(完整版)四川省德阳市中考数学试卷
2022年四川省德阳市中考数学试卷含答案详解
2022年四川省德阳市中考数学试卷及答案解析一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1.(4分)2-的绝对值是()A.2-B.2C.2±D.12-2.(4分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(4分)下列计算正确的是()A.222()a b a b-=-B1=C.1a a aa÷⋅=D.233611()26ab a b-=-4.(4分)如图,直线//m n,1100∠=︒,230∠=︒,则3(∠=)A.70︒B.110︒C.130︒D.150︒5.(4分)下列事件中,属于必然事件的是()A.抛掷硬币时,正面朝上B.明天太阳从东方升起C.经过红绿灯路口,遇到红灯D.玩“石头、剪刀、布”游戏时,对方出“剪刀”6.(4分)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:)kg分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,57.(4分)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km8.(4分)一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是() A.16πB.52πC.36πD.72π9.(4分)一次函数1y ax=+与反比例函数ayx=-在同一坐标系中的大致图象是()A.B.C.D.10.(4分)如图,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA边上的中点,则下列结论一定正确的是()A.四边形EFGH是矩形B.四边形EFGH的内角和小于四边形ABCD的内角和C.四边形EFGH的周长等于四边形ABCD的对角线长度之和D.四边形EFGH的面积等于四边形ABCD的面积的1 411.(4分)如果关于x的方程211x mx+=-的解是正数,那么m的取值范围是()A.1m>-B.1m>-且0m≠C.1m<-D.1m<-且2m≠-12.(4分)如图,点E是ABC∆的内心,AE的延长线和ABC∆的外接圆相交于点D,与BC 相交于点G,则下列结论:①BAD CAD∠=∠;②若60BAC∠=︒,则120BEC∠=︒;③若点G为BC的中点,则90BGD∠=︒;④BD DE=.其中一定正确的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)分解因式:2ax a-=.14.(4分)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制).某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是分.15.(4分)已知2()25x y+=,2()9x y-=,则xy=.16.(4分)如图,直角三角形ABC纸片中,90ACB∠=︒,点D是AB边上的中点,连结CD,将ACD∆沿CD折叠,点A落在点E处,此时恰好有CE AB⊥.若1CB=,那么CE=.17.(4分)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,⋯⋯图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,⋯⋯⋯⋯由此类推,图④中第五个正六边形数是 .18.(4分)如图,已知点(2,3)A -,(2,1)B ,直线y kx k =+经过点(1,0)P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或推演步骤)19.(702(3.14)3tan 60|1(2)π---︒++-.20.(12分)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值;(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.21.(11分)如图,一次函数312y x=-+与反比例函数kyx=的图象在第二象限交于点A,且点A的横坐标为2-.(1)求反比例函数的解析式;(2)点B的坐标是(3,0)-,若点P在y轴上,且AOP∆的面积与AOB∆的面积相等,求点P 的坐标.22.(11分)如图,在菱形ABCD中,60ABC∠=︒,AB=,过点D作BC的垂线,交BC的延长线于点H.点F从点B出发沿BD方向以2/cm s向点D匀速运动,同时,点E 从点H出发沿HD方向以1/cm s向点D匀速运动.设点E,F的运动时间为t(单位:)s,且03t<<,过F作FG BC⊥于点G,连结EF.(1)求证:四边形EFGH是矩形;(2)连结FC,EC,点F,E在运动过程中,BFC∆是否能够全等?若能,求∆与DCE出此时t的值;若不能,请说明理由.23.(11分)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A 种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?24.(12分)如图,AB是O的直径,CD是O的弦,AB CD⊥,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且2∠=∠.ECD BAD(1)求证:CF是O的切线;(2)如果10CD=,AB=,6①求AE的长;②求AEF∆的面积.25.(14分)抛物线的解析式是24=-++.直线2y x x a=-+与x轴交于点M,与y轴y x交于点E,点F与直线上的点(5,3)G-关于x轴对称.(1)如图①,求射线MF 的解析式;(2)在(1)的条件下,当抛物线与折线EMF 有两个交点时,设两个交点的横坐标是1x ,212()x x x <,求12x x +的值;(3)如图②,当抛物线经过点(0,5)C 时,分别与x 轴交于A ,B 两点,且点A 在点B 的左侧.在x 轴上方的抛物线上有一动点P ,设射线AP 与直线2y x =-+交于点N .求PN AN的最大值.2022年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1.(4分)2-的绝对值是()A.2-B.2C.2±D.12-【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:2-的绝对值是2.故选:B.2.(4分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A.3.(4分)下列计算正确的是()A.222()a b a b-=-B1=C.1a a aa÷⋅=D.233611()26ab a b-=-【分析】根据分式的乘除法,算术平方根,幂的乘方与积的乘方,完全平方公式,进行计算即可进行判断.【解答】解:A .222()2a b a ab b -=-+,故A 选项错误,不符合题意;1=,故B 选项正确,符合题意;C .1111a a a a a÷⋅=⨯=,故C 选项错误,不符合题意; D .233611()28ab a b -=-,故D 选项错误,不符合题意. 故选:B .4.(4分)如图,直线//m n ,1100∠=︒,230∠=︒,则3(∠= )A .70︒B .110︒C .130︒D .150︒【分析】由两直线平行,同位角相等得到5100∠=︒,再根据三角形的外角性质即可得解.【解答】解:如图:直线//m n ,1100∠=︒,51100∴∠=∠=︒,345∠=∠+∠,4230∠=∠=︒,330100130∴∠=︒+︒=︒.故选:C .5.(4分)下列事件中,属于必然事件的是( )A .抛掷硬币时,正面朝上B.明天太阳从东方升起C.经过红绿灯路口,遇到红灯D.玩“石头、剪刀、布”游戏时,对方出“剪刀”【分析】根据事件发生的可能性大小判断即可.【解答】解:A、抛掷硬币时,正面朝上,是随机事件,不符合题意;B、明天太阳从东方升起,是必然事件,符合题意;C、经过红绿灯路口,遇到红灯,是随机事件,不符合题意;D、玩“石头、剪刀、布”游戏时,对方出“剪刀”,是随机事件,不符合题意;故选:B.6.(4分)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:)kg分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,5【分析】根据中位数、众数的定义进行解答即可.【解答】解:这组数据中,出现次数最多的是5,共出现3次,因此众数是5,将这组数据从小到大排列,处在中间位置的一个数是5,因此中位数是5,故选:D.7.(4分)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km【分析】根据三角形的三边关系得到李锐两家的线段的取值范围,即可得到选项.【解答】解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设李锐两家的直线距离为x,根据三角形的三边关系得5353x-<<+,即28x<<,杨冲,李锐两家的直线距离可能为3km,故选:A.8.(4分)一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是() A.16πB.52πC.36πD.72π【分析】先求出圆锥侧面展开图扇形的弧长,再根据扇形面积的计算公式12S lR=进行计算即可.【解答】解:如图,8AB =,9SA SB ==,所以侧面展开图扇形的弧BC 的长为8π,由扇形面积的计算公式得, 圆锥侧面展开图的面积为189362ππ⨯⨯=, 故选:C .9.(4分)一次函数1y ax =+与反比例函数a y x=-在同一坐标系中的大致图象是( ) A . B .C .D .【分析】根据一次函数与反比例函数图象的特点,可以从0a >,和0a <,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当0a >,时,一次函数1y ax =+的图象过第一、二、三象限,反比例函数a y x =-图象在第二、四象限,无选项符合;(2)当0a <,时,一次函数1y ax =+的图象过第一、二、四象限,反比例函数a y x=-图象在第一、三象限,故B 选项正确.故选:B .10.(4分)如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,则下列结论一定正确的是( )A .四边形EFGH 是矩形B .四边形EFGH 的内角和小于四边形ABCD 的内角和C .四边形EFGH 的周长等于四边形ABCD 的对角线长度之和D .四边形EFGH 的面积等于四边形ABCD 的面积的14 【分析】根据三角形中位线定理可得四边形EFGH 是平行四边形,进而逐一判断即可.【解答】解:A .如图,连接AC ,BD ,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,//EH BD ∴,12EH BD =,//FG BD ,12FG BD =, //EH FG ∴,EH FG =,∴四边形EFGH 是平行四边形,故A 选项错误;B .四边形EFGH 的内角和等于360︒,四边形ABCD 的内角和等于360︒,故B 选项错误; C .点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,12EH BD ∴=,12FG BD =, EH FG BD ∴+=,同理:EF HG AC +=,∴四边形EFGH 的周长等于四边形ABCD 的对角线长度之和,故C 选项正确;D.四边形EFGH的面积不等于四边形ABCD的面积的14,故D选项错误.故选:C.11.(4分)如果关于x的方程211x mx+=-的解是正数,那么m的取值范围是()A.1m>-B.1m>-且0m≠C.1m<-D.1m<-且2m≠-【分析】先去分母将分式方程化成整式方程,再求出方程的解1x m=--,利用0x>和1x≠得出不等式组,解不等式组即可求出m的范围.【解答】解:两边同时乘(1)x-得,21x m x+=-,解得:1x m=--,又方程的解是正数,且1x≠,∴1xx>⎧⎨≠⎩,即1011mm-->⎧⎨--≠⎩,解得:12mm<-⎧⎨≠-⎩,m∴的取值范围为:1m<-且2m≠-.故答案为:D.12.(4分)如图,点E是ABC∆的内心,AE的延长线和ABC∆的外接圆相交于点D,与BC 相交于点G,则下列结论:①BAD CAD∠=∠;②若60BAC∠=︒,则120BEC∠=︒;③若点G为BC的中点,则90BGD∠=︒;④BD DE=.其中一定正确的个数是()A.1B.2C.3D.4【分析】利用三角形内心的性质得到BAD CAD∠=∠,则可对①进行判断;直接利用三角形内心的性质对②进行判断;根据垂径定理则可对③进行判断;通过证明DEB DBE∠=∠得到DB DE=,则可对④进行判断.【解答】解:E是ABC∆的内心,AD ∴平分BAC ∠,BAD CAD ∴∠=∠,故①正确;如图,连接BE ,CE ,E 是ABC ∆的内心,12EBC ABC ∴∠=∠,12ECB ACB ∠=∠, 60BAC ∠=︒,120ABC ACB ∴∠+∠=︒,1180180()1202BEC EBC ECB ABC ACB ∴∠=︒-∠-∠=︒-∠+∠=︒,故②正确;BAD CAD ∠=∠,∴BD DC =,点G 为BC 的中点,OD BC ∴⊥,90BGD ∴∠=︒,故③正确;如图,连接BE ,BE ∴平分ABC ∠,ABE CBE ∴∠=∠,DBC DAC BAD ∠=∠=∠,DBC EBC EBA EAB ∴∠+∠=∠+∠,DBE DEB ∴∠=∠,DB DE ∴=,故④正确.∴一定正确的①②③④,共4个.故选:D .二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)分解因式:2ax a -= (1)(1)a x x +- .【分析】应先提取公因式a ,再利用平方差公式进行二次分解.【解答】解:2ax a -,2(1)a x =-,(1)(1)a x x =+-.14.(4分)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制).某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是 88 分.【分析】根据加权平均数的计算方法进行计算即可.【解答】解:8520%8850%9030%88⨯+⨯+⨯=(分),故答案为:88.15.(4分)已知2()25x y +=,2()9x y -=,则xy = 4 .【分析】已知两式左边利用完全平方公式展开,相减即可求出xy 的值.【解答】解:222()225x y x y xy +=++=,222()29x y x y xy -=+-=,∴两式相减得:416xy =,则4xy =.故答案为:416.(4分)如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连结CD ,将ACD ∆沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE【分析】如图,设CE交AB于点O.证明30∠=∠=∠=︒,求出CO,证明ACD DCE BCE=,可得结论.CO OE【解答】解:如图,设CE交AB于点O.=,ACB90∠=︒,AD DB∴==,CD AD DB∴∠=∠,A ACD由翻折的性质可知ACD DCE∠=∠,⊥,CE AB∴∠+∠=︒,90BCE B∠+∠=︒,A B90∴∠=∠,BCE A∴∠=∠=∠=︒,BCE ACD DCE30∴=⋅︒=,cos30CO CB=,DA DCDA DE=,∴=,DC DE⊥,DO CE∴==CO OECE∴.17.(4分)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,⋯⋯图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,⋯⋯⋯⋯由此类推,图④中第五个正六边形数是 45 .【分析】根据前三个图形的变化寻找规律,即可解决问题.【解答】解:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,⋯⋯ 图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,⋯⋯图③的点数叫做五边形数,从上至下第一个五边形数是1,第二个五边形数是145+=,第三个五边形数是14712++=,⋯⋯由此类推,图④中第五个正六边形数是159131745++++=.故答案为:45.18.(4分)如图,已知点(2,3)A -,(2,1)B ,直线y kx k =+经过点(1,0)P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 3k -或13k .【分析】利用临界法求得直线PA 和PB 的解析式即可得出结论.【解答】解:当0k <时,直线y kx k =+经过点(1,0)P -,(2,3)A -,23k k ∴-+=,3k ∴=-;3k ∴-;当0k >时,直线y kx k =+经过点(1,0)P -,(2,1)B ,21k k ∴+=,13k ∴=. 13k ∴; 综上,直线与线段AB 有交点时,猜想k 的取值范围是:3k -或13k. 故答案为:3k -或13k . 三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或推演步骤)19.(702(3.14)3tan 60|1(2)π---︒++-.【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题.【解答】解:原式11314=+-+ 1114=-+14=. 20.(12分)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值;(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.【分析】(1)利用图表信息解答即可;(2)利用统计的基本方法,用样本的特性估计总体的相应特性即可;(3)利用列表法解答即可.【解答】解:(1)由图(1)可知:“基本了解”的人数为40人,由图(2)可知:“基本了解”的人数占总数的20%,4020%200∴=÷=(人);m由图(1)可知:“比较了解”有100人,∴“比较了解”所对应扇形的圆心角是180︒,由图2知:“不太了解”所对应扇形的圆心角是360(50%20%28%)7.2n=︒⨯--=度;(2)由图2知:“非常了解”的人数占总人数的28%,于是估计在12000名市民中,“非常了解”的人数有1200028%3360⨯=(人).答:在12000名市民中,估计“非常了解”的人数有3360人.(3)从3名男士和2名女士中随机抽取2人进行调查,抽查情况列表如下:由上表可知,一共有20种等可能,其中恰好抽到一男一女的情况有12中, ∴恰好抽到一男一女的概率为123205=. 21.(11分)如图,一次函数312y x =-+与反比例函数k y x =的图象在第二象限交于点A ,且点A 的横坐标为2-.(1)求反比例函数的解析式;(2)点B 的坐标是(3,0)-,若点P 在y 轴上,且AOP ∆的面积与AOB ∆的面积相等,求点P 的坐标.【分析】(1)首先确定点A 的坐标,再利用待定系数法求出k 即可;(2)设(0,)P m ,构建方程求解.【解答】解(1)一次函数312y x =-+与反比例函数k y x =的图象在第二象限交于点A ,点A 的横坐标为2-,当2x =-时,3(2)142y =-⨯-+=, (2,4)A ∴-,42k ∴=-, 8k ∴=-,∴反比例函数的解析式为8yx=-;(2)设(0,)P m,AOP∆的面积与AOB∆的面积相等,∴11||234 22m⨯⨯=⨯⨯,6m∴=±,(0,6)P∴或(0,6)-.22.(11分)如图,在菱形ABCD中,60ABC∠=︒,AB=,过点D作BC的垂线,交BC的延长线于点H.点F从点B出发沿BD方向以2/cm s向点D匀速运动,同时,点E 从点H出发沿HD方向以1/cm s向点D匀速运动.设点E,F的运动时间为t(单位:)s,且03t<<,过F作FG BC⊥于点G,连结EF.(1)求证:四边形EFGH是矩形;(2)连结FC,EC,点F,E在运动过程中,BFC∆与DCE∆是否能够全等?若能,求出此时t的值;若不能,请说明理由.【分析】(1)根据平行线的判定定理得到//EH FG,由题意知2BF t=cm,EH t=cm,推出四边形EFGH是平行四边形,根据矩形的判定定理即可得到四边形EFGH是矩形;(2)根据菱形的性质得到60ABC∠=︒,AB=,求得60ADC ABC∠=∠=︒,CD AB==,解直角三角形即可得到结论.【解答】(1)证明:EH BC⊥,FG BC⊥,//EH FG∴,由题意知2BF t=cm,EH t=cm,在菱形ABCD中,60ABC∠=︒,30CBD∴∠=︒,12FG BF t ∴==, EH FG ∴=,∴四边形EFGH 是平行四边形,90FGH ∠=︒,∴四边形EFGH 是矩形;(2)BFC ∆与DCE ∆能够全等,理由:在菱形ABCD 中,60ABC ∠=︒,AB =,60ADC ABC ∴∠=∠=︒,CD AB ==,//AB CD ,30CBD CDB ∴∠=∠=︒,60DCH ABC ∠=∠=︒,DH BC ⊥,90CHD ∴∠=︒,906030CDH CBF ∴∠=︒-︒=︒=∠,在Rt CDH ∆中,cos DH CDH CD∠=,3DH ∴==, 2BF t =cm ,EH t ∴=cm ,(3)DE t cm ∴=-,∴当BF DE =时,BFC DCE ∆≅∆,23t t ∴=-,1t ∴=.23.(11分)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A 种树苗500株,B 种树苗400株,已知B 种树苗单价是A 种树苗单价的1.25倍.(1)求A 、B 两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A 种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?【分析】(1)设A 种树苗每株x 元,B 种树苗每株y 元,根据条件“A 种比B 种每株多20元,买1株A 种树苗和2株B 种树苗共需200元”建立方程求出其解即可;(2)设A 种树苗购买a 株,则B 种树苗购买(36)a -株,根据条件A 种树苗数量不少于B 种数量的一半建立不等式,求出其解即可.【解答】解:(1)设A 种树苗每株x 元,B 种树苗每株y 元,由题意,得 1.255004004000y x x y =⎧⎨+=⎩, 解得45x y =⎧⎨=⎩, 答:A 种树苗每株4元,B 种树苗每株5元;(2)设购买A 种树苗a 株,则购买B 种树苗(100)a -株,总费用为w 元, 由题意得:25a ,480w ,45(100)500w a a a =+-=-+,500480a ∴-+,解得:20a ,2025a ∴,a ∴是整数,a ∴取20,21,22,23,24,25,∴共有6种购买方案,方案一:购买A 种树苗20株,购买B 种树苗80株,方案二:购买A 种树苗21株,购买B 种树苗79株,方案三:购买A 种树苗22株,购买B 种树苗78株,方案四:购买A 种树苗23株,购买B 种树苗77株,方案五:购买A 种树苗24株,购买B 种树苗76株,方案六:购买A 种树苗25株,购买B 种树苗75株,500w a =-+,10k =-<,w ∴随a 的增大而减小,25a ∴=时,w 最小,∴第六种方案费用最低,最低费用是475元.答:共有6种购买方案,费用最省的购买方案是购买A 树苗25株,B 种树苗75株,最低费用是475元.24.