2021年人教版数学八年级上册《三角形》专题培优练习(含答案)

合集下载

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。

人教版八年级上册数学 全等三角形(培优篇)(Word版 含解析)(1)

人教版八年级上册数学 全等三角形(培优篇)(Word版 含解析)(1)

人教版八年级上册数学全等三角形(培优篇)(Word版含解析)(1)一、八年级数学轴对称三角形填空题(难)1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=22,∴OA=OP=22,∴P的坐标是(﹣22,0).综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.2.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.故答案为10.3.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.4.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案.【详解】解:如图示:连接OC ,OD ,∵点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,∴OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,∵OP=5cm , ∴12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,∵△PEF 的周长是5cm ,∴PE+EF+PF=CE+EF+FD=CD=5cm ,∴CD=OD=OD=5cm ,∴△OCD 是等边三角形,∴∠COD=60°,∴11122230AOB AOP BOP COP DOP COD ,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.5.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.6.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB ;④12ABC AEPF S S ∆=四边形,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,∴∠PAE=∠PCF ,在△APE 与△CPF 中,{?PAE PCFAP CPEPA FPC ∠=∠=∠=∠,∴△APE ≌△CPF (ASA ),同理可证△APF≌△BPE ,∴AE=CF ,△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,①②④正确; 而AP=12BC ,当EF 不是△ABC 的中位线时,则EF 不等于BC 的一半,EF=AP , ∴故③不成立.故始终正确的是①②④.故选D .考点:1.全等三角形的判定与性质;2.等腰直角三角形.7.如图,在△ABC 中,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,若∠BAC=126°,则∠EAD=_____°.【答案】72°【解析】【分析】根据AB 的中垂线可得BAD ∠,再根据AC 的中垂线可得EAC ∠,再结合∠BAC=126°即可计算出∠EAD .【详解】根据AB 的中垂线可得BAD ∠=B根据AC 的中垂线可得EAC ∠=C ∠18012654B C ︒︒︒∠+∠=-=又 126BAD DAE EAC BAC ︒∠+∠+∠=∠=+C+126B DAE ︒∴∠∠∠=∴∠=DAE︒72【点睛】本题主要考查中垂线的性质,重点在于等量替换表示角度.8.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM223AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22-=43,MO OB∴Rt△ABM中,AM=22+=47.AB BM综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.10.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A .1B .2C .3D .4【答案】D【解析】【分析】 由等边三角形的性质可得BD=DC ,AB=AC ,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD ,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF ,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD ,从而可判断②正确;同理可得2BE=2CF=BD ,继而可得4BE=4CF=AB ,从而可判断④正确,由此即可得答案.【详解】∵等边△ABC 中,AD 是BC 边上的高,∴BD=DC ,AB=AC ,∠B=∠C=60°,在△ABD 与△ACD 中90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ABD ≌△ACD ,故①正确;在△ADE 与△ADF 中60EAD FAD AD ADEDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADE ≌△ADF ,故③正确;∵在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,∴2DE=2DF=AD ,故②正确;同理2BE=2CF=BD ,∵AB=2BD ,∴4BE=4CF=AB ,故④正确,故选D .【点睛】本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.12.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A .511a 32⨯() B .511a 23⨯() C .611a 32⨯() D .611a 23⨯() 【答案】A【解析】 连接AD 、DB 、DF ,求出∠AFD=∠ABD=90°,根据HL 证两三角形全等得出∠FAD=60°,求出AD ∥EF ∥GI ,过F 作FZ ⊥GI ,过E 作EN ⊥GI 于N ,得出平行四边形FZNE 得出EF=ZN=13a ,求出GI 的长,求出第一个正六边形的边长是13a ,是等边三角形QKM 的边长的13;同理第二个正六边形的边长是等边三角形GHI 的边长的13;求出第五个等边三角形的边长,乘以13即可得出第六个正六边形的边长. 连接AD 、DF 、DB .∵六边形ABCDEF 是正六边形, ∴∠ABC=∠BAF=∠AFE ,AB=AF ,∠E=∠C=120°,EF=DE=BC=CD ,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt △ABD 和RtAFD 中AF=AB {AD=AD∴Rt △ABD ≌Rt △AFD (HL ),∴∠BAD=∠FAD=12×120°=60°, ∴∠FAD+∠AFE=60°+120°=180°,∴AD ∥EF ,∵G 、I 分别为AF 、DE 中点,∴GI ∥EF ∥AD ,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是13a,即等边三角形QKM的边长的13,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=13a,∵GF=12AF=12×13a=16a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=12GF=112a,同理IN=112a,∴GI=112a+13a+112a=12a,即第二个等边三角形的边长是12a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是13×12a;同理第第三个等边三角形的边长是12×12a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是13×12×12a;同理第四个等边三角形的边长是12×12×12a,第四个正六边形的边长是13×12×12×12a;第五个等边三角形的边长是12×12×12×12a,第五个正六边形的边长是1 3×12×12×12×12a;第六个等边三角形的边长是12×12×12×12×12a,第六个正六边形的边长是1 3×12×12×12×12×12a,即第六个正六边形的边长是13×512()a,故选A.13.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.14.等边△ABC ,在平面内找一点P ,使△PBC 、△PAB 、△PAC 均为等腰三角形,具备这样条件的P 点有多少个?( )A .1个B .4个C .7个D .10个【答案】D【解析】试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D . 点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.15.如图所示,把多块大小不同的30角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x 轴重合且点A 的坐标为()2,0,30ABO ∠=︒,第二块三角板的斜边1BB 与第一块三角板的斜边AB 垂直且交x 轴于点1B ,第三块三角板的斜边12B B 与第二块三角板的斜边1BB 垂直且交y 轴于点2B ,第四块三角板斜边23B B 与第三块三角板的斜边12B B 垂直且交x 轴于点3B ,按此规律继续下去,则点2018B 的坐标为( )A .()20182(3),0-⨯ B .()20180,2(3)-⨯ C .()20192(3),0⨯ D .()20190,2(3)-⨯ 【答案】D【解析】【分析】 计算出OB 、OB 1、 OB 2的长度,根据题意和图象可以发现题目中的变化规律,从而可以求得点B 2018的坐标.【详解】解:由题意可得,2242-3OB 1= 3 OB= 233⨯ = 22(3)⨯,OB 2= 3 OB 1= 32(3)⨯,…∵2018÷4=504…2,∴点B 2018在y 轴的负半轴上,∴点B 2018的坐标为()20190,2(3)-⨯.故答案为:D .【点睛】本题考查规律型:点的坐标规律及含30度角的直角三角形的性质,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.16.如图,在Rt △ABC 中,AC =BC ,∠ACB =90°,D 为AB 的中点,E 为线段AD 上一点,过E 点的线段FG 交CD 的延长线于G 点,交AC 于F 点,且EG =AE ,分别延长CE ,BG 交于点H ,若EH 平分∠AEG ,HD 平分∠CHG 则下列说法:①∠GDH =45°;②GD =ED ;③EF =2DM ;④CG =2DE +AE ,正确的是( )A .①②③B .①②④C .②③④D .①②③④【答案】B【解析】【分析】 首先证明△AEC ≌△GEC (SAS ),推出CA =CG ,∠A =∠CGE =45°,推出DE =DG ,故②正确;再证明△EDC ≌△GDB ,推出∠CED =∠BGD ,ED =GD ,由三角形外角的性质得出∠HDG =∠HDE ,进而得出∠GDH =∠EDH =45°,即可判断①正确;通过证明△EDC 和△EMD 是等腰直角三角形,得到ED 2MD ,再通过证明△EFC ≌△EDC ,得到EF =ED ,从而可判断③错误;由CG =CD +DG ,CD =AD ,ED =GD ,变形即可判断④正确.【详解】∵AC =BC ,∠ACB =90°,AD =DB ,∴CD ⊥AB ,CD =AD =DB ,∠A =∠CBD =45°.∵EH 平分∠AEG ,∴∠AEH =∠GEH .∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.17.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为()A.2 B.3 C.4 D.5【答案】B【解析】由等边三角形的性质得,点B,C关于AD对称,连接BE交AD于点P,则EP+CP=BE最小,又BE=AD,所以EP+CP的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.18.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.19.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】由点A、B的坐标可得到2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=22,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.20.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQ B.DE=12AC C.AE=12CQ D.PQ⊥AB【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,FPD QPDE CDQPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,∵AE=EF,∴DE=12AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=12AP=12CQ,∴C选项正确,故选D.。

人教版八年级数学上册 三角形认识 单元培优卷(含答案)

人教版八年级数学上册 三角形认识 单元培优卷(含答案)

八年级数学上册三角形认识单元培优卷一、选择题:1、如图所示的△ABC中,线段BE是△ABC边AC上的高的是( ).2、为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB 间的距离不可能是()A.15mB.17mC.20mD.28m3、已知一个多边形的内角和是720º,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4、若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10B.9C.8D.65、将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )A.45°B.50°C.60°D.75°6、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A.50°B.30°C.20°D.15°7、三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个8、现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根可以组成不同三角形的个数 ( )A.1个B.2个C.3个D.4个9、如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A. 90°B. 135°C. 270°D. 315°11、一个正方形和两个等边三角形的位置如图所示,若∠1= 50°,则∠2+∠3 =()A.190°B.130°C.100°D.80°12、如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.当A,B移动后,∠BAO=45°时,则∠C的度数是( )A.30°B.45°C.55°D.60°二、填空题:13、如图,自行车的三角形支架,这是利用三角形具有性.14、已知三角形的边长分别为4、a、8,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.15、如果一个多边形的每一个外角都是30°,则这个多边形对角线的条数是,它的内角和是,它的外角和是 .16、如图所示,求∠A+∠B+∠C+∠D+∠E+∠F= .17、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为__________.18、如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2018,得∠A2018,则∠A2018=____.(用含α的式子表示)三、解答题:19、如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.20、在各个内角都相等的多边形中,一个外角比一个内角少120°,求这个多边形的一个内角的度数和它的边数.21、如图, AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=36°,求∠BED的度数;(2)作出△BED中DE边上的高,垂足为H;(3)若△ABC面积为20,过点C作CF//AD交BA的延长线于点F,求△BCF的面积。

