2012四川广元中考数学试题
2012四川广元中考数学
2012年四川省广元市中考试题数 学(满分120分,考试时间120分钟)第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. (2012四川广元,1,3分)下列四个数,最大的数是( )A .1B .-1C .0D .2【答案】D2. (2012四川广元,2,3分)“若a 是实数,则0≥ a ”这一事件是( )A .必然事件B . 不可能事件C . 不确定事件D .随机事件 【答案】A3. (2012四川广元,3,3分)下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A .4个B .3个C .2个D .1个 【答案】B4. (2012四川广元,4,3分)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A .先向左转130°,再向左转50°B .先向左转50°,再向右转50°C .先向左转50°,再向右转40°D .先向左转50°,再向左转40° 【答案】B5. (2012四川广元,5,3分)若二次函数222-++=a bx ax y (a 、b 为常数)的图像如图,则a 的值为( ) A .1B .2C .—2D .—2【答案】C6. (2012四川广元,6,3分)若以A (-0.5,0)、(2,0)、(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C7. (2012四川广元,7,3分)一组数据2、3、6、8、x 的众数是x ,其中x 又是不等式组⎩⎨⎧<->-07042x x 的整数解,则这组数据的中位数可能是( ) A .3 B .4 C .6D .3或6【答案】D8. (2012四川广元,8,3分)如图,A 、B 是⊙O 上两点,若四边形ACBO 是菱形,⊙O 的半径为r ,则点A 与点B 之间的距离为( )A .r 2B .r 3C .rD .r 2【答案】B9. (2012四川广元,9,3分)如图,点A 的坐标为(-1,0),点B 在直线x y =上运动,当线段AB 最短时,点B 的坐标为( ) A .(0,0)B .)21,21(--C .)22,22(-D .)22,22(-- 【答案】D10. (2012四川广元,10,3分)已知关于x 的方程2)()1(22=-++b x x 有唯一的实数解,且反比例函数xby +=1的图像在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为( ) A .xy 3-=B .x y 1=C .xy 2=D .xy 2-=【答案】D第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分.)11.(2012四川广元,11,3分)函数11-=x y 中自变量x 的取值范围是 _.【答案】1≠x ; 12、(2012四川广元,12,3分)在同一平面上⊙O 外一点P 到⊙O 上一点的距离最长为6cm ,最短为2cm ,则⊙O 的半径为_ _cm . 【答案】 2 ;13、(2012四川广元,13,3分)分解因式22327183mn n m m +-=_ _.【答案】2)3(3n m m - ;14、(2012四川广元,11,3分)已知等腰三角形的一个内角为80°,则另两个角的度数是_ _. 【答案】 20°,80°或50°,50° ;15、(2012四川广元,11,3分)已知一次函数k b kx y,+=从1,—2中随机取一个值,b 从—1,2,3中随机取一个值,则该一次函数的图像经过一、二、三现象的概率为_ _. 【答案】31三、(本大题共3小题,每小题7分,满分21分,解答应写出文字说明、证明过程或演算步骤)16.(2012四川广元,16,7分)计算:01)3(8)41(45cos 2-----︒-π【答案】解:原式=01)3(8)41(45cos 2-----︒-π=32122)4(222+-=----⨯17.(2012四川广元,17,7分)已知,211=-a 请先化简,再求代数式的值:412)211(22-++÷+-a a a a 【答案】解:∵211=-a , ∴211=-a ,23=a , 原式=12)1()2)(2(2122+-=+-+⨯+-+a a a a a a a , 当23=a 时,原式=512521)123()223(-=÷-=+÷-。
四川广元中考数学试题及答.doc
2015年四川广元中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
【中考必备】最新中考数学试题分类解析 专题52 平面几何的综合
2012年全国中考数学试题分类解析汇编(159套63专题)专题52:平面几何的综合一、选择题1. (2012湖北鄂州3分)如图,四边形OABC 为菱形,点A 、B 在以O 为圆心的弧上,若OA =2,∠1=∠2,则扇形ODE 的面积为【 】A .π34B .π35C .π2D .π3【答案】A 。
【考点】菱形的性质,等边三角形的判定和性质,扇形面积的计算。
【分析】如图,连接OB .∵OA =OB =OC =AB =BC ,∴∠AOB +∠BOC =120°。
又∵∠1=∠2,∴∠DOE =120°。
又∵OA =2,∴扇形ODE 的面积为21202 43603ππ⋅⋅=。
故选A 。
2. (2012湖南岳阳3分)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE •CD ;②AD +BC =CD ;③OD =OC ;④S 梯形ABCD =CD •OA ;⑤∠DOC =90°,其中正确的是【 】A .①②⑤B .②③④C .③④⑤D .①④⑤ 【答案】A 。
【考点】切线的性质,切线长定理,相似三角形的判定与性质。
1052629【分析】如图,连接OE ,∵AD 与圆O 相切,DC 与圆O 相切,BC 与圆O 相切, ∴∠DAO =∠DEO =∠OBC =90°, ∴DA =DE ,CE =CB ,AD ∥BC 。
∴CD =DE +EC =AD +BC 。
结论②正确。
在Rt △ADO 和Rt △EDO 中,OD =OD ,DA =DE ,∴Rt △ADO ≌Rt △EDO (HL ) ∴∠AOD =∠EOD 。
同理Rt △CEO ≌Rt △CBO ,∴∠EOC =∠BOC 。
又∠AOD +∠DOE +∠EOC +∠COB =180°,∴2(∠DOE +∠EOC )=180°,即∠DOC =90°。
[2015年中考必备]2012年中考数学卷精析版——四川广元卷
2012年中考数学卷精析版——广元卷(本试卷满分120分,考试时间120分钟)一、选择题(每小题3分,共30分)3.(2012四川广元3分)下面的四个图案中,既可以用旋转来分析整个图案的形成过程,又可以用轴对称来分析整个图案的形成过程的图案有【】A. 4个B. 3个C. 2个D. 1个【答案】A。
【考点】利用旋转设计图案,利用轴对称设计图案。
【分析】根据旋转、轴对称的定义来分析,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称.图形1、图形4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形2、图形3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有4 个。
故选A 。
4. (2012四川广元3分)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个 拐弯的角度可能为【 】A . 先向左转130°,再向左转50°B . 先向左转50°,再向右转50°C . 先向左转50°,再向右转40°D . 先向左转50°,再向左转40°【答案】B 。
【考点】平行线的性质。
【分析】根据题意画出图形,然后利用同位角相等,两直线平行与内错角相等,两直线平行,即可判定:如图:A 、∵∠1=130°,∴∠3=50°=∠2。
∴a ∥b ,且方向相反;B 、∵∠1=∠2=50°,∴a ∥b ;C 、∵∠1=50°,∠2=40°,∴∠1≠∠2,∴a 不平行于b ;D 、∵∠2=40°,∴∠3=140°≠∠1,∴a 不平行于b 。
2012年全国中考数学试题分类解析汇编专题24:方程、不等式和函数的综合
2012年全国中考数学试题分类解析汇编(159套63专题)专题24:方程、不等式和函数的综合一、选择题1. (2012福建龙岩4分)下列函数中,当x<0时,函数值y随x的增大而增大的有【】①y=x②y=-2x+1 ③1y=x-④2y=3xA.1个B.2个C.3个D. 4个【答案】【考点】【分析】2. (20121b yx+ =A. y【答案】【考点】【分析】∴△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,解得:b=-3或1。
∵反比例函数1byx+=的图象在每个象限内y随x的增大而增大,∴1+b<0。
∴b<-1。
∴b=-3。
∴反比例函数的解析式是13yx-=,即2yx=-。
故选D。
3.(2012山东菏泽3分)已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中的图象大致是【 】A .B .C . D【答案】【考点】【分析】4.(2012【 】A C 【答案】【考点】二次函数的图象,一次函数的性质。
【分析】∵抛物线的顶点在第四象限,∴﹣m >0,n <0。
∴m <0,∴一次函数y mx n =+的图象经过二、三、四象限。
故选C 。
5. (2012内蒙古呼和浩特3分)已知:M ,N 两点关于y 轴对称,且点M 在双曲线1y=2x上,点N 在直线y =x +3上,设点M 的坐标为(a ,b ),则二次函数y =﹣abx 2+(a +b )x 【 】A .有最大值,最大值为92-B .有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为92-【答案】B 。
【考点】关于y 轴对称的点的坐标,曲线上点的坐标与方程的关系,二次函数的最值。
【分析】∵M ,N 两点关于y 轴对称,点M 的坐标为(a ,b ),∴N 点的坐标为(﹣a ,b )。
又∵点M 在反比例函数1y=的图象上,点N 在一次函数y =x +3的图象上, 29+2。
2024年四川省广元市中考数学试题(含答案)
广元市2024年初中学业水平考试暨高中阶段学校招生考试数学说明:1.全卷满分150分,考试时间120分钟.2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共三个大题26个小题.3.考生必须在答题卡上答题,写在试卷上的答案无效.选择题必须使用2B 铅笔填涂答案,非选择题必须使用0.5毫米黑色墨迹签字笔答题.4.考试结束,将答题卡和试卷一并交回.第Ⅰ卷选择题(共30分)一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)1.将1-在数轴上对应的点向右平移2个单位,则此时该点对应的数是()A .1- B.1 C.3- D.3【答案】B【解析】【分析】本题考查了数轴上的动点问题,正确理解有理数所表示的点左右移动后得到的点所表示的数是解题的关键.将1-在数轴上对应的点向右平移2个单位,在数轴上找到这个点,即得这个点所表示的数.【详解】根据题意:数轴上1-所对应的点向右平移2个单位,则此时该点对应的数是1.故选B .2.下列计算正确的是()A.336a a a += B.632a a a ÷= C.()222ab a b +=+ D.()2224ab a b =【答案】D【解析】【分析】本题考查了合并同类项,同底数幂的除法,完全平方公式,积的乘方运算,正确的计算是解题的关键.根据合并同类项,同底数幂的除法,完全平方公式,积的乘方运算法则逐项分析判断即可求解.【详解】解:A .3332a a a +=,故该选项不正确,不符合题意;B .633a a a ÷=,故该选项不正确,不符合题意;C .()222=2a b a ab b +++,故该选项不正确,不符合题意;D .()2224ab a b =,故该选项正确,符合题意.故选:D .3.一个几何体如图水平放置,它的俯视图是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了组合体的三视图,解题的关键是根据从上面看到的图形是几何体的俯视图即可解答.【详解】解:从上面看,如图所示:故选:C .4.在“五·四”文艺晚会节目评选中,某班选送的节目得分如下:91,96,95,92,94,95,95,分析这组数据,下列说法错误的是()A.中位数是95B.方差是3C.众数是95D.平均数是94【答案】B【解析】【分析】此题考查了平均数,中位数,众数,方差的定义及计算,根据各定义及计算公式分别判断,正确掌握各定义及计算方法是解题的关键【详解】解:将数据从小到大排列为91,92,94,95,95,95,96,共7个数据,居中的一个数据是95,∴中位数是95,故A 选项正确;这组数据中出现次数最多的数据是95,故众数是95,故C 选项正确;这组数据的平均数是()191929495959596947++++++=,故D 选项正确;这组数据的方差为()()()()()2222212091949294949495943969477⎡⎤-+-+-+-⨯+-=⎣⎦,故B 选项错误;故选:B 5.如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于()A .64︒ B.60︒ C.54︒ D.52︒【答案】A【解析】【分析】本题考查了圆周角定理,圆内接四边形的性质,熟练掌握以上知识点是解题的关键.根据同弧所对的圆心角等于圆周角的2倍可求得ABC ∠的度数,再根据圆内接四边形对角互补,可推出CDE ABC ∠=∠,即可得到答案.【详解】解:ABC ∠ 是圆周角,与圆心角AOC ∠对相同的弧,且128AOC ∠=︒,111286422ABC AOC ∴∠=∠=⨯︒=︒,又 四边形ABCD 是O 的内接四边形,180ABC ADC ∴∠+∠=︒,又180CDE ADC ∠+∠=︒ ,64CDE ABC ∴∠=∠=︒,故选:A .6.