培优专题11_三角形及其有关概念(含答案)
人教版数学八年级上册第11章《三角形》培优测试题(含答案)
第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。
《易错题》初中八年级数学上册第十一章《三角形》知识点总结(专题培优)
一、选择题cm cm cm cm的四根木棒首尾相接,组成一个凸四边形,若凸1.小李同学将10,12,16,22四边形对角线长为整数,则对角线最长为()A.25cm B.27cm C.28cm D.31cm2.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.3cm,4cm,5cm D.5cm,6cm,7cm3.已知长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,则x的值不可能是()A.2.4 B.3 C.5 D.8.54.内角和为720°的多边形是().A.三角形B.四边形C.五边形D.六边形5.已知三角形的两边长分别为1和4,则第三边长可能是()A.3 B.4 C.5 D.66.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为()A.8 B.9 C.10 D.117.下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2 B.3 C.4 D.58.以下列各组线段为边,能组成三角形的是( )A.1,2,3 B.1,3,5 C.2,3,4 D.2,6,109.下列长度(单位:cm)的三条线段能组成三角形的是()A.13,11,12 B.3,2,1 C.5,12,7 D.5,13,510.一个多边形的内角和是外角和的4倍,则这个多边形的边数为()A.10 B.8 C.6 D.411.现有两根木棒,长度分别为5cm和13cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 12.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 13.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠B .12A BC ∠=∠=∠ C .3A B C ∠=∠=∠D .1123A B C ∠=∠=∠ 14.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5 15.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80°二、填空题16.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.17.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.18.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线19.七边形的外角和为________.20.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.21.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____. 22.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.23.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.24.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.25.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.26.如图,△ABC 中,D 为BC 边上的一点,BD :DC=2:3,△ABC 的面积为10,则△ABD的面积是_________________三、解答题27.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△ABC 的高CD ,中线BE ;(3)在图中能使S △ABC =S △PBC 的格点P 的个数有 个(点P 异于点A ).28.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).29.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.30.已知一个n边形的每一个内角都等于120°.(1)求n的值;(2)求这个n边形的内角和;(3)这个n边形内一共可以画出几条对角线?。
三角形培优专题 - 参考答案
《三角形培优专题》参考答案【例题讲解】例题1.已知等腰三角形的周长为24,试求腰长x 的取值范围和底边长y 的取值范围.【解答】解:依题意有2x +y = 24 ;对于腰长,有:y < 2x < 24 ,即:24 - 2x < 2x < 24 ,解得:6 <x < 12 ;对于底长,有:0 <y < 2x ,即:0 <y < 24 -y ,解得:0 <y < 12 .故腰长x 的取值范围是 6 <x < 12 ,底边长y 的取值范围是0 <y < 12 .例题2.如图,已知∠B =∠C =∠BAD ,∠ADC =∠DAC ,AE ⊥BC ,求∠DAE 的度数.【解答】解: ∠ADC =∠B +∠BAD ,∠B =∠C =∠BAD ,∠ADC =∠DAC ,∴∠B +∠C +∠BAD +∠DAC = 180︒,∴ 5∠B = 180︒,解得∠B = 36︒,∴∠ADC = 72︒.AE ⊥BC ,∴∠DAE = 90︒-∠ADE = 90︒- 72︒= 18︒.例题3.(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B 向右移动到AC 上,那么还能求出∠A +∠DBE +∠C +∠D +∠E 的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点 B 向右移动到AC 的另一侧时,上面的结论还成立吗?(4)如图4,当点B 、E 移动到∠CAD 的内部时,结论又如何?根据图3 或图4,说明你计算的理由.【解答】解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∠1 +∠2 +∠E = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒;(2)如图,由三角形的外角性质,∠A +∠D =∠1 ,∠1 +∠DBE +∠C +∠E = 180︒,∴∠A +∠DBE +∠C +∠D +∠E = 180︒;(3)如图,由三角形的外角性质,∠A +∠C =∠1,∠B +∠D =∠2 ,∠1 +∠2 +∠E = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒;(4)如图,延长CE 与AD 相交,由三角形的外角性质,∠A +∠C =∠1,∠B +∠E =∠2 , ∠1 +∠2 +∠D = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒.例题4.Rt∆ABC 中,∠C = 90︒,点D 、E 分别是∆ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2 ,∠DPE =∠α.(1)若点 P 在线段 AB 上,如图(1)所示,且∠α= 50︒,则∠1 +∠2 =140 ︒;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2 之间有何关系?(3)若点P 在Rt∆ABC 斜边BA 的延长线上运动(CE <CD) ,则∠α、∠1、∠2 之间有何关系?猜想并说明理由.【解答】解:(1)如图,连接PC ,由三角形的外角性质,∠1 =∠PCD +∠CPD ,∠2 =∠PCE +∠CPE ,∴∠1+∠2 =∠PCD +∠CPD +∠PCE +∠CPE =∠DPE +∠C ,∠DPE =∠α= 50︒,∠C = 90︒,∴∠1+∠2 = 50︒+ 90︒=140︒,故答案为:140︒;(2)连接PC ,由三角形的外角性质,∠1 =∠PCD +∠CPD ,∠2 =∠PCE +∠CPE ,∴∠1+∠2 =∠PCD +∠CPD +∠PCE +∠CPE =∠DPE +∠C ,∠C = 90︒,∠DPE =∠α,∴∠1+∠2 = 90︒+∠α;(3)如图1,由三角形的外角性质,∠2 =∠C +∠1+∠α,∴∠2 -∠1 = 90︒+∠α;如图2,∠α= 0︒,∠2 =∠1+ 90︒;如图3,∠2 =∠1-∠α+∠C ,∴∠1-∠2 =∠α- 90︒.例题 5.如图 1,在 ∆ABC 中, BE 平分∠ABC ,CE 平分∠ACB ,若∠A = 82︒,则∠BEC = 131︒;若∠A =a︒,则∠BEC = .【探究】(1)如图2,在∆ABC 中,B D ,B E 三等分∠ABC ,CD ,CE 三等分∠ACB ,若∠A =a︒,则∠BEC = ;(2)如图3,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 和∠A 有怎样的关系?请说明理由;(3)如图4,O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.【解答】解: ∠A = 82︒,∴∠ABC +∠ACB = 180︒-∠A = 180︒- 82︒= 98︒, BE 平分∠ABC ,CE 平分∠ACB ,∴∠EBC =1∠ABC ,∠ECB =1∠ACB ,2 2∴∠EBC +∠ECB =1(∠ABC +∠ACB) =1⨯ 98︒= 49︒,2 2∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- 49︒= 131︒;由三角形的内角和定理得,∠ABC +∠ACB = 180︒-∠A = 180︒-a︒, BE 平分∠ABC ,CE 平分∠ACB ,∴∠EBC =1∠ABC ,∠ECB =1∠ACB ,2 2∴∠EBC +∠ECB =1(∠ABC +∠ACB) =1⨯ (180︒-a︒) = 90︒-1a︒,2 2 2∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- (90︒-1a︒) = 90︒+1a︒;2 2故答案为:131︒,90︒+1a︒;2探究:(1)由三角形的内角和定理得,∠ABC+∠ACB=180︒-∠A=180︒-a︒, BD ,BE 三等分∠ABC ,CD ,CE 三等分∠ACB ,∴∠EBC =2∠ABC ,∠ECB =2∠ACB ,3 3∴∠EBC +∠ECB =2(∠ABC +∠ACB) =2⨯ (180︒-a︒) = 120︒-2a︒,3 3 3∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- (120︒-2a︒) = 60︒+2a︒;3 3故答案为:60︒+2a︒;3(2)∠BOC =1∠A .2理由如下:由三角形的外角性质得,∠ACD =∠A +∠ABC ,∠OCD =∠BOC +∠OBC ,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,∴∠ABC = 2∠OBC ,∠ACD = 2∠OCD ,∴∠A +∠ABC = 2(∠BOC +∠OBC ) ,∴∠A = 2∠BOC ,∴∠BOC =1∠A ;2(3)∠BOC = 90︒-1∠A .2理由如下: O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,∴∠OBC =1(180︒-∠ABC) = 90︒-1∠ABC ,∠OCB =1(180︒-∠ACB) = 90︒-1∠ACB ,2 2 2 2在∆OBC 中,∠BOC =180︒-∠OBC -∠OCB =180︒- (90︒-1∠ABC) - (90︒-1∠ACB) =1(∠ABC +∠ACB) 2 2 2,由三角形的内角和定理得,∠ABC +∠ACB = 180︒-∠A ,∴∠BOC =1(180︒-∠A) = 90︒-1∠A .2 2【巩固练习】1.已知线段AB = 3cm ,BC =1cm ,则线段AC 的长度为( )A .一定是4cmB .一定是2cmC .一定是2cm 或4cmD .以上都不对【解答】选:D.2.如图,∠ABC =∠ACB ,AD ,BD ,CD 分别平分∆ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD / / B C ;②∠ACB = 2∠ADB ;③DB 平分∠ADC ;④∠ADC = 90︒-∠ABD ;⑤∠BDC =1∠BAC .其中正确的结论有( ) 2A.1 个B.2 个C.3 个D.4 个【解答】解: AD 平分∠EAC ,∴∠EAC = 2∠EAD ,∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD / / BC ,∴①正确;AD / / BC ,∴∠ADB =∠DBC ,BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB = 2∠DBC ,∴∠ACB = 2∠ADB ,∴②正确;BD 平分∠ABC ,∴∠ABD =∠DBC ,∠ADB =∠DBC ,∠ADC = 90︒-1∠ABC ,2∴∠ADB 不等于∠CDB ,∴③错误; AD 平分∠EAC ,CD 平分∠ACF ,∴∠DAC =1∠EAC ,∠DCA =1∠ACF ,2 2∠EAC =∠ACB +∠ACB ,∠ACF =∠ABC +∠BAC ,∠ABC +∠ACB +∠BAC = 180︒,∴∠ADC = 180︒- (∠DAC +∠ACD)= 180︒-1(∠EAC +∠ACF ) 2= 180︒-1(∠ABC +∠ACB +∠ABC +∠BAC) 2= 180︒-1(180︒+∠ABC) 2= 90︒-1∠ABC ,∴④正确;2∠BDC =∠DCF -∠DBF =1∠ACF -1∠ABC =1∠BAC ,∴⑤正确,2 2 2故选:D .3.如图,要使六边形木架(用六根木条钉成)不变形,至少要再钉上木条的根数是( )A .1B .2C .3D .4【解答】解:过六边形的一个顶点作对角线,有6 - 3 = 3 条对角线, 所以至少要钉上 3 根木条. 故选: C .4.如图,在 ∆ABC 中, ∠ABC 的平分线与 ∠ACD 的平分线交于点 A 1 , ∠A 1BC 的平分线与∠A CD 的平分线交于点 A ,依此类推 .已知∠A = α,则∠A 的度数为α(用含12n 、α的代数式表示).n2n【解答】解: ∆ABC 中, ∠A = ∠ACD - ∠ABC , A 1 是 ∠ABC 角平分与 ∠ACD 的平分线的交点, ∠A = α,∴∠A = ∠A CD - ∠A BC = 1 (∠ACD - ∠ABC ) = 1∠A ;1 1 12 2同理可得, ∠A = 1 ∠A = 1∠A ,22 1 22∠A = 1 ∠A = 1∠A , 32 2 23依此类推, ∠A = 1∠A ,即∠A = α .n 2n 故答案为: α.2nn2n5.如图,线段 AB 、CP 相交于点O ,连接 AD 、CB , ∠DAB 、∠BCD 的平分线 AP 、CP 相交于点 P ,并且为CD 、 AB 分别相交于 M 、N 两点,若∠D = 40︒ ,∠B = 30︒ ,则∠P 的度数为 35︒ .【解答】解:在∆AOD 中,∠AOD =180︒-∠OAD -∠D ,在∆BOC 中,∠BOC = 180︒-∠B -∠OCB ,∠AOD=∠BOC(对顶角相等),∴180︒-∠OAD -∠D = 180︒-∠B -∠OCB ,∴∠OAD +∠D =∠B +∠OCB ,∠D = 40︒,∠B = 30︒,∴∠OAD + 40︒=∠OCB + 30︒,∴∠OCB -∠OAD = 10︒,AP 、CP 分别是∠DAB 和∠BCD 的角平分线,∴∠1 =1∠OAD ,∠3 =1∠OCB ,2 2又 ∠1 +∠D =∠3 +∠P ,∴∠P =∠1 +∠D -∠3 =1(∠OAD -∠OCB) +∠D =1⨯ (-10︒) + 40︒= 35︒.2 2故答案为:35︒.6.在∆ABC 中,AB =AC ,AC 边上的中线BD 把三角形ABC 的周长分为9cm 和12cm 的两部分,求三角形各边的长.【解答】解:根据题意画出图形,如图,设等腰三角形的腰长AB =AC = 2x ,BC =y ,BD 是腰上的中线,∴AD =DC =x ,若AB +AD 的长为12,则2x +x = 12 ,解得x = 4cm ,则x +y = 9 ,即 4 +y = 9 ,解得y = 5cm ;若AB +AD 的长为9,则2x +x = 9 ,解得x = 3cm ,则x +y = 12 ,即3 +y = 12 ,解得y = 9cm ;所以等腰三角形的腰长为8 厘米,底边长为 5 厘米.或腰长为6cm ,底长为9cm .7.已知a,b,c 是△ABC 的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c 及x 的取值范围;(2)若x 是小于18 的偶数①求c 的长;②判断△ABC 的形状.【解答】解:(1)因为a=4,b=6,所以2<c<10.故周长x 的范围为12<x<20.(2)①因为周长为小于18 的偶数,所以x=16 或x=14.当x 为16 时,c=6;当x 为14 时,c=4.②当c=6 时,b=c,△ABC 为等腰三角形;当c=4 时,a=c,△ABC 为等腰三角形.综上,△ABC 是等腰三角形.8.如图,四边形ABCD 中,BE 、CF 分别是∠B 、∠D 的平分线.且∠A =∠C = 90︒,试猜想BE 与DF 有何位置关系?请说明理由.【解答】解:BE / / DF ,理由是: 四边形内角和等于360︒,∠A =∠C = 90︒,∴∠ABC +∠ADC = 180︒,BE 、CF 分别是∠B 、∠D 的平分线,∴∠1 =1∠ABC ,∠2 =1∠ADC ,2 2∴∠1 +∠2 = 90︒,在Rt∆DCF 中,∠3 +∠2 = 90︒,∴∠1 =∠3 ,∴BE / / DF .9.如图,∆ABC 中,三条内角平分线AD 、BE 、CF 相交于点O ,OG ⊥BC 于点G .(1)若∠ABC = 40︒,∠BAC = 60︒,求∠BOD 和∠COG 的度数.(2)若∠ABC =α,∠BAC =β,则∠BOD 和∠COG 相等吗?请说明理由.【解答】解:(1)∠BOD=∠OAB+∠OBA=1∠BAC +1∠ABC = 50︒2 2∠COG = 90︒-∠OCG= 90︒-1(180︒-∠ABC -∠BAC) 2= 90︒- 40︒= 50︒;(2)∠BOD 和∠COG相等. 理由: ∠BOD =∠OAB +∠OBA=1∠BAC +1∠ABC 2 2=1(α+β) 2=1(180︒-∠ACB) 2= 90︒-1∠ACB 2= 90︒-∠OCG =∠COG .10.如图1 ,在∆ABC 中,∠B = 90︒,分别作其内角∠ACB 与外角∠DAC 的平分线,且两条角平分线所在的直线交于点 E .(1)∠E = 45 ︒;(2)分别作∠EAB 与∠ECB 的平分线,且两条角平分线交于点F .①依题意在图1 中补全图形;②求∠AFC 的度数;(3)在(2)的条件下,射线FM 在∠AFC 的内部且∠AFM =1∠AFC ,设3EC 与AB 的交点为H ,射线HN 在∠AHC 的内部且∠AHN =1∠AHC ,射线3HN 与 FM 交于点 P ,若∠FAH ,∠FPH 和∠FCH 满足的数量关系为∠FCH =m∠FAH +n∠FPH ,请直接写出m ,n 的值.【解答】解:(1)如图 1 , EA平分∠DAC ,EC 平分∠ACB ,∴∠CAF =1∠DAC ,∠ACE =1∠ACB ,2 2设∠CAF =x ,∠ACE =y ,∠B = 90︒,∴∠ACB +∠BAC = 90︒,∴ 2 y +180 - 2x = 90,x -y = 45,∠CAF =∠E +∠ACE ,∴∠E =∠CAF -∠ACE =x -y = 45︒,故答案为: 45 ;(2)①如图 2 所示,②如图 2 , CF 平分∠ECB ,∴∠ECF = 1 y , 2∠E + ∠EAF = ∠F + ∠ECF ,∴ 45︒ + ∠EAF = ∠F + 1 y ①, 2同理可得: ∠E + ∠EAB = ∠B + ∠ECB , ∴ 45︒ + 2∠EAF = 90︒ + y ,∴∠EAF = 45 + y ②,2把②代入①得: 45︒ + 45 + y = ∠F + 1 y ,2 2∴∠F = 67.5︒,即∠AFC = 67.5︒ ;(3) 如图 3 ,设∠FAH =α,AF 平分∠EAB ,∴∠FAH = ∠EAF =α,∠AFM = 1∠AFC = 1⨯ 67.5︒ = 22.5︒ ,3 3 ∠E + ∠EAF = ∠AFC + ∠FCH ,∴45 +α= 67.5 + ∠FCH ,∴∠FCH =α- 22.5①,∠AHN = 1 ∠AHC = 1 (∠B + ∠BCH ) = 1 (90 + 2∠FCH ) = 30 + 2∠FCH , 3 3 3 3 ∠FAH + ∠AFM = ∠AHN + ∠FPH ,∴α+ 22.5 = 30 + 2∠FCH + ∠FPH ,②3 把①代入②得: ∠FPH = α+ 22.5 ,3∠FCH = m ∠FAH+ n ∠FPH ,α- 22.5 = m α+ n α+ 22.5 ,3解得: m = 2 , n = -3.。
