小学奥数举一反三(四年级)全

合集下载

四年级奥数解决问题(一)举一反三

四年级奥数解决问题(一)举一反三

3. 王叔叔买了3千克荔枝和4千克桂圆,共付款156 元。已知5千克荔枝的价钱等于2千克桂圆的价钱。 每千克荔枝和每千克桂圆各多少元?
每千克荔枝的价钱:156÷[3+5X(4÷2)]=12(元) 每千克桂圆的价钱:12X5÷2=30(元)
【例题2】 一桶油,连桶重180千克,用去一半油后,连桶 还有100千克。问:油和桶各重多少千克? 【思路导航】
2、也就是说630件玩具可以装到几个塑料箱里?
箱子数×每箱装的玩具=玩具的总量 【例题1】 某玩具厂把630件玩具分别装在5个塑料箱和6个纸 箱里,1个塑料箱与3个纸箱装的玩具同样多。每个塑料 箱和纸箱各装多少件玩具?
【知识点睛】
如果全部装在纸箱里呢?
5× 3 + 6
【例题1】 某玩具厂把630件玩具分别装在5个塑料箱和6个纸 箱里,1个塑料箱与3个纸箱装的玩具同样多。每个塑料 箱和纸箱各装多少件玩具?
68-20=48(粒) ——差距
48÷2=24(粒) ——差距的一半 24÷6=4(次)
如果玩具全部装在塑料箱或全部装在纸箱里。。。
【例题1】 某玩具厂把630件玩具分别装在5个塑料箱和6个纸 箱里,1个塑料箱与3个纸箱装的玩具同样多。每个塑料 箱和纸箱各装多少件玩具?
【思路导航】 • 如果玩具全部装在塑料箱或全部装在纸箱里,那么 可以求出一个纸箱或一个塑料箱装多少件。 • 所以6个纸箱与2个塑料箱装的同样多。这样,都统一 为塑料箱,相当于7个塑料箱。 • 由此,可求出一个塑料箱装多少件。
油+桶=180千克 用去的一半油 剩下的油+桶=100千克
180
1.减少的重量是什么? 一半的油


100
180-100=8题2】 一桶油,连桶重180千克,用去一半油后,连桶 还有100千克。问:油和桶各重多少千克?

小学奥数举一反三(四年级)全

小学奥数举一反三(四年级)全

小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

小学四年级奥数-举一反三

小学四年级奥数-举一反三

行程问题(一)1.甲、乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2.甲、乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?3.东、西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?4.甲、乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?5.A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。

一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。

这样一直飞下去,燕子飞了多少千米后,两车才能相遇?6.甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?7.小冬和小刚两人在环形跑道上以各自不同的不变速度跑步,如果两人同时从同一地点相背而行,小刚跑6分钟后两人第一次相遇,小冬跑一周要8分钟,小刚跑一周要几分钟?8.甲、乙两车同时从A,B两地相对开出,6小时后相遇,甲车从A地到B地要9小时,乙车从A地到B地要几小时?9.小明骑摩托车、小军骑自行车分别从甲、乙两地同时出发相向而行,5小时后相遇。

小军从甲地到乙地要15小时,小明从乙地到甲地要几小时?10.两港相距267千米,客船以每小时45千米的速度、货船以每小时33千米的速度先后从两港开出,相向而行,相遇时客船行了135千米。

货船比客船提前几小时开出?11.小丽和小勇同时从相距2160米的两地相向而行,小丽勇每分钟走100米,小丽每分钟走80米,相遇时小丽走了960米。

奥数举一反三(四年级)全

奥数举一反三(四年级)全

奥数举一反三(四年级)全一、拓展提优试题1.如果今天是星期五,那么从今天算起,57天后的第一天是星期.2.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.3.在□中填上适当的数,使竖式成立.4.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.5.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.6.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.7.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.8.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?9.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.10.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.11.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.12.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?13.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.14.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.15.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.【参考答案】一、拓展提优试题1.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.2.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.3.解:根据题干分析可得:4.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.5.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.6.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.7.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.8.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.9.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.10.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.11.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.12.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.13.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.14.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天15.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.。