(12分)如图,AB是O的直径,CD是O的弦,AB CD⊥,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且2∠=∠.ECD BAD(1)求证:CF是O的切线;(2)如果10CD=,AB=,6①求AE的长;②求AEF∆的面积.【分析】(1)连接OC,利用圆周角定理,垂径定理,同圆的半径线段,等腰三角形的性质和圆的切线的判定定理解答即可;(2)①利用勾股定理和相似三角形的判定定理与性质定理解答即可;②过点F作FG AB=,利用相似三角形⊥,交AB的延长线于点G,设4FE kFG k=,则5的判定与性质和平行线分线段成比例定理求得FG,再利用三角形的面积公式解答即可.【解答】(1)证明:连接OC,如图,AB是O的直径,AB CD⊥,=,∴BC BD∴∠=∠.CAB DAB∠=∠,COB CAB22COB BAD ∴∠=∠.2ECD BAD ∠=∠,ECD COB ∴∠=∠.AB CD ⊥,90COB OCH ∴∠+∠=︒,90OCH ECD ∴∠+∠=︒,90OCE ∴∠=︒.OC CF ∴⊥. OC 是O 的半径,CF ∴是O 的切线;(2)解:①10AB =,5OA OB OC ∴===, AB 是O 的直径,AB CD ⊥,132CH DH CD ∴===.4OH ∴==,OC CF ⊥,CH OE ⊥,OCH OEC ∴∆∆∽, ∴OC OH OE OC =, ∴545OE =, 254OE ∴=. 2545544AE OA OE ∴=+=+=; ②过点F 作FG AB ⊥,交AB 的延长线于点G ,如图,90OCF FGE ∠=∠=︒,CEO GEF ∠=∠, OCE FGE ∴∆∆∽. ∴45OC FG OE FE ==, 设4FG k =,则5FE k =,3EG k ∴=,DH AB ⊥,FG AB ⊥,//DH FG ∴. ∴AH DH AG FG=, ∴9345434kk =+, 解得:54k =. 45FG k ∴==.AEF ∴∆的面积122528AE FG =⨯⋅=. 25.(14分)抛物线的解析式是24y x x a =-++.直线2y x =-+与x 轴交于点M ,与y 轴交于点E ,点F 与直线上的点(5,3)G -关于x 轴对称.(1)如图①,求射线MF 的解析式;(2)在(1)的条件下,当抛物线与折线EMF 有两个交点时,设两个交点的横坐标是1x ,212()x x x <,求12x x +的值;(3)如图②,当抛物线经过点(0,5)C 时,分别与x 轴交于A ,B 两点,且点A 在点B 的左侧.在x 轴上方的抛物线上有一动点P ,设射线AP 与直线2y x =-+交于点N .求PN AN的最大值.【分析】(1)求出点M ,点F 的坐标,设直线MF 的解析式为y kx b =+,构建方程组求出k ,b 即可;(2)说明抛物线与折线EMF 有两个交点关于抛物线的对称轴对称,可得结论;(3)如图②中,过点P 作//PT AB 交直线ME 于点T .设2(,45)P t t t -++,则2(43T t t --,245)t t -++,由//PT AM ,推出2211537((43)()33212PN PT t t t t AN AM ==---=--+,利用二次函数的性质,可得结论. 【解答】解:(1)点F 与直线上的点(5,3)G -关于x 轴对称, (5,3)F ∴,直线2y x =-+与x 轴交于点M ,(2,0)M ∴,设直线MF 的解析式为y kx b =+,则有2053k b k b +=⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩, ∴射线MF 的解析式为2(2)y x x =-;(2)如图①中,设折线EMF 与抛物线的交点为P ,Q .抛物线的对称轴422x =-=-,点(2,0)M , ∴点M 值抛物线的对称轴上,直线EM 的解析式为2y x =-+,直线MF 的解析式为2y x =-, ∴直线EM ,直线MF 关于直线2x =对称, P ∴,Q 关于直线2x =对称,1222x x +∴=, 124x x ∴+=;(3)如图②中,过点P 作//PT AB 交直线ME 于点T .(0,5)C ,∴抛物线的解析式为245y x x =-++,(1,0)A ∴-,(5,0)B ,设2(,45)P t t t -++,则2(43T t t --,245)t t -++, //PT AM , ∴2211537((43)()33212PN PT t t t t AN AM ==---=--+, 103-<, ∴PNAN 有最大值,最大值为3712.。
2023年四川省德阳市中考数学试卷(含答案)082501
2023年四川省德阳市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 下列各数:,,,,(每两个之间的递增),属于无理数的有 A.个B.个C.个D.个2. 若,则下列不等式一定成立的是( )A.B.C.D.3. 有下列说法:①为预防新型冠状病毒肺炎,学校检查师生佩戴口罩的情况,应采用全面调查;②从名学生中选出名学生进行抽样调查,样本容量为;③“任意买—张电影票座位号是奇数”这个事件是必然事件;④数据,,,,的方差是.其中说法正确的有( )A.个B.个C.个D.个4. 如图,将三角板的直角顶点放在直尺的一边上,如果,那么的度数为( )A.B.C.D.5. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是 A.B.−2273.143–√0.101001⋯10()1234a >b a +1>b +2a +2>b +1−a >−b|a|>|b|200020020001234511234∠1=70∘∠210∘15∘20∘25∘()49132C.D.6. 关于,的不等式组无解,则实数的取值范围是( )A.B.C.D.7. 如图,点是矩形的对角线的中点,交于点,若,,则的长为( )A.B.C.D.8. 若,,则的值是( )A.B.C.D.9. 在比例尺为的城市交通图上,某道路的长为厘米,则这条道路的实际距离为( )千米.A.B.C.D.10. 如图平行四边形中,,,,分别是边和的中点,于点,则( )2919x y {x−1>2m ,2x−1<3m m m>−1−1<m<0m≥−1−1≤x <0O ABCD AC OM//AB AD M OM =3BC =8OB 45627−−√=4a m =6a n a m+n 2410162561:100000333030000.3ABCD ∠A =110∘AD =DC E F AB BC EP ⊥CD P ∠PEF =A.B.C.D. 11.如图,是由相同大小的圆按照一定的规律摆放而成,按照规律,第个图形中圆的个数是( )A.B.C.D.12. 如图,半径为的经过原点和点,是轴左侧优弧上的一点,则( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 分解因式: ________.14. 太阳的半径大约为,将数据用科学记数法表示为________.15. 一组数据,,,,,的中位数是,那么这组数据的平均数是________.16. 如图,长方体的底面边长分别为和,高为.如果用一根细线从点开始经过个侧面缠绕一圈到达点,所用细线的最短长度是_______.35∘45∘50∘55∘5614140253⊙A O C(0,2)B y ⊙A tan ∠OBC =1322–√22–√32–√4−+2−x =x 3x 2696000000696000000124x 71051cm 3cm 6cm A 4B17. 圆和圆有多种位置关系,与图中不同的圆和圆的位置关系是________.18. 我国明朝时期的书《直指算法统宗》中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有个和尚分个馒头,如果大和尚人分个,小和尚人分个,正好分完,则大和尚________人,小和尚________人.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. 计算: . 20. 以下是根据年某旅游县接待游客的相关数据绘制的统计图的一部分,请根据图、图回答下列问题:(1)该旅游县月接待游客人数一共是万人,请将图中的统计图补充完整;(2)计算该旅游县月平均每个月接待游客的人数;(3)该旅游县月份级景点接待游客人数约为多少人?(4)小明观察图后认为,级景点月份接待游客人数比月多了,你同意他的看法吗?说明你的理由. 21. 如图,在平面直角坐标系中,一次函数=与反比例函数的图象相交于点.(1)求的值;(2)点是轴上一点,过点且平行于轴的直线分别与一次函数=、反比例函数的图象相交于点、,当时,画出示意图并直接写出的取值范围. 22.解方程:;把一副三角板如图放置,其中,,,斜边,,把三角板绕点顺时针旋转得到(如图),此时与 交于点,则线段的长为多少?1001001331+−(−4)+2cos ()2021π0()14−13–√30∘2014125∼828015−864A 24A 78xOy y x y =(k ≠0)k x M(2,2)k P(0,a)y P x y x y =k xA(,b)x 1B(,b)x 2<x 1x 2a (1)−2x−3=0x 2(2)1∠ACB =∠DEC =90∘∠A =45∘∠D =30∘AB =4CD =5DCE C 15∘△C D 1E 12AB CD 1O AD 123. 某公司购买了一批,型芯片,其中型芯片的单价比型芯片的单价少元,已知该公司用元购买型芯片的条数与用元购买型芯片的条数相等.求该公司购买的,型芯片的单价各是多少元?若两种芯片共购买了条,且要求购买的型芯片的条数不少于型芯片的一半,且少于型芯片的,请问如何购买才使总费用最少? 24. 在平面直角坐标系中,的半径为.给出如下定义:记线段的中点为,当点不在上时,平移线段,使点落在上,得到线段(,分别为点,的对应点)线段长度的最小值称为线段到的“平移距离”.(1)已知点的坐标为,点在轴上.①若点与原点重合,则线段到的“平移距离”为________;②若线段到的“平移距离”为,则点的坐标为________;(2)若点,都在直线=上,且=,记线段到的“平移距离”为,求的最小值;(3)若点的坐标为,且=,记线段到的“平移距离”为,直接写出的取值范围. 25. 在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过点,.求该抛物线的解析式及顶点坐标;在抛物线上是否存在点,使的面积为,若存在,请求出符合条件的所有点的坐标,若不存在,请说明理由.A B A B 93120A 4200B (1)A B (2)200A B B 34xOy ⊙O 1AB M M ⊙O AB M ⊙O A B ′′A ′B ′A B AA ′AB ⊙O A (−1,0)B x B O AB ⊙O AB ⊙O 2B A B y x+4AB 2AB ⊙O d 1d 1A (3,4)AB 2AB ⊙O d 2d 2y =x+2x A y B y =−+x 2bx+c A B (1)(2)P △PAB 1P参考答案与试题解析2023年四川省德阳市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】B【考点】无理数的识别【解析】根据无理数的定义可求出答案.【解答】解:无理数是无限不循环小数,故上述只有和(每两个之间的递增)是无理数.故选.2.【答案】B【考点】不等式的性质【解析】根据不等式的基本性质对给出的式子进行变形,即可得出答案.【解答】解:,因为,所以,故不符合题意;,因为,所以,所以,故符合题意;,因为,所以,故不符合题意;,当,时,,故不符合题意.故选.3.【答案】A【考点】随机事件方差总体、个体、样本、样本容量全面调查与抽样调查【解析】3–√0.101001⋯10B A a >b a +2>b +2A B a >b a +1>b +1a +2>b +1B C a >b −a <−b C D a =1b =−2|a|<|b|D B此题暂无解析【解答】解:①为预防新型冠状病毒肺炎,学校检查师生佩戴口罩的情况,应采用全面调查,①正确;②从名学生中选出名学生进行抽样调查,样本容量为,②不正确;③“任意买—张电影票座位号是奇数”这个事件是随机事件,③不正确;④数据,,,,的方差是,④不正确.综上所述,只有①正确.故选.4.【答案】C【考点】平行线的性质【解析】根据平行线的性质可得.【解答】解:如图,由平行线的性质可得,,∴,故选.5.【答案】A【考点】列表法与树状图法【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有种等可能结果,其中两次都摸到黄球的有种结果,∴两次都摸到黄球的概率为.故选.2000200200123452A ∠1=∠3=70∘∠2++∠3=90∘180∘∠2=−−∠3=180∘90∘20∘C 9449A6.【答案】C【考点】解一元一次不等式组【解析】根据不等式组无解得出关于的不等式,求出不等式的解集即可.【解答】解:解得:∵关于的不等式组无解,,解得:.故选.7.【答案】B【考点】矩形的性质矩形的判定勾股定理直角三角形斜边上的中线【解析】已知是的中位线,再结合已知条件则的长可求出,所以利用勾股定理可求出的长,由直角三角形斜边上中线的性质则的长即可求出.【解答】解:∵四边形是矩形,∴,∵是矩形的对角线的中点,,∴是的中位线,∵,∴,∵,∴,∴.故选.8.【答案】Am {x−1>2m ,2x−1<3m ,x >2m+1,x <,3m+12x {x−1>2m ,2x−1<3m ∴≤2m+13m+12m≥−1C OM △ADC DC AC BO ABCD ∠D =90∘O ABCD AC OM//AB OM △ADC OM =3DC =6AD =BC =8AC ==10A +C D 2D 2−−−−−−−−−−√BO =AC =512B【考点】同底数幂的乘法【解析】把所求的式子利用同底数幂乘法法则的逆运算化简,把各自的值代入即可求出值.【解答】解:由,,得到.故选9.【答案】A【考点】比例线段【解析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】设这条道路的实际长度为,则,解得==.∴这条道路的实际长度为.10.【答案】A【考点】菱形的判定与性质平行四边形的性质【解析】延长交的延长线于点.根据已知可得,,的度数,再根据余角的性质可得到的度数,从而不难求得的度数,根据余角的定义即可得到结果.【解答】解:在平行四边形中,,∴四边形是菱形.延长交的延长线于点.∵是的中点,∴,=4a m =6a n =⋅=4×6=24a m+n a m a n A.x =11000003xx 300000cm 3km 3km PF AB G ∠B ∠BEF ∠BFE ∠EPF ∠FPC ABCD AD =DC ABCD PF AB G F BC BF =CF∵,∴,在与中,∴,∴,∴为中点.由题可知,,∴在中,,∵,∴,∴,∵,∴,即,∵四边形为菱形,∴,,∵,分别为,的中点,∴,,易证,∴,∵,∴.∴,∴.故选.11.【答案】B【考点】规律型:图形的变化类【解析】仔细观察图形,找到图形的变化规律,利用规律解得即可.【解答】解:第一个图形有个圆,第二个图形有个圆,第三个图形有个圆,第四个图形有个圆,第五个图形有个圆.故选.12.【答案】D【考点】圆周角定理锐角三角函数的定义勾股定理AB//CD ∠GBF =∠PCF △BGF △CPF ∠GBF =∠PCF ,BF =CF ,∠BFG =∠CFP ,△BGF ≅△CPF(ASA)GF =PF F PG ∠BEP =90∘Rt △PEG EF =PG 12PF =PG 12EF =PF ∠FEP =∠EPF ∠BEP =∠EPC =90∘∠BEP −∠FEP =∠EPC −∠EPF ∠BEF =∠FPC ABCD AB =BC ∠ABC =−∠A =180∘70∘E F AB BC BE =BF ∠BEF =∠BFE =(−)=12180∘70∘55∘FE =FG ∠FGE =∠FEG =55∘AG//CD ∠FPC =∠EGF =55∘∠EPF =35∘∠PEF =∠EPF =35∘A 11+3+1=51+3+5+3+1=131+3+5+7+5+3+1=251+3+5+7+9+7+5+3+1=41B作直径,根据勾股定理求出,根据正切的定义求出,根据圆周角定理得到,等量代换即可.【解答】解:连结,∵,∴是的直径,在中,,,则,,由圆周角定理得,,则.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】提公因式法与公式法的综合运用【解析】先提公因式,再利用完全平方公式求解即可.【解答】解:.故答案为:.14.【答案】【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当数绝对值大于时,是正数;当原数的绝对值小于时,是负数.【解答】解:将数据用科学记数法表示为.故答案为:.15.CD OD cos ∠CDO ∠OBC =∠CDO CD ∠DOC =90∘DC ⊙A Rt △OCD CD =6OC =2OD ==4C −O D 2C 2−−−−−−−−−−√2–√tan ∠CDO ===OC OD 242–√2–√4∠OBC =∠CDO tan ∠OBC =2–√4D −x(x−1)2x −+2−x x 3x 2=−x(−2x+1)x 2=−x(x−1)2−x(x−1)26.96×108a ×10n 1≤|a |<10n n a n 10n 1n 696000000 6.96×1086.96×108【考点】算术平均数中位数【解析】根据中位数的定义可以求得值,再利用平均数定义计算即可.【解答】解:因为,,,,,的中位数是,所以,解得,因此这组数据平均数为:.故答案为:.16.【答案】【考点】平面展开-最短路径问题【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接,,∵,,根据两点之间线段最短,.故答案为:.17.【答案】相切【考点】圆与圆的位置关系【解析】要求图形中圆与圆的位置关系,可以观察两圆之间的交点的个数,两个交点两圆相交,一个交点两圆相切,没有交点两圆相离.【解答】解:依题意得:第一个图中两圆相离;第二个图中两圆内含;第三个图中两圆相离或相交,5x 124x 7105=54+x 2x =6=51+2+4+6+7+106510cmA B'AA'=1+3+1+3=8(cm)A'B'=6cm AB'==10(cm)+8262−−−−−−√10cm因此与图中圆与圆的位置关系没有相切.故答案为:相切.18.【答案】,【考点】一元一次方程的应用——其他问题【解析】根据个和尚分个馒头,正好分完.大和尚一人分个,小和尚人分一个得到等量关系为:大和尚的人数+小和尚的人数,大和尚分得的馒头数+小和尚分得的馒头数,依此列出方程即可.【解答】解:设大和尚有人,则小和尚有人,根据题意得:,解得,则(人),所以,大和尚人,小和尚人,故答案为:;.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】解:.【考点】特殊角的三角函数值负整数指数幂零指数幂实数的运算【解析】此题暂无解析【解答】解:.20.【答案】月份接待游客人数为:(万人),257510010033=100=100x (100−x)3x+=100100−x 3x =25100−x =100−25=7525752575(+(−(−4)+2cos 2021π)014)−13–√30∘=1+4+4+2×3–√3–√2=1+4+4+3=12(+(−(−4)+2cos 2021π)014)−13–√30∘=1+4+4+2×3–√3–√2=1+4+4+3=127280−(100+60+80)=40;该旅游县月平均每个月接待游客的人数是:(万人);月份级景点接待游客人数约(万人);所以该旅游县月份级景点接待游客人数约为万人;不同意,理由如下:月份级景点接待游客人数:(万人).月份级景点接待游客人数:(万人).,所以级景点月份接待游客人数比月少了,小明说的不对.【考点】用样本估计总体条形统计图折线统计图加权平均数【解析】(1)利用总人数万减去其它月的人数即可求解;(2)利用总人数万除以月数即可求解;(3)人数万乘以对应的百分比即可求解;(4)根据百分比的意义求得两个月游客的人数即可作出判断.【解答】月份接待游客人数为:(万人),;该旅游县月平均每个月接待游客的人数是:(万人);月份级景点接待游客人数约(万人);所以该旅游县月份级景点接待游客人数约为万人;不同意,理由如下:月份级景点接待游客人数:(万人).月份级景点接待游客人数:(万人).,所以级景点月份接待游客人数比月少了,小明说的不对.21.5−8280×=701464A 60×15%=964A 974A 40×30%=1284A 80×20%=1612<164A 78280280607280−(100+60+80)=405−8280×=701464A 60×15%=964A 974A 40×30%=1284A 80×20%=1612<164A 78把代入得==;如图,的取值范围为或.【考点】反比例函数与一次函数的综合【解析】(1)直接把点的坐标代入中可得到的值;(2)先确定反比例函数图象与正比例函数图象的另一个交点的坐标为,然后利用点、的横坐标的关系写出直线=,从而可得到的范围.【解答】把代入得==;如图,的取值范围为或.22.【答案】解:,或,解得:,;∵,,∴,∴,∵旋转角为,∴,又∵,∴是等腰直角三角形,∴,,∵,∴,∴,在中,.【考点】M(2,2)y =k xk 2×24a a <−20<a <2M y =k x k M'(−2,−2)A B y a a M(2,2)y =k xk 2×24a a <−20<a <2(1)(x−3)(x+1)=0x−3=0x+1=0=3x 1=−1x 2(2)∠ACB =∠DEC =90∘∠D =30∘∠DCE =−=90∘30∘60∘∠ACD =−=90∘60∘30∘15∘∠AC =+=D 130∘15∘45∘∠A =45∘△ACO AO =CO =AB =×4=21212AB ⊥CO DC =5C =DC =5D 1O =5−2=3D 1Rt △AOD 1A =D 1A +O 2D 1O 2−−−−−−−−−−√==+2233−−−−−−√13−−√解一元二次方程-因式分解法等腰直角三角形【解析】先求出,再根据旋转角求出,然后判断出是等腰直角三角形,再根据等腰直角三角形的性质求出、,,再求出然后利用勾股定理列式计算即可得解.【解答】解:,或,解得:,;∵,,∴,∴,∵旋转角为,∴,又∵,∴是等腰直角三角形,∴,,∵,∴,∴,在中,.23.【答案】解:设型芯片的单价为元条,则型芯片的单价为元条.依题意得, , 解得, 经检验:是原分式方程的解,且符合题意,. 答:型芯片的单价为元条,型芯片的单价为元条.设购买条型芯片,则购买条型芯片.依题意得,解得,即.设购买的总费用为元,则.,随着的增大而减小,当时,(条),此时费用最低为(元),当购买型芯片条,型芯片条时费用最低.【考点】分式方程的应用一元一次不等式组的应用【解析】无无【解答】∠ACD =30∘∠AC =D 145∘△ACO AO CO AB ⊥CO OD 1(1)(x−3)(x+1)=0x−3=0x+1=0=3x 1=−1x 2(2)∠ACB =∠DEC =90∘∠D =30∘∠DCE =−=90∘30∘60∘∠ACD =−=90∘60∘30∘15∘∠AC =+=D 130∘15∘45∘∠A =45∘△ACO AO =CO =AB =×4=21212AB ⊥CO DC =5C =DC =5D 1O =5−2=3D 1Rt △AOD 1A =D 1A +O 2D 1O 2−−−−−−−−−−√==+2233−−−−−−√13−−√(1)B x /A (x−9)/=3120x−94200x x =35x =35∴x−9=26A 26/B 35/(2)a A (200−a)B a ≥(200−a),12a <(200−a),34≤a <2003600766≤a <852357y y =26a +35(200−a)=−9a +7000∵−9<0∴y a ∴a =85200−a =115−9×85+7000=6235∴A 85B 115解:设型芯片的单价为元条,则型芯片的单价为元条.依题意得, , 解得,经检验:是原分式方程的解,且符合题意,. 答:型芯片的单价为元条,型芯片的单价为元条.设购买条型芯片,则购买条型芯片.依题意得,解得,即.设购买的总费用为元,则.,随着的增大而减小,当时,(条),此时费用最低为(元),当购买型芯片条,型芯片条时费用最低.24.【答案】,或如图中,设直线=,交轴于,,,交于.∵=,=,∴===,∵==,∴=,观察图像可知,当的中点与重合时,最小值==.即=.如图中,由题意,的最小值===,的最大值===,∴.(1)B x /A (x−9)/=3120x−94200x x =35x =35∴x−9=26A 26/B 35/(2)a A(200−a)B a ≥(200−a),12a <(200−a),34≤a <2003600766≤a <852357y y =26a +35(200−a)=−9a +7000∵−9<0∴y a ∴a =85200−a =115−9×85+7000=6235∴A 85B 115B(−5,0)(7,0)6y y E 5)0)⊙O K OE 4OF 5EF 5S △OEF ×OE×OF OH AB M H OH−OK d 46d 2PQ 5−63d 2PR 7+168≤≤6d 2【考点】圆的综合题【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:由题意,得.经过点、∴,解得∴抛物线解析式为,顶点存在.如图设点的坐标为过点作轴交直线于点,则,∴∴.∵,∴当时,解得,∴当时,解得,此时的坐标为综上所述,点的坐标为【考点】二次函数综合题【解析】此题暂无解析【解答】解:由题意,得.经过点、∴,解得∴抛物线解析式为,顶点存在.如图设点的坐标为过点作轴交直线于点,则,∴∴.∵,∴当时,解得,∴当时,解得,此时的坐标为综上所述,点的坐标为(1)A(−2,0),B(0,2)y =−+bx+c x 2A B{c =2−4−2b +c =0{c =2b =−1y =−−x+2x 2(−,)1294(2)P (t,−−t+2)t 2P PE ⊥x AB E E(t,t+2)PE =|−−t+2−(t+2)|=|−−2t|t 2t 2=PE ⋅|−|=|−−2t|⋅2=|+2t|S △PAB 12x A x B 12t 2t 2=1S △PAB |+2t|=1t 2+2t =−1t 2t =−1P (−1,2)+2t =1t 2=−1,=−−1t 12–√t 22–√P (−1,)(−−1,−)2–√2–√2–√2–√P (−1,2),(−1,),(−−1,−)P 22–√2–√P 32–√2–√(1)A(−2,0),B(0,2)y =−+bx+c x 2A B{c =2−4−2b +c =0{c =2b =−1y =−−x+2x 2(−,)1294(2)P P PE ⊥x AB E E(t,t+2)PE =|−−t+2−(t+2)|=|−−2t|t 2t 2=PE ⋅|−|=|−−2t|⋅2=|+2t|S △PAB 12x A x B 12t 2t 2=1S △PAB |+2t|=1t 2+2t =−1t 2t =−1P (−1,2)+2t =1t 2=−1,=−−1t 12–√t 22–√P (−1,)(−−1,−)2–√2–√2–√2–√P (−1,2),(−1,),(−−1,−)P 22–√2–√P 32–√2–√。