与三角形有关的线段(限时满分培优测试)-八年级数学上册尖子生培优必刷题【人教版】(原卷版)
【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题【人教版】专题11.1与三角形有关的线段(限时满分培优测试)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分100分,建议时间:30分钟.试题共23题,其中选择10道、填空6道、解答7道.试题包含基础题、易错题、培优题、压轴题、创新题等类型,没有标记的为基础过关性题目.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023•长沙)下列长度的三条线段,能组成三角形的是()A.1,3,4B.2,2,7C.4,5,7D.3,3,62.(2023春•伊川县期末)如图,在△ABC中,AB边上的高是()A.AD B.BE C.CF D.BF3.(2023春•太康县期末)在△ABC中,AB=4cm,AC=6cm,若BC的长为整数,则BC的长可能是()A.13cm B.8cm C.2cm D.1cm4.(2023春•亭湖区期中)如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=10米,那么A,B间的距离不可能是()A.6米B.8.7米C.18米D.27米5.(2022秋•开封期末)如图,在上网课时把平板放在三角形支架上用到的数学道理是()A.三角形的稳定性B.对顶角相等C.垂线段最短D.两点之间线段最短6.(2023春•文山市期末)等腰三角形有一个角是80°,则这个等腰三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7.(易错题)(2022秋•溧水区期末)如图所示,从点A到点G,下列路径最短的是()A.A→B→F→G B.A→C→F→G C.A→D→F→G D.A→E→F→G8.(易错题)(2023春•衡山县期中)若△ABC边为a、b、c,则|a﹣b﹣c|+|b+c﹣a|﹣|c﹣a﹣b|=()A.﹣3a﹣b﹣c B.a+3b+c C.a+b﹣3c D.﹣3a+b+3c9.(易错题)(2023春•高明区月考)下列说法正确的个数有()①三角形的角平分线、中线和高都在三角形内;②直角三角形只有一条高;③三角形的高至少有一条在三角形内;④三角形的高是直线,角平分线是射线,中线是线段.A.1个B.2个C.3个D.4个10.(培优题)(2023•兴宁区校级模拟)如图,在△ABC中,D为AC的中点,连接DB,取DB的中点F,连接AF,若△ADF的面积是1,则△ABC的面积是()A.2B.4C.6D.8二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2023春•高港区期中)已知△ABC的两条边a,b的长分别为1.5和7.5,则使△ABC周长最大时,第三边c的正整数值是.12.(2023春•徐汇区校级期中)三角形三边长分别为1,1﹣a,9,则a的取值范围是.13.(易错题)(2022秋•青神县期末)如图,AD是△ABC的中线,已知△ABD的周长为30cm,AB比AC 长4cm,则△ACD的周长为.14.(2022秋•白云区期末)如图,在△ABC中,如果过点B作PB⊥BC交边AC于点P,过点C作CQ⊥AB交AB的延长线于点Q,那么图中线段是△ABC的一条高.15.(培优题)(2023春•碑林区校级期中)如图,AD为△ABC的中线,△ABD的周长为23,△ACD的周长为18,AB>AC,则AB﹣AC为.16.(培优题)(2023春•晋中期末)如图,AD是△ABC的中线,E为线段AD的中点,过点E作EF⊥BC 于点F.若S△ABC=16,BD=3,则EF长为.三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2021秋•会泽县校级月考)(1)下列图形中具有稳定性是;(只填图形序号)(2)对不具有稳定性的图形,请适当地添加线段,使之具有稳定性.18.(2023春•惠东县校级期中)如图,AD,BE分别是△ABC的高,AC=5,BC=12,BE=9,求AD的长.19.(易错题)(2022秋•南阳期末)已知△ABC(如图),按下列要求画图:(1)△ABC的中线AD;(2)△ABD的角平分线DM;(3)△ACD的高线CN;(4)若C△ADC﹣C△ADB=3,(C表示周长)且AB=4,则AC=.20.(易错题)(2022春•中宁县期中)如图已知:AD是△ABC的中线,AB=7cm,AD=5cm,△ABD的周长是18cm,求BC的长.21.(培优题)(2021秋•威县期末)在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为10,求△BCD的周长.22.(培优题)(2023春•襄州区月考)已知a,b,c满足|a﹣2√2|+√b−5+(c−3√2)2=0.(1)求a,b,c的值;(2)以a,b,c为边能否组成一个三角形?若能,求出三角形的周长;若不能,请说明理由.23.(培优题)(2023春•丰泽区校级期中)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.。
上海复旦附中八年级数学上册第十一章【三角形】知识点总结(培优专题)
一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°3.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE ∠的度数是( )A .50°B .25°C .30°D .35°4.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°5.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .126.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( )A.不变B.减少C.增加D.不能确定7.如图,△ABC中AC边上的高是哪条垂线段.()A.AE B.CD C.BF D.AF8.正十边形每个外角等于()A.36°B.72°C.108°D.150°9.如图,小明从点A出发沿直线前进9米到达点,B向左转45后又沿直线前进9米到达点C,再向左转45后沿直线前进9米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.72米B.80米C.100米D.64米∆的边AC上的高是()10.如图所示,ABCA.线段AE B.线段BA C.线段BD D.线段DA∠=,则x的度数可11.如图,在ABC中,70∠=,D为BC上的一点,若ADC xB能为()A .30°B .60°C .70°D .80°二、填空题12.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.13.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.14.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;15.若等腰三角形两边的长分别为3cm 和6cm ,则此三角形的周长是______________cm . 16.如果三角形两条边分别为3和5,则周长L 的取值范围是________17.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.18.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD=3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.19.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.20.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.21.若线段AM ,AN 分别是ABC ∆的高线和中线,则线段AM ,AN 的大小关系是AM _______AN (用“≤”,“≥”或“=”填空). 三、解答题22.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.23.如图,A 、O 、B 三点在同一直线上,OE ,OF 分别是∠BOC 与∠AOC 的平分线.求:(1)当∠BOC=30°时,∠EOF 的度数;(2)当∠BOC=60°时,∠EOF 等于多少度?(3)当∠BOC=n°时,∠EOF 等于多少度?(4)观察图形特点,你能发现什么规律?24.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)25.如图,在ABC 中,60,80,BAC C AD ︒︒∠=∠=是ABC 的角平分线,点E 是边AC 上一点,且12ADE B ∠=∠,求CDE ∠的度数.一、选择题1.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( ) A .20cm B .7cm C .5cm D .2cm2.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒3.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°4.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 5.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5 6.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒7.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 8.下列长度的三条线段能组成三角形的是( )A .3,3,4B .7,4,2C .3,4,8D .2,3,5 9.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .010.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D . 11.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤二、填空题12.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).13.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 14.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 15.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.16.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.17.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.18.若线段AM ,AN 分别是ABC ∆的高线和中线,则线段AM ,AN 的大小关系是AM _______AN (用“≤”,“≥”或“=”填空). 19.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.20.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.21.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.三、解答题22.如图,在ABC 中,90ACB ∠=︒,29A ∠=︒,CD 是边AB 上的高,E 是边AB 延长线上一点.求:(1)CBE ∠的度数;(2)BCD ∠的度数.23.如图,四边形ABCD 中,ABC ∠和BCD ∠的平分线交于点O .(1)如果130A ∠=︒,110D ∠=︒,求BOC ∠的度数;(2)请直接写出BOC ∠与A D ∠+∠的数量关系.24.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)25.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西65°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村观测A 、B 两村的视角ACB ∠的度数.一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒ 2.一个多边形的外角和是360°,这个多边形是( )A .四边形B .五边形C .六边形D .不确定 3.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是( ) A .5边形 B .6边形 C .7边形 D .8边形 4.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5 5.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .86.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,4 7.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2m B .3m C .5m D .7m8.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30°9.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 10.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤ 11.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题12.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.13.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________14.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.15.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 16.如果三角形两条边分别为3和5,则周长L 的取值范围是________17.如果点G 是ABC ∆的重心,6AG =,那么BC 边上的中线长为_______________________.18.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.19.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.20.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.21.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题22.如图,在ABC ∆中,48,A CE ∠=︒是ACB ∠的平分线, B C D 、、在同一直线上,,40.BEC BFD D ∠=∠∠=︒(1)求BCE ∠的度数;(2)求B 的度数. 23.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?24.已知一个多边形的内角和比它的外角和的3倍还多180度.(1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.25.平面内,四条线段AB,BC,CD,DA首尾顺次连接,∠ABC=24°,∠ADC=42°.(1)∠BAD和∠BCD的角平分线交于点M(如图1),求∠AMC的大小.(2)点E在BA的延长线上,∠DAE的平分线和∠BCD平分线交于点N(如图2),求∠ANC.。
七年级数学下册第11章 《 三角形 》培优测试题(含答案详解)
七年级数学下册第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2=.13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC=.14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A=度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B=.18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF ∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE=度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE=;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A=度,∠P=度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1.C.2.A.3.D.4.C.5.B.6.A.7.C.8.C.9.B.10.A.二.填空题11.1<a<4.12.101°.13.115°.14.10.15.60.16.10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为:y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。
培优专题1三角形及其有关概念(含答案)
1三角形及其有关概念【知识精读】1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的角之和等于180°(3)三角形的外角大于任何一个和它不相邻的角,等于和它不相邻的两个角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4.S S ABE ∆⋅ 基础。
5. 三角形边角关系、性质的应用 【分类解析】例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的围是( )A. 1020︒<<︒∠BB. 2030︒<<︒∠BC. 3045︒<<︒∠BD. 4560︒<<︒∠B分析:因为∆ABC 为锐角三角形,所以090︒<<︒∠B 又∠C =2∠B ,∴︒<<︒0290∠B ∴︒<<︒045∠B又∵∠A 为锐角,()∴=︒-+∠∠∠A B C 180为锐角 ∴+>︒∠∠B C 90∴>︒390∠B ,即∠B >︒30 ∴︒<<︒3045∠B ,故选择C 。
例2. 选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个角的度数,从而可判断三角形的形状。
解:∵三角形的一个外角等于160° ∴另两个外角的和等于200° 设这两个外角的度数为2x ,3x ∴+=23200x x 解得:x =40 2803120x x ==, 与80°相邻的角为100° ∴这个三角形为钝角三角形 应选C例3. 如图,已知:在∆ABC 中,AB AC ≤12,求证:∠∠C B <12。
八年级上数学培优试题及答案
