简单的线性规划知识梳理.doc

合集下载

简单的线性规划问题

简单的线性规划问题

简单的线性规划问题一、基本知识1.规划问题中的可行域,实际上是二元一次不等式(组)表示的平面区域,是解决线性规划问题的基础。

因为对在直线Ax+By+C=0同一侧的所有点(x,y),数Ax+By+C的符号相同,所以只需在此直线的某一侧任取一点(x0,y0) (若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧。

2.在求线性目标函数z=ax+by的最大值或最小值时,设ax+by=t,则此直线往右(或左)平移时,t值随之增大(或减小)。

要会在可行域中确定最优解。

3.新概念:①线性约束条件②线性目标函数③线性规划问题④可行解⑤可行域⑥最优解4.重要的思想方法:数形结合化归思想5.解线性规划问题总体步骤:设变量→ 找约束条件,找目标函数找出可行域求出最优解二、典型例题:例1.某工厂生产甲,乙两种产品,已知生产甲种产品1t,需耗A种矿石10t,B种矿石5t,煤4t, 生产乙种产品1t需耗A种矿石4t,B种矿石4t,煤9t,每1t甲种产品的利润是600元。

每1t乙种产品的利润是1000元。

工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t,B种矿石不超过200t,煤不超过360t,甲,乙这两种产品应各生产多少。

(精确到1t)。

能使利润总额达到最大?解:设生产甲,乙两种产品分别为x(t), y(t),利润总额为Z元,则,Z=600x+1000y。

作出以上不等式组所表示的平面区域,即可行域。

作直线600x+1000y=0即3x+5y=0。

将直线向上平移到如图位置,直线经过可行域上的点M ,且与原点距离最大,即Z 取最大值。

得x=360/29≈12。

y=1000/29≈34。

例2.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:问每周生产空调器,彩电,冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?解:设每周生产空调器,彩电,冰箱分别为x 台,y 台,z 台,每周产值为f 元,则f=4x+3y+2z,其中x, y, z满足由(1),(2)得y=360-3x, z=2x。

简单的线性规划(二)

简单的线性规划(二)

课题:简单的线性规划(二)教学目标:了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.2010年考试说明要求A 级。

知识点回顾:○1目标函数z=ax+by 转化为直线在y 轴上的截距 ○2目标函数ax by z --=转化为两点斜率 ○3目标函数22)()(b y a x z -+-=转化为两点距离 基础训练:1.已知复数z=x+yi,且2z -=y x 的最大值 。

2.已知实数x,y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,i yi x z (+=为虚数单位),则|21|i z +-的最大值和最小值分别是 .6. 若实数对(x ,y )满足约束条件0230x y x x y >⎧⎪≥⎨⎪+-≤⎩,则x y 1+的最小值为 .3.已知实数x 、y 满足203500x y x y x y -≤⎧⎪-+≥⎪⎨>⎪⎪>⎩,则y x z )21()41(⋅=的最小值为 .4.已知2()2f x x x =-,则满足条件()()0()()0f x f y f x f y +≤⎧⎨-≥⎩的点(,)x y 所形成区域的面积为5.设集合}0|,2||),{(≥-≥=x x y y x A ,}|),{(b x y y x B +-≤=,B A y x ∈),(,且y x 2+的最大值为9,则b 的值是7、已知实数,x y 满足不等式组001x y x y ≥⎧⎪≥⎨⎪+≤⎩,则2222x y x y +--的最小值为 ;典型例题:若x ,y 满足约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,①求函数P=11++x y 最大值; ②P=22x y +最小值。

已知点(,)P x y 满足1023-504310x x y x y -⎧⎪+⎨⎪+-⎩≤≤≥,点(,)Q x y 在圆22(2)(2)1x y +++=上,则PQ 的最大值与最小值为课堂检测:1.已知非负实数x 、y 同时满足2x+y-4≤0,x+y-1≥0,则z=x 2+y 2+y 的最小值是2.平面上满足约束条件⎪⎩⎪⎨⎧≤--≤+≥01002y x y x x 的点()y x ,形成的区域为D ,区域D 关于直线x y 2=对称的区域为E ,则区域D 和E 中距离最近两点的距离为3.设实数,x y 满足2025020x y x y y --⎧⎪+-⎨⎪-⎩≤,≥,≤, 则y x u x y =-的取值范围是4.动点(,)P a b 在不等式组2000x y x y y +-≤⎧⎪-≥⎨⎪≥⎩表示的平面区域内部及其边界上运动,则13--+=a b a y 的取值范围是 .10.如果实数⎪⎩⎪⎨⎧≥≥≤+0012,y x y x y x 满足,则31624--+x y x 的最大值为_________11.已知集合P=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≥≤-+≥+-0y 06y 3403y 4x 3|),(x y x ,Q={(x,y)|(x-a)2+(y-b)2≤r 2(r>0), 若“点M ∈P ”是“点M ∈Q ”的必要条件,则当r 最大时ab 的值是_______。

高中数学线性规划知识复习

高中数学线性规划知识复习

高中必修5线性规划最快的方法简单的线性规划问题 一、知识梳理1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若 直 线 不 过 原点,通 常 选 择 原 点 代入检验.3. 平 移 直 线 y=-k x +P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=02. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<03. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>02.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