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。

全等三角形培优综合练习题 2021-2022学年八年级数学人教版上册

全等三角形培优综合练习题  2021-2022学年八年级数学人教版上册

全等三角形培优综合练习题一、单选题1.如图,在中,是边上的高,,, .连接,交的延长线于点E,连接, .则下列结论:① ;② ;③ ;④ ,其中正确的有()A. ①②③B. ①②④C. ①③④D. ①②③④2.如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ ∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是()A. ①②B. ②③C. ①②③D. ①③3.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=30°,连接AC,BD交于点M,AC与OD相交于E,BD与OA相交于F,连接OM.则下列结论中:①AC=BD;②∠AMB=30°;③△OEM≌△OFM;④MO平分∠BMC.正确的个数有()A. 4个B. 3个C. 2个D. 1个4.如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A. ①②③B. ①②④C. ①③④D. ②③④5.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE的长是()A. 1B. 2C. 3D. 46.如图,AD是的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF,BE=7.5,CF=6,则EF=( ).A. 2.5B. 2C. 1.5D. 17.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A. B. C. D.8.如图,点A,C,D,E在Rt△MON的边上,∠MON=90°,AE⊥AB且AE=AB,BC⊥CD且BC=CD,BH⊥ON于点H,DF⊥ON于点F,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为()A. 30B. 50C. 66D. 809.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当PA=CQ时,连结PQ交AC边于D,则DE的长为()A. B. C. D.10.如图,点P在∠MAN的角平分线上,点B,C分别在AM,AN上,作PR⊥AM,PS⊥AN,垂足分别是R,S.若∠ABP+∠ACP=180°,则下面三个结论:①AS=AR;②PC∥AB;③△BRP≌△CSP.其中正确的是()A. ①②B. ②③C. ①③D. ①②③二、填空题1.在△ABC中,AC=5,中线AD=7,则AB边的取值范围是 .2.如图, ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的是 .①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.3.如图,在直角三角形中,直角边,,以它的三边分别作出了正方形、、,把、、的面积分别记为、、,则 .4.如图,在四边形中,于点,且平分,若的面积为,则的面积为 .5.如图,在中,,、分别为和的角平分线,的周长为20,,则的长为.6.如图,在锐角中,AC=10,,∠BAC的平分线交BC于点D,点M,N分别是AD 和AB上的动点,则BM+MN的最小值是7.如图,是的角平分线,,垂足为F,,和的面积分别为52和36,则的面积为________.8.如图,,点是边上的点,平分,平分,有下列结论:①,② 为的中点,③ ,④ ,其中正确的有________.(填序号)三、解答题1.如图,在△ABC中,AB=BC,∠B=90°,AD是∠BAC的平分线,CE⊥AD于点E.求证:AD=2CE.2.如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°- ∠B;(2)若∠B=60°,求证:EF=DF.3.提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.4.如图,已知△OMN为等腰直角三角形,∠MON=90°,点B为NM延长线上一点,OC⊥OB,且OC=OB,连接CN.(1).如图1,求证:CN=BM;(2).如图2,作∠BOC的平分线交MN于点A,求证:AN2+BM2=AB2;(3).如图3,在(2)的条件下,过点A作AE⊥ON于点E,过点B作BF⊥OM于点F,EA,BF的延长线交于点P,请探究:以线段AE,BF,AP为长度的三边长的三角形是何种三角形?并说明理由.5.在正方形中,点、分别在边、上,且 .(1).将绕点顺时针旋转,得到(如图,求证:;(2).若直线与、的延长线分别交于点、(如图,求证:;(3).将正方形改为长与宽不相等的矩形,其余条件不变(如图,直接写出线段、、之间的数量关系.6.如图,在,,,是上一点,于,是上一点,于.(1).如图1,求证:;(2).如图2,在射线上有一点,连接,,求的度数;(3).在(2)的条件下,如图3,连接,若,求的长.7.课外兴趣小组活动时,老师提出了如下问题:如图1,在中,若,,求边上的中线的取值范围.小颖在组内经过合作交流,得到了如下的解决方法:如图2,延长到点E,使,连接,可证得,即,请根据小颖的方法思考下列问题.(1).由“三角形的三边关系”可求得的取值范围是.(2).解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小颖善于探究,她又提出了如下的问题,请你解答.如图3,在中,若是的中线,E是上一点,连接并延长交边于点F,且,求证:.(3).如图4,在中,D是的中点,分别以,为直角边向外作等腰直角三角形和等腰直角三角形,其中,连接,试探索与之间的数量与位置关系,并说明理由.8.在等边三角形ABC中,点E为线段AB上一动点,点E与A,B不重合,点D在CB的延长线上,且ED =EC.(1)当E为边AB的中点时,如图1所示,确定线段AE与BD的大小关系,并证明你的结论;(2)如图2,当E不是边AB的中点时,(1)中的结论是否成立?若不成立,请直接写出BD与AE的数量关系;若成立,请给予证明;(提示:过E作交AC于点F)(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,的边长为1,AE=2,请直接写出CD的长.9.如图(1)[发现]:如图1.在△ABC中,AB=AC,∠BAC=90°,过点A作AH⊥BC于点H,求证:AH= BC.(2)[拓展]:如图2.在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=90°,点D、B、C在同一条直线上,AH为△ABC中BC边上的高,连接CE.则∠DCE的度数为________,同时猜想线段AH、CD、CE之间的数量关系,并说明理由.(3)[应用]:在图3、图4中.在△ABC中,AB=AC,且∠BAC=90°,在同一平面内有一点P,满足PC=1,PB=6,且∠BPC=90°,请求出点A到BP的距离.10.如图(1)问题背景:如图①,在四边形中,.E,F 分别是上的点,且,请探究图中线段之间的数量关系.小明同学探究此问题的方法是:延长到点G,使.连接,先证明,得;再由条件可得,证明,进而可得线段之间的数量关系是________.(2)探索延伸:如图②,在四边形中,.E,F分别是,上的点,且.问(1)中的线段之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西的A处,舰艇乙在指挥中心南偏东的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,舰艇乙沿北偏东的方向以60海里/小时的速度前进.2小时后,甲、乙两舰艇分别到达E,F处,此时在指挥中心观测到两舰艇之间的夹角为,试求此时两舰艇之间的距离.11.在中,,点是直线上一点(不与,重合),以为一边在的右侧作,使,,连接.(1)如图1,当点在线段上,如果,则 ________度;(2)如图2,如果,求的度数是多少?(3)设,.①如图3,当点在线段上移动,则,之间有怎样的数量关系?请说明理由;②当点在直线上移动,请直接写出,之样的数量关系,不用证明.12.(1).猜想:如图1,已知:在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、E试猜想、、有怎样的数量关系,请直接写出;(2).探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在中,,D,A、E三点都在直线m上,并且有(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由.(3).解决问题:如图3,F是角平分线上的一点,且和均为等边三角形,D、E分别是直线m上A点左右两侧的动点D、E、A互不重合,在运动过程中线段的长度始终为n,连接、,若,试判断的形状,并说明理由.13.据图回答问题:(1)感知:如图①.AB=AD,AB⊥AD,BF⊥AF于点F,DG⊥AF于点G.求证:△ADG≌△BAF;(2)拓展:如图②,点B,C在∠MAN的边AM,AN上,点E,F在∠MAN在内部的射线AD上,∠1,∠2分别是△ABE,△CAF的外角,已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)应用:如图③,在△ABC中,AB=AC,AB>BC,点在D边BC上,CD=2BD,点E,F在线段AD 上,∠1=∠2=∠BAC.若△ABC的面积为12,则△ABE与△CDF的面积之和为________.答案解析部分一、单选题1. D2.C3.B4. B5.B6.C7.D8. B9.A 10.C二、填空题1.9<AB<192.①②③④3.18 14.205.86. 57. 88. ②③④三、解答题1.【答案】证明:延长AB、CE交于点F,∵∠ABC=90°,CE⊥AD,∠ADB=∠CDE,∴∠BAD=∠ECD,在△ABD和△CBF中,,∴△ABD≌△CBF(SAS),∴AD=CF,∵AD是∠BAC的平分线,∴∠CAE=∠FAE,在△CAE和△FAE中,,∴△CAE≌△FAE(ASA),∴CE=EF,∴AD=CF=2CE.2.【答案】(1)证明:∵∠BAC+∠BCA=180°-∠B,又∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC= ∠BAC,∠FCA= ∠BCA,∴∠FAC+∠FCA= ×(180°-∠B)=90°- ∠B,∵∠EFA=∠FAC+∠FCA,∴∠EFA=90°- ∠B.(2)证明:如图,过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于M.∵AD、CE分别是∠BAC、∠BCA的平分线,∴FG=FH=FM,∵∠EFH+∠DFH=120°,∠DFG+∠DFH=360°-90°×2-60°=120°,∴∠EFH=∠DFG,在△EFH和△DFG中,,∴△EFH≌△DFG(AAS),∴EF=DF.3.【答案】证明:如图1,∵四边形ABCD为正方形,∴∠BCD=90°,AC平分∠BCD,∵PM⊥BC,PN⊥CD,∴四边PMCN为矩形,PM=PN,∵∠BPE=90°,∠BCD=90°,∴∠PBC+∠CEP=180°,而∠CEP+∠PEN=180°,∴∠PBM=∠PEN,在△PBM和△PEN中∴△PBM≌△PEN(AAS),∴PB=PE;如图2,连结PD,∵四边形ABCD为正方形,∴CB=CD,CA平分∠BCD,∴∠BCP=∠DCP,在△CBP和△CDP中,∴△CBP≌△CDP(SAS),∴PB=PD,∠CBP=∠CDP,∵∠BPE=90°,∠BCD=90°,∴∠PBC+∠CEP=180°,而∠CEP+∠PEN=180°,∴∠PBC=∠PED,∴∠PED=∠PDE,∴PD=PE,∴PB=PD;如图3,PB=PE还成立.理由如下:过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,∵四边形ABCD为正方形,∴∠BCD=90°,AC平分∠BCD,∵PM⊥BC,PN⊥CD,∴四边PMCN为矩形,PM=PN,∴∠MPN=90°,∵∠BPE=90°,∠BCD=90°,∴∠BPM+∠MPE=90°,而∠MEP+∠EPN=90°,∴∠BPM=∠EPN,在△PBM和△PEN中,∴△PBM≌△PEN(AAS),∴PB=PE.4.【答案】(1)证明:∵OC⊥OB,∴∠BOC=90°,∵∠MON=90°,∴∠BOC-∠COM=∠MON-∠COM,∴∠BOM=∠CON,在△CON和△BOM中,,∴△CON≌△BOM(SAS),∴CN=BM;(2)证明:连接AC,∵OA平分∠BOC,∴∠BOA=∠COA,在△BOA和△COA中,,∴△BOA≌△COA(SAS),∴AB=AC,∵△OMN是等腰直角三角形,∴∠ONM=∠OMN=45°,∵△CON≌△BOM,∴∠ONC=∠OMB=135°,∴∠ANC=∠ONC-∠ONM=135°-45°=90°,∴AN2+CN2=AC2,∴AN2+BM2=AB2.(3)解:以线段AE,BF,AP为长度的三边长的三角形是直角三角形,理由如下:∵,由勾股定理得:,∵,∴,由勾股定理得:,∵,∴,由勾股定理得:,∵AN2+BM2=AB2,∴,∴,∴以线段AE,BF,AP为长度的三边长的三角形是直角三角形.5.【答案】(1)证明:如图1中,绕着点顺时针旋转,得到,,,,,在与中,,,,,.(2)证明:如图2中,设正方形的边长为 .将绕着点顺时针旋转,得到,连接 .则, .由(1)知,.,、、均为等腰直角三角形,,,,,,,,,,,,.(3)解:6.【答案】(1)证明:∵,∴,∴,∴,∵,∴,∵,∴≌(AAS),∴.(2)解:由(1)可知:,∴,∵,∴,∵,∴,∴,∴,∵,,∴,∴.(3)解:延长、交于,过点作于,如图所示:由(1)(2)可证,,,∴,,∵,∴,∴,∵,∴≌(ASA),∴,∵都为等腰直角三角形,且BC为它们的公共斜边,∴,∴,∵,∴,∵,∴≌(AAS),∴.7.【答案】(1)(2)证明:如图,延长到点G,使,连接,∵,,,∴,∴,,∵,∴,∴,∴,∴;(3)解:,,理由如下:如图,延长至点E,使,连接,由题意得,∴,,∵,∴,即∵,∴,∵和是等腰直角三角形,∴,,∴,在和中,∴,∴,,∴,延长交于点,∵,∴,∴,∴,∴.8.【答案】(1)解:AE=BD;证明:∵△ABC为等边三角形,AE=BE,∴CE平分∠ACB,∴∠ECB=30°.∵DE=CE,∴∠D=∠ECB=30°.∵∠ABC=∠D+∠DEB=60°,∴∠DEB=30°,∴∠D=∠DEB,∴BD=BE.∵AE=BE,∴AE=BD;(2)解:当E为边AB上任意一点时,AE=BD仍成立;证明:如图1,过E作EF∥BC交AC于点F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°, ∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,∴△DEB≌△ECF(AAS),∴BD=EF,∴AE=BD;(3)解:CD的长为3或1如图2,作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,∴AF=AE=EF=2,∠BEF=60°,∴∠CEF=60°+∠BEC.∵∠EDC=∠ECD=∠B+∠BEC=60°+∠BEC,∴∠CEF=∠EDB.又∵EB=CF=3,∠F=∠B=60°,∴△CEF≌△EDB(AAS),∴BD=EF=2,∴CD=BD-BC=1,如图3,同理可得CD=3,综上所述,CD的长为3或19.【答案】(1)证明:∵AH⊥BC,∠BAC=90°,∴∠AHC=90°=∠BAC.∴∠BAH+∠CAH=90°,∠BAH+∠B=90°.∴∠CAH=∠B,在△ABH和△CAH中,,∴△ABH≌△CAH.(AAS).∴BH=AH,AH=CH.∴AH= BC(2)解:∠DCE的度数为90°,线段AH、CD、CE之间的数量关系为:CE+2AH=CD,理由如下:∵∠DAB+∠BAE=90°,∠EAC+∠BAE=90°,∴∠DAB=∠EAC,∵AD=AE,AB=AC,∴△ADB≌△AEC (SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°,∴∠ABD=135°,∴∠DCE=90°;∵D、B、C三点共线,∴DB+BC=CD,∵DB=CE,AH= BC,∴CE+2AH=CD(3)解:点A到BP的距离为:或.理由如下:如图3,过点A作AH⊥BP于点H,连接AP,作∠PAD=90°,交BP于点D,∴∠BAC=∠DAP=90°,∴∠BAD=∠CAP,∵∠BDA=∠APC=90°+∠APD,∴△APC≌△ADB(AAS),∴BD=CP=1,∴DP=BP-BD=6-1=5,∵AH⊥DP,∴AH= DP= ;如图4,过点A作AH⊥BP于点H,作∠PAD=90°,交PB的延长线于点D,∴∠BAC=∠DAP=90°,∴∠BAD=∠CAP,∵∠BAC=90°,∠BPC=90°,∴∠ACP+∠ABP=180°,∴∠ACP=∠ABD,∵AB=AC,∴△APC≌△ADB(AAS),∴BD=CP=1∴DP=BP+BD=6+1=7.∵AH⊥DP,∴AH= DP= .综上所述:点A到BP的距离为:或10.【答案】(1)EF=BE+DF(2)解:仍然成立.证明:如图1,延长到G,使,连接,∵,∴.在和中,,∴,∴,∵,∴,∵,∴,∴,在和中,,∴,∴,∵,∴(3)解:如图2,连接,延长、相交于点G.∵∠AOB=20°+90°+(90°-80°)=120°,∠EOF=60°,∴,又∵,∴符合(2)中探索延伸中的条件,∴结论成立,即海里.答:此时两舰艇之间的距离是220海里.11.【答案】(1)90(2)解:∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ABD=∠ACB=60°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=60°,∴∠BCE=∠ACE+∠ACB=60°+60°=120°,故答案为:120.(3)解:①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.②如图1:当点D在射线BC上时,α+β=180°,连接CE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.12.【答案】(1)(2)解:结论成立;理由如下:∵,,,∴,在和中,,∴,∴,,∴;(3)解:为等边三角形,理由:由(2)得,,∴,,∴,即,在和中,,∴,∴,,∴,∴为等边三角形.13.【答案】(1)证明:∵AB⊥AD,BF⊥AF,∴∠DAG+∠BAF=90°,∠B+∠BAF=90°,∴∠DAG=∠B,在△ADG和△BAF中,,∴△ADG≌△BAF(AAS);(2)证明:∵∠1=∠2,∴∠AEB=∠CFA,∠1=∠ABE+∠BAE,∠BAC=∠CAF+∠BAE,∠1=∠BAC,∴∠ABE=∠CAF,在△ABE和△CAF中,,∴△ABE≌△CAF(AAS);(3)8。