第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 …专题二根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-25. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x、8,且x是不等式22x+>123x--的正整数解,试求第三边x的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.解:填表如下:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 7 (2015)解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC 且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C 解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,∴∠DCB=12∠ACB=34°.∵CE是AB边上的高,∴∠ECB=90°-∠B=90°-72°=18°.∴∠DCE=34°-18°=16°.(2)∠DCE=12(∠B-∠A).6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.证明:∠BDC+∠ACD+∠A+∠ABD=∠3+∠2+∠6+∠5+∠4+∠1=(∠3+∠2+∠1)+(∠6+∠5+∠4)=180°+180°=360°.11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.第十二章全等三角形12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△A BE≌△CDF.2.如图,在△AB C中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL ”). 【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等. 3.“HL ”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等. 【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角; (2)对应顶点所对应的边是对应边; (3)公共边(角)是对应边(角); (4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC ≌△DEF , 说明A 与D ,B 与E ,C 与F 是对应点,则∠ABC 与∠DEF 是对应角,边AC 与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠AB E=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒(2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,7654321NME D B CA∵△AEB 由△ADC 旋转而得, ∴△AEB ≌△ADC .∴∠3=∠1,∠6=∠C .∵AB =AC ,AD ⊥BC ,∴∠2=∠1,∠7=∠C .∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM =∠ABN . 又∵AB =AB ,∴△AMB ≌△ANB .∴AM =AN .6.证明:∵△ABC 和△EDC 是等边三角形, ∴∠BCA =∠DCE =60°. ∴∠BCA -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE . 在△DBC 和△EAC 中,BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS ). ∴∠DBC =∠EAC . 又∵∠DBC =∠ACB =60°, ∴∠ACB =∠EAC .∴AE ∥BC .7.B 解析:∵滑梯、墙、地面正好构成直角三角形,又∵BC=EF ,AC=DF ,∴Rt △ABC ≌Rt △DEF .∴∠ABC=∠DEF ,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°. 故选B .8.解:在△ABC 和△CED 中,AC=CD ,∠ACB=∠ECD ,EC=BC ,∴△ABC ≌△CED .∴AB=ED .即量出DE 的长,就是A 、B 两端的距离. 9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACBAC ACCAB CAB=⎧⎪=⎨⎪=⎩∠∠′,,∠∠′,∴△ABC≌△AB′C(ASA).∴AB′=AB.第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B 点、C 点关于DE 对称,有∠DBE=∠BCD ,∠ABC=2∠BCD . 且已知∠A=90°,故∠ABC+∠BCD=90°. 故∠ABC=60°,∠C=30°.6.解:(1)对称点有A 和A',B 和B',C 和C'. (2)连接A 、A′,直线m 是线段AA′的垂直平分线.(3)延长线段AC 与A′C′,它们的交点在直线m 上,其他对应线段(或其延长线)的交点也在直线m 上,即若两线段关于直线m 对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt △FDB 中,∵∠F =30°,∴∠B =60°. 在Rt △ABC 中,∵∠ACB =90°,∠ABC =60°, ∴∠A =30°.在Rt △AED 中,∵∠A =30°, DE =1,∴AE =2.连接EB. ∵DE 是AB 的垂直平分线,∴EB =AE =2. ∴∠EBD =∠A =30°.∵∠ABC =60°,∴∠EBC =30°.∵∠F =30°,∴EF =EB =2.故选B .ABFCED8.8 解析:∵DF 是AB 的垂直平分线,∴DB=DA .∵EG 是AC 的垂直平分线,∴EC=EA . ∵BC=8,∴△ADE 的周长=DA+EA+DE=DB+DE+EC=BC=8. 9.解:AB+BD=DE .证明:∵AD ⊥BC ,BD=DC ,∴AB=AC . ∵点C 在AE 的垂直平分线上, ∴AC=CE . ∴AB=CE .∴AB+BD=CE+DC=DE .10.C 解析:关于y 轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5. 解得1.5<a <2.5,又因为a 必须为整数,∴a=2.∴点P 2(-1,-1). ∴P 1点的坐标是(-1,1).第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x =C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015; (2)(-19)2015×811007.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________.11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:n m n m aa a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m n mn a a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m n a a a-÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”. 3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C .2.C 解析:3x ·2235x x x +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4.(2)原式=(-19)2015×92014=(19×9)2014×(-19)=-19.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B .8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b , ∵不含x 2项, ∴3b -2=0,得b=23. ∴(3x 2-2x+1)(x+23) =3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23. 9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480.10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
《易错题》初中八年级数学上册第十一章《三角形》知识点复习(专题培优)
一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质( )A .三角形两边之和大于第三边B .三角形具有稳定性C .三角形的内角和是180D .直角三角形两个锐角互余B解析:B【分析】根据三角形的稳定性可以解决.【详解】 因为三角形具有稳定性,手机支架与桌面形成了一个三角形,所以是利用了三角形的稳定性.故选:B .【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .4C 解析:C【分析】根据从一个n 边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C .【点睛】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n 边形一个顶点出发,可以连的对角线的条数是n-3.3.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°A解析:A【分析】 先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.4.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是( )A .7B .8C .9D .10D解析:D【分析】设多边形有n 条边,则内角和为180°(n ﹣2),再根据内角和等于外角和4倍可得方程180(n ﹣2)=360×4,再解方程即可.【详解】解:设多边形有n 条边,由题意得:180(n ﹣2)=360×4,解得:n =10,故选:D .【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n ﹣2). 5.如图,线段BE 是ABC 的高的是( )A .B .C .D . D解析:D【分析】根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.【详解】A 选项中,BE ⊥BC ,BE 与AC 不垂直,此选项错误;B 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;C 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;D 选项中,BE ⊥AC ,∴线段BE 是△ABC 的高,此选项正确.故选:D .【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.6.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°A解析:A【分析】 利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠, ∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.7.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( )A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A 选项错误;∵7+8=15,∴B 选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D 选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.8.下列长度的三条线段,能组成三角形的是( )A .3,5,6B .3,2,1C .2,2,4D .3,6,10A解析:A【分析】 根据三角形三边长关系,逐一判断选项,即可得到答案.【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意, 故选A【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.9.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .40D解析:D【分析】 由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.10.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b =B .180a b =+°C .180b a =+︒D .360b a =+︒A解析:A【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】∵四边形的内角和等于a,∴a=(4-2)•180°=360°;∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.二、填空题11.如图,BF平分∠ABD,CE平分∠ACD,BF与CE交于G,若∠=︒∠=︒,则∠A的度数为_________.BDC BGC130,9050°【分析】连接BC根据三角形内角和定理可求得∠DBC+∠DCB的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB的度数即可求得∠A的度数【详解】解:连接BC∵∠BDC=130°解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD +∠GCD =(∠GBC +∠GCB )−(∠DBC +∠DCB )=40°,∵BF 平分∠ABD ,CE 平分∠ACD ,∴∠ABD +∠ACD =2∠GBD +2∠GCD =80°,∴∠ABC +∠ACB =(∠ABD +∠ACD )+(∠DBC +∠DCB )=130°,∴∠A =180°−(∠ABC +∠ACB )=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.12.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC 的三边长分别是abc ∴必须满足两边之和大于第三边两边的差小解析:3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.13.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.【分析】根据翻折变换的性质得出∠ACD=∠BCD∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC再利用平角的定义即可得出答案【详解】解:∵将Rt△ABC沿CD折叠使点B落在AC边解析:40【分析】根据翻折变换的性质得出∠ACD=∠BCD,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC,再利用平角的定义,即可得出答案.【详解】解:∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC和∠B′DC的度数是解题关键.14.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条.2【分析】多边形的每一个内角都是108°则每个外角是72°多边形的外角和是360°这个多边形的每个外角相等因而用360°除以外角的度数就得到外角的个数外角的个数就是多边形的边数再根据从n边形的一个顶解析:2【分析】多边形的每一个内角都是108°,则每个外角是72°.多边形的外角和是360°,这个多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.再根据从n边形的一个顶点出发可引出(n−3)条对角线,连接这个点与其余各顶点,可以把一个多边形分割成(n−2)个三角形,依此作答.【详解】根据题意得:360°÷(180°−108°)=360°÷72°=5,那么它的边数是五,从它的一个顶点出发的对角线共有5−3=2条,故答案为:2.【点睛】此题考查了多边形内角与外角,根据多边形的外角和求多边形的边数是常用的一种方法,需要熟记.另外需要记住从n 边形的一个顶点出发可引出(n−3)条对角线,把这个多边形分割成(n−2)个三角形.15.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.【分析】先根据三角形的内角和求出∠PBC+∠PCB=故可得到∠ABC+∠ACB=即可得出答案【详解】在△BPC 中∠BPC=∴∠PBC+∠PCB=∵P 是三角形三条角平分线的交点∴∠ABC=2∠PBC ∠ 解析:20︒【分析】先根据三角形的内角和求出∠PBC+∠PCB=80︒,故可得到∠ABC+∠ACB=160︒,即可得出答案.【详解】在△BPC 中,∠BPC=100︒,∴∠PBC+∠PCB=80︒,∵P 是三角形三条角平分线的交点,∴∠ABC=2∠PBC ,∠ACB=2∠PCB ,∴∠ABC+∠ACB=2∠PBC+2∠PCB=160︒,∴∠BAC=180()20ABC ACB ︒-∠+∠=︒,故答案为:20︒.【点睛】此题考查三角形的内角和定理,角平分线的有关计算,熟练应用定理解决问题是解题的关键.16.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA 然后再根据角平分线的定义求得∠EAD+∠EDA 最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD 中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA ,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD 中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD ,∠EDA=12∠CAD ∴∠EAD+∠EDA=12(∠BAD+∠CDA )=105° ∴∠AED=180°-(∠EAD+∠EDA )=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.17.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB ⊥AE ,则∠BFC=75°;②图 2 中 BD 过点C ,则有∠DAE+∠DCE=45°;③图 3中∠DAE+∠DFC 等于 135°;④保持重合的顶点不变,改变三角板BAD 的摆放位置,使得D 在边AC 上,则∠BAE=105°.①②③④【分析】由可得:再结合:从而可求解于是可得可判断①;由可得:再利用:求解可判断②;由再利用角的和差可得:可判断③;由图4可得:可判断④【详解】解:如图1故①正确;如图2故②正确;如图3故③正解析:①②③④.【分析】由,AB AE ⊥可得:90BAC CAD DAE ∠+∠+∠=︒,再结合:2105BAC CAD DAE ∠+∠+∠=︒,从而可求解CAD ∠,于是可得BFC ∠,可判断①;由90ADB ,∠=︒可得:90DAC ACD ∠+∠=︒,再利用:180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,求解DAE DCE ∠+∠,可判断②;由,DFC D DAF ∠=∠+∠再利用角的和差可得:135DFC DAE D CAE ∠+∠=∠+∠=︒,可判断③;由图4可得:105BAE BAC CAE ∠=∠+∠=︒,可判断④. 【详解】解:如图1,,AB AE ⊥90BAC CAD DAE ∴∠+∠+∠=︒,60BAD BAC CAD ∠=∠+∠=︒,45CAE CAD DAE ∠=∠+∠=︒,2105BAC CAD DAE ∴∠+∠+∠=︒,15CAD ∴∠=︒,90ADB ∠=︒,901575BFC AFD ∴∠=∠=︒-︒=︒,故①正确; 如图2,90ADB ∠=︒,90DAC ACD ∴∠+∠=︒,180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,90ACE ∠=︒, 180CAD DAE ACD DCE E ∴∠+∠+∠+∠+∠=︒,()()180180904545DAE DCE CAD ACD E ∴∠+∠=︒-∠+∠+∠=︒-︒+︒=︒, 故②正确;如图3,,DFC D DAF ∠=∠+∠9045135DFC DAE D DAF DAE D CAE ∴∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故③正确;如图4,6045BAD CAE ∠=︒∠=︒,,6045105BAE ∴∠=︒+︒=︒,故④正确.故答案为:①②③④.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角的和差,掌握以上知识是解题的关键.18.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,∠=︒∠=︒,BPD PBA30,20∴∠=∠+∠=︒,150BPD PBAAB CD,//CDP∴∠=∠=︒;150(2)如图,点P在AB与CD的中间,延长BP,交CD于点E,∠=︒,AB CD PBA//,20∴∠=∠=︒,BED PBA20∠=︒,BPD30∴∠=∠-∠=︒;CDP BPD BED10(3)如图,点P在CD的下方,∠=︒,//,20AB CD PBA∴∠=∠=︒,120PBA30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.19.