489D686X003D4V中文资料
AVXX08中文资料
A PLUS MAKE YOUR PRODUCTION A-PLUSAVxx08 SeriesDATA SHEETA PLUS INTEGRATED CIRCUITS INC.Address:3 F-10, No. 32, Sec. 1, Chenggung Rd., Taipei, Taiwan 115, R.O.C.(115)台北市南港區成功路㆒段32號3樓之10. TEL: 886-2-2782-9266FAX: 886-2-2782-9255WEBSITE : http: // Sales E-mail:sales@Technology E-mail: service@1. GENERAL DESCRIPTION:The AVH308 , AV0708 , AV1408 and AV2108 are single-chip voice synthesizing CMOS IC.They are low cost with proper functions and can synthesize voice up to 3.5, 7, 14 and 21 seconds, usingA plus 4-bit LOGPCM algorithm. Customer speech data can be programmed into ROM by changing one maskduring the device fabrication. Besides, not only a very flexible functions I/O pin is available for the user to apply in various applications, but also an interactive development tool “EzSpeech” is ready for user-friendly programming.2. FEATURES:(1). Single power supply can operate from 2.4V to 6.4V (in this range, user can set Rosc as a fixed value).(2). The total voice duration is about 3.5, 7, 14 or 21 seconds those can be partitioned up to 8 voice_sections.Each voice_section length is flexible.(3). Voice length can be individually up to 3.5, 7, 14 or 21 seconds at 6kHz S.R. for each voice_section.Voice+mute length can be individually up to 11, 21, 21 or 21 seconds at 6kHz sample rate for eachvoice_section.(4). Total 16 voice_steps are available for 2 sub_tables. Each sub_table can only use maximum 8voice_steps. For each voice_step, it can specify one voice_section and IO1 output enable options if IO1 is set as an output.(5). Build in oscillator, 15 kinds of playback speed option for internal resistor used : ( 4.0k ~ 18.1kHz)A B C D E F G H18.1kHz 14.4kHz 12.0kHz 10.3kHz 9.0kHz 8.0kHz 7.2kHz 6.6kHzI J K L M N O -6.0kHz 5.6kHz 5.2kHz 4.8kHz 4.5kHz 4.3kHz 4.0kHz -<Internal oscillator: OSC pad must be bonded to GND>(6). IO1 can be either input or output pin (Mask option).(7). Optional “Two Triggers Input” (TG and IO1), or “One Trigger Input” (TG pin only).(A). Each input pin has mask options for Edge/Level, Hold/Unhold and Retrigger/Irritrigger trigger modes.(B). TG input can choose CDS+1M、CDS、1M pull-low、10M pull low or floating input type.(C). IO1 input can choose CDS+1M、CDS、1M pull-low or floating input type.(D). Debounce time: Long debounce for push buttons. Short debounce for switches. (※In Two TriggersInput Mode, only one kind of debounce time is available.)(E). Priority:TG > IO1.(8). IO1 has the following output option A~F :(A). Stop_High pulse : high active stop pulse output whenever device stop playing.(B). Busy_High active : high active signal output during playing.(C). Busy_Low active : low active signal output during playing.(D). LED 3Hz flash : 3Hz sink signal output for driving LED during playing at 6kHz sample rate.(E). LED 6Hz flash : 6Hz sink signal output for driving LED during playing at 6kHz sample rate.(F). LED dynamic 2/4 : dynamic sink signal output for driving LED during playing.※Where (D) and (E) is the LED flash rate at 6kHz sample rate. For different sample rate, the LED flash rate is different from original 3Hz or 6Hz.(9). PWM1 and PWM2 can directly drive buzzer or 8, 16, 32 or 64 ohms speaker.(10). The voice_section length of “voice length + mute length” must be the multiple of 80Hex (AVH308 ) or100Hex (AV0708 , AV1408 , AV2108).(11). In voice_section sequence arrangement (00~07), If there are some voice_sections with only mute andwithout voice, they should be put next to the last voice_section with voice. Besides, that is not allowed to put a pure mute voice_section between 2 voice_sections with voice, or put the pure mute voice_section on first place (00).(12). Oscillator selection:(A). External oscillator: Connect OSC pin to Vdd with a resistor, Rosc.(B). Internal oscillator: Connect OSC pin to GND. (Not suggested because of frequency shift and systemstability)※Input Type Description:Option DescriptionCDS + 1M Normal selection for button trigger.Only 1M pull-low resistance when key-pressed, and 1M+300K(parallel) pull-low resistance when key-released.CDS Internal 300K ohms pull-low resistance, usually for photo-resistor trigger.1M pull-low Internal 1M ohms pull-low resistance, reserve for some special applications. 10M pull-low Internal 10M ohms weak pull-low, usually for touching trigger.Floating No internal resistor connection, usually connected to other output pin or connected to GND by an external resistor.* 10M pull-low option is not available for IO1 input.18.1kHz 14.4kHz 12.0kHz 10.3kHz 9.0kHz 8.0kHz 7.2kHz 6.6kHzI J K L M N O - 6.0kHz 5.6kHz 5.2kHz 4.8kHz 4.5kHz 4.3kHz 4.0kHz - <如果選擇內建的頻率振盪器,請將 OSC 腳接㆞。
富士通生活电脑产品说明书
J O B N O .: 1027• P r i n t e d b y F u j i t s u P C A s i a P a c i f i c P t e L t d i n J a n u a r y 2006. I n f o r m a t i o n i s c o r r e c t a t t i m e o f p r i n t i n g .All rights to the mentioned trademarks reside with their respective owners. Fujitsu endeavours to ensure that the information in this documentation is correct and fairly stated, but does not accept liability for any errors or omissions. The development of Fujitsu products and services is continuous and published information may not be up to date. It is important to check the current position with Fujitsu. The document is not part of the contract or licence save in so faras may be expressly agreed.• 15.4" Wide Super Clarity SuperFine LCD for excellent TV and movie viewing• Instant TV , instant DVD playback and instant music with Dolby™ Digital Surround Sound • Enhanced personal productivity with TV recording and multimedia playback functions anytime, anywhere• Perfect mobile entertainment notebook for work and playLifeBook N3520SINGAPORE:Fujitsu PC Asia Pacific Pte LtdTel : (65) 6776 0688Fax : (65) 6776 0788MALAYSIA:Fujitsu PC Asia Pacific Pte LtdTel : (60-3) 2093 3997 Fax : (60-3) 2093 4245HONG KONG:Fujitsu PCAsia Pacific Ltd Tel : (852) 3101 8133Fax : (852) 3101 0633THAILAND:Fujitsu SystemsBusiness (Thailand) Ltd PC DivisionTel : (66-2) 263 7888Fax : (66-2) 263 7880AUSTRALIA &NEW ZEALAND:Fujitsu PC Australia Toll Free: 1800 288 283Tel : (61-2) 8877 9500Fax : (61-2) 9889 .au CHINA:Fujitsu PC China DivisionTel : (86-21) 3310 0808Fax : (86-21) 3310 PHILIPPINES:Fujitsu Philippines Inc.Tel : (63-2) 812 4001Fax : (63-2) 817 7576TAIWAN:Fujitsu Taiwan Ltd Tel : (886-2) 2311 2255Fax : (886-2) 2311 2277VIETNAM:Fujitsu Vietnam Ltd Tel : (84-4) 831 3895~7Fax : (84-4) 831 3898INDONESIA:PT Fujitsu Systems IndonesiaTel : (62-21) 570 9330Fax : (62-21) 573 /id Note: For countries notlisted above, please contactour Singapore office.The above information shows the general technical specifications of the product and does not represent actual configuration. For specific configurations and their availability, please check with your local distributors. 1 Results obtained from Mobilemark 2002 performed on systems with maximum battery life settings. Actual battery life will vary based on screen brightness, sound volume settings, running applications, connected peripherals, power management settings, battery conditioning, and other customer preferences. Modular Bay devices or hard drive usage may also have a significant impact on battery life. 2 Maximum 56Kbps performance varies according to your local service providers' services as well as line condition. V.92 performance is dependent on local service providers' services.3 This term does not represent actual data rate of 100/10Mbps and simply indicates compliance with IEEE 802.3 and IEEE 802.3u standards. Actual maximum data rate depends on network configurations, cable conditions as well as connected devices.4 BIOS Lock needs a supervisor/user password to access BIOS setup. BIOS settings can be configured to prompt for password at every first bootup or all bootup sequences. Access to BIOS setup is needed to configure Hard Disk Lock. Hard Disk Lock requires an access key to retrieve data on the hard disk. This is a Data Confidentiality security feature. Anti-theft Lock Slot allows the use of a lock to physically secure the LifeBook.5 HDD Capacity available for users will be less than 120GB as some HDD capacity will be used for basic file system management and Instant MyMedia application.6 Update Navi is a Fujitsu Proprietary application that updates LifeBook drivers by connecting automatically to Fujitsu’s server. This will help update your LifeBook with the latest software drivers and utilities to ensure compatibility between hardware and software, maintaining smooth operation anytime, anywhere.7 Supports DVD multi formats such as DVD-RAM, DVD+RW, DVD+R DL, DVD+R, DVD-RW, DVD-R, CD-RW, CD-R, CD-ROM and DVD-ROM.8 128MB Hypermemory™ is a total of 64MB dedicated video and 64MB shared system memory.It is natural for all thin-film transistor (TFT) liquid crystal displays (LCD) to show a small number of missing or discoloured dots. These are commonly known as non-conforming pixels. This is a technology limitation of TFT LCD and does not represent a defect. Fujitsu warranty does not cover limitations in technology such as non-conforming pixels.Specifications reflected above are engineering and hardware specifications. They do not represent actual usage or operating dimensions, sizes, performances and weight as these are dependent on factors such as operating temperature, type of operating system and application used, connected devices and accessories as well as hardware configurations of the notebook. Please check the compatibility of 3rd party accessories before purchase. Ambient temperature: 5° to 35°C/ 41 to 95°F (operating), -10° to 60°C/ 14 to 140°F (non-operating). Relative humidity: 20% to 80% RH (operating and non-operating). ATI, MOBILITY and RADEON are used under license and are registered trademarks of ATI Technologies Inc. in the United States and other countries.Dolby and the double-D symbol are registered trademarks of Dolby Laboratories.。
HX8817-084XS1中文资料
Version:2.0SPECIFICATIONHY HX8817-084XS1er ApprovedApproved ByPrepared ByDate: 2005.1.10CONTENTSGeneral Description (3)Features (3)Applications (3)Driving Board Function Block (4)Connector Pin Definition (7)Outline Dimension (8)General Description:This color TFT LCD timing control board apply to drive PVI’s PW084XS1(16:9) Color TFT LCD Panel, it supports 18 bits parallel RGB input interface, with the build-in color space conversion circuit, DAC, and operation amplified, the driving board performs gamma correction and polarity inverted functions to converts the digital data to the proper interface of LCD Panel with 8 different zoom in/out display modes on different display resolutions. Features:Fit PVI PW084XS1(16:9) series TFT LCDUltra CompactSupport 18 bits parallels data inputUp/Down Display ReverseLeft/Right Display ReverseApplications:SecurityVideo GameDoor PhoneVideo PhonePortable TVInstrument DisplayVideo input signal:18 bits parallel RGB inputWork temperature:-200C—+700CStorage temperature:-300C—+800CDriving Board Function Block:Input / Output Connector1.) CN2: Power & 18 bits parallels RGB digital Video Input Connector Pin No. : 31, Molex DB9A-31P or compatibility2.) CN5: Invert power and control signal Input ConnectorPin No. : 4, Pitch: 2.0 mm, JST B4B-XH-A or compatibility3.) CN1A &CN1B: LCD Signal Output ConnectorFPC Down Connector, 30 Pins, Pitch: 0.5 mm4.) CNH1: Backlight High Voltage ConnectorPin No. : 2, Pitch: 3.5 mm JST BHSR-02VS-1or compatibilityConnector Pin DefinitionCN2 pin definitionNo.Pin Name NO.Pin Name1 GND 17 G42 CLK 18 G53 HS 19 GND4 VS 20 B05 GND 21 B16 R0 22 B27 R1 23 B38 R2 24 B49 R3 25 B510R4 26 GND11 R5 27 DE12GND 28 VCC13G0 29 VCC14G1 30 L/R15G2 31 U/D16G3CN5 pin definitionNo.Pin Name I/O Pin description Remark1 +12V I 12VDC POWER INPUT2 GND I INVERT POWER GROUND3 ON/OFF I INVERT ON/OFF CONTROL 0:OFF 1:ON4 BRIGHT I BACKLIGHT BRIGHTNESS ADJUST(1) CNH1 pin definitionNo.Pin Name I/O Remark1 HV O Lamp driving terminal (high voltage)2 LV O Lamp driving terminal (low voltage)(2) CN1A & CN1B pin definitionCN1B Meets PW084XS1(16:9) input definitionNote 1:R/L = Hi (+5V) for shift right, Low (GND) for shift leftNote 2:U/D = Hi (+5V) for down, Low (GND) for upOutline DimensionDescription:Outline: 110.0*80.0*10.1mmTop Layer High (Max): 8.5mmBoard thickness: 1.6mm6 Screws: M3.0Weight: 0.05kg。
489D中文资料
Document Number 42070 Revision 02-Aug-02
For technical questions, contact eurotant@
105
元器件交易网
489D, 499D
Vishay Sprague
LEAD STYLE CONFIGURATIONS AND DIMENSIONS (MAX) in millimeters
BULK : CODE V 1&3
D MAX.