人教版2021年八年级上册第11章《三角形》单元复习训练卷 含答案

人教版2021年八年级上册第11章《三角形》单元复习训练卷 含答案

人教版2021年八年级上册第11章《三角形》单元复习训练卷一、选择题1.三角形的角平分线、中线和高都是 ( )A.直线B.线段C.射线D.以上答案都不对2.下列说法正确的是()A.有一个内角是锐角的三角形是锐角三角形B.钝角三角形的三个内角都是钝角C.有一个内角是直角的三角形是直角三角形D.三条边都相等的三角形称为等腰三角形3.用直角三角板作ABC的高,下列作法正确的是()A. B. C. D.4.如图,与ABC没有公共边的三角形是( )A.CDE B.BCE C.ABE D.BCD5.如图,三角形的个数是()A.4个B.3个C.2个D.1个6.如图,△ABC的面积计算方法是()A.AC•BD B.12BC•EC C.12AC•BD D.12AD•BD7.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形8.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°9.如图,在△ABC 中,∠A =80°,点D 在BC 的延长线上,∠ACD =145°,则∠B 是( )A .45°B .55°C .65°D .75°10.五边形对角线的条数为( )A .5B .6C .7D .811.如图,△ABC 中,∠A =46°,∠C =74°,BD 平分∠ABC ,交AC 于点D ,那么∠BDC 的度数是()A .76°B .81°C .92°D .104°12.如图,AE 、AD 分别是ABC 的高和角平分线,且28B ∠=︒,72C ∠=︒,则DAE ∠的度数为()A .18°B .22°C .30°D .38°13.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形14.如图,点B 、C 、D 在同一直线上,AB //CE ,若∠A =55°,∠ACB =65°,则∠1的值为( )A .80°B .65°C .60°D .55°15.如图,在ABC 中,D E 、分别为BC AD 、的中点,且4ABC S =,则S 阴影为( )A .2B .1C .12D .14二、填空题16.若一个三角形三边的长分别为5,11,2k,则k的取值范围是___.17.一个n边形的内角和为1080°,则n=________.18.如图,该硬币边缘镌刻的正九边形每个内角的度数是_____.19.如图,已知∠A=47°,∠B=38°,∠C=25°,则∠BDC的度数是______.20.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.21.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是_____.--+--+-+=______.22.已知ABC的三边长分别为a,b,c,则a b c b c a c a b23.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=_____.三、解答题24.已知,ABC的三边长为4,9,x.(1)求ABC的周长的取值范围;(2)当ABC的周长为偶数时,求x.25.(1)填表:(2)猜想给定一个正整数n,凸n边形最多有m个内角等于135°,则m与n之间有怎样的关系?(3)取n=7验证你的猜想是否成立?如果不成立,请给出凸n边形中最多有多少个内角等于135°?并说明理由.26.在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20 .(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?27.如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.28.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.参考答案1.B【分析】根据三角形的角平分线、中线和高定义判断即可.【详解】解:三角形的角平分线、中线、高都是线段.故选:B.【点睛】本题考查了三角形的角平分线、中线和高定义,熟练掌握三角形的角平分线、中线和高定义是解题关键.2.C【分析】根据三角形的定义进行判断即可.【详解】A.有一个内角是锐角的三角形可以是锐角三角形,直角三角形,钝角三角形,故A错误;B.钝角三角形只有一个内角为钝角,其余两个内角为锐角,故B错误;C.有一个内角是直角的三角形是直角三角形,故C正确;D.三条边都相等的三角形称为等边三角形,故D错误.故选:C.【点睛】本题考查了三角形的定义,熟知各个类型三角形的定义是解题的关键.3.C【分析】根据高线的定义即可得出结论.【详解】解:A、B、D均不是高线.故选:C.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.4.A【分析】直接找两个三角形的公共边即可.【详解】解:三角形的公共边即两个三角形共同的边.A,两个三角形没有公共边;B,两个三角形的公共边为BC;C,两个三角形的公共边为AB;D,两个三角形的公共边为BC.故选A.【点睛】此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.5.B【分析】根据三角形的定义可直接进行解答.【详解】解:由图可得:三角形有:△ABC、△ABD、△ADC,所以三角形的个数为3个;故选B.【点睛】本题主要考查三角形的概念,正确理解三角形的概念是解题的关键.6.C【分析】根据三角形的高线及面积可直接进行排除选项.【详解】解:由图可得:线段BD是△ABC底边AC的高线,EC不是△ABC的高线,所以△ABC的面积为12AC BD,故选C.【点睛】本题主要考查三角形的高线及面积,正确理解三角形的高线是解题的关键.7.D【详解】A选项,直角三角形有一个内角是直角,其他两个内角都是锐角,即直角三角形的三个内角不都相等,故不是正多边形;B选项,等腰三角形的三条边不一定都相等,所以不是正多边形;C选项,长方形的四个角都是直角,但是四条边不一定都相等,故不是正多边形;D选项,正方形四个内角都相等,且四条边都相等,所以是正多边形.8.C【详解】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C.9.C【分析】利用三角形的外角的性质即可解决问题.【详解】在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°-80°=65°,故选C.【点睛】本题考查三角形的外角,解题的关键是熟练掌握基本知识.10.A【分析】根据三角形以及对角线的概念,不难发现:从一个顶点出发的对角线除了和2边不能组成三角形外,其余都能组成三角形,故从一个顶点出发的对角线有(n-3)条.【详解】从n边形的一个顶点可以引(n-3)条对角线,对角线的总数是(3)2n n-;可得五边形的对角线条数为5(53)=52⨯-,故选:A.【点睛】本题考查了多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.11.A【分析】根据三角形的内角和为180°,可得∠A+∠C+∠ABC=180°,然后根据△ABC中,∠A=46°,∠C=74°,求得∠ABC=60°,然后根据角平分线的性质,可得∠ABD=30°,再根据三角形的外角性质,可得∠BDC=∠A+∠ABD=76°. 【详解】∵△ABC 中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD 为∠ABC 平分线,∴∠ABD=∠CBD=30°,∵∠BDC 为△ABD 外角,∴∠BDC=∠A+∠ABD=76°,故选A【点睛】此题主要考查了三角形的内角和外角的性质,解题关键是构造合适的角的和差关系,然后根据角平分线的性质求解即可.12.B【分析】根据角平分线性质和三角形内角和定理求解即可;【详解】∵AE 是ABC 的高,∴90AEB AEC ∠=∠=︒,又∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠,∵28B ∠=︒,72C ∠=︒,∴40BAD CAD ∠=∠=︒,∴180407268ADC ∠=︒-︒-︒=︒,∴906822DAE ∠=︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和三角形内角和定义,准确分析计算是解题的关键.13.A【详解】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.14.C【分析】根据三角形的内角和定理可求出∠B的值,再根据两直线平行,同位角相等即可得解.【详解】如图,∵∠A=55°,∠ACB=65°,∴∠B=180°﹣55°﹣65°=60°.∵AB∥CE,∴∠1=∠B=60°.故选:C.【点睛】本题考查平行线的性质和三角形的内角和定理,熟知平行线的性质是解题的关键.15.B【分析】根据中线将三角形面积分为相等的两部分可知:△ACD是△CDE的面积的2倍,△ABC的面积是△ACD的面积的2倍,依此即可求解.【详解】解:∵D、E分别是BC,AD的中点,∴S△CDE=12S△ACD,S△ACD=12S△ABC,∴S阴影=14S△ABC=14×4=1.故选B.【点睛】本题考查了三角形的面积和中线的性质:三角形的中线将三角形分为相等的两部分,知道中线将三角形面积分为相等的两部分是解题的关键.16.3<k<8【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【详解】∵11-5<2k<5+11即6<2k <16∴3<k <8故答案为3<k <8【点睛】此题主要考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系定理.17.8【分析】直接根据内角和公式()2180n -⋅︒计算即可求解.【详解】(n ﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:()2180n -⋅︒.18.140°.【分析】先根据多边形内角和定理:()1802n ⋅-求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和()180921260=︒⨯-=︒, 则每个内角的度数12601409︒︒==. 故答案为140°.【点睛】本题主要考查了多边形的内角和定理:()1802n ⋅-,比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.19.110°【分析】连接AD ,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC 是∠3和∠4的和,从而不难求得∠BDC 的度数.【详解】解:连接AD ,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C.∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C.∵∠A=47°,∠B=38°,∠C=25°.∴∠BDC=47°+38°+25°=110°,故答案为:110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.20.36°【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.21.5,6,7.【分析】直接画图,动作操作即可知答案.【详解】如图可知,原多边形的边数可能为5,6,7故填5,6,7.【点睛】本题考查多边形性质,解题关键在于能够画出图形.+-22.3c b a【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.23.50°【分析】首先依据邻补角的定义求得∠CDE 的度数,然后在△EDC 中依据三角形的内角和定理可求得∠C=50º,由∠B =∠C 可得到∠B=50º,在△BEF 中可求得∠FEB 的度数,最后依据∠FED=180º-∠FEB-∠DEC 求解即可.【详解】解:∵∠ADE=140∘,∴∠EDC=40º,∵DE ⊥BC ,∴∠DEC=90º,∴∠C=180º−90º−40º=50º,∴∠B=∠C=50º,∵EF ⊥AB ,∴∠EFB=90º,∴∠BEF=40º,∴∠FED=180º−40º−90º=50º.故答案为:50º.【点睛】本题考查了三角形内角和定理,垂直的性质.24.(1)18△<ABC 的周长26<;(2)7,9或11.【分析】(1)直接根据三角形的三边关系即可得出结论;(2)根据轴线为偶数,结合(1)确定周长的值,从而确定x 的值.【详解】解:(1)ABC的三边长分别为4,9,x,x,即513∴-<<+9494<<,x<++,∴++<ABC的周长9413945△<;即:18△<ABC的周长26(2)ABC的周长是偶数,由(1)结果得ABC的周长可以是20,22或24,x 的值为7,9或11.【点睛】本题考查了三角形的三边关系,掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.25.(1)1,2,3;(2)m=n﹣2;(3)不成立,当3≤n≤5时,凸n边形最多有n﹣2个内角等于135°;当6≤n ≤7时,凸n边形最多有n﹣1个内角等于135°;当n=8时,凸n边形最多有8个内角等于135°;当n>8时,凸n边形最多有7个内角等于135°,理由见解析【分析】(1)根据三角形、四边形、五边形的内角和,可求得答案;(2)根据(1)可猜想凸n边形中角度等于135°的内角个数的最大值为:n﹣2;(3)设凸n边形最多有m个内角等于135°,则每个135°内角的外角都等于45°,由凸n边形的n个外角和为360°,分类讨论,可确定凸n边形中最多有多少个内角等于135°.【详解】解:(1)∵三角形中只有一个钝角,∴三边形中角度等于135°的内角个数的最大值为1;∵四边形的内角和为360°,∴四边形中角度等于135°的内角个数的最大值为2;∵五边形的内角和为540°,∴五边形中角度等于135°的内角个数的最大值为3;答案:1,2,3;(2)由(1)得:凸n边形中角度等于135°的内角个数的最大值为:n﹣2.即m=n﹣2;(3)取n=7时,m=6,验证猜想不成立;设凸n边形最多有m个内角等于135°,则每个135°内角的外角都等于45°,∵凸n边形的n个外角和为360°,∴k≤360=8,只有当n=8时,m才有最大值8,45讨论n≠8时的情况:(1)当时n >8,m 的值是7;(2)当n =3,4,5时,m 的值分别为1,2,3;(3)当n =6,7时,m 的值分别为5,6;综上所述,当3≤n ≤5时,凸n 边形最多有n ﹣2个内角等于135°;当6≤n ≤7时,凸n 边形最多有n ﹣1个内角等于135°;当n =8时,凸n 边形最多有8个内角等于135°;当n >8时,凸n 边形最多有7个内角等于135°.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度较大,注意掌握分类讨论思想的应用是解此题的关键.26.(1)9;(2)1080º或1260º或1440º.【分析】(1)设多边形的一个外角为x ,则与其相邻的内角等于320x +︒,根据内角与其相邻的外角的和是 180︒列出方程,求出x 的值,再由多边形的外角和为360︒,求出此多边形的边数为360x︒; (2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,根据多边形的内角和定理即可求出答案.【详解】解:(1)设每一个外角为x ,则与其相邻的内角等于320x +︒,180320x x ∴︒-+︒=,40x ∴=︒,即多边形的每个外角为40︒,∵多边形的外角和为360︒, ∴多边形的外角个数为:360940︒=︒, ∴这个多边形的边数为9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,①若剪去一角后边数减少1条,即变成8边形,∴内角和为()821801080-⨯︒=︒,②若剪去一角后边数不变,即变成9边形,∴内角和为()921801260-⨯︒=︒,③若剪去一角后边数增加1,即变成10边形,∴内角和为()1021801440-⨯︒=︒,∴将这个多边形剪去一个角后,剩下多边形的内角和为1080︒或1260︒或 1440︒.【点睛】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,熟练掌握相关知识点是解题的关键.27.⑴4.8cm ;⑵12cm ²;⑶2cm.(1)利用直角三角形面积的两种求法求线段AD的长度即可;(2)先求△ABC的面积,再根据△AEC与△ABE是等底同高的两个三角形,它们的面积相等,由此即可求得△ABE的面;(3)由AE是中线,可得BE=CE,根据△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE),化简可得△ACE的周长-△ABE的周长=AC-AB,即可求解.【详解】∵∠BAC=90°,AD是边BC上的高,∴12AB•AC=12BC•AD,∴AD=•6810AB ACBC⨯= =4.8(cm),即AD的长度为4.8cm;(2)如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC=12AB•AC=12×6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴12BE•AD=12EC•AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=8-6=2(cm),即△ACE和△ABE的周长的差是2cm.【点睛】本题考查了中线的定义、三角形周长的计算.解题的关键是利用直角三角形面积的两两种表达方式求线段AD的长.28.(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【分析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=12(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=13(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=23(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.。

人教版八年级数学上册第11章三角形培优专题训练(含答案)

人教版八年级数学上册第11章三角形培优专题训练(含答案)