2022年四川省德阳市中考数学试卷(含答案)
2022年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1.﹣2的绝对值是()A.﹣2B.2C.±2D.﹣2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.下列计算正确的是()A.(a﹣b)2=a2﹣b2B.=1C.a÷a•=a D.(﹣ab2)3=﹣a3b64.如图,直线m∥n,∠1=100°,∠2=30°,则∠3=()A.70°B.110°C.130°D.150°5.下列事件中,属于必然事件的是()A.抛掷硬币时,正面朝上B.明天太阳从东方升起C.经过红绿灯路口,遇到红灯D.玩“石头、剪刀、布”游戏时,对方出“剪刀”6.在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,57.八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km8.一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是()A.16πB.52πC.36πD.72π9.一次函数y=ax+1与反比例函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.10.如图,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA边上的中点,则下列结论一定正确的是()A.四边形EFGH是矩形B.四边形EFGH的内角和小于四边形ABCD的内角和C.四边形EFGH的周长等于四边形ABCD的对角线长度之和D.四边形EFGH的面积等于四边形ABCD的面积的11.如果关于x的方程=1的解是正数,那么m的取值范围是()A.m>﹣1B.m>﹣1且m≠0C.m<﹣1D.m<﹣1且m≠﹣212.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.分解因式:ax2﹣a=.14.学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制).某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是分.15.已知(x+y)2=25,(x﹣y)2=9,则xy=.16.如图,直角三角形ABC纸片中,∠ACB=90°,点D是AB边上的中点,连结CD,将△ACD沿CD折叠,点A落在点E处,此时恰好有CE⊥AB.若CB=1,那么CE=.17.古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,…………由此类推,图④中第五个正六边形数是.18.如图,已知点A(﹣2,3),B(2,1),直线y=kx+k经过点P(﹣1,0).试探究:直线与线段AB有交点时k的变化情况,猜想k的取值范围是.三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或推演步骤)19.(7分)计算:+(3.14﹣π)0﹣3tan60°+|1﹣|+(﹣2)﹣2.20.(12分)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n 度,分别写出m,n的值;(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.21.(11分)如图,一次函数y=﹣x+1与反比例函数y=的图象在第二象限交于点A,且点A的横坐标为﹣2.(1)求反比例函数的解析式;(2)点B的坐标是(﹣3,0),若点P在y轴上,且△AOP的面积与△AOB的面积相等,求点P的坐标.22.(11分)如图,在菱形ABCD中,∠ABC=60°,AB=2cm,过点D作BC的垂线,交BC的延长线于点H.点F从点B出发沿BD方向以2cm/s向点D匀速运动,同时,点E从点H出发沿HD方向以1cm/s向点D匀速运动.设点E,F的运动时间为t(单位:s),且0<t<3,过F作FG⊥BC于点G,连结EF.(1)求证:四边形EFGH是矩形;(2)连结FC,EC,点F,E在运动过程中,△BFC与△DCE是否能够全等?若能,求出此时t的值;若不能,请说明理由.23.(11分)实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?24.(12分)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.25.(14分)抛物线的解析式是y=﹣x2+4x+a.直线y=﹣x+2与x轴交于点M,与y轴交于点E,点F与直线上的点G(5,﹣3)关于x轴对称.(1)如图①,求射线MF的解析式;(2)在(1)的条件下,当抛物线与折线EMF有两个交点时,设两个交点的横坐标是x1,x2(x1<x2),求x1+x2的值;(3)如图②,当抛物线经过点C(0,5)时,分别与x轴交于A,B两点,且点A在点B的左侧.在x轴上方的抛物线上有一动点P,设射线AP与直线y=﹣x+2交于点N.求的最大值.2022年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1.﹣2的绝对值是()A.﹣2B.2C.±2D.﹣解:﹣2的绝对值是2.故选:B.2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A.3.下列计算正确的是()A.(a﹣b)2=a2﹣b2B.=1C.a÷a•=a D.(﹣ab2)3=﹣a3b6解:A.(a﹣b)2=a2﹣2ab+b2,故A选项错误,不符合题意;B.==1,故B选项正确,符合题意;C.a÷a•=1×=,故C选项错误,不符合题意;D.(﹣ab2)3=﹣a3b6,故D选项错误,不符合题意.故选:B.4.如图,直线m∥n,∠1=100°,∠2=30°,则∠3=()A.70°B.110°C.130°D.150°解:如图:∵直线m∥n,∠1=100°,∴∠5=∠1=100°,∵∠3=∠4+∠5,∠4=∠2=30°,∴∠3=30°+100°=130°.故选:C.5.下列事件中,属于必然事件的是()A.抛掷硬币时,正面朝上B.明天太阳从东方升起C.经过红绿灯路口,遇到红灯D.玩“石头、剪刀、布”游戏时,对方出“剪刀”解:A、抛掷硬币时,正面朝上,是随机事件,不符合题意;B、明天太阳从东方升起,是必然事件,符合题意;C、经过红绿灯路口,遇到红灯,是随机事件,不符合题意;D、玩“石头、剪刀、布”游戏时,对方出“剪刀”,是随机事件,不符合题意;故选:B.6.在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,5解:这组数据中,出现次数最多的是5,共出现3次,因此众数是5,将这组数据从小到大排列,处在中间位置的一个数是5,因此中位数是5,故选:D.7.八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设李锐两家的直线距离为x,根据三角形的三边关系得5﹣3<x<5+3,即2<x<8,杨冲,李锐两家的直线距离可能为3km,故选:A.8.一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是()A.16πB.52πC.36πD.72π解:如图,AB=8,SA=SB=9,所以侧面展开图扇形的弧BC的长为8π,由扇形面积的计算公式得,圆锥侧面展开图的面积为×8π×9=36π,故选:C.9.一次函数y=ax+1与反比例函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.解:分两种情况:(1)当a>0,时,一次函数y=ax+1的图象过第一、二、三象限,反比例函数y=﹣图象在第二、四象限,无选项符合;(2)当a<0,时,一次函数y=ax+1的图象过第一、二、四象限,反比例函数y=﹣图象在第一、三象限,故B选项正确.故选:B.10.如图,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA边上的中点,则下列结论一定正确的是()A.四边形EFGH是矩形B.四边形EFGH的内角和小于四边形ABCD的内角和C.四边形EFGH的周长等于四边形ABCD的对角线长度之和D.四边形EFGH的面积等于四边形ABCD的面积的解:A.如图,连接AC,BD,在四边形ABCD中,∵点E,F,G,H分别是AB,BC,CD,DA边上的中点,∴EH∥BD,EH=BD,FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,故A选项错误;B.∵四边形EFGH的内角和等于360°,四边形ABCD的内角和等于360°,故B选项错误;C.∵点E,F,G,H分别是AB,BC,CD,DA边上的中点,∴EH=BD,FG=BD,∴EH+FG=BD,同理:EF+HG=AC,∴四边形EFGH的周长等于四边形ABCD的对角线长度之和,故C选项正确;D.四边形EFGH的面积不等于四边形ABCD的面积的,故D选项错误.故选:C.11.如果关于x的方程=1的解是正数,那么m的取值范围是()A.m>﹣1B.m>﹣1且m≠0C.m<﹣1D.m<﹣1且m≠﹣2解:两边同时乘(x﹣1)得,2x+m=x﹣1,解得:x=﹣1﹣m,又∵方程的解是正数,且x≠1,∴,即,解得:,∴m的取值范围为:m<﹣1且m≠﹣2.故答案为:D.12.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是()A.1B.2C.3D.4解:∵E是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠CAD,故①正确;如图,连接BE,CE,∵E是△ABC的内心,∴∠EBC=∠ABC,∠ECB=ACB,∵∠BAC=60°,∴∠ABC+∠ACB=120°,∴∠BEC=180°﹣∠EBC﹣∠ECB=180°﹣(∠ABC+∠ACB)=120°,故②正确;∵∠BAD=∠CAD,∴=,∵点G为BC的中点,∴OD⊥BC,∴∠BGD=90°,故③正确;如图,连接BE,∴BE平分∠ABC,∴∠ABE=∠CBE,∵∠DBC=∠DAC=∠BAD,∴∠DBC+∠EBC=∠EBA+∠EAB,∴∠DBE=∠DEB,∴DB=DE,故④正确.∴一定正确的①②③④,共4个.故选:D.二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.分解因式:ax2﹣a=a(x+1)(x﹣1).解:ax2﹣a,=a(x2﹣1),=a(x+1)(x﹣1).14.学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制).某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是88分.解:85×20%+88×50%+90×30%=88(分),故答案为:88.15.已知(x+y)2=25,(x﹣y)2=9,则xy=4.解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:416.如图,直角三角形ABC纸片中,∠ACB=90°,点D是AB边上的中点,连结CD,将△ACD沿CD折叠,点A落在点E处,此时恰好有CE⊥AB.若CB=1,那么CE=.解:如图,设CE交AB于点O.∵∠ACB=90°,AD=DB,∴CD=AD=DB,∴∠A=∠ACD,由翻折的性质可知∠ACD=∠DCE,∵CE⊥AB,∴∠BCE+∠B=90°,∵∠A+∠B=90°,∴∠BCE=∠A,∴∠BCE=∠ACD=∠DCE=30°,∴CO=CB•cos30°=,∵DA=DE,DA=DC,∴DC=DE,∵DO⊥CE,∴CO=OE=,∴CE=.故答案为:.17.古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,…………由此类推,图④中第五个正六边形数是45.解:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……图③的点数叫做五边形数,从上至下第一个五边形数是1,第二个五边形数是1+4=5,第三个五边形数是1+4+7=12,……由此类推,图④中第五个正六边形数是1+5+9+13+17=45.故答案为:45.18.如图,已知点A(﹣2,3),B(2,1),直线y=kx+k经过点P(﹣1,0).试探究:直线与线段AB有交点时k的变化情况,猜想k的取值范围是k≤﹣3或k≥.解:当k<0时,∵直线y=kx+k经过点P(﹣1,0),A(﹣2,3),∴﹣2k+k=3,∴k=﹣3;∴k≤﹣3;当k>0时,∵直线y=kx+k经过点P(﹣1,0),B(2,1),∴2k+k=1,∴k=.∴k≥;综上,直线与线段AB有交点时,猜想k的取值范围是:k≤﹣3或k≥.故答案为:k≤﹣3或k≥.三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或推演步骤)19.(7分)计算:+(3.14﹣π)0﹣3tan60°+|1﹣|+(﹣2)﹣2.解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.20.(12分)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n 度,分别写出m,n的值;(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.解:(1)由图(1)可知:“基本了解”的人数为40人,由图(2)可知:“基本了解”的人数占总数的20%,∴m=40÷20%=200(人);由图(1)可知:“比较了解”有100人,∴“比较了解”所对应扇形的圆心角是180°,由图2知:“不太了解”所对应扇形的圆心角是n=360°×(50%﹣20%﹣28%)=7.2度;(2)由图2知:“非常了解”的人数占总人数的28%,于是估计在12000名市民中,“非常了解”的人数有12000×28%=3360(人).答:在12000名市民中,估计“非常了解”的人数有3360人.(3)从3名男士和2名女士中随机抽取2人进行调查,抽查情况列表如下:由上表可知,一共有20种等可能,其中恰好抽到一男一女的情况有12中,∴恰好抽到一男一女的概率为.21.(11分)如图,一次函数y=﹣x+1与反比例函数y=的图象在第二象限交于点A,且点A的横坐标为﹣2.(1)求反比例函数的解析式;(2)点B的坐标是(﹣3,0),若点P在y轴上,且△AOP的面积与△AOB的面积相等,求点P的坐标.解(1)∵一次函数y=﹣x+1与反比例函数y=的图象在第二象限交于点A,点A的横坐标为﹣2,当x=﹣2时,y=﹣×(﹣2)+1=4,∴A(﹣2,4),∴4=,∴k=﹣8,∴反比例函数的解析式为y=﹣;(2)设P(0,m),∵△AOP的面积与△AOB的面积相等,∴×|m|×2=×3×4,∴m=±6,∴P(0,6)或(0,﹣6).22.(11分)如图,在菱形ABCD中,∠ABC=60°,AB=2cm,过点D作BC的垂线,交BC的延长线于点H.点F从点B出发沿BD方向以2cm/s向点D匀速运动,同时,点E从点H出发沿HD方向以1cm/s向点D匀速运动.设点E,F的运动时间为t(单位:s),且0<t<3,过F作FG⊥BC于点G,连结EF.(1)求证:四边形EFGH是矩形;(2)连结FC,EC,点F,E在运动过程中,△BFC与△DCE是否能够全等?若能,求出此时t的值;若不能,请说明理由.(1)证明:∵EH⊥BC,FG⊥BC,∴EH∥FG,由题意知BF=2tcm,EH=tcm,∵在菱形ABCD中,∠ABC=60°,∴∠CBD=30°,∴FG=BF=t,∴EH=FG,∴四边形EFGH是平行四边形,∵∠FGH=90°,∴四边形EFGH是矩形;(2)△BFC与△DCE能够全等,理由:∵在菱形ABCD中,∠ABC=60°,AB=2cm,∴∠ADC=∠ABC=60°,CD=AB=2cm,AB∥CD,∴∠CBD=∠CDB=30°,∠DCH=∠ABC=60°,∵DH⊥BC,∴∠CHD=90°,∴∠CDH=90°﹣60°=30°=∠CBF,在Rt△CDH中,cos∠CDH=,∴DH=2×=3,∵BF=2tcm,∴EH=tcm,∴DE=(3﹣t)cm,∴当BF=DE时,△BFC≌△DCE,∴2t=3﹣t,∴t=1.23.(11分)实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?解:(1)设A种树苗每株x元,B种树苗每株y元,由题意,得,解得,答:A种树苗每株4元,B种树苗每株5元;(2)设购买A种树苗a株,则购买B种树苗(100﹣a)株,总费用为w元,由题意得:a≤25,w≤480,∵w=4a+5(100﹣a)=﹣a+500,∴﹣a+500≤480,解得:a≥20,∴20≤a≤25,∴a是整数,∴a取20,21,22,23,24,25,∴共有6种购买方案,方案一:购买A种树苗20株,购买B种树苗80株,方案二:购买A种树苗21株,购买B种树苗79株,方案三:购买A种树苗22株,购买B种树苗78株,方案四:购买A种树苗23株,购买B种树苗77株,方案五:购买A种树苗24株,购买B种树苗76株,方案六:购买A种树苗25株,购买B种树苗75株,∵w=﹣a+500,k=﹣1<0,∴w随a的增大而减小,∴a=25时,w最小,∴第六种方案费用最低,最低费用是475元.答:共有6种购买方案,费用最省的购买方案是购买A树苗25株,B种树苗75株,最低费用是475元.24.(12分)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.(1)证明:连接OC,如图,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠DAB.∵∠COB=2∠CAB,∴∠COB=2∠BAD.∵∠ECD=2∠BAD,∴∠ECD=∠COB.∵AB⊥CD,∴∠COB+∠OCH=90°,∴∠OCH+∠ECD=90°,∴∠OCE=90°.∴OC⊥CF.∵OC是⊙O的半径,∴CF是⊙O的切线;(2)解:①∵AB=10,∴OA=OB=OC=5,∵AB是⊙O的直径,AB⊥CD,∴CH=DH=CD=3.∴OH==4,∵OC⊥CF,CH⊥OE,∴△OCH∽△OEC,∴,∴,∴OE=.∴AE=OA+OE=5+=;②过点F作FG⊥AB,交AB的延长线于点G,如图,∵∠OCF=∠FGE=90°,∠CEO=∠GEF,∴△OCE∽△FGE.∴,设FG=4k,则FE=5k,∴EG==3k,∵DH⊥AB,FG⊥AB,∴DH∥FG.∴,∴,解得:k=.∴FG=4k=5.∴△AEF的面积=×AE•FG=.25.(14分)抛物线的解析式是y=﹣x2+4x+a.直线y=﹣x+2与x轴交于点M,与y轴交于点E,点F与直线上的点G(5,﹣3)关于x轴对称.(1)如图①,求射线MF的解析式;(2)在(1)的条件下,当抛物线与折线EMF有两个交点时,设两个交点的横坐标是x1,x2(x1<x2),求x1+x2的值;(3)如图②,当抛物线经过点C(0,5)时,分别与x轴交于A,B两点,且点A在点B的左侧.在x轴上方的抛物线上有一动点P,设射线AP与直线y=﹣x+2交于点N.求的最大值.解:(1)∵点F与直线上的点G(5,﹣3)关于x轴对称,∴F(5,3),∵直线y=﹣x+2与x轴交于点M,∴M(2,0),设直线MF的解析式为y=kx+b,则有,解得,∴射线MF的解析式为y=x﹣2(x≥2);(2)如图①中,设折线EMF与抛物线的交点为P,Q.∵抛物线的对称轴x=﹣=2,点M(2,0),∴点M值抛物线的对称轴上,∵直线EM的解析式为y=﹣x+2,直线MF的解析式为y=x﹣2,∴直线EM,直线MF关于直线x=2对称,∴P,Q关于直线x=2对称,∴2=,∴x1+x2=4;(3)如图②中,过点P作PT∥AB交直线ME于点T.∵C(0,5),∴抛物线的解析式为y=﹣x2+4x+5,∴A(﹣1,0),B(5,0),设P(t,﹣t2+4t+5),则T(t2﹣4t﹣3,﹣t2+4t+5),∵PT∥AM,∴==(t﹣(t2﹣4t﹣3)=﹣(t﹣)2+,∵﹣<0,∴有最大值,最大值为.。
德阳数学中考试题及答案