2&4
D MAX.
6
D MAX.
9
D MAX.
REEL/AMMO : CODE A, B, C 2&4 6
D MAX. D MAX.
H Max.
H MAX.
H1 MAX.
Upper edge of Printed Circuit Board
H2 MAX.
H3 MAX.
H4 MAX.
0.5Ø 15 Min. 20 Max. 0.5Ø 3 P 0.5Ø 15 Min. 20 Max. P ± 0.5
5.5 ± 0.5
4.5 ± 1.5 1.1 ± 0.05 P ± 0.5 P ± 0.5 P ± 0.5 0.5Ø
Document Number 42070 Revision 02-Aug-02
元器件交易网
489D, 499D
Resin-Coated, Radial-Leaded Solid Tantalum Capacitors
STANDARD RATINGS
CR (µF) CASE CODE TYPE PART NUMBER 489D MAX. DCL @ + 25°C (µA) 1.0 1.0 1.0 1.0 1.4 2.1 3.0 4.5 6.7 9.9 14.8 21.1 30.6 1.0 1.0 1.0 1.4 2.0 3.1 4.4 6.4 9.4 14.1 20.7 31.1 44.4 64.2 1.0 1.0 1.0 1.5 2.2 3.3 4.9 7.0 10.2 15.0 22.5 33.0 49.5 499D 489D, 499D MAX. DCL MAX. DF, 100 Hz @ + 25°C @ + 25° (%) (%) UC = 2 V @ + 125 °C, Surge = 2.6 V (only 499D) 0.5 6 0.5 8 0.5 8 0.5 8 0.7 8 1.1 8 1.6 8 2.4 10 3.6 10 5.2 10 7.9 10 11.2 12 16.3 12 UC = 4 V @ + 125 °C, Surge = 5.2 V (only 499D) 0.5 6 0.5 6 0.5 8 0.7 8 1.1 8 1.6 8 2.3 8 3.4 8 5.0 10 7.5 10 11.0 10 16.6 10 23.6 12 34.2 12 UC = 7 V @ + 125 °C, Surge = 8.6 V (only 499D) 0.5 6 0.5 6 0.5 6 0.8 8 1.2 8 1.7 8 2.6 8 3.7 8 5.4 8 8.0 10 12.0 10 17.6 10 26.4 10
EN301489-3中文资料(List Unclassifed)中文数据手册「EasyDatasheet - 矽搜」
应用
EPOS设备,条码扫描器
数据记录器 工业遥测和遥控 在建设环境监测和控制 高端安全和火灾报警器
DGPS系统 车辆数据上载/下载
技术摘要
尺寸:33×23×10毫米 工作频率:151.300MHz 电源电压范围:100mW发射器3.8V - 15V,接收器:3.0V-15V 电源电压范围:10毫瓦发射机3.0V - 15V,接收器:3.0V-15V 消耗电流:80毫安发送@ 100mW,8毫安接收 数据比特率:10kbps最大值. (标准模块) RSSI输出为-60dBm范围 10kbps,-120dBm灵敏度(12 dB信纳)
typ.
max. units notes
-120
dBm
-115
dBm
-127
dBm
60
dB
kHz
85
dB
60
dB
70
dB
2
65
dB
-70
dBm
3
-60
dBm
3
5
kHz
400
mV P-P
7
0.8
V
TBD
%
TBD
pF
TBD
ms
2
10
ms
TBD
ms
TBD
ms
0.1 ms
8
50
80
%
8
侧视图(通过CAN)
侧视图(带CAN)
10 mm
RF GND 1 天线2 RF GND 3
4 5 无引脚 6 7 8 0电压 9
顶视图(不能够)
30.48 mm 33 mm
图 4: BiM1引 脚 和 维 43mm
18 0电压 17 Vcc 16 RX选择 15 TX选择 14 TXD 13 AF 12 RXD 11 RSSI 10 0电压
DVHV285R2SFR-XXX资料
DVHV2800S SeriesHIGH RELIABILITY HYBRIDDC-DC CONVERTERSDESCRIPTIONThe DVHV series of high reliability DC-DCconverters is operable over the full military (-55 °C to +125 °C) temperature range with no power derating. Unique to the DVHV series is a magnetic feedback circuit that is radiation immune. Operating at a nominal fixed frequency of 475 kHz, these regulated, isolated units utilize well controlled undervoltage lockout circuitry to eliminate slow start-up problems. The output voltage is trimmable up to +10% or down –20%.These converters are designed and manufactured ina facility qualified to ISO9001 and certified to MIL-PRF-38534 and MIL-STD-883.This product may incorporate one or more of thefollowing U.S. patents:5,784,2665,790,3895,963,4385,999,4336,005,7806,084,7926,118,673 FEATURES• High Reliability • Very Low Output Noise • Output Voltage Trim Up +10% or Down –20% • Wide Input Voltage Range: 15 to 50 Volts per MIL-STD-704 • Up to 15 Watts Output Power • Radiation Immune Magnetic Feedback Circuit • NO Use of Optoisolators • Undervoltage Lockout • Indefinite Short Circuit Protection• Current Limit Protection• Industry Standard Pinout• High Input Transient Voltage: 80 Volts for 1 sec per MIL-STD-704A • Radiation Hardened Version Available • Precision Seam Seal or Solder Seal Hermetic Package • Custom Versions Available • Additional Environmental Screening Available • Meets MIL-STD-461C and MIL-STD-461D EMC Requirements When Used With a DVMC28 EMI Filter • Flanged and Non-flanged Versions Available. •MIL-PRF-38534 Element Evaluated ComponentsFigure 1 – DVHV2800S / DVHV2800SF DC-DC Converter(Not To Scale )DVHV2800S SeriesSPECIFICATIONS (T CASE = -55°C to +125°C, V IN = +28V ± 5%, Full Load, Unless Otherwise Specified)ABSOLUTE MAXIMUM RATINGSInput Voltage (Continuous)50 V DC Junction Temperature Rise to Case +15°CInput Voltage (Transient, 1 second) 80 Volts Storage Temperature-65°C to +150°C Output Power 115 Watts Lead Solder Temperature (10 seconds) 270°CPower Dissipation (Full Load, T CASE = +125°C)11 WattsWeight (Maximum) (Un-Flanged / Flanged)(49 / 52) GramsDVHV283R3S DVHV2805SParameter Conditions Min Typ Max Min Typ Max UnitsSTATICContinuous 15 28 50 15 28 50 V INPUTVoltage4Transient, 1 sec - - 80 - - 80 VInhibited - - 6 - - 6 mA CurrentNo Load - - 90 - - 90 mARipple Current Full Load, 20Hz to 10MHz--50--50mA p-pInhibit Pin Input40 - 1.5 0 - 1.5 V Inhibit Pin Open Circuit Voltage 49.0 11.0 13.0 9.0 11.0 13.0 V UVLO Turn On 12.0-14.812.0-14.8VUVLO Turn Off 411.0 - 14.5 11.0 - 14.5 V V OUT T CASE =25°C 3.26 3.30 3.34 4.95 5.00 5.05 VOUTPUTVoltageV OUT T CASE =-55°C to +125°C 3.25 3.30 3.35 4.925 5.00 5.075 VPower3 0 - 10 0 - 15 W Current 3V OUT0 - 3.03 0 - 3.0 ARipple Voltage V OUT Full Load, 20Hz to 10MHz - - 30 - - 30 mV p-p Line Regulation V OUT V IN = 15V to 50V - - 20 - - 20 mV Load Regulation V OUTNo Load to Full Load --50--50mVEFFICIENCY68 - - 73 - - % Overload 4- - 11 - - 11 W LOAD FAULT POWER DISSIPATION Short Circuit- - 11 - - 11 W CAPACITIVE LOAD4- - 1000 - - 1000 µF SWITCHING FREQUENCY400 475 550 400 475 550 kHzSYNC FREQUENCY RANGEV H – V L = 5VDuty Cycle = 20% - 80% 500 - 600 500 - 600 kHzISOLATION 500 V DC 100 - - 100 - - M Ω MTBF (MIL-HDBK-217F)AIF @ T C =55°C- 413 - - 413 - kHrsDYNAMICLoad Step Output Transient V OUT - - 200 - - 300 mV PK Load Step Recovery 2Half Load to Full Load - - 550 - - 500 µSec Line Step Output Transient 4V OUT - 300 600 - 300 600 mV PK Line Step Recovery 2, 4V IN = 16V to 40V - 300 500 - 300 500 µSec Turn On Delay V OUT- - 20 - - 20 mSecTurn On OvershootV IN = 0V to 28V- - 15 - - 25 mV PKNotes: 1. Dependant on output voltage.2. Time for output voltage to settle within 1% of its nominal value.3. Derate linearly to 0 at 135°C.4. Verified by qualification testing.DVHV2800S SeriesSPECIFICATIONS (T CASE = -55°C to +125°C, V IN = +28V ± 5%, Full Load, Unless Otherwise Specified)ABSOLUTE MAXIMUM RATINGSInput Voltage (Continuous)50 V DC Junction Temperature Rise to Case +15°CInput Voltage (Transient, 1 second) 80 Volts Storage Temperature-65°C to +150°C Output Power 115 Watts Lead Solder Temperature (10 seconds) 270°CPower Dissipation (Full Load, T CASE = +125°C)11 WattsWeight (Maximum) (Un-Flanged / Flanged)(49 / 52) GramsDVHV2812S DVHV2815SParameter Conditions Min Typ Max Min Typ MaxUnitsSTATICContinuous 15 28 50 15 28 50 V INPUTVoltage4Transient, 1 sec - - 80 - - 80 VInhibited - - 6 - - 6 mA CurrentNo Load - - 90 - - 90 mARipple Current Full Load, 20Hz to 10MHz--50--50mA p-pInhibit Pin Input40 - 1.5 0 - 1.5 V Inhibit Pin Open Circuit Voltage 49.0 11.0 13.0 9.0 11.0 13.0 V UVLO Turn On 12.0-14.812.0-14.8VUVLO Turn Off 411.0 - 14.5 11.0 - 14.5 V V OUT T CASE =25°C 11.88 12.0 12.12 14.85 15.0 15.15 V OUTPUTVoltageV OUT T CASE = -55°C to +125°C 11.8212.012.1814.77515.015.225VPower3 0 - 15 0 - 15 W Current 3V OUT0 - 1.25 0 - 1.0 ARipple Voltage V OUT Full Load, 20Hz to 10MHz - - 40 - - 40 mV p-p Line Regulation V OUT V IN = 15V to 50V - - 20 - - 20 mV Load Regulation V OUTNo Load to Full Load --50--50mVEFFICIENCY77 - - 77 - - % Overload4- - 11 - - 11 W LOAD FAULT POWER DISSIPATION Short Circuit - - 11 - - 11 W CAPACITIVE LOAD4- - 500 - - 500 µF SWITCHING FREQUENCY400 475 550 400 475 550 kHzSYNC FREQUENCY RANGEV H – V L = 5VDuty Cycle = 20% - 80% 500 - 600 500 - 600 KHzISOLATION 500 V DC 100 - - 100 - - M Ω MTBF (MIL-HDBK-217F)AIF @ T C =55°C- 413 - - 413 - kHrsDYNAMICLoad Step Output Transient V OUT - - 300 - - 350 mV PK Load Step Recovery 2Half Load to Full Load - - 550 - - 450 µSec Line Step Output Transient 4V OUT - 500 900 - 500 900 mV PK Line Step Recovery 2, 4V IN = 16V to 40V - 300 500 - 300 500 µSec Turn On Delay V OUT- - 20 - - 20 mSecTurn On OvershootV IN = 0V to 28V- - 50 - - 50 mV PKNotes: 1. Dependant on output voltage.2. Time for output voltage to settle within 1% of its nominal value.3. Derate linearly to 0 at 135°C.4. Verified by qualification testing.DVHV2800S SeriesSPECIFICATIONS (T CASE = -55°C to +125°C, V IN = +28V ± 5%, Full Load, Unless Otherwise Specified)ABSOLUTE MAXIMUM RATINGSInput Voltage (Continuous)50 V DC Junction Temperature Rise to Case +15°CInput Voltage (Transient, 1 second) 80 Volts Storage Temperature-65°C to +150°C Output Power 115 Watts Lead Solder Temperature (10 seconds) 270°CPower Dissipation (Full Load, T CASE = +125°C)11 WattsWeight (Maximum) (Un-Flanged / Flanged)(49 / 52) GramsDVHV285R2SParameter Conditions Min Typ MaxUnitsSTATICContinuous 15 28 50 V INPUTVoltage4Transient, 1 sec - - 80 V Inhibited - - 6 mACurrentNo Load- - 90 mA Ripple Current Full Load, 20Hz to 10MHz--50mA p-pInhibit Pin Input40 - 1.5 V Inhibit Pin Open Circuit Voltage 49.0 11.0 13.0 V UVLO Turn On12.0 - 14.8 V UVLO Turn Off 411.0 - 14.5 VV OUT T CASE = 25°C5.148 5.20 5.252 V OUTPUTVoltageV OUT T CASE = -55°C to +125°C5.1225.205.278VPower3 0 - 15 W Current3V OUT 0 - 3.0 A Ripple Voltage V OUT Full Load, 20Hz to 10MHz - - 30 mV p-p Line Regulation V OUT V IN = 15V to 50V - - 20 mV Load RegulationV OUTNo Load to Full Load --50mVEFFICIENCY 73 - - % Overload4- - 11 W LOAD FAULT POWER DISSIPATION Short Circuit --11WCAPACITIVE LOAD4- - 1000 µFSWITCHING FREQUENCY400 475 550 kHz SYNC FREQUENCY RANGEV H – V L = 5VDuty Cycle = 20% - 80% 500 - 600 kHzISOLATION 500 V DC 100 - - M Ω MTBF (MIL-HDBK-217F)AIF @ T C = 55°C-413-kHrsDYNAMICLoad Step Output Transient V OUT - - 300 mV PK Load Step Recovery 