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°.故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.20.如图,P为正五边形ABCDE的边AE上一点,过点P作PQ//BC,交DE于点Q,则∠EPQ的度数为_____.36°【分析】连接AD由正五边形的性质可得∠B=∠BAE=∠E∠EDC=∠C=108°AE=DE由等腰三角形的性质可求∠AED=∠EDA=36°可证AD∥PQ由平行线的性质可求解【详解】解:连接AD解析:36°【分析】连接AD,由正五边形的性质可得∠B=∠BAE=∠E∠EDC=∠C=108°,AE=DE,由等腰三角形的性质可求∠AED=∠EDA=36°,可证AD∥PQ,由平行线的性质可求解.【详解】解:连接AD,∵五边形ABCDE是正五边形,∴∠B=∠BAE=∠E=∠EDC=∠C=108°,AE=DE,∴∠AED=∠EDA=36°,∴∠BAD=72°,∵∠BAD+∠ABC=180°,∴BC∥AD,∵PQ∥BC,∴AD∥PQ,∴∠EPQ=∠EAD=36°,故答案为:36°.【点睛】本题考查了多边形的内角和外角,等腰三角形的性质,平行线的性质,灵活运用这些性质解决问题是本题的关键.三、解答题21.如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E,∠ABC=∠ACE.(1)求证:AB//CE;(2)猜想:若∠A=50°,求∠E的度数.解析:(1)见解析;(2)25°【分析】(1)根据角平分线的定义得到∠ECD=∠ACE,得到∠ABC=∠ECD,根据平行线的判定定理证明结论;(2)根据三角形的外角性质、角平分线的定义计算,得到答案.【详解】(1)证明:∵CE平分∠ACD,∴∠ECD=∠ACE,∵∠ABC=∠ACE,∴∠ABC=∠ECD,∴AB∥CE;(2)∵∠ACD是△ABC的一个外角,∴∠ACD=∠ABC+∠A,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠ECD﹣∠EBC=12∠ACD﹣12∠ABC=12∠A=25°.【点睛】本题考查的是三角形的外角性质及平行线的判定、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.22.如图,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1.(1)∵BA1、CA1是∠ABC与∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=,∠ACD﹣∠ABD=∠,∴∠A1=.(2)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230°,求∠F的度数.(3)如图3,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1,若E为BA延长线上一动点,连接EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.解析:(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.23.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2,∠B<∠C,则DAE、∠B,∠C之间的数量关系为___________;(3)如图3,延长AC到点F,∠CAE和∠BCF的角平分线交于点G,求∠G的度数.解析:(1)10°;(2)∠DAE=12(∠C−∠B);(3)45°.【分析】(1)根据三角形的内角和定理可求得∠BAC=80°,由角平分线的定义可得∠CAD的度数,利用三角形的高线可求∠CAE得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)设∠ACB=α,根据角平分线的定义得∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC=40°,∵AE 是△ABC 的高,∴∠AEC =90°,∵∠C =60°,∴∠CAE =90°−60°=30°,∴∠DAE =∠CAD−∠CAE =10°;(2)∵∠BAC +∠B +∠C =180°,∴∠BAC =180°−∠B−∠C ,∵AD 平分∠BAC ,∴∠CAD =∠BAD =12∠BAC , ∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°−∠C ,∴∠DAE =∠CAD−∠CAE =12∠BAC−(90°−∠C )=12(180°−∠B−∠C )−90°+∠C =12∠C−12∠B , 即∠DAE =12(∠C−∠B). 故答案为:∠DAE =12(∠C−∠B). (3)设∠ACB =α,∵AE ⊥BC ,∴∠EAC =90°−α,∠BCF =180°−α,∵∠CAE 和∠BCF 的角平分线交于点G ,∴∠CAG =12∠EAC =12(90°−α)=45°−12α, ∠FCG =12∠BCF =12(180°−α)=90°−12α, ∵∠FCG =∠G +∠CAG ,∴∠G =∠FCG −∠CAG =90°−12α−(45°−12α)=45°. 【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.24.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.25.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .解析:(1)35°;(2)90°-12α;(3)12β 【分析】(1)由角平分线的定义得到∠DCG=12∠ACG ,∠DBC=12∠ABC ,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC ,∠CBE=12∠CBF ,于是得到∠DBE=90°,由(1)知∠D=12∠A ,根据三角形的内角和得到∠E=90°-12α; (3)根据角平分线的定义可得,∠ABD=12∠ABC ,∠DAM=12∠MAC ,再利用三角形外角的性质可求解.【详解】解:(1)∵CD 平分∠ACG ,BD 平分∠ABC ,∴∠DCG=12∠ACG ,∠DBC=12∠ABC ,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=12∠A=35°;(2)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=12∠ABC,∠CBE=12∠CBF,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.【点睛】本题主要考查三角形的角平分线,三角形外角的性质,灵活运用三角形外角的性质是解题的关键.26.一个多边形的内角和比它的外角和多720°,求该多边形的边数.解析:8【分析】先根据一个多边形的内角和比它的外角和多720°得出其内角和度数,再设这个多边形的边数为n ,根据内角和公式建立关于n 的方程,解之即可.【详解】解:∵一个多边形的内角和比它的外角和多720°,∴这个多边形的内角和为360°+720°=1080°,设这个多边形的边数为n ,则(n ﹣2)•180°=1080°,解得n =8,答:该多边形的边数为8,故答案为:8.【点睛】本题考查了多边形的内角与外角,解题的关键是掌握多边形的外角和为360°、多边形内角和定理:(n-2)•180° (n≥3且n 为整数).27.题情景:在三角形纸片内部给定-些点,满足这些点连同三角形三个顶点没有三个点在一条直线上,以这些点为顶点,将纸片剪成-些小三角形纸片,一共能得到几个小三角形?问题解决:甲同学绘制了如下三个图,分别在三角形内部取1个点、2个点,如下图所示:继续探究:在三角形内部取三个点,画出分割的图形,并经过观察计数完成表格: 内部点的个数1 2 3 n 得到三角形个数 3 5成表格:内部点的个数1 2 3 n 得到三角形个数n ,得到三角形的个数是x ,请直接写出x 与m 、n 的关系:______________.解析:继续探究:图见解析,7,21n ;拓展联系:4,6,8,22n ;概括提升:22=+-x n m【分析】继续探究:由题意得出这些三角形的个数是从3开始的连续奇数,据此可得结论;拓展联系:分别画出图形,得到相关数据,总结规律即可;概括提升:根据n边形的内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成(2m+n-2)个互不重叠的小三角形,据此可得.【详解】解:继续探究:如图,在三角形纸片内部给定1个点,得到3个三角形; 在三角形纸片内部给定2个点,得到5个三角形; 在三角形纸片内部给定3个点,得到7个三角形; 在三角形纸片内部给定n个点,得到(2n+1)个三角形;故填表得:内部点的个数123n得到三角形个数3572n+1拓展联系:如图:在四边形纸片内部给定1个点,得到4个三角形; 在四边形纸片内部给定2个点,得到6个三角形; 在四边形纸片内部给定3个点,得到8个三角形; 在四边形纸片内部给定n个点,得到(2n+2)个三角形;填表如下:内部点的个数123n得到三角形个数468(2n+2)(3)设纸片的边数为m,内部给定1个点,得到m个三角形, 内部给定2个点,得到(m+2)个三角形, 内部给定3个点,得到(m+2×2)个三角形, 内部给定n个点,得到(2n+m-2)个三角形,∴x=2n+n-2.【点睛】此题考查图形的变化规律性;得到三角形的个数与三角形内点的个数的变化规律是解决本题的关键.28.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.解析:∠DAC=20°,∠ADC=80°【分析】设∠1=∠2=x ,再用x 表示出∠3的度数,由三角形内角和定理得出∠2+∠4的度数,进而可得出x 的值,由此得出结论.【详解】设∠1=∠2=x ,则∠3=∠4=2x ,∵∠BAC=60°,∴∠2+∠4=180°-60°=120°,即x+2x=120°,∴x=40°,即∠ADC=80°,∴∠DAC=∠BAC-∠1=60°-40°=20°.【点睛】本题考查的是三角形内角和外角的相关知识,熟知三角形内角和是180°是解答此题的关键.。
三角形培优训练100题集锦(一)2024
三角形培优训练100题集锦(一)【引言概述】三角形是数学中的一个重要几何概念,对于学生的数学培优训练具有重要意义。
本文整理了一份包含一百道三角形相关题目的训练集锦,旨在帮助学生系统地掌握三角形的性质、定理和计算方法,提高解题能力。
以下将从五个大点来阐述这份题集的内容。
【大点1:三角形基础知识】1. 三角形的定义及分类2. 三角形内角和的性质3. 三角形边长关系:三角不等式定理4. 三角形的周长和面积计算公式5. 三角形的特殊点:重心、垂心、外心、内心、费马点等【大点2:三角形的相似与全等】1. 相似三角形的性质2. 判定三角形相似的方法3. 三角形的全等的条件4. 利用相似三角形或全等三角形解题的方法5. 实际问题中的应用:测量、定位、相似比例等【大点3:三角形的角与线段关系】1. 角的平分线与垂直平分线的特点2. 三角形的角平分线定理3. 三垂线定理与垂心定理4. 外角与内角的关系5. 角与弧的关系及其应用:圆周角、弦切角、弧度制等【大点4:三角形的特殊性质与定理】1. 等腰三角形的性质与判定2. 直角三角形的性质与判定3. 正三角形的性质及计算4. 等边三角形的性质及计算5. 锐角三角形和钝角三角形的性质及判定【大点5:三角形的应用问题】1. 三角形的角度测量与边长测量2. 三角形在建筑工程中的应用:测量高度、角度与距离3. 三角形在地理学中的应用:测量地底深度、地图测量等4. 三角形在航空航天领域的应用:导航、角度计算等5. 三角形在日常生活中的应用:地理问题、旅行导航、地震角度计算等【总结】通过对本文中所整理的三角形培优训练100题集锦的学习,同学们将能够掌握三角形的基础知识,灵活运用三角形的相似与全等等性质和定理,熟练解决三角形的角与线段关系问题,理解各种特殊三角形的性质,并能够应用三角形的知识解决实际问题。
这将为学生的数学学习和思维能力的提高提供坚实的基础。
高考数学总复习培优练习:解三角形(含答案)
高考数学总复习培优练习:解三角形(含答案)1.解三角形中的要素例1:ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若2c 6b ,60B =,则C =_____.【答案】30C =【解析】(1)由已知B ,b ,c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=, 代入可解得:1sin 2C =.由c b <可得:60C B <=,所以30C =.2.恒等式背景例2:已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边, 且有cos 3sin 0a C a C b c --=. (1)求A ;(2)若2a =,且ABC △3b ,c . 【答案】(1)3π;(2)2,2. 【解析】(1)cos 3sin 0a C a C b c --= sin cos 3sin sin sin sin 0A C A C B C ⇒--=()sin cos 3sin sin sin sin 0A C A C A C C ⇒-+-=sin cos 3sin sin sin cos sin cos sin 0A C A C A C C A C ⇒---=,13cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭∴66A ππ-=或566A ππ-=(舍),∴3A π=; (2)1sin 342ABC S bc A bc ==△,222222cos 4a b c bc A b c bc =+-⇒=+-,∴22224844b c bc b c bc bc ⎧⎧+-=+=⇒⎨⎨==⎩⎩,可解得22b c =⎧⎨=⎩.一、单选题1.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( ) A 62+ B 62- C 6D 2 【答案】A【解析】由正弦定理sin sin a bA B =可得1sinsin 42sin sin 6a Bb A π⨯===π,且()()62cos cos cos cos sin sin C A B A B A B -=-+=--= 由余弦定理可得:2262622cos 122124c a b ab C -+=+-++⨯⨯⨯.故选A . 2.在ABC △中,三边长7AB =,5BC =,6AC =,则AB BC ⋅等于( ) A .19 B .19-C .18D .18-【答案】B【解析】∵三边长7AB =,5BC =,6AC =,∴22222275619cos 227535AB BC AC B AB BC +-+-===⋅⨯⨯, ()19cos 751935AB BC AB BC B ⎛⎫⋅=⋅π-=⨯⨯-=- ⎪⎝⎭.故选B .3.在ABC △中,角A ,B ,C 所对应的边分别是a ,b ,c ,若2cos c a B =,则三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【答案】C【解析】∵2cos c a B =,由正弦定理2sin c R C =,2sin a R A =,∴sin 2sin cos C A B =, ∵A ,B ,C 为ABC △的内角,∴()sin sin C A B =+,A ,()0,B ∈π,∴()sin 2sin cos A B A B +=,sin cos cos sin 2sin cos A B A B A B +=,整理得()sin 0A B -=, ∴0A B -=,即A B =.故ABC △一定是等腰三角形.故选C . 4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3C π=,7c =3b a =,则ABC △对点增分集训的面积为( ) A 33B 23- C 2D 23+ 【答案】A 【解析】已知3C π=,7c 3b a =, ∴由余弦定理2222cos c a b ab C =+-,可得:2222227937a b ab a a a a =+-=+-=, 解得:1a =,3b =,∴11333sin 1322ABCSab C ==⨯⨯=A . 5.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=,sin 23sin C B =,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒【答案】A【解析】根据正弦定理由sin 23sin C B =得:23c b =, 所以2223323a b bc b =-,即227a b =, 则22222223cos 243b c a A bc b +-===,又()0,A ∈π,所以6A π=.故选A . 6.设ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,如果()()3a b c b c a bc +++-=,且3a ABC △外接圆的半径为( ) A .1 B 2C .2D .4【答案】A【解析】因为()()3a b c b c a bc +++-=,所以()223b c a bc +-=,化为222b c a bc +-=,所以2221cos 22b c a A bc +-==,又因为()0,A ∈π,所以3A π=, 由正弦定理可得322sin 3aR A===,所以1R =,故选A .7.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=,则ABC △的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【解析】因为2sin sin sin B C A ⋅=,所以2222b c a R R R ⎛⎫⋅= ⎪⎝⎭, 也就是2a bc =,所以222b c bc +=,从而b c =, 故a b c ==,ABC △为等边三角形.故选C .8.ABC △的内角A ,B ,C 的对边分别是a ,b ,c 且满足cos cos a B b A c -=,则ABC △是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形【答案】B【解析】利用正弦定理sin sin sin a b cA B C==化简已知的等式得: sin cos sin cos sin A B B A C -=,即()sin sin A B C -=,∵A ,B ,C 为三角形的内角,∴A B C -=,即2A B C π=+=, 则ABC △为直角三角形,故选B .9.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC △的面积为315,2b c -=,1cos 4A =-,则a 的值为( ) A .8 B .16 C .32 D .64【答案】A【解析】因为0A <<π,所以215sin 1cos A A =- 又115sin 3152ABCSbc A ===,∴24bc =,解方程组224b c bc -=⎧⎨=⎩得6b =,4c =, 由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.故选A .10.在ABC △中,a ,b ,c 分别为角A ,B ,C 所对的边.若()sin cos 0b a C C +-=, 则A =( ) A .4π B .3π C .34π D .23π 【答案】C【解析】()sin sin sin cos cos sin B A C A C A C =+=+,∵()sin cos 0b a C C +-=,可得:()sin sin sin cos 0B A CC +=﹣,∴sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,∴cos sin sin sin 0A C A C +=, ∵sin 0C ≠,∴cos sin A A =-,∴tan 1A =-, ∵2A π<<π,∴34A =π.故答案为C . 11.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若cos cos cos a b cA B C==,则ABC △是( ) A .直角三角形 B .钝角三角形 C .等腰直角三角形 D .等边三角形【答案】D 【解析】∵cos cos cos a b cA B C==,由正弦定理得:2sin a R A =⋅,2sin b R B =⋅,2sin c R C =⋅代入, 得sin sin sin cos cos cos A B CA B C==,∴进而可得tan tan tan A B C ==, ∴A B C ==,则ABC △是等边三角形.