人教版八年级数学上册第11章三角形培优专题训练一、选择题1.下列长度的三条线段能组成三角形的是()A.5cm,2cm,4cm B.5cm,2cm,2cmC.5cm,2cm,3cm D.5cm,12cm,6cm2.如图,在△ABC中,CD是AB边上的高,CM是∠ACB的角平分线,若∠CAB=45°,∠CBA=75°,则∠MCD的度数为()A.15°B.20°C.25°D.30°3.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.4.下列说法中正确的是()A.三角形的三条高都在三角形内B.直角三角形只有一条高C.锐角三角形的三条高都在三角形内D.三角形每一边上的高都小于其他两边5.已知AD为△ABC的中线,且AB=10cm,AC=8cm,则△ABD与△ACD的周长之差为()A.2cm B.4cm C.6cm D.18cm6.盖房子时,木工师傅常常先在窗框上斜钉一根木条,利用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短7.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠3=60°C.∠2=∠3 D.∠1=∠48.如图所示,∠1=∠2=145°,则∠3=()A.80°B.70°C.60°D.50°9.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°10.一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()A.10或11 B.11或12或13 C.11或12 D.10或11或12 11.若一个多边形的内角和与外角和之差是720°,则此多边形是()边形.A.6 B.7 C.8 D.912.如图,五边形ABCDE是正五边形,则x为()A.30°B.35°C.36°D.45°13.如图∠1,∠2,∠3是五边形ABCDE的三个外角,若∠A+∠B=215°,则∠1+∠2+∠3=()A.140°B.180°C.215°D.220°二、填空题14.如图,在△ABC中,BD平分∠ABC.CD是△ABC外角的角平分线,若∠A=50°,则∠D=.15.如图,在△ABC中,已知DE∥BC,∠1=∠2,∠BEC=96°,则∠FGE=°.16.小华用三根木棒搭一个三角形,其中两根木棒的长度分别为10cm和2cm,第三根木棒的长度为偶数,则第三根的长度是cm.17.如图,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠BOE的度数是.三、解答题18.如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=度时,∠ADC=∠C.19.如图,在△ABC中,BD平分∠ABC,DE∥BC交AB于点E,∠C=50°,∠BDC=95°,求∠BED的度数.20.如图,已知CD是△ABC的角平分线,∠CDE=∠DCE.(1)求证:DE∥BC;(2)若CD⊥AB,∠A=30°,求∠CED的度数.21.如图,已知四边形ABCD中,∠B=90°,点E在AB上,连接CE、DE.(1)若∠1=35°,∠2=25°,则∠CED=°;(2)若∠1=∠2,求证:∠3+∠4=90°.参考答案1.解:A、2+4>5,能构成三角形,符合题意;B、2+2<5,不能构成三角形,不符合题意;C、2+3=5,不能构成三角形,不符合题意;D、5+6<12,不能构成三角形,不符合题意.故选:A.2.解:∵∠CAB=45°,∠CBA=75°,∴∠ACB=180°﹣∠CAB﹣∠CBA=60°.∵CM是∠ACB的角平分线,∴∠ACM=∠ACB=30°.∴∠CMB=∠CAB+∠ACM=75°.∵CD是AB边上的高,∴∠CDA=∠CDB=90°.∵∠CDB=∠MCD+∠CMB.∴∠MCD=∠CDB﹣∠CMB=90°﹣75°=15°.故选:A.3.解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.4.解:A、三角形的三条高不一定都在三角形内,如钝角三角形的高在三角形外部,说法错误,不符合题意;B、直角三角形有三条高,说法错误,不符合题意;C、锐角三角形的三条高都在三角形内,说法正确,符合题意;D、三角形每一边上的高不一定小于其他两边,说法错误,不符合题意;故选:C.5.解:∵AD为中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=10,AC=8,∴△ABD与△ACD的周长之差=10﹣8=2(cm).故选:A.6.解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故选:A.7.解:Rt△ABC中,∵∠ACB=90°,∴∠1+∠2=90°,故A正确;∵CD⊥AB,∴∠ADC=90°,∴∠1+∠3=90°,∴∠2=∠3,故C正确;∵∠3+∠4=90°,∴∠1=∠4,故D正确;故选:B.8.解:∵∠1、∠2、∠3是△ABC的三个外角,∴∠1+∠2+∠3=360°,∵∠1=∠2=145°,∴∠3=360°﹣145°×2=70°,故选:B.9.解:∵CF∥AB,∴∠B=∠FCM,∵CF平分∠ACM,∠ACF=50°,∴∠FCM=∠ACF=50°,∴∠B=50°,故选:D.10.解:设多边形截去一个角的边数为n,则(n﹣2)•180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选:D.11.解:∵一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∴这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n﹣2)×180°=1080°,解得:n=8,即多边形是八边形,故选:C.12.解:因为五边形ABCDE是正五边形,所以∠E=∠CDE==108°,AE=DE,所以,所以x=∠CDE﹣∠1﹣∠3=36°.故选:C.13.解:五边形ABCDE的内角和为(5﹣2)×180°=540°,∵∠A+∠B=215°,∴∠AED+∠EDC+∠BCD=540°﹣215°=325°,又∵∠AED+∠EDC+∠BCD+∠1+∠2+∠3=180°×3=540°,∴∠1+∠2+∠3=540°﹣325°=215°.故选:C.14.解:∵∠ACE是△ABC的一个外角,∴∠A=∠ACE﹣∠ABC,同理:∠D=∠DCE﹣∠DBC,∵BD平分∠ABC,CD平分∠ACE,∴∠DBE=∠ABC,∠DCE=∠ACE,∴∠D=(∠ACE﹣∠ABC)=∠A=×50°=25°,故答案为:25°.15.解:∵DE∥BC,∴∠2=∠EBC,∵∠1=∠2,∴∠EBC=∠1,∴GF∥BE,∴∠BEC+∠FGE=180°,∵∠BEC=96°,∴∠FGE=180°﹣∠BEC=180°﹣96°=84°.故答案为:84.16.解:根据三角形的三边关系,得10﹣2<第三根木棒<10+2,即8<第三根木棒<12.又∵第三根木棒的长选取偶数,∴第三根木棒的长度只能为10cm.故答案为:10.17.解:由题意:∠OED=108°,∠OBA=120°,∴∠OEB=72°,∠OBE=60°,∴∠BOE=180°﹣72°﹣60°=48°,故答案为:48°.18.解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=×64°=32°.∵∠ADC=∠B+∠BAD=44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=×(153°﹣∠C)=76.5°﹣.∴∠ADC=∠B+∠BAD=27°+76.5°﹣∠C=103.5°﹣∠C.∵∠ADC=∠C,∴103.5°﹣∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.19.解:∵∠C=50°,∠BDC=95°,∴∠DBC=180°﹣∠C﹣∠BDC=180°﹣50°﹣95°=35°.∵BD平分∠ABC,∴∠EBC=2∠DBC=70°,∵DE∥BC,∴∠BED+∠EBC=180°,∴∠BED=180°﹣70°=110°.20.(1)证明:∵CD是△ABC的角平分线,∴∠BCD=∠ECD,∵∠CDE=∠DCE,∴∠EDC=∠BCD,∴DE∥BC;(2)解:∵CD⊥AB,∴∠ADC=90°,∵∠A=30°,∴∠ACD=60°,∴∠EDC=∠ACD=60°,∴∠CED=180°﹣∠EDC﹣∠ECD=60°.21.解:(1)∵∠1=35°,∠2=25°,∠B=90°,∴∠BEC=180°﹣∠B﹣∠2=180°﹣90°﹣25°=65°,∠CED=180°﹣∠1﹣∠CEB=180°﹣35°﹣65°=80;故答案为:80.(2)∵∠1=∠2,∵∠B=90°,∴∠2+∠BEC=90°,∴∠1+∠BEC=90°,∴CDE=180°﹣90°=90°,∴∠3+∠4=180°﹣∠CDE=180°﹣90°=90°。

人教版八年级上册数学:第11章 三角形培优单元测试卷含答案

人教版八年级上册数学:第11章 三角形培优单元测试卷含答案

人教版八年级上册数学:第11章 三角形培优单元测试卷一、填空题(本大题共10小题,每小题3分,共30分)1.已知一个正多边形的每个外角都等于45°,则这个正多边形的边数是__________.2.一个边形从一个顶点出发引出的对角线可将其分割成5个三角形,则的值为__________.n n 3.如果一个三角形的两边长分别是2 cm 和7 cm ,且第三边为奇数,则三角形的周长是__________cm .4.如图,将△ABC 绕着点C 顺时针旋转50°后得到△.若∠A =40°,=110°,则∠的度数为A B C ''B ∠'BCA '___________.5.如图,△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B =70°,∠C =34°.则∠DAE 的大小是___________.6.如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1-∠2=__________°.7.如图,AB ∥CD ,BE 交CD 于点D ,CE ⊥BE 于点E ,若∠B =34°,则∠C 的大小为__________度.8.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=__________.9.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为__________.10.如图,已知AE是△ABC的边BC上的中线,若AB=8 cm,△ACE的周长比△AEB的周长多2 cm,则AC=__________cm.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.在△ABC中,若∠A=60°,∠B=95°,则∠C的度数为A.24°B.25°C.30°D.35°12.如图,在△ABC中,∠B、∠C的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=A.118°B.119°C.120°D.121°13.如图,图中锐角三角形的个数是A.2个B.3个C.4个D.5个14.