德阳数学中考试题及答案一、选择题1. 已知函数 f(x) = |x - 2| + 3,下列哪个表达式的图像与 f(x) 的图像相同?A. f(x) = |2 - x| + 3B. f(x) = |x + 2| + 3C. f(x) = |x - 2| - 3D. f(x) = |2 - x| - 3答案:A2. 若等式 a + b = 7 + a,其中 a 和 b 是整数,则 b 的值是多少?A. 14B. 7C. -7D. 0答案:C3. 已知 x 是一个大于1的正整数,若① x < 10 ;② x 是一个奇数,则 x 的取值范围是多少?A. 2 ≤ x < 10B. 2 ≤ x < 9C. 3 ≤ x < 10D. 3 ≤ x < 9答案:B4. 甲、乙两车分别从 A 点和 B 点同时出发,相向而行。
已知甲车速度为 60 km/h,乙车速度为 80 km/h,两车相距 500 km。
问多久后两车相遇?A. 3 小时B. 4 小时C. 5 小时D. 6 小时答案:B5. 若 4x + 2y = 10,且 x + 3y = 7,求 x 与 y 的值。
A. x = 2,y = 1B. x = 1,y = 2C. x = 3,y = 2D. x = 2,y = 3答案:A二、计算题1. 求下列方程的解:2x - 5 = 7 - x解:将方程两边同时加上 x:2x + x - 5 = 73x - 5 = 7将方程两边同时加上 5:3x - 5 + 5 = 7 + 53x = 12将方程两边同时除以 3:x = 4所以方程的解为 x = 4。
2. 某商店从某公司进货一批商品,进价为 200 元/件,商店按 300 元/件的价格出售,若商店售出一件商品的利润率为 20%,求商店售出一件商品的售价。
解:设售价为 x 元/件。
根据利润率的定义,有:(售价 - 进价) / 进价 = 20%代入已知数据,得:(x - 200) / 200 = 0.2将方程两边同时乘以 200:x - 200 = 0.2 * 200x - 200 = 40将方程两边同时加上 200:x = 40 + 200x = 240所以商店售出一件商品的售价为 240 元。
四川省德阳市中考数学试题有答案(Word版)
德阳中考数学试题一、选择题(每小题3分,共36分)1.(2017四川省德阳市,第1题,3分)6的相反数是( ) A .-6 B .-16C .6D .错误!未找到引用源。
2.(2017四川省德阳市,第2题,3分)如图,已知AB ∥CE ,∠A =110°,则∠ADE 的大小为( )( ) A .110° B .100° C .90° D .70°3.(2017四川省德阳市,第3题,3分)下列计算正确的是( ) A .236x x x ⋅= B .222235x x x -+=- C .222(3)9ab a b -= D .222()a b a b +=+4.(2017四川省德阳市,第4题,3分)截止2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是( ) A .28 B .29 C .30 D .315.(2017四川省德阳市,第5题,3分)已知关于x 的方程2410x x c -++=有两个相等的实数根,则常数c 的值为( )A .-1B .0C .1D .36.(2017四川省德阳市,第6题,3分)如图,在ΔABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC =60°,∠ABE =25°,则∠DAC 的大小是( ) A .15° B .20° C .25° D .30°7.(2017四川省德阳市,第7题,3分)下列说法中,正确的有( ) ①一组数据的方差越大,这组数据的波动反而越小 ②一组数据的中位数只有一个③在一组数据中,出现次数最多的数据称为这组数据的众数 A .①② B .①③ C .②③ D .①②③8.(2017四川省德阳市,第8题,3分)一个圆柱的侧面展开图是边长为a 的正方形,则这个圆柱的体积为( )A .34a πB .32a π错误!未找到引用源。
(中考精品卷)四川省德阳市中考数学真题(解析版)
数学试卷第Ⅰ卷(选择题,共48分)一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1. -2的绝对值是()A. 2B. -2C. ±2D.1 2【答案】A【解析】【分析】在数的前面添上或者去掉负号既可以求出绝对值.【详解】解:﹣2的绝对值是2;故选:A.【点睛】本题考查绝对值的定义,数轴上一个点到原点的距离即为这个数的绝对值.2. 下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称和中心对称的定义逐项判断即可.轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合.【详解】A、既是中心对称图形,又是轴对称图形,符合题意;B、是轴对称图形,但不是中心对称图形,不符合题意;C、是轴对称图形,但不是中心对称图形,不符合题意;D、是中心对称图形,但不是轴对称图形,不符合题意;故选:A.【点睛】此题考查中心对称图形和轴对称图形,解决本题的关键是熟练地掌握中心对称图形和轴对称图形的判断方法.3. 下列计算正确的是( )A. ()222a b a b -=-1=C. 1a a a a÷⋅= D. 32361126ab a b ⎛⎫-=- ⎪⎝⎭【答案】B【解析】 【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.222()2a b a ab b -=-+,故本选项错误;1==,故本选项符合题意;C.1111a a a a a ÷⋅=⋅=,故本选项错误;D.23332336111228()()ab a b a b ⨯-=-=-,故本选项错误; 故选:B .【点睛】本题考查了完全平方公式、二次根式化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键.4. 如图,直线m n ∥,1100∠=,230∠=︒,则3∠=( )A. 70︒B. 110︒C. 130︒D. 150︒【答案】C【解析】 【分析】设∠1的同位角为为∠4,∠2的对顶角为∠5,根据平行的性质得到∠1=∠4=100°,再根据三角形的外角和定理 即可求解.【详解】设∠1的同位角为为∠4,∠2的对顶角为∠5,如图,的∥,∠1=100°,∵m n∴∠1=∠4=100°,∵∠2=30°,∠2与∠5互为对顶角,∴∠5=∠2=30°,∴∠3=∠4+∠5=100°+30°=130°,故选:C.【点睛】本题考查了平行线的性质、三角形的外角和定理等知识,掌握平行线的性质是解答本题的关键.5. 下列事件中,属于必然事件的是()A. 抛掷硬币时,正面朝上B. 明天太阳从东方升起C. 经过红绿灯路口,遇到红灯D. 玩“石头、剪刀、布”游戏时,对方出“剪刀”【答案】B【解析】【分析】根据随机事件、必然事件的概念即可作答.【详解】A.抛硬币时,正面有可能朝上也有可能朝下,故正面朝上是随机事件;B.太阳从东方升起是固定的自然规律,是不变的,故此事件是必然事件;C.经过路口,有可能出现红灯,也有可能出现绿灯、黄灯,故遇到红灯是随机事件;D.对方有可能出“剪刀”,也有可能出“石头”、“布”,出现对方出“剪刀”随机事假.故选:B.【点睛】本题考查了随机事件、必然事件的概念,充分理解随机事件的概念是解答本题的关键.6. 在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A. 6,6B. 4,6C. 5,6D. 5,5 【答案】D【解析】【分析】将这7个数从小到大排列,第4个数就是这组数的中位数.出现次数最多的数即是众数.【详解】将这7个数从小到大排列:4、5、5、5、6、7、9,第4个数5,则这组数的中位数为:5,出现次数最多的数是5,故这组数的众数是5,故选:D .【点睛】本题考查了中位数、众数的定义,充分理解中位数、众数的定义是解答本题的基础.7. 八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能是( )A. 1kmB. 2kmC. 3kmD. 8km【答案】A【解析】【分析】利用构成三角形的条件即可进行解答.【详解】以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a ,则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km ,故选:A .【点睛】本题考查了构成三角形的条件的知识,构成三角的条件:三角形中任意的两边之和大于第三边,任意的两边之差小于第三边.8. 一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是( )A. 16πB. 52πC. 36πD. 72π 【答案】C【解析】【分析】首先求得圆锥的底面周长,即侧面的扇形弧长,然后根据扇形的面积公式即可求解.【详解】解:根据题意得:圆锥侧面展开图的弧长为8π, 为∴圆锥侧面展开图的面积是189362ππ⨯⨯=. 故选:C【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面展开图是扇形是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9. 一次函数1y ax =+与反比例函数a y x=-在同一坐标系中的大致图象是( )A. B. C. D.【答案】B【解析】【分析】A 选项可以根据一次函数与y 轴交点判断,其他选项根据图象判断a 的符号,看一次函数和反比例函数判断出a 的符号是否一致;【详解】一次函数与y 轴交点为(0,1),A 选项中一次函数与y 轴交于负半轴,故错误; B 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过一、三象限,则-a >0,即a <0,两者一致,故B 选项正确;C 选项中,根据一次函数y 随x 增大而增大可判断a >0,反比例函数过一、三象限,则-a >0,即a <0,两者矛盾,故C 选项错误;D 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过二、四象限,则-a <0,即a >0,两者矛盾,故D 选项错误;故选:B .【点睛】本题考查了一次函数、反比例函数图象共存问题,解决此类题目要熟练掌握一次函数、反比例函数图象与系数的关系.10. 如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,则下列结论一定正确的是( )A. 四边形EFGH 是矩形B. 四边形EFGH 的内角和小于四边形ABCD 的内角和C. 四边形EFGH 的周长等于四边形ABCD 的对角线长度之和D. 四边形EFGH 的面积等于四边形ABCD 面积的14 【答案】C【解析】【分析】连接,AC BD ,根据三角形中位线的性质12EH FG BD ==,12EF HG AC ==,,EF AC HG EH BD FG ∥∥∥∥,继而逐项分析判断即可求解. 【详解】解:连接,AC BD ,设交于点O ,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点, ∴12EH FG BD ==,12EF HG AC ==,,EF AC HG EH BD FG ∥∥∥∥A. 四边形EFGH 是平行四边形,故该选项不正确,不符合题意;B. 四边形EFGH 的内角和等于于四边形ABCD 的内角和,都为360°,故该选项不正确,不符合题意;C. 四边形EFGH 的周长等于四边形ABCD 的对角线长度之和,故该选项正确,符合题意;D. 四边形EFGH 的面积等于四边形ABCD 面积的12,故该选项不正确,不符合题意; 故选C【点睛】本题考查了中点四边形的性质,三角形中位线的性质,掌握三角形中位线的性质是解题的关键.11. 关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A. a >-1B. a >-1且a ≠0C. a <-1D. a <-1且a ≠-2【答案】D【解析】 【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x-1,得2x+a=x-1.解得:x=-a-1且x 为正数.所以-a-1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.)【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息.12. 如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:①BAD CAD ∠=∠;②若60BAC ∠=︒,则120∠=︒BEC ;③若点G 为BC 的中点,则90BGD ∠=︒;④BD DE =.其中一定正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据点E 是ABC 的内心,可得BAD CAD ∠=∠,故①正确;连接BE ,CE ,可得∠ABC +∠ACB =2(∠CBE +∠BCE ),从而得到∠CBE +∠BCE =60°,进而得到∠BEC =120°,故②正确;若点G 为BC 的中点,无法证明△ABG ≌△ACG ,则90BGD ∠=︒不一定成立,故③错误;根据点E 是ABC 的内心和三角形的外角的性质,可得()12BED BAC ABC ∠=∠+∠,再由圆周角定理可得()12DBE BAC ABC ∠=∠+∠,从而得到∠DBE =∠BED ,故④正确;即可求解. 【详解】解:∵点E 是ABC 的内心,∴BAD CAD ∠=∠,故①正确;如图,连接BE ,CE ,∵点E 是ABC 的内心,∴∠ABC =2∠CBE ,∠ACB =2∠BCE ,∴∠ABC +∠ACB =2(∠CBE +∠BCE ),∵∠BAC =60°,∴∠ABC +∠ACB =120°,∴∠CBE +∠BCE =60°,∴∠BEC =120°,故②正确;∵点E 是ABC 的内心,∴BAD CAD ∠=∠,∵点G 为BC 的中点,∴BG =CG ,∵AG =AG ,无法证明△ABG ≌△ACG ,∴∠AGB 不一定等于∠AGC ,即90BGD ∠=︒不一定成立,故③错误;∵点E 是ABC 的内心, ∴11,22BAD CAD BAC ABE CBE ABC ∠=∠=∠∠=∠=∠, ∵∠BED =∠BAD +∠ABE , ∴()12BED BAC ABC ∠=∠+∠, ∵∠CBD =∠CAD ,∴∠DBE =∠CBE +∠CBD =∠CBE +∠CAD , ∴()12DBE BAC ABC ∠=∠+∠, ∴∠DBE =∠BED ,∴BD DE =,故④正确;∴正确的有3个.故选:C【点睛】本题主要考查了三角形内心问题,圆周角定理,三角形的内角和等知识,熟练的掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.第Ⅱ卷(非选择题,共102分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13. 分解因式:2ax a -=______.【答案】a (x +1)(x -1)【解析】【分析】先提公因式a ,再运用平方差公式分解即可.【详解】解:ax 2-a=a (x 2-1)=a (x +1)(x -1)故答案为:a (x +1)(x -1).【点睛】本题考查提公因式法与公式法综合运用,熟练掌握分解因式的提公因式法与公式法两种方法是解题的关键.14. 学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.【答案】88【解析】【分析】利用加权平均数的求解方法即可求解.【详解】综合成绩为:85×20%+88×50%+90×30%=88(分),故答案为:88.【点睛】此题主要考查了加权平均数的求法,解题的关键是理解各项成绩所占百分比的含义.15. 已知(x+y )2=25,(x ﹣y )2=9,则xy=___.【答案】4【解析】【分析】根据完全平方公式的运算即可.【详解】∵()225x y +=,()29x y -=∵()2x y ++()2x y -=4xy =16,∴xy =4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 16. 如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【解析】【分析】根据D 为AB 中点,得到AD =CD =BD ,即有∠A =∠DCA ,根据翻折的性质有∠DCA =∠DCE ,CE =AC ,再根据CE ⊥AB ,求得∠A =∠BCE ,即有∠BCE =∠ECD =∠DCA =30°,则有∠A =30°,在Rt △ACB 中,即可求出AC ,则问题得解.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵D 为AB 中点,∴在直角三角形中有AD =CD =BD ,∴∠A =∠DCA ,根据翻折的性质有∠DCA =∠DCE ,CE =AC ,∵CE ⊥AB ,∴∠B +∠BCE =90°,∵∠A +∠B =90°,∴∠A =∠BCE ,∴∠BCE =∠ECD =∠DCA ,∵∠BCE +∠ECD +∠DCA=∠ACB =90°,∴∠BCE =∠ECD =∠DCA =30°∴∠A =30°,∴在Rt △ACB 中,BC =1,则有1tan tan 30BC AC A ===∠o∴CE AC ==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出∠BCE =∠ECD =∠DCA =30°是解答本题的关键.17. 古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45 【解析】【分析】根据题意找到图形规律,即可求解. 【详解】根据图形,规律如下表:12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)(3)12(1)n m n +++-⎫⎪-⎬⎪+++-⎭由上表可知第n 个M 边形数为:12)[12(1)]()(3S n n m +++++++-=-L L , 整理得:1)(1)(3)2(2n n n n m S --+=+, 则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==, 故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.18. 如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.【答案】13k ≥或3k ≤-##3k ≤-或13k ≥ 【解析】分析】根据题意,画出图象,可得当x =2时,y ≥1,当x =-2时,y ≥3,即可求解. 【详解】解:如图,观察图象得:当x =2时,y ≥1, 即21k k +≥,解得:13k ≥, 【当x =-2时,y ≥3,即23k k -+≥,解得:3k ≤-, ∴k 的取值范围是13k ≥或3k ≤-. 故答案为:13k ≥或3k ≤- 【点睛】本题主要考查了一次函数的图象和性质,利用数形结合思想解答是解题的关键.三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或推演步骤)19. ())023.143tan 6012π---︒+--. 【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算. 【详解】解:023.143tan 601())2π-+--︒+-- 1114=+-+14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.20. 据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n 度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.【答案】(1)200,7.2(2)3360 (3)3 5【解析】【分析】(1)先用“基本了解”的人数除以其所对应的百分比,可得调查的总人数,再求出“非常了解”的人数,进而得到“不太了解”的人数,最后用“不太了解”的人数所占的百分比乘以360°,即可求解;(2)用12000乘以“非常了解”的人数所占的百分比,即可求解;(3)根据题意,列出表格,可得一共有20种等可能结果,其中恰好抽到一男一女的有12种,再根据概率公式,即可求解.【小问1详解】解:根据题意得:4020%200m=÷=人,∴“非常了解”的人数为20028%56⨯=人,∴“不太了解”的人数为20056100404---=人,∴“不太了解”所对应扇形的圆心角43607.2200⨯︒=︒,即7.2n=;【小问2详解】解:“非常了解”的人数有1200028%3360⨯=人;【小问3详解】解:根据题意,列出表格,如下:男1 男2 男3 女1 女2 男1男2、男1 男3、男1 女1、男1 女2、男1 男2 男1、男2男3、男2 女1、男2 女2、男2 男3 男1、男3 男2、男3女1、男3 女2、男3 女1 男1、女1 男2、女1 男3、女1女2、女1 女2男1、女2男2、女2男3、女2女1、女2一共有20种等可能结果,其中恰好抽到一男一女的有12种, ∴恰好抽到一男一女的概率为123205=. 【点睛】本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键. 21. 如图,一次函数312y x =-+与反比例函数ky x=的图象在第二象限交于点A ,且点A 的横坐标为-2.(1)求反比例函数的解析式;(2)点B 的坐标是()3,0-,若点P 在y 轴上,且AOP 的面积与AOB 的面积相等,求点P 的坐标. 【答案】(1)8y x=-(2)()0,6或()06-,【解析】【分析】(1)将点A 的横坐标代入一次函数解析式,求得点A 的纵坐标,进而将A 的坐标代入反比例函数解析式即可求解.(2)根据三角形面积公式列出方程即可求解. 【小问1详解】一次函数312yx =-+与反比例函数ky x=的图象在第二象限交于点A ,且点A 的横坐标为-2, 当2x =-时,()32142y =-⨯-+=,则()2,4A -, 将()2,4A -代入ky x=,可得8k =-, ∴反比例函数的解析式为8y x=-, 【小问2详解】点B 的坐标是()3,0-,()2,4A -,3BO ∴=,1134622AOB A S BO y ∴=⨯=⨯⨯= , AOP 的面积与AOB 的面积相等,设()0,P p ,112622AOP A S OP x p ∴=⨯=⨯ ,解得6p =或6p =-,()0,6P ∴或()0,6P -.【点睛】本题考查了一次函数与反比例数综合,坐标与图形,求点点A 的坐标是解题的关键.22. 如图,在菱形ABCD 中,60ABC ∠=︒,AB =,过点D 作BC 的垂线,交BC 的延长线于点H .点F 从点B 出发沿BD 方向以2cm/s 向点D 匀速运动,同时,点E从点H 出发沿HD 方向以1cm/s 向点D 匀速运动.设点E ,F 的运动时间为t (单位:s ),且03t <<,过F 作FG BC ⊥于点G ,连结EF .(1)求证:四边形EFGH 是矩形.(2)连结FC ,EC ,点F ,E 在运动过程中,BFC △与DCE 是否能够全等?若能,求出此时t 的值;若不能,请说明理由. 【答案】(1)见解析 (2)BFC △与DCE 能够全等,此时1t =【解析】【分析】(1)根据题意可得2,BF t EH t ==,再根据菱形的性质和直角三角形的性质可得12FG BF t ==,从而得到FG =EH ,再由FG ∥EH ,可得四边形EFGH 是平行四边形,即可求证;(2)根据菱形的性质和直角三角形的性质可得∠CBF =∠CDE ,cos 3DH CD CDE =⋅∠=,然后分两种情况讨论,即可求解.