故选D .12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知23a =,22c =,tan 21tan A cB b+=, 则C ∠=( ) A .6π B .4π C .4π或34π D .3π【答案】B【解析】利用正弦定理,同角三角函数关系,原式可化为:sin cos 2sin 1cos sin sin A B CA B B+=,去分母移项得:sin cos sin cos 2sin cos B A A B C A +=, 所以()sin sin 2sin cos A B C C A +==,所以1cos 2A =.由同角三角函数得3sin A =,由正弦定理sin sin a c A C =,解得2sin C =所以4C π∠=或34π(舍).故选B .二、填空题13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,22c =,2216b a -=,则角C 的最大值为_____; 【答案】6π 【解析】在ABC △中,由角C 的余弦定理可知222222222332cos 224b a a b a b c a b C ab ab ab -+-+-+===≥, 又因为0C <<π,所以max 6C π=.当且仅当22a =,26b =14.已知ABC △的三边a ,b ,c 成等比数列,a ,b ,c 所对的角分别为A ,B ,C ,则sin cos B B +的取值范围是_________.【答案】(2⎤⎦,【解析】∵ABC △的三边a ,b ,c 成等比数列, ∴2222cos 22cos ac b a c ac B ac ac B ==+-≥-,得1cos 2B ≥, 又∵0B <<π,∴03B π⎛⎤∈ ⎥⎝⎦,,74412B πππ⎛⎤+∈ ⎥⎝⎦,,可得(sin cos 224B B B π⎛⎫⎤+=+∈ ⎪⎦⎝⎭,,故答案为(2⎤⎦,. 15.在ABC △中三个内角A ∠,B ∠,C ∠,所对的边分别是a ,b ,c ,若()2sin cos 2sin cos b C A A C +=-,且23a =,则ABC △面积的最大值是________3【解析】∵()2sin cos 2sin cos b C A A C +=-,∴()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B =-+=-+=-, 则2sin cos b B A -=,结合正弦定理得223cos sin a A A -==,即tan 3A =-,23A ∠=π 由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥, 故4bc ≤,113sin 4322ABC S bc A =≤⨯=△3 16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A ,B ,C 成等差数列,3b则ABC △面积的取值范围是__________.【答案】333⎝⎦,【解析】∵ABC △中A ,B ,C 成等差数列,∴3B π=.由正弦定理得32sin sin sin sin 3a c b A C B ====π,∴2sin a A =,2sin c C =, ∴132sin 3sin 3sin 23ABC S ac B A C A A π⎛⎫===- ⎪⎝⎭△ 23133331cos23sin sin sin cos sin 22242AA A A A A A A ⎫-=+==⎪⎪⎝⎭ 33333sin 22246A A A π⎛⎫=+=- ⎪⎝⎭, ∵ABC △为锐角三角形,∴022032A A π⎧<<⎪⎪⎨ππ⎪<-<⎪⎩,解得62A ππ<<.∴52666A πππ<-<,∴1sin 2126A π⎛⎫<-≤ ⎪⎝⎭,3333326A π⎛⎫<-≤ ⎪⎝⎭,故ABC △面积的取值范围是333⎝⎦,.三、解答题17.己知a ,b ,c 分别为ABC △三个内角A ,B ,C 3cos 2sin a A C+=. (1)求角A 的大小;(2)若5b c +=,且ABC △3a 的值. 【答案】(1)23π;(221 【解析】(13sin cos 2sin A A C+=,∵sin 0C ≠,∴3sin cos 2A A -=,即sin 16A π⎛⎫-= ⎪⎝⎭.∵0A <<π∴666A ππ5π-<-<,∴62A ππ-=,∴23A π=. (2)由3ABC S =△可得1sin 32S bc A ==.∴4bc =,∵5b c +=,∴由余弦定理得:()22222cos 21a b c bc A b c bc =+-=+-=, ∴21a =.18.如图,在ABC △中,点D 在BC 边上,60ADC ∠=︒,27AB =,4BD =..(1)求ABD △的面积.(2)若120BAC ∠=,求AC 的长. 【答案】(1)23;(27 【解析】(1)由题意,120BDA ∠=︒在ABD △中,由余弦定理可得2222cos120AB BD AD BD AD =+-⋅⋅︒ 即2281642AD AD AD =++⇒=或6AD =-(舍), ∴ABD △的面积113sin 42322S DB DA ADB =⋅⋅⋅∠=⨯⨯= (2)在ABD △中,由正弦定理得sin sin AD ABB BDA=∠, 代入得21sin B =B 为锐角,故57cos B =, 所以()21sin sin 60sin 60cos cos60sin C B B B =︒-=︒-︒=, 在ADC △中,由正弦定理得sin sin AD ACC CDA=∠, 213=,解得7AC。
全等三角形经典培优题型(含答案)
全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.全等三角形证明经典题1已知:AB=4,AC=2,D是BC中点,AD是整数,求AD2已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠23已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC4已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE6 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E 在AD上。
专题11认识三角形-2021-2022学年八年级数学上(解析版)【浙教版】
2021-2022学年八年级数学上册尖子生同步培优题典【浙教版】专题1.1认识三角形姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•椒江区期末)已知一个三角形的两条边长分别是3和5,则第三条边的长度不能是()A.2B.3C.4D.5【分析】设第三边长为x,然后再利用三边关系列出不等式,进而可得答案.【解析】设第三边长为x,由题意得:5﹣3<x<5+3,即:2<x<8,∴2不可以,符合题意,故选:A.2.(2020秋•鄞州区期中)如图,在△ABC中,AB边上的高为()A.CG B.BF C.BE D.AD【分析】利用三角形高的定义可得答案.【解析】在△ABC中,AB边上的高为CG,故选:A.3.(2019秋•下城区期末)如图,AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.∠BAD=∠CAD C.AB=AC D.BD=CD【分析】根据三角形的中线的定义即可判断.【解析】∵AD是△ABC的中线,∴BD=DC,故选:D.4.(2020秋•增城区期末)如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.4【分析】利用中线定义可得DB=DC,再表示两个三角形周长,进而可得答案.【解析】∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.5.(2020秋•丰台区期末)如图所示,△ABC的边AC上的高是()A.线段AE B.线段BA C.线段BD D.线段DA【分析】根据三角形高线的定义,过点B作BD⊥AC交CA的延长线于点D,则BD为AC边上的高.【解析】由题意可知,△ABC的边AC上的高是线段BD.故选:C.6.(2020春•商水县期末)如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90°C.∠BAF=∠CAF D.S△ABC=2S△ABF【分析】根据三角形的角平分线、中线和高的概念判断.【解析】∵AF是△ABC的中线,∴BF=CF,A说法正确,不符合题意;∵AD是高,∴∠ADC=90°,∴∠C+∠CAD=90°,B说法正确,不符合题意;∵AE是角平分线,∴∠BAE=∠CAE,C说法错误,符合题意;∵BF=CF,∴S△ABC=2S△ABF,D说法正确,不符合题意;故选:C.7.如图,AD⊥BE,垂足为D,点C在BE上,以AD为高的三角形有()A.6个B.5个C.4个D.3个【分析】由AD⊥BE,根据三角形的高的定义,可知AD与BE上任意两点所连的线段垂直,进而求解即可.【解析】由题意可得,以AD为高的三角形有△ABD,△ABC,△ABE,△ADC,△ADE,△ACE,一共6个.故选:A.8.(2019秋•邕宁区校级期中)下列说法正确的是()A.三角形的三条高是三条直线B.直角三角形只有一条高C.锐角三角形的三条高都在三角形内D.三角形每一边上的高都小于其他两边【分析】根据三角形的角平分线、中线和高的定义判断.【解析】A、三角形的三条高是三条线段,本选项说法错误;B、直角三角形有三条高,本选项说法错误;C、锐角三角形的三条高都在三角形内,本选项说法正确;D、三角形每一边上的高不一定都小于其他两边,本选项说法错误;故选:C.9.(2020春•射洪市期末)如图,在Rt△ABF中,∠F=90°,点C是线段BF上异于点B和点F的一点,连接AC,过点C作CD⊥AC交AB于点D,过点C作CE⊥AB交AB于点E,则下列说法中,错误的是()A.△ABC中,AB边上的高是CEB.△ABC中,BC边上的高是AFC.△ACD中,AC边上的高是CED.△ACD中,CD边上的高是AC【分析】根据三角形的高的定义进行判断即可.【解析】∵过点C作CE⊥AB交AB于点E,∠F=90°,∴△ABC中,AB边上的高是CE,BC边上的高是AF,∴A、B两个选项说法正确,不符合题意;∵CD⊥AC交AB于点D,∴△ACD中,AC边上的高是CD,CD边上的高是AC,∴C选项说法错误,符合题意;D选项说法正确,不符合题意;故选:C.10.(2020春•常熟市期末)如图,在△ABC中,D、E分别是BC、AD的中点,点F在BE上,且EF=2BF,若S△BCF=2cm2,则S△ABC为()A.4cm2B.8cm2C.12cm2D.16cm2【分析】根据EF=2BF,S△BCF=2cm2,求得S△BEC=3S△BCF=6cm2,根据三角形中线把三角形分成两个面积相等的三角形可得S△BDE=S△CDE=12S△BEC=3cm2,从而求出S△ABD=S△ACD=2S△BDE=6cm2,再根据S△ABC=2S△ABD计算即可得解.【解析】如图,∵EF=2BF,若S△BCF=2cm2,∴S△BEC=3S△BCF=3×2=6cm2,∵D是BD的中点,∴S△BDE=S△CDE=12S△BEC=3cm2,∵E是AD的中点,∴S△ABD=S△ACD=2S△BDE=6cm2,∴△ABC的面积为12cm2,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•长春期末)如图,为了让椅子更加稳固,军军在椅子上钉了一根加固木条,从数学的角度看,这样做的数学原理是利用了三角形的稳定性.【分析】利用三角形的稳定性进行解答即可.【解析】为了让椅子更加稳固,军军在椅子上钉了一根加固木条,从数学的角度看,这样做的数学原理是利用了三角形的稳定性,故答案为:稳定性.12.(2020秋•绥中县期末)下列长度的三条线段:①5、6、12;②4、4、10;③4、6、10;④3、4、5.能组成三角形的是④.(填序号即可)【分析】根据三角形的三边关系进行分析判断.【解析】①5+6<12,不能组成三角形;②4+4<10,不能组成三角形;③4+6=10,不能组成三角形;④3+4>5,能组成三角形.故答案为:④.13.(2020春•海淀区校级期末)已知BD是△ABC的中线,AB=7,BC=3,且△ABD的周长为15,则△BCD的周长为11.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解析】∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为15,AB=7,BC=3,∴△BCD的周长是15﹣(7﹣3)=11,故答案为:1114.(2018秋•平潭县期中)如图,△ABC中BC边上的高是AE线段.【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【解析】△ABC中BC边上的高是AE;故答案为:AE15.(2020春•灌云县期中)如图,以AD为高的三角形共有6个.【分析】由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.【解析】∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故答案为:616.(2019秋•宾县期末)三角形有两条边的长度分别是5和7,则最长边a的取值范围是7≤a<12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【解析】根据三角形三边关系定理知:①当a=7时,最长的边a=7;②当a≠7时,最长边a的取值范围是:7<a<(7+5),即7<a<12;故答案为:7≤a<12.17.(2018春•大东区校级期中)如图,在△ABC,AD是角平分线,AE是中线.AF是高,如果BC=10cm,那么BE=5cm;∠ABC=40°,∠ACB=60°,那么∠BAD=40°,∠DAF=10°.【分析】熟悉三角形的角平分线、中线、高的概念:三角形的一个角的平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;连接顶点和对边中点的线段叫三角形的中线;三角形的高即从顶点向对边引垂线,顶点和垂足间的线段.根据概念,运用几何式子表示.【解析】∵在△ABC,AD是角平分线,AE是中线.AF是高,BC=10cm,∴BE=5cm,∵∠ABC=40°,∠ACB=60°,∴∠BAC=180°﹣40°﹣60°=80°,∴∠BAD=40°,∵AF是高,∴∠CAF=90°﹣60°=30°,∴∠DAF=40°﹣30°=10°,故答案为:5cm;40°;10°.18.(2020春•兴化市月考)若D、E分别是BC、AD的中点,且S△ABC=10,则S△AEC= 2.5.【分析】根据三角形的中线把三角形的面积分成相等的两部分即可求得结果.【解析】∵AD是△ABC的BC边上的中线,∴S△ADC=S△BDC=12S△ABC=5,∵CE是△ADC的AD边上的中线,∴S△AEC=12S△ADC=2.5,故答案为2.5.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•双阳区期末)如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长.(2)求BC边的取值范围.【分析】(1)根据三角形中线的定义,BD=CD.所以△ABD和△ADC的周长之差也就是AB与AC的差,然后联立关于AB、AC的二元一次方程组,利用加减消元法求解即可.(2)根据三角形三边关系解答即可.【解析】(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=2,即AB﹣AC=2①,又AB+AC=10②,①+②得.2AB=12,解得AB=6,②﹣①得,2AC=8,解得AC=4,∴AB和AC的长分别为:AB=6,AC=4;(2)∵AB=6,AC=4,∴2<BC<10.20.(2020秋•庆阳期中)如图所示方格纸中,每个小正方形的边长均为1,点A,点B,点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AC上的中线BE;(3)直接写出△ABE的面积为4.【分析】(1)根据三角形高线的定义画出图形即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形的面积公式计算即可.【解析】(1)如图所示,线段AD即为所求;(2)如图所示,线段BE即为所求;(3)S△ABC=12BC•AD=12×4×4=8.∴△ABE的面积=12S△ABC=4,故答案为:4.21.如图,在△ABC中,AD⊥BC,垂足为点D,EC⊥BC交AB于点E,CF⊥AB,垂足为点F,BG⊥AC,垂足为点G.(1)分别写出△ABC各条边上的高;(2)CF是哪几个三角形的高?【分析】(1)根据三角形的高的概念,写出△ABC三条边上的高即可;(2)根据三角形的高的概念,由CF⊥AB,垂足为点F解答即可.【解析】(1)由题意,可得△ABC中,AB边上的高是CF,BC边上的高是AD,AC边上的高是BG;(2)∵CF⊥AB,垂足为点F,∴CF是△BCF,△BCE,△BCA,△FCE,△FCA,△ECA的高.22.如图,在△ABC中,AE⊥BC,点E是垂足,点D是边BC上的一点,连接AD.(1)写出△ABE的三个内角;(2)在△ABD中,∠B的对边是AD;在△ABC中,∠B的对边是AC;(3)图中共有6个三角形,把它们分别写出来.这些三角形中,哪些是直角三角形?哪些是锐角三角形?哪些是钝角三角形?(4)线段AD是哪几个三角形的公共边?(5)∠ADC是哪几个三角形的公共角?∠AED呢?【分析】(1)根据三角形内角的定义,结合图形即可求解;(2)根据三角形中角的对边的定义,结合图形即可求解;(3)根据三角形的定义,结合数出图中三角形的个数,再根据直角三角形、锐角三角形、钝角三角形的定义进行分类;(4)根据三角形的边的定义,结合图形即可求解;(5)根据三角形的角的定义,结合图形即可求解.【解析】(1)△ABE的三个内角是:∠BAE,∠B,∠AEB;(2)在△ABD中,∠B的对边是AD;在△ABC中,∠B的对边是AC.故答案为:AD;AC;(3)图中共有6个三角形,分别是:△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.这些三角形中,直角三角形是:△ABE,△ADE,△AEC;锐角三角形是:△ABC,△ADC;钝角三角形是:△ABD.故答案为:6;(4)线段AD是△ABD,△ADE,△ADC的公共边;(5)∠ADC是△ADE,△ADC的公共角;∠AED是△ABE,△ADE的公共角.23.(2020秋•江津区期中)a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.【分析】(1)根据三角形任意两边之和大于第三边得出3c﹣2>c,任意两边之差小于第三边得出|2c﹣6|<c,列不等式组求解即可;(2)由△ABC的周长为18,a+b=3c﹣2,4c﹣2=18,解方程得出答案即可.【解析】(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴{3c−2>c|2c−6|<c,解得:2<c<6;(2)∵△ABC的周长为18,a+b=3c﹣2,∴a+b+c=4c﹣2=18,解得c=5.24.(2020春•五华区校级期末)已知△ABC的周长为33cm,AD是BC边上的中线,AB=32 AC.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?【分析】(1)根据三角形中线的性质解答即可;(2)根据三角形周长和边的关系解答即可.【解析】(1)∵AB=32AC,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴BD=12BC=4cm.(2)不能,理由如下:∵AB=32AC,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.。
八年级数学上册第十一章三角形知识点总结归纳完整版(带答案)