已知等腰三角形两边长是10 cm 和5 cm ,那么它的腰长是A .25 cmB .15 cmC .10 cm 或5 cmD .10 cm15.如图,∠BDC =98°,∠C =38°,∠B =23°,∠A 的度数是A .61°B .60°C .37°D .39°16.如图,△ABC 的平分线AD 与中线BE 交于点O ,有下列结论:①AO 是△ABE 的角平分线;②BO 是△ABD 的中线,下列说法正确的是A .①②都正确B .①不正确,②正确C .①②都不正确D .①正确,②不正确17.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为A .55°B .60°C .65°D .70°18.△ABC 中,∠A =∠B =∠C ,则△ABC 是1314A .锐角三角形B .直角三角形C .钝角三角形D .都有可能19.下列说法正确的是①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.①②B.②③C.③④D.②④20.如图,在直角△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在CB上的A′处,折痕CD,则∠A′DB=A.10°B.20°C.30°D.40°三、解答题(本大题共7小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE 与BC交于点F.(1)填空:∠AFC=___________度;(2)求∠EDF的度数.22.如图,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试写出∠BAD与∠CDE的数量关系,并说明理由.23.如图,△ABC中,(1)若∠B=70°,点P是△ABC的∠BAC和∠ACB的平分线的交点,求∠APC的度数.(2)如果把(1)中∠B=70°这个条件去掉,试探索∠APC和∠B之间有怎样的数量关系.24.如图,E是△ABC中AB边上的一点,AD是△ABC的高,已知AD=10,CE=9,AB=12,∠B=65°,∠BCE=25°,求BC的长.25.多边形的内角和与某一外角的度数总和为1350°,那么这个多边形的边数是多少?26.如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是__________度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.27.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A 1CD 的平分线交于点A 2,…,∠A n ﹣1BC 的平分线与∠A n ﹣1CD 的平分线交于点A n .设∠A =θ.则:(1)求∠A 1的度数;(2)∠A n 的度数.参考答案1.【答案】8【解析】设这个多边形的边数为n ,得,解得n =8.∴这个多边形的边数为8.故答案为:8.45360n ︒⨯=︒2.【答案】7【解析】∵一个边形从一个顶点出发引出的对角线可将其分割成5个三角形,∴n -2=5,解得n =7,故答案n 为:7.3.【答案】16【解析】∵7-2<第三边<7+2,∴5<第三边<9.∵第三边为奇数,∴第三边=7,所以三角形的周长是2+7+7=16(cm ).故答案为:16.4.【答案】80°【解析】由题意得,∠B =∠B ′=110°,∠ACA ′=50°,∴∠ACB =180°–∠A –∠B =180°–40°–110°=30°,∴∠BCA ′=∠ACB +∠ACA ′=30°+50°=80°.故答案为:80°.5.【答案】18°【解析】∵△ABC 中,∠B =70°,∠C =34°,∴∠BAC =180°–(70°+34°)=76°.∵AE 平分∠BAC ,∴∠BAE =38°.∵Rt △ABD 中,∠B =70°,∴∠BAD =20°,∴∠DAE =∠BAE –∠BAD =38°–20°=18°.故答案为:18°.6.【答案】72【解析】如图,过B 点作BF ∥l 1,∵五边形ABCDE 是正五边形,∴∠ABC =108°,∵BF ∥l 1,l 1∥l 2,∴BF ∥l 2,∴∠3=180°-∠1,∠4=∠2,∴180°-∠1+∠2=∠ABC =108°,∴∠1-∠2=72°.故答案为:72.7.【答案】56【解析】∵AB ∥CD ,,∴,又∵CE ⊥BE ,34B ∠=︒34CDE B ∠=∠=︒∴Rt △CDE 中,,故答案为:56.903456C ∠=︒-︒=︒8.【答案】540°【解析】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°,∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°,故答案为:540°.9.【答案】40°或15°【解析】当题中的“有一个角”是直角时,和不是直角时.当为直角时,由直角三角形ABC中有一个角是另一角的2倍小60°,设“另一角”为x,则有90°=2x-60°,则x=75°,所以最小角为15°,当题中的“有一个角”不是直角时,设直角三角形中一个锐角为x,另一个锐角为2x−60°,根据两个锐角之和为90°可得,x+2x−60°=90°,解得x=50°,较小角为90°−50°=40°,故答案为:40°或15°.10.【答案】10【解析】∵AE是△ABC的中线,∴CE=BE,∵△ACE的周长比△AEB的周长多2 cm,∴(AC+AE+CE)-(BE+AB+AE)=AC-AB=2 cm,∵AB=8 cm,∴AC=10 cm.故答案为:10.11.【答案】B【解析】三角形的内角和为180°,则∠C=180°–60°–95°=25°.故选B.12.【答案】C【解析】根据∠A=60°,∠ABC=42°可得:∠ACB=78°,根据角平分线的性质可得:∠FBC=21°,∠FCB=39°,则∠FBC+∠FCB=60°,在△FBC中应用内角和定理可得:∠BFC=180°–60°=120°.故选C.13.【答案】B【解析】①以A为顶点的锐角三角形△ABC、△ADC共2个;②以E为顶点的锐角三角形:△EDC,共1个,所以图中锐角三角形的个数有2+1=3(个),故选B.14.【答案】D【解析】当腰为5 cm时,5+5=10,不能构成三角形,因此这种情况不成立.当腰为10 cm时,10-5<10<10+5,能构成三角形,故选D.15.【答案】C【解析】如图,延长BD交AC于点E,根据外角的性质可得:∠BEC=∠BDC–∠C=98°–38°=60°,∠A=∠BEC–∠B=60°–23°=37°,故选C.16.【答案】D【解析】AD是三角形ABC的角平分线,∴AO是∠BAC的角平分线,∴AO是△ABE的角平分线,故①正确;∵BE是三角形ABC的中线,∴E是AC是中点,而O不一定是AD的中点,故②错误.故选D.17.【答案】D【解析】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.18.【答案】B【解析】设∠A=x°,则∠B=3x°,∠C=4x°,由x+3x+4x=180,解得:x=22.5,∴∠C=4×22.5°=90°,故△ABC是直角三角形.故选B.19.【答案】D【解析】三角形的角平分线是线段;三角形的三条角平分线都在三角形内部,且交于同一点;当这个三角形为钝角三角形时,则有两条高在三角形的外部;三角形的一条中线把该三角形分成面积相等的两部分.故选D.20.【答案】B【解析】∵Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,∴∠B=90°-∠A=90°-55°=35°,∠A=∠CA′D,∵∠CA′D=∠B+∠A′DB,∴55°=35°+∠A′DB,∴∠A′DB=20°.故选B.21.【解析】(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°.故答案为:110°.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°–50°–30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA–∠BDF=100°+100°–180°=20°.22.【解析】(1)∵∠ADC是△ABD的外角,∴∠ADC =∠B +∠BAD =105°,∵∠AED 是△CDE 的外角,∴∠AED =∠C +∠EDC .∵∠B =∠C ,∠ADE =∠AED ,∴∠ADC -∠EDC =105°-∠EDC =45°+∠EDC ,解得:∠CDE =30°.(2)∠CDE =∠BAD .12理由:设∠BAD =x ,∵∠ADC 是△ABD 的外角,∴∠ADC =∠B +∠BAD =45°+x ,∵∠AED 是△CDE 的外角,∴∠AED =∠C +∠CDE ,∵∠B =∠C ,∠ADE =∠AED ,∴∠ADC -∠CDE =∠45°+x -∠CDE =45°+∠CDE ,得:∠CDE =∠BAD .1223.【解析】(1)∵∠B =70°,∴∠BAC +∠BCA =110°,∵点P 是△ABC 的∠BAC 和∠ACB 的平分线的交点,∴∠PAC =∠BAC ,∠PCA =∠BCA ,1212∴∠PAC +∠PCA =(∠PAC +∠PCA )=×110°=55°,1212∴∠P =180°-55°=125°.(2)∵点P 是△ABC 的∠BAC 和∠ACB 的平分线的交点,∴∠PAC =∠BAC ,∠PCA =∠BCA ,1212∴∠PAC +∠PCA =(∠PAC +∠PCA ),12∴∠P =180°-(∠PAC +∠PCA )=180°-(∠PAC +∠PCA )12=180°-(180°-∠B )12=90°+∠B .1224.【解析】∵CE =9,AB =12,∴△ABC 的面积=×12×9=54.12因为,在△BCE 中,∠B =65°,∠BCE =25°,所以,∠BEC =180°-∠B -∠BCE =180°-65°-25°=90°.所以,CE 是△BCE 的高.所以,△ABC 的面积=BC ·AD =54,12即BC ·10=54,12解得BC =10.8.25.【解析】设边数为n ,外角为x °,则x +(n -2)×180=1350.∴x =1350-180(n -2).∵0<x <180,∴0<1350-(n -2)×180<180.解得<n <.1531817118∵n 为整数,∴n =9.26.【解析】(1)75°.(2)如图,CH 为所求的高.(3)如图,过点E 作EF ⊥BD 于点F ,∵AD 是BC 的中线,∴BD =CD ,∴,11603022ABD ACD ABC S S S ===⨯=△△△同理,11301522BED ABE ABD S S S ===⨯=△△△又∵,1151522BED S BD EF EF =⋅=⨯=△∴EF =6,即点E 到BC 边的距离为6.27.【解析】(1)∵BA 1是∠ABC 的平分线,CA 1是∠ACD 的平分线,∴∠A 1BC =∠ABC ,∠A 1CD =∠ACD ,1212又∵∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1BC +∠A 1,∴(∠A +∠ABC )=∠ABC +∠A 1,1212∴∠A 1=∠A ,12∵∠A =θ,∴∠A 1=.2θ(2)同理可得∠A 2=∠A 1=·=,12122θ22θ所以∠A n =.2n θ。

