 1=20 s ,v 1=16 m/s而汽车在t 2=20 s -1 s =19 s 的时间内发生的位移为x 2=12a 2t 22=90.25 m ,速度为v 2=a 2t 2=9.5 m/s 假设再经过时间t 3,泥石流追上汽车,则有v 1t 3=x 2+v 2t 3+12a 2t 32 代入数据并化简得t 32-26t 3+361=0,因Δ<0,方程无解.所以泥石流无法追上汽车,汽车能安全脱离.高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动学基本公式
题型特色
该题型考查匀变速直线运动及其公式的应用;考查推理能力,以及应用数学工具解决物理问题的能力.
考点回归
(1)匀变速直线运动的五大公式.
①速度公式: 0 v v at x =+→缺少.
②位移公式: 2012
t x v t at v =+→缺少. ③速度-位移公式:220=2v v ax -→缺少t 。
④面积公式:02
2t v v x t vt v t +===→缺少a 。
⑤导出公式:2012
t x v t at v =-→缺少。
注 面积公式和导出公式是为了方便记忆而取的名字.
(2)五大公式的快速选择法。
五个公式共涉及五个物理量0t x a 、v 、v 、和t ,每一个公式都缺少一个物理量,而且缺少的物理量各不相同,是很有特点的。
为了避免使用公式的盲目性而快速准确地做出选择,可通过如下口诀来记忆:
多匀变速直线运动五大公式的快速选择法
速位缺少时间t ,缺少a 时用面积,
速度公式缺位移,位移公式缺t v ,
若是缺少初速度,导出公式最相宜。
典例精讲 例1.一辆卡车急刹车时的加速度大小是5m/s 2
.如果要求它在急刹车后2.5m 内必须停下,它的行驶速度不能超过多少千米每小时?
【详解示范】已知a=5m/s 2,x=22.5m,v t =0,求v 0.很显然,在五个物理量中缺少了时间套用口诀
“ 速位缺少时间t ”,便可快速准确地选用公式220=2v v ax -.代人以上各个物理量的数值,很容易计算出初速度v 0=54km/h.
【答案】54km/h
例2以54 km/h 的速度行驶的汽车,刹车后做匀减速运动,经过2.5s 停下来.汽车刹车后到停下来前进了多远?
只要根据匀变速直线运动五大公式的特点和以上口诀,就能迅速地选择恰当的公式,从而径直解决物理问题。
习题连接。