小学奥数举一反三(四年级)全之欧阳与创编

小学奥数举一反三(四年级)全之欧阳与创编

小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

(完整word版)四年级奥数举一反三第

(完整word版)四年级奥数举一反三第
小虎算错的原因是将其中一个加数十位和个位上的两个0漏掉了。两个加数各是多少?
3、小梅把6×(□+8)错看成6×□+8,她得到的结果与正确的答案相差多少?
例3、学校三个兴趣小组共有学生180人,数学兴趣小组的人数比科技兴趣小组和美术兴趣小组人数的总和还多12人,科技兴趣小组的人数比美术兴趣小组多4人。三个兴趣小组各有多少人?
1、有6筐梨子,每筐梨子个数相等,如果从每筐中拿出40个,6筐梨子剩下的个数总和正好和原来两筐的个数相等。原来每筐有多少个?
2、在5个木箱中放着同样多的橘子。如果从每个木箱中拿出60个橘子,那么5个木箱中剩下的橘子的个数的总和等于原来两个木箱里橘子个数的和。原来每个木箱中有多少个橘子?
3、某食品店有5箱饼干,如果从每个箱子里取出20千克,那么5个箱子里剩下的饼干正好等于原来3箱饼干的重量。原来每个箱子里装多少千克饼干?例题4、一个木器厂要生产一批课桌。原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌?1、电视机厂接到一批生产任务,计划每天生产90台,可以按期完成。实际每天多生产5台,结果提前1天完成任务。这批电视机共有多少台?2、小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前2天看完。这本故事书有多少页?
3、有9只外形完全相同的乒乓球,其中8只是正品,另一只是次品,且正品与次品重量不相同。如果用天平(无砝码)称,至少几次可把次品找出来?
1、某电冰箱厂要生产1560台冰箱,已经生产了8天,每天生产120台。剩下的每天生产150台,还要多少天才能完成任务?
2、某工厂计划生产36500套轴承,前5天平均每天生产2100套,后来改进操作方法,平均每天可以生产2600套。这样完成这批轴承生产任务共需多少天?

【经典】小学奥数举一反三(四年级)全图文百度文库

【经典】小学奥数举一反三(四年级)全图文百度文库

【经典】小学奥数举一反三(四年级)全图文百度文库一、拓展提优试题1.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.2.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.3.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.4.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.5.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.6.如果今天是星期五,那么从今天算起,57天后的第一天是星期.7.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.8.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.9.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.10.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.11.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?12.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.13.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此14.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.15.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.【参考答案】一、拓展提优试题1.【分析】本题考察图形边长的平移.解:画出移动后的图,所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.2.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.3.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.4.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.5.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.6.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.7.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.8.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.9.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.10.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.11.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..12.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.13.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.14.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.15.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天。

小学四年级-奥数举一反三(22-30周)-教师版

小学四年级-奥数举一反三(22-30周)-教师版

四年级 数学 举一反三
我 们 学 过 常 用 的 运 算 加 、 减 、 乘 、 除 等 , 如 6 + 2=8 , 6×2=12等。都是2和6,为什么运算结果不同呢?主要是运 算方式不同,实质上是对应法则不同。由此可见,一种运算 实际就是两个数与一个数的一种对应方法。对应法则不同就 是不同的运算。当然,这个对应法则应该是对应任意两个数。 通过这个法则都有一个唯一确定的数与它们对应。
2,气象小组每天早上8点测得的一周气温如下:13℃、 13℃、13℃、14℃、15℃、14℃、16℃。求一周的 平均气温。
3,敬老院有8个老人,他们的年龄分别是78岁、76岁、 77岁、81岁、78岁、78岁、76岁、80岁。求这8个老 人的平均年龄。
【例题3】两地相距360千米,一艘汽艇顺水 行全程需要10小时,已知这条河的水流速度 为每小时6千米,往返两地的平均速度是每小 时多少千米?
【例题2】 有大、小两个书架,大书架上数的 本书是小书架的4倍。如果从大书架上取出 140本放到小书架上,那么大书架上的书还比 小书架上的书多20本。大、小书架原来各有 多少本书?
【思路导航】
差:140×2+20=300本
小书架:300÷(4-1)=100本
大书架:100×4=400本
【练习2】
【练习1】 1,设a、b都表示数,规定:a○b=6×a-2×b。 试计算3○4。
2,设a、b都表示数,规定:a*b=3×a+2×b。试 计算:5*6
3,有两个整数是A、B,A▽B表示A与B的平均数。 已知A▽6=17,求A。
【例题5】对于两个数a,b,规定 a▽b=(a+3)×(b-5)。试计算5▽ (6▽7)
【练习1】 1,两堆石子共有800吨,第一堆比第二堆多200吨。 两堆各有多少吨?