2021年人教版数学八年级上册《三角形》专题培优练习(含答案)

2021年人教版数学八年级上册《三角形》专题培优练习(含答案)

2021年人教版数学八年级上册《三角形》专题培优练习一、选择题1.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°2.如图,l1∥l2,则下列式子中值等于180°的是()A.∠α+∠β+∠γB.∠α+∠β-∠γC.∠α+∠γ-∠βD.∠β-∠α+∠γ3.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°4.如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BDG=8,S△AGE=3,则S△ABC=( )A.25B.30C.35D.405.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A.2a+2b-2cB.2a+2bC.2cD.06.如图,∠1,∠2,∠3,∠4的数量关系为( )A.∠1+∠2=∠4-∠3B.∠1+∠2=∠3+∠4C.∠1-∠2=∠4-∠3D.∠1-∠2=∠3-∠47.若三角形的三个外角的度数之比为2∶3∶4,则与之对应的三个内角的度数之比为( )A.4∶3∶2B.3∶2∶4C.5∶3∶1D.3∶1∶58.如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M,若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )A.120° B.108° C.72° D.36°10.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是()A.54 B.54 C.60 D.6611.如图,半径为2的正六边形ABCDEF的中心在坐标原点0,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2018秒时,点P的坐标是( )A.(1,)B.(-1,-)C.(1,-)D. (-1,)12.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°二、填空题13.小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .15.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C= .16.△ABC中,∠B=40°,D在BA的延长线上,AE平分∠CAD,且AE∥BC,则∠BAC= .17.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.18.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H.下面说法中正确的序号是 .①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.三、解答题19.如图,在△ABC中,AD⊥BC于D,AE平分EBAC.(1)若∠B=70°,∠C=40°,求∠DAE的度数.(2)若∠B﹣∠C=30°,则∠DAE= .(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度数(用含α的代数式表示)20.如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40的两部分,求AC和AB的长.21.已知:如图,在△ABC 中,∠B>∠C ,AE 为∠BAC 的平分线,AD ⊥BC 于点D.求证:∠DAE=12(∠B -∠C).22.如图,∠EOF=90°,点A ,B 分别在射线OE ,OF 上移动,连结AB 并延长至点D ,∠DBO 的平分线与∠OAB 的平分线交于点C ,试问:∠ACB 的度数是否随点A ,B 的移动而发生变化?如果保持不变,请说明理由;如果随点A ,B 的移动而发生变化,请给出变化的范围.23.如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,BE 平分∠ABC ,分别交AC ,CD 于点E ,F. 求证:∠CEF=∠CFE.24.如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,试说明∠A、∠B、∠C、∠D之间的关系;(2)如图2,在(1)的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.①若∠D=40°,∠B=36°,则∠P=________;②探究∠P与∠D、∠B之间有何数量关系,并说明理由.25.如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……(1)完成下表:(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.参考答案1.答案为:B.2.答案为:B.3.答案为:B.4.答案为:B.5.答案为:D.6.答案为:A.7.答案为:C.8.答案为:B9.答案为:B.10.答案为:D.11.答案为:D12.答案为:9.13.答案为:100°.14答案为:40°.15.答案为:92°16.答案为:100°17.答案为:2b﹣2c.18.答案为:①②③.19.解:∵AD⊥BC于D,∴∠ADC=90°,∵AE平分∠BAC,∴∠EAC=∠BAC,而∠BAC=180°﹣∠B﹣∠C,∴∠EAC=90°﹣∠B﹣∠C,∵∠DAC=90°﹣∠C,∴∠DAE=∠DAC﹣∠EAC=90°﹣∠C﹣[90°﹣∠B﹣∠C]=(∠B﹣∠C),(1)若∠B=70°,∠C=40°,则∠DAE=(70°﹣40°)=15°;(2)若∠B ﹣∠C=30°,则∠DAE=×30°=15°;(3)若∠B ﹣∠C=α(∠B >∠C ),则∠DAE=α;故答案为15°.20.解:∵AD 是BC 边上的中线,AC=2BC ,∴BD=CD ,AC=4BD .设BD=CD=x ,AB=y ,则AC=4x .分两种情况讨论:①AC +CD=60,AB +BD=40,则4x +x=60,x +y=40,解得x=12,y=28,即AC=4x=48,AB=28,BC=2x=24,此时符合三角形三边关系定理. ②AC +CD=40,AB +BD=60,则4x +x=40,x +y=60,解得x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理.综上所述,AC=48,AB=28.21.证明:∵AE 为∠BAC 的平分线,∴∠BAE=12∠BAC=12(180°-∠B -∠C). ∵AD ⊥BC ,∴∠BAD=90°-∠B ,∴∠DAE=∠BAE -∠BAD=12(180°-∠B -∠C)-(90°-∠B)=12(∠B -∠C). 22.解:∠ACB 的度数不随点A ,B 的移动发生变化.理由如下:∵BC ,AC 分别平分∠DBO ,∠BAO ,∴∠DBC=12∠DBO , ∠BAC=12∠BAO. ∵∠DBO +∠OBA=180°,∠OBA +∠BAO +∠AOB=180°,∴∠DBO=∠BAO +∠AOB ,∴∠DBO -∠BAO=∠AOB=90°.∵∠DBC +∠ABC=180°,∠ABC +∠ACB +∠BAC=180°,∴∠DBC=∠BAC +∠ACB ,∴12∠DBO=12∠BAO +∠ACB ,∴∠ACB=12(∠DBO -∠BAO)=12∠AOB=45°. 23.证明:∵BE 平分∠ABC ,∴∠ABE=∠CBE.∵∠ACB=90°,CD ⊥AB ,∴∠CEF +∠CBE=90°,∠DFB +∠ABE=90°,∴∠CEF=∠DFB.又∵∠CFE=∠DFB ,∴∠CEF=∠CFE.24.解:(1)在△AOD 中,∠AOD=180°-∠A -∠D ,在△BOC 中,∠BOC=180°-∠B -∠C ,∵∠AOD=∠BOC ,∴180°-∠A -∠D=180°-∠B -∠C.∴∠A +∠D=∠B +∠C.(2)①38°,②根据“8字形”数量关系,∠OAD +∠D=∠OCB +∠B , ∠DAM +∠D=∠PCM +∠P ,∴∠OCB -∠OAD=∠D -∠B ,∠PCM -∠DAM=∠D -∠P.∵AP 、CP 分别是∠DAB 和∠BCD 的平分线,∴∠DAM=12∠OAD ,∠PCM=12∠OCB .∴∠PCM -∠DAM=12∠OCB -12∠OAD. ∴∠D -∠P=12(∠D -∠B). ∴2∠P=∠B +∠D ,即∠P 与∠D 、∠B 之间的数量关系为2∠P=∠B +∠D.25.解:(1)(2)共连接了8个点.(3)1+2+3+…+(n+1)=0.5[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=0.5(n+1)(n+2). 故填0.5(n+1)(n+2).。