2Half Load to Full Load - - 500 µSec Line Step Output Transient 4V OUT - 300 600 mV PK Line Step Recovery 2, 4V IN = 16V to 40V - 300 500 µSecTurn On Delay V OUT- - 20 mSec Turn On OvershootV IN = 0V to 28V- - 25 mV PKNotes: 1. Dependant on output voltage.2. Time for output voltage to settle within 1% of its nominal value.3. Derate linearly to 0 at 135°C.4. Verified by qualification testing.DVHV2800S SeriesBLOCK DIAGRAMUNDER VOLTAGE SHUTDOWNPRIMARY HOUSEKEEPINGSUPPLYPWM CONTROLVOLTAGE AND CURRENT AMPLIFIERSSECONDARY HOUSEKEEPINGSUPPLYPIN 128V INPIN 10IN COML1C1Q1Rs1T1D1C2Rs2+V OUTPIN 5PIN 4OUT COM INHPIN 2FEEDBACKMAGNETIC SYNCPIN 9TRIM PIN 3Figure 2CONNECTION DIAGRAM10IN COM 2INH128V IN5+V OUT4OUT COMLOAD+-28 VdcSYNC9Figure 3DVHV2800S SeriesINHIBIT DRIVE CONNECTION DIAGRAMSFigure 4 – Internal Inhibit Circuit and Recommended DriveFigure 5 – Isolated Inhibit Drive(Shown with optional capacitor for turn-on delay)(Shown with optional capacitor for turn-on delay)EMI FILTER HOOKUP DIAGRAM10IN COM 2INH128V IN5+V OUT4OUT COMLOAD+-28 Vdc228V OUT4OUT COM 128V IN5IN COMCASE6, 7, 8SYNC93DVMC28 EMI FILTERDVHV2800S DC-DC CONVERTERFigure 6 – Converter with EMI FilterDVHV2800S SeriesPARALLEL CONNECTION DIAGRAM10IN COM 2INH128V IN5+V OUT4OUT COMLOAD+-28 Vdc228V OUT4OUT COM128V IN5IN COMCASESYNC936, 7, 86, 7, 8DVMC28 EMI FILTERDVHV2800S DC-DC CONVERTERCASE10IN COM 2INH128V IN 5+V OUT4OUT COMSYNC9DVHV2800S DC-DC CONVERTERCASEFigure 7DVHV2800S Series OUTPUT VOLTAGE TRIMThe output voltage can be trimmed down byconnecting a resistor between the TRIM pin(PIN 3) and the +V OUT pin (PIN 5), or canbe trimmed up by connecting a resistorbetween the TRIM pin (PIN 3) and the OUTCOM pin (PIN 4). The maximum trim rangeis +10% up and –20% down. Theappropriate resistor values versus theoutput voltage are given in the trim tablebelow.Figure 8 – Output Voltage TrimDVHV283R3S DVHV2805S DVHV285R2S DVHV2812S DVHV2815S+V OUT (V) R TRIM (Ω) +V OUT (V) R TRIM (Ω) +V OUT (V) R TRIM (Ω) +V OUT (V) R TRIM (Ω) +V OUT (V) R TRIM (Ω)3.75 25.4k 5.5 19k 5.7 23k 13.2 5.93k 16.75 03.70 32.5k 5.4 31.5k 5.6 36.5k 13.0 10.1k 16.50 1.67k3.65 41.8k 5.3 52.3k 5.5 59k 12.8 16.5k 16.25 5k3.60 54.2k5.2 94k 5.4 104k 12.6 27.1k 16.00 10k3.55 71.6k 5.1 219k 5.3 239k 12.4 48.4k 15.75 18.3k3.50 98.2k 5.0 - 5.2 - 12.2113.7k15.5035k3.45 143.2k4.9 209k5.1 249.8k 12.0 - 15.25 85k3.40 236k4.8 84k5.0 104k 11.8 437k 15.00 -3.35 543k4.7 42.3k 4.9 55.4k 11.6 209k 14.75 475k3.30 -4.6 21.5k 4.8 31.1k 11.4 132k 14.50 225k3.25 102k4.5 9k 4.7 16.5k 11.2 93k 14.25 142k3.20 34.8k 4.4 0 4.6 6.8k 11.0 69.5k 14.00 100k3.1510.5k 10.8 53.8k 13.75 75k3.100 10.642.6k 13.50 58.3k10.434.2k13.2546.4k10.227.6k13.0037.5k10.022.4k12.7530.6k9.818.1k12.5025k9.614.5k12.2520.5k9.411.5k12.0016.7k9.28.88k9.06.63kDVHV2800S SeriesEFFICIENCY PERFORMANCE CURVES (T CASE = 25°C, Full Load, Unless Otherwise Specified)V IN = 16VV IN = 28VV IN = 40V45505560657075345678910Output Power (W)E f f i c i e n c y (%)505560657075803691215Output P ow er (W)E f f i c i e n c y (%)Figure 9 – DVHV283R3S Figure 10 – DVHV2805S / DVHV285R2S Efficiency (%) vs. Output Power (W)Efficiency (%) vs. Output Power (W)6065707580853691215Output P ow er (W)E f f i c i e n c y (%)6065707580853691215Output Power (W)E f f i c i e n c y (%)Figure 11 – DVHV2812S Figure 12 – DVHV2815S Efficiency (%) vs. Output Power (W)Efficiency (%) vs. Output Power (W)DVHV2800S Series EMI PERFORMANCE CURVES(T CASE = 25°C, V IN = +28V ± 5%, Full Load, Unless Otherwise Specified)Figure 13 – DVHV2800S without EMI FilterFigure 14 – DVHV2800S with EMI FilterDVHV2800S Series PACKAGE SPECIFICATIONS (NON-FLANGED, SOLDER SEAL)TOP VIEW SIDE VIEWPIN FUNCTIONIN1 28V2 INHIBIT3 TRIMCOM4 OUTOUT5 +V6 CASE7 CASE8 CASE9 SYNCCOM10 INBOTTOM VIEWFigure 15 – Non-Flanged, Solder Seal Tin Plated Package and Pinout (Not Used for /HB or Higher Screened Products)(Dimensional Limits are ±0.005” Unless Otherwise Stated)DVHV2800S Series PACKAGE SPECIFICATIONS (NON-FLANGED, SEAM SEAL)TOP VIEW SIDE VIEWPIN FUNCTIONIN1 28V2 INHIBIT3 TRIMCOM4 OUTOUT5 +V6 CASE7 CASE8 CASE9 SYNCCOM10 INBOTTOM VIEWFigure 16 – Non-Flanged, Seam Seal Package and Pinout(Dimensional Limits are ±0.005” Unless Otherwise Stated)DVHV2800S Series PACKAGE SPECIFICATIONS (FLANGED, SOLDER SEAL)TOP VIEW SIDE VIEWPIN FUNCTIONIN1 28V2 INHIBIT3 TRIMCOM4 OUTOUT5 +V6 CASE7 CASE8 CASE9 SYNCCOM10 INBOTTOM VIEWFigure 17 – Flanged, Solder Seal Tin Plated Package and Pinout (Not Used for /HB or Higher Screened Products)(Dimensional Limits are ±0.005” Unless Otherwise Stated)DVHV2800S Series PACKAGE SPECIFICATIONS (FLANGED, SEAM SEAL)TOP VIEW SIDE VIEWPIN FUNCTIONIN1 28V2 INHIBIT3 TRIMCOM4 OUTOUT5 +V6 CASE7 CASE8 CASE9 SYNCCOM10 INBOTTOM VIEWFigure 18 – Flanged, Seam Seal Package and Pinout(Dimensional Limits are ±0.005” Unless Otherwise Stated)DVHV2800S Series PACKAGE PIN DESCRIPTIONPin Function Description1 28V IN Positive Input Voltage Connection2 INHIBIT Logic Low = Disabled Output. Connecting the inhibit pin to input common causes converter shutdown.Logic High = Enabled Output. Unconnected or open collector TTL.3 TRIM Trim Output Voltage to +10%, -20% of Nominal Value4 OUTCOM Output Common Connection5 +V OUT Positive Output Voltage Connection6 CASE CaseConnection7 CASE CaseConnection8 CASE CaseConnection9 SYNC SynchronizationSignal10 IN COM Input Common ConnectionDVHV2800S SeriesENVIRONMENTAL SCREENING (Per MIL-STD-883 as referenced to MIL-PRF-38534, Class H)Notes: 1. 100% R&R testing at –55°C, +25°C, and +125°C with all test data included in product shipment. 2. PIND test Certificate of Compliance included in product shipment.3. Radiographic test Certificate of Compliance and film(s) included in product shipment.Screening MIL-STD-883Standard(No Suffix)Extended /ES HB /HBClass H/HClass K /KNon-Destructive Bond Pull Method 2023 • • • • • Internal Visual Method 2017, 2032 Internal Procedure• • • • • Temperature Cycling Method 1010, Condition C Method 1010, -55°C to 125°C • • • • Constant Acceleration Method 2001, 3000g, Y1 Direction Method 2001, 500g, Y1 Direction • • • • PIND Method 2020, Condition A 2•Pre Burn-In Electrical100% at 25°C • Burn-InMethod 1015, 320 hours at +125°C Method 1015, 160 hours at +125°C 96 hours at +125°C 24 hours at +125°C • • • • • Final ElectricalMIL-PRF-38534, Group A 1 100% at 25°C• • • • • HermeticityMethod 1014, Fine Leak, Condition A Method 1014, Gross Leak, Condition CDip (1 x 10-3)• • • • • • • • • Radiography Method 20123 • External VisualMethod 2009•••••DVHV2800S Series ORDERING INFORMATIONDVHV 28 05 S F R /HB - XXX1 2 3 4 5 6 7 8(1) (2) (3) (4)Product Series Nominal InputVoltageOutput Voltage Number of OutputsDVHV 28 28 Volts 3R3055R21215 3.3 Volts5 Volts5.2 Volts12 Volts15 VoltsS Single(5) (6) (7) (8)Package Option Rad-Hard Option2 Screening Code1,3 Additional ScreeningCodeNone F Non-FlangedFlangedNoneRStandard100 kRadNone/ES/HB/H/KStandardExtendedHBClass HClass KContact SalesNotes: 1. Contact the VPT Inc. Sales Department for availability of Class H (/H) or Class K (/K) qualified products.2. VPT Inc. is not currently qualified to a DSCC certified radiation hardness assurance program.3. VPT Inc. reserves the right to ship higher screened or SMD products to meet lower screened orders at oursole discretion unless specifically forbidden by customer contract.Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications.DVHV2800S Series SMD (STANDARD MICROCIRCUIT DRAWING) NUMBERSStandard Microcircuit Drawing (SMD)DVHV2800S Series Similar Part Number*T.B.D.DVHV283R3S/H DVHV283R3SF/H*T.B.D.DVHV2805S/H DVHV2805SF/H*T.B.D.DVHV285R2S/H DVHV285R2SF/H*T.B.D.DVHV2812S/H DVHV2812SF/H*T.B.D.DVHV2815S/H DVHV2815SF/HDo not use the DVHV2800S Series similar part number for SMD product acquisition. It is listed forreference only. For exact specifications for the SMD product, refer to the SMD drawing. SMD’s can be downloaded from the DSCC website at /programs/smcr/. The SMD numberlisted above is for MIL-PRF-38534 Class H screening, standard gold plated lead finish, and no RHA(Radiation Hardness Assurance) level. Please reference the SMD for other screening levels, leadfinishes, and radiation levels.CONTACT INFORMATIONTo request a quotation or place orders please contact your sales representative or the VPT Inc. Sales Department at:Phone: (425)353-3010Fax: (425) 353-4030E-mail: vptsales@All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.。
NG80960JD资料
Contents
80960JD 3.3 V EMBEDDED 32-BIT MICROPROCESSOR
1.0 PURPOSE .................................................................................................................................................. 1 2.0 80960JD OVERVIEW ................................................................................................................................ 1 2.1 80960 Processor Core ........................................................................................................................ 2 2.2 Burst Bus ............................................................................................................................................ 2 2.3 Timer Unit .................................................................................................................