八年级数学上册第十一章三角形知识点总结归纳完整版单选题1、下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2答案:D分析:若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.小提示:本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.2、要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行答案:C分析:用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误方案Ⅰ:如下图,∠BPD即为所要测量的角∵∠HEN=∠CFG∴MN∥PD∴∠AEM=∠BPD故方案Ⅰ可行方案Ⅱ:如下图,∠BPD即为所要测量的角在△EPF中:∠BPD+∠PEF+∠PFE=180°则:∠BPD=180°−∠AEH−∠CFG故方案Ⅱ可行故选:C小提示:本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明3、刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是()A.6cm的木条B.8cm的木条C.两根都可以D.两根都不行答案:B分析:利用三角形的三边关系可得答案.解:利用三角形的三边关系可得应把8cm的木条截成两段,如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.故选:B.小提示:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.4、如图,若干个全等的正五边形排成圆环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10B.9C.8D.7答案:D分析:先根据多边形的内角和公式(n−2)·180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.解:∵五边形的内角和为(5−2)×180°=540°,∴正五边形的每一个内角为540°÷5=108°,∴正五边形的每一个外角为180°−108°=72°,如图,延长正五边形的两边相交于点O,则∠1=180°−2×72°=36°,360°÷36°=10,∵已经有3个五边形,∴10−3=7,即完成这一圆环还需7个五边形.故选:D.小提示:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.5、已知△ABC中,D、E分别是边AB、AC上的点,连接DE、BE、DC,下列各式中正确的是().A.S△ADES△ABC =ADABB.S△ADES△ABC=AEACC.S△ADCS△ABC =ADABD.S△ADES△EDC=AEAC答案:C分析:A选项,设点E、C到AB的距离分别为ℎ1,ℎ2,则ℎ1<ℎ2,根据三角形面积公式进行判断即可;B选项设点D、B到AC的距离分别为x,y,则x≠y,x<y,根据三角形面积公式进行判断即可;C选项,设点C到AB距离为h,△ADC=12AD⋅ℎ,S△ABC=12AB⋅ℎ,根据三角形面积公式进行判断即可;D选项,设点D到AC距离为ℎ3,则S△ADE=12AE⋅ℎ3,S△EDC=12CE⋅ℎ3,根据三角形面积公式进行判断即可A选项:设点E、C到AB的距离分别为ℎ1,ℎ2,则ℎ1<ℎ2,S△ADE=12AD⋅ℎ1,S△ABC=12AB⋅ℎ2,∴S△ADES△ABC =12AD⋅ℎ112AB⋅ℎ2=AD⋅ℎ1AB⋅ℎ2≠ADAB,故A错误;B选项:设点D、B到AC的距离分别为x,y,则x≠y,x<y,S△ADE=12AE⋅x,S△ABC=12AC⋅y,S△ADES△ABC=12AE⋅x12AC⋅y=AE⋅xAC⋅y≠AEAC,故B错误;C选项:设点C到AB距离为h,△ADC=12AD⋅ℎ,S△ABC=12AB⋅ℎ,∴S△ADCS△ABC =12AD⋅ℎ12AB⋅ℎ=ADAB,故C正确;D选项:设点D到AC距离为ℎ3,则S△ADE=12AE⋅ℎ3,S△EDC=12CE⋅ℎ3,∴S△ADES△EDC =12AE⋅ℎ312CE⋅ℎ3=AECE=AEAC−AE≠AEAC,故D错误.故选C.小提示:本题考查了与三角形的高有关的计算,掌握三角形的高的定义,根据三角形的面积计算是解题的关键.6、一个多边形截去一个角后,变成16边形,那么原来的多边形的边数为()A.15或16或17B.15或17C.16或17D.16或17或18答案:A分析:分三种情况讨论,当截线不经过多边形的顶点时,当截线经过多边形的一个顶点时,当截线经过多边形的两个顶点时,再利用数形结合的方法可得答案.解:如图,当截线不经过多边形的顶点时,被截后的多边形比原多边形增加一条边,所以当被截后的多边形为16边形,则原多边形为15边形,如图,当截线经过多边形的一个顶点时,被截后的多边形与原多边形边数相同,所以当被截后的多边形为16边形,则原多边形为16边形,如图,当截线经过多边形的两个顶点时,被截后的多边形比原多边形少一条边,所以当被截后的多边形为16边形,则原多边形为17边形,故选:A.小提示:本题考查的是用直线截多边形的一个角后,被截后的多边形的边数与原多边形的边数之间的关系,解题的关键是清晰的分类讨论.7、当n边形边数增加2条时,其内角和增加()A.180°B.360°C.540°D.720°答案:B分析:根据n边形的内角和定理即可求解.解:原来的多边形的边数是n,则新的多边形的边数是n+2.(n+2−2)•180−(n−2)•180=360°.故选:B.小提示:本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.8、在△ABC中,∠A=12∠B=13∠C,则△ABC为()三角形.A.锐角B.直角C.钝角D.等腰答案:B分析:根据∠A=12∠B=13∠C分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.∵∠A=12∠B=13∠C∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.小提示:本题主要考查的是三角形的基本概念.9、如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A.35°B.95°C.85°D.75°答案:C分析:根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.小提示:本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.10、能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A.B.C.D.答案:C分析:先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.解:A、如图1,∠1是锐角,且∠1=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B、如图2,∠2是锐角,且∠2=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C、如图3,∠3是钝角,且∠3=α+β,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D、如图4,∠4是锐角,且∠4=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C.小提示:本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.填空题11、如图,∠A+∠B+∠C+∠D+∠E=______.答案:180度##180°分析:如图,连接BC,记CD,BE的交点为G,先证明∠D+∠E=∠GBC+∠GCB,再利用三角形的内角和定理可得答案.解:如图,连接BC,记CD,BE的交点为G,∵∠D+∠E=180°−∠DGE,∠GBC+∠GCB=180°−∠BGC,∠DGE=∠BGC,∴∠D+∠E=∠GBC+∠GCB,∴∠A+∠ABG+∠GBC+∠GCB+∠ACG=180°,∴∠A+∠ABG+∠ACG+∠D+∠E=180°,所以答案是:180°小提示:本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.12、如图,点D在△ABC的边BA的延长线上,点E在BC边上,连接DE交AC于点F,若∠DFC=3∠B=117°,∠C=∠D,则∠BED=________.答案:102°分析:首先根据∠DFC=3∠B=117°,可以算出∠B=39°,然后设∠C=∠D=x°,根据外角与内角的关系可得39+x+x=117,再解方程即可得到x=39,再根据三角形内角和定理求出∠BED的度数.解:∵∠DFC=3∠B=117°,∴∠B=39°,设∠C=∠D=x°,39+x+x=117,解得:x=39,∴∠D=39°,∴∠BED=180°−39°−39°=102°.所以答案是:102°.小提示:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.13、已知AD、AE分别是△ABC的高和中线,若BD=2,CD=1,则DE的长为______.答案:0.5或1.5分析:根据题意作出草图,分类讨论即可求解.解:AD、AE分别是△ABC的高和中线,BD=2,CD=1,如图,当△ABC是钝角三角形时,∴BC=BD−CD=1∴DE=BD−BE=BD−12BC=2−12=32当△ABC是锐角三角形时,∵BC=BD+DC=2+1=3∴BE=12BC=32∴DE=BD−BE=2−32=12当△ABC是直角三角形时,CD=0,不合题意,所以答案是:12或32 小提示:本题考查了三角形的高线,中线的定义,线段的和差关系,分类讨论是解题的关键.14、一个多边形外角和是内角和的29,则这个多边形的边数为________. 答案:11分析:多边形的内角和定理为(n −2)×180°,多边形的外角和为360°,根据题意列出方程求出n 的值. 解:根据题意可得:29×(n −2)×180°=360°, 解得:n =11 ,所以答案是:11.小提示:本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.记忆理解并应用这两个公式是解题的关键.15、如图,△ABC 中,∠A =60°,∠B =40°,DE ∥BC ,则∠AED 的度数是______.答案:80°分析:根据三角形内角和定理可得∠C =80°,根据平行线的性质即可得答案.∵∠A =60°,∠B =40°,∴∠C =180°﹣∠A ﹣∠B =80°,∵DE ∥BC ,∴∠AED =∠C =80°,所以答案是:80°小提示:本题考查三角形内角和定理及平行线的性质,任意三角形的内角和等于180°;两直线平行,同位角相等;熟练掌握相关性质及定理是解题关键.解答题16、如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多1,AB与AC的和为11(1)求AB、AC的长;(2)求BC边的取值范围.答案:(1)AB=6,AC=5(2)1<BC<11分析:(1)根据三角形中线的定义,BD=CD.所以△ABD和△ADC的周长之差也就是AB与AC的差,然后联立关于AB、AC的二元一次方程组,利用加减消元法求解即可.(2)根据三角形三边关系解答即可.(1)解:∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=1,即AB−AC=1①,又AB+AC=11②,①+②得:2AB=12,解得AB=6,②−①得:2AC=10,解得AC=5,∴AB和AC的长分别为:AB=6,AC=5;(2)∵AB=6,AC=5;∴1<BC<11.小提示:本题考查了三角形的三边关系,三角形的中线定义,二元一次方程组的求解,利用加减消元法求解是解题的关键.17、如图,在△ABC中,CD平分∠BCA,E为CD延长线上一点,EF⊥AB于点F,已知∠ACB=70°,∠E= 30°.求∠A的度数.答案:25°分析:利用垂直的定义和三角形内角和定理求出∠EDF,利用对顶角的性质求出∠CDB,再利用角平分线的定义求出∠DCB,进而利用三角形内角和定理求出∠B,∠A.解:∵EF⊥AB,∴∠EFD=90°,又∵∠E=30°,∴∠EDF=180°−∠E−∠EFD=60°,∴∠CDB=∠EDF=60°.∵CD平分∠BCA,∠ACB=70°,∴∠DCB=12∠ACB=12×70°=35°.∴∠B=180°−∠CDB−∠DCB=180°−60°−35°=85°,∴∠A=180°−∠B−∠ACB=180°−85°−70°=25°,即∠A的度数为25°.小提示:本题考查角平分线、对顶角、三角形内角和定理的应用,解题的关键是熟练掌握对顶角的性质和三角形内角和定理.18、如图,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).(1)若α=70°,β=40°,求∠DCE的度数;(2)试用α、β的代数式表示∠DCE的度数_________.答案:(1)∠DCE=15°(2)α−β2分析:(1)根据三角形的内角和定理求出∠ACB的值,再由角平分线的性质以及直角三角形的性质求出∠DCE.(2)由(1)的解题思路即可得正确结果.(1)解:∵∠BAC=70°,∠B=40°∴∠ACB=180°−(∠BAC+∠B)=180°−(70°+40°)=70°,∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=35°.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°−∠BAC=20°,∴∠DCE=∠ACE−∠ACD=35°−20°=15°.(2)解:∵∠BAC=α,∠B=β∴∠ACB=180°−(∠BAC+∠B)=180°−(α+β),∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=12×[180°−(α+β)]=90°−α+β2.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°−∠BAC=90°−α,∴∠DCE=∠ACE−∠ACD=90°−α+β2−90°+α=α−β2.小提示:本题主要考查角平分线,高线以及角的转换,掌握角平分线,高线的性质是解题的关键.。
人教版八年级上册第十一章 三角形知识点复习及习题练习
第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
要点:①三条线段;②不在同一条直线上;③首尾顺次相连。
2、基本概念:三角形有三条边,三个内角,三个顶点。
边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。
夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。
练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。
(2)写出△ABD的三个内角。
(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。
八年级数学上册第十一章三角形必考知识点归纳(带答案)
八年级数学上册第十一章三角形必考知识点归纳单选题1、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M.若BC//EF,则∠BMD的大小为()A.60°B.67.5°C.75°D.82.5°答案:C分析:根据BC//EF,可得∠FDB=∠F=45°,再根据三角形内角和即可得出答案.由图可得∠B=60°,∠F=45°,∵BC//EF,∴∠FDB=∠F=45°,∴∠BMD=180°−∠FDB−∠B=180°−45°−60°=75°,故选:C.小提示:本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.2、如图,图中直角三角形共有()A.1个B.2个C.3个D.4个答案:C分析:有一个角是直角的三角形是直角三角形.解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.小提示:本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.3、如果一个多边形内角和是外角和的4倍,那么这个多边形有()条对角线.A.20B.27C.35D.44答案:C分析:根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解,多边形对角线的条数可以表.示成n(n−3)2解:设这个多边形是n边形,根据题意得,(n-2)•180°=4×360°,解得n=10.10×(10-3)÷2=35(条).故选:C.小提示:本题考查了多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.4、如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为()A.41°B.51°C.42°D.49°答案:A分析:先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.解:∵正六边形的每个内角等于120°,每个外角等于60°,∴∠FAD=120°-∠1=101°,∠ADB=60°,∴∠ABD=101°-60°=41°∵光线是平行的,∴∠2=∠ABD=41°,故选A小提示:本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.5、将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED//BC,则∠AEF的度数为( )A.145°B.155°C.165°D.170°答案:C分析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=∠DEF -∠2计算出∠CEF,即可求出∠AEF.解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°,∴∠AEF=180°-15°=165°.故选C.小提示:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.6、如图,在△ABC中,AB=20,AC=18,AD为中线.则△ABD与△ACD的周长之差为()A.1B.2C.3D.4答案:B分析:利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.∵在△ABC中,AD为中线,∴BD=CD.∵C△ABD=AB+BD+AD,C△ACD=AC+CD+AD,∴C△ABD−C△ACD=AB−AC=20−18=2.故选:B.小提示:本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.7、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5答案:A分析:根据平行线的性质和对顶角的性质进行判断.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.小提示:本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.8、在△ABC中,若一个内角等于另外两个角的差,则()A.必有一个角等于30°B.必有一个角等于45°C.必有一个角等于60°D.必有一个角等于90°答案:D分析:先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①x=|y−(180°−x−y)|⇒y=90∘或x+y=90∘②y=|x−(180∘−x−y)|⇒x=90∘或x+y=90∘③(180∘−x−y)=|x−y|⇒x=90∘或y=90∘综上所述,必有一个角等于90°故选D.小提示:本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.9、下列多边形具有稳定性的是()A.B.C.D.答案:D分析:利用三角形具有稳定性直接得出答案.解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D.小提示:本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.10、如图,小亮同学用绘画的方法,设计的一个正三角形的平面镶嵌图,其中主要利用的是正三角形和正六边形.如果整个镶嵌图△ABC的面积为75,则图中阴影部分的面积是()A.25B.26C.30D.39答案:B分析:正ΔABC中有多种图形,将不规则图形拆分后,可归结为四种图形,每种图形都可划分为面积最小的正三角形的组合,最后正ΔABC全部由小正三角形组成,根据阴影部分小正三角形的个数所占全部小正三角形个数比例与面积相乘即可得出答案.如图所示,将不规则部分进行拆分,共有四种图形:正六边形、较大正三角形、平行四边形、小正三角形;其中一个正六边形可以分成6个小正三角形,较大正三角形可以分成4个小正三角形,平行四边形可以分成6个小正三角形,由图可得:正六边形有13个,可分成小正三角形个数为:13×6=78(个);较大正三角形有26个,可分成小正三角形个数为:26×4=104(个);平行四边形有5个,可分成小正三角形个数为:5×6=30(个);小正三角形个数为13个;∴一共有小正三角形个数为:78+104+30+13=225(个),∴图中阴影部分面积为:75×78=26,225故选:B.小提示:题目主要考查创新思维,将其进行分类分解是解题难点.填空题11、如图,在三角形ABC中,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,BC=5,则AD=______.答案:2.4分析:根据面积相等可列式12AB·AC=12BC·AD,代入相关数据求解即可.解:∵AB⊥AC,AD⊥BC,∴12AB·AC=12BC·AD∵AB=3,AC=4,BC=5,∴AD=AB·ACBC =125=2.4故答案諀:2.4小提示:此题主要考查了运用等积关系求线段的长,准确识图是解答本题的关键.12、如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动点(不包括端点C),将△PFC沿PF折叠,使点C落在点E处.