小学四年级举一反三奥数题

小学四年级举一反三奥数题

小学四年级举一反三奥数题1.小学四年级举一反三奥数题篇一有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)2.小学四年级举一反三奥数题篇二A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。

已知下坡路每小时行20千米,那么上坡路每小时行多少千米?【解析】由题意知,去的上坡时间+去的下坡时间=4.5小时回的上坡时间+回的下坡时间=3.5小时则:来回的上坡时间+来回的下坡时间=8小时所以来回的下坡时间=60÷20=3(小时)则:来回的上坡时间=8-3=5(小时)故:上坡速度为60÷5=12(千米/时)3.小学四年级举一反三奥数题篇三有一个长方体木块,长125厘米,宽40厘米,高25厘米。

把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。

这个大正体的表面积是多少平方厘米?分析与解一般说来,要求正方体的表面积,一定要知道正方体的棱长。

题中已知长方体的长、宽、高,同正方体的棱长又没有直接联系,这样就给解答带来了困难。

我们应该从整体出发去思考这个问题。

按题意,这个长方体木块锯成若干个体积相等的小正方体后,又拼成一个大正方体。

小学奥数举一反三(四年级)全之欧阳家百创编

小学奥数举一反三(四年级)全之欧阳家百创编

小学四年级奥数举一反三第1讲至第40讲全欧阳家百(2021.03.07)目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级数学奥数培训资料姓名:__________________ 小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

1,2,4,7,(),16,22【思路导航】在这列数中,前4个数每相邻的两个数的差依次是1,2,3。

由此可以推算7比括号里的数少4,括号里应填:7+4=11。

经验证,所填的数是正确的。

应填的数为:7+4=11或16-5=11。

练习2:先找出下列数排列的规律,然后在括号里填上适当的数。

(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,8(5)81,64,49,36,(),16,(),4,1,0(6)28,1,26,1,24,1,(),(),20,1(7)30,2,26,2,22,2,(),(),14,2(8)1,6,4,8,7,10,(),(),13,14【例题3】先找出规律,然后在括号里填上适当的数。

23,4,20,6,17,8,(),(),11,12四年级数学奥数培训资料姓名:__________________ 【思路导航】在这列数中,第一个数减去3的差是第三个数,第二个数加上2的和是第四个数,第三个数减去3的差是第五个数,第四个数加上2的和是第六个数……依此规律,8后面的一个数为:17-3=14,11前面的数为:8+2=10练习3:先找出规律,然后在括号里填上适当的数。

(1)1,6,5,10,9,14,13,(),()(2)13,2,15,4,17,6,(),()(3)3,29,4,28,6,26,9,23,(),(),18,14(4)21,2,19,5,17,8,(),()(5)32,20,29,18,26,16,(),(),20,12(6)2,9,6,10,18,11,54,(),(),13,486(7)1,5,2,8,4,11,8,14,(),()(8)320,1,160,3,80,9,40,27,(),()【例题4】在数列1,1,2,3,5,8,13,(),34,55……中,括号里应填什么数?【思路导航】经仔细观察、分析,不难发现:从第三个数开始,每一个数都等于它前面两个数的和。

根据这一规律,括号里应填的数为:8+13=21或34-13=21 上面这个数列叫做斐波那切(意大利古代著名数学家)数列,也叫做“兔子数列”。

练习4:先找出规律,然后在括号里填上适当的数。

(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()(3)0,1,3,8,21,(),144(4)3,7,15,31,63,(),()(5)33,17,9,5,3,()(6)0,1,4,15,56,()(7)1,3,6,8,16,18,(),(),76,78(8)0,1,2,4,7,12,20,()【例题5】下面每个括号里的两个数都是按一定的规律组合的,在□里填上适当的数。