知识讲解简单的线性规划问题_基础

知识讲解简单的线性规划问题_基础

简单的线性规划问题【学习目标】1. 了解线性规划的意义,了解线性规划的基本概念;2. 掌握线性规划问题的图解法.3. 能用线性规划的方法解决一些简单的实际问题,提高学生解决实际问题的能力.【要点梳理】要点一、线性规划的有关概念: 线性约束条件:如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.线性目标函数:关于x 、y 的一次式(,)z f x y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解、可行域和最优解: 在线性规划问题中,①满足线性约束条件的解(,)x y 叫可行解; ②由所有可行解组成的集合叫做可行域;③使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.要点诠释:线性规划问题,就是求线性目标函数在线性约束条件下的最大值或最小值的问题. 要点二、线性规划的应用1.线性规划也是求值的一种,是求在某种限制范围之下的最大值或最小值的问题,其关键是列出所有的限制条件,不能有遗漏的部分,如有时变量要求为正实数或自然数,其次是准确找到目标函数,如果数量关系多而杂,可以用列表等方法把关系理清.2.线性规划的理论和方法经常被用于两类问题中:一是在人力、物力、资金等资源一定的条件下,如何使用其完成最多的任务;二是给定一项任务,如何合理安排和规划,能用最少的人力、物力、资金等资源来完成这项任务.要点诠释:在生产和生活中,常用于下料问题;优化安排活动问题;优化运营问题等. 要点三、确定线性规划中的最优解对于只有两个变量的线性规划(即简单的线性规划)问题,可以用图解法求解.其基本的解决步骤是:① 设变量,建立线性约束条件及线性目标函数; ② 画出可行域;③ 求出线性目标函数在可行域内的最值(即最优解);④作答. 要点诠释:确定最优解的思维过程:线性目标函数z Ax By C =++(A,B 不全为0)中,当0B ≠时,A z Cy x B B-=-+,这样线性目标函数可看成斜率为AB-,且随z 变化的一组平行线,则把求z 的最大值和最小值的问题转化为直线与可行域有公共点,直线在y 轴上的截距的最大值最小值的问题.因此只需先作出直线Ay x B=-,再平行移动这条直线,最先通过或最后通过的可行域的顶点就是最优解.特别注意,当B>0时,z 的值随着直线在y 轴上的截距的增大而增大;当B<0时,z 的值随着直线在y 轴上的截距的增大而减小.通常情况可以利用可行域边界直线的斜率来判断.对于求整点最优解,如果作图非常准确可用平移求解法,也可以取出目标函数可能取得最值的可行域内的所有整点,依次代入目标函数验证,从而选出最优解,最优解一般在可行域的定点处取得,若要求最优整解,则必须满足x ,y 均为整数,一般在不是整解的最优解的附近找出所有可能取得最值的整点,然后将整点分别代入目标函数验证选出最优整解.上述求整点最优解的方法可归纳为三步:找整点---验证--- 选最优解 【典型例题】类型一:求目标函数的最大值和最小值.例1. 若变量x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤1,1y y x xy 且z =2x +y 的最大值和最小值分别为m 和n ,则m-n =( )A .5B . 6C . 7D . 8【答案】B【思路点拨】 首先根据题意所给的约束条件画出其表示的平面区域如下图所示,然后根据图像可得: 目标函数z=2x+y 过点B (2,-1)时取得最大值,过点A (-1,-1)时取得最小值. 【解析】作出不等式组对应的平面区域如图: 由z =2x +y ,得y =-2x +z ,平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过点A , 直线y =-2x +z 的截距最小,此时z 最小,由⎩⎨⎧=-=x y y 1,解得⎩⎨⎧-=-=11y x ,即A(-1,-1),此时z =-2-1=-3,此时n =-3,平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过点,B , 直线y =-2x +z 的截距最大,此时z 最大,由⎩⎨⎧=+-=11y x y ,解得⎩⎨⎧-==12y x ,即B(2,-1),此时z =2×2-1=3,即m =3,则m -n =3-(-3)=6, 故选:B .【总结升华】1.本题的切入点是赋予“z ”恰当的几何意义:纵截距或横截距;2.线性目标函数的最大值、最小值一般在可行域的顶点处取得;3.线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个,此时目标函数的图象一定与区域中的一条边界直线平行.举一反三:【变式1】求35z x y =+的最大值和最小值,使式中的x 、y 满足约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩.【答案】不等式组所表示的平面区域如图所示:从图示可知,直线35z x y =+在经过不等式组所表示的公共区域内的点时, 以经过点(2,1)B --的直线所对应的z 最小, 以经过点35(,)22A 的直线所对应的z 最大. 所以min 3(2)5(1)11z =⨯-+⨯-=-,max 35351722z =⨯+⨯=.【变式2】(2015 天津)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为(A )3 (B )4 (C )18 (D )40【答案】如图所示,阴影部分即为线性规划的可行域,当直线166zy x =-+经过点A (0,3)时,z 取得最大值18.故选: C 。

简单的线性规划(一)

简单的线性规划(一)

课题:简单的线性规划(一)教学目标:了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.2010年考试说明要求A 级。

知识点回顾:1. 二元一次不等式表示的平面区域:在平面直角坐标系中,设有直线0=++C By Ax (B 不为0)及点),(00y x P ,则(1)若B>0,000>++C By Ax ,则点P 在直线的_____,此时不等式0>++C By Ax 表示直线0=++C By Ax 的______的区域;(2)若B>0,000<++C By Ax ,则点P 在直线的______,此时不等式0<++C By Ax 表示直线0=++C By Ax 的_____的区域;(3) 若B<0, 我们都把Ax +By +C >0(或<0)中y 项的系数B 化为正值.2. 目标函数可转化为y 轴上截距的z=ax+by 最值问题。

课前训练:1. 设变量x ,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数z=2x+3y 的最小值为2. 在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为3. 已知点(,3)P a 在不等式组352504301x y x y x +-≤⎧⎪-+≤⎨⎪≥⎩所表区域内;则a 的范围是4.已知点(3,1)和(-4,6)在直线023=+-a y x 的两侧,则a 的取值范围是5.若⎪⎩⎪⎨⎧≥-≤+-≥035,4,1y x y x y 表示的平面区域的面积6.图中阴影部分表示的平面区域可用二元一次不等式组来表示为 .典型例题:若A 为不等式组0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当实数a 从-2连续变化到1时,动直线x y a += 扫过A 中区域的面积为设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的最大值为12,则23a b+的最小值为课堂检测:1.已知点()2286,3424x y x y Q x y x y ⎧⎫⎧+<+⎪⎪∈⎨⎨⎬+>⎩⎪⎪⎩⎭,如果直线:20l ax y ++=经过点Q ,那么实数a 的取值范围是 .2. 已知在平面直角坐标系xOy 中,O(0,0), A(1,-2), B(1,1), C(2.-1),动点M(x,y) 满足条件⎩⎪⎨⎪⎧-2≤−→OM ·−→OA ≤21≤−→OM ·−→OB ≤2,则−→OM ·−→OC 的最大值为 。

简单的线性规划.(一)doc

简单的线性规划.(一)doc

简单的线性规划(一)知识点1 线性规划在线性约束条件下,求线性目标函数的最大值或最小值问题,称为线性规划问题。

(1)目标函数:要求再一定条件下求极大值或极小值问题的函数叫做目标函数,目标函数式变量的一次解析式,又叫做线性目标函数。

(2)约束条件:在规划中,变量必须满足的条件叫做约束条件,关于变量时一次不等式(等式)表示的条件叫线性约束条件。

(3)可行解:在线性规划中,满足线性约束条件的解叫做可行解;(4)可行域:在线性规划中,有所有的线性可行解组成的的集合叫可行域;(5)最优解:可行解中使目标函数取得最大值或最小值得解叫做最优解。

【例题1】⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥++=001710732,53y x y x y x y x y x z 满足约束条件的最小值,使求【变式2】的最大值和最小值。

求满足条件式中变量设z x y x y x y x y x z ,1255334,,2⎪⎩⎪⎨⎧≥≤+-≥-+=知识点2 解答线性规划问题的两个误区解答线性规划问题容易有以下两个类型的错误:(1)平移直线时失误;(2)扩大可行域。

由于作图的误差使我们很难确定哪个点最先和目标函数相交,所以需要检验,常用的以下方法检验:(1)顶点检验法:(2)斜率检验法:【例题3】的最大值。

求已知y x z y x y x y x y x +=⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+,0,04276355744411【变式3】⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥+=.6325400,98y x y x y x y x y x z 满足约束条件的最大值,式中求【例题4】的取值范围。

求且设)2(,4)1(2,2)1(1,)(22-≤≤≤-≤-+=f f f b ax f x x【变式4】的取值范围。

,求,满足已知函数)3(5)2(11)1(4)(2f f f c a x f x ≤≤--≤≤--=。

简单线性规划

简单线性规划

简单线性规划线性规划(Linear Programming,LP)是一种运用数学方法,以规定的约束条件为前提,通过建立数学模型,求解线性目标函数最大或最小值的一种优化方法。