【小问1详解】证明:根据题意得:2,BF t EH t ==, 在菱形ABCD 中,AB =BC ,AC ⊥BD ,OB =OD ,∵∠ABC =60°,AB =,∴AC BC AB ===,∠CBO =30°, ∴12FG BF t ==, ∴FG =EH ,∵FG BC ⊥,DH ⊥BH , ∴FG ∥EH ,∴四边形EFGH 是平行四边形, ∵∠H =90°,∴四边形EFGH 是矩形. 【小问2详解】 解:能,∵AB ∥CD ,∠ABC =60°, ∴∠DCH =60°, ∵∠H =90°,∴∠CDE =30°,∴∠CBF =∠CDE ,cos 3DH CD CDE =⋅∠=, ∴3DE DH EH t =-=-, ∵BC =DC ,∴当∠BFC =∠CED 或∠BFC =∠DCE 时,BFC △与DCE 能够全等, 当∠BFC =∠CED 时,D BFC EC ≅ △,此时BF =DE , ∴23t t =-,解得:t =1;当∠BFC =∠DCE 时,BC 与DE 是对应边, 而3DE DH ≤=,∴BC ≠DE ,则此时不成立;综上所述,BFC △与DCE 能够全等,此时1t =.【点睛】本题主要考查了菱形的性质,矩形的判定,直角三角形的性质,解直角三角形,熟练掌握相关知识点是解题的关键.23. 习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A 种树苗500株,B 种树苗400株,已知B 种树苗单价是A 种树苗单价的1.25倍.(1)求A 、B 两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A 种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?【答案】(1)A 种树苗的单价是4元,则B 种树苗的单价是5元(2)有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元. 【解析】【分析】(1)设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据“花费4000元集中采购了A 种树苗500株,B 种树苗400株,”列出方程,即可求解;(2)设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意,列出不等式组,可得2025a ≤≤,从而得到有6种购买方案,然后设总费用为w 元,根据题意列出函数关系式,即可求解. 【小问1详解】解:设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据题意得:500400 1.254000x x +⨯=,解得:4x =,∴1.25x =5,答:A 种树苗的单价是4元,则B 种树苗的单价是5元; 【小问2详解】解:设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意得:()02545100480a a a ≤≤⎧⎨+-≤⎩, 解得:2025a ≤≤, ∵a 为正整数,∴a 取20,21,22,23,24,25, ∴有6种购买方案, 设总费用为w 元,∴()45100500w a a a =+-=-+, ∵-1<0,∴w 随a 的增大而减小,∴当a =25时,w 最小,最小值为475, 此时100-a =75,答:有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元.【点睛】本题主要考查了一元一次方程的应用,一元一次不等式组的应用,一次函数的应用,明确题意,准确得到数量关系是解题的关键.24. 如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线; (2)如果10AB =,6CD =, ①求AE 的长; ②求AEF 的面积.【答案】(1)证明过程见详解(2)①454②2258【解析】【分析】(1)连接OC 、BC ,根据垂径定理得到AB 平分弦CD ,AB 平分 CD,即有∠BAD =∠BAC =∠DCB ,再根据∠ECD =2∠BAD ,证得∠BCE =∠BCD ,即有∠BCE =∠BAC ,则有∠ECB =∠OCA ,即可得∠ECB +∠OCB =90°,即有CO ⊥FC ,则问题得证;(2)①利用勾股定理求出OH 、BC 、AC ,在Rt △ECH 中,2223(1)EC BE =++,在Rt △ECO 中,222(5)5EC BE =+-,即可得到5BE 4=,则问题得解; ②过F 点作FP ⊥AB ,交AE 的延长线于点P ,先证△PAF ∽△HAC ,再证明△PEF ∽△HEC ,即可求出PF ,则△PEF 的面积可求. 【小问1详解】 连接OC 、BC ,如图,∵AB 是⊙O 的直径, ∴∠ACB =90°,AO =OB , ∵AB ⊥CD ,∴AB 平分弦CD ,AB 平分 CD, ∴CH =HD , BCBD =,∠CHA =90°=∠CHE , ∴∠BAD =∠BAC =∠DCB , ∵∠ECD =2∠BAD , ∴∠ECD =2∠BAD =2∠BCD , ∵∠ECD=∠ECB +∠BCD , ∴∠BCE =∠BCD , ∴∠BCE =∠BAC , ∵OC =OA , ∴∠BAC =∠OCA ,∵∠ACB =90°=∠OCA +∠OCB ,∴∠ECB +∠OCB =90°,∴CO ⊥FC ,∴CF 是⊙O 的切线;【小问2详解】①∵AB =10,CD =6,∴在(1)的结论中有AO =OB =5,CH =HD =3,∴在Rt △OCH 中,4OH ===,同理利用勾股定理,可求得BC =AC =,∴BH =OB -OH =5-4=1,HA =OA +OH =4+5=9,即HE =BH +BE ,在Rt △ECH 中,222223(1)EC HC HE BE =+=++,∵CF 是⊙O 的切线,∴∠OCB =90°,∴在Rt △ECO 中,2222222()5(5)5EC OE OC OB BE BE =-=+-=+-,∴2222(5)53(1)BE BE =+-++, 解得:5BE 4=, ∴5451044AE AB BE =+=+= ②过F 点作FP ⊥AB ,交AE 的延长线于点P ,如图,∵∠BAD =∠CAB ,∠CHA =90°=∠P ,∴△PAF ∽△HAC , ∴PF AP HC HA =,即39PF AP =, ∴3PF AP =,∵∠PEF =∠CEH ,∠CHB =90°=∠P ,∴PE PF HE HC=,即3PA AE PF HB BE -=+, ∵HB =1,5BE 4=,454AE =,3PF AP =, ∴45345314PF PF -=+, 解得:5PF =, ∴114522552248AEF S AE PF =⨯⨯=⨯⨯=△, 故△AEF 的面积为2258. 【点睛】本题主要考查了垂径定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等知识,掌握垂径定理是解答本题的关键.利用相似三角形的性质是解题的难点. 25. 抛物线的解析式是24y x x a =-++.直线2y x =-+与x 轴交于点M ,与y 轴交于点E ,点F 与直线上的点()5,3G -关于x 轴对称.(1)如图①,求射线MF 的解析式;(2)在(1)的条件下,当抛物线与折线EMF 有两个交点时,设两个交点的横坐标是x 1,x 2(12x x <),求12x x +的值;(3)如图②,当抛物线经过点()0,5C 时,分别与x 轴交于A ,B 两点,且点A 在点B 的左侧.在x 轴上方的抛物线上有一动点P ,设射线AP 与直线2y x =-+交于点N .求PN AN的最大值. 【答案】(1)2y x =-,2x ≥(2)4(3)3712【解析】 【分析】(1)先求出直线2y x =-+与坐标轴的交点M 、E 的坐标,根据G (5,-3)、F 关于x 轴对称求出F 点坐标,再利用待定系数法即可求解;(2)求出抛物线的对称轴x =2,可确定M 点在抛物线对称轴上,可确定抛物线24y x x a =-++与折线EMF 的两个交点,必然是一个点落在射线ME 上,一个点落在射线MF ,即可得到211122224242x x a x x x a x ⎧-++=-+⎨-++=-⎩①②,①-②,得到1212(1)[4()]0x x x x ---+=,则问题得解;(3)先求出抛物线的解析式,再求出抛物线与x 轴的交点A 、B 坐标,设P 点坐标为2(,45)a a a -++,根据A 、P 的坐标求出直线AP 的解析式,即可求出AP 与ME 的交点N 的坐标,即可用含a 的代数式表示出2AN 和2PN ,即可得到22375()423533a PN A a a N --=-+=+,则问题得解. 【小问1详解】∵直线2y x =-+与坐标轴交于点M 、E ,∴令x =0时,y =2;令y =0时,x =2,∴M 点坐标为(2,0),E 点坐标为(0,2),∵G (5,-3),且点G 、F 关于x 轴对称,∴F (5,3),设射线MF 的解析式为y kx b =+,2x ≥,∵M 点坐标为(2,0),F (5,3),∴ 2053k b k b +=⎧⎨+=⎩,解得:12k b =⎧⎨=-⎩, ∴射线MF 的解析式为2y x =-,2x ≥,【小问2详解】根据题意可知射线ME 的解析式为:2y x =-+,2x ≤,在(1)中已求得射线MF 的解析式为2y x =-,2x ≥,∵24y x x a =-++的对称轴为x =2,又∵M 点(2,0),∴M 点刚好在24y x x a =-++的对称轴为x =2上,∴抛物线24y x x a =-++与折线EMF 的两个交点,必然是一个点落在射线ME 上,一个点落在射线MF ,∵12x x <,∴此时交点的坐标为11(,2)x x -+、22(,2)x x -,且12x ≤、22x ≥,∵11(,2)x x -+、22(,2)x x -在抛物线24y x x a =-++上, ∴211122224242x x a x x x a x ⎧-++=-+⎨-++=-⎩①②, 由①-②,得:221212124()4x x x x x x -++-=--,整理得:1212(1)[4()]0x x x x ---+=∵12x ≤、22x ≥,∴121x x +<,∴1210x x --<,∴124()0x x -+=,∴124x x +=;【小问3详解】 ∵抛物线24y x x a =-++过点C (0,5),∴代入C 点坐标可得a =5,∴抛物线解析式245y x x =-+,令y =0,得2450x x -++=,解得:1-1x =,25x =,∴A 点坐标(-1,0)、B 点坐标为(5,0),∵P 点在抛物线245y x x =-++上,∴设P 点坐标为2(,45)a a a -++,显然A 、P 不重合,即a ≠-1,∵P 点在x 轴上方,∴15a -<<,设直线AP 的解析式为y kx b =+,∴即有2045k b ka b a a -+=⎧⎨+=-++⎩,解得55k a b a =-⎧⎨=-⎩, 即直线AP 的解析式为:(5)(5)y a x a =-+-,为联立(5)(5)2y a x a y x =-+-⎧⎨=-+⎩,解得361536a x a a y a -⎧=⎪⎪-⎨-⎪=⎪-⎩, ∴N 点坐标为315(6)3,6a a a a----, ∵P 点坐标为2(,45)a a a -++,A 点坐标(-1,0), ∴2222231539[(5)1]166()((6)a a a a a a AN ---+=+--+=-, ∴2222222223153(53)(5)14566(6[]()()a a a a P a a N a a a a a ---++-+-++---=-=-+, ∴22222222222(53)(5)1(53)(6)9[(5)1](6)[]9a a a a a a a a PN AN -++-+-++=+=---, ∴222222(5375[()]3)4299a PN AN a a --==-++, ∵15a -<<,且通过图像可知,只有当P 点在直线ME 上方时,PN AN的值才有可能取得最大值,∴2452x x x -++-+>,即2530x x -++>,∴即有2530a a -++>, ∴22375()423533a PN A a a N --=-+=+, ∴当52a =时,PN AN 取的最大值,且最大值为:23755()37422312PN AN --==, 即PN AN 的最大值为3712. 【点睛】本题考查了用待定系数法求解析式、抛物线与一元二次方程的根的知识、勾股定理、二次函数求最值等知识,本题的计算量较大,仔细化简所表示出2AN 和2PN 的代数式是解答本题的关键。
四川省德阳市中考数学试卷及答案解析
2020年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.13的相反数是( ) A .3 B .﹣3 C .13 D .−13 2.下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 63.如图所示,直线EF ∥GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =( )A .160°B .110°C .100°D .70°4.下列说法错误的是( )A .方差可以衡量一组数据的波动大小B .抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C .一组数据的众数有且只有一个D .抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为( )A .180°B .540°C .1080°D .1200°6.某商场销售A ,B ,C ,D 四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A .19.5元B .21.5元C .22.5元D .27.5元7.半径为R 的圆内接正三角形、正方形、正六边形的边心距分别为a ,b ,c ,则a ,b ,c的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a8.已知函数y ={−x +1(x <2)−2x(x ≥2),当函数值为3时,自变量x 的值为( ) A .﹣2 B .−23 C .﹣2或−23 D .﹣2或−329.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是( )A .20πB .18πC .16πD .14π10.如图,Rt △ABC 中,∠A =30°,∠ABC =90°.将Rt △ABC 绕点B 逆时针方向旋转得到△A 'BC '.此时恰好点C 在A 'C '上,A 'B 交AC 于点E ,则△ABE 与△ABC 的面积之比为( )A .13B .12C .23D .34 11.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .2√2−2C .2√2+2D .2√212.已知不等式ax +b >0的解集为x <2,则下列结论正确的个数是( )(1)2a +b =0;(2)当c >a 时,函数y =ax 2+bx +c 的图象与x 轴没有公共点;(3)当c >0时,抛物线y =ax 2+bx +c 的顶点在直线y =ax +b 的上方;(4)如果b <3且2a ﹣mb ﹣m =0,则m 的取值范围是−34<m <0.A .1B .2C .3D .4 二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是 .14.把ax 2﹣4a 分解因式的结果是 .15.如图,在平行四边形ABCD 中,BE 平分∠ABC ,CF ⊥BE ,连接AE ,G 是AB 的中点,连接GF ,若AE =4,则GF = .16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B 点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|√3−2|+(−√32)0−√83−2cos30°.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=√3,求DF的长.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=4x的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=4x第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.。
四川省德阳市2024届中考数学试卷(含答案)
四川省德阳市2024届中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,比小的数是( )A.0B.C.2.下列计算正确的是( )A. B.C. D.3.如图是某机械加工厂加工的一种零件的示意图,其中,,,则等于( )A. B. C. D.4.正比例函数的图象如图所示,则k 的值可能是( )D.的解是( )6.为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:2-1-3236a a a ⋅=()ab a b --=-+()211a a a +=+222()a b a b +=+//AB CD DE BC ⊥70ABC ∠=︒EDC ∠10︒20︒30︒40︒()0y kx k =≠113-53x =+)A.平均数B.中位数C.众数D.方差7.走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A 、B 、C 处依次写上的字可以是( )A.吉如意B.意吉如C.吉意如D.意如吉8.已知,正六边形的面积为,:则第八行左起第1个数是( )A.10.某校学生开展综合实践活动,测量一建筑物的高度,在建筑物旁边有一高度为10米的小楼房,小李同学在小楼房楼底B 处测得C 处的仰角为,在小楼房楼ABCDEF CD AB 60顶A 处测得C 处的仰角为.(、在同一平面内,B 、D 在同一水平面上),则建筑物的高为( )米A.20B.15C.12D.国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形是黄金矩形.,点P 是边上一点,则满足的点P 的个数为( )A.3B.2C.1D.012.一次折纸实践活动中,小王同学准备了一张边长为4(单位:)的正方形纸片,他在边和上分别取点E 和点M ,使,,又在线段上任取一点N (点N 可与端点重合),再将沿所在直线折叠得到,随后连接.小王同学通过多次实践得到以下结论:①当点N 在线段上运动时,点在以E 为圆心的圆弧上运动;②当达到最大值时,到直线的距离达到最大;③的最小值为;④达到最小值时,你认为小王同学得到的结论正确的个数是( )A.1B.2C.3D.4二、填空题30︒AB CD CD 10+ABCD ()AB BC <AD PB PC ⊥dm ABCD AB AD AE BE =1AM =MD EAN △NE 1EA N △1DA MD 1A 1DA 1A AD 1DA 2-1DA 5MN =___________.14.若一个多项式加上,结果是,则这个多项式为___________.15.某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为___________分.16.如图,四边形是矩形,是正三角形,点F 是的中点,点P 是矩形内一点,且是以为底的等腰三角形,则的面积与的面积的比值是___________.17.数学活动课上,甲组同学给乙组同学出示了一个探究问题:把数字1至8分别填入如图的八个圆圈内,使得任意两个有线段相连的圆圈内的数字之差的绝对值不等于1.经过探究后,乙组的小高同学填出了图中两个中心圆圈的数字a 、b ,你认为a 可以是___________(填上一个数字即可).=234y xy +-2325xy y +-ABCD ADG △GD ABCD PBC △BC PCD △FCD △18.如图,抛物线的顶点A 的坐标为,与x 轴的一个交点位于0和1之间,则以下结论:①;②;③若抛物线经过点,,则;④若关于x 的一元二次方程无实数根,则.其中正确结论是___________(请填写序号).;(2)解不等式组:.20.2024年中国龙舟公开赛(四川·德阳站),在德阳旌湖沱江桥水域举行,预计来自全国各地1000余名选手将参赛.旌湖两岸高颜值的绿色生态景观绿化带“德阳之窗”将迎接德阳市民以及来自全国各地的朋友近距离的观看比赛.比赛设置男子组、女子组、本地组三个组别,其中男子组将进行A :100米直道竞速赛,B :200米直道竞速赛,C :500米直道竞速赛,D :3000米绕标赛.为了了解德阳市民对于这四个比赛项目的关注程度,随机对部分市民进行了问卷调查(参与问卷调查的每位市民只能选择其中一个项目),将调查得到的数据绘制成数据统计表和扇形统计图(表、图都未完全制作完成):2y ax bx c =++1,3n ⎛⎫- ⎪⎝⎭0abc >520b c +<()16,y -()25,y 12y y >24ax bx c ++=4n <212cos 602-⎛⎫-︒ ⎪⎝⎭2351124x x x -+≤-⎧⎪⎨-<+⎪⎩①②(1)直接写出a 、b 的值和D 所在扇形圆心角的度数;(2)若当天观看比赛的市民有10000人,试估计当天观看比赛的市民中关注哪个比赛项目的人数最多?大约有多少人?(3)为了缓解比赛当天城市交通压力,维护交通秩序,德阳交警旌阳支队派出4名交警(2男2女)对该路段进行值守,若在4名交警中任意抽取2名交警安排在同一路口执勤,请用列举法(画树状图或列表)求出恰好抽到的两名交警性别相同的概率.21.如图,一次函数与反比例函数的图象交于点.(1)求m 的值和反比例函数(2)将直线向下平移h 个单位长度后得直线,若直线与反比例函数的图象的交点为,求h 的值,并结合图象求的解集.22.如图,在菱形中,,对角线与相交于点O ,点F 为的中点,连接与相交于点E ,连接并延长交于点G .22y x =-+(0)k y x x=<()1,A m -y =22y x =-+(0)h >y ax b =+y ax b =+(0)k y x x=<(),2B n ax b <+ABCD 60ABC ∠=︒AC BD BC AF BD CE AB(1)证明:;(2)证明:.23.罗江糯米咸鹅蛋是德阳市非物质文化遗产之一,至今有200多年历史,采用罗江当地林下养殖的鹅产的散养鹅蛋,经过传统秘方加以糯米、青豆等食材以16道工序手工制作而成。
2023年四川省德阳市中考数学试卷(含答案)031715
C
【考点】
解一元一次不等式组
【解析】
根据不等式组无解得出关于m的不等式,求出不等式的解集即可.
【解答】
解:{x2x−−11><2m3m,,
x > 2m+ 1,
解得:
x<
3m+ 1 2
,
∵关于x的不等式组{x− 1 > 2m, 无解,
2x− 1 < 3m
∴ 3m+ 1 2
≤ 2m+ 1 ,
解得:m ≥ −1 .
中,无理数的个数是( )
2. 如果a < b ,那么下列各式一定正确的是( )
A.a2 < b2
B. a2
>
b 2
C.−2a > −2b
D.a − 1 > b − 1
3. 有下列说法:①为预防新型冠状病毒肺炎,学校检查师生佩戴口罩的情况,应采用全面调查;② 从2000名学生中选出200名学生进行抽样调查,样本容量为2000;③“任意买—张电影票座位号是奇 数”这个事件是必然事件;④数据1,2,3,4,5的方差是1.其中说法正确的有( )
接受问卷调查的学生人数扇形统计图
(1) 本次接受问卷调查的学生总人数是________.
(2) 补全折线统计图.
(3) 扇形统计图中,“了解”所对应扇形的圆心角的度数为________,m的值为________.