Lorex MPX HDSe
3.
2. Clic Droit: • En mode visionnement en direct :
Contrôle des caméras PTZ (non incluses) Ajuste les réglages de la couleur et de l’image de la caméra Voir les informations du système Démarrer/arrêter le mode séquence Esactiver l’alarme sonore
6: EN MARCHE
Bip
Si le système émet un signal sonore au démarrage, le câble Ethernet n’est peut-être pas branché, ou le système n’est peut-être pas connecté à Internet. Pour arrêter le signal sonore : 1. Brancher un câble Ethernet du système au routeur et redémarrer le système. OU 2. Cliquer avec le bouton droit et cliquer sur Disable Beep.
Cliquer sur et sélectionner SETTING
4. Cliquer sur GENERAL et sélectionner l’onglet Date&Time.
XPT4890用户手册2006
XPT4890 用户手册XPT4890 用户手册2006 年 7 月版权所有,侵权必究深圳市矽普特科技有限公司 第 1 页 ,共 19 页XPT4890 用户手册 目 录1 芯片功能说明 ...........................................................................................................................4 1.1 1.2 1.3 1.4 1.4.1 1.4.2 1.4.3 1.4.4 2 芯片主要功能特性...................................................................................................4 芯片应用场合...........................................................................................................4 芯片基本结构描述...................................................................................................4 芯片的封装和引脚...................................................................................................5 MSOP封装................................................................................................................5 SOP封装 ...................................................................................................................5 8-Bump Mocro SMD封装......................................................................................5 XPT4890 管脚描述 ..................................................................................................6芯片特性说明 ...........................................................................................................................6 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 芯片最大极限值.......................................................................................................6 芯片数字逻辑特性...................................................................................................7 芯片性能指标特性...................................................................................................7 XPT4890 的典型参考特性 ......................................................................................8 总谐波失真(THD),失真+噪声(THD+N),信噪比(S/N) ...................8 电源电压抑制比(PSRR) ...................................................................................10 芯片功耗(Power Dissipation) ...........................................................................11 关断滞回(Shut Down Hysteresis) .....................................................................12 输出功率(Output Power)........................................................................................133XPT4890 应用说明 ................................................................................................................14 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.7.1 3.8 外部电阻配置.........................................................................................................14 芯片功耗.................................................................................................................14 电源旁路.................................................................................................................14 掉电模式.................................................................................................................14 外围元件的选择.....................................................................................................15 选择输入耦合电容.................................................................................................15 设计参考实例.........................................................................................................15 设计规格.................................................................................................................15 其它注意事项.........................................................................................................164 5芯片的封装.............................................................................................................................16 XPT4890 典型应用电路 ........................................................................................................19版权所有,侵权必究深圳市矽普特科技有限公司 第 2 页 ,共 19 页XPT4890 用户手册图目录图 1 XPT4890 原理框图 ..........................................................................................................4 图 2 XPT4890 的MSOP封装管脚............................................................................................5 图 3 XPT4890 的SOP封装管脚 ...............................................................................................5 图 4 XPT4890 焊球封装管脚 ..................................................................................................5 图 5 大增益模式工作电路结构.............................................................................................16 图 6 MSOP封装尺寸图..........................................................................................................17 图 7 SOP封装尺寸图 .............................................................................................................17 图 8 Bump封装尺寸图...........................................................................................................18 图 9 PCB板参考设计结构图 .................................................................................................19 图 10 差分输入模式工作电路结构图.............................................................................19表目录表 1 XPT4890 管脚描述(MSOP封装)................................................................................6 表 2 芯片最大物理极限值.......................................................................................................6 表 3 关断信号数字逻辑特性...................................................................................................7 表 4 芯片性能指标 1(VDD=5.0V,TA=25oC) .................................................................7 表 5 芯片性能指标 2(VDD=3.3V,TA=25oC) .................................................................7 表 6 芯片性能指标 3(VDD=2.5V,TA=25oC) .................................................................8版权所有,侵权必究深圳市矽普特科技有限公司 第 3 页 ,共 19 页XPT4890 用户手册1芯片功能说明XPT4890 是适用于移动电话及便携通讯设备的音频功率放大器。
DVD资料
DVD产品培训资料一、现有产品型号1、炫影CR—DV4002、炫影CR—DV400G3、炫影CR—DV401;4、丽影CR—DV3005、丽影CR—DV3016、丽影CR—DV301G二、产品性能●双解码:杜比AC-3和DTS解码。
●完全兼容DVD、SVCD、DVCD、VCD、CD、MP3、CD-R(RW)及柯达CD、WMA(不包括高压缩盘)、JPEG格式、HDCD。
●逐行扫描Y/Pb/Pr●色差分量端子Y/Cb/Cr● 5.1声道、2声道、光纤和同轴数字音频输出。
●屏幕保护●童锁分级限制系统●平滑快放、快退(1×2×4×8×20)●慢放(1×1/2×1/4×1/6×1/8)●记忆播放、编程、搜索、预览。
●重放(碟片/章节/A-B反复)●宽电压设计(110-240V)●图像放大Q1-Q2-正常,逐帧播放●多角度、多种字幕、多种语言支持●自动切换PAL/NTSC制式●复合视频、S端子和YUV、VGA视频输出。
三、产品相关术语1.杜比AC-3:1994年,日本先锋公司宣布与美国杜比实验室合作研制成功一种崭新的环绕声制式,并命名为“杜比AC-3”(Dolby Surround Audio Coding-3)。
1997年初,杜比实验室正式将“杜比AC-3环绕声”改为“杜比数码环绕声”(Dolby Surround Digital),我们常称为Dolby Digital。
杜比AC-3提供的环绕声系统由5个全频域声道和1个超低音声道组成,被称为5.1声道。
5个声道包括左前、中央、右前、左后、右后。
低音声道主要提供一些额外的低音信息,使一些场景,如爆炸、撞击等声音效果更好。
6个声道的信息在制作和还原过程中全部数字化,信息损失很少,全频段的细节十分丰富。
现在DVD影碟录制中所采纳的数字多声道音响规格多为AC-3制式,将前置左/右、后置左/右、中置及低音共6个声道经压缩处理后,储存在DVD影碟上。
686CR5常数说明
V ARISPEED-686CR5常数描述手册资料编号:EZZ08398目录1.操作模式选择-------------------------------------------------------------------------------2 1.1 控制方法设置-----------------------------------------------------------------------------2 1.2 控制方法改变步骤-----------------------------------------------------------------------4 1.3 初始化模式--------------------------------------------------------------------------------51.3.1 常数访问等级---------------------------------------------------------------------51.3.2 常数初始化------------------------------------------------------------------------62.常数列表-----------------------------------------------------------------------------------72.1 数字操作器(JVOP-132)显示功能的常数阵列---------------------------------7VS-686CR5 常数列表----------------------------------------------------------------9 监视器常数列表----------------------------------------------------------------------36 多功能I/O终端设置列表-----------------------------------------------------------40 可通过设置控制方法来改变的常数(A1-02/S0-02)-------------------------41 可通过设置kV A选择来改变的常数(A1-07)------------------------------------42 可通过设置电机选择来改变的常数(E3-02)-------------------------------------43 (仅适用于IPM电机)3.常数描述-----------------------------------------------------------------------------------44A.初始化-------------------------------------------------------------------------------44 B.与应用相关的常数-----------------------------------------------------------------45 C.调整常数-----------------------------------------------------------------------------49 D.与频率参考相关的常数----------------------------------------------------------54 E.与电机相关的常数-------------------------------------------------------------------57 F.与备选样机相关的常数-----------------------------------------------------------63 H.与控制电路终端相关的常数-----------------------------------------------------67 L.与保护相关的常数-------------------------------------------------------------------73 O.与数字运算符相关的常数--------------------------------------------------------80 S.与电机2相关的常数--------------------------------------------------------------821.操作模式选择1.1 控制方法设置VS-686CR5 装有4种控制模式:感应电机V/f (有或无PG),感应电机矢通量、IPM电机矢通量控制。
HPxxx-xxx-3DF中文资料
HP SeriesSPECIFICATIONS STANDARD*SPECIAL ELECTRICALCenter Frequency (Fc)60 to 700 Mhz50 to 900 MHz 3dB Relative Bandwidth (% of FC) 4 to 40 4 to 50 Number of Sections Available 3 to 8 2 to 10 Nominal Impedance50 Ohms50 Ohms Maximum Insertion Loss See Curve See Curve Maximum VSWR 1.5/1 1.3/1 Attenuation in the Stopband See Graph See GraphMaximum Input Power (Average)(Watts to10,000 ft.)1000 x 3 dB BW(MHz)(Loss Factor)(Fc MHz)See StandardMaximum Input Power (Peak)(Watts to10,000 ft.)750 x 3 dB BW (MHz)Fc (MHz)5,000ENVIRONMENTALShock15 G's25 G'sVibration 5 G's10 G's Humidity90% relative100% relative Altitude Unlimited UnlimitedINSERTION LOSS:The Maximum Insertion Loss at center frequency is equal to :LF x (N + 0.5) / % 3 dB BW + 0.2 Where:LF= Loss Factor, N= Number of Sections% 3dB BW:3dB BW (MHz) x 100divided byCenter Frequency (MHz) Example:A 5 section HP with a center frequency of 200 MHz and a 3dB BW of 20 MHz would have,1.5 x 3.5 / 10 = 5.25 / 10 = 0.525 0.525 + 0.2 = 0.8 dBConnectors Available on HP Series:Lark Code Type C DIM.Inches & MMLarkCodeType C DIM.Inches & MMA SMA JACK.800 & 20.3G N JACK 1.625 & 41.3B SMA PLUG.855 & 22.5H N PLUG 1.585 & 40.3C TNC JACK 1.350 & 34.3S SPECIALD TNC PLUG 1.280 & 32.5E BNC JACK 1.350 & 34.3F BNC PLUG 1.280 & 32.5LENGTH:The approximate length of a Lark HP series filter can be determined by the formula:( 0.5 N + 2 / %BW ) x LC = LWhere N is the number of sections used, % BW is:3dB BW (MHz) x 100divided byCENTER FREQUENCY (MHz)LC is the length constant at the specified centerfrequency, L is the dimension between the connectors;C1 and C2 are the connector lengths as shown above.All of the length information given here isapproximate. Exact length specifications must be quoted by the factory. If a special length is needed,please submit all of your requirements - both electrical and mechanical. This will enable Lark Engineering to quote the optimum design for your application.Example:A 3 section HP with a center frequency of 200 MHz a 3dB BW of 20 MHz and SMA jack input and output connectors would be:(1.5 + 0.2) x 1.87 = 3.179 + C1 + C2In most cases, the L dimension is rounded to the nearest 1/4 inch which in this instance would be 3.25inches and the O.A.L. is:3.25 + .800 + .800 =4.85 inches.To convert inches to millimeters multiply x 25.40.Lark Engineering HP SERIES元器件交易网STOPBAND ATTENUATIONThe graph on the following pages defines the normal specification limits on attenuation Lark bandpass filter series HP, HQ, SF, and SM. The minimum level of attenuation in dB is shown as a "number of 3dB bandwidths from center frequency".Since the frequency characteristics vary for differing bandwidths, it is necessary to establishspecifications for each bandwidth of filter. The different graphs represent various 3dB percentage bandwidths. Intermediate values should be interpolated. The 3dB percentage bandwidth is defined asfollows:STOPATT5.HTM元器件交易网As the 3dB bandwidth is exactly 10% of the center frequency, the answer can be read directly from the 10% graph. Using the 5 section curve at the point -1.5 (255 MHz) we find the minimum level of attenuation is 36dB. At +1.6 (348 MHz) the minimum level of attenuation is 48dB.For special requirements, please contact our Application Engineering Department.STOPBAND ATTENUATIONSTOPBAND ATTENUATIONSTOPATT5.HTM元器件交易网STOPBAND ATTENUATIONSTOPBAND ATTENUATIONSTOPBAND ATTENUATION。