线性规划方法可用于解决许多实际问题,如资源分配、生产计划、物流管理等。

线性规划的基本形式是在一组约束条件下,最大化或最小化一个线性的目标函数。

目标函数和约束条件必须是线性的,即目标函数和约束条件中的变量的系数必须为常数。

例如,假设有两种可供选择的产品A和B,它们的产量分别为x和y。

目标是通过调整x和y的值,使得总利润最大化。

同时,需要考虑的约束条件包括资源的使用限制、产品的产能限制等。

如果将总利润表示为目标函数,资源使用和产能限制等表示为约束条件,那么这个问题可以用线性规划的方法来解决。

线性规划的解法有多种,其中最常见的是单纯形法。

单纯形法基于一个重要的性质,即在一个凸多边形的顶点上,目标函数的最优解一定存在。

单纯形法通过迭代计算,逐步接近最优解,直到找到最优解为止。

此外,还有其他的方法来解决线性规划问题,如对偶理论、内点法等。

线性规划的应用十分广泛。

在资源有限的情况下,如何合理地分配资源是一个重要的问题。

例如,在生产计划中,如何安排生产任务,对产品的产量进行合理分配,以最大化利润;在物流管理中,如何合理地安排货物的运输路线,以最小化运输成本等。

线性规划提供了一种直观且有效的工具,可以帮助我们在有限的资源下得到最优的解决方案。

尽管线性规划方法在许多场景下表现良好,但它也有一些局限性。

首先,线性规划要求目标函数和约束条件都是线性的,因此对于非线性的问题,线性规划方法并不适用。

其次,线性规划方法在求解大规模问题时可能面临计算复杂度的问题。

不过,有许多方法可以对线性规划的问题进行转化,从而将非线性问题转化为线性问题,或者通过并行计算等方法来加快计算速度。

总的来说,线性规划是一种强大的优化工具,可用于解决各种实际问题。

它的优势在于简单、直观,能够得到全局最优解。

(教参):第三章4.2简单线性规划Word版含解析

(教参):第三章4.2简单线性规划Word版含解析

4.2简单线性规划必备知识·自主学习导思1.什么是二元线性规划问题?2.如何确定二元线性规划问题的最值?1.基本概念名称意义约束条件变量x,y满足的二元一次不等式组目标函数欲求关于x,y的一个线性函数的最大值或最小值的函数可行解满足约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解二元线性规划问题在约束条件下,求关于两个变量的目标函数的最大值或最小值问题二元线性规划问题中约束条件是关于x,y的几次不等式或方程的限制条件?提示:二元线性规划问题中约束条件是关于x,y的一次不等式或方程的限制条件.2.最值问题(1)最值位置:目标函数的最大值与最小值总是在可行域的边界交点或顶点处取得.(2)实际应用:求解实际应用问题时,只需要求出区域边界的交点,再比较目标函数在交点处的函数值大小,根据问题需求选择所需结论.目标函数z=2x-y,将其看成直线方程时,z的意义是什么?提示:z=2x-y可变形为y=2x-z,所以z的几何意义是该直线在y轴上截距的相反数.1.思维辨析(对的打“√”,错的打“×”)(1)线性目标函数z=ax+by表示经过可行域的一组平行线. ( )(2)求线性目标函数z=ax+by取得最值的最优解都是唯一的. ( )(3)线性目标函数取得最值的点一定在可行域的顶点上. ( )提示:(1)√.因为线性目标函数z=ax+by即y=-x+,斜率k=-为常数,截距是变量,所以二元一次方程z=ax+by表示经过可行域的一组平行线.(2)×.如果线性目标函数z=ax+by表示的直线与可行域的某一条边界直线平行,则线性目标函数z=ax+by取得最值的最优解不是唯一的.(3)×.线性目标函数取得最值的点可能在可行域的边界上,不一定非在顶点上.2.若x≥0,y≥0,且x+y≤1,则z=x-y的最大值为( )A.-1B.1C.2D.-2【解析】选B.直线x+y=1与坐标轴的交点坐标为A(1,0),B(0,1).则z=x-y即y=x-z,表示经过可行域的平行线组,-z是直线在y轴上的截距,当直线z=x-y经过点A(1,0)时,-z最小,z最大,最大值为z=x-y=1. 3.(教材二次开发:例题改编)已知实数x,y满足约束条件,则z=2x+y的最大值为( )A.-1B.2C.7D.8【解析】选C.画出实数x,y满足约束条件,表示的平面区域如图:目标函数变形为-2x+z=y,则z表示直线在y轴上截距,截距越大,z越大,作出目标函数对应的直线L:y=-2x,由可得A(2,3).目标函数z=2x+y过A(2,3)时,直线的截距最大,z取得最大值为z=7.关键能力·合作学习类型一求线性目标函数的最值(直观想象)1.(2020·三明高一检测)已知实数x,y满足,则z=x+2y的最大值为( )A.2B.C.1D.02.(2020·西安高一检测)已知实数x,y满足,则关于目标函数z=3x-y的描述正确的是 ( )A.无最大值也无最小值B.最小值为-2C.最大值为2D.最大值为33.(2020·南昌高一检测)设x,y满足,则z=x+y的取值范围是( )A.[-5,3]B.[2,3]C.[2,+∞)D.(-∞,3]【解析】1.选B.作出实数x,y满足约束条件,对应的平面区域,由z=x+2y,得y=-x+z,平移直线y=-x+z,由图象可知,当直线y=-x+z经过点A时直线y=-x+z的截距最大,此时z最大. 由,得A,此时z的最大值为z=+2×=.2.选B.作出不等式组对应的平面区域如图,由z=3x-y,得y=3x-z,平移直线y=3x-z,由图象可知当直线y=3x-z,经过点A时,直线y=3x-z 的截距最大,此时z最小.联立,解得A(0,2),故z min=3×0-2=-2.无最大值.3.选C.先根据约束条件画出可行域,z=x+y,则y=-x+z,由可得A(2,0),当直线y=-x+z经过点A(2,0)时,z最小,最小值为:2+0=2.没有最大值,故z=x+y的取值范围为[2,+∞).求目标函数z=ax+by最值的思路(1)化:把目标函数z=ax+by化为斜截式y=-x+.(2)定:z=ax+by中表示直线y=-x+在y轴上的截距.(3)找:把线性目标函数看成直线系,把目标函数表示的直线y=-x+平行移动,越向上平移越大,若b>0,则对应z越大,若b<0,则对应z越小. 特别提醒:当目标函数所在的直线与边界平行时最优解有无数个.【补偿训练】设x,y满足约束条件则z=2x+3y-5的最小值为.【解析】作出不等式组表示的平面区域,如图中阴影部分所示,由图知当z=2x+3y-5经过点A(-1,-1)时,z取得最小值,z min=2×(-1)+3×(-1)-5=-10.答案:-10类型二求非线性目标函数的最值(数学抽象、直观想象)角度1 可化为斜率最值的问题【典例】已知实数x,y满足不等式组(1)求不等式组表示的平面区域的面积;(2)试确定的取值范围.【思路导引】(1)依据线性约束条件,作出可行域,然后求出面积. (2)因为是分式形式,所以可联想其几何意义,求斜率的取值范围即可.【解析】(1)由实数x,y满足不等式组作出可行域,可知不等式组表示的平面区域是△ABC及其内部,如图,解方程组得A(1,1),同理,得B(3,3),C(2,6),记a==(2,2),b==(1,5),则S△ABC=|a||b|sin∠BAC=|a||b|=|a||b|===4(面积单位).(2)由(1)可知,1≤x≤3.令=k,则y=k(x+1)表示斜率为k且过点D(-1,0)与可行域有公共点的相交线族,由于k=tan α,α∈是增函数,其中α是相交线族的倾斜角,结合可行域知,k AD=,k CD=2,从而k∈,故∈.