如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出,m n 的值,再确定点(),m n 的位置即可【详解】解:∵单项式23m x y -与单项式422n x y -的和仍是一个单项式,∴单项式23m x y -与单项式422n x y -是同类项,∴24,23m n =-=,解得,2,1m n ==-,∴点(),m n 在第四象限,故选:D7.如图,将ABC 绕点A 顺时针旋转90︒得到ADE V ,点B ,C 的对应点分别为点D ,E ,连接CE ,点D 恰好落在线段CE 上,若3CD =,1BC =,则AD 的长为()A. B. C.2 D.【答案】A【解析】【分析】此题考查了旋转的性质,等腰直角三角形的判定和性质,勾股定理,由旋转得AC AE =,90CAE ∠=︒,1DE BC ==,推出ACE △是等腰直角三角形,4CE =,过点A 作AH CE ⊥于点H ,得到1HD =,利用勾股定理求出AD 的长.【详解】解:由旋转得ABC ADE △△≌,90CAE ∠=︒,∴AC AE =,90CAE ∠=︒,1DE BC ==,∴ACE △是等腰直角三角形,314CE CD DE =+=+=,过点A 作AH CE ⊥于点H ,∴122AH CE CH HE ====,∴211HD HE DE =-=-=,∴AD ===,故选:A .8.我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A 、B 两种绿植,已知A 种绿植单价是B 种绿植单价的3倍,用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株.设B 种绿植单价是x 元,则可列方程是()A.67503000503x x -= B.30006750503x x -=C.67503000503x x += D.30006750503x x +=【答案】C【解析】【分析】本题主要考查了分式方程的应用,设B 种绿植单价是x 元,则A 种绿植单价是3x 元,根据用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株,列出方程即可.【详解】解:设B 种绿植单价是x 元,则A 种绿植单价是3x 元,根据题意得:67503000503x x+=,故选:C .9.如图①,在ABC 中,90ACB ∠=︒,点P 从点A 出发沿A →C →B 以1cm /s 的速度匀速运动至点B ,图②是点P 运动时,ABP 的面积()2cmy 随时间x (s )变化的函数图象,则该三角形的斜边AB 的长为()A.5B.7C.D.【答案】A【解析】【分析】本题考查根据函数图象获取信息,完全平方公式,勾股定理,由图象可知,ABP 面积最大值为6,此时当点P 运动到点C ,得到162AC BC ⋅=,由图象可知7AC BC +=,根据勾股定理,结合完全平方公式即可求解.【详解】解:由图象可知,ABP 面积最大值为6由题意可得,当点P 运动到点C 时,ABP 的面积最大,∴162AC BC ⋅=,即12AC BC ⋅=,由图象可知,当7x =时,0y =,此时点P 运动到点B ,∴7AC BC +=,∵90C ∠=︒,∴()222222721225AB AC BC AC BC AC BC =+=+-⋅=-⨯=,∴5AB =.故选:A10.如图,已知抛物线2y ax bx c =++过点()0,2C -与x 轴交点的横坐标分别为1x ,2x ,且110x -<<,223x <<,则下列结论:①<0a b c -+;②方程220ax bx c +++=有两个不相等的实数根;③0a b +>;④23a >;⑤2244b ac a ->.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】本题考查的是二次函数的图象与性质,熟练的利用数形结合的方法解题是关键;由当=1x -时,0y a b c =-+>,可判断①,由函数的最小值2y <-,可判断②,由抛物线的对称轴为直线2b x a=-,且13222b a <-<,可判断③,由1x =时,0y a b c =-+>,当3x =时,930y a b c =++>,可判断④,由根与系数的关系可判断⑤;【详解】解:① 抛物线开口向上,110x -<<,223x <<,∴当=1x -时,0y a b c =-+>,故①不符合题意;②∵抛物线2y ax bx c =++过点()0,2C -,∴函数的最小值2y <-,∴22ax bx c ++=-有两个不相等的实数根;∴方程220ax bx c +++=有两个不相等的实数根;故②符合题意;③∵110x -<<,223x <<,∴抛物线的对称轴为直线2bx a =-,且13222ba <-<,∴13ba <-<,而0a >,∴3a b a -<<-,∴0a b +<,故③不符合题意;④∵抛物线2y ax bx c =++过点()0,2C -,∴2c =-,∵1x =时,0y a b c =-+>,即3330a b c -+>,当3x =时,930y a b c =++>,∴1240a c +>,∴128a >,∴23a >,故④符合题意;⑤∵110x -<<,223x <<,∴212x x ->,由根与系数的关系可得:12bx x a +=-,12c x x a =,∴2224144b acb ca a a-⎛⎫=⨯-- ⎪⎝⎭()2121214x x x x =+-()21212144x x x x ⎡⎤=+-⎣⎦()212114144x x =->⨯=∴22414b ac a->,∴2244b ac a ->,故⑤符合题意;故选:C .第Ⅱ卷非选择题(共120分)二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)11.分解因式:2(1)4a a +-=___________________________________.【答案】2(1)a -##2(1)a -+【解析】【分析】首先利用完全平方式展开2(1)a +,然后合并同类项,再利用完全平方公式进行分解即可.【详解】2222(1)412421(1)a a a a a a a a +-=++-=-+=-.故答案为:2(1)a -.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式:222)2(a ab b a b ±+=±.12.2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810-秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为______秒.【答案】174.310-⨯【解析】【分析】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,解题的关键是熟知110a ≤<.根据题意可知,43阿秒184310-=⨯秒,再根据科学记数法的表示方法表示出来即可.【详解】解:根据题意1阿秒是1810-秒可知,43阿秒18174310 4.310--=⨯=⨯秒,故答案为:174.310-⨯.13.点F 是正五边形ABCDE 边DE 的中点,连接BF 并延长与CD 延长线交于点G ,则BGC ∠的度数为______.【答案】18︒##18度【解析】【分析】连接BD ,BE ,根据正多边形的性质可证()SAS ABE CBD ≌,得到BE BD =,进而得到BG 是DE 的垂直平分线,即90DFG ∠=︒,根据多边形的内角和公式可求出每个内角的度数,进而得到72FDG ∠=︒,再根据三角形的内角和定理即可解答.【详解】解:连接BD ,BE ,∵五边形ABCDE 是正五边形,∴AB BC CD AE ===,A C∠=∠∴()SAS ABE CBD ≌,∴BE BD =,∵点F 是DE 的中点,∴BG 是DE 的垂直平分线,∴90DFG ∠=︒,∵在正五边形ABCDE 中,()521801085CDE -⨯︒∠==︒,∴18072FDG CDE ∠=︒-∠=︒,∴180180907218G DFG FDG ∠=︒-∠-∠=︒-︒-︒=︒.故答案为:18︒【点睛】本题考查正多边形的性质,内角,全等三角形的判定及性质,垂直平分线的判定,三角形的内角和定理,正确作出辅助线,综合运用相关知识是解题的关键.14.若点(),Q x y 满足111x y xy+=,则称点Q 为“美好点”,写出一个“美好点”的坐标______.【答案】()2,1-(答案不唯一)【解析】【分析】此题考查了解分式方程,先将方程两边同时乘以xy 后去分母,令x 代入一个数值,得到y 的值,以此为点的坐标即可,正确解分式方程是解题的关键【详解】解:等式两边都乘以xy ,得1x y +=,令2x =,则1y =-,∴“美好点”的坐标为()21-,,故答案为()21-,(答案不唯一)15.已知y =与()0k y x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0k y x x =>上点C 处,则B 点坐标为______.【答案】()0,4【解析】【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出(2,A 以及()430y x x=>,根据解直角三角形得130∠=︒,根据折叠性质,330∠=︒,然后根据勾股定理进行列式,即4OB OC ==.【详解】解:如图所示:过点A 作AH y ⊥轴,过点C 作CD x ⊥轴,∵3y x =与()0ky x x =>的图象交于点()2,A m ,∴把()2,A m 代入3y x =,得出3223m ==,∴(2,3A ,把(2,3A 代入()0ky x x =>,解得233k =⨯=,∴()430y x x =>,设43C m m ⎛⎫⎪ ⎪⎝⎭,,在23Rt tan 1323AHAHO OH ∠=== ,,∴130∠=︒,∵点B 为y 轴上一点,将OAB 沿OA 翻折,∴2130∠=∠=︒,OC OB =,∴3901230∠=︒-∠-∠=︒,则433tan 33CDm OD m =∠==,解得3m =,∴()23C ,,∴()222324OB OC ==+=,∴点B 的坐标为()04,,故答案为:()04,.16.如图,在ABC 中,5AB =,tan 2C ∠=,则5AC BC +的最大值为______.【答案】【解析】【分析】过点B 作BD AC ⊥,垂足为D ,如图所示,利用三角函数定义得到5AC BC AC DC +=+,延长DC 到E ,使EC CD x ==,连接BE ,如图所示,从而确定5AC BC AC DC AC CE AE +=+=+=,45E ∠=︒,再由辅助圆-定弦定角模型得到点E 在O 上运动,AE 是O 的弦,求5AC BC +的最大值就是求弦AE 的最大值,即AE 是直径时,取到最大值,由圆周角定理及勾股定理求解即可得到答案.【详解】解:过点B 作BD AC ⊥,垂足为D ,如图所示:tan 2C ∠=,∴在Rt BCD 中,设DC x =,则2BD x =,由勾股定理可得BC =,55DC BC ∴==,即55BC DC =,∴5AC BC AC DC +=+,延长DC 到E ,使EC CD x ==,连接BE ,如图所示:∴55AC BC AC DC AC CE AE +=+=+=, BD DE ⊥,2DE x BD ==,BDE ∴ 是等腰直角三角形,则45E ∠=︒,在ABE 中,5AB =,45E ∠=︒,由辅助圆-定弦定角模型,作ABE 的外接圆,如图所示:∴由圆周角定理可知,点E 在O 上运动,AE 是O 的弦,求55AC BC +的最大值就是求弦AE 的最大值,根据圆的性质可知,当弦AE 过圆心O ,即AE 是直径时,弦最大,如图所示:AE 是O 的直径,∴90ABE ∠=︒,45E ∠=︒ ,∴ABE 是等腰直角三角形,5AB = ,∴5BE AB ==,则由勾股定理可得AE ==55AC BC +的最大值为故答案为:【点睛】本题考查动点最值问题,涉及解三角形、勾股定理、等腰直角三角形的判定与性质、圆的性质、圆周角定理、动点最值问题-定弦定角模型等知识,熟练掌握动点最值问题-定弦定角模型的解法是解决问题的关键.三、解答题(要求写出必要的解答步骤或证明过程.共96分)17.计算:()2012024π2tan 602-⎛⎫-++︒- ⎪⎝⎭.【答案】1-【解析】【分析】此题考查了实数的混合运算,特殊的三角函数值,零次幂及负指数幂计算,正确掌握各计算法则是解题的关键.【详解】解:原式124341=+=-=-.18.先化简,再求值:22222a a b a b a b a ab b a b--÷---++,其中a ,b 满足20b a -=.【答案】b a b +,23【解析】【分析】本题考查了分式的化简求值,熟练掌握分式的化简求值是解题的关键.先将分式的分子分母因式分解,然后将除法转化为乘法计算,再计算分式的加减得到b a b +,最后将20b a -=化为2b a =,代入b a b +即得答案.【详解】原式2()()()a a b a b a b a b a b a b+--=÷---+2()()()a a b a b a b a b a b a b--=⨯--+-+a a b a b a b -=-++b a b=+20b a -= ,2b a ∴=,∴原式2223a a a ==+.19.如图,已知矩形ABCD .(1)尺规作图:作对角线AC 的垂直平分线,交CD 于点E ,交AB 于点F ;(不写作法,保留作图痕迹)(2)连接AE CF 、.求证:四边形AFCE 是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】本题主要考查矩形的性质,垂直平分线的画法及性质,三角形全等的判定与性质,菱形的判定.(1)根据垂直平分线的画法即可求解;(2)由直线EF 是线段AC 的垂直平分线.得到EA EC =,FA FC =,90COE AOF ∠=∠=︒,OA OC =,根据矩形的性质可证()ASA COE AOF ≌,可得EC FA =,即可得到EA EC FA FC ===,即可求证.【小问1详解】解:如图1所示,直线EF 为所求;【小问2详解】证明:如图2,设EF 与AC 的交点为O ,由(1)可知,直线EF 是线段AC 的垂直平分线.∴EA EC =,FA FC =,90COE AOF ∠=∠=︒,OA OC =,又∵四边形ABCD 是矩形,∴CD AB ∥,∴ECO FAO ∠=∠,∴()ASA COE AOF ≌,∴EC FA =,∴EA EC FA FC ===,∴四边形AFCE 是菱形.20.广元市开展“蜀道少年”选拔活动,旨在让更多的青少年关注蜀道、了解蜀道、热爱蜀道、宣传蜀道,进一步挖掘和传承古蜀道文化、普及蜀道知识.