AXH003A0XZ;AXH003A0X4Z;AXH003A0X;AXH003A0X4;中文规格书,Datasheet资料
Data SheetOctober 2, 2009Austin Minilynx TM SIP Non-isolated Power Modules:2.4Vdc –5.5Vdc input; 0.75Vdc to3.63Vdc Output;3A Output Current* UL is a registered trademark of Underwriters Laboratories, Inc. †CSA is a registered trademark of Canadian Standards Association. ‡VDE is a trademark of Verband Deutscher Elektrotechniker e.V.** ISO is a registered trademark of the International Organization of StandardsApplicationsDistributed power architectures Intermediate bus voltage applications Telecommunications equipment Servers and storage applications Networking equipment Enterprise NetworksLatest generation IC’s (DSP, FPGA, ASIC) and Microprocessor powered applicationsFeaturesCompliant to RoHS EU Directive 2002/95/EC (-Z versions)Compliant to ROHS EU Directive 2002/95/EC with lead solder exemption (non-Z versions) Delivers up to 3A output currentHigh efficiency – 94% at 3.3V full load (V IN = 5.0V)Small size and low profile:22.9 mm x 10.2 mm x 6.63 mm(0.90 in. x 0.40 in. x 0.261 in.)Low output ripple and noiseHigh Reliability:Calculated MTBF = 11.9M hours at 25o C Full-load Constant switching frequency (300 kHz) Output voltage programmable from 0.75 Vdc to 3.63Vdc via external resistor Line Regulation: 0.4% (typical) Load Regulation: 0.4% (typical) Temperature Regulation: 0.4 % (typical) Remote On/OffOutput overcurrent protection (non-latching) Wide operating temperature range (-40°C to 85°C)UL * 60950-1Recognized, CSA †C22.2 No. 60950-1-03 Certified, and VDE ‡0805:2001-12 (EN60950-1) LicensedISO** 9001 and ISO 14001 certified manufacturing facilitiesDescriptionAustin MiniLynx TM SIP (single-in-line) power modules are non-isolated DC-DC converters that can deliver up to 3A of output current with full load efficiency of 94.0% at 3.3V output. These modules provide a precisely regulated output voltage programmable via an external resistor from 0.75Vdc to 3.63Vdc over a wide range of input voltage (V IN = 2.4 – 5.5Vdc). Their open-frame construction and small footprint enable designers to develop cost- andspace-efficient solutions. In addition to sequencing, standard features include remote On/Off, programmable output voltage and over current protection.RoHS CompliantAbsolute Maximum RatingsStresses in excess of the absolute maximum ratings can cause permanent damage to the device. These areabsolute stress ratings only, functional operation of the device is not implied at these or any other conditions inexcess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings forextended periods can adversely affect the device reliability.Parameter Device Symbol Min Max UnitInput Voltage All V IN -0.3 5.8 Vdc ContinuousOperating Ambient Temperature All T A -40 85 °C (see Thermal Considerations section)Storage Temperature All T stg -55 125 °CElectrical SpecificationsUnless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.Parameter Device Symbol Min Typ Max UnitOperating Input Voltage V O,set ≤ V IN – 0.5V V IN 2.4 ⎯ 5.5 VdcAdc Maximum Input Current All I IN,max 3.0(V IN= V IN, min to V IN, max, I O=I O, max V O,set = 3.3Vdc)Input No Load Current V O,set = 0.75Vdc I IN,No load 10 mA (V IN = 5.0Vdc, I O = 0, module enabled) V O,set = 3.3Vdc I IN,No load17 mAInput Stand-by Current All I IN,stand-by0.6 mA(V IN = 5.0Vdc, module disabled)Inrush Transient All I2t 0.04 A2sInput Reflected Ripple Current, peak-to-peakAll 35 mAp-p (5Hz to 20MHz, 1μH source impedance; V IN, min toV IN, max, I O= I Omax ; See Test configuration section)Input Ripple Rejection (120Hz) All 30 dB CAUTION: This power module is not internally fused. An input line fuse must always be used.This power module can be used in a wide variety of applications, ranging from simple standalone operation to beingpart of a complex power architecture. To preserve maximum flexibility, internal fusing is not included, however, toachieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast-acting fuse with a maximum rating of 6 A (see Safety Considerations section). Based on the information provided inthis data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can beused. Refer to the fuse manufacturer’s data sheet for further information.Electrical Specifications(continued)Parameter Device Symbol Min Typ Max UnitV O, set Output Voltage Set-point All V O, set -2.0 V O, set +2.0 % =25°C)(V IN=IN, min, I O=I O, max, T AV O, set Output Voltage All V O, set -3%⎯+3% %(Over all operating input voltage, resistive load,and temperature conditions until end of life)Adjustment Range All V O 0.7525 3.63 VdcSelected by an external resistorOutput RegulationLine (V IN=V IN, min to V IN, max) All⎯0.4 ⎯% V O, set Load (I O=I O, min to I O, max) All⎯0.4 ⎯% V O, set Temperature (T ref=T A, min to T A, max) All ⎯0.4 ⎯% V O, setOutput Ripple and Noise on nominal output(V IN=V IN, nom and I O=I O, min to I O, maxCout = 1μF ceramic//10μFtantalum capacitors)RMS (5Hz to 20MHz bandwidth) All ⎯10 15 mV rmsPeak-to-Peak (5Hz to 20MHz bandwidth) All ⎯25 50 mV pk-pk External CapacitanceC O, max ⎯⎯1000 μFESR ≥ 1 mΩ AllC O, max ⎯⎯3000 μFESR ≥ 10 mΩ AllOutput Current All I o 0 3 Adc Output Current Limit Inception (Hiccup Mode ) All I O, lim ⎯220 ⎯% I o(V O= 90% of V O, set)Output Short-Circuit Current All I O, s/c ⎯ 2 ⎯Adc(V O≤250mV) ( Hiccup Mode )Efficiency V O,set = 0.75Vdc η81.5 % V IN= V IN, nom, T A=25°C V O, set = 1.2Vdc η87.0 %I O=I O, max , V O= V O,set V O,set = 1.5Vdc η89.0 %V O,set = 1.8Vdc η90.0 %V O,set = 2.5Vdc η93.0 %V O,set = 3.3Vdc η94.0 % Switching Frequency All f sw ⎯300 ⎯kHzDynamic Load Response(dIo/dt=2.5A/μs; V IN = V IN, nom; T A=25°C) All V pk ⎯250 ⎯mVLoad Change from Io= 50% to 100% ofIo,max; 1μF ceramic// 10 μF tantalumPeak DeviationSettling Time (Vo<10% peak deviation) All t⎯50 ⎯μss(dIo/dt=2.5A/μs; V IN = V IN, nom; T A=25°C) All V pk ⎯250 ⎯mVLoad Change from Io= 100% to 50%of Io,max:1μF ceramic// 10 μF tantalumPeak DeviationSettling Time (Vo<10% peak deviation) All t⎯50 ⎯μssElectrical Specifications(continued)Parameter Device Symbol Min Typ Max UnitResponseDynamicLoad(dIo/dt=2.5A/μs; V V IN = V IN, nom; T A=25°C) All V pk ⎯60 ⎯mVLoad Change from Io= 50% to 100% of Io,max;Co = 2x150 μF polymer capacitorsPeak DeviationSettling Time (Vo<10% peak deviation) All t⎯100 ⎯μss(dIo/dt=2.5A/μs; V IN = V IN, nom; T A=25°C) All V pk ⎯60 ⎯mVLoad Change from Io= 100% to 50%of Io,max:Co = 2x150 μF polymer capacitorsPeak DeviationSettling Time (Vo<10% peak deviation) All t⎯100 ⎯μssGeneral SpecificationsParameter Min Typ Max UnitHours Calculated MTBF (I O=I O, max, T A=25°C) 11,965,153 Weight ⎯ 2.8 (0.1) ⎯g (oz.)Feature SpecificationsUnless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.Parameter Device Symbol Min Typ Max UnitOn/Off Signal interfaceDevice code with Suffix “4” – Positive logic(On/Off is open collector/drain logic input;Signal referenced to GND - See feature descriptionsection)Input High Voltage (Module ON) All V IH――V IN, max VInput High Current All I IH―― 10 μAInput Low Voltage (Module OFF) All V IL -0.2 ― 0.3 V Input Low Current All I IL― 0.2 1 mA Device Code with no suffix – Negative Logic(On/OFF pin is open collector/drain logic input withexternal pull-up resistor; signal referenced to GND)Input High Voltage (Module OFF) All V IH 1.5 ―V IN,max VdcInput High Current All I IH 0.2 1 mA Input Low Voltage (Module ON) All V IL -0.2 ― 0.3 Vdc Input low Current All I IL― 10 μATurn-On Delay and Rise Times(I O=I O, max , V IN = V IN, nom, T A = 25 o C, )All Tdelay ― 4 ― msec Case 1: On/Off input is set to Logic Low (ModuleON) and then input power is applied (delay frominstant at which V IN =V IN, min until Vo=10% of Vo,set)All Tdelay ― 4 ― msec Case 2: Input power is applied for at least one secondand then the On/Off input is set to logic Low (delay frominstant at which Von/Off=0.3V until Vo=10% of Vo, set)All Trise― 4 ― msec Output voltage Rise time (time for Vo to rise from 10%of V o,set to 90% of Vo, set)Output voltage overshoot – Startup ― 1 % V O, setI O= I O, max; V IN = 2.4 to 5.5Vdc, T A = 25 o CRemote Sense Range ―― 0.5 Overtemperature Protection All T⎯140 ⎯°Cref(See Thermal Consideration section)Input Undervoltage LockoutTurn-on Threshold All 2.2 V Turn-off Threshold All 2.0 VCharacteristic CurvesThe following figures provide typical characteristics for the Austin MiniLynx TM SIP modules at 25ºC.E F F I C I E N C Y , η (%)E F F I C I E N C Y , η (%)OUTPUT CURRENT, I O (A)(Vout = 0.75Vdc).Figure 4. Converter Efficiency versus Output Current(Vout = 1.8Vdc).E F F I C I E N C Y , η (%)O E F F I C I E N C Y , η (%)Figure 2. Converter Efficiency versus Output Current (Vout = 1.2Vdc).E F F I C I E N C Y , η (%)OUTPUT CURRENT, I O (A) E F F I C I E N C Y , η (%)Figure 3. Converter Efficiency versus Output Current (Vout = 1.5Vdc).Characteristic Curves (continued)The following figures provide typical characteristics for the Austin MiniLynx TM SIP modules at 25ºC.INPUTCURRENT,IIN(A)INPUT VOLTAGE, V IN(V)OUTPUTCURRENT,OUTPUTVOLTAGEIO(A)(2A/div)VO(V)(1mV/div)TIME, t (20 μs/div)Figure 7. Input voltage vs. Input Current(Vout =2.5Vdc).Figure 10. Transient Response to Dynamic LoadChange from 50% to 100% of full load (Vo = 3.3Vdc). OUTPUTVOLTAGEVO(V)(1mV/div)TIME, t (1μs/div) O UTPUTCURRENT,OUTPUTVOLTAGEIO(A)(2A/div)VO(V)(1mV/div)TIME, t (20 μs/div)Figure 8. Typical Output Ripple and Noise(V IN = 5.0V dc, Vo = 0.75Vdc, Io=3A).Figure 11. Transient Response to Dynamic LoadChange from 100% to 50% of full load (Vo = 3.3 Vdc). OUTPUTVOLTAGEVO(V)(1mV/div)TIME, t (1μs/div) O UTPUTCURRENT,OUTPUTVOLTAGEIO(A)(2A/div)VO(V)(2mV/div)TIME, t (100μs/div)Figure 9. Typical Output Ripple and Noise(V IN = 5.0V dc, Vo = 3.3Vdc, Io=3A).Figure 12. Transient Response to Dynamic LoadChange from 50% to 100% of full load (Vo = 3.3 Vdc,Cext = 2x150 μF Polymer Capacitors).Characteristic Curves (continued)The