(2020·泉州高一检测)已知实数x,y满足约束条件,则的最大值为 ( )A.2B.C.1D.【解析】选D.令z=,由实数x,y满足约束条件,作出可行域如图,联立,解得A,z=的几何意义为可行域内的动点与定点O(0,0)连线的斜率,当过A时,斜率最大,即z==,所以z=的最大值为.角度2 可化为距离最值的问题【典例】已知实数x,y满足则x2+y2的取值范围是.【思路导引】先画出可行域,再依据x2+y2的几何意义,求出最值即可得取值范围.【解析】不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x+y-2=0的距离为,所以(x2+y2)min=,又当(x,y)取点(2,3)时,x2+y2取得最大值13,故x2+y2的取值范围是.答案:[,13]线性规划求目标函数的常见类型(1)整式是截距:形如ax+by型的线性目标函数,设为z=ax+by,表示平行线族,通过平行线扫描可行域,求线性目标函数的最值或取值范围.(2)分式是斜率:形如(ac≠0)型的非线性目标函数,设为k==·(ac≠0),将问题转化为过定点P以及可行域内的动点Q(x,y)的相交线族的斜率,通过相交线扫描可行域,求斜率的最值或取值范围.(3)根式是距离:形如型的非线性目标函数,将问题转化为d=,几何意义为连接定点A(a,b)与可行域内的动点Q(x,y)的距离,再求距离的最值或取值范围.(4)平方和是距离的平方:形如x2+y2-2ax-2by+a2+b2型的非线性目标函数,将问题转化为d2=()2,几何意义为连接定点A(a,b)与可行域内的动点Q(x,y)的距离的平方,求两点间的距离的最值或取值范围,再求平方即可.1.(2020·成都高一检测)设x,y满足约束条件则的最大值是( )A.-B.C.D.【解析】选C.设z=,画出满足条件的平面区域,如图,由z=的几何意义是可行域内的点与D(-2,0)连线的斜率,由图形可知AD的斜率取得最大值,代入A(3,4),即可得到z最大值,所以z的最大值是.2.(2020·邯郸高一检测)设变量x,y满足约束条件则z=(x-3)2+y2的最小值为( )A.2B.C.4D.【解析】选D.画出变量x,y满足约束条件的可行域,可发现z=(x-3)2+y2的最小值是(3,0)到2x-y-2=0距离的平方.取得最小值:=.3.实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a,b)对应的区域的面积;(2)的取值范围;(3)(a-1)2+(b-2)2的值域.【解析】方程x2+ax+2b=0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y=f(x)=x2+ax+2b与x轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,由此可得不等式组⇔由解得A(-3,1); 由解得B(-2,0);由解得C(-1,0).所以在如图所示的坐标平面aOb内,满足约束条件的点(a,b)对应的平面区域为△ABC(不包括边界).(1)△ABC的面积为S△ABC=×|BC|×h=(h为A到Oa轴的距离).(2)的几何意义是点(a,b)和点D(1,2)连线的斜率.k AD==,k CD==1.由图可知,k AD<<k CD.所以<<1,即∈.(3)因为(a-1)2+(b-2)2表示区域内的点(a,b)与定点(1,2)之间距离的平方,所以(a-1)2+(b-2)2∈(8,17).类型三已知目标函数的最值求参数的取值范围(逻辑推理、数学运算)【典例】已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于( )A. B. C.1 D.2【思路导引】先由前2个条件确定部分区域,再由z=2x+y的最小值为1,即可确定一个平面区域,再结合y≥a(x-3)的几何意义即可求出a的值.【解析】选B.作出不等式组表示的可行域,如图阴影部分(含边界)所示.易知直线z=2x+y过交点B时,z取最小值,由得因为z min=2-2a=1,解得a=.由目标函数的最值求参数的解题思路已知目标函数的最值,求线性约束条件的参数问题,可以先画出线性约束条件中的已知部分,由于最值一般在可行域的顶点或边界处取得,常常利用数形结合的方法求解.设不等式组表示的平面区域为D,若指数函数y=a x的图像上存在区域D上的点,则a的取值范围是 ( )A.(1,3]B.[2,3]C.(1,2]D.[3,+∞)【解析】选A.由线性约束条件画出平面区域D,图中阴影部分,观察图形可知当指数函数y=a x为增函数时,可能过区域D,又当底数越大,在第一象限它的图像越靠近y轴,所以当y=a x过x+y-11=0与3x-y+3=0的交点A(2,9)时,底数最大.即9=a2,所以a=3,因此1<a≤3.课堂检测·素养达标1.(2019·浙江高考)若实数x,y满足约束条件则z=3x+2y的最大值是( )A.-1B.1C.10D.12【解析】选C.由线性约束条件可得可行域为图中阴影部分所示:由解得所以A(2,2),所以z max=3×2+2×2=10.2.(2020·德阳高一检测)已知实数x,y满足,则关于目标函数z=3x-y的描述正确的是( )A.最小值为-2B.最大值为3C.最大值为2D.无最大值也无最小值【解析】选A.由实数x,y满足,作出可行域,如图.目标函数z=3x-y可以化为y=3x-z.则z表示直线y=3x-z在y轴上的截距的相反数.由图可知,当直线y=3x-z过点B时,直线y=3x-z在y轴上的截距最大,无最小值.所以z有最小值-2,无最大值.3.(教材二次开发:习题改编)(2019·天津高考)设变量x,y满足约束条件则目标函数z=-4x+y的最大值为( )A.2B.3C.5D.6【解析】选C.已知不等式组表示的平面区域如图中的阴影部分.目标函数的几何意义是直线y=4x+z在y轴上的截距,故目标函数在点A处取得最大值.由得A(-1,1),所以z max=-4×(-1)+1=5.4.(2020·洛阳高一检测)若x,y满足约束条件则z=的最大值为 ( )A. B. C. D.3【解析】选C.由题意知,目标函数z=表示经过点A和可行域内的点(x,y)的直线的斜率,作出不等式组表示的可行域如图所示,根据目标函数z的几何意义,由图可知,当直线过A,C两点时,目标函数z=有最大值,联立方程解得所以点C,代入目标函数可得,z=的最大值为.5.若变量x,y满足则x2+y2的最大值是. 【解析】作出不等式组表示的平面区域,x2+y2表示平面区域内点到原点距离的平方,由得A(3,-1),易得(x2+y2)max=|OA|2=32+(-1)2=10.答案:10。

高中数学简单的线性规划(提高)知识梳理

高中数学简单的线性规划(提高)知识梳理

简单的线性规划【考纲要求】1.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

2.会从实际情境中抽象出一元二次不等式模型。

3.会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;4.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

5.熟练应用不等式性质解决目标函数的最优解问题。

【知识网络】【考点梳理】考点一:用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)要点诠释:画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域。