为此某校开展了“蜀道文化知识竞赛”活动,并从全校学生中抽取了若干学生的竞赛成绩进行整理、描述和分析(竞赛成绩用x 表示,总分为100分,共分成五个等级:A :90100x ≤≤;B :8090x ≤<;C :7080x ≤<;D :6070x ≤<;E :5060x ≤<).并绘制了如下尚不完整的统计图.抽取学生成绩等级人数统计表等级A B C D E 人数m 2730126其中扇形图中C 等级区域所对应的扇形的圆心角的度数是120︒.(1)样本容量为______,m =______;(2)全校1200名学生中,请估计A 等级的人数;(3)全校有5名学生得满分,七年级1人,八年级2人,九年级2人,从这5名学生中任意选择两人在国旗下分享自己与蜀道的故事,请你用画树状图或列表的方法,求这两人来自同一个年级的概率.【答案】(1)90,15;(2)200;(3)15.【解析】【分析】(1)利用C 等级的人数及其扇形圆心角度数求出总人数,用总人数减去其他等级的人数即可得到m 的值;(2)用总人数1200乘以抽样调查中的A 等级的比例即可得到A 等级的人数;(3)列树状图求解即可.【小问1详解】解:样本容量为1203090360÷=,90273012615m =----=,故答案为:90,15【小问2详解】151********⨯=(名)答:全校1200名学生中,估计A 等级的人数有200名.【小问3详解】设七年级学生为A ,八年级学生为1B ,2B ,九年级学生为1C ,2C 画树状图如下:由树状图可知一共有20种等可能的结果,其中两人来自同一个年级的结果有4种,∴P (选择的两人来自同一个年级)41205==.【点睛】此题考查了扇形统计图与统计表,列树状图求概率,利用个体比例求总体中的数量,正确理解统计图表得到相关信息是解题的关键.21.小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=,30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.【答案】(1)32;(2)21002cm .【解析】【分析】本题主要考查了解直角三角形的应用,勾股定理等知识,(1)根据7cos 4α=,设7b =,则4=c x ,利用勾股定理求出22(4)(7)3a x x x =-=,进而可得33sin 44a x c x α===,问题即可得解;(2)根据折射率与(1)的材料相同,可得折射率为32,根据sin sin 603sin sin 2αββ︒==,可得3sin 3β=,则有3sin sin 3OCD β∠==,在Rt ODC △中,设3OD x =,3OC x =,问题随之得解.【小问1详解】∵7cos 4α=,∴如图,设7b x =,则4=c x ,由勾股定理得,22(4)(7)3a x x x =-=,∴33sin 44a xc x α===,又∵30β=︒,∴1sin sin 302β=︒=,∴折射率为:3sin 341sin 22αβ==.【小问2详解】根据折射率与(1)的材料相同,可得折射率为32,∵60α=︒,∴sin sin 603sin sin 2αββ︒==,∴3sin 3β=.∵四边形ABCD 是矩形,点O 是AD 中点,∴2AD OD =,90D Ð=°,又∵OCD β∠=,∴3sin sin 3OCD β∠==,在Rt ODC △中,设3OD x =,3OC x =,由勾股定理得,22(3)(3)6CD x x x =-=,∴31tan 62OD xCD x β===又∵10cm CD =,∴10OD =,∴OD =,∴=AD ,∴截面ABCD 的面积为:210=.22.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如下表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?【答案】(1)长款服装购进30件,短款服装购进20件;(2)当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.【解析】【分析】本题考查了二元一次方程的实际应用,一元一次不等式的实际应用,列出正确的等量关系和不等关系是解题的关键.(1)设购进服装x 件,购进长款服装y 件,根据“用4300元购进长、短两款服装共50件,”列二元一次方程组计算求解;(2)设第二次购进m 件短款服装,则购进()200m -件长款服装,根据“第二次进货总价不高于16800元”列不等式计算求解,然后结合一次函数的性质分析求最值.【小问1详解】解:设购进短款服装x 件,购进长款服装y 件,由题意可得5080904300x y x y +=⎧⎨+=⎩,解得2030x y =⎧⎨=⎩,答:长款服装购进30件,短款服装购进20件.【小问2详解】解:设第二次购进m 件短款服装,则购进()200m -件长款服装,由题意可得()809020016800m m +-≤,解得:120m ≥,设利润为w 元,则()()()1008012090200106000w m m m =-+--=-+,∵100-<,∴w 随m 的增大而减小,∴当120m =时,∴1012060004800w =-⨯+=最大(元).答:当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.23.如图,已知反比例函数1k y x =和一次函数2y mx n =+的图象相交于点()3,A a -,3,22B a ⎛⎫+- ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1k y x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围;(3)求AOB 的面积.【答案】(1)19y x =-;2213y x =-+(2)30x -<<或92x >(3)154【解析】【分析】(1)根据题意可得3322a a ⎛⎫-=-+⎪⎝⎭,即有3a =,问题随之得解;(2)12y y >表示反比例函数1k y x =的图象在一次函数2y mx n =+的图象上方时,对应的自变量的取值范围,据此数形结合作答即可;(3)若AB 与y 轴相交于点C ,可得()0,1C ,则1OC =,根据()12AOB AOC BOC B A S S S OC x x =+=- ,问题即可得解.【小问1详解】由题知3322a a ⎛⎫-=-+⎪⎝⎭,∴3a =,∴()3,3A -,9,22B ⎛⎫-⎪⎝⎭,∴19y x=-,把()3,3A -,9,22B ⎛⎫- ⎪⎝⎭代入2y mx n =+得33922m n m n -+=⎧⎪⎨+=-⎪⎩,∴231m n ⎧=-⎪⎨⎪=⎩,∴2213y x =-+;【小问2详解】由图象可知自变量x 的取值范围为30x -<<或92x >【小问3详解】若AB 与y 轴相交于点C ,当0x =时,22113y x =-+=,∴()0,1C ,即:1OC =,∴()11915132224AOB AOC BOC B A S S S OC x x ⎛⎫=+=-=⨯⨯+= ⎪⎝⎭ .24.如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.【答案】(1)证明见解析;(2)2103r =.【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得290COD CAB ∠=∠=︒,再根据DE CF ,可得18090EDO COD ∠=︒-∠=︒,问题得证;(2)过点C 作CH AB ⊥于点H ,根据等腰直角三角形的性质有CH AH ==,结合tan 2CFD ∠=,可得2CH FH =,即FH =,利用勾股定理可得CF .在Rt FOD △中,根据tan 2OD CFD OF∠==,设半径为r 2=,问题得解.【小问1详解】证明:连接OD .∵AC BC =,90ACB ∠=︒,∴ACB △为等腰直角三角形,∴45CAB ∠=︒,∴290COD CAB ∠=∠=︒,∵DE CF ,∴180COD EDO ∠+∠=︒,∴18090EDO COD ∠=︒-∠=︒,∴DE 为O 的切线.【小问2详解】过点C 作CH AB ⊥于点H ,∵ACB △为等腰直角三角形,4AC =,∴42AB =,∴22CH AH ==,∵tan 2CFD ∠=,∴2CH FH =,∴2FH =,∵222CF CH FH =+,∴10CF =.在Rt FOD △中,∵tan 2ODCFD OF ∠==,设半径为r 210r =-,∴2103r =.【点睛】本题考查了切线的判定,圆周角定理,正切,勾股定理等知识以及等腰三角形的性质等知识,问题难度不大,正确作出合理的辅助线,是解答本题的关键.25.数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.在ABC 中,点D 为边AB 上一点,连接CD .(1)初步探究如图2,若ACD B ∠=∠,求证:2AC AD AB =⋅;(2)尝试应用如图3,在(1)的条件下,若点D 为AB 中点,4BC =,求CD 的长;(3)创新提升如图4,点E 为CD 中点,连接BE ,若30CDB CBD ∠=∠=︒,ACD EBD ∠=∠,27AC =BE 的长.【答案】(1)证明见解析(2)2CD =(321【解析】【分析】(1)根据题意,由ACD B ∠=∠,A A ∠=∠,利用两个三角形相似的判定定理即可得到ACD ABC △△∽,再由相似性质即可得证;(2)设AD BD m ==,由(1)中相似,代值求解得到AC =,从而根据ACD 与ABC 的相似比为AD AC =(3)过点C 作EB 的平行线交AB 的延长线于点H ,如图1所示,设CE DE a ==,过点B 作BF EC ⊥于点F ,如图2所示,利用含30︒的直角三角形性质及勾股定理即可得到相关角度与线段长,再由三角形相似的判定与性质得到AD AC CD AC AH CH ====,代值求解即可得到答案.【小问1详解】证明:∵ACD B ∠=∠,A A ∠=∠,∴ACD ABC △△∽,∴AC ADAB AC =,∴2AC AD AB =⋅;【小问2详解】解:∵点D 为AB 中点,∴设AD BD m ==,由(1)知ACD ABC △△∽,∴2222AC AD AB m m m =⋅=⋅=,∴AC =,∴ACD 与ABC 的相似比为AD AC =∴CD BC =,∵4BC =∴CD =;【小问3详解】解:过点C 作EB 的平行线交AB 的延长线于点H ,过C 作CY AB ⊥,如图1所示:∵点E 为CD 中点,∴设CE DE a ==,∵30CDB CBD ∠=∠=︒,∴2CB CD a ==,120DCB ∠=︒,在Rt BCY △中,12CY CD a ==,则由勾股定理可得3BD a =,过点B 作BF EC ⊥于点F ,如图2所示:∴60FCB ∠=︒,∴30CBF ∠=︒,∴12CF BC =,∴CF a =,3BF a =,∴2EF a =,∴7BE a =,∵CH BE ∥,点E 为CD 中点,∴227CH BE a ==,243DH DB a ==,EBD H ∠=∠,又∵ACD EBD ∠=∠,∴ACD H ∠=∠,ACD AHC ∽△△,∴21277AD ACCDAC AH CH a ====,又∵27AC =∴2AD =,14AH =,∴12DH =,即12=,∴a =∴BE ==【点睛】本题考查几何综合,涉及相似三角形的判定与性质、含30︒的直角三角形性质、勾股定理等知识,熟练掌握三角形相似的判定与性质是解决问题的关键.26.在平面直角坐标系xOy 中,已知抛物线F :2y x bx c =-++经过点()3,1A --,与y 轴交于点()0,2B .(1)求抛物线的函数表达式;(2)在直线AB 上方抛物线上有一动点C ,连接OC 交AB 于点D ,求CD OD的最大值及此时点C 的坐标;(3)作抛物线F 关于直线1y =-上一点的对称图象F ',抛物线F 与F '只有一个公共点E (点E 在y 轴右侧),G 为直线AB 上一点,H 为抛物线F '对称轴上一点,若以B ,E ,G ,H 为顶点的四边形是平行四边形,求G 点坐标.【答案】(1)222y x x -=-+;(2)最大值为98,C 的坐标为311,24⎛⎫- ⎪⎝⎭;(3)点G 的坐标为()2,0-,()2,4,()4,6.【解析】【分析】(1)本题考查了待定系数法解抛物线分析式,根据题意将点A B 、坐标分别代入抛物线解析式,解方程即可;(2)根据题意证明CDM ODB ∽△△,再设AB 的解析式为y mx n =+,求出AB 的解析式,再设()2,22C t t t --+,则(),2M t t +,再表示出CD OD利用最值即可得到本题答案;(3)根据题意求出()1,1E -,再分情况讨论当BE 为对角线时,当BE 为边时继而得到本题答案.【小问1详解】解:()3,1A --,()0,2B 代入2y x bx c =-++,得:9312b c c --+=-⎧⎨=⎩,解得:22b c =-⎧⎨=⎩,∴抛物线的函数表达式为222y x x -=-+.【小问2详解】解:如图1,过点C 作x 轴的垂线交AB 于点M .∴CM y ∥轴,∴CDM ODB ∽△△,∴2CD CM CMOD OB ==,设AB 的解析式为y mx n =+,把()3,1A --,()0,2B 代入解析式得312m n n -+=-⎧⎨=⎩,解得:12m n =⎧⎨=⎩,∴2y x =+.设()2,22C t t t --+,则(),2M t t +,∴2239324CM t t t ⎛⎫=--=-++ ⎪⎝⎭,∵30t -<<,10-<,∴当32t =-时,CM 最大,最大值为94CM =.∴CD OD 的最大值为98,此时点C 的坐标为311,24⎛⎫- ⎪⎝⎭.【小问3详解】解:由中心对称可知,抛物线F 与F '的公共点E 为直线1y =-与抛物线F 的右交点,∴2221x x --+=-,∴13x =-(舍),21x =,∴()1,1E -.∵抛物线F :222y x x -=-+的顶点坐标为()1,3-,∴抛物线F '的顶点坐标为()3,5-,∴抛物线F '的对称轴为直线3x =.如图2,当BE 为对角线时,由题知3E G H B x x x x -=-=,∴2G x =-,∴()2,0G -.如图3,当BE 为边时,由题知1H G E B x x x x -=-=,。
四川省广元市数学中考模拟考试试卷