若∠DCF=62°,当点E到点A的距离最大时,∠CFP=_____.答案:59°##59度分析:利用三角形三边关系可知:当E落在AB上时,AE距离最大,利用AB∥CD且∠DCF=62°,得到∠CFA=62°,再根据折叠性质可知:∠EFP=∠CFP,利用补角可知∠EFP+∠CFP=118°,进一步可求出∠EFP=∠CFP=59°.解:利用两边之和大于第三边可知:当E落在AB上时,AE距离最大,如图:∵AB∥CD且∠DCF=62°,∴∠CFA=62°,∵△PCF折叠得到△PEF,∴∠EFP=∠CFP,∵∠EFP+∠CFP=118°,∴∠EFP=∠CFP=59°.所以答案是:59°小提示:本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角平分线,解题的关键是找出:当E落在AB上时,AE距离最大,再解答即可.13、三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的_________心.答案:重分析:根据三角形的重心的定义即可求解.三角形的三条中线交于一点,这一点叫此三角形的重心;所以答案是:重.小提示:本题主要考查了三角形的重心,重心是三角形三边中线的交点;三角形的中线将三角形的面积分成了相等的两部分,重心到顶点的距离与重心到对边中点的距离之比为2:1.14、如图,BD是△ABC的中线,AB=5cm,BC=3cm,那么△ABD的周长比△CBD的周长多_____.答案:2cm分析:根据三角形的中线的概念得到AD=DC,根据三角形的周长公式计算,得到答案.解:∵BD是△ABC的中线,∴AD=DC,∴△ABD的周长-△CBD的周长=(AB+AD+BD)-(BC+DC+BD)=AB-BC=5-3=2(cm),∴△ABD的周长比△CBD的周长多2cm,所以答案是:2cm.小提示:本题考查的是三角形的中线的概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.15、如图,孔明在驾校练车,他由点A出发向前行驶200米到B处,向左转45°.继续向前行驶同样的路程到C 处,再向左转45°.按这样的行驶方法,回到点A总共行驶了 __.答案:1600米##1600m分析:根据题意可知汽车所走的路程正好是一个外角为45°的多边形的周长,求出多边形的周长即可.解:根据题意得:360°÷45°=8,则他走回点A时共走的路程是8×200=1600(米).故回到A点共走了1600米.所以答案是:1600米.小提示:本意主要考查了多边形的外角和定理,即任意多边形的外角和都是360°.解答题16、如图,已知在△ABC中,∠B=30°,∠C=50°,AE是BC边上的高,AD是∠BAC的角平分线,求∠DAE的度数.答案:10°分析:先根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE的度数即可得到答案.解:∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AD是∠BAC的角平分线,∴∠BAD=1∠BAC=50°,2∵AE是BC边上的高,∴∠AEB=90°,∴∠BAE=90°-∠B=60°,∴∠DAE=∠BAE-∠BAD=10°.小提示:本题主要考查了三角形内角和定理,角平分线的定义,直角三角形两锐角互余,熟知相关知识是解题的关键.17、如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.答案:(1)见解析;(2)24°分析:(1)先根据AD是△ABE的角平分线得出∠EAB=2∠GAF,,再由2∠1+∠EAB=180°得出∠AGF+∠GAF=90°,进而可得出结论;(2)根据三角形内角和定理及外角的性质求解即可.(1)证明:∵AD是△ABE的角平分线,∴∠EAB=2∠GAF,∵2∠1+∠EAB=180°,∴2∠1+2∠GAF=180°,∵∠1=∠AGF,∴2∠AGF+2∠GAF=180°,∴∠AGF+∠GAF=90°,∴∠AFG=90°,∵BC⊥AB,∴∠AFG=∠ABC==90°,∴EF∥BC;(2)解:∵∠C=72°,∠ABC==90°,∴∠CAB==90°-∠C==90°-72°==18°,∴∠EAB=2∠CAB=36°,∵∠AEB=78°,∴∠ABE==180°-(∠AEB+∠EAB)==90°-(78°+36°)==66°,∴∠CBE=90°-∠ABE==90°-66°==24°.小提示:此题考查了平行线的判定及三角形的内外角性质,熟记平行线的判定定理是解题的关键.18、在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°.(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?答案:(1)9;(2)1080º或1260º或1440º.分析:(1)设多边形的一个外角为x,则与其相邻的内角等于3x+20°,根据内角与其相邻的外角的和;是180°列出方程,求出x的值,再由多边形的外角和为360°,求出此多边形的边数为360°x(2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,根据多边形的内角和定理即可求出答案.解:(1)设每一个外角为x,则与其相邻的内角等于3x+20°,∴180°−x=3x+20°,∴x=40°,即多边形的每个外角为40°,∵多边形的外角和为360°,∴多边形的外角个数为:360°=9,40°∴这个多边形的边数为9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,①若剪去一角后边数减少1条,即变成8边形,∴内角和为(8−2)×180°=1080°,②若剪去一角后边数不变,即变成9边形,∴内角和为(9−2)×180°=1260°,③若剪去一角后边数增加1,即变成10边形,∴内角和为(10−2)×180°=1440°,∴将这个多边形剪去一个角后,剩下多边形的内角和为1080°或1260°或1440°.小提示:本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,熟练掌握相关知识点是解题的关键.。
北京师范大学第二附属中学八年级数学上册第十一章《三角形》基础练习(培优专题)
一、选择题1.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD ∠的度数为( )A .25︒B .85︒C .60︒D .95︒D解析:D【分析】 根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.2.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.5D解析:D【分析】先根据三角形的三边之间的关系求解1<x <7,从而可得答案.【详解】 解: 长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形, 43∴-<x <43+,1∴<x <7,x 的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.3.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为()A.8 B.9 C.10 D.11B解析:B【分析】逐一探究在三角形,四边形,五边形一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,得到分割成的三角形的数量,再总结规律,运用规律列方程即可得到答案.【详解】解:如图,探究规律:在三角形的一边上任取一点(不是顶点),将这个点与三角形的各顶点连接起来,可以将三角形分割成2个三角形,在四边形的一边上任取一点(不是顶点),将这个点与四边形的各顶点连接起来,可以将四边形分割成3个三角形,在五边形的一边上任取一点(不是顶点),将这个点与五边形的各顶点连接起来,可以将五边形分割成4个三角形,总结规律:在n边形的一边上任取一点(不是顶点),将这个点与n边形的各顶点连接起来,可以将n边形分割成()1n-个三角形,应用规律:n-=由题意得:18,n∴=9.故选:.B【点睛】本题考查的是规律探究及规律运用,探究“在n边形的一边上任取一点(不是顶点),将这个点与n边形的各顶点连接起来,把n边形分割成的三角形的数量”是解题的关键.4.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是()A.7 B.8 C.9 D.10D解析:D【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和4倍可得方程180(n﹣2)=360×4,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n﹣2)=360×4,解得:n=10,故选:D.【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).5.以下列各组线段为边,能组成三角形的是( )A.1,2,3 B.1,3,5 C.2,3,4 D.2,6,10C 解析:C【分析】根据三角形三边关系逐一进行判断即可.【详解】A、1+2=3,不能构成三角形,故不符合题意;B、1+3=4<5,不能构成三角形,故不符合题意;C、2+3=5>4,可以构成三角形,故符合题意;D、2+6=8<10,不能构成三角形,故不符合题意,故选:C.【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.6.若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数()A.不变B.减少C.增加D.不能确定A 解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A.【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°.7.做一个三角形的木架,以下四组木棒中,符合条件的是()A.4cm, 5cm,9cm B.4cm, 5cm, 6cmC.5cm,12cm,6cm D.4cm,2cm,2cm B解析:B【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【详解】解:根据三角形的三边关系,知:A中,4+5=9,排除;B中,4+5>6,满足;C中,5+6<12,排除;D中,2+2=4,排除.故选:B.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边8.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.9.以下列各组线段为边,能组成三角形的是()A.1,2,3 B.2,3,4 C.2,5,8 D.6,3,3B解析:B根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 10.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒B解析:B【分析】 根据题意,结合三角形内角和定理、角平分线的性质,三角形外角的性质分别求解即可得出结论.【详解】解:由题意可得:在四边形BDCI 中,1180902IBD IBC CBD ∠=∠+∠=⨯︒=︒,90ICD ∠=︒, 可得180BDC BIC ∠+∠=︒,故A 选项不符合题意, 90ICE ∠=︒,故B 选项符合题意,48BAC ∠=︒,在三角形ICE 中, EIC ∠=18048662IBC ICB ︒-︒∠+∠==︒,90ICE ∠=︒, 906624E ∠=︒-︒=∴︒ ,故C 选项不符合题意,90DBE ∠=︒,故D 选项不符合题意,【点睛】本题考查了三角形内角和定理、角平分线的性质和三角形外角的性质,结合图形熟练运用定理和性质进行求解是解题的关键.二、填空题11.如图,BF平分∠ABD,CE平分∠ACD,BF与CE交于G,若∠=︒∠=︒,则∠A的度数为_________.BDC BGC130,9050°【分析】连接BC根据三角形内角和定理可求得∠DBC+∠DCB的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB的度数即可求得∠A的度数【详解】解:连接BC∵∠BDC=130°解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.12.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.18【分析】连接BG 根据重心的性质得到△BGC 的面积再根据D 点是BC 的四等分点得到△GDC 的面积故可求解【详解】连接BG ∵G 为纸片的重心∴S △BGC=S △ABC=8∵D 为边上的一个四等分点()∴S △解析:18【分析】连接BG ,根据重心的性质得到△BGC 的面积,再根据D 点是BC 的四等分点得到△GDC 的面积,故可求解.【详解】连接BG ,∵G 为ABC 纸片的重心,∴S △BGC =13S △ABC =8 ∵D 为BC 边上的一个四等分点(BD CD <) ∴S △DGC =34S △BGC =6 ∴剪去GDC ,则剩下纸片的面积为24-6=18故答案为:18.【点睛】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.13.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.25°【分析】先求出∠A 的度数再根据折叠的性质可得∠E 的度数根据平行线的性质求出∠ADE 的度数进而即可求解【详解】∵∴∠A=40°∵沿折叠后点B 落在点E 处∴∠E=∠B=50°∵∴∠ADE=∠E=50解析:25°【分析】先求出∠A 的度数,再根据折叠的性质可得∠E 的度数,根据平行线的性质求出∠ADE 的度数,进而即可求解.【详解】∵90,50ACB B ︒︒∠=∠=, ∴∠A=40°,∵BCD △沿CD 折叠后,点B 落在点E 处,∴∠E=∠B=50°,∵//CE AB ,∴∠ADE=∠E=50°,∴∠BDC=∠EDC=(180°-50°)÷2=65°,∴∠ACD=∠BDC-∠A=65°-40°=25°,故答案是:25°.【点睛】本题主要考查折叠的性质,三角形外角的性质,平行线的性质,直角三角形的性质,掌握平行线的性质以及三角形外角的性质,是解题的关键.14.如果点G 是ABC ∆的重心,6AG =,那么BC 边上的中线长为_______________________.【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3继而求得边上的中线长为9【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍∴DG=AG=×6=3∴AD=AG+GD 解析:9【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3,继而求得BC 边上的中线长为9.【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=12AG=12×6=3,∴AD=AG+GD=6+3=9.即BC 边上的中线长为9.故答案为:9.【点睛】本题考查的是三角形重心的性质,熟知三角形的重心到顶点的距离是其到对边中点的距离的2倍是解决问题的关键.15.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和【详解】解:∵AB ∥DC ∴∠B+∠C =180°∴∠B 的外角与∠C 的外角的和为180°∵六边形ABCDEF 的外角和为360解析:180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和.【详解】解:∵AB ∥DC ,∴∠B +∠C =180°,∴∠B 的外角与∠C 的外角的和为180°,∵六边形ABCDEF 的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B 和∠C 的外角的和为180° 16.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.10或50【分析】分点P 在AB 的上方点P 在AB 与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,∠=︒∠=︒,BPD PBA30,20∴∠=∠+∠=︒,150BPD PBAAB CD,//CDP∴∠=∠=︒;150(2)如图,点P在AB与CD的中间,延长BP,交CD于点E,∠=︒,AB CD PBA//,20∴∠=∠=︒,BED PBA20∠=︒,BPD30∴∠=∠-∠=︒;CDP BPD BED10(3)如图,点P在CD的下方,∠=︒,AB CD PBA//,20∴∠=∠=︒,PBA120∠=︒,BPD30∠=︒不符,∴∠=∠+∠=∠+︒>︒与120CDP BPD CDP13030即点P不可能在CD的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.17.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.343【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积再根据两三角形的倍数关系求解即可【详解】△ABC 与△A1BB1底相等(AB =A1B )高为1:2(BB1=2BC )故面积比为1:2∵解析:343【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴112A BB S =△,同理可得11112C B C A C A S S ==△△, ∴1112317A B C S =⨯+=△;同理可证222111749A B C A B C S S ==△△,所以333749343A B C S =⨯=△,故答案为:343.【点睛】本题考查了图形面积的规律探究,准确找到每变化一次之后图形面积的变化规律是解决问题的关键.18.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°. 故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.19.如图,若//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,90BED ∠=,则BFD ∠=______.45°【分析】如图作射线BF 与射线BE 根据平行线的性质和三角形的外角性质可得∠ABE+∠EDC =90°然后根据角平分线的定义和三角形的外角性质即可求出答案【详解】解:如图作射线BF 与射线BE ∵AB ∥ 解析:45°【分析】如图,作射线BF 与射线BE ,根据平行线的性质和三角形的外角性质可得∠ABE +∠EDC =90°,然后根据角平分线的定义和三角形的外角性质即可求出答案.【详解】解:如图,作射线BF 与射线BE ,∵AB ∥CD ,∴∠ABE =∠4,∠1=∠2,∵∠BED =90°,∠BED =∠4+∠EDC ,∴∠ABE +∠EDC =90°,∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠1+∠3=12∠ABE +12∠EDC =45°, ∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD =45°,故答案为:45°.【点睛】本题考查了平行线的性质、角平分线的定义和三角形的外角性质,属于常考题型,熟练掌握上述知识是解题的关键.20.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.【分析】直接根据高相等的三角形面积之比等于底之比【详解】解:∵是边上的中线∴BD=DC 又∵的面积是2和的高相等∴∵和的高相等∴∴又∴同理:故答案为:【点睛】此题主要考查根据高相等的三角形面积之比等于 解析:49 【分析】 直接根据高相等的三角形,面积之比等于底之比. 【详解】 解:∵AD 是BC 边上的中线∴BD=DC又∵ABC ∆的面积是2,D AB ∆和D A C ∆的高相等∴D DC S =S =1AB A ∆∆∵13AE AD = E AB ∆和BDE ∆的高相等∴E BDE ABD 11S =S =S 23AB ∆∆∆ ∴BDE 2S =3∆ 又12BF EF =,∴1B 3BF E =,同理: DEF BFD BDE 24S =2S =S =39∆∆∆ 故答案为:49. 【点睛】 此题主要考查根据高相等的三角形,面积之比等于底之比求三角形的面积,解题的关键是正确理解高相等的三角形之间的关系.三、解答题21.如图,∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE 平分∠ACD ,且BE 、CE 交于点E ,∠ABC =∠ACE .(1)求证:AB//CE ;(2)猜想:若∠A =50°,求∠E 的度数.解析:(1)见解析;(2)25°【分析】(1)根据角平分线的定义得到∠ECD=∠ACE ,得到∠ABC=∠ECD ,根据平行线的判定定理证明结论;(2)根据三角形的外角性质、角平分线的定义计算,得到答案.