简称:“直线定界,特殊点定域”方法。

考点二:二元一次不等式表示哪个平面区域的判断方法因为对在直线Ax+By+c=0同一侧的所有点(x ,y),实数Ax+By+c 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便).把它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.要点诠释:判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.考点三:线性规划的有关概念:①线性约束条件:在一个问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、简单的线性规划 二元一次不等式(组)表示的区域简单应用不等式(组)的应用背景y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=ax+by (a ,b ∈R)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x,y )叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.要点诠释:在应用线性规划的方法时,一般具备下列条件:①一定要能够将目标表述为最大化(极大)或最小化(极小)的要求。

简单线性规划(基础版)

简单线性规划(基础版)

o
x=1
x
练习: 练习:
设Z=x+3y,式中变量x、y Z=x+3y x、y满足下列条件 +3 x、y 求z的最大值和最小值。 z
2x+3y≤24 x-y≤7 , y ≥0 y ≤6 x≥0
小结: 小结:
1.线性规划问题的有关概念; 2. 用图解法解线性规划问题的一般步骤;
x-4y≤-3 3x+5y≤25 + x≥1
(1)画出该不等式组表示的平面区域 (2)设z=2x+y,求z的最大值和最小值。 z z
y
o
x
线性规划的有关概念 x -4y≤ - 3
引例:画出不等式组 引例 画出不等式组
y
x=1
C
3x+5y≤ 25 表示的平面区域。 表示的平面区域。 x≥1
x-4y=-3
满足线性约束条件的解( , )。 可行解:满足线性约束条件的解(x,y)。 可行域: 可行域:所有可行解组成的集合。 最优解: 目标函数达到最大值或 最优解:使目标函数达到最大值或 最小值 的可 行 解。
y x=1
C
可行域 可行解 A 最优 解 最优 解
o
B
x
求线性目标函数在线性约束条件下的最大值或最小值的问题。 求线性目标函数在线性约束条件下的最大值或最小值的问题。
o
B
x
即Zmin =2×1+1 =3 × 当直线l过点 过点A(5,2)时,z最大 当直线 过点 时 z最大, 即Zmax=2×5+2=12 。 = × =
线性规划的有关概念
线性目标函数
问题:设z=2x+y,式中变量满足下列条件:
x − 4y ≤ −3 3x + 5y ≤ 25 x ≥ 1