四川省广元市数学中考模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分) (2016七上·大同期末) ()A .B . 1<-a<bC .D . -b<a<-12. (2分) (2020七下·门头沟期末) 计算a2×a3 的结果是()A . a6B . a5C . 2a5D . a93. (2分)(2017·保康模拟) 不等式组的整数解有()A . 0个B . 5个C . 6个D . 无数个4. (2分) (2019八下·余姚期末) 如图,矩形ABCD中,CD=6,E为BC边上一点,且EC=2将△DEC沿DE折叠,点C落在点C'.若折叠后点A,C',E恰好在同一直线上,则AD的长为()A . 8B . 9C .D . 105. (2分) (2017·临高模拟) 由五个小立方体搭成如图的几何体,从正面看到的平面图形是()A .B .C .D .6. (2分)化简分式的结果是A . 2B .C .D . -27. (2分)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A . y=0.05xB . y=5xC . y=100xD . y=0.05x+1008. (2分) (2019九上·银川月考) 在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为()A .B .C .D .9. (2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为()A . 7.6×10﹣8B . 0.76×10﹣9C . 7.6×108D . 0.76×10910. (2分)(2020·云南模拟) 某中学篮球队12名队员的年龄情况如下表,则这个队队员年龄的众数和中位数分别()年龄(岁)1415161718人数(人)14322A . 15,16B . 15,15C . 15,15.5D . 16,1511. (2分) (2020九上·德清期末) 如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A . 2B . 3C .D .12. (2分)(2016·海南) 某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是()A . 该村人均耕地面积随总人口的增多而增多B . 该村人均耕地面积y与总人口x成正比例C . 若该村人均耕地面积为2公顷,则总人口有100人D . 当该村总人口为50人时,人均耕地面积为1公顷13. (2分)(2019·襄州模拟) 如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD 于点E,则图中阴影部分的面积是()A .B . 2C .D . 2﹣14. (2分)如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A . 28°B . 26°C . 60°D . 62°15. (2分) (2020九上·延长期末) 二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是A .B .C .D .16. (2分)下列是张悦、王强和赵涵的对话,张悦:“从学校向西直走500米,再向北直走100米就到医院了”.王强:“从学校向南直走300米,再向西直走200米就到电影院了.”赵涵:“火车站在电影院正北方向的200米处.”,则医院与火车站相距()A . 100 米B . 200米C . 300米D . 500米17. (2分) (2016九下·广州期中) 如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A . ∠ABC=90°B . AC=BDC . OA=OBD . OA=AD18. (2分) (2020八上·柯桥期末) 如图,点,在边上,沿将翻折,点的对应点为点,,,则等于()A .B .C .D .19. (2分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2 .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个20. (2分)下列四个点中在函数y=2x-3的图象上有()个.(1,2) , (3,3) , (-1, -1), (1.5,0)A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)21. (1分)(2020·攀枝花) 因式分解:a-ab2=________.22. (1分)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x 轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.23. (1分) (2016九上·仙游期末) 如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B 为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.24. (1分) (2020七上·会宁期中) 1﹣2+3﹣4+…+97﹣98+99﹣100=________.三、解答题 (共5题;共54分)25. (10分) (2017七下·寿光期中) 假如某市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘坐出租车从汽车站到市政府走了10千米,应付车费多少元?26. (15分)(2017·西固模拟) 近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?27. (10分) (2016九上·萧山期中) 已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E 与点F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.(1)求四边形AEOF的面积.(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式,求x取值范围.28. (10分)(2018·崇阳模拟) 已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC= ,求⊙O的直径.29. (9分)(2019·淮安模拟) 如图,二次函数与x轴、分别交于点A、B两点(点A在点B的左边),与y轴交于点C.连接CA、CB.(1)直接写出抛物线的顶点坐标________;∠BCO=________°;(2)点P是抛物线对称轴上一个动点,当PA+PC的值最小时,点P的坐标是________;(3)在(2)(1,2)的条件下,以点O为圆心,OA长为半径画⊙O,点F为⊙O上的动点,值最小,则最小值是________;(4)点D是直线BC上方抛物线上的一点,是否存在点D使∠BCD=∠CAO-∠ACO,若存在,求出点D的坐标,若不存在,说明理由.参考答案一、选择题 (共20题;共40分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:二、填空题 (共4题;共4分)答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:答案:24-1、考点:解析:三、解答题 (共5题;共54分)答案:25-1、答案:25-2、考点:答案:26-1、答案:26-2、答案:26-3、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、答案:28-2、考点:解析:答案:29-1、答案:29-2、答案:29-3、答案:29-4、考点:解析:。
2012年全国中考数学试题分类解析汇编专题:38等腰(边)三角形
2012年全国中考数学试题分类解析汇编(159套63专题)专题:38等腰(边)三角形一、选择题1. (2012宁夏区3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是【】A.13 B.17 C.22 D.17或22【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形:①若4为腰长,9为底边长,由于4+4<9,则三角形不存在;②9为腰长,则符合三角形的两边之和大于第三边。
∴这个三角形的周长为9+9+4=22。
故选C。
2. (2012广东肇庆3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为【】A.16 B.18 C.20 D.16或20【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意。
∴此三角形的周长=8+8+4=20。
故选C。
3. (2012江苏常州2分)已知三角形三边的长分别为4,9,则这个等腰三角形的周长为【】A.13B.17C.22D.17或22【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】由三角形三边的长分别为4,9,知三角形三边的长分别为4,4,9或4,9,9,但由于4,4,9与三角形的构成条件“两边之和大于第三边,两边之差小于第三边”不符,因此,三角形三边的长只能分别为4,9,9 ,周长为22。
故选C。
4. (2012江苏徐州3分)如果等腰三角形的两边长分别为2和5,则它的周长为【】A.9 B.7 C.12D.9或12【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】根据等腰三角形的性质,如果等腰三角形的两边长分别为2和5,则另一边可能是2或5。
四川省各市2012年中考数学分类解析专题7:统计与概率
四川各市2012年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (2012四川攀枝花3分)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指【】A. 150 B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2012年中考数学成绩【答案】C。
【考点】总体、个体、样本、样本容量。
【分析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本:了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.样本是,被抽取的150名考生的中考数学成绩。
故选C。
2. (2012四川宜宾3分)宜宾今年5月某天各区县的最高气温如下表:则这10个区县该天最高气温的众数和中位数分别是【】A.32,31.5 B.32,30 C.30,32 D.32,31【答案】A。
【考点】众数,中位数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是32,故这组数据的众数为32。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为29,30,30,30,31,32,32,32,32,33,处于这组数据中间位置的数是31、32,∴中位数为:31.5。
故选A。
3. (2012四川广安3分)下列说法正确的是【】A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定【答案】C。
【考点】统计量的选择,可能性的大小,调查方法的选择,方差。
【分析】分别利用统计量的选择,可能性的大小,调查方法的选择,方差的知识进行逐项判断即可:A、商家卖鞋,最关心的是卖得最多的鞋码,即鞋码的众数,故本选项错误;B、365天人中可能人人的生日不同,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、方差越大,越不稳定,故本选项错误。
四川省各市2012年中考数学分类解析专题6:函数的图像与性质
四川各市2012年中考数学试题分类解析汇编专题6:函数的图像与性质一、选择题1. (2012四川乐山3分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是【】A.B.C.D.【答案】A。
【考点】一次函数图象与系数的关系。
【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定)。
a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合。
故选A。
2. (2012四川乐山3分)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是【】A.0<t<1B.0<t<2C.1<t<2D.﹣1<t<1【答案】B。
【考点】二次函数图象与系数的关系。
【分析】∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(﹣1,0),∴a﹣b+1=0,a<0,b>0,∵由a=b﹣1<0得b<1,∴0<b<1①,∵由b=a+1>0得a>﹣1,∴﹣1<a<0②。
∴由①②得:﹣1<a+b<1。
∴0<a+b+1<2,即0<t<2。
故选B。
3. (2012四川宜宾3分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=14x2的切线②直线x=﹣2与抛物线y=14x 2相切于点(﹣2,1) ③直线y=x+b 与抛物线y=14x 2相切,则相切于点(2,1)④若直线y=kx ﹣2与抛物线y=14x 2 相切,则实数其中正确的命题是【 】 A . ①②④B . ①③C . ②③D . ①③④4. (2012四川内江3分)已知反比例函数xk y =的图像经过点(1,-2),则k 的值为【 】A.2B.21- C.1 D.-2【答案】D 。
四川省广元市中考数学试卷