following figures provide typical characteristics for the Austin MiniLynx TM SIP modules at 25ºC.O U T P U T C U R R E N T , O U T P U T V O L T A G E I O (A ) (2A /d i v ) V O (V ) (20m V /d i v )TIME, t (100μs/div)I N P U T V O L T A G O U T P U T V O L T A G E V I N (V ) (2V /d i v ) V O (V ) (1V /d i v )TIME, t (2ms/div)Figure 13. Transient Response to Dynamic LoadChange from 100% of 50% full load (Vo = 3.3Vdc, Cext = 2x150 μF Polymer Capacitors).Figure 16. Typical Start-Up with application of Vin (V IN = 5.0Vdc, Vo = 3.3Vdc, Io = 3A).O N /O F F V O L T A G E O U T P U T V O L T A G EV O n /o f f (V ) (2V /d i v ) V O (V ) (1V /d i v )TIME, t (2ms/div)O N /O F F V O L T A G E O U T P U T V O L T A G EV O n /o f f (V ) (2V /d i v ) V O (V ) (0.5V /d i v )TIME, t (2ms/div)Figure 14. Typical Start-Up Using Remote On/Off(V IN = 5.0Vdc, Vo = 3.3Vdc, Io = 3A).Figure 17 Typical Start-Up Using Remote On/Off with Prebias (VIN = 3.3Vdc, Vo = 1.8Vdc, Io = 1.0A, Vbias =1.0Vdc).O N /O F F V O L T A G E O U T P U T V O L T A G E V O n /o f f (V ) (2V /d i v ) V O (V ) (1V /d i v )TIME, t (2ms/div)O U T P U T C U R R E N T ,I O (A ) (5A /d i v )TIME, t (10ms/div)F igure 15. Typical Start-Up Using Remote On/Off with Low-ESR external capacitors (7x150uF Polymer)(V IN = 5.0Vdc, Vo = 3.3Vdc, Io = 3A, Co = 1050μF).Figure 18. Output short circuit Current (V IN = 5.0Vdc, Vo = 0.75Vdc).Characteristic Curves (continued)The following figures provide thermal derating curves for the Austin MiniLynx TM SIP modules.O U T P U T C U R R E N T , I o (A )A O U T P U T C U R R E N T , I o (A )A Figure 19. Derating Output Current versus Local Ambient Temperature and Airflow (V IN = 5.0, Vo=3.3Vdc).Figure 22. Derating Output Current versus Local Ambient Temperature and Airflow (V IN = 3.3dc,Vo=2.5 Vdc).O U T P U T C U R R E N T , I o (A )AMBIENT TEMPERATURE, T A CFigure 20. Derating Output Current versus Local Ambient Temperature and Airflow (V IN = 5.0Vdc, Vo=1.8 Vdc).Figure 23. Derating Output Current versus Local Ambient Temperature and Airflow (V IN = 3.3dc,Vo=1.2 Vdc).O U T P U T C U R R E N T , I o (A )AFigure 21. Derating Output Current versus Local Ambient Temperature and Airflow (V IN = 5.0Vdc, Vo=0.75 Vdc). Figure 24. Derating Output Current versus Local Ambient Temperature and Airflow (V IN = 3.3dc, Vo=0.75 Vdc).Test ConfigurationsNOTE: Measure input reflected ripple current with a simulatedsource inductance (L TEST) of 1μH. Capacitor C S offsetspossible battery impedance. Measure current as shownabove.Figure 25. Input Reflected Ripple Current Test Setup.NOTE: All voltage measurements to be taken at the moduleterminals, as shown above. If sockets are used thenKelvin connections are required at the module terminalsto avoid measurement errors due to socket contactresistance.Figure 26. Output Ripple and Noise Test Setup.NOTE: All voltage measurements to be taken at the moduleterminals, as shown above. If sockets are used thenKelvin connections are required at the module terminalsto avoid measurement errors due to socket contactresistance.Figure 27. Output Voltage and Efficiency Test Setup.η= V O. I OV IN. I INx100%Efficiency Design ConsiderationsInput FilteringThe Austin MiniLynx TM SIP module should be connectedto a low-impedance source. A highly inductive sourcecan affect the stability of the module. An inputcapacitance must be placed directly adjacent to theinput pin of the module, to minimize input ripple voltageand ensure module stability.To minimize input voltage ripple, low-ESR polymer andceramic capacitors are recommended at the input of themodule. Figure 28 shows the input ripple voltage(mVp-p) for various outputs with 1x22µF (TDK:C3225X5R0J226V) ceramic capacitor at the input of themodule. Figure 29 shows the input ripple with 1x47µF(TDK: C3225X5R0J476M) ceramic capacitor at full load.InputRippleVoltage(mVp-p)OutputVoltage(Vdc) Figure 28. Input ripple voltage for various outputswith 1x22 µF ceramic capacitor at the input (full-load).InputRippleVoltage(mVp-p)OutputVoltage(Vdc) Figure 29. Input ripple voltage for various outputswith 1x47 µF ceramic capacitor at the input (fullload).分销商库存信息:GEAXH003A0XZ AXH003A0X4Z AXH003A0X AXH003A0X4。
D类功放LM4890规格书
LM48901Watt Audio Power AmplifierGeneral DescriptionThe LM4890is an audio power amplifier primarily designed for demanding applications in mobile phones and other por-table communication device applications.It is capable of de-livering 1watt of continuous average power to an 8ΩBTL load with less than 1%distortion (THD+N)from a 5V DC power supply.Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components.The LM4890does not require output coupling capacitors or bootstrap capacitors,and therefore is ideally suited for mobile phone and other low voltage appli-cations where minimal power consumption is a primary re-quirement.The LM4890features a low-power consumption shutdown mode,which is achieved by driving the shutdown pin with logic low.Additionally,the LM4890features an internal ther-mal shutdown protection mechanism.The LM4890contains advanced pop &click circuitry which eliminates noises which would otherwise occur during turn-on and turn-off transitions.The LM4890is unity-gain stable and can be configured by external gain-setting resistors.Key Specificationsj Improved PSRR at 217Hz 62dB j Power Output at 5.0V &1%THD 1.0W(typ.)j Power Output at 3.3V &1%THD 400mW(typ.)j Shutdown Current0.1µA(typ.)Featuresn Available in space-saving packages micro SMD,MSOP and SOICn Ultra low current shutdown moden Can drive capacitive loads up to 500pFn Improved pop &click circuitry eliminates noises during turn-on and turn-off transitions n 2.0-5.5V operationn No output coupling capacitors,snubber networks or bootstrap capacitors required n Unity-gain stablen External gain configuration capabilityApplicationsn Mobile Phones n PDAsn Portable electronic devicesTypical ApplicationBoomer ®is a registered trademark of National Semiconductor Corporation.DS101310-1FIGURE 1.Typical Audio Amplifier Application CircuitSeptember 2000LM48901Watt Audio Power AmplifierConnection Diagram8Bump micro SMDDS101310-23Top ViewOrder Number LM4890IBP ,LM4890IBPX See NS Package Number BPA08FFBSmall Outline (SO)PackageDS101310-35Top ViewOrder Number LM4890M See NS Package Number M08A Mini Small Outline (MSOP)PackageDS101310-36Top ViewOrder Number LM4890MM See NS Package Number MUA08Amicro SMD MarkingDS101310-70Top View X -Date Code T -Die Traceability G -Boomer Family E -LM4890IBPSO MarkingDS101310-72Top View XY -Date Code TT -Die TraceabilityBottom 2lines -Part NumberMSOP MarkingDS101310-71Top ViewZ -Boomer Family 90-LM4890MML M 4890Absolute Maximum Ratings(Note2)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage 6.0V Storage Temperature−65˚C to+150˚C Input Voltage−0.3V to V DD+0.3V Power Dissipation(Note3)Internally Limited ESD Susceptibility(Note4)2500V ESD Susceptibility(Note5)250V Junction Temperature150˚C Thermal ResistanceθJC(SOP)35˚C/WθJA(SOP)150˚C/WθJA(micro SMD)220˚C/WθJC(MSOP)56˚C/WθJA(MSOP)190˚C/W Soldering InformationSee AN-1112″microSMD Wafers Level Chip Scale Package″.Operating RatingsTemperature RangeT MIN≤T A≤T MAX−40˚C≤T A≤85˚C Supply Voltage 2.0V≤V DD≤5.5VElectrical Characteristics VDD =5V(Notes1,2,8)The following specifications apply for V DD=5V,A V=1,and8Ωload unless otherwise specified.Limits apply for T A=25˚C.Symbol Parameter ConditionsLM4890Units(Limits) Typical Limit(Note6)(Note7)I DD Quiescent Power Supply Current V IN=0V,I o=0A410mA(max) I SD Shutdown Current V shutdown=GND0.1µA(max) P o Output Power THD=2%(max);f=1kHz1W THD+N Total Harmonic Distortion+Noise P o=0.4Wrms;f=1kHz0.1% PSRR Power Supply Rejection Ratio V ripple=200mV sine p-p62(f=217Hz)66(f=1kHz)dBElectrical Characteristics VDD =3.3V(Notes1,2,8)The following specifications apply for V DD=3.3V,A V=1,and8Ωload unless otherwise specified.Limits apply for T A=25˚C.Symbol Parameter ConditionsLM4890Units(Limits) Typical Limit(Note6)(Note7)I DD Quiescent Power Supply Current V IN=0V,I o=0A 3.5mA(max) I SD Shutdown Current V shutdown=GND0.1µA(max) P o Output Power THD=1%(max);f=1kHz0.4W THD+N Total Harmonic Distortion+Noise P o=0.15Wrms;f=1kHz0.1% PSRR Power Supply Rejection Ratio V ripple=200mV sine p-p60(f=217Hz)62(f=1kHz)dBElectrical Characteristics VDD =2.6V(Notes1,2,8)The following specifications apply for V DD=2.6V and8ΩLoad unless otherwise specified.Limits apply for T A=25˚C.Symbol Parameter ConditionsLM4890Units(Limits) Typical Limit(Note6)(Note7)I DD Quiescent Power Supply Current V IN=0V,I o=0A 2.6mA(max)I SD Shutdown Current V shutdown=GND0.1µA(max)LM4890Electrical Characteristics V DD =2.6V(Notes 1,2,8)The following specifications apply for V DD =2.6V and 8ΩLoad unless otherwise specified.Limits apply for T A =25˚C.(Continued)Symbol ParameterConditionsLM4890Units (Limits)Typical Limit (Note 6)(Note 7)P 0Output Power (8Ω)Output Power (4Ω)THD =1%(max);f =1kHz THD =1%(max);f =1kHz 0.20.4W W THD+N Total Harmonic Distortion+Noise P o =0.1Wrms;f =1kHz 0.08%PSRRPower Supply Rejection RatioV ripple =200mV sine p-p44(f =217Hz)44(f =1kHz)dBNote 1:All voltages are measured with respect to the ground pin,unless otherwise specified.Note 2:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is func-tional,but do not guarantee specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guar-antee specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not guaranteed for parameters where no limit is given,however,the typical value is a good indication of device performance.Note 3:The maximum power dissipation must be derated at elevated temperatures and is dictated by T JMAX ,θJA ,and the ambient temperature T A .The maximum allowable power dissipation is P DMAX =(T JMAX –T A )/θJA or the number given in Absolute Maximum Ratings,whichever is lower.For the LM4890,see power derating currents for additional information.Note 4:Human body model,100pF discharged through a 1.5k Ωresistor.Note 5:Machine Model,220pF–240pF discharged through all pins.Note 6:Typicals are measured at 25˚C and represent the parametric norm.Note 7:Limits are guaranteed to National’s AOQL (Average Outgoing Quality Level).Note 8:For micro SMD only,shutdown current is measured in a Normal Room Environment.Exposure to direct sunlight will increase I SD by a maximum of 2µA.External Components Description(Figure 1)Components Functional Description1.R i Inverting input resistance which sets the closed-loop gain in conjunction with R f .This resistor also forms a high pass filter with C i at f C =1/(2πR i C i ).2.C iInput coupling capacitor which blocks the DC voltage at the amplifiers input terminals.Also creates ahighpass filter with R i at f c =1/(2πR i C i ).Refer to the section,Proper Selection of External Components ,for an explanation of how to determine the value of C i .3.R f Feedback resistance which sets the closed-loop gain in conjunction with R i .4.C S Supply bypass capacitor which provides power supply filtering.Refer to the Power Supply Bypassing section for information concerning proper placement and selection of the supply bypass capacitor.5.C BBypass pin capacitor which provides half-supply filtering.Refer to the section,Proper Selection of External Components ,for information concerning proper placement and