简单的线性规划

简单的线性规划

7.4 简单的线性规划●知识梳理1.二元一次不等式表示平面区域在平面直角坐标系中,已知直线Ax +By +C =0,坐标平面内的点P (x 0,y 0).B >0时,①Ax 0+By 0+C >0,则点P (x 0,y 0)在直线的上方;②Ax 0+By 0+C <0,则点P (x 0,y 0)在直线的下方.对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数.当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域. 2.线性规划求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解.生产实际中有许多问题都可以归结为线性规划问题.线性规划问题一般用图解法,其步骤如下:(1)根据题意,设出变量x 、y ; (2)找出线性约束条件;(3)确定线性目标函数z =f (x ,y );(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可行域上使t 取得欲求最值的位置,以确定最优解,给出答案.●点击双基1.下列命题中正确的是A.点(0,0)在区域x +y ≥0内B.点(0,0)在区域x +y +1<0内C.点(1,0)在区域y >2x 内D.点(0,1)在区域x -y +1>0内 解析:将(0,0)代入x +y ≥0,成立. 答案:A2.(2005年海淀区期末练习题)设动点坐标(x ,y )满足 (x -y +1)(x +y -4)≥0,x ≥3, A.5 B.10 C.217 D.10解析:数形结合可知当x =3,y =1时,x 2+y 2的最小值为10. 答案:D2x -y +1≥0,x -2y -1≤0, x +y ≤1则x 2+y 2的最小值为3.不等式组 表示的平面区域为A.正三角形及其内部B.等腰三角形及其内部C.在第一象限内的一个无界区域D.不包含第一象限内的点的一个有界区域解析:将(0,0)代入不等式组适合C ,不对;将(21,21)代入不等式组适合D ,不对;又知2x -y +1=0与x -2y -1=0关于y =x 对称且所夹顶角α满足t an α=|2121||212|⋅+-=43.∴α≠3π.答案:B4.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________________. 解析:(-2,t )在2x -3y +6=0的上方,则2×(-2)-3t +6<0,解得t >32.答案:t >325.不等式组⎪⎩⎪⎨⎧<+>>1234,0,0y x y x 表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有____________个.解析:(1,1),(1,2),(2,1),共3个.答案:3 ●典例剖析【例1】 求不等式|x -1|+|y -1|≤2表示的平面区域的面积. 剖析:依据条件画出所表达的区域,再根据区域的特点求其面积. 解:|x -1|+|y -1|≤2可化为x ≥1, x ≥1, x ≤1, x ≤1, y ≥1, y ≤1, y ≥1, y ≤1, x +y ≤4 x -y ≤2 y -x ≤2 x +y ≥0. 其平面区域如图.∴面积S =21×4×4=8.评述:画平面区域时作图要尽量准确,要注意边界.或 或 或深化拓展若再求:①12-+x y ;②22)2()1(++-y x 的值域,你会做吗?答案: ①(-∞,-23]∪[23,+∞);②[1,5].【例2】 某人上午7时,乘摩托艇以匀速v n mi l e/h (4≤v ≤20)从A 港出发到距50 nmi l e 的B 港去,然后乘汽车以匀速w km/h (30≤w ≤100)自B 港向距300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘汽车、摩托艇去所需要的时间分别是x h 、y h.(1)作图表示满足上述条件的x 、y 范围; (2)如果已知所需的经费p =100+3×(5-x )+2×(8-y )(元),那么v 、w 分别是多少时走得最经济?此时需花费多少元?剖析:由p =100+3×(5-x )+2×(8-y )可知影响花费的是3x +2y 的取值范围. 解:(1)依题意得v =y50,w =x300,4≤v ≤20,30≤w ≤100.∴3≤x ≤10,25≤y ≤225. ①由于乘汽车、摩托艇所需的时间和x +y 应在9至14个小时之间,即9≤x +y ≤14.② 因此,满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界).xy O1492.53910142+3=38y x (2)∵p =100+3·(5-x )+2·(8-y ),∴3x +2y =131-p .设131-p =k ,那么当k 最大时,p 最小.在通过图中的阴影部分区域(包括边界)且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当x =10,y =4时,p 最小. 此时,v =12.5,w =30,p 的最小值为93元.评述:线性规划问题首先要根据实际问题列出表达约束条件的不等式.然后分析要求量的几何意义.【例3】 某矿山车队有4辆载重量为10 t 的甲型卡车和7辆载重量为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次.甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?剖析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.解:设每天派出甲型车x 辆、乙型车y 辆,车队所花成本费为z 元,那么 x +y ≤9,10×6x +6×8x ≥360, 0≤x ≤4, 0≤y ≤7.z=252x+160y,其中x、y∈N.作出不等式组所表示的平面区域,即可行域,如图.作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,z min=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.评述:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.●闯关训练夯实基础1.(x-1)2+(y-1)2=1是|x-1|+|y-1|≤1的__________条件.A.充分而不必要B.必要而不充分C.充分且必要D.既不充分也不必要解析:数形结合.答案:B2.(x+2y+1)(x-y+4)≤0表示的平面区域为A BC D解析:可转化为x+2y+1≥0,x+2y+1≤0,或x-y+4≤0 x-y+4≥0.答案:B3.(2004年全国卷Ⅱ,14)设x、y满足约束条件x≥0,x≥y,2x-y≤1,则z=3x+2y的最大值是____________.解析:如图,当x =y =1时,z max =5.答案:5x -4y +3≤0, 3x +5y -25≤0, x ≥1,_________.解析:作出可行域,如图.当把z 看作常数时,它表示直线y =zx 的斜率,因此,当直线y =zx 过点A 时,z 最大;当直线y =zx 过点B 时,z 最小.x =1, 3x +5y -25=0,得A (1,522).x -4y +3=0, 3x +5y -25=0,∴z max =1522=522,z min =52.答案:525225.画出以A (3,-1)、B (-1,1)、C (1,3)为顶点的△ABC 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z =3x -2y 的最大值和最小值.分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组; ③求以所写不等式组为约束条件的给定目标函数的最值.解:如图,连结点A 、B 、C ,则直线AB 、BC 、CA 所围成的区域为所求△ABC 区域.直线AB 的方程为x +2y -1=0,BC 及CA 的直线方程分别为x -y +2=0,2x +y -5=0.在△ABC 内取一点P (1,1),分别代入x +2y -1,x -y +2,2x +y -5得x +2y -1>0,x -y +2>0,2x +y -5<0.由 得B (5,2).4.变量x 、y 满足条件设z =xy ,则z 的最小值为_______,最大值为由因此所求区域的不等式组为x +2y -1≥0, x -y +2≥0, 2x +y -5≤0.作平行于直线3x -2y =0的直线系3x -2y =t (t 为参数),即平移直线y =23x ,观察图形可知:当直线y =23x -21t 过A (3,-1)时,纵截距-21t 最小.此时t 最大,t max =3×3-2× (-1)=11;当直线y =23x -21t 经过点B (-1,1)时,纵截距-21t 最大,此时t 有最小值为t min =3×(-1)-2×1=-5.因此,函数z =3x -2y 在约束条件 x +2y -1≥0,x -y +2≥0, 2x +y -5≤06.某校伙食长期以面粉和大米为主食,面食每100 g 含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100 g 含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?解:设每盒盒饭需要面食x (百克),米食y (百克),4所需费用为S =0.5x +0.4y ,且x 、y 满足 6x +3y ≥8, 4x +7y ≥10, x ≥0, y ≥0,由图可知,直线y =-45x +25S 过A (1513,1514)时,纵截距25S 最小,即S 最小.故每盒盒饭为面食1513百克,米食1514百克时既科学又费用最少.培养能力7.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg.今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法?解:设A 、B 两种药分别配x 、y 剂(x 、y ∈N ),则 x ≥1, y ≥1,3x +5y ≤20, 5x +4y ≤25.下的最大值为11,最小值为-5.上述不等式组的解集是以直线x =1,y =1,3x +5y =20及5x +4y =25为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)、(3,2)、(4,1).所以,在至少各配一剂的情况下,共有8种不同的配制方法.8.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:解:设空调机、洗衣机的月供应量分别是x 、y 台,总利润是P ,则P =6x +8y ,由题意有30x +20y ≤300, 5x +10y ≤110, x ≥0, y ≥0,x 、y 均为整数. 由图知直线y =-43x +81P 过M (4,9)时,纵截距最大.这时P 也取最大值P max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元. 探究创新9.实系数方程f (x )=x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)12--a b 的值域;(2)(a -1)2+(b -2)2的值域; (3)a +b -3的值域.f (0)>0f (1)<0 f (2)>0b >0, a +b +1<0, a +b +2>0.如图所示. A (-3,1)、B (-2,0)、C (-1,0).解:由题意知 ⇒又由所要求的量的几何意义知,值域分别为(1)(41,1);(2)(8,17);(3)(-5,-4).●思悟小结简单的线性规划在实际生产生活中应用非常广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理安排和规划,能以最少的资源来完成.如常见的任务安排问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决.图解法解决线性规划问题时,根据约束条件画出可行域是关键的一步.一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域.第二是画好线性目标函数对应的平行直线系,特别是其斜率与可行域边界直线斜率的大小关系要判断准确.通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不一定是顶点坐标的近似值.它应是目标函数所对应的直线平移进入可行域最先或最后经过的那一整点的坐标.●教师下载中心 教学点睛线性规划是新增添的教学内容,应予以足够重视.线性规划问题中的可行域,实际上是二元一次不等式(组)表示的平面区域,是解决线性规划问题的基础,因为在直线Ax +By +C =0同一侧的所有点(x ,y )实数Ax +By +C 的符号相同,所以只需在此直线的某一侧任取一点(x 0,y 0)〔若原点不在直线上,则取原点(0,0)最简便〕,把它的坐标代入Ax +By +C =0,由其值的符号即可判断二元一次不等式Ax +By +C >0(或<0)表示直线的哪一侧.这是教材介绍的方法.在求线性目标函数z =ax +by 的最大值或最小值时,设ax +by =t ,则此直线往右(或左)平移时,t 值随之增大(或减小),要会在可行域中确定最优解. 解线性规划应用题步骤:(1)设出决策变量,找出线性约束条件和线性目标函数; (2)利用图象在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小).拓展题例【例1】 已知f (x )=px 2-q 且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的范围.解:∵-4≤f (1)≤-1,-1≤f (2)≤5, p -q ≤-1,p -q ≥-4, 4p -q ≤5,4p -q ≥-1. 求z =9p -q 的最值.∴p =0, q =1,z min =-1, p =3,q =7, ∴-1≤f (3)≤20.【例2】 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?解:设A 厂工作x h ,B 厂工作y h ,总工作时数为t h ,则t =x +y ,且x +3y ≥40,2x +y ≥20,x ≥0,y ≥0,可行解区域如图.而符合问题的解为此区域内的格子点(纵、横坐标都是整数的点称为格子点),于是问题变为要在此可行解区域内,找出格子点(x ,y ),使t =x +y 的值为最小.x y +3由图知当直线l :y =-x +t 过Q 点时,纵、横截距t 最小,但由于符合题意的解必须是格子点,我们还必须看Q 点是否是格子点.x +3y =40,2x +y =20,得Q (4,12)为格子点.故A 厂工作4 h ,B 厂工作12 h ,可使所费的总工作时数最少.如图,∵z max =20,解方程组。

简单的线性规划

简单的线性规划

Zmin=2×3+2+50=58 . 此时 此时,10-x-y=5. × 购买甲食物3千克 乙食物2千克 丙食物5千克时 答:购买甲食物 千克 乙食物 千克 丙食物 千克时 付出的金额 购买甲食物 千克,乙食物 千克,丙食物 千克时,付出的金额 最低为58元 最低为 元.
解线性规划问题的一般步骤: 解线性规划问题的一般步骤:
求式子30x+40y的最大值 的最大值. 求式子 的最大值
y 600 C 400
如何求30x+ y 如何求 x+40y x+ 的最大值呢? 的最大值呢?
B x+2y-800=0
O
400 A
800
x
3x+2y-1200=0 30x+40y=0
解方程组
3 x + 2 y = 1200 x + 2 y = 800
解:依题意可列表如下:
产品 生产甲种产品1工时 生产甲种产品 工时 生产乙种产品1工时 生产乙种产品 工时 限额数量 原料A数量 原料b数量 数量(kg) 利润 元) 利润(元 原料 数量(kg) 原料 数量 数量 3 2 1200 1 2 800 30 40
设计划生产甲种产品x工时,生产乙种产品y工 时,则获得利润总额为 f = 30x+40y
y 600 C 400
B x+2y-800=0
O
400 A
800
x
3x+2y-1200=0 30x+10y=0
实例分析: 满足以下条件: 实例分析:设x,y满足以下条件: 满足以下条件
3 x + 2 y ≤ 1200 ① x + 2 y ≤ 800 ② ③ x≥0 y ≥ 0 ④