四川省广元市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·祁阳模拟) 下列实数中,无理数是()A . 2B . 3.333C . ﹣πD .2. (2分) (2019八下·灌云月考) 下列交通标志是中心对称图形的为()A .B .C .D .3. (2分)(2020·通州模拟) 2019年4月17日,国家统计局公布2019年一季度中国经济数据.初步核算,一季度国内生产总值213433亿元,按可比价格计算,同比增长6.4%.数据213433亿用科学记数法表示应为()A . 2.13433×1013B . 0.213433×1014C . 213.433×1012D . 2.13433×10144. (2分)(2019·衡水模拟) 下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .5. (2分) (2020八上·张店期末) 如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于M,以下结论:①△BCD是等腰三角形;②射线BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+BC;④△ADM≌BCD.正确有()A . ①②③B . ①②C . ①③D . ③④6. (2分)用计算器求2014的算术平方根时,下列四个键中,必须按的键是()A .B .C .D .7. (2分) (2018七下·腾冲期末) 如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第12个图形中共有()个三角形.C . 39D . 368. (2分)(2019·江汉) 下列说法正确的是()A . 了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B . 甲、乙两人跳远成绩的方差分别为S2甲=3,S2乙=4,说明乙的跳远成绩比甲稳定C . 一组数据2,2,3,4的众数是2,中位数是2.5D . 可能性是1%的事件在一次试验中一定不会发生9. (2分)如图,在Rt△ABC中,∠B=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转120°至△A′B′C′的位置,则点A经过的路线的长度是()A . 8B .C .D .10. (2分)设x1 , x2是方程x2+x﹣4=0的两个实数根,则x13﹣5x22+10=()A . ﹣29B . ﹣19C . ﹣15D . ﹣911. (2分)(2017·信阳模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②2a+b>0;③y随x的增大而增大;④a﹣b+c<0,其中正确的个数()A . 4个D . 1个12. (2分)(2019·黄石模拟) 如图,在中,,,,的垂直平分线交的延长线于点,则的长为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2020·银川模拟) 计算:|1- |-(π- )0+()-1 =________.14. (1分) (2017八下·福州期末) 已知将一副三角尺如图所示叠放在一起,则的值为________.15. (1分) (2020八下·郑州月考) 用适当的符号表示的平方是非负数:________.16. (1分) (2020七下·东湖月考) 若点P(3a﹣2,2a+7)在第二、四象限的角平分线上,则点P的坐标是________.17. (1分)(2019·合肥模拟) 反比例函数与一次函数的图象有一个交点是,则它们的另一个交点的坐标是________.18. (1分)(2018·眉山) 如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.三、解答题 (共7题;共73分)19. (5分)(2019·盘龙模拟) 先化简,再求值:,其中a=()-1- +(π-3.14)0+2cos30°20. (8分)(2017·老河口模拟) 为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)扇形统计图中m的值为________,n的值为________;(2)补全条形统计图;(3)在选择B类的学生中,甲、乙、丙三人在乒乓球项目表现突出,现决定从这三名同学中任选两名参加市里组织的乒乓球比赛,选中甲同学的概率是________.21. (10分)(2016·青海) 青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.22. (12分) (2019八上·常州期末) 如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C 站匀速驶往B地如图(2)是汽车行驶时离C站的路程千米与行驶时间小时之间的函数关系的图象.(1)填空: ________km,AB两地的距离为________km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23. (15分) (2019九上·义乌月考) 如图,在平面直角坐标系中,抛物线与轴交于A、B两点,与轴交于C点,B点与C点是直线与轴、轴的交点。
四川省广元市2012年中考数学真题试题(带解析)
某某市2012年初中学业及高中阶段学校招生考试试卷数学试题考试时间120分钟,满分120分一、选择题(每小题3分,共30分)1. (2012某某某某3分)下列4个数中,最大的数是A. 1B. -1C. 0D. 2【答案】D。
【考点】实数大小的比较。
【分析】根据正数大于负数,负数都小于0,2≈1.414,所以2﹥1.2. (2012某某某某3分)“若a是实数,则a≥0”这一事件是A. 必然事件B. 不可能事件C. 不确定事件D. 随机事件【答案】A。
【考点】随机事件,绝对值【分析】根据必然事件,不可能事件,随机事件的概念和绝对值的定义可得正确答案。
3.(2012某某某某3分)下面的四个图案中,既可以用旋转来分析整个图案的形成过程,又可以用轴对称来分析整个图案的形成过程的图案有【】A. 4个B. 3个C. 2个D. 1个【答案】A。
【考点】利用旋转设计图案,利用轴对称设计图案。
【分析】根据旋转、轴对称的定义来分析,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称.图形1、图形4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形2、图形3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有4 个。
故选A 。
4. (2012某某某某3分)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个 拐弯的角度可能为【 】A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40° 【答案】B 。
【考点】平行线的性质。
2012年中考数学 压轴测试题专题 综合问题
2012年中考数学压轴测试题专题15 综合问题一、选择题1. (2012广东湛江4分)已知长方形的面积为20cm 2,设该长方形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是【 】A. B. C.D.【答案】B 。
【考点】反比例函数的性质和图象。
【分析】∵根据题意,得xy=20,∴()20y=x>0,y>0x。
故选B 。
2. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A ..3 D .4【答案】A 。
【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。
【分析】过B 作BF⊥OA 于F ,过D 作DE⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM。
∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2。
由勾股定理得:设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE。
∴BF O F C M AMD EO ED EAE== ,,即F C M2x22-,解得:)2xB xC M 22-==,。
A 。
3. (2012天津市3分)若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1≠x 2,有下列结论: ①x 1=2,x 2=3;②1m 4>-;③二次函数y=(x -x 1)(x -x 2)+m 的图象与x 轴交点的坐标为(2,0)和(3,0). 其中,正确结论的个数是【 】 (A )0 (B )1 (C )2 (D )3【答案】C 。
四川省广元市中考数学试卷
四川省广元市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018七上·武安期末) 如果a的倒数是﹣1,则a2015的值是()A . 1B . ﹣1C . 2015D . ﹣20152. (2分) (2016七上·庆云期末) 如图是由5个大小相同的小正方体摆成的立体图形,从它的上面看的平面图形是()A .B .C .D .3. (2分) (2019八上·江岸期末) 下列式子从左到右变形正确的是()A .B .C .D .4. (2分) (2020七上·甘州期末) 以下问题,不适合抽样调查的是()A . 了解全市中小学生的每天的零花钱B . 旅客上高铁列车前的安检C . 调查某批次汽车的抗撞击能力D . 调查某池塘中草鱼的数量5. (2分) (2016九上·山西期末) 如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A . 26°B . 116°C . 128°D . 154°6. (2分) (2018七上·郑州期末) 在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A . 8x+3=7x-4B . 8x-3=7x+4C . 8(x-3)=7(x+4)D . x+4= x-37. (2分) (2020八下·吉林月考) 平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是()A . 4cm和6cmB . 20cm和30cmC . 6cm和8cmD . 8cm和12cm8. (2分) (2016高一下·辽宁期末) 如图,P是反比例函数图象在第二象限上的一点,且矩形PEOF的面积为8,则反比例函数的表达式是()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)分解因式:25﹣a2=________.10. (1分) (2020七上·舒城月考) 2006年中央为提高参加合作医疗农民的补助标准,将投入4730000000元人民币,把4730000000用科学记数法表示为________ .11. (1分) (2016八上·平南期中) 如图,直线m∥n,∠1=45°,C为直线n上的一动点,且在B点右边,若△ABC为等腰三角形,则∠BAC=________.12. (1分) (2017九下·泉港期中) 在一个不透明的袋子中装有若干个除颜色形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有________个球.13. (1分) (2019八下·澧县期中) 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于________14. (1分)(2017·大冶模拟) 正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 ,…按如图的方式放置.点A1 ,A2 , A3 ,…和点C1 , C2 , C3 ,…分别在直线y=x+1和x轴上,则点B6的坐标是________.三、解答题 (共9题;共72分)15. (5分) (2020七下·大新期末) 计算:16. (10分) (2020八下·金牛期末) 如图,在▱ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点,连接AE.(1)求证:四边形ABDE是平行四边形;(2)若AG⊥BE于点G,BC=6,AG=2,求EF的长.17. (5分)(2012·南通) 先化简,再求值:,其中x=6.18. (11分)(2020·柳州模拟) 中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应扇形的圆心角为________度,并将条形统计图补充完整.________ (2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.19. (5分)某班开展图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本,已知第一组同学比第二组同学平均每人多带1本书,第二组的人数是第一组人数的1.5倍,求第一组的人数.20. (6分) (2019九上·宿州月考) 先阅读,再解题若某个一元二次方程的两根都是整数,且其中一根是另一根的整数倍,则称该方程是“倍根方程”.例如的两根为,,因为是的-3倍,所以是“倍根方程”.(1)说明是“倍根方程”;(2)已知关于x的一元二次方程是“倍根方程”,其中m是整数,试探索m的取值条件.21. (5分)(2017·阿坝) 如图,小明在A处测得风筝(C处)的仰角为30°,同时在A正对着风筝方向距A处30米的B处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保留根号)22. (10分)(2017·和平模拟) 如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,延长BC到点F,连接AF,使∠ABC=2∠CAF.(1)求证:AF是⊙O的切线;(2)若AC=4,CE:EB=1:3,求CE的长.23. (15分)(2018·驻马店模拟) 已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F 以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共6题;共6分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共9题;共72分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:。