人教版八年级数学上册 全等三角形(培优篇)(Word版 含解析)

人教版八年级数学上册 全等三角形(培优篇)(Word版 含解析)

人教版八年级数学上册 全等三角形(培优篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.2.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.【答案】4【解析】【分析】延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,BM CEMBD ECDBD CD⎧⎪∠∠⎨⎪⎩==,=∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,MD EDMDN EDNDN DN⎧⎪∠∠⎨⎪⎩==,=∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.3.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【详解】∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.4.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DBABE DBCBE BC⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△DBC (SAS ),∴AE=DC ,故①正确;∵△ABE ≌△DBC ,∴∠AEB=∠DCB ,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE 和△NBC 中,∵AEB DCB EB CB MBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE ≌△NBC (ASA ),∴BM=BN ,∠MBE=60°,则△BMN 为等边三角形,故⑤正确;∵△BMN 为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD ,∴MN//AB ,故②正确;③无法证明PM=PN ,因此不能得到BD ⊥AE ;④由①得∠EAB=∠CDB ,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.5.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.6.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.【答案】2【解析】【分析】连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=2DE=2×1=2,∴EF=2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.7.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..8.已知等边△ABC 中,点D 为射线BA 上一点,作DE=DC ,交直线BC 于点E,∠ABC 的平分线BF 交CD 于点F ,过点A 作AH ⊥CD 于H ,当EDC=30︒,CF=43,则DH=______.【答案】23【解析】连接AF.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=∠BAC=60°.∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBFBF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=23.故答案为2 3 .点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.9.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转α(0<α<60°)到△A′BC′,边AC 和边A′C′相交于点P,边AC和边BC′相交于Q.当△BPQ为等腰三角形时,则α=__________.【答案】20°或40°【解析】【分析】过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【详解】如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,又∵∠C=∠C'=30°,∠BQC=∠PQC',∴∠CBQ=∠C'PQ=θ,∴∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况:①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,∴90°-12θ+2×(30°+θ)=180°,解得θ=20°;②如图所示,当BP=BQ时,∠BPQ=∠BQP,即90°-12θ=30°+θ,解得θ=40°;③当QP=QB时,∠QPB=∠QBP=90°-12θ,又∵∠BQP=30°+θ,∴∠BPQ+∠PBQ+∠BQP=2(90°-12θ)+30°+θ=210°>180°(不合题意),故答案为:20°或40°.【点睛】本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.10.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.二、八年级数学轴对称三角形选择题(难) 11.已知点M(2,2),且OM=22,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .(22,0)B .(0,4)C .(4,0)D .(0,82) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且OM=22,且点P 在坐标轴上当22OM OP == 时P 点坐标为:()()22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.如图,ABC ∆中,3AC DC ==,BD 垂直BAC ∠的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为( )A .1.5B .3C .4.5D .9【答案】C【解析】【分析】 首先证明两个阴影部分面积之差=S △ADC ,然后由DC ⊥AC 时,△ACD 的面积最大求出结论即可.【详解】延长BD 交AC 于点H .设AD 交BE 于点O .∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°.∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH.∵AD⊥BH,∴BD=DH.∵DC=CA,∴∠CDA=∠CAD.∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC.∵BD=DH,AC=CH,∴S△CDH=12S△ADH14=S△ABH.∵AE=EC,∴S△ABE14=S△ABH,∴S△CDH=S△ABE.∵S△OBD﹣S△AOE=S△ADB﹣S△ABE=S△ADH﹣S△CDH=S△ACD.∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为12⨯3×392=.故选C.【点睛】本题考查了等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.13.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为A.5 B.6 C.7 D.8【答案】A【解析】【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC 即可求出AC .【详解】根据题意可得MN 是直线AB 的中点AD BD ∴= ADC 的周长为14AC CD AD ++=14AC CD BD ++=∴BC BD CD =+14AC BC =∴+已知8BD =6AC ∴= ,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN 是直线AB 的中点,这样所有的问题就解决了.14.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A ,()21,13A --,()31,13A -,4(0,2)A ,()52,223A --,……,按此规律排下去,则2019A 的坐标为( )A .(673,6736733-B .(673,6736733--C .(0,1009)D .(674,6746743- 【答案】A【解析】【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A 2019的横坐标为 12⨯1346=673.点A 2019的纵坐标为673-134632⨯=673﹣6733.故点A 2019的坐标为:()673,6736733-.故选:A .【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A 2019所在三角形是解答本题的关键.15.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB∠=∠=︒∴30ABO DBO∠+∠=︒,∴30APO DCO∠+∠=.故①②正确;∵OBP∆中,180BOP OPB OBP∠=︒-∠-∠,BOC∆中,180BOC OBC OCB∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP∠=∠,OBC OCB∠=∠,∴260POC ABD∠=∠=︒,∵PO OC,∴OPC∆是等边三角形,故③正确;在AB上找到Q点使得AQ=OA,则AOQ∆为等边三角形,则120BQO PAO∠=∠=︒,在BQO∆和PAO∆中,BQO PAOQBO APOOB OP∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS∆∆≌(),∴PA BQ=,∵AB BQ AQ=+,∴AB AO AP=+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO∆∆≌是解题的关键.16.如图,在等腰△ABC中,AB=AC=6,∠BAC=120°,点P、Q分别是线段BC、射线BA上一点,则CQ+PQ的最小值为()A .6B .7.5C .9D .12【答案】C【解析】【分析】 通过作点C 关于直线AB 的对称点,利用点到直线的距离垂线段最短,即可求解.【详解】解:如图,作点C 关于直线AB 的对称点1C ,1CC 交射线BA 于H ,过点1C 作BC 的垂线,垂足为P ,与AB 交于点Q ,CQ+PQ 的长即为1PC 的长.∵AB=AC=6,∠BAC=120°,∴∠ABC=30°,易得BC=3在Rt △BHC 中,∠ABC=30°,∴HC=33BCH=60°, ∴163CC =在1Rt △PCC 中,1PCC ∠=60°,∴19PC =∴CQ+PQ 的最小值为9,故选:C.【点睛】本题考查了等腰三角形的性质以及利用对称点求最小值的问题,认真审题作出辅助线是解题的关键.17.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .有下列结论:①∠C =2∠A ;②BD 平分∠ABC ;③S △BCD =S △BOD .其中正确的选项是( )A .①③B .②③C .①②③D .①②【答案】D【解析】 ①、∵∠A=36°,AB=AC ,∴∠C=∠ABC=72°,∴∠C=2∠A ,正确;②、∵DO 是AB 垂直平分线,∴AD=BD .∴∠A=∠ABD=36°.∴∠DBC=72°﹣36°=36°=∠ABD .∴BD 是∠ABC 的角平分线,正确;③,根据已知不能推出△BCD 的面积和△BOD 面积相等,错误;故选:D.18.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A .1B .2C .3D .4【答案】D【解析】【分析】(1)延长AB 取BD=BE ,连接DE ,由∠D=∠BED ,2ABC C ∠=∠,得到∠D=∠C ,在△ADE 和△ACE 中,利用AAS 证明ADE ACE ≌,可得AC=AD=AB+BE ;(2)在HC 上截取HF=BH,连接AF ,可知△ABF 为等腰三角形,再根据2ABC AFB C ∠=∠=∠,可得出△AFC 为等腰三角形,所以FC+BH+HF=AB+2BH=BC ; (3)HM=BM-BH ,所以2HM=2BM-2BH=BC-2BH ,再结合(2)中结论,可得2AB HM =;(4)结合(1)(2)的结论,BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+.【详解】解:①延长AB 取BD=BE ,连接DE ,∴∠D=∠BED ,∠ABC=∠D+∠BED=2∠D,∵2ABC C ∠=∠,∴∠D=∠C ,在△ADE 和△ACE 中,DAE CAE D C AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ACE ≌∴AC=AD=AB+BE ,故(1)正确;②在HC 上截取HF=BH,连接AF ,∵AH BC ⊥,∴△ABF 为等腰三角形,∴AB=AF ,∠ABF=∠AFB ,∵2ABC C ∠=∠,∴∠AFB=2∠C=∠C+∠CAF ,∴FC=AF=AB ,∴FC+BH+HF=AB+2BH=BC ,故(2)正确;③∵HM=BM-BH ,∴2HM=2BM-2BH=BC-2BH ,由②可知BC-2BH=AB ,∴2AB HM =④根据①②结论,可得:BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+,故(4)正确;故选D.【点睛】本题主要考查了等腰三角形的判定和性质、三角形的外角以及全等三角形的判定和性质,结合实际问题作出合适辅助线是解题关键.19.如图,在△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,则△BCD 的周长为( )A.13B.15C.18D.21【答案】A【解析】根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB的垂直平分线交AC于D,得到AD=BD,进而得出△B CD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.20.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.2B.1+22C.2D2-1【答案】B 【解析】第一次折叠后,等腰三角形的底边长为1,腰长为22;2,腰长为12,所以周长为11221 2222 ++=+.故答案为B.。

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. 的值是( )A 、0B 、-2C 、2D 、 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形4. 若二次三项式26x ax +-可分解成,则a ,b 的值分别为( )A . 1,3B . 1-,3C . 1,3-D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。

8.如图,等边三角形△ABC 的边长是6,面积是,AD 是BC 边上的高,点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、D 、9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5=15分)11. 分解因式得正确结果为. 12. 满足的整数的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。

2021年八年级数学上册第十一章《三角形》经典习题(提高培优)

2021年八年级数学上册第十一章《三角形》经典习题(提高培优)