(完整版)简单的线性规划问题(附答案)

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题[学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一 线性规划中的基本概念知识点二 线性规划问题 1.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一 求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧ y =2,x -y =1⇒⎩⎪⎨⎪⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求(1)x 2+y 2的最小值; (2)yx的最大值. 解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎪⎨⎪⎧x +2y -4=0,y =2x 的解,即⎝⎛⎭⎫45,85, 又由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0,得C ⎝⎛⎭⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝⎛⎭⎫322=132, 所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v=y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大, 由(1)知C ⎝⎛⎭⎫1,32, 所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案 10解析 画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )之间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10,即(x +3)2+y 2的最小值为10. 题型三 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元.反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y , 把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎪⎨⎪⎧50x +20y =2 000,y =x ,解得⎩⎨⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎫2007,2007.由⎩⎪⎨⎪⎧50x +20y =2 000,y =1.5x ,解得⎩⎪⎨⎪⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎫25,752. 所以满足条件的可行域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752, O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎫25,752, 但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z=10x +10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43 D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z =2x +y 的最大值为7,最小值为1,则b ,c的值分别为( ) A .-1,4 B .-1,-3 C .-2,-1 D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x +2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示).9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B 解析 如图,当y =2x 经过且只经过x +y -3=0和x =m 的交点时,m 取到最大值,此时,即(m,2m )在直线x +y -3=0上,则m =1. 2.答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方, 故z min =⎝⎛⎭⎫122=12.课时精练答案一、选择题 1.答案 A解析 画出可行域,如图所示,解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z , 则直线经过点A 时z 取得最小值; 所以z min =2×(-2)-2=-6,故选A. 2.答案 D解析 作出可行域,如图所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C 解析不等式组所表示的平面区域如图阴影部分所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C. 5.答案 D解析 由题意知,直线x +by +c =0经过直线2x +y =7与直线x +y =4的交点,且经过直线2x +y =1和直线x =1的交点,即经过点(3,1)和点(1,-1),∴⎩⎪⎨⎪⎧ 3+b +c =0,1-b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案 13解析 |x |+|y |≤2可化为 ⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C (3,1)方法一 ∵可行域内的点都在直线x +2y -4=0上方, ∴x +2y -4>0,则目标函数等价于z =x +2y -4,易得当直线z =x +2y -4在点B (7,9)处,目标函数取得最大值z max =21. 方法二 z =|x +2y -4|=|x +2y -4|5·5, 令P (x ,y )为可行域内一动点,定直线x +2y -4=0, 则z =5d ,其中d 为P (x ,y )到直线x +2y -4=0的距离. 由图可知,区域内的点B 与直线的距离最大, 故d 的最大值为|7+2×9-4|5=215.故目标函数z max =215·5=21. 三、解答题12.解 z =2x -y 可化为y =2x -z ,z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l 0:2x -y =0平行的直线系l ,经上下平移,可得:当l 移动到l 1,即经过点A (5,2)时,z max =2×5-2=8.当l 移动到l 2,即过点C (1,4.4)时,z min =2×1-4.4=-2.4.13.解 先画出可行域,如图所示,y =a x 必须过图中阴影部分或其边界.∵A (2,9),∴9=a 2,∴a =3. ∵a >1,∴1<a ≤3.14.解 由题意可画表格如下:(1)设只生产书桌x 张,可获得利润z 元, 则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获得利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600, 解得,点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

简单线性规划的理论知识

简单线性规划的理论知识
z 2x y表示一组平行直线
•B
O
x 4y 3 0
•A
3x 5y 25 0
x
A(5,2) B(1,1) zmin 211 3
zmax 25 2 12
2x+y=0
问题: 设z=2x-y,式中变量x,y满足下列条件
x 4 y 3 3x 5y 25 x 1 求z的最大值和最小值.
3.求出最优解所对应点的坐标,代入z中,即得目标函 数的最大值和最小值.
线性规划的可行域一定是凸形,其最优解一定 在顶点处出现,因此,在找最优解或检验时, 可将顶点的坐标代入目标函数计算
课堂练习:
1、解下列线性规划问题: 求z=2x+y的最大值和最小值,使式中x、y满
足下列条件:
y x x y 1 y 1
2、解下列线性规划问题: 求z=3x+y的最大值,使式中x、y满足下
列条件:
2x 3y 24
xy
y 6
7
x 0
y 0
解决线性规划问题的图解法的一般步骤:
1.由线性约束条件画出可行域; 2.令z=0,再利用平移法找到最优解所对应的点;
z 2x y表示一组平行直线
2x-y=0
y x 1
C
•B
O
x 4y 3 0
•A
3x 5y 25 0
x
A(5,2) C(1, 22)
5 22 12 zmin 21 5 5
zmax 25 2 10
1、已知x,y满足条件: x-y+3≥0 x+y-5≤0 2x-y-4≤0 x ≥0 y ≥0
求z=x+2y的最大值。 解 : 画 出 满 足 x,y 的 条 件 所表示的区域,即五边 形OABCD(如图)

线型规划初步知识点总结

线型规划初步知识点总结

线型规划初步知识点总结1. 线性规划的基本概念线性规划是指在一组线性不等式条件下寻求线性目标函数的极小(大)值。

具体来说,线性规划问题可以用以下一般形式表示:Minimize(或Maximize):c1*x1 + c2*x2 + ... + cn*xnSubject to:a1*x1 + a2*x2 + ... + an*xn ≤ b1a1*x1 + a2*x2 + ... + an*xn ≤ b1...a1*x1 + a2*x2 + ... + an*xn ≤ b1xi ≥ 0 (i=1,2,...,n)其中,c1, c2, ..., cn为目标函数的系数,x1, x2, ..., xn为决策变量,a1, a2, ..., an为约束条件的系数,b1, b2, ..., bm为约束条件的右端常数。

线性规划的目标函数和约束条件都是线性的,决策变量的取值范围是非负数。

2. 线性规划的解法线性规划问题通常通过单纯形法、内点方法、对偶法等方法来求解,其中单纯形法是最常用的方法之一。

单纯形法的核心思想是通过不断在可行域内移动,使得目标函数值不断减少(或增加)直到找到最优解。

在实际应用中,我们可以利用计算机软件(如Lingo、Gurobi、CPLEX等)来解决线性规划问题,这些软件能够快速、高效地求解大规模的线性规划问题。

3. 线性规划的应用线性规划在生产计划、资源分配、运输和物流、金融投资、市场营销、决策分析等领域都有着重要的应用。

比如,在生产计划中,线性规划可以帮助企业确定最优的生产数量和生产计划,以最大限度地满足市场需求,同时最小化生产成本;在物流配送中,线性规划可以帮助企业设计最经济、最有效的配送方案,减少成本并提高效率。