四川省各市2012年中考数学分类解析专题12:押轴题
四川各市2012年中考数学试题分类解析汇编专题12:押轴题一、选择题1. (2012四川成都3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是【】A.100(1+x)=121 B.100(1-x)=121 C.100(1+x)2=121 D.100(1-x)2=1212. (2012四川乐山3分)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是【】A.0<t<1B.0<t<2C.1<t<2D.﹣1<t<13. (2012四川攀枝花3分)如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD 垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC 运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E运动秒x时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为【】A.B.C.D.4. (2012四川宜宾3分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=14x2的切线②直线x=﹣2与抛物线y=14x 2 相切于点(﹣2,1) ③直线y=x+b 与抛物线y=14x 2相切,则相切于点(2,1) ④若直线y=kx ﹣2与抛物线y=14x 2 相切,则实数k=2 其中正确的命题是【 】A . ①②④B . ①③C . ②③D . ①③④ 5. (2012四川广安3分)时钟在正常运行时,时针和分针的夹角会随着时间的变换而变化,设时针与分针的夹角为y 度,运行时间为t 分,当时间从3:00开始到3:30止,图中能大致表示y 与t 之间的函数关系的图象是【 】A .B .C .D .6. (2012四川内江3分)如图,正△ABC 的边长为3cm,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数的图像大致为【 】 A. B. C. D.7. (2012四川达州3分)如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别是AB 、CD 的中点,则下列结论:①EF ∥AD ; ②S △ABO =S △DCO ;③△OGH 是等腰三角形;④BG=DG ;⑤EG=HF 。
2022年四川省广元市中考数学真题(解析版)
2022年四川省广元市中考数学试卷一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)1. 若实数a的相反数是-3,则a等于( )A. -3B. 0C. 13D. 3【答案】D【解析】【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数.即可求出a的值.【详解】解:∵3的相反数是-3,∴a=3.故选:D.【点睛】本题考查了实数的性质、相反数,解决本题的关键是掌握相反数的概念.2. 如图是某几何体的展开图,该几何体是()A. 长方体B. 圆柱C. 圆锥D. 三棱柱【答案】B【解析】【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B.【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.3. 下列运算正确的是( )A. x2+x=x3B. (﹣3x)2=6x2C. 3y•2x2y=6x2y2D. (x﹣2y)(x+2y)=x2﹣2y2【答案】C【解析】【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A、x2与x不是同类项,不能合并,该选项不符合题意;B 、(﹣3x )2=9x 2原计算错误,该选项不符合题意;C 、3y •2x 2y =6x 2y 2正确,该选项符合题意;D 、(x ﹣2y )(x +2y )=x 2﹣4y 2原计算错误,该选项不符合题意;故选:C .【点睛】本题考查的是合并同类项,积的乘方,同底数幂的除法,平方差公式,掌握以上知识是解题的关键.4. 如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2度数是( )A. 20°B. 30°C. 40°D. 50°【答案】C【解析】【分析】根据题意易得∠1+∠3=90°,然后根据平行线的性质可求解.详解】解:如图,由题意得:∠3=180°-90°-∠1=40°,∵a ∥b ,∴∠2=∠3=40°,故选C .【点睛】本题主要考查平行线的性质及平角的意义,熟练掌握平行线的性质及平角的意义是解题的关键.5. 某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N 95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N 95口罩花费9600元.已知一次性医用外科口罩的单价比N 95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x 元,则列方程正确的是( )的【A.960010x -=1600x B.960010x +=1600x C. 9600x =160010x - D. 9600x =1600x +10【答案】B【解析】【分析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元,利用数量=总价÷单价,结合购进两种口罩的只数相同,即可得出关于x 的分式方程.【详解】解:设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元,依题意得:1600960010x x =+,故选:B .【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.6. 如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是( )A. 平均数是6B. 众数是7C. 中位数是11D. 方差是8【答案】D【解析】【分析】根据题目要求算出平均数、众数、中位数、方差,再作出选择即可.【详解】解:A 、平均数为()57113957++++¸=,故选项错误,不符合题意;B 、众数为5、7、11、3、9,故选项错误,不符合题意;C 、从小到大排列为3,5,7,9,11,中位数是7,故选项错误,不符合题意;D 、方差()()()()()22222215777117379785s éù=-+-+-+-+-=ëû,故选项正确,符合题意;故选∶D.【点睛】本题考查平均数、众数、中位数、方差的算法,熟练掌握平均数、众数、中位数、方差的算法是解题的关键.7. 如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为( )A. 25°B. 35°C. 45°D. 65°【答案】A【解析】【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.【详解】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=90°-∠CAB=25°,∴∠ADC=∠ABC=25°,故选:A.【点睛】本题考查了圆周角定理的知识,解题的关键是了解直径所对的圆周角为直角,难度不大.8. 如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于再分别以A、D为圆心,大于12点E、F,则AE的长度为( )A. 52 B.3 C.2 D. 103【答案】A【解析】【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB Ð==,进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∴1,902AF AD AFE =Ð=°,∵BC =6,AC =8,∠C =90°,∴10AB ==,∴AD =4,AF =2,4cos 5AC AF A AB AE Ð===,∴5cos 2AF AE A ==Ð;故选A .【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.9. 如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos ∠APC 的值为( )C. 25【答案】B【解析】【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∥AB ,由勾股定理逆定理可以证明△DCE 直角三角形,所以cos ∠APC =cos ∠EDC 即可得答案.【详解】解:把AB 向上平移一个单位到DE ,连接CE,如图.为则DE ∥AB ,∴∠APC =∠EDC .在△DCE 中,有EC ==DC ==5DE ==,∴22252025EC DC DE +=+==,∴DCE D 是直角三角形,且90DCE Ð=°,∴cos ∠APC =cos ∠EDC =DC DE =故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.10. 二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,下列结论:(1)abc <0;(2)4a +c >2b ;(3)3b ﹣2c >0;(4)若点A (﹣2,y 1)、点B (﹣12,y 2)、点C (72,y 3)在该函数图象上,则y 1<y 3<y 2;(5)4a +2b ≥m (am +b )(m 为常数).其中正确的结论有( )A. 5个B. 4个C. 3个D. 2个【答案】C【解析】【分析】由图象可知0,0a c <>,对称轴为直线2x =,与x 轴的一个交点为()1,0-,然后可得40,0b a a b c =->-+=,则有5c a =-,进而可判断(1)(2)(3),最后根据函数的性质可进行判断(4)(5).【详解】解:由图象及题意得:0,0a c <>,对称轴为直线2x =,与x 轴的一个交点为()1,0-,∴40,0b a a b c =->-+=,∴40a a c ++=,即5c a =-,∴()()0,32342520abc b c a a a <-=´--´-=->,故(1)(3)正确;由图象可知当x =-2时,则有420a b c -+<,即42a c b +<,故(2)错误;∵点A (﹣2,y 1)、点B (﹣12,y 2)、点C (72,y 3)在该函数图象上,∴根据二次函数开口向下,离对称轴的距离越近,其所对应的函数值越大,∴321y y y >>,故(4)错误;由图象可知当x =2时,该函数有最大值,最大值为42y a b c =++,∴当x =m 时,(m 为常数),则有2y am bm c =++,∴242a b c am bm c ++³++,即()42a b m am b +³+,故(5)正确;综上所述:正确的有(1)(3)(5)共3个;故选C .【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)11. 分解因式:a 3﹣4a =_____.【答案】()()22a a a +-【解析】【分析】根据提公因式及平方差公式进行因式分解即可.【详解】解:原式=()()()2422a a a a a -=+-;故答案为:()()22a a a +-.【点睛】本题主要考查提公因式和公式法进行因式分解,熟练掌握因式分解是解题的关键.12. 石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为_____.【答案】3.4×10-10【解析】【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同为的是其所使用的是负指数幂.【详解】100.00000000034 3.410-=´故答案为:103.410-´.【点睛】本题考查用科学记数法表示绝对值小于1的数,一般形式为a ×10-n ,其中110a £<,n 为由原数左边起第一个不为零的数字前面的 0的个数决定.13. 一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.【答案】m +n =10.【解析】【分析】直接利用概率相同的频数相同进而得出答案.【详解】∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同,∴m 与n 的关系是:m +n =10.故答案为m +n =10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.14. 如图,将⊙O 沿弦AB 折叠, AB 恰经过圆心O ,若AB =面积为 _____.【答案】23p ##23p 【解析】【分析】过点O 作OD ⊥AB 于点D ,交劣弧AB 于点E,由题意易得111,222OD DE OE OB AD BD AB ======,则有30OBD Ð=°,然后根据特殊三角函数值及扇形面积公式可进行求解阴影部分的面积.【详解】解:过点O 作OD ⊥AB 于点D ,交劣弧AB 于点E ,如图所示:的由题意可得:111,222OD DE OE OB AD BD AB ======,∴30OBD Ð=°,∴60,tan 301,2cos30BD DOB OD BD OB Ð=°=×°===°,∴弓形AB 的面积为2602142222136023ODB OBE S S p p ´´´-=´-´=V 扇形,∴阴影部分的面积为11412122323OBD AB S S p p æ+=´+=çèV 弓形;故答案为23p .【点睛】本题主要考查扇形面积、轴对称的性质及三角函数,熟练掌握扇形面积、轴对称的性质及三角函数是解题的关键.15. 如图,已知在平面直角坐标系中,点A 在x 轴负半轴上,点B 在第二象限内,反比例函数k y x=的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是 _____.