selection of C B .L M 4890Typical Performance CharacteristicsTHD+N vs Frequencyat V DD=5V,8ΩR L,and PWR=250mWDS101310-37THD+N vs Frequencyat V DD=3.3V,8ΩR L,and PWR=150mWDS101310-38THD+N vs Frequencyat V DD=2.6V,8ΩR L,and PWR=100mWDS101310-39THD+N vs Frequencyat V DD=2.6V,4ΩR L,and PWR=100mWDS101310-40THD+N vs Power OutV DD=5V,8ΩR L,1kHzDS101310-41THD+N vs Power OutV DD=3.3V,8ΩR L,1kHzDS101310-42LM4890Typical Performance Characteristics(Continued)THD+N vs Power Out V DD =2.6V,8ΩR L ,1kHzDS101310-43THD+N vs Power Out V DD =2.6V,4ΩR L ,1kHzDS101310-44Power Supply Rejection Ratio (PSRR)V DD =5VDS101310-45Input terminated with 10ΩRPower Supply Rejection Ratio (PSRR)V DD =5VDS101310-73Input FloatingPower Supply Rejection Ratio (PSRR)V DD =2.6VDS101310-47Input terminated with 10ΩRPower Supply Rejection Ratio (PSRR)V DD =3.3VDS101310-46Input terminated with 10ΩRL M 4890Typical Performance Characteristics(Continued)Power Dissipation vsOutput PowerV DD=3.3VDS101310-49Power Dissipation vsOutput PowerV DD=5VDS101310-48Output Power vsLoad ResistanceDS101310-51Power Dissipation vsOutput PowerV DD=2.6VDS101310-50Supply Current vsShutdown VoltageDS101310-53Clipping(Dropout)Voltage vsSupply VoltageDS101310-52LM4890Typical Performance Characteristics(Continued)Open Loop Frequency ResponseDS101310-55Frequency Response vs Input Capacitor SizeDS101310-54Power Derating Curves DS101310-69Noise FloorDS101310-56L M 4890Application InformationBRIDGE CONFIGURATION EXPLANATIONAs shown in Figure1,the LM4890has two operational am-plifiers internally,allowing for a few different amplifier con-figurations.The first amplifier’s gain is externally config-urable,while the second amplifier is internally fixed in a unity-gain,inverting configuration.The closed-loop gain of the first amplifier is set by selecting the ratio of R f to R i while the second amplifier’s gain is fixed by the two internal10kΩresistors.Figure1shows that the output of amplifier one serves as the input to amplifier two which results in both am-plifiers producing signals identical in magnitude,but out of phase by180˚.Consequently,the differential gain for the IC isA VD=2*(R f/R i)By driving the load differentially through outputs Vo1and Vo2,an amplifier configuration commonly referred to as “bridged mode”is established.Bridged mode operation is different from the classical single-ended amplifier configura-tion where one side of the load is connected to ground.A bridge amplifier design has a few distinct advantages over the single-ended configuration,as it provides differential drive to the load,thus doubling output swing for a specified supply voltage.Four times the output power is possible as compared to a single-ended amplifier under the same condi-tions.This increase in attainable output power assumes that the amplifier is not current limited or clipped.In order to choose an amplifier’s closed-loop gain without causing ex-cessive clipping,please refer to the Audio Power Amplifier Design section.A bridge configuration,such as the one used in LM4890, also creates a second advantage over single-ended amplifi-ers.Since the differential outputs,Vo1and Vo2,are biased at half-supply,no net DC voltage exists across the load.This eliminates the need for an output coupling capacitor which is required in a single supply,single-ended amplifier configura-tion.Without an output coupling capacitor,the half-supply bias across the load would result in both increased internal IC power dissipation and also possible loudspeaker damage. POWER DISSIPATIONPower dissipation is a major concern when designing a suc-cessful amplifier,whether the amplifier is bridged or single-ended.A direct consequence of the increased power deliv-ered to the load by a bridge amplifier is an increase in internal power dissipation.Since the LM4890has two opera-tional amplifiers in one package,the maximum internal power dissipation is4times that of a single-ended amplifier. The maximum power dissipation for a given application can be derived from the power dissipation graphs or from Equa-tion1.P DMAX=4*(V DD)2/(2π2R L)(1)It is critical that the maximum junction temperature T JMAX of 150˚C is not exceeded.T JMAX can be determined from the power derating curves by using P DMAX and the PC board foil area.By adding additional copper foil,the thermal resistance of the application can be reduced from a free air value of 150˚C/W,resulting in higher P DMAX.Additional copper foil can be added to any of the leads connected to the LM4890. It is especially effective when connected to V DD,G ND,and the output pins.Refer to the application information on the LM4890reference design board for an example of good heat sinking.If T JMAX still exceeds150˚C,then additional changes must be made.These changes can include re-duced supply voltage,higher load impedance,or reduced ambient temperature.Internal power dissipation is a functionof output power.Refer to the Typical Performance Charac-teristics curves for power dissipation information for differ-ent output powers and output loading.POWER SUPPLY BYPASSINGAs with any amplifier,proper supply bypassing is critical forlow noise performance and high power supply rejection.The capacitor location on both the bypass and power supply pinsshould be as close to the device as possible.Typical applica-tions employ a5V regulator with10µF tantalum or electro-lytic capacitor and a ceramic bypass capacitor which aid insupply stability.This does not eliminate the need for bypass-ing the supply nodes of the LM4890.The selection of a by-pass capacitor,especially C B,is dependent upon PSRR re-quirements,click and pop performance(as explained in the section,Proper Selection of External Components),sys-tem cost,and size constraints.SHUTDOWN FUNCTIONIn order to reduce power consumption while not in use,theLM4890contains a shutdown pin to externally turn off the amplifier’s bias circuitry.This shutdown feature turns the am-plifier off when a logic low is placed on the shutdown pin.By switching the shutdown pin to ground,the LM4890supplycurrent draw will be minimized in idle mode.While the devicewill be disabled with shutdown pin voltages less than0.5V DC,the idle current may be greater than the typicalvalue of0.1µA.(Idle current is measured with the shutdownpin grounded).In many applications,a microcontroller or microprocessoroutput is used to control the shutdown circuitry to provide a quick,smooth transition into shutdown.Another solution is touse a single-pole,single-throw switch in conjunction with an external pull-up resistor.When the switch is closed,the shut-down pin is connected to ground and disables the amplifier.If the switch is open,then the external pull-up resistor will en-able the LM4890.This scheme guarantees that the shut-down pin will not float thus preventing unwanted state changes.PROPER SELECTION OF EXTERNAL COMPONENTSProper selection of external components in applications us-ing integrated power amplifiers is critical to optimize deviceand system performance.While the LM4890is tolerant of external component combinations,consideration to compo-nent values must be used to maximize overall system qual-ity.The LM4890is unity-gain stable which gives the designer maximum system flexibility.The LM4890should be used inlow gain configurations to minimize THD+N values,and maximize the signal to noise ratio.Low gain configurationsrequire large input signals to obtain a given output power.In-put signals equal to or greater than1Vrms are availablefrom sources such as audio codecs.Please refer to the sec-tion,Audio Power Amplifier Design,for a more complete explanation of proper gain selection.Besides gain,one of the major considerations is the closed-loop bandwidth of the amplifier.To a large extent,the band-width is dictated by the choice of external componentsshown in Figure1.The input coupling capacitor,C i,forms afirst order high pass filter which limits low frequency re-sponse.This value should be chosen based on needed fre-quency response for a few distinct reasons.LM4890Application Information(Continued)Selection Of Input Capacitor SizeLarge input capacitors are both expensive and space hungry for portable designs.Clearly,a certain sized capacitor is needed to couple in low frequencies without severe attenua-tion.But in many cases the speakers used in portable sys-tems,whether internal or external,have little ability to repro-duce signals below 100Hz to 150Hz.Thus,using a large input capacitor may not increase actual system perfor-mance.In addition to system cost and size,click and pop perfor-mance is effected by the size of the input coupling capacitor,C i.A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally 1/2V DD ).This charge comes from the output via the feedback and is apt to create pops upon device enable.Thus,by minimizing the ca-pacitor size based on necessary low frequency response,turn-on pops can be minimized.Besides minimizing the input capacitor size,careful consid-eration should be paid to the bypass capacitor value.Bypass capacitor,C B ,is the most critical component to minimize turn-on pops since it determines how fast the LM4890turns on.The slower the LM4890’s outputs ramp to their quiescent DC voltage (nominally 1/2V DD ),the smaller the turn-on pop.Choosing C B equal to 1.0µF along with a small value of C i (in the range of 0.1µF to 0.39µF),should produce a virtually clickless and popless shutdown function.While the device will function properly,(no oscillations or motorboating),with C B equal to 0.1µF,the device will be much more susceptible to turn-on clicks and pops.Thus,a value of C B equal to 1.0µF is recommended in all but the most cost sensitive de-signs.AUDIO POWER AMPLIFIER DESIGN A 1W/8ΩAUDIO AMPLIFIER Given:Power Output 1WrmsLoad Impedance 8ΩInput Level 1Vrms Input Impedance20k ΩBandwidth 100Hz–20kHz ±0.25dB A designer must first determine the minimum supply rail to obtain the specified output power.By extrapolating from the Output Power vs Supply Voltage graphs in the Typical Per-formance Characteristics section,the supply rail can be easily found.A second way to determine the minimum sup-ply rail is to calculate the required V opeak using Equation 2and add the output ing this method,the minimum supply voltage would be (V opeak +(V OD TOP +V OD BOT )),where V OD BOT and V OD TOP are extrapolated from the Dropout Volt-age vs Supply Voltage curve in the Typical Performance Characteristics section.(2)5V is a standard voltage in most applications,it is chosen for the supply rail.Extra supply voltage creates headroom that allows the LM4890to reproduce peaks in excess of 1W with-out producing audible distortion.At this time,the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the Power Dissipation section.Once the power dissipation equations have been addressed,the required differential gain can be determined from Equa-tion 3.