(4) 若该校共有学生3000名,请根据上述调查结果估算该校学生对足球知识的了解程度为“不了解”的
) A.13
2
B.23 C.49 D. 59
6. 关于x,y的不等式组{x− 1 > 2m, 无解,则实数m的取值范围是( ) 2x− 1 < 3m
四川省德阳市中考数学试卷
四川省德阳市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2017·港南模拟) 的相反数是()A . 3B . ﹣3C .D .2. (2分) (2020七下·下城期末) 下列因式不能整除多项式4x3y+4x2y2+xy3的是()A . xyB . 2x+yC . x2+2xyD . 2xy+y23. (2分)(2016·济宁) 如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A .B .C .D .4. (2分)(2017·河北) 甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A . 甲组比乙组大B . 甲、乙两组相同C . 乙组比甲组大D . 无法判断5. (2分)若点(,)、(,)和(,)分别在反比例函数的图象上,且,则下列判断中正确的是()A .B .C .D .6. (2分) (2019八下·广安期中) 下列命题中:真命题的个数是()①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)7. (1分)(2017·兖州模拟) 已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为________.8. (1分) (2016八上·平谷期末) 如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB 于点E,若△BDE的周长是6,则AB=________,AC=________.9. (1分)(2017·东河模拟) 若x1 , x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为________.10. (1分) (2020八下·下城期末) 如图,把矩形纸片ABCD(BC>CD)沿折痕DE折叠,点C落在对角线BD 上的点P处:展开后再沿折痕BF折叠,点C落在BD上的点Q处:沿折痕DG折叠,点A落在BD上的点R处,若PQ =4,PR=7,则BD=________.11. (1分)某公司举行年会晚宴,出席者两两碰杯一次,总共碰杯19900次,设晚宴共有x人参加,根据题意,可列方程________.12. (1分) (2016九上·太原期末) 将一副三角尺按如图所示的方式叠放在一起,边AD不BC相交不点E,则的值等于________.三、解答题 (共10题;共87分)13. (10分)某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-9,+4,+6,-10,+5,-3,+14.(1)问收工时,检修队在A地哪边,距A地多远?(2)问从出发到收工时,汽车共行驶多少千米?14. (5分)解不等式组:15. (10分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.(1)若CD ﹦6, AC ﹦8,求⊙O的半径(2)求证:CF﹦BF;16. (6分) (2018·清江浦模拟) 一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n =1时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”)(2)从袋中随机摸出1个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是________;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.17. (10分) (2019八下·钦州期末) 如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点 .(1)求一次函数和正比例函数的解析式;(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.18. (12分) (2018九上·东营期中) 某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).组别时间(小时)频数(人数)频率A0≤t<0.5200.05B0.5≤t<1a0.3C1≤t<1.51400.35D 1.5≤t<2800.2E2≤t<2.5400.1请根据图表中的信息,解答下列问题:(1)表中的a=________,将频数分布直方图补全________;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.19. (10分)如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若,半径OA=4,求AE的长.20. (6分)(2020·鄞州模拟) 如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2 ,则称DE为Rt△ABC的“完美分割线”,显然,当DE为△ABC的中位线时,DE是△ABC的一条完美分割线。
四川省德阳市中考数学试卷
四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.实数﹣的相反数是()A.﹣2 B.C.2D.﹣|﹣0.5|考点:相反数.分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣的相反数是,故选:B.点评:此题主要考查了相反数,正确把握相反数的概念即可.2.如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°考点:平行线的性质.分析:根据两直线平行,内错角相等可得∠ABC=∠1,再根据三角形的内角和定理列式计算即可得解.解答:解:∵a∥b,∴∠ABC=∠1=46°,∵∠A=38°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣38°﹣46°=96°.故选C.点评:本题考查了平行线的性质,三角形的内角和定理,熟记性质是解题的关键.3.下列运算正确的是()A.a2+a=2a4B.a3•a2=a6C.2a6÷a2=2a3D.(a2)4=a8考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用单项式除以单项式法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=a5,错误;C、原式=2a4,错误;D、原式=a8,正确,故选D点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、8 B.7、9 C.8、9 D.8、10考点:折线统计图;中位数;众数.分析:由折线图可知,射击选手五次射击的成绩为:7、7、8、10、9,再根据众数、中位数的计算方法即可求得.解答:解:∵射击选手五次射击的成绩为:7、7、8、10、9,∴众数为7,中位数为8,故选:A.点评:本题考查了折线图的意义和众数、中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.6.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含考点:圆与圆的位置关系.分析:先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.解答:解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.7.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5 B.2C.﹣2.5 D.﹣6考点:二次函数的最值.分析:把二次函数的解析式整理成顶点式形式,然后确定出最大值.解答:解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.点评:本题考查了二次函数的最值.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.8.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)考点:坐标与图形变化-旋转;等边三角形的性质.分析:设A1B1与x轴相交于C,根据等边三角形的性质求出OC、A1C,然后写出点A1的坐标即可.解答:解:如图,设A1B1与x轴相交于C,∵△ABO是等边三角形,旋转角为30°,∴∠A1OC=60°﹣30°=30°,∴A1B1⊥x轴,∵等边△ABO的边长为2,∴OC=×2=,A1C=×2=1,∴点A1的坐标为(,﹣1).故选B.点评:本题考查了坐标与图形变化﹣旋转,等边三角形的性质,熟记等边三角形的性质是解题的关键.9.下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.4考点:利用频率估计概率;概率的意义.分析:利用概率的意义、利用频率估计概率的方法对各选项进行判断后即可确定正确的选项.解答:解:①不可能事件发生的概率为0,正确;②一个对象在实验中出现的次数越多,频率就越大,正确;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,正确;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率,错误,故选C.点评:本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.10.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC 的面积为1,则它的周长为()A.B.+1 C.+2 D.+3考点:勾股定理;直角三角形斜边上的中线.分析:根据“直角三角形斜边上的中线等于斜边的一半求得AB=;然后利用勾股定理、三角形的面积求得(AC+BC)的值,则易求该三角形的周长.解答:解:如图,∵在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,∴AB=2CD=.∴AC2+BC2=5又Rt△ABC的面积为1,∴AC•BC=1,则AC•BC=2.∴(AC+BC)2=AC2+BC2+2AC•BC=9,∴AC+BC=3(舍去负值),∴AC+BC+AB=3+,即△ABC的周长是3+.故选:D.点评:本题考查了勾股定理,直角三角形斜边上的中线.此题借助于完全平方和公式求得(AC+BC)的长度,减少了繁琐的计算.11.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A.B.C.2D.考点:勾股定理;含30度角的直角三角形.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解答:解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故选:A.点评:本题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的难点是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度.12.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4考点:分式方程的解;一元一次不等式组的整数解.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.解答:解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个3整数解,∴3≤b<4.故选D点评:此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.二、填空题(每小题3分,共18分,将答案填在答题卡对应的题号后的横线上)13.下列运算正确的个数有1个.①分解因式ab2﹣2ab+a的结果是a(b﹣1)2;②(﹣2)0=0;③3﹣=3.考点:提公因式法与公式法的综合运用;零指数幂;二次根式的加减法.分析:①先提取公因式a,再根据完全平方公式进行二次分解;②根据任何非零数的零指数次幂等于1解答;③合并同类二次根式即可.解答:解:①ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2,故本小题正确;②(﹣2)0=1,故本小题错误;③3﹣=2,故本小题错误;综上所述,运算正确的是①共1个.故答案为:1.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.考点:方差;算术平均数.分析:先由平均数的公式计算出x的值,再根据方差的公式计算.解答:解:∵3,4,5,x,7,8的平均数是6,∴x=9,∴s2= [(3﹣6)2+(4﹣6)2+(5﹣6)2+(9﹣6)2+(7﹣6)2+(8﹣6)2]=×28=,故答案为:.点评:本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.半径为1的圆内接正三角形的边心距为.考点:正多边形和圆.分析:作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.解答:解:如图,△ABC是⊙O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴OB平分∠ABC,则∠OBD=30°;∵OD⊥BC,∴BD=DC,又∵OB=1,∴OD=.故答案是:.点评:考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.16.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DE的度数为65°.考点:翻折变换(折叠问题).分析:首先求得∠AEA′,根据折叠的性质可得∠A′ED=∠AED=∠AEA′,在△A′DE 中利用三角形内角和定理即可求解.解答:解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故答案是:65°.点评:本题考查了折叠的性质,找出图形中相等的角和相等的线段是关键.17.如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是301.考点:等边三角形的判定与性质;平移的性质.专题:规律型.分析:先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有n+1个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.解答:解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有n+1个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案为:301.点评:本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.18.在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是①③④.(填番号)①AC⊥DE;②=;③CD=2DH;④=.考点:直角梯形;全等三角形的判定与性质;含30度角的直角三角形;等腰直角三角形.分析:在等腰直角△ADE中,根据等腰三角形三线合一的性质可得AH⊥ED,即AC⊥ED,判定①正确;进而可判定③;因为△CHE为直角三角形,且∠HEC=60°所以EC=2EH,因为∠ECB=15°,所以EC≠4EB,所以不成立②错误;根据全等三角形对应边相等可得CD=CE,再求出∠CED=60°,得到△CDE为等边三角形,判定③正确;过H 作HM⊥AB于M,所以HM∥BC,所以△AHM∽△ABC,利用相似三角形的性质以及底相等的三角形面积之比等于高之比即可判定④正确.解答:解:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,∴∴AH⊥ED,即AC⊥ED,故①正确;∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴EH≠2EB;故②错误.:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵∠BCE=15°,∴∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°,∴△CDE为等边三角形,∴∠DCH=30°,∴CD=2DH,故③正确;过H作HM⊥AB于M,∴HM∥BC,∴△AHM∽△ABC,∴,∵DH=AH,∴,∵△BEH和△CBE有公共底BE,∴,故④正确,故答案为:①③④.点评:此题考查了直角梯形的性质、全等三角形的判定与性质、相似三角形的判定好性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握数形结合思想的应用.熟记各性质是解题的关键.三、解答题(共66分.解答应写出文字说明、证明过程或推演步骤)19.(6分)计算:﹣25+()﹣1﹣|﹣8|+2cos60°.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣32+2﹣4+1=﹣33.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(11分)为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了依次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数(人)频率第一组20≤x<25 50 0.05第二组25≤x<30 a 0.35第三组35≤x<35 300 0.3第四组35≤x<40 200 b第五组40≤x≤45 100 0.1(1)求本次调查的样本容量及表中的a、b的值;(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图,政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;(3)从第二张和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法.分析:(1)根据第一组的人数是50,频率是0.05即可求得总人数,则根据频率公式即可求得a、b的值;(2)根据第一组的频数是36人,频率是0.06据此即可求得调查的总人数,则满意度即可求得;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人,利用列举法即可求解.解答:解:(1)调查的总人数:50÷0.05=1000(人),则a=1000×0.35=350,b==0.2;(2)满意的总人数是:36÷0.06=600(人),则调查的满意率是:=0.6,则此次调查结果为满意;第五组的满意的人数是:600×0.16=96(人),则第五组的满意率是:×100%=96%;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人.,总共有20种情况,则第二组和第四组恰好各有1人被抽中的概率是:=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中心E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.考点:矩形的性质;待定系数法求一次函数解析式;待定系数法求反比例函数解析式.分析:(1)根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D 的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标;(2)设直线与x轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.解答:解:(1)∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式得,=1,解得k=2,∴反比例函数解析式为y=,∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,=2,解得x=1,∴点D的坐标为(1,2);(2)如图,设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或×8=5,∵点D的坐标为(1,2),∴若(1+OF)×2=3,解得OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,解得OF=4,此时点F的坐标为(4,0),与点A重合,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=﹣2x+4,当D(1,2),F(4,0)时,,解得,此时,直线解析式为y=﹣x+,综上所述,直线的解析式为y=﹣2x+4或y=﹣x+.点评:本题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,(1)根据中心对称求出点E的坐标是解题的关键,(2)难点在于要分情况讨论.22.(11分)为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C每辆汽车的装载量(吨)4 5 6(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设装运A、B两种农产品各需x、y辆汽车.等量关系:40辆车都要装运,A、B、C三种农产品共200吨;(2)关系式为:装运每种农产品的车辆数≥11.解答:解:(1)设装运A、B两种农产品各需x、y辆汽车.则,解得.答:装运A、B两种农产品各需13、14辆汽车;(2)设装运A、B两种农产品各需x、y辆汽车.则4x+5y+6(40﹣x﹣y)=200,解得:y=﹣2x+40.由题意可得如下不等式组:,即,解得:11≤x≤14.5因为x是正整数,所以x的值可为11,12,13,14;共4个值,因而有四种安排方案.方案一:11车装运A,18车装运B,11车装运C方案二:12车装运A,16车装运B,12车装运C.方案三:13车装运A,14车装运B,13车装运C.方案四:14车装运A,12车装运B,14车装运C.点评:本题考查了二元一次方程组和一元一次不等式组的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装载的几种方案是解决本题的关键.23.(14分)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.考点:切线的判定.专题:证明题.分析:(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt △BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.解答:(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明:∵AP=BP,∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.24.(14分)如图,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8).(1)求抛物线的解析式及其顶点D的坐标;(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请求出点P的坐标;(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度.考点:二次函数综合题;解一元二次方程-因式分解法;根的判别式;待定系数法求一次函数解析式;待定系数法求二次函数解析式.专题:综合题.分析:(1)由于抛物线与x轴的两个交点已知,抛物线的解析式可设成交点式:y=a(x+2)(x﹣4),然后将点C的坐标代入就可求出抛物线的解析式,再将该解析式配成顶点式,即可得到顶点坐标.(2)先求出直线CD的解析式,再求出点E的坐标,然后设点P的坐标为(m,n),从而可以用m的代数式表示出PM、EF,然后根据PM=EF建立方程,就可求出m,进而求出点P的坐标.(3)先求出点M的坐标,然后设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,然后只需考虑三个临界位置(①向上平移到与直线EM相切的位置,②向下平移到经过点M的位置,③向下平移到经过点E的位置)所对应的c的值,就可以解决问题.解答:解:(1)根据题意可设抛物线的解析式为y=a(x+2)(x﹣4).∵点C(0,﹣8)在抛物线y=a(x+2)(x﹣4)上,∴﹣8a=﹣8.∴a=1.∴y=(x+2)(x﹣4)=x2﹣2x﹣8=(x﹣1)2﹣9.∴抛物线的解析式为y=x2﹣2x﹣8,顶点D的坐标为(1,﹣9).(2)如图,设直线CD的解析式为y=kx+b.∴解得:.∴直线CD的解析式为y=﹣x﹣8.当y=0时,﹣x﹣8=0,则有x=﹣8.∴点E的坐标为(﹣8,0).设点P的坐标为(m,n),则PM=(m2﹣2m﹣8)﹣(﹣m﹣8)=m2﹣m,EF=m﹣(﹣8)=m+8.∵PM=EF,∴m2﹣m=(m+8).整理得:5m2﹣6m﹣8=0.∴(5m+4)(m﹣2)=0解得:m1=﹣,m2=2.∵点P在对称轴x=1的右边,∴m=2.此时,n=22﹣2×2﹣8=﹣8.∴点P的坐标为(2,﹣8).(3)当m=2时,y=﹣2﹣8=﹣10.∴点M的坐标为(2,﹣10).设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,①若抛物线y=x2﹣2x﹣8+c与直线y=﹣x﹣8相切,则方程x2﹣2x﹣8+c=﹣x﹣8即x2﹣x+c=0有两个相等的实数根.∴(﹣1)2﹣4×1×c=0.∴c=.②若抛物线y=x2﹣2x﹣8+c经过点M,则有22﹣2×2﹣8+c=﹣10.∴c=﹣2.③若抛物线y=x2﹣2x﹣8+c经过点E,则有(﹣8)2﹣2×(﹣8)﹣8+c=0.∴c=﹣72.综上所述:要使抛物线与(2)中的线段EM总有交点,抛物线向上最多平移个单位长度,向下最多平移72个单位长度.点评:本题考查了用待定系数法求二次函数的解析式、用待定系数法求一次函数的解析式、解一元二次方程、根的判别式、抛物线与直线的交点问题等知识,而把抛物线与直线相切的问题转化为一元二次方程有两个相等的实数根的问题是解决第三小题的关键,有一定的综合性.。
德阳中考数学试卷真题
德阳中考数学试卷真题一、单项选择题1. ( )已知直线l过点A(1,2),B(3,4)。
下列过点C(5,1)的直线中,与直线l垂直的是()。
A. y=x-3B. x-y+3=0C. x+y-7=0D. 3x-2y-7=02. ( )已知△ABC中,AB=AC,∠BAC=40°,则∠ABC=()。
A. 70°B. 50°C. 40°D. 20°3. ( )下列直线方程中,平行于x轴的直线是()。
A. y=3x-1B. y=2x+3C. y=-3D. y=7x+54. ( )当x=-1,y=0时,关于x轴对称的点是()。
A. (-1,-1)B. (-1,0)C. (-1,1)D. (0,1)5. ( )若a:b=2:3,且a=8,则b=()。
A. 12B. 16C. 18D. 246. ( )在一个凸多边形中,外角的个数为8,则该多边形的边数是()。
A. 4B. 5C. 6D. 77. ( )若4x-3y=7,求x的值,则x=()。
A. 7/3B. -7/3C. 7/4D. -7/48. ( )下列各组数字中,按顺序排列,比值永远递减的是()。
A. 0,1,1,2,1,3,2B. 1,2,3,3,3,4,4C. 1,3,5,7,5,9,7D. 3,5,6,7,9,12,169. ( )若△ABC中∠B=90°,AB=3,AC=4,则BC=()。
A. 5B. 7C. 8D. 910. ( )在△ABC中,已知∠B=35°,AC=4,BC=6,F为BC上的点,且AF垂直于BC,则AF的长度为()。
A. 2B. 3C. 4D. 5二、填空题11. ( ) 已知a+b=5,ab=4,求a²+b²的值:_________。
12. ( ) 已知m:2=1:3,n:4=1:2,求m+n的值:_________。
13. ( ) 如果一个数的5倍增加了50,得到的数是110,请你求出原数:_________。
德阳市中考数学试题及答案
德阳市中考数学试题及答案【正文部分】德阳市中考数学试题及答案一、选择题1. 在直角三角形 ABC 中,∠C = 90°,边 AB = 5,AC = 12。
则 BC 的长度为:A) 13 B) 5 C) 7 D) 172. 若 1+1/x=2/y=3/z,且y≠z,求 x 的值。
A) 10 B) 18 C) 19 D) 203. 如图所示,小明在一幅平面坐标系中取点 (x, y) ,若该点在直线OA 上(O 为坐标原点),则点 (x, y) 的坐标为:A) (8, 6) B) (−8, 6) C) (8, −6) D) (−8, −6)4. 如图所示,已知△ABC 中,D 为 BC 的中点,且 BD = CD = 2。
若△ABC 的面积为 14,求△ABD 的面积。
A) 3 B) 4 C) 5 D) 6二、填空题5. 已知函数 f(x) = x^2 + bx + c 与 x 轴交于两点,且交点的横坐标之和为 3,纵坐标之和为 6,则 b 的值为________,c 的值为________。
6. 设数列 {an} 满足 a1 = 1,an+1 = 3an + 2 (n ≥ 1),则 a5 的值为________。
7. 已知 log3 log24 + log8 (a^2 + 2) = 9,求实数 a 的值。
三、解答题8. 解方程组⎧ 3x + 2y = 4⎨ x^2 + y^2 = 259. 在△ABC 中,BD 是边 AC 上的中线,且 AB = 12,BD = 9。
求边 BC 的长度。
【答案部分】一、选择题1. A2. C3. D4. A二、填空题5. b = 2, c = 36. a5 = 737. a = 100三、解答题8. 解:将第一个方程乘以 3,并与第二个方程相减,得到:⎧ 9x + 6y = 12⎨ x^2 + y^2 = 25将第一个方程两边同时除以 3,得到:⎩ 3x + 2y = 4由第一个方程解得 x = 2 - 4y/3,代入第二个方程得:(2 - 4y/3)^2 + y^2 = 25化简并整理后得:y^2 + 16y/3 - 7 = 0解这个二次方程,可得 y = -6 或 y = 7/3当 y = -6 时,代入 x = 2 - 4y/3 可得 x = 10/3当 y = 7/3 时,代入 x = 2 - 4y/3 可得 x = -7/3所以,方程组的解为 (x, y) = (10/3, -6) 或 (-7/3, 7/3)。