【答案】-4【解析】【分析】过B 作BD OA ^于D ,设B m n (,),根据三角形的面积公式求得12OA n=,进而得到点A 的坐标,再求得点C 的坐标,结合一次函数的解析式得到列出方程求解.【详解】解:过B 作BD OA ^于D ,如下图.∵点B 在反比例函数k y x =的图象上,∴设B m n (,).∵OAB V 的面积为6,∴12OA n =,∴12,0A n æö-ç÷èø.∵点C 是AB 的中点,∴12,22mn n C n-æöç÷èø.∵点C 在反比例函数k y x=的图象上,∴1222mn n mn n -×=,∴4mn =-,∴4k =-.故答案为:-4.【点睛】本题考查了反比例函数系数k 的几何意义,三角形的面积公式,中点坐标的求法,正确的理解题意是解题的关键.16. 如图,直尺AB 垂直竖立在水平面上,将一个含45°角的直角三角板CDE 的斜边DE 靠在直尺的一边AB 上,使点E 与点A 重合,DE =12cm .当点D 沿DA 方向滑动时,点E 同时从点A 出发沿射线AF 方向滑动.当点D 滑动到点A 时,点C 运动的路径长为 _____cm .【答案】(24-【解析】【分析】由题意易得CD CE DE ===cm ,则当点D 沿DA 方向下滑时,得到D C E ¢¢¢△,过点C ¢作C N AB ¢^于点N ,作C M AF ¢^于点M ,然后可得D C N E C M ¢¢¢¢V V ≌,进而可知点D 沿DA 方向下滑时,点C ′在射线AC 上运动,最后问题可求解.【详解】解:由题意得:∠DEC =45°,DE =12cm ,∴CD CE DE ===cm ,如图,当点D 沿DA 方向下滑时,得到D C E ¢¢¢△,过点C ¢作C N AB ¢^于点N ,作C M AF ¢^于点M ,∵∠DAM =90°,∴四边形NAMC ′是矩形,∴90NC M ¢Ð=°,∴90D C N NC E NC E E C M ¢¢¢¢¢¢¢¢Ð+Ð=Ð+Ð=°,∴D C N E C M ¢¢¢¢Ð=Ð,∵,90D C E C D NC E MC ¢¢¢¢¢¢¢¢=Ð=Ð=°,∴D C N E C M ¢¢¢¢V V ≌,∴C N C M ¢¢=,∵C N AB ¢^,C M AF ¢^,∴AC ¢平分∠NAM ,即点D 沿DA 方向下滑时,点C ′在射线AC 上运动,∴当C D AB ¢¢^时,此时四边形C D AE ¢¢¢是正方形,CC ′的值最大,最大值为(12cm AD AC -=-,∴当点D 滑动到点A 时,点C 运动的路径长为((21224cm ´-=-;故答案为(24-.【点睛】本题主要考查正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理,熟练掌握正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理是解题的关键.三、解答题(要求写出必要的解答步骤或证明过程.共96分)17. 计算:2sin60°﹣2|+(π)0+(﹣12)﹣2.【答案】3【解析】【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣2|+(π)0+(﹣12)﹣2=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.18. 先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ì-<+í+³î的整数解.【答案】22x ,当x =2时,原分式的值为12【解析】【分析】由题意先把分式进行化简,求出不等式组的整数解,根据分式有意义的条件选出合适的x 值,进而代入求解即可.【详解】解:原式=()()()()()22211211221111x x x x x x x x x x x x+-æö--+¸=´=ç÷+-+-èø;由()211532x x x x ì-<+í+³î可得该不等式组的解集为:13x -£<,∴该不等式组的整数解为:-1、0、1、2,当x =-1,0,1时,分式无意义,∴x =2,∴把x =2代入得:原式=22122=.【点睛】本题主要考查分式的运算及一元一次不等式组的解法,要注意分式的分母不能为0.19. 如图,在四边形ABCD 中,AB ∥CD ,AC 平分∠DAB ,AB =2CD ,E 为AB 中点,连接CE .(1)求证:四边形AECD 为菱形;(2)若∠D =120°,DC =2,求△ABC 的面积.【答案】(1)见详解(2)△ABC 的面积为【解析】【分析】(1)由题意易得CD =AE ,∠DAC =∠EAC =∠DCA ,则有四边形AECD 是平行四边形,然后问题可求证;(2)由(1)及题意易得60,,30DAE CEB CE BE CAB Ð=Ð=°=Ð=°,则有△BCE 是等边三角形,然后可得△ACB 是直角三角形,则2AC BC ==,进而问题可求解.【小问1详解】证明:∵AB ∥CD ,AC 平分∠DAB ,∴∠DAC =∠EAC ,∠EAC =∠DCA ,∴∠DAC =∠DCA ,∴DA =DC ,∵AB =2CD ,E 为AB 中点,∴12CD AE AB ==,∵//CD AE ,∴四边形AECD 是平行四边形,∵DA =DC ,∴四边形AECD 是菱形;【小问2详解】解:由(1)知://,//,2CD AE AD EC CD AE EC ===,∵∠D =120°,∴118060,302DAE ADC CEB CAB DAE ACE Ð=°-=°=ÐÐ=Ð=°=Ð,∵E 为AB 中点,∴AE BE CE ==,∴△BCE 是等边三角形,∴60ECB Ð=°,2BC CE ==,∴90ACB ACE ECB Ð=Ð+Ð=°,∴AC ==,∴12ACB S AC BC =×=V .【点睛】本题主要考查菱形的性质与判定、等边三角形的性质及含30°直角三角形的性质,熟练掌握菱形的性质与判定、等边三角形的性质及含30°直角三角形的性质是解题的关键.20. 为丰富学生课余活动,明德中学组建了A 体育类、B 美术类、C 音乐类和D 其它类四类学生活动社团,要求每人必须参加且只参加一类活动.学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况.根据调查结果绘制了两幅不完整的统计图(如图所示).请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是 人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为 ;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率.【答案】(1)40;补全条形统计图见解析;90°;(2)该校参与体育类和美术类社团的学生总人数大约有1625人;(3)选中1名男生和1名女生担任开幕式主持人的概率是23.【解析】【分析】(1)利用A类人数除以所占百分比可得抽取总人数;根据总数计算出C类的人数,然后再补图;用360°乘以C类所占的百分比,计算即可得解;(2)利用样本估计总体的方法计算即可;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生的结果数,然后利用概率公式求解.【小问1详解】解:抽取的学生总数:12÷30%=40(人),C类学生人数:40-12-14-4=10(人),补全统计图如下:扇形统计图中C类所在的扇形的圆形角度数是360°×1040=90°;故答案为:40;90°;【小问2详解】解:2500×121440+=1625(人),答:该校参与体育类和美术类社团的学生总人数大约有1625人;【小问3详解】(3)画树状图为:共有12种等可能的结果数,其中选中1名男生和1名女生担任开幕式主持人的有8种,所以选中1名男生和1名女生担任开幕式主持人的概率是:82 123=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查的是条形统计图和扇形统计图的综合运用.21. 如图,计划在山顶A的正下方沿直线CD方向开通穿山隧道EF.在点E处测得山顶A的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.【答案】隧道EF 的长度()70+米.【解析】【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==Ð=Ð=°Ð=°,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==°,∴80x +=,解得:40x =+,∴()40m AG EG DG ===+,∴()()2401070m EF ED DF =-=+-=;答:隧道EF 的长度()70+米.【点睛】本题主要考查解解直角三角形,熟练掌握三角函数是解题的关键.22. 如图,在平面直角坐标系xOy 中,函数y =x +b 的图像与函数k y x=(x >0)的图像相交于点B (1,6),并与x 轴交于点A .点C 是线段AB 上一点,△OAC 与△OAB 的面积比为2:3(1)求k 和b 的值;(2)若将△OAC 绕点O 顺时针旋转,使点C 的对应点C ′落在x 轴正半轴上,得到△OA ′C ′,判断点A ′是否在函数k y x=(x >0)的图像上,并说明理由.【答案】(1)b =5,k =6(2)不在,理由见详解【解析】【分析】(1)把点B 的坐标分别代入一次函数与反比例函数解析式进行求解即可;(2)由(1)及题意易得点C 的坐标,然后根据旋转的性质可知点C ′的坐标,则根据等积法可得点A ′的纵坐标,进而根据三角函数可得点A ′的横坐标,最后问题可求解.【小问1详解】解:由题意得:166b k +=ìí=î,∴b =5,k =6;【小问2详解】解:点A ′不在反比例函数图像上,理由如下:过点A ′作A ′E ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,如图,由(1)可知:一次函数解析式为5y x =+,反比例函数解析式为6y x =,∴点()5,0A -,∵△OAC 与△OAB 的面积比为2:3,且它们都以OA 为底,∴△OAC 与△OAB 的面积比即为点C 纵坐标与点B 纵坐标之比,∴点C 的纵坐标为2643´=,∴点C 的横坐标为451x =-=-,∴点C 坐标为()1,4-,∴CF =4,OF =1,∴OC ==tan 4CF COF OFÐ==,由旋转的性质可得:OC OC A OC AOC ¢¢¢==Ð=Ð,根据等积法可得:OA CF A E OC ×¢==¢∴tan A E OE A OE ¢==¢Ð,∴A ¢,100617=¹,∴点A ′不在反比例函数图像上.【点睛】本题主要考查反比例函数与一次函数的综合、三角函数及旋转的性质,熟练掌握反比例函数与一次函数的综合、三角函数及旋转的性质是解题的关键.23. 为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【解析】【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m £<时,当4050m ££时及当5060m <£时,进而问题可分类求解即可.【小问1详解】解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=ìí+=î,解得:3826x y =ìí=î;答:科技类图书的单价为38元,文学类图书的单价为26元.【小问2详解】解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m £<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ££时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ££时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+´+=;③当5060m <£时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.24. 在Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O 交AB 于点D ,点E 是边BC 的中点,连结DE .(1)求证:DE 是⊙O 的切线;(2)若AD =4,BD =9,求⊙O 的半径.【答案】(1)见详解(2【解析】【分析】(1)连接OD ,OE ,由题意易得OE ∥AB ,∠A =∠ODA ,则有∠A =∠COE =∠DOE =∠ODA ,然后可得△COE ≌△DOE ,进而问题可求证;(2)连接CD ,由题意易得∠ADC =90°,然后可证△ADC ∽△CDB ,则有2CD AD BD =g ,进而可得CD =6,最后利用勾股定理可求解.【小问1详解】证明:连接OD ,OE ,如图所示:∵OA OD =,∴∠A =∠ODA ,∵点E 是边BC 的中点,∴OE ∥AB ,∴∠DOE =∠ODA ,∠A =∠COE ,∴∠DOE =∠COE ,∵,OD OC OE OE ==,∴△COE ≌△DOE (SAS ),∵∠ACB =90°,∴∠ODE =∠ACB =90°,∴DE 是⊙O 的切线;【小问2详解】解:连接CD ,如图所示:∵AC 是⊙O 的直径,∴∠ADC =∠CDB =90°,∴∠A +∠ACD =∠ACD +∠DCB =90°,∴∠A =∠DCB ,∴△ADC ∽△CDB ,∴=CD BD AD CD,即2CD AD BD =g ,∵AD =4,BD =9,∴236CD =,∴6CD =,在Rt △ADC 中,由勾股定理得:AC ==∴⊙O .【点睛】本题主要考查切线的判定、相似三角形的性质与判定及勾股定理,熟练掌握切线的判定、相似三角形的性质与判定及勾股定理是解题的关键.25. 在Rt △ABC 中,AC =BC ,将线段CA 绕点C 旋转α(0°<α<90°),得到线段CD ,连接AD 、BD .(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为 ;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE 之间的数量关系,并证明.【答案】(1)135°(2)(2)①补全图形见解析;∠ADB=45°;②2BE-AD CE.