(3)R f /R i =A VD /2From Equation 3,the minimum A VD is 2.83;use A VD =3.Since the desired input impedance was 20k Ω,and with a A VD impedance of 2,a ratio of 1.5:1of R f to R i results in an allocation of R i =20k Ωand R f =30k Ω.The final design step is to address the bandwidth requirements which must be stated as a pair of −3dB frequency points.Five times away from a −3dB point is 0.17dB down from passband response which is better than the required ±0.25dB specified.f L =100Hz/5=20Hz f H =20kHz *5=100kHzAs stated in the External Components section,R i in con-junction with C i create a highpass filter.C i ≥1/(2π*20k Ω*20Hz)=0.397µF;use 0.39µFThe high frequency pole is determined by the product of the desired frequency pole,f H ,and the differential gain,A VD .With a A VD =3and f H =100kHz,the resulting GBWP =150kHz which is much smaller than the LM4890GBWP of 4MHz.This figure displays that if a designer has a need to design an amplifier with a higher differential gain,the LM4890can still be used without running into bandwidth limi-tations.L M 4890Application Information(Continued) HIGHER GAIN AUDIO AMPLIFIERThe LM4890is unity-gain stable and requires no external components besides gain-setting resistors,an input coupling capacitor,and proper supply bypassing in the typical appli-cation.However,if a closed-loop differential gain of greater than10is required,a feedback capacitor(C4)may be needed as shown in Figure2to bandwidth limit the amplifier. This feedback capacitor creates a low pass filter that elimi-nates possible high frequency oscillations.Care should be taken when calculating the-3dB frequency in that an incor-rect combination of R3and C4will cause rolloff before 20kHz.A typical combination of feedback resistor and ca-pacitor that will not produce audio band high frequency rolloff is R3=20kΩand C4=25pf.These components result in a -3dB point of approximately320kHz.It is not recommended that the feedback resistor and capacitor be used to imple-ment a band limiting filter below100kHZ.DS101310-24Figure2LM4890Application Information(Continued)DIFFERENTIAL AMPLIFIERCONFIGURATIONFORLM4890DS101310-29Figure 3L M 4890Application Information(Continued)REFERENCE DESIGN BOARD and LAYOUT-micro SMDDS101310-25Figure4LM4890Application Information(Continued)LM4890micro SMD BOARD ARTWORKSilk ScreenDS101310-57Top LayerDS101310-58Bottom LayerDS101310-59Inner Layer V DDDS101310-60Inner Layer GroundDS101310-61L M 4890Application Information(Continued)REFERENCE DESIGN BOARD and PCB LAYOUT GUIDE-LINES-MSOP&SO BoardsDS101310-68Figure5LM4890Application Information(Continued)LM4890SO DEMO BOARD ARTWORKSilk ScreenDS101310-62Top LayerDS101310-63Bottom LayerDS101310-64LM4890MSOP DEMO BOARD ARTWORKSilk ScreenDS101310-65Top LayerDS101310-66Bottom LayerDS101310-67L M 4890Application Information(Continued)Mono LM4890Reference Design BoardsBill of Material for all3Demo BoardsItem Part Number Part Description Qty Ref Designator 1551011208-001LM4890Mono Reference Design Board110482911183-001LM4890Audio AMP1U120151911207-001Tant Cap1uF16V101C121151911207-002Cer Cap0.39uF50V Z5U201C225152911207-001Tant Cap1uF16V101C330472911207-001Res20K Ohm1/10W53R1,R2,R3 35210007039-002Jumper Header Vertical Mount2X10.1002J1,J2PCB LAYOUT GUIDELINESThis section provides practical guidelines for mixed signal PCB layout that involves various digital/analog power and ground traces.Designers should note that these are only ″rule-of-thumb″recommendations and the actual results will depend heavily on the final layout.General Mixed Signal Layout RecommendationPower and Ground CircuitsFor2layer mixed signal design,it is important to isolate the digital power and ground trace paths from the analog power and ground trace paths.Star trace routing techniques(bring-ing individual traces back to a central point rather than daisy chaining traces together in a serial manner)can have a ma-jor impact on low level signal performance.Star trace routing refers to using individual traces to feed power and ground to each circuit or even device.This technique will take require a greater amount of design time but will not increase the final price of the board.The only extra parts required will be some jumpers.Single-Point Power/Ground ConnectionsThe analog power traces should be connected to the digitaltraces through a single point(link).A″Pi-filter″can be helpfulin minimizing High Frequency noise coupling between theanalog and digital sections.It is further recommended to putdigital and analog power traces over the corresponding digi-tal and analog ground traces to minimize noise coupling.Placement of Digital and Analog ComponentsAll digital components and high-speed digital signals tracesshould be located as far away as possible from analog com-ponents and circuit traces.Avoiding Typical Design/Layout ProblemsAvoid ground loops or running digital and analog traces par-allel to each other(side-by-side)on the same PCB layer.When traces must cross over each other do it at90degrees. Running digital and analog traces at90degrees to eachother from the top to the bottom side as much as possible will minimize capacitive noise coupling and cross talk.LM4890Physical Dimensionsinches (millimeters)unless otherwise notedNote:Unless otherwise specified.1.Epoxy coating.2.63Sn/37Pb eutectic bump.3.Recommend non-solder mask defined landing pad.4.Pin 1is established by lower left corner with respect to text orientation pins are numbered counterclockwise.5.Reference JEDEC registration MO-211,variation BC.8-Bump micro SMDOrder Number LM4890IBP ,LM4890IBPXNS Package Number BPA08FFB X 1=1.412X 2=1.412X 3=0.850L M 4890Physical Dimensions inches(millimeters)unless otherwise noted(Continued)MSOPOrder Number LM4890MMNS Package Number MUA08A LM4890Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation AmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National Semiconductor EuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:ap.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Email:nsj.crc@ Fax:81-3-5639-7507SOOrder Number LM4890M NS Package Number M08AL M 48901W a t t A u d i o P o w e r A m p l i f i e r。
什么是DVD区域码
什么是DVD区域码,什么是cssDVD区域码是由美国八大影业所共同制定的,为了保护各地区电影放映时的权益。
将全世界分成六个区域,并且限定每个区域中流通的DVD光盘必须设定影片区域码。
如此一来,每个区域的戏院或家庭使用者就无法藉由平行输入或从价格低廉的区域取得廉价的光盘,而必须循正常管道取得,因而确保本身的权益。
所以世界各大影片商共同制定了这个保护限制。
也就是所谓的CSS(Content Scrambling System)区域码保护。
DVD区域码限制了DVD光盘可使用的国家。
例如:编码为北美(区域1)的DVD光盘将无法在日本(区域2)销售的播放器上播放。
WinDVD提供使用者有五次的机会可供选择其所需要的区域码,当选择次数使用完毕后;WinDVD会限制于最后一次的区域码,日后,您只能播放该区域码的影片或全区、未锁码的影片。
现在世界被划分为六个区域。
美国归属第一区域,中国大陆属于第六区域,详细如下:美国、加拿大西欧、日本、南非东南亚澳大利亚、西班牙语拉丁美洲俄罗斯、东欧、非洲中国大陆DVD影片的数码加密主要通过“CSS(Content Scrambling System,数据干扰系统)”加密的,加密后,播放这些影片数据必须先经过解码才能播放。
因为DVD影片数据现在被CSS保护,所以你在DVD影片里看的影像必须经过“解码授权”,也就是用合法的解码程序才能播放,不管在家电产品的DVD影碟机,还是在电脑上用的DVD-ROM和PowerDVD之类的播放软件播放影片,都必须经过解码才能正常播放。
区域码的限制,使得你在国外购买的原版DVD盘片,带回中国,却不能播放,因为在CSS 里面,你的“解码授权”只被限定在你可以看第6区(中国)的DVD影片,而其它区的DVD影片,你没被授权,不能看。
光驱光存储驱动器(光驱):光驱是电脑里比较常见的一个配件。
随着多媒体的应用越来越广泛,使得光驱在电脑诸多配件中的已经成标准配置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LEAD STYLE CONFIGURATIONS AND DIMENSIONS (MAX) in millimeters
BULK : CODE V 1&3
D MAX.
2&4
D MAX.
6
D MAX.
9
D MAX.
REEL/AMMO : CODE A, B, C 2&4 6
D MAX. D MAX.
P ± 0.5
P ± 0.5
LEAD
CASE A B C D E F H M N R D 3.7 4.0 4.5 5.0 5.5 6.0 6.5 10.0 11.0 12.0
STYLES 1-2-3-4
P 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0 5.0 5.0 H 7.0 7.5 8.0 9.0 10.0 11.0 12.0 14.5 16.0 19.0
元器件交易网
489D, 499D
Vishay Sprague
Resin-Coated, Radial-Lead Solid Tantalum Capacitors
FEATURES
• Large capacitance range • Encapsulated in a hard orange epoxy resin • Large variety of lead styles available • Supplied on tape and reel or ammopack • Low impedance and ESR at high frequencies
Document Number 42070 Revision 02-Aug-02
元器件交易网
489D, 499D
Resin-Coated, Radial-Leaded Solid Tantalum Capacitors
STANDARD RATINGS
CR (µF) CASE CODE TYPE PART NUMBER 489D MAX. DCL @ + 25°C (µA) 1.0 1.0 1.0 1.0 1.4 2.1 3.0 4.5 6.7 9.9 14.8 21.1 30.6 1.0 1.0 1.0 1.4 2.0 3.1 4.4 6.4 9.4 14.1 20.7 31.1 44.4 64.2 1.0 1.0 1.0 1.5 2.2 3.3 4.9 7.0 10.2 15.0 22.5 33.0 49.5 499D 489D, 499D MAX. DCL MAX. DF, 100 Hz @ + 25°C @ + 25° (%) (%) UC = 2 V @ + 125 °C, Surge = 2.6 V (only 499D) 0.5 6 0.5 8 0.5 8 0.5 8 0.7 8 1.1 8 1.6 8 2.4 10 3.6 10 5.2 10 7.9 10 11.2 12 16.3 12 UC = 4 V @ + 125 °C, Surge = 5.2 V (only 499D) 0.5 6 0.5 6 0.5 8 0.7 8 1.1 8 1.6 8 2.3 8 3.4 8 5.0 10 7.5 10 11.0 10 16.6 10 23.6 12 34.2 12 UC = 7 V @ + 125 °C, Surge = 8.6 V (only 499D) 0.5 6 0.5 6 0.5 6 0.8 8 1.2 8 1.7 8 2.6 8 3.7 8 5.4 8 8.0 10 12.0 10 17.6 10 26.4 10
ELECTRICAL CHARACTERISTICS
Operating Temperature: - 55°C to + 85°C: Type 489D - 55°C to + 125°C Type 499D
APPLICATIONS
• Offer a very cost effective solution in the consumer, industrial and professional electronics markets. The capacitors are intended for high volume applications.
STYLES 2-4
P 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0 — — H3 7.0 7.5 8.0 9.0 10.0 11.0 12.0 14.5 5 5 5 5 5 — — — H4 11.0 11.5 12.0 13.0 14.0 15.0 16.0 — — —
µF
0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 6.8 10 15 22 33 47 68 100 150 220 330 470 680
106
For technical questions, contact eurotant@
Vishay Sprague
UR= 3 Volt @ + 85 °C, Surge = 4 V 6.8 10.0 15.0 22.0 33.0 47.0 68.0 100.0 150.0 220.0 330.0 470.0 680.0 4.7 6.8 10.0 15.0 22.0 33.0 47.0 68.0 100.0 150.0 220.0 330.0 470.0 680.0 3.3 4.7 6.8 10.0 15.0 22.0 33.0 47.0 68.0 100.0 150.0 220.0 330.0 489D (*) __ 489D685X(*)003A_ _ 489D106X(*)003B_ _ 489D156X(*)003B_ _ 489D226X(*)003C_ _ 489D336X(*)003C_ _ 489D476X(*)003D_ _ 489D686X(*)003D_ _ 489D107X(*)003E_ _ 489D157X(*)003H_ _ 489D227X(*)003M_ _ 489D337X(*)003N_ _ 489D477X(*)003N_ _ 489D687X(*)003R_ _ UR= 6.3 Volt @ + 85 °C, Surge = 8 V A 489D475X(*)6R3A_ _ A 489D685X(*)6R3A_ _ B 489D106X(*)6R3B_ _ B 489D156X(*)6R3B_ _ C 489D226X(*)6R3C_ _ C 489D336X(*)6R3C_ _ D 489D476X(*)6R3D_ _ D 489D686X(*)6R3D_ _ E 489D107X(*)6R3E_ _ M 489D157X(*)6R3M_ _ M 489D227X(*)6R3M_ _ N 489D337X(*)6R3N_ _ R 489D477X(*)6R3R_ _ R 489D687X(*)6R3R_ _ UR= 10 Volt @ + 85 °C, Surge = 13 V A 489D335X(*)010A_ _ A 489D475X(*)010A_ _ B 489D685X(*)010B_ _ B 489D106X(*)010B_ _ C 489D156X(*)010C_ _ C 489D226X(*)010C_ _ D 489D336X(*)010D_ _ D 489D476X(*)010D_ _ E 489D686X(*)010E_ _ M 489D107X(*)010M_ _ M 489D157X(*)010M_ _ N 489D227X(*)010N_ _ R 489D337X(*)010R_ _ Type part number 489D, 499D Insert 0 for ± 20% tolerance or 9 for ± 10% Case code/lead style see case code table A B B C C D D E H M N N R
H Max.
H MAX.
H1 MAX.
Upper edge of Printed Circuit Board
H2 MAX.
H3 MAX.
H4 MAX.
0.5Ø 15 Min. 20 Max. 0.5Ø 3 P 0.5Ø 15 Min. 20 Max. P ± 0.5
5.5 ± 0.5
4.5 ± 1.5 1.1 ± 0.05 P ± 0.5 P ± 0.5 P ± 0.5 0.5Ø
Resin-Coated, Radial-Leaded Solid Tantalum Capacitors
STANDARD RATINGS, CASE CODES AND LEAD STYLE
CR RATED VOLTAGE UR @ + 85°C 3.0V 6.3V 10V 16V 20V 25V 35V A A A A A B A A A A A A B B C C D D E H M N N R A B B C C D D E M M N R R A B B C C D D E M M N R B B C C D D E F M N N R B C C D D E F H M N N B B C C D D E H M M N B C C D D E F M M N N 50V A A A B B C D E F F H N N N N 3-4-9 4 1-2 6-9 2-6 LEAD STYLE BULK AMMO/REEL
ORDERING INFORMATION
489D TYPE 489D Standard +85°C 499D Standard +125°C Low IL 686 CAPACITANCE Expressed in picofarads. The first two digits are the significant figures. The third is the number of zeros following. D X0 6R3 CAPACITANCE DC VOLTAGE RATING CASE CODE TOLERANCE @ + 85°C See Table X0 = ± 20% Expressed by zeros if X9 = ± 10% needed to complete the Ratings and Case Codes 3 digit block. A decimal point is indicated by an "R" (6R3 = 6.3 volts). 2 LEAD STYLE 1, 2, 3, 4, 6, 9 See description on next page A PACKAGING A = Ammopack B = Reel pack, positive leader C = Reel pack, negative leader V = Bulk Pack