【详解】(1)证明:∵CE 平分∠ACD ,∴∠ECD =∠ACE ,∵∠ABC =∠ACE ,∴∠ABC =∠ECD ,∴AB ∥CE ;(2)∵∠ACD 是△ABC 的一个外角,∴∠ACD =∠ABC+∠A ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠E =∠ECD ﹣∠EBC =12∠ACD ﹣12∠ABC =12∠A =25°. 【点睛】本题考查的是三角形的外角性质及平行线的判定、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.22.在ABC ∆中, ,AB AC CG BA =⊥交BA 的延长线于点G ,点D 是线段BC 上的一个动点.特例研究: ()1当点D 与点B 重合时,过B 作BF AC ⊥交AC 的延长线于点F ,如图①所示,通过观察﹑测量BF 与CG 的长度,得到BF CC =.请给予证明.猜想证明:()2当点D 由点B 向点C 移动到如图②所示的位置时,过D 作DF AC ⊥交CA 的延长线于点F ,过D 作DE BA ⊥交BA 于点E ,此时请你通过观察,测量DE DF 、与CG 的长度,猜想并写出DE DF 、与CG 之间存在的数量关系,并证明你的猜想.拓展延伸:()3当点D 由点B 向点C 继续移动时(不与C 重合) ,过D 作DF AC ⊥交AC 于点F ,过D 作DF BA ⊥交BA (或BA 的延长线)于点E ,如图③,图④所示,请你判断(2)中的猜想是否仍然成立?(不用证明)解析:(1)证明见解析;(2)CG DE DF =+,证明见解析;(3)结论不变:CG DE DF =+【分析】(1)根据12ABC S AC BF =⋅△,12ABC S AB CG =⋅△, 即可解决问题; (2)结论CG DE DF =+,利用面积法证明即可;(3)结论不变,证明方法类似(2). 【详解】(1)证明:如图①中,∵90F G ︒∠=∠=,∴12ABC S AC BF =⋅△,12ABC S AB CG =⋅△, ∴1122AC BF AB CG ⋅=⋅, 又∵AB AC =,∴BF AC =;(2)解:结论CG DE DF =+,理由:如图②中,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+;(3)结论不变:CG DE DF =+,证明如下:如图③,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+;如图④,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+.【点睛】本题考查三角形的判定和性质、三角形的面积等知识,解题的关键是利用面积法证明线段之间的关系.23.在△ABC 中,∠B =40°,∠C =60°,AD 平分∠BAC ,点E 为AD 延长线上的点,EF ⊥BC 于F ,求∠DEF 的度数.解析:10°【分析】利用三角形的外角的性质求出∠ADC ,再利用三角形内角和定理求出∠DEF 即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC =180°-∠B-∠C =80°.∵AD 平分∠BAC ,∴∠BAD =12∠BAC =40° ∴∠ADC =∠B+∠BAD =80°∴∠EDF =∠ADC =80°∵EF ⊥BC ,∴∠EFD =90°∴∠DEF =90°-80°=10°【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识. 24.()1若n 边形的内角和等于它外角和的3倍,求边数n .()2已知a ,b ,c 为三角形三边的长,化简:a b c b c a --+--.解析:()18;()22c .【分析】(1)根据多边形的内角和与外角和公式列出方程即可求解;(2)根据三角形的三边关系可得a c b +>,b c a +>,再根据化简绝对值的方法即可求解.【详解】解:()1由题意得:()18023603n ︒-=︒⨯,解得:8n =.()2∵a ,b ,c 为三角形三边的长,∴a c b +>,b c a +>, ∴a b c b c a --+--()()2a b c b c a b c a a c b c =-++-+=+-++-=.【点睛】此题主要考查多边形的内角和与外角和、三角形的三边关系的应用,解题的关键是熟知多边形的性质及去绝对值的方法.25.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 解析:﹣2a+4b ﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a ,b ,c 为ABC 的三边,∴a+b >c ,b+c >a ,a+c >b∴|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b ﹣c|=﹣[a ﹣(b+c )]+2[b ﹣(c+a )]+(a+b ﹣c )=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b ﹣2c ﹣2a+a+b ﹣c=﹣2a+4b ﹣2c .【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理. 26.如图,直线AB 与直线MN 相交,交点为O ,OC ⊥AB ,OA 平分∠MOD ,若∠BON =20°,求∠COD 的度数.解析:∠COD =70°【分析】利用对顶角相等可得∠AOM 的度数,再利用角平分线的定义和垂线定义进行计算即可.【详解】解:∵∠BON =20°,∴∠AOM =20°,∵OA 平分∠MOD ,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.【点睛】本题考查了垂线,关键是掌握对顶角相等,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.27.如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.(1)若∠A=70°,求∠D的度数;(2)若∠A=a,求∠E;(3)连接AD,若∠ACB= ,则∠ADB= .解析:(1)35°;(2)90°-12α;(3)12β【分析】(1)由角平分线的定义得到∠DCG=12∠ACG,∠DBC=12∠ABC,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC,∠CBE=12∠CBF,于是得到∠DBE=90°,由(1)知∠D=12∠A,根据三角形的内角和得到∠E=90°-12α;(3)根据角平分线的定义可得,∠ABD=12∠ABC,∠DAM=12∠MAC,再利用三角形外角的性质可求解.【详解】解:(1)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=12∠ACG,∠DBC=12∠ABC,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC ,∴∠D=12∠A=35°; (2)∵BD 平分∠ABC ,BE 平分∠CBF , ∴∠DBC=12∠ABC ,∠CBE=12∠CBF , ∴∠DBC+∠CBE=12(∠ABC+∠CBF )=90°, ∴∠DBE=90°,∵∠D=12∠A ,∠A=α, ∴∠D=12α, ∵∠DBE=90°, ∴∠E=90°-12α; (3)如图,∵BD 平分∠ABC ,CD 平分∠ACG ,∴AD 平分∠MAC ,∠ABD=12∠ABC , ∴∠DAM=12∠MAC , ∵∠DAM=∠ABD+∠ADB ,∠MAC=∠ABC+∠ACB ,∠ACB=β,∴∠ADB=12∠ACB=12β. 故答案为:12β. 【点睛】本题主要考查三角形的角平分线,三角形外角的性质,灵活运用三角形外角的性质是解题的关键.28.如图1,已知ACD ∠是ABC 的一个外角,我们容易证明ACD A B ∠=∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠_______180A ∠+︒(横线上填“>”、“<”或“=”).初步应用:(2)如图3,在ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠=_______.(3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请尝试证明.(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论直接写出P ∠与A ∠、D ∠的数量关系.解析:(1)= (2) 45° (3)1902P A ∠=︒-∠;证明见解析 (4)1118022P A D ∠=︒-∠-∠ 【分析】(1)根据三角形外角的性质得:∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1−∠C =180°,将∠1=135°代入可得结论; (3)根据角平分线的定义得:∠CBP =12∠DBC ,∠BCP =12∠ECB ,根据三角形内角和可得:∠P 的式子,代入(1)中得的结论:∠DBC +∠ECB =180°+∠A ,可得:∠P =90°−12∠A ; (4)根据平角的定义得:∠EBC =180°−∠1,∠FCB =180°−∠2,由角平分线得:∠3=12∠EBC =90°−12∠1,∠4=12∠FCB =90°−12∠2,相加可得:∠3+∠4=180°−12(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【详解】(1)∠DBC +∠ECB−∠A =180°,理由是:∵∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,∴∠DBC +∠ECB =2∠A +∠ACB +∠ABC =180°+∠A ,∴∠DBC +∠ECB =∠A +180°,故答案为:=;(2)∠2−∠C =45°.理由是:∵∠2+∠1−∠C =180°,∠1=135°,∴∠2−∠C +135°=180°,∴∠2−∠C=45°.故答案为:45°;(3)∠P=90°−12∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=12∠DBC,∠BCP=12∠ECB,∵△BPC中,∠P=180°−∠CBP−∠BCP=180°−12(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°−12(180°+∠A)=90°−12∠A;(4)∠P=180°−12(∠A+∠D).理由是:如图:∵∠EBC=180°−∠1,∠FCB=180°−∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°−12∠1,∠4=12∠FCB=90°−12∠2,∴∠3+∠4=180°−12(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°−(∠A+∠D),又∵△PBC中,∠P=180°−(∠3+∠4)=12(∠1+∠2),∴∠P=12×[360°−(∠A+∠D)]=180°−12(∠A+∠D).【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
新人教版八年级上数学第十一章-三角形-知识点+考点+典型例题(含答案)
第十一章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、三角形【知识精读】1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心)(2)三角形的中线(三条中线的交点叫重心)(3)三角形的高(三条高线的交点叫垂心)3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;(5)三角形具有稳定性。
4. 补充性质:在∆A B C中,D是BC边上任意一点,E是AD上任意一点,则⋅=⋅。
S S S S∆∆∆∆ABE CDE BDE CAEAEB CD三角形是最常见的几何图形之一,在工农业生产和日常生活中都有广泛的应用。
三角形又是多边形的一种,而且是最简单的多边形,在几何里,常常把多边形分割成若干个三角形,利用三角形的性质去研究多边形。
实际上对于一些曲线,也可以利用一系列的三角形去逼近它,从而利用三角形的性质去研究它们。
因此,学好本章知识,能为以后的学习打下坚实的基础。
5. 三角形边角关系、性质的应用【分类解析】例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020︒<<︒∠B B. 2030︒<<︒∠B C. 3045︒<<︒∠B D. 4560︒<<︒∠B分析:因为∆A B C 为锐角三角形,所以090︒<<︒∠B 又∠C =2∠B ,∴︒<<︒0290∠B ∴︒<<︒045∠B又∵∠A 为锐角,()∴=︒-+∠∠∠A B C 180为锐角 ∴+>︒∠∠B C 90∴>︒390∠B ,即∠B >︒30 ∴︒<<︒3045∠B ,故选择C 。
例2. 选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。
解:∵三角形的一个外角等于160° ∴另两个外角的和等于200° 设这两个外角的度数为2x ,3x ∴+=23200x x 解得:x =40 2803120x x ==, 与80°相邻的内角为100° ∴这个三角形为钝角三角形 应选C例3. 如图,已知:在∆A B C 中,A B A C ≤12,求证:∠∠C B <12。
AEBC F分析:欲证∠∠C B <12,可作∠ABC 的平分线BE 交AC 于E ,只要证∠∠C EBC <即可。
为与题设AB AC ≤12联系,又作AF//BE 交CB 的延长线于F 。
显然∠EBC =∠F ,只要证∠∠C F <即可。
由A F A B A C <≤2可得证。
证明:作∠ABC 的角平分线BE 交AC 于E ,过点A 作AF//BE 交CB 的延长线于F AF BE F EBC FAB ABE //,∠∠,∠∠∴== 又∵BE 平分∠ABC ,∴∠EBC =∠ABE ∴∠F =∠FAB ,∴AB =BF 又∵AB +FB >AF ,即2AB >AF 又∵A B A C A C A F ≤∴>12,∴>∠∠F C ,又∵∠∠F A B C =12∴<∠∠C B 12例4. 已知:三角形的一边是另一边的两倍。
求证:它的最小边在它的周长的16与14之间。
分析:首先应根据已知条件,运用边的不等关系,找出最小边,然后由周长与边的关系加以证明。
A BCa bc证明:如图,设∆A B C 的三边为a 、b 、c ,其中a c =2, b a c a c >-=,2 ∴>b c因此,c 是最小边,∴<b c 3因此,a b c c c c ++<++23,即c a b c >++16()∴++<<++1614()()a b c c a b c故最小边在周长的16与14之间。
中考点拨:例1. 选择题:如图是一个任意的五角星,它的五个顶角的和是( ) A. 50B. 100C. 180D. 200ABCDEG F分析:由于我们学习了三角形的内角、外角的知识,所以需要我们把问题转化为三角形角的问题。
解: ∠∠∠,∠∠∠C E AGF B D AFG +=+=∴++++=++=︒∠∠∠∠∠∠∠∠A B C E D A A G F AFG 180 所以选择C例2. 选择题:已知三角形的两边分别为5和7,则第三边x 的范围是( ) A. 大于2B. 小于12C. 大于2小于12D. 不能确定分析:根据三角形三边关系应有7575+>>-x ,即122>>x 所以应选C例3. 已知:P 为边长为1的等边∆A B C 内任一点。
求证:322<++<PA PB PCAEFBCP证明:过P 点作EF//BC ,分别交AB 于E ,交AC 于F , 则∠AEP =∠ABC =60°∠∠∠EAP EAF APE <=︒∴>︒6060在∆A E P 中,∠∠,∠∠,∠A P E A E P A E A P A F E A C B A E F >∴>==︒=︒6060∴∆AEF 是等边三角形 ∴=AF EF()()() AE AP BE EP BP PF FC PC AE EB EP PE FC AP BP PCAB EF FC AP BP PC AB AF AC AP BP PCPB PA PC AB AC >+>+>⎧⎨⎪⎩⎪++++>++++>++++>++∴++<+=2()∴+>+>+>⎧⎨⎪⎩⎪∴++>++=∴>++>PA PB AB PB PC BC PC PA AC PA PB PC AB BC AC PA PB PC 23232题型展示:例1. 已知:如图,在∆A B C 中,D 是BC 上任意一点,E 是AD 上任意一点。
求证: (1)∠BEC >∠BAC ; (2)AB +AC >BE +EC 。
ABC DEF分析:在(1)中,利用三角形内角和定理的推论即可证出在(2)中,添加一条辅助线,转化到另一个三角形中,利用边的关系定理即可证出。
证明:(1)∵∠BED 是∆ABE 的一个外角, ∴>∠∠BED BAE 同理,∠∠DEC CAE >∴+>+∠∠∠∠BED DEC BAE CAE 即∠∠BEC BAC > (2)延长BE 交AC 于F 点AB AF BE EFEF FC ECAB AF EF FC BE EF EC+>++>∴+++>++又即AB AC BE EC +>+例2. 求证:直角三角形的两个锐角的相邻外角的平分线所夹的角等于45°。
已知:如图,在∆A B C 中,∠=︒∠∠C EAB ABD 90,、是∆A B C 的外角,AF 、BF 分别平分∠EAB 及∠ABD 。
求证:∠AFB =45°ABCE DF分析:欲证∠AFB =︒45,须证∠∠FAB FBA +=︒135 ∵AF 、BF 分别平分∠EAB 及∠ABD ∴要转证∠EAB +∠ABD =270°又∵∠C =90°,三角形一个外角等于和它不相邻的两个内角之和 ∴问题得证证明:∵∠EAB =∠ABC +∠C ∠ABD =∠CAB +∠C∠ABC +∠C +∠CAB =180°,∠C =90°∴+=+++=︒+︒=︒∠∠∠∠∠∠EAB ABD ABC C CAB C 18090270 ∵AF 、BF 分别平分∠EAB 及∠ABD ()∴+=+=⨯︒=︒∠∠∠∠FAB FBA EAB ABD 1212270135在∆ABF 中,()∠∠∠AFB FAB FBA =︒-+=︒18045【实战模拟】1. 已知:三角形的三边长为3,8,12+x ,求x 的取值范围。
2. 已知:∆A B C 中,A B B C =,D 点在BC 的延长线上,使AD BC =,∠=BC A α,∠=CAD β,求α和β间的关系为?ABC Dαβ3. 如图,∆A B C 中,∠∠ABC ACB 、的平分线交于P 点,∠=︒B P C 134,则∠=B A C ( ) A. 68°B. 80°C. 88°D. 46°ABCP4. 已知:如图,AD 是∆A B C 的BC 边上高,AE 平分∠B A C 。
求证:()∠=∠-∠EAD C B 12ABCD E5. 求证:三角形的两个外角平分线所成的角等于第三个外角的一半。
【试题答案】1.分析:本题是三边关系的应用问题,只需用三边关系确定第三边的取值范围即可。
解:∵三边长分别为3,8,12+x ,由三边关系定理得: 51211<+<x∴<<∴<<421025x x2.解: AB BC BCA BAC =∴∠=∠=,α 又 AD BC AD AB =∴=,∴∠=∠D B ,又∵∠=∠+∠B C A D B ∴∠=-∴∠=-D B αβαβ, 根据三角形内角和,得: 2180ααβ+-=︒ ∴-=︒3180αβ 3.解: ∠=︒BPC 134 ∴∠+∠=︒P B C P C B 46 又∵BP 、CP 为∠B 、∠C 的平分线()∴==∴+=+∴+=⨯︒=︒∴=︒--=︒∠∠,∠∠∠∠∠∠∠∠∠∠∠PBC ABC PC B AC BPBC PC B ABC AC B ABC AC B BAC ABC AC B 12121224692180884.证明:∠∠∠EAD EAC CAD =- ∵AE 平分∠BAC ,∴=∠∠EAC BAC 12又∵AD ⊥BC ,∴=︒∠ADC 90 ∴=︒-∠∠CAD C 90又 ∠∠∠BAC B C =︒--180()()∴=-=︒---︒-=-∠∠∠∠∠∠∠∠EAD BAC C ADB C C C B1212180901212()∴=-∠∠∠EAD C B 125.证明:如图,设∆A B C 的∠BAC 和∠ABC 的外角平分线交于点DE AB DC G∠∠∠∠∠∠FAB ABC AC B EBA BAC AC B=+=+()()∴+=+=++∠∠∠∠∠∠∠D A B D B AF A B E B A A B C B A C A C B1212则()∠∠∠ADB DAB DBA =︒-+180()()()=++-+-=+∠∠∠∠∠∠∠∠ABC AC B BAC ABC BAC AC BABC BAC 1212又()1212∠∠∠AC G ABC BAC =+∴=∠∠A D B A C G 12。