理由见解析【解析】【分析】(1)由题意得点A、D、B都在以C为圆心,CA为半径的⊙C上,利用圆内接四边形的性质即可求解;(2)①根据题意补全图形即可;同(1),利用圆周角定理即可求解;②过点C作CH⊥EC于点C,交ED的延长线于点H,证明BE=DE,△CEH是等腰直角三角形,推出EH=2BE-AD,利用等腰直角三角形的性质即可证明结论.【小问1详解】解:由题意得:CA=CD=CB,∴点A、D、B都在以C为圆心,CA为半径的⊙C上,如图,在优弧 AB上取点G,连接AG,BG,∵Rt△ABC中,∠BCA=90°,∴∠BGA=45°,∵四边形ADBG是圆内接四边形,∴∠ADB=180°-45°=135°,故答案为:135°;【小问2详解】①补全图形,如图:∴点A、D、B都在以C为圆心,CA为半径的⊙C上,如图,∵Rt△ABC中,∠BCA=90°,∴∠ADB=45°;②2BE-AD CE.理由如下:过点C作CH⊥EC于点C,交ED的延长线于点H,如图:∵CD=CB,CE是∠BCD的平分线,∴CE是线段BD的垂直平分线,∴BE=DE,∠EFD=90°,由①知∠ADB=45°,∴∠DEF=45°,∴△CEH是等腰直角三角形,∴∠DEF=∠H=45°,CE=CH,∵CD=CA,∴∠CAD=∠CDA,则∠CAE=∠CDH,∴△AEC≌△DHC,∴AE=DH,∴EH=2ED-AD=2BE-AD,∵△CEH是等腰直角三角形,∴2BE-AD CE.【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,圆内接四边形的性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形和等腰直角三角形解决问题.26. 在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=14时,若点P是抛物线对称轴上的一个动点,求△PAB周长的最小值;(3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【答案】(1)2a=b+1,c=-2;(2)△PAB的周长最小值是;(3)此时Q(-1,-2),DQ.【解析】【分析】(1)先求得点A、点B的坐标,再利用待定系数法求解即可;(2)先利用对称性找出△PAB周长最小时点P的位置,此时AP=CP,△PAB的周长最小值为:PB+PA+AB=BC+AB,根据勾股定理求出AB、BC的长即可求出△PAB最小值;(3)过点Q作QF⊥x轴交于F点,交直线AB于点E,得到∠QED=∠EQD=45°,推出QD=ED EQ,设Q(t,t2+t-2),E(t,-t-2),求得QE=-t2-2t,再利用二次函数的性质即可求解.【小问1详解】解:∵直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,∴点A的坐标为(-2,0),点B的坐标为(0,-2),∵抛物线y=ax2+bx+c(a>0)经过A,B两点,∴4202a b cc-+=ìí=-î,∴2a=b+1,c=-2;【小问2详解】解:当a=14时,则b=-12,∴抛物线的解析式为y=14x2-12x-2,抛物线的对称轴为直线x=1,∵点A的坐标为(-2,0),∴点C的坐标为(4,0) ,△PAB的周长为:PB+PA+AB,且AB是定值,∴当PB+PA最小时,△PAB的周长最小,∵点A、C关于直线x=1对称,∴连接BC交直线x=1于点P,此时PB+PA值最小,∵AP=CP,∴△PAB的周长最小值为:PB+PA+AB=BC+AB,∵A(-2,0),B(0,-2),C(4,0),∴OA=2,OB=2,OC=4,由勾股定理得BC AB,∴△PAB的周长最小值是:.【小问3详解】解:当a=1时,b=1,∴抛物线的解析式为y=x2+x-2,过点Q作QF⊥x轴交于F点,交直线AB于点E,∵A(-2,0),B(0,-2),∴OA=OB,∴∠OAB=45°,∵QD⊥AB,∴∠AEF=∠QED=∠EQD=45°,∴QD=ED EQ,设Q(t,t2+t-2),E(t,-t-2), ∴QE=-t-2-(t2+t-2)=-t2-2t,∴DQ QE(t2+2t(t+1)2,当t=-1时,DQ,此时Q(-1,-2).【点睛】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,等腰直角三角形的性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广元市2012年初中学业及高中阶段学校招生考试试卷数 学 试 题考试时间120分钟,满分120分一、选择题(每小题3分,共30分)1. 下列4个数中,最大的数是 ( ) A. 1 B. -1 C. 0 D. 22. “若a 是实数,则a ≥0”这一事件是( )A. 必然事件B. 不可能事件C. 不确定事件D. 随机事件3. 下面的四个图案中,既可以用旋转来分析整个图案的形成过程,又可以用轴对称来分析整个图案的形成过程的图案有( ) A. 4个 B. 3个 C. 2个 D. 1个4. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为( )A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40° 5. 若二次函数222-++=a bx ax y (a ,b 为常数)的图象如图,则a 的值为( )A. 1B.2 C. 2- D. -26. 若以A (-0.5,0),B (2,0),C (0,1)三点为顶点要画平行四边形,则第四个顶点不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 7. 一组数据2,3,6,8,x ,其中x 又是不等式组⎩⎨⎧<->-07042x x 的整数解,则这组数据的中位数可能是( ) A. 3 B. 4 C. 6 D. 3或68. 如图,A ,B 是⊙O 上两点,若四边形ACBO 是菱形,⊙O 的半径为r ,则点A 与点B 之间的距离为( ) A.r 2 B. r 3 C. r D. r 29. 如图,点A 的坐标为(-1,0),点B 在直线x y =上运动,当线段AB 最短时,点B 的坐标为 A.(0,0) B.(21-,21-) C.(22,22-) D.(22-,22-)10. 已知关于x 的方程2)()1(22=-++b x x 有唯一实数解,且反比例函数xby +=1的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为 A. x y 3-= B. x y 1= C. xy 2= D. x y 2-= 二、填空题(每小题3分,共15分) 11. 函数11-=x y 中,自变量x 的取值范围是__________12. 在同一平面上,⊙O 外一点P 到⊙O 上一点的距离最长为6cm ,最短为2cm ,则⊙O 的半径为__________cm 13. 分解因式:22327183mn n m m +-=____________________14. 已知等腰三角形的一个内角为80°,则另两个角的度数是___________________ 15. 已知一次函数b kx y +=,其中k 从1,-2中随机取一个值,b 从-1,2,3中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为__________ 三、解答题(共75分)16.(本小题7分)计算:01)3(8)41(45cos 2-----︒-π17.(本小题7分)已知211=-a ,请先化简,再求代数式的值:412)211(22-++÷+-a a a a18.(本小题7分)如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF。
(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果,,那么”);(2)选择(1)中你写出的一个命题,说明它正确的理由。
19.(本小题8分)如图,A,B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB)。
经测量,森林保护区中心P点在A城市的北偏东30°方向,B城市的北偏西45°方向上。
已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内,请问:计划修筑的这条高等级公路会不会穿越保护区?为什么?20.(本小题8分)某乡要在生活垃圾存放区建一个老年活动中心,这样必须把1200m3的生活垃圾运走。
(1)假如每天能运x m3,所需时间为y天,写出y与x之间的函数关系式;(2)若每辆拖拉机一天能运12m3,则5辆这样的拖拉机要多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?21.(本小题8分)市教育局行政部门对某县八年级学生的学习情况进行质量监测,在抽样分析中把有一道四选一的单选题的答题结果绘制成了如下两个统计图。
请你根据图中信息,解决下列问题:(1)一共随机抽样了多少名学生?(2)请你把条形统计图补充完整;(3)在扇形统计图中,该县八年级学生选C的所对应圆心角的度数是多少?(4)假设正确答案是B,如果该县区有5000名八年级学生,请估计本次质量监测中答对此道题的学生大约有多少名?22.(本小题9分)某中心城市有一楼盘,开发商准备以每平方米7000元的价格出售。
由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售。
(1)求平均每次下调的百分比;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力。
请问房产销售经理的方案对购房者是否更优惠?为什么?23.(本小题9分)如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°,①求AD的长;②求出图中阴影部分的面积。
24.(本小题12分)如图,在矩形ABCO 中,AO=3,tan ∠ACB=34,以O 为坐标原点,OC 为x 轴,OA 为y 轴建立平面直角坐标系。
设D ,E 分别是线段AC ,OC 上的动点,它们同时出发,点D 以每秒3个单位的速度从点A 向点C 运动,点E 以每秒1个单位的速度从点C 向点O 运动,设运动时间为t 秒。
(1)求直线AC 的解析式;(2)用含t 的代数式表示点D 的坐标; (3)当t 为何值时,△ODE 为直角三角形?(4)在什么条件下,以Rt △ODE 的三个顶点能确定一条对称轴平行于y 轴的抛物线?并请选择一种情况,求出所确定抛物线的解析式。
2012年四川广元中考数学试题参考答案一、选择题:二、填空题:11. 1≠x ; 12. 2 ; 13. 2)3(3n m m - ; 14. 20°,80°或50°,50° 15. 1/3 三、解答题16. 01)3(8)41(45cos 2-----︒-π=32122)4(222+-=----⨯17. ∵211=-a , ∴211=-a ,23=a , 原式=12)1()2)(2(2122+-=+-+⨯+-+a a a a a a a , 当23=a 时,原式=512521)123()223(-=÷-=+÷-。
18. (1)命题1:如果①,②,那么③; 命题2:如果①,③,那么②。
(2)命题1的证明:∵①AE ∥DF , ∴∠A=∠D ,∵②AB=CD ,∴AB+BC=CD+BC ,即AC=DB , 在△AEC 和△DFB 中,∵∠E=∠F ,∠A=∠D ,AC=DB , ∴△AEC ≌△DFB (AAS ),∴CE=BF ③(全等三角形对应边相等); 命题2的证明:∵①AE ∥DF , ∴∠A=∠D , ∵②AB=CD ,∴AB+BC=CD+BC ,即AC=DB , 在△AEC 和△DFB 中,∵∠E=∠F ,∠A=∠D ,③CE=BF , ∴△AEC ≌△DFB (AAS ), ∴AC=DB (全等三角形对应边相等),则AC -BC=DB -BC ,即AB=CD ②。
注:命题“如果②,③,那么①”是假命题。
19. 解:作点P 到直线AB 的垂线段PE ,则线段PE 的长,就是点P 到直线AB 的距离,根据题意,∠APE=∠PAC=30°,∠BPE=∠PBD=45°, 则在Rt △PAE 和Rt △PBE 中,PE PE APE PE AE 3330tan tan =︒⋅=∠⋅=, BE=PE ,而AE+BE=AB , 即100)133(=+PE , ∴PE=)33(50-, ∵PE>50,即保护区中心到公路的距离大于半径50千米,∴公路不会穿越保护区。
20. 解:(1)每天运量x m 3时,需时间xy 1200=天; (2)5辆拖拉机每天能运5×12m 3=60 m 3,则y=1200÷60=20,即需要20天运完; (3)假设需要增加n 辆,根据题意:8×60+6×12(n +5)≥1200,n ≥5,答:至少需要增加5辆。
21. 解:(1)15÷5%=300;(2)由图知,选B 的学生有300人×60%=180人,则选D 的学生有300人-(15人+180人+60人)=45人,补充条形统计图如图; (3)选C 所对应圆心角是20%×360°=72°; (4)5000人×60%=3000人,答:共随机抽取了300名学生,C 所对圆心角72°,答对此题的学生约有3000人。
22. 解:(1)设平均每次下调%p ,则有5670%)1(70002=-p ,81.0%)1(2=-p∵1-p%>0, ∴1-p%=0.9, p%=0.1=10%, 答:平均每次下调10%;(2)先下调5%,再下调15%,这样最后单价为7000元×(1-5%)×(1-15%)=5652.5元∴ 销售经理的方案对购房者更优惠一些。
23.(1)证明:∵CD 切⊙O 于E ,∴∠3=∠4∵AB 是直径,∴∠AEB=90°, 又∵AD ⊥CD ,∴∠D=90°,∴∠1+∠3=90°=∠2+∠4, 而∠3=∠4,∴∠1=∠2,即AE 平分∠DAC ;(2)①Rt △ABE 中,AE=AB •sin ∠4=3×sin60°=233233=⨯, Rt △AED 中,AD=AE •sin ∠3=233×sin60°=4923233=⨯;②连结OE ,则有∠AOE=2∠4=120°,∴43π=AOE S 扇形, Rt △ABE 中,∠2=90°-∠4=30°, 作EH ⊥AB 于点H ,则EH=AE •sin30°=433, ∴1627433232121=⨯⨯=⋅=∆EH AO S AOE , ∴1627-121627-43-ππ===∆AOE AOE S S S 扇形弓形。