四川省德阳市中考数学试卷(附答案解析)
2020年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.13的相反数是( ) A .3 B .﹣3 C .13 D .−13 2.下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 63.如图所示,直线EF ∥GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =( )A .160°B .110°C .100°D .70°4.下列说法错误的是( )A .方差可以衡量一组数据的波动大小B .抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C .一组数据的众数有且只有一个D .抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为( )A .180°B .540°C .1080°D .1200°6.某商场销售A ,B ,C ,D 四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A .19.5元B .21.5元C .22.5元D .27.5元7.半径为R 的圆内接正三角形、正方形、正六边形的边心距分别为a ,b ,c ,则a ,b ,c的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a8.已知函数y ={−x +1(x <2)−2x(x ≥2),当函数值为3时,自变量x 的值为( ) A .﹣2 B .−23 C .﹣2或−23 D .﹣2或−329.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是( )A .20πB .18πC .16πD .14π10.如图,Rt △ABC 中,∠A =30°,∠ABC =90°.将Rt △ABC 绕点B 逆时针方向旋转得到△A 'BC '.此时恰好点C 在A 'C '上,A 'B 交AC 于点E ,则△ABE 与△ABC 的面积之比为( )A .13B .12C .23D .34 11.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .2√2−2C .2√2+2D .2√212.已知不等式ax +b >0的解集为x <2,则下列结论正确的个数是( )(1)2a +b =0;(2)当c >a 时,函数y =ax 2+bx +c 的图象与x 轴没有公共点;(3)当c >0时,抛物线y =ax 2+bx +c 的顶点在直线y =ax +b 的上方;(4)如果b <3且2a ﹣mb ﹣m =0,则m 的取值范围是−34<m <0.A .1B .2C .3D .4 二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是 .14.把ax 2﹣4a 分解因式的结果是 .15.如图,在平行四边形ABCD 中,BE 平分∠ABC ,CF ⊥BE ,连接AE ,G 是AB 的中点,连接GF ,若AE =4,则GF = .16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B 点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|√3−2|+(−√32)0−√83−2cos30°.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=√3,求DF的长.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=4x的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=4x第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.2020年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.13的相反数是( ) A .3B .﹣3C .13D .−13 解:13的相反数为−13.故选:D .2.下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 6解:A 、a 2•a 3=a 5,故原题计算错误;B 、(3a )3 =27a 3,故原题计算错误;C 、3a ﹣2a =a ,故原题计算错误;D 、(﹣2a 2)3=﹣8a 6,故原题计算正确;故选:D .3.如图所示,直线EF ∥GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =( )A .160°B .110°C .100°D .70°解:∵AD ⊥EF ,∠A =20°,∴∠ABD =180°﹣∠A ﹣∠ABD =180°﹣20°﹣90°=70°,∵EF ∥GH ,∴∠ACH =∠ABD =70°,∴∠ACG =180°﹣∠ACH =180°﹣70°=110°,故选:B.4.下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个或者没有,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.5.多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°解:多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),n应为整数,所以n ﹣2也是整数,所以多边形的内角能被180整除,因为在这四个选项中不是180°的倍数的只有1200°.故选:D.6.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.7.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a 解:设圆的半径为R ,则正三角形的边心距为a =R ×cos60°=12R .四边形的边心距为b =R ×cos45°=√22R ,正六边形的边心距为c =R ×cos30°=√32R .∵12R <√22R <√32R ,∴a <b <c ,故选:A .8.已知函数y ={−x +1(x <2)−2x(x ≥2),当函数值为3时,自变量x 的值为( )A .﹣2B .−23C .﹣2或−23D .﹣2或−32 解:若x <2,当y =3时,﹣x +1=3,解得:x =﹣2;若x ≥2,当y =3时,−2x =3,解得:x =−23,不合题意舍去;∴x =﹣2,故选:A .9.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A .20πB .18πC .16πD .14π。
四川省德阳市中考数学试卷
2021年四川省德阳市中考数学试卷一、选择题〔本大题共12个小题,每题3分,共36分〕1.〔3分〕如果把收入100元记作+100元,那么支出80元记作〔〕A.+20元B.+100元C.+80元D.﹣80元2.〔3分〕以下计算或运算中,正确的选项是〔〕6÷a23.〔﹣2〕3﹣3A.a=a B2a=8aC.〔a﹣3〕〔3+a〕=a2﹣9 D.〔a﹣b〕2=a2﹣b23.〔3分〕如图,直线a∥b,c,d是截线且交于点A,假设∠1=60°,∠2=100°,那么∠A=〔〕A.40°B.50°C.60°D.70°4.〔3分〕以下计算或运算中,正确的选项是〔〕A.2=B.﹣=C.6÷2=3D.﹣3=﹣5.〔3分〕把实数×103用小数表示为〔〕A.B.6120C.D.6120006.〔3分〕以下说法正确的选项是〔〕A.“明天降雨的概率为50%〞,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查〔普查〕方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,那么这组数据的波动也越大7.〔3分〕受央视?朗读者?节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,那么在本次调查中,全班学生平均每天阅读时间的中位数和众数分第1页〔共29页〕别是〔〕每天阅读时间〔小12时〕人数89103A.2,1B.1,C.1,2D.1,18.〔3分〕如图是一个几何体的三视图,根据图中数据计算这个几何体的外表积是〔〕A.16π B.12π C.10π D.4π9.〔3分〕圆内接正三角形的面积为,那么该圆的内接正六边形的边心距是〔〕A.2 B.1 C. D.10.〔3分〕如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影局部的面积为〔〕A.3 B.C.3﹣D.3﹣第2页〔共29页〕11.〔3分〕如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对〔a,b〕共有〔〕A.3个B.4个C.5个D.6个12.〔3分〕如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,那么在△ABC中S△ABO:S△AOC:S△BOC=〔〕A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:2二、填空题〔每题3分,共15分〕13.〔3分〕分解因式:2xy2+4xy+2x=.14.〔3分〕一组数据10,15,10,x,18,20的平均数为15,那么这组数据的方差为.15.〔3分〕如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,那么第2021个格子的数为.3 a b c ﹣1 216.〔3分〕如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出以下结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④假设AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,那么d12+d22的最小值是3.其中正确的结论是〔填写正确结论的番号〕.17.〔3分〕函数y= 使y=a成立的x的值恰好只有3个时,a的值为.第3页〔共29页〕三、解答题〔共69分.解容许写出文字说明、证明过程或推演步骤〕18.〔6分〕计算:+〔〕﹣3﹣〔3 〕0﹣4cos30°+.19.〔7分〕如图,点E、F分别是矩形ABCD的边AD、AB上一点,假设AE=DC=2ED,且EF⊥EC.1〕求证:点F为AB的中点;2〕延长EF与CB的延长线相交于点H,连结AH,ED=2,求AH的值.20.〔11分〕某网络约车公司近期推出了〞520专享〞效劳方案,即要求公司员工做到“5星级效劳、2分钟响应、0客户投诉〞,为进一步提升效劳品质,公司监管部门决定了解“单次营运里程〞的分布情况.老王收集了本公司的5000个“单次营运里程〞数据,这些里程数据均不超过25〔公里〕,他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图〔如图〕.组别单次营运里程“x〔〞公里〕频数第一组<≤5720x第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息,解答下面的问题:〔1〕①表中a=;②样本中“单次营运里程〞不超过15公里的频率为;③请把频数分布直方图补充完整;〔2〕请估计该公司这5000个“单次营运里程〞超过20公里的次数;〔3〕为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机〔3第4页〔共29页〕男1女〕成立了“交通秩序维护〞志愿小分队,假设从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法〔画树状图或列表〕求出恰好抽到“一男一女〞的概率.21.〔10分〕如图,在平面直角坐标系中,直线y1=kx+b〔k≠0〕与双曲线y2=〔a≠0〕交于A、B两点,点A〔m,2〕,点B〔﹣1,﹣4〕.1〕求直线和双曲线的解析式;2〕把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.22.〔10分〕为配合“一带一路〞国家建议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基根底加固处理工程由A、B两个工程公司承当建设,A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.1〕求B工程公司单独建设完成此项工程需要多少天?2〕由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一局部用了m天完成,B第5页〔共29页〕工程公司建设另一局部用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?23.〔11分〕如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.1〕求证:DH=DB;2〕过点D作BC的平行线交AC、AB的延长线分别于点E、F,CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.〔14分〕如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y 轴上,点〔,〕,二次函数y=2+bx﹣的图象经过点C.C31x〔1〕求二次函数的解析式,并把解析式化成y=a〔x﹣h〕2+k的形式;2〕把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;3〕在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.第6页〔共29页〕第7页〔共29页〕2021年四川省德阳市中考数学试卷参考答案与试题解析一、选择题〔本大题共12个小题,每题3分,共36分〕1.〔3分〕如果把收入100元记作+100元,那么支出80元记作〔〕A.+20元B.+100元C.+80元D.﹣80元【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可.【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,应选:D.【点评】此题考查了正数和负数,能用正数和负数表示题目中的数是解此题的关键.2.〔3分〕以下计算或运算中,正确的选项是〔A.a6÷a2=a3C.〔a﹣3〕〔3+a〕=a2﹣9〕B.〔﹣2a2〕3=﹣8a3D.〔a﹣b〕2=a2﹣b2【分析】根据同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式逐一判断可得.【解答】解:A、a6÷a2=a4,此选项错误;B、〔﹣2a2〕3=﹣8a6,此选项错误;C、〔a﹣3〕〔3+a〕=a2﹣9,此选项正确;D、〔a﹣b〕2=a2﹣2ab+b2,此选项错误;应选:C.【点评】此题主要考查整式的混合运算,解题的关键是掌握同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式.3.〔3分〕如图,直线a∥b,c,d是截线且交于点A,假设∠1=60°,∠2=100°,那么∠A=〔〕第8页〔共29页〕A.40° B.50° C.60° D.70°【分析】依据∠2是△ABC的外角,即可得到∠A=∠2﹣∠1=40°.也可以利用平行线的性质以及三角形内角和定理,即可得到∠A的度数.【解答】解法一:如图,∵∠2是△ABC的外角,∴∠A=∠2﹣∠1=100°﹣60°=40°,应选:A.解法二:如图,∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°,∴∠5=180°﹣∠4=80°,∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°,应选:A.【点评】此题主要考查了三角形外角性质以及平行线的性质的运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.4.〔3分〕以下计算或运算中,正确的选项是〔〕A.2 = B.﹣= C.6 ÷2 =3 D.﹣3 =【分析】根据二次根性质和运算法那么逐一判断即可得.【解答】解:A、2 =2×= ,此选项错误;B、﹣=3 ﹣2 = ,此选项正确;第9页〔共29页〕C、6 ÷2 =3 ,此选项错误;D、﹣3 =﹣,此选项错误;应选:B.【点评】此题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法那么及二次根式的性质.﹣〕5.〔3分〕把实数×103用小数表示为〔A.B.6120C.D.612000【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0的个数所决定.【解答】解:×10﹣3,应选:C.【点评】此题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.〔3分〕以下说法正确的选项是〔〕A.“明天降雨的概率为50%〞,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查〔普查〕方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,那么这组数据的波动也越大【分析】根据概率的意义,事件发生可能性的大小,可得答案.【解答】解:A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,那么这组数据的波动也越大,此选项正确;应选:D.【点评】此题考查了概率的意义、随机事件,利用概率的意义,事件发生可能性的大小是解题关键.第10页〔共29页〕7.〔3分〕受央视?朗读者?节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,那么在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是〔〕每天阅读时间〔小 1 2时〕人数8 9 10 3A.2,1 B.1, C.1,2 D.1,1 【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,此题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、,应选:B.【点评】此题考查众数、加权平均数、中位数,解答此题的关键是明确题意,会求一组数据的众数和中位数.8.〔3分〕如图是一个几何体的三视图,根据图中数据计算这个几何体的外表积是〔〕A.16πB.12πC.10π D.4π【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其外表积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断第11页〔共29页〕出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故外表积=πrl+πr2=π×2×6+π×22=16π,应选:A.【点评】考查学生对三视图掌握程度和灵活运用能力,关键是由主视图和左视图确定是柱体,锥体还是球体.9.〔3分〕圆内接正三角形的面积为,那么该圆的内接正六边形的边心距是〔〕A.2 B.1 C. D.【分析】根据题意可以求得半径,进而解答即可.【解答】解:因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距×sin60°=,应选:B.【点评】此题考查正多边形和圆,解答此题的关键是明确题意,求出相应的图形的边心距.10.〔3分〕如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影局部的面积为〔〕A.3 B. C.3﹣D.3﹣【分析】连接BM,根据旋转的性质和四边形的性质,证明△ABM≌△C′BM,得到∠2=∠3=30°,利用三角函数和三角形面积公式求出△ABM的面积,再利用阴影局部面积=正方形面积﹣2△ABM的面积即可得到答案.第12页〔共29页〕【解答】解:连接BM,在△ABM和△C′BM中,,∴△ABM≌△C′BM,∠2=∠3==30°,在△ABM中,AM= ×tan30°=1,S△ABM= = ,正方形的面积为:=3,阴影局部的面积为:3﹣2×=3﹣,应选:C.【点评】此题考查旋转的性质和正方形的性质,利用旋转的性质和正方形的性质证明两三角形全等是解决此题的关键.11.〔3分〕如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对〔a,b〕共有〔〕A.3个B.4个C.5个D.6个【分析】求出不等式组的解集,根据求出 1 ≤2、3 <4,求出2<a≤4、9≤b<12,即可得出答案.【解答】解:解不等式2x﹣a≥0,得:x≥,解不等式3x﹣b≤0,得:x≤,∵不等式组的整数解仅有x=2、x=3,那么1 ≤2、3 <4,解得:2<a≤4、9≤b<12,那么a=3时,b=9、10、11;当a=4时,b=9、10、11;第13页〔共29页〕所以适合这个不等式组的整数a、b组成的有序数对〔a,b〕共有6个,应选:D.【点评】此题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.12.〔3分〕如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,那么在△ABC中S△ABO:S△AOC:S△BOC=〔〕A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:2【分析】连接BF.设平行四边形AFEO的面积为4m.由FO:OC=3:1,BE=OB,AF∥OE可得S△OBF=S△AOB=m,S△OBC= m,S△AOC= ,由此即可解决问题;【解答】解:连接BF.设平行四边形AFEO的面积为4m.FO:OC=3:1,BE=OB,AF∥OES△OBF=S△AOB=m,S△OBC=m,S△AOC=,S△AOB:S△AOC:S△BOC=m::m=3:2:1应选:B.【点评】此题主要考查了平行四边形的性质,等高模型等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.二、填空题〔每题3分,共15分〕13.〔3分〕分解因式:2xy2+4xy+2x=2x〔y+1〕2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2x〔y2+2y+1〕=2x〔y+1〕2,故答案为:2x〔y+1〕2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.第14页〔共29页〕14.〔3分〕一组数据10,15,10,x,18,20的平均数为15,那么这组数据的方差为.【分析】先根据平均数为15列出关于x的方程,解之求得x即可知完整的数据,再根据方差公式计算可得.【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,那么这组数据为10,15,10,17,18,20,∴这组数据的方差是:[2×〔10﹣15〕2+〔15﹣15〕2+〔17﹣15〕2+〔18﹣15〕2+〔20﹣15〕2]= ,故答案为:.【点评】此题主要考查算术平均数、方差,解题的关键是熟练掌握算术平均数的定义与方差的计算公式.15.〔3分〕如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,那么第2021个格子的数为﹣1.3abc﹣12【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2021除以3,根据余数的情况确定与第几个数相同即可得解.【解答】解:∵任意三个相邻格子中所填整数之和都相等,a+b+c=b+c+〔﹣1〕,3+〔﹣1〕+b=﹣1+b+c,a=﹣1,c=3,∴数据从左到右依次为3、﹣1、b、3、﹣1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、﹣1、2〞为一个循环组依次循环,2021÷3=6722,∴第2021个格子中的整数与第 2个格子中的数相同,为﹣1.故答案为:﹣1.第15页〔共29页〕【点评】此题考查数字的变化规律以及有理数的加法,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.16.〔3分〕如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出以下结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④假设AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,那么d12+d22的最小值是3.其中正确的结论是①③④〔填写正确结论的番号〕.【分析】由题意可得△BCE是含有30°的直角三角形,根据含有30°的直角三角形的性质可判断①②③,易证四边形PMCN是矩形,可得d12+d22=MN2=CP2,根据垂线段最短,可得CP的值即可求d12+d22的最小值,即可判断④.【解答】解:∵D是AB中点AD=BD∵△ACD是等边三角形,E是AD中点AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°假设AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形MN=CPd12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,那么当CP⊥AB时,d12+d22的值最小第16页〔共29页〕此时:∠CAB=60°,AC=2,CP⊥ABCP=d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④【点评】此题考查了解直角三角形,等边三角形的性质和判定,利用垂线段最短求d12+d22的最小值是此题的关键.17.〔3分〕函数y= 使y=a成立的x的值恰好只有3个时,a的值为2 .【分析】首先在坐标系中画出函数y= 的图象,利用数形结合的方法即可找到使y=a成立的x值恰好有3个的a值.【解答】解:函数y= 的图象如图:根据图象知道当y=2时,对应成立的x值恰好有三个,a=2.故答案:2.【点评】此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解第17页〔共29页〕方程的问题转换为根据函数图象找交点的问题.三、解答题〔共69分.解容许写出文字说明、证明过程或推演步骤〕18.〔6分〕计算:+〔〕﹣3﹣〔3 〕0﹣4cos30°+.【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2 +2=10.【点评】此题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.〔7分〕如图,点E、F分别是矩形ABCD的边AD、AB上一点,假设AE=DC=2ED,且EF⊥EC.1〕求证:点F为AB的中点;2〕延长EF与CB的延长线相交于点H,连结AH,ED=2,求AH的值.【分析】〔1〕根据全等三角形的判定,证得△AEF≌△DCE,再根据全等三角形的性质,证得ED=AF,进而得证;2〕根据全等三角形的判定方法,证明△AEF≌△BHF,进而求得HB=AB=AE=4,再利用勾股定理求出AH的值即可.【解答】〔1〕证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°,∵四边形ABCD是矩形,第18页〔共29页〕∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC,AE=DC,∴△AEF≌△DCE.ED=AF,AE=DC=AB=2DE,∴AB=2AF,∴F为AB的中点;〔2〕解:由〔1〕知AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,HB=AE,ED=2,且AE=2ED,∴AE=4,∴HB=AB=AE=4,AH2=AB2+BH2=16+16=32,AH=.【点评】此题主要考查矩形的性质,全等三角形的性质和判定,勾股定理的综合应用,解决此类问题的关键是能灵活运用相关的性质找出相等的线段.20.〔11分〕某网络约车公司近期推出了〞520专享〞效劳方案,即要求公司员工做到“5星级效劳、2分钟响应、0客户投诉〞,为进一步提升效劳品质,公司监管部门决定了解“单次营运里程〞的分布情况.老王收集了本公司的5000个“单次营运里程〞数据,这些里程数据均不超过25〔公里〕,他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图〔如图〕.组别单次营运里程“x〔〞公里〕频数第一组<≤572 0x第二组5<x≤10a 第三组10<x≤1526第19页〔共29页〕第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息,解答下面的问题:〔1〕①表中a=48;②样本中“单次营运里程〞不超过15公里的频率为;③请把频数分布直方图补充完整;〔2〕请估计该公司这5000个“单次营运里程〞超过20公里的次数;〔3〕为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机〔3男1女〕成立了“交通秩序维护〞志愿小分队,假设从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法〔画树状图或列表〕求出恰好抽到“一男一女〞的概率.【分析】〔1〕①由频数分布直方图可直接得出a的值;②用第一、二、三组的频数和除以总数量可得;③根据分布表中数据即可得;2〕用总数量乘以样本中“单次营运里程〞超过20公里的次数所占比例即可得;3〕画树状图展示所有12种等可能的结果数,找出抽到一男一女的结果数,然后根据概率公式求解.【解答】解:〔1〕①由条形图知a=48;②样本中“单次营运里程〞不超过15公里的频率为;③补全图形如下:第20页〔共29页〕故答案为:①48;②;〔2〕估计该公司这5000个“单次营运里程〞超过20公里的次数为5000×=750次;〔3〕画树状图为:共有12种等可能的结果数,其中恰好抽到一男一女的结果数为6,∴恰好抽到“一男一女〞的概率为=.