4. 线性规划的特点线性规划问题具有以下特点:(1)可分的特征:线性规划问题的可行域通常是一个凸多面体,因此最优解通常出现在可行域的某个顶点上,这就使得线性规划问题变得相对容易求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的线性规划【考纲要求】1.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

2.会从实际情境中抽象出一元二次不等式模型。

3.会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;4.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

5.熟练应用不等式性质解决目标函数的最优解问题。

【知识网络】【考点梳理】考点一:用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)要点诠释:画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域。

简称:“直线定界,特殊点定域”方法。

考点二:二元一次不等式表示哪个平面区域的判断方法因为对在直线Ax+By+c=0同一侧的所有点(x ,y),实数Ax+By+c 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便).把它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.要点诠释:判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.考点三:线性规划的有关概念:①线性约束条件:在一个问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、简单的线性规划二元一次不等式(组)表示的区域 简单应用不等式(组)的应用背景y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=ax+by (a ,b ∈R)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:在应用线性规划的方法时,一般具备下列条件:①一定要能够将目标表述为最大化(极大)或最小化(极小)的要求。

②一定要有达到目标的不同方法,即必须要有不同的选择的可能性存在; ③所求的目标函数是有约束(限制)条件的;④必须将约束条件用代数语言表示成为线性等式或线性不等式(组),并将目标函数表示成为线性函数。

考点四:解线性规划问题总体步骤: 设变量→找约束条件,找目标函数作图,找出可行域−−−→−运动变化求出最优解 要点诠释:线性规划的理论和方法主要在两类问题中得到应用:①在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;②给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 【典型例题】类型一:二元一次不等式(组)表示的平面区域 例1.画出3x+y-3<0所表示的平面区域. 【解析】举一反三:【变式1】下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02), B.(20)-, C.(02)-, D.(20), 【答案】C【变式2】(21)(4)0x y x y ++-+≤表示的平面区域为( )A B C D【答案】B ;原不等式可转化为⎩⎨⎧≤+-≥++04012y x y x 或⎩⎨⎧≥+-≤++04012y x y x【变式3】画出不等式240x y +->表示的平面区域。

【解析】先画直线240x y +-=(画成虚线).取原点(0,0)代入24x y +-得200440⨯+-=-<, ∴原点不在240x y +->表示的平面区域内, 不等式240x y +->表示的区域如图:例2.画出下列不等式组表示的平面区域。

(1)3232626x y x x y y x <⎧⎪≥⎪⎨+≥⎪⎪<+⎩; (2)22300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩; (3)232400x y x y x y ≤+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩.【解析】(1) (2) (3)举一反三:【变式1】用平面区域表示不等式(1)(40x y x y +--+≥)【解析】【变式2】求不等式组3220,440,260x y x y x y -->⎧⎪++>⎨⎪+-<⎩的整数解。

【解析】如图所示,作直线1:3220l x y --=,2:440l x y ++=,3:260l x y +-=,在直角坐标平面内画出满足不等式组的区域,此三角形区域内的整点(2,1),(1,0),(2,0),(1,-1),(2,-1),(3,-1)即为原不等式组的整数解。

类型二:图解法解决简单的线性规划问题.例3.设变量,x y 满足约束条件311x y x y y +≤⎧⎪-≥-⎨⎪≥⎩,则目标函数42z x y =+的最大值为( )A .12B .10C .8D .2【解析】由约束条件311x y x y y +≤⎧⎪-≥-⎨⎪≥⎩可知可行域如图:平移2y x =-知在(2,1)A 处取得最大值10z = 答案:B 举一反三:【变式1】已知⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求;(1) 42-+=y x z 的最大值; (2)112++=x y z 的范围. 【解析】作出可行域如图,并求出顶点坐标)9,7(),1,3(),3,1(C B A .(1) 将)9,7(C 代入z 得最大值21;(2) )1()21(2----⋅=x y z 表示可行域内一点到定点)21,1(--Q 的斜率的2倍, 因为83,47==QB QA k k , z 的范围是]27,43[.例4.(2015 重庆高考)若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为( )A.-3B.1C.43D.3 【答案】B【解析】作出不等式组对应的平面区域如图: 若表示的平面区域为三角形,由20220x y x y +-=⎧⎨+-=⎩得2x y =⎧⎨=⎩即()2,0A则()2,0A 在直线20x y m -+=的下方,即220m +>则1m >- 则()2,0A ,()2,0D m -由2020x y m x y -+=⎧⎨+-=⎩解得11x my m=-⎧⎨=+⎩即()1,1B m m -+由20220x y m x y -+=⎧⎨+-=⎩解得243223m x my -⎧=⎪⎪⎨+⎪=⎪⎩即2422,33m m C -+⎛⎫ ⎪⎝⎭ 则三角形ABC 的面积()()1212221232241133ABC ADB ADC B C S S S AD y y m m m m m m ∆∆∆=-=-+⎛⎫=++- ⎪⎝⎭+⎛⎫=++-=⎪⎝⎭ 即()14133m m ++⋅=即()214m +=解得1m =或3m =-(舍去)故选B. 举一反三:【变式】(2015 山东高考)已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A.3B.2C.-2D.-3 【答案】B【解析】作出不等式组对应的平面区域如图:(阴影部分) 则()2,0A ,()1,1B若z ax y =+过A 时取得最大值为4,则2a =4,解得a =2. 此时,目标函数为2z x y =+即2y x z =-+平移直线2y x z =-+,当直线经过()2,0A 时,截距最大,此时z 最大值为4,满足条件. 若z ax y =+过B 时取得最大值为4,则a +1=4解得a =3 此时,目标函数为3z x y =+即3y x z =-+平移直线3y x z =-+,当直线经过()2,0A 时,截距最大,此时z 最大值为6,不满足条件.故a =2,故选B.类型三:实际应用问题中的线性规划问题.例5.家具公司制作木质的书桌和椅子,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8000个工作时;漆工平均两小时漆一把椅子、一小时漆一张书桌,该公司每星期漆工最多有1300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,试根据以上条件,问怎样安排生产能获得最大利润?【解析】设制作x 把椅子,y 张桌子约束条件:⎪⎩⎪⎨⎧∈∈≤+≤+Ny ,N x 1300y x 28000y 8x 4,目标函数:z=15x+20y.如图:目标函数经过A 点时,z 取得最大值⎩⎨⎧=+=+1300y x 28000y 8x 4 ⎩⎨⎧==⇒900y 200x 即A(200, 900) ∴ 当x=200, y=900时,z max =15×200+20×900=21000(元)答:安排生产200把椅子,900张桌子时,利润最大为21000元。

举一反三:【变式1】某企业生产A 、B 两种产品,生产每一吨产品所需的劳动力和煤、电耗如下表:已知生产每吨A 产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A 、B 两种产品各多少吨,才能获得最大利润?【解析】设生产A 、B 两种产品各x 、y 吨,利润为z 万元则31030094360452000,0x y x y x y x y +≤⎧⎪+≤⎨+≤⎪≥≥⎩,目标函数712z x y =+作出可行域,如图所示,作出在一组平行直线7x+12y=t (t 为参数)中经过可行域内的点和原点距离最远的直线, 此直线经过点M (20,24)故z 的最优解为(20,24),z 的最大值为7×20+12×24=428(万元)。

相关文档
最新文档