(8,4)(5,7)(10,2)(□,9)【思路导航】经仔细观察、分析,不难发现:每个括号里的两个数相加的和都是12。

根据这一规律,□里所填的数应为:12-9=3练习5:下面括号里的两个数是按一定的规律组合的,在□里填上适当的数。

(1)(6,9)(7,8)(10,5)(□,)(2)(1,24)(2,12)(3,8)(4,□)(3)(18,17)(14,10)(10,1)(□,5)(4)(2,3)(5,9)(7,13)(9,□)(5)(2,3)(5,7)(7,10)(10,□)(6)(64,62)(48,46)(29,27)(15,□)(7)(100,50)(86,43)(64,32)(□,21)(8)(8,6)(16,3)(24,2)(12,□)第2讲找规律(二)一、知识要点对于较复杂的按规律填数的问题,我们可以从以下几个方面来思考:1.对于几列数组成的一组数变化规律的分析,需要我们灵活地思考,没有一成不变的方法,有时需要综合运用其他知识,一种方法不行,就要及时调整思路,换一种方法再分析;2.对于那些分布在某些图中的数,它们之间的变化规律往往与这些数在图形中的特殊位置有关,这是我们解这类题的突破口。

3.对于找到的规律,应该适合这组数中的所有数或这组算式中的所有算式。

二、精讲精练【例题1】根据下表中的排列规律,在空格里填上适当的数。

【思路导航】经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。

依此规律,空格中应填的数为:4+8=12。

练习1:找规律,在空格里填上适当的数。

【例题2】根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数?【思路导航】经仔细观察、分析可以发现前面两个圈中三个数之间有这样的关系:5×12÷10=6 4×20÷10=8根据这一规律,第三个圈中右下角应填的数为:8×30÷10=24.练习2:根据前面图形中数之间的关系,想一想第三个图形的空格里应填什么数。

(1)(2)(3)四年级数学奥数培训资料姓名:__________________ 【例题3】先计算下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数。

12345679×9= 12345679×18=12345679×54= 12345679×81=【思路导航】题中每个算式的第一个因数都是12345679,它是有趣的“缺8数”,与9相乘,结果是由九个1组成的九位数,即:111111111。

不难发现,这组题得数的规律是:只要看每道算式的第二个因数中包含几个9,乘积中就包含几个111111111。

因为:12345679×9=111111111所以:12345679×18=12345679×9×2=22222222212345679×54=12345679×9×6=666666666 12345679×81=12345679×9×9=999999999.练习3:找规律,写得数。

(1) 1+0×9= 2+1×9= 3+12×9= 4+123×9= 9+12345678×9=(2) 1×1= 11×11= 111×111= 111111111×111111111=(3)19+9×9= 118+98×9= 1117+987×9=11116+9876×9= 111115+98765×9=【例题4】找规律计算。

(1) 81-18=(8-1)×9=7×9=63(2) 72—27=(7-2)×9=5×9=45 (3) 63-36=(□-□)×9=□×9=□【思路导航】经仔细观察、分析可以发现:一个两位数与交换它的十位、个位数字位置后的两位数相减,只要用十位与个位数字的差乘9,所得的积就是这两个数的差。

练习4:1.利用规律计算。

(1)53-35(2)82-28(3)92-29 (4)61-16(5)95-592.找规律计算。

(1) 62+26=(6+2)×11=8×11=88(2) 87+78=(8+7)×11=15×11=165(3) 54+45=(□+□)×11=□×11=□【例题5】计算(1)26×11(2)38×11【思路导航】一个两位数与11相乘,只要把这个两位数的两个数字的和插入这两个数字中间,就是所求的积。

(1) 26×11=2(2+6)6=286(2) 38×11=3(3+8)8=418 注意:如果两个数字的和满十,要向前一位进一。

练习5:计算下面各题。

(1)27×11(2)32×11(3) 39×11(4)46×11 (5)92×11(6)98×11第3讲简单推理一、知识要点解答推理问题,要从许多条件中找出关键条件作为推理的突破口。

相关文档
最新文档