【点评】此题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和统计表,要熟练从统计图表中得出解题所需数据.21.〔10分〕如图,在平面直角坐标系中,直线y1=kx+b〔k≠0〕与双曲线y2=〔a≠0〕交于A、B两点,点A〔m,2〕,点B〔﹣1,﹣4〕.1〕求直线和双曲线的解析式;2〕把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.第21页〔共29页〕【分析】〔1〕把点B代入双曲线求出a的值,即可得到双曲线的解析式;把点A 代入双曲线求出m的值,确定A点坐标,再利用待定系数法求出直线的解析式,即可解答;〔2〕先求出y3的解析式,再解方程组求出点D点E的坐标,即可解答.【解答】解:〔1〕∵点B〔﹣1,﹣4〕在双曲线y2= 〔a≠0〕上,a=〔﹣1〕×〔﹣4〕=4,∴双曲线的解析式为:.∵点A〔m,2〕在双曲线上,2m=4,m=2,∴点A的坐标为:〔2,2〕∵点A〔m,2〕,点B〔﹣1,﹣4〕在直线y1=kx+b〔k≠0〕上,∴解得:∴直线的解析式为:y1=2x﹣2.2〕∵把直线y1沿x轴负方向平移2个单位后得到直线y3,∴y2=2〔x+2〕﹣2=2x+2,解方程组得:或,∴点D〔1,4〕,点E〔﹣2,﹣2〕,第22页〔共29页〕∴由函数图象可得:当y2>y3时,x的取值范围为:x<﹣2或0<x<1.【点评】此题考查了反比例函数与一次函数的交点,解决此题的关键是求出直线和双曲线的解析式.22.〔10分〕为配合“一带一路〞国家建议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基根底加固处理工程由A、B两个工程公司承当建设,A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.1〕求B工程公司单独建设完成此项工程需要多少天?2〕由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一局部用了m天完成,B工程公司建设另一局部用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【分析】〔1〕设B工程公司单独完成需要x天,根据题意列出关于x的分式方程,求出分式方程的解得到x的值,经检验即可得到结果;〔2〕根据题意列出关于m与n的方程,由m与n的范围,确定出正整数m与的值,即可得到结果.【解答】解:〔1〕设B工程公司单独完成需要x天,根据题意得:45×+54〔+ 〕=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;〔2〕根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,第23页〔共29页〕m=43,44,45,又∵120﹣m为正整数,m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.【点评】此题考查了分式方程的应用,以及二元一次方程的应用,找出题中的等量关系是解此题的关键.23.〔11分〕如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.1〕求证:DH=DB;2〕过点D作BC的平行线交AC、AB的延长线分别于点E、F,CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.【分析】〔1〕先判断出∠DAC=∠DAB,∠ABH=∠CBH,进而判断出∠DHB=∠DBH,即可得出结论;〔2〕〕①先判断出OD∥AC,进而判断出OD⊥EF,即可得出结论;②先判断出△CDE≌△BDG,得出GB=CE=1,再判断出△DBG∽△ABD,求出DB2=5,即DB=,DG=2,进而求出AE=AG=4,最后判断出△OFD∽△AFE即可得出结论.【解答】解:〔1〕证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,第24页〔共29页〕∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,DH=DB;〔2〕①连接OD,∵∠DOB=2∠DAB=∠BACOD∥AC,AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在⊙O上,∴EF是⊙O的切线;②过点D作DG⊥AB于G,∵∠EAD=∠DAB,DE=DG,DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB?BG=5×1=5,DB=,DG=2,ED=2,第25页〔共29页〕H是内心,∴AE=AG=4,DO∥AE,∴△OFD∽△AFE,∴,∴,DF=.【点评】此题是圆的综合题,主要考查了三角形内心,圆的有关性质,相似三角形的判定和性质,切线的判定,平行线的性质和判定,求出DB是解此题的关键.24.〔14分〕如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C〔3,1〕,二次函数y=x2+bx﹣的图象经过点C.〔1〕求二次函数的解析式,并把解析式化成y=a〔x﹣h〕2+k的形式;2〕把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;3〕在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.第26页〔共29页〕【分析】〔1〕将点C的坐标代入抛物线的解析式可求得b的值,从而可得到抛物线的解析式,然后利用配方法可将抛物线的解析式变形为y=a〔x﹣h〕2+k的形式;2〕作CK⊥x轴,垂足为K.首先证明△BAO≌△ACK,从而可得到OA=CK,OB=AK,于是可得到点A、B的坐标,然后依据勾股定理求得AB的长,然后求得点D的坐标,从而可求得三角形平移的距离,最后,依据△ABC扫过区域的面积=S四边形ABDE+S△DEH求解即可;3〕当∠ABP=90°时,过点P作PG⊥y轴,垂足为G,先证明△BPG≌△ABO,从而可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可,当∠PAB=90°,过点P作PF⊥x轴,垂足为F,同理可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可.【解答】解:〔1〕∵点C〔3,1〕在二次函数的图象上,x2+bx﹣=1,解得:b=﹣,∴二次函数的解析式为y= x2﹣x﹣y= x2﹣x﹣ = 〔x2﹣x+ ﹣〕﹣= 〔x﹣〕2﹣〔2〕作CK⊥x轴,垂足为K.∵△ABC为等腰直角三角形,AB=AC.第27页〔共29页〕又∵∠BAC=90°,∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°,∴∠BAO=∠ACK.在△BAO和△ACK中,∠BOA=∠AKC,∠BAO=∠ACK,AB=AC,∴△BAO≌△ACK.OA=CK=1,OB=AK=2.A〔1,0〕,B〔0,2〕.∴当点B平移到点D时,D〔m,2〕,那么2=m2﹣ m﹣,解得m=﹣3〔舍去〕或m=.∴AB== .∴△ABC扫过区域的面积=S四边形ABDE+S△DEH=×2+××3〕当∠ABP=90°时,过点P作PG⊥y轴,垂足为G.∵△APB为等腰直角三角形,∴PB=AB,∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°,∴∠BAO=∠BPG.在△BPG和△ABO中,∠BOA=∠PGB,∠BAO=∠BPG,AB=PB,∴△BPG≌△ABO.PG=OB=2,AO=BG=1,P〔﹣2,1〕.当x=﹣2时,y≠1,∴点P〔﹣2,1〕不在抛物线上.当∠PAB=90°,过点P作PF⊥x轴,垂足为F.同理可知:△PAF≌△ABO,FP=OA=1,AF=OB=2,P〔﹣1,﹣1〕.第28页〔共29页〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省德阳市2019年中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(3分)(2019•德阳)实数﹣的相反数是()A.﹣2 B.C.2D.﹣|﹣0.5|考点:相反数.分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣的相反数是,故选:B.点评:此题主要考查了相反数,正确把握相反数的概念即可.2.(3分)(2019•德阳)如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°考点:平行线的性质.分析:根据两直线平行,内错角相等可得∠ABC=∠1,再根据三角形的内角和定理列式计算即可得解.解答:解:∵a∥b,∴∠ABC=∠1=46°,∵∠A=38°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣38°﹣46°=96°.故选C.点评:本题考查了平行线的性质,三角形的内角和定理,熟记性质是解题的关键.3.(3分)(2019•德阳)下列运算正确的是()A.a2+a=2a4B.a3•a2=a6C.2a6÷a2=2a3D.(a2)4=a8考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用单项式除以单项式法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=a5,错误;C、原式=2a4,错误;D、原式=a8,正确,故选D点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(2019•德阳)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2019•德阳)如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、8 B.7、9 C.8、9 D.8、10考点:折线统计图;中位数;众数.分析:由折线图可知,射击选手五次射击的成绩为:7、7、8、10、9,再根据众数、中位数的计算方法即可求得.解答:解:∵射击选手五次射击的成绩为:7、7、8、10、9,∴众数为7,中位数为8,故选:A.点评:本题考查了折线图的意义和众数、中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.6.(3分)(2019•德阳)已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含考点:圆与圆的位置关系.分析:先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.解答:解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.7.(3分)(2019•德阳)已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5 B.2C.﹣2.5 D.﹣6考点:二次函数的最值.分析:把二次函数的解析式整理成顶点式形式,然后确定出最大值.解答:解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.点评:本题考查了二次函数的最值.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.8.(3分)(2019•德阳)如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO 绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)考点:坐标与图形变化-旋转;等边三角形的性质.分析:设A1B1与x轴相交于C,根据等边三角形的性质求出OC、A1C,然后写出点A1的坐标即可.解答:解:如图,设A1B1与x轴相交于C,∵△ABO是等边三角形,旋转角为30°,∴∠A1OC=60°﹣30°=30°,∴A1B1⊥x轴,∵等边△ABO的边长为2,∴OC=×2=,A1C=×2=1,∴点A1的坐标为(,﹣1).故选B.点评:本题考查了坐标与图形变化﹣旋转,等边三角形的性质,熟记等边三角形的性质是解题的关键.9.(3分)(2019•德阳)下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.4考点:利用频率估计概率;概率的意义.分析:利用概率的意义、利用频率估计概率的方法对各选项进行判断后即可确定正确的选项.解答:解:①不可能事件发生的概率为0,正确;②一个对象在实验中出现的次数越多,频率就越大,正确;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,正确;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率,错误,故选C.点评:本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.10.(3分)(2019•德阳)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,则它的周长为()A.B.+1 C.+2 D.+3考点:勾股定理;直角三角形斜边上的中线.分析:根据“直角三角形斜边上的中线等于斜边的一半求得AB=;然后利用勾股定理、三角形的面积求得(AC+BC)的值,则易求该三角形的周长.解答:解:如图,∵在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,∴AB=2CD=.∴AC2+BC2=5又Rt△ABC的面积为1,∴AC•BC=1,则AC•BC=2.∴(AC+BC)2=AC2+BC2+2AC•BC=9,∴AC+BC=3(舍去负值),∴AC+BC+AB=3+,即△ABC的周长是3+.故选:D.点评:本题考查了勾股定理,直角三角形斜边上的中线.此题借助于完全平方和公式求得(AC+BC)的长度,减少了繁琐的计算.11.(3分)(2019•德阳)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A.B.C.2D.考点:勾股定理;含30度角的直角三角形.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解答:解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故选:A.点评:本题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的难点是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度.12.(3分)(2019•德阳)已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4考点:分式方程的解;一元一次不等式组的整数解.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.解答:解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个3整数解,∴3≤b<4.故选D点评:此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.二、填空题(每小题3分,共18分,将答案填在答题卡对应的题号后的横线上)13.(3分)(2019•德阳)下列运算正确的个数有1个.①分解因式ab2﹣2ab+a的结果是a(b﹣1)2;②(﹣2)0=0;③3﹣=3.考点:提公因式法与公式法的综合运用;零指数幂;二次根式的加减法.分析:①先提取公因式a,再根据完全平方公式进行二次分解;②根据任何非零数的零指数次幂等于1解答;③合并同类二次根式即可.解答:解:①ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2,故本小题正确;②(﹣2)0=1,故本小题错误;③3﹣=2,故本小题错误;综上所述,运算正确的是①共1个.故答案为:1.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2019•德阳)一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.考点:方差;算术平均数.分析:先由平均数的公式计算出x的值,再根据方差的公式计算.解答:解:∵3,4,5,x,7,8的平均数是6,∴x=9,∴s2= [(3﹣6)2+(4﹣6)2+(5﹣6)2+(9﹣6)2+(7﹣6)2+(8﹣6)2]=×28=,故答案为:.点评:本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.(3分)(2019•德阳)半径为1的圆内接正三角形的边心距为.考点:正多边形和圆.分析:作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.解答:解:如图,△ABC是⊙O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴OB平分∠ABC,则∠OBD=30°;∵OD⊥BC,∴BD=DC,又∵OB=1,∴OD=.故答案是:.点评:考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.16.(3分)(2019•德阳)如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DE的度数为65°.考点:翻折变换(折叠问题).分析:首先求得∠AEA′,根据折叠的性质可得∠A′ED=∠AED=∠AEA′,在△A′DE 中利用三角形内角和定理即可求解.解答:解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故答案是:65°.点评:本题考查了折叠的性质,找出图形中相等的角和相等的线段是关键.17.(3分)(2019•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是301.考点:等边三角形的判定与性质;平移的性质.专题:规律型.分析:先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有n+1个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.解答:解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有n+1个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案为:301.点评:本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.18.(3分)(2019•德阳)在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB 边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是①③④.(填番号)①AC⊥DE;②=;③CD=2DH;④=.考点:直角梯形;全等三角形的判定与性质;含30度角的直角三角形;等腰直角三角形.分析:在等腰直角△ADE中,根据等腰三角形三线合一的性质可得AH⊥ED,即AC⊥ED,判定①正确;进而可判定③;因为△CHE为直角三角形,且∠HEC=60°所以EC=2EH,因为∠ECB=15°,所以EC≠4EB,所以不成立②错误;根据全等三角形对应边相等可得CD=CE,再求出∠CED=60°,得到△CDE为等边三角形,判定③正确;过H 作HM⊥AB于M,所以HM∥BC,所以△AHM∽△ABC,利用相似三角形的性质以及底相等的三角形面积之比等于高之比即可判定④正确.解答:解:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,∴∴AH⊥ED,即AC⊥ED,故①正确;∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴EH≠2EB;故②错误.:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵∠BCE=15°,∴∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°,∴△CDE为等边三角形,∴∠DCH=30°,∴CD=2DH,故③正确;过H作HM⊥AB于M,∴HM∥BC,∴△AHM∽△ABC,∴,∵DH=AH,∴,∵△BEH和△CBE有公共底BE,∴,故④正确,故答案为:①③④.点评:此题考查了直角梯形的性质、全等三角形的判定与性质、相似三角形的判定好性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握数形结合思想的应用.熟记各性质是解题的关键.三、解答题(共66分.解答应写出文字说明、证明过程或推演步骤)19.(6分)(2019•德阳)计算:﹣25+()﹣1﹣|﹣8|+2cos60°.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣32+2﹣4+1=﹣33.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(11分)(2019•德阳)为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了依次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数(人)频率第一组20≤x<25 50 0.05第二组25≤x<30 a 0.35第三组35≤x<35 300 0.3第四组35≤x<40 200 b第五组40≤x≤45 100 0.1(1)求本次调查的样本容量及表中的a、b的值;(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图,政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;(3)从第二张和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法.分析:(1)根据第一组的人数是50,频率是0.05即可求得总人数,则根据频率公式即可求得a、b的值;(2)根据第一组的频数是36人,频率是0.06据此即可求得调查的总人数,则满意度即可求得;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人,利用列举法即可求解.解答:解:(1)调查的总人数:50÷0.05=1000(人),则a=1000×0.35=350,b==0.2;(2)满意的总人数是:36÷0.06=600(人),则调查的满意率是:=0.6,则此次调查结果为满意;第五组的满意的人数是:600×0.16=96(人),则第五组的满意率是:×100%=96%;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人.,总共有20种情况,则第二组和第四组恰好各有1人被抽中的概率是:=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2019•德阳)如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中心E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.考点:矩形的性质;待定系数法求一次函数解析式;待定系数法求反比例函数解析式.分析:(1)根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D 的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标;(2)设直线与x轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.解答:解:(1)∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式得,=1,解得k=2,∴反比例函数解析式为y=,∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,=2,解得x=1,∴点D的坐标为(1,2);(2)如图,设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或×8=5,∵点D的坐标为(1,2),∴若(1+OF)×2=3,解得OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,解得OF=4,此时点F的坐标为(4,0),与点A重合,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=﹣2x+4,当D(1,2),F(4,0)时,,解得,此时,直线解析式为y=﹣x+,综上所述,直线的解析式为y=﹣2x+4或y=﹣x+.点评:本题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,(1)根据中心对称求出点E的坐标是解题的关键,(2)难点在于要分情况讨论.22.(11分)(2019•德阳)为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C每辆汽车的装载量(吨)4 5 6(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设装运A、B两种农产品各需x、y辆汽车.等量关系:40辆车都要装运,A、B、C三种农产品共200吨;(2)关系式为:装运每种农产品的车辆数≥11.解答:解:(1)设装运A、B两种农产品各需x、y辆汽车.则,解得.答:装运A、B两种农产品各需13、14辆汽车;(2)设装运A、B两种农产品各需x、y辆汽车.则4x+5y+6(40﹣x﹣y)=200,解得:y=﹣2x+40.由题意可得如下不等式组:,即,解得:11≤x≤14.5因为x是正整数,所以x的值可为11,12,13,14;共4个值,因而有四种安排方案.方案一:11车装运A,18车装运B,11车装运C方案二:12车装运A,16车装运B,12车装运C.方案三:13车装运A,14车装运B,13车装运C.方案四:14车装运A,12车装运B,14车装运C.点评:本题考查了二元一次方程组和一元一次不等式组的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装载的几种方案是解决本题的关键.23.(14分)(2019•德阳)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.考点:切线的判定.专题:证明题.分析:(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt △BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.解答:(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明:∵AP=BP,∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.24.(14分)(2019•德阳)如图,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8).(1)求抛物线的解析式及其顶点D的坐标;(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请求出点P的坐标;(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度.考点:二次函数综合题;解一元二次方程-因式分解法;根的判别式;待定系数法求一次函数解析式;待定系数法求二次函数解析式.专题:综合题.分析:(1)由于抛物线与x轴的两个交点已知,抛物线的解析式可设成交点式:y=a(x+2)(x﹣4),然后将点C的坐标代入就可求出抛物线的解析式,再将该解析式配成顶点式,即可得到顶点坐标.(2)先求出直线CD的解析式,再求出点E的坐标,然后设点P的坐标为(m,n),从而可以用m的代数式表示出PM、EF,然后根据PM=EF建立方程,就可求出m,进而求出点P的坐标.(3)先求出点M的坐标,然后设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,然后只需考虑三个临界位置(①向上平移到与直线EM相切的位置,②向下平移到经过点M的位置,③向下平移到经过点E的位置)所对应的c的值,就可以解决问题.解答:解:(1)根据题意可设抛物线的解析式为y=a(x+2)(x﹣4).∵点C(0,﹣8)在抛物线y=a(x+2)(x﹣4)上,∴﹣8a=﹣8.∴a=1.∴y=(x+2)(x﹣4)=x2﹣2x﹣8=(x﹣1)2﹣9.∴抛物线的解析式为y=x2﹣2x﹣8,顶点D的坐标为(1,﹣9).(2)如图,设直线CD的解析式为y=kx+b.∴解得:.∴直线CD的解析式为y=﹣x﹣8.当y=0时,﹣x﹣8=0,则有x=﹣8.∴点E的坐标为(﹣8,0).设点P的坐标为(m,n),则PM=(m2﹣2m﹣8)﹣(﹣m﹣8)=m2﹣m,EF=m﹣(﹣8)=m+8.∵PM=EF,∴m2﹣m=(m+8).整理得:5m2﹣6m﹣8=0.∴(5m+4)(m﹣2)=0解得:m1=﹣,m2=2.∵点P在对称轴x=1的右边,∴m=2.此时,n=22﹣2×2﹣8=﹣8.∴点P的坐标为(2,﹣8).(3)当m=2时,y=﹣2﹣8=﹣10.∴点M的坐标为(2,﹣10).设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,①若抛物线y=x2﹣2x﹣8+c与直线y=﹣x﹣8相切,则方程x2﹣2x﹣8+c=﹣x﹣8即x2﹣x+c=0有两个相等的实数根.∴(﹣1)2﹣4×1×c=0.∴c=.②若抛物线y=x2﹣2x﹣8+c经过点M,则有22﹣2×2﹣8+c=﹣10.∴c=﹣2.③若抛物线y=x2﹣2x﹣8+c经过点E,则有(﹣8)2﹣2×(﹣8)﹣8+c=0.∴c=﹣72.综上所述:要使抛物线与(2)中的线段EM总有交点,抛物线向上最多平移个单位长度,向下最多平移72个单位长度.点评:本题考查了用待定系数法求二次函数的解析式、用待定系数法求一次函数的解析式、解一元二次方程、根的判别式、抛物线与直线的交点问题等知识,而把抛物线与直线相切的问题转化为一元二次方程有两个相等的实数根的问题是解决第三小题的关键,有一定的综合性.。