一、选择题1.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是( ) A .5边形B .6边形C .7边形D .8边形D解析:D【分析】设多边形的边数是n ,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n ,则180(n ﹣2)=3×360,解得:n =8.故选:D .【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.2.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°C解析:C【分析】 根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.3.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( ) A .15B .20C .30D .40A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C 的外角=∠A+∠B ,∴x+40=2x+10+x ,解得x=15.故选:A .【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB=10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米D解析:D【分析】 连接AB ,根据三角形三边的数量关系得到AB 长的范围,即可得出结果.【详解】解:如图,连接AB ,∵15AO m =,10OB m =,∴15101510AB -<<+,即525AB <<.故选:D .【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边的性质.5.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30°C解析:C【分析】 先依据平行线的性质可求得∠ABC 的度数,然后在直角三角形CBD 中可求得∠BCD 的度数.【详解】解:∵//BC AE ,150∠=︒,∴∠1=∠ABC=50°.∵CD AB ⊥于点D ,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C .【点睛】本题主要考查平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.6.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.7.以下列长度的各组线段为边,能组成三角形的是( )A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm C解析:C【分析】根据三角形三边关系解答.【详解】 A 、∵2+3<6,∴以此三条线段不能组成三角形;B 、3+4<8,∴以此三条线段不能组成三角形;C 、∵5+6>10,∴以此三条线段能组成三角形;D 、∵5+6=11,∴以此三条线段不能组成三角形;故选:C .【点睛】此题考查三角形的三边关系:三角形两边的和大于第三边.8.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA C解析:C【分析】 根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE 是△ABC 的边BC 上的高,故不符合题意;B.线段BA 不是任何边上的高,故不符合题意;C.线段BD 是△ABC 的边AC 边上的高,故符合题意;D.线段DA 是△ABD 的边BD 上的高,故不符合题意;故选C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.9.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④B .①②③C .①④⑤D .②④⑤A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.【详解】①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确;⑤各角都相等且各边相等的多边形是正多边形,故⑤错误.∴正确的有①②④,故选:A .【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.10.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°A解析:A【分析】 由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,即可求得∠BOD .【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE 内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.二、填空题11.若等腰三角形两边的长分别为3cm 和6cm ,则此三角形的周长是______________cm .15【分析】题中没有指出哪个底哪个是腰故应该分情况进行分析以3为腰6为底以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可【详解】当3cm是腰时3+3=6不符合三角形三边关系故舍去;当解析:15【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,以3为腰6为底,以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可.【详解】当3cm是腰时,3+3=6,不符合三角形三边关系,故舍去;当6cm是腰时,6+6=12>3,6-6=0<3,能组成三角形;∴周长=6+6+3=15cm.故它的周长为15cm.故答案为:15.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.如图,C为∠AOB的边OA上一点,过点C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H,若∠EFD=α,现有以下结论:①∠COF=α;②∠AOH =180°﹣2α;③CH⊥CD;④∠OCH=2α﹣90°.其中正确的是__(填序号).①②③④【分析】分别根据平行线的性质角平分线的定义邻补角的定义直角三角形两锐角互余进行判断即可得出结论【详解】解:∵CD∥OB∠EFD=α∴∠EOB=∠EFD=α∵OE平分∠AOB∴∠COF=∠EO解析:①②③④【分析】分别根据平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余进行判断即可得出结论.【详解】解:∵CD∥OB,∠EFD=α,∴∠EOB=∠EFD=α,∵OE平分∠AOB,∴∠COF=∠EOB=α,故①正确;∠AOB=2α,∵∠AOB+∠AOH=180°,∴∠AOH=180°﹣2α,故②正确;∵CD ∥OB ,CH ⊥OB ,∴CH ⊥CD ,故③正确;∴∠HCO +∠HOC =90°,∠AOB +∠HOC =180°,∴∠OCH =2α﹣90°,故④正确.故答案为:①②③④.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余等知识,熟练掌握相关知识点是解题关键.13.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.14.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.【分析】根据折叠得到由此得到利用计算得出再根据三角形的内角和定理求出结果【详解】解:∵∴∴∵∴∴故答案为:【点睛】此题考查折叠的性质三角形内角和定理正确理解折叠的性质得到对应角相等是解题的关键解析:62︒.【分析】根据折叠得到ADE EDP ∠=∠,AED DEP ∠=∠,由此得到122()360ADE AED ∠+∠+∠+∠=︒,利用12124+∠=∠︒,计算得出118ADE AED ∠+∠=︒,再根据三角形的内角和定理求出结果.【详解】解:∵ADE EDP ∠=∠,AED DEP ∠=∠,∴1222180180ADE AED ∠+∠+∠+∠+︒=︒,∴122()360ADE AED ∠+∠+∠+∠=︒,∵12124+∠=∠︒,∴118ADE AED ∠+∠=︒,∴180()62A ADE AED ∠=︒-∠+∠=︒.故答案为:62︒.【点睛】此题考查折叠的性质,三角形内角和定理,正确理解折叠的性质得到对应角相等是解题的关键.15.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.【详解】根据平行线的性质及三角形内角和定理解答【点睛】解:由三角板的性质可知∠EAD=45°∠C=30°∠BAC=∠ADE=90°∵AE ∥BC ∴∠EAC=∠C=30°∴∠DAF=∠EAD-∠EAC=【详解】根据平行线的性质及三角形内角和定理解答.【点睛】解:由三角板的性质可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.∵AE ∥BC ,∴∠EAC=∠C=30°,∴∠DAF=∠EAD-∠EAC=45°-30°=15°.∴∠AFD=180°-∠ADE-∠DAF=180°-90°-15°=75°.故答案为:75°.本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180°.16.七边形的外角和为________.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36 解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵ 多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键; 17.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.18.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ∠D+∠E 再根据邻补角表示出∠CGF 然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2α【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ,∠D+∠E ,再根据邻补角表示出∠CGF ,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B ,∠2=∠D+∠E ,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.19.如图,在ABC 中,点,,D E F 分别在三边上,点E 是AC 的中点,,,AD BE CF 交于一点,283BGD AGE G BD DC S S ===,,,则ABC 的面积是________.30【分析】根据部分三角形的高相等由这些三角形面积与底边的比例关系可求三角形ABC 的面积【详解】解:在和中∵∴∴∵点是的中点∴∴∴故答案为:【点睛】本题中由于部分三角形的高相等可根据这些三角形面积的解析:30【分析】根据部分三角形的高相等,由这些三角形面积与底边的比例关系可求三角形ABC 的面积.【详解】解:在BDG 和GDC 中,∵2BD DC =,∴2BDG GDC SS =,8BGD S =△,∴4GDC S =, ∵点E 是AC 的中点,3AGE S = ∴ 3.GEC AGE SS == ∴84315BEC BDG GDC GEC SS S S =++=++=, ∴230.ABC BEC S S ==故答案为:30.【点睛】本题中由于部分三角形的高相等,可根据这些三角形面积的比等于底边的比例关系来求三角形ABC 的面积是解题关键.20.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.三、解答题21.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,求∠G 的度数.解析:(1)10°;(2)∠DAE =12(∠C−∠B);(3)45°. 【分析】 (1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE 、∠B 、∠C 的数量关系;(3)设∠ACB =α,根据角平分线的定义得∠CAG =12∠EAC =12(90°−α)=45°−12α,∠FCG =12∠BCF =12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°−60°=30°,∴∠DAE=∠CAD−∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°−∠B−∠C,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°−∠C,∴∠DAE=∠CAD−∠CAE=12∠BAC−(90°−∠C)=12(180°−∠B−∠C)−90°+∠C=1 2∠C−12∠B,即∠DAE=12(∠C−∠B).故答案为:∠DAE=12(∠C−∠B).(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°−α,∠BCF=180°−α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,∵∠FCG=∠G+∠CAG,∴∠G=∠FCG −∠CAG=90°−12α−(45°−12α)=45°.【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.22.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.解析:(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152---=4522cm ; (2)由题意得AE=t ,DE=10-t ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.23.()1若n 边形的内角和等于它外角和的3倍,求边数n .()2已知a ,b ,c 为三角形三边的长,化简:a b c b c a --+--.解析:()18;()22c .【分析】(1)根据多边形的内角和与外角和公式列出方程即可求解;(2)根据三角形的三边关系可得a c b +>,b c a +>,再根据化简绝对值的方法即可求解.【详解】解:()1由题意得:()18023603n ︒-=︒⨯,解得:8n =.()2∵a ,b ,c 为三角形三边的长,∴a c b +>,b c a +>, ∴a b c b c a --+--()()2a b c b c a b c a a c b c =-++-+=+-++-=.【点睛】此题主要考查多边形的内角和与外角和、三角形的三边关系的应用,解题的关键是熟知多边形的性质及去绝对值的方法.24.若a ,b ,c 是ABC 的三边的长,化简|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|. 解析:3c+a ﹣b .【分析】根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.【详解】解:根据三角形的三边关系,两边之和大于第三边,得a ﹣b ﹣c <0,b ﹣c ﹣a <0,c+a ﹣b >0.∴|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|=b+c ﹣a+c+a ﹣b+c+a ﹣b=3c+a ﹣b .【点睛】本题考查了三角形的三边关系、绝对值的性质、整式加减的应用,熟练掌握三角形的三边关系定理是解题关键.25.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF =∠CFE .(2)如图2,过点E 作EG ⊥AB 于点G ,请直接写出图中与∠CAE 互余的所有角.解析:(1)见解析;(2)图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【分析】(1)根据角平分线的定义可得∠DAF =∠CAE ,再根据等角的余角相等、对顶角相等,可得∠CEF =∠CFE ;(2)根据互余的两个角的和为90°求解即可.【详解】(1)证明:∵∠ACB ═90°,CD ⊥AB ,∴∠DAF +∠AFD =90°,∠CAE +∠CEF =90°,又∵AE 是∠CAB 的角平分线,∴∠DAF =∠CAE ,∴∠AFD =∠CEF ,又∵∠AFD =∠CFE ,∴∠CEF =∠CFE ;(2)∵EG ⊥AB 于点G ,∴∠DAF +∠GEA =90°,由(1)可知∠DAF =∠CAE ,∠CAE +∠CEF =90°,∠CEF =∠CFE =∠DFA ,∴图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【点评】本题考查了角平分线的定义和余角的定义,解决本题的关键是熟记余角的定义. 26.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.解析:50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒.∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线,∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.【点睛】此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.27.如果正多边形的每个内角都比它相邻的外角的4倍多30°.(1)它是几边形?(2)这个正多边形的内角和是多少度?(3)求这个正多边形对角线的条数.解析:(1)十二边形;(2)这个正多边形的内角和为1800︒;(3)对角线的总条数为54 条.【分析】(1)设一个外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x 的值,再利用外角和360°÷外角的度数可得边数; (2)利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答. 【详解】(1)设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =, 3603012︒÷︒=∴这个正多边形是十二边形.(2)这个正多边形的内角和为(122)1801800-⨯︒=︒;(3)对角线的总条数为()12312542⨯=-(条) . 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引(n-3)条对角线. 28.如图,在ABC 中,40B ∠=,80C ∠=.(1)求BAC ∠的度数;(2)AE 平分BAC ∠交BC 于E ,AD BC ⊥于D ,求EAD ∠的度数.解析:(1)60BAC ∠=;(2)20EAD ∠=【分析】(1)根据三角形的内角和定理求解即可;(2)根据垂直定义和三角形内角和定理求得∠DAC=10°,再根据角平分线的定义求得∠CAE=30°,两角作差即可求解.【详解】解:(1)∵180B BAC C ∠+∠+∠=,40B ∠=,80C ∠=,∴180408060BAC ∠=--=;(2)∵AD BC ⊥,∴90ADC ∠=,∵180,80DAC ADC C C ∠=-∠-∠∠=,∴180908010DAC ∠=--=,∵AE 平分BAC ∠, ∴1302BAE CAE BAC ∠=∠=∠=, ∵EAD CAE DAC ∠=∠-∠,∴20EAD ∠=.【点睛】本题考查了三角形的内角和定理、角平分线的定义、垂直定义,熟练掌握角平分线的定义和三角形的内角和定理是解答的关键.。

2021初二上册数学《三角形》培优试题

2021初二上册数学《三角形》培优试题

2021初二上册数学《三角形》培优试题卷一.选择题(共12小题)1.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°2.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°3.如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87°B.84°C.75°D.72°4.将每一个内角都是108o的五边形按如图所示方式放置,若直线m∥n,则∠1和∠2的数量关系是()A.∠1+∠2=90°B.∠1=∠2+72oC.∠1=∠2+36o D.2∠1+∠2=180°5.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,若∠ABP=20°,∠ACP=60°,则∠A﹣∠P=()A.70°B.60°C.50°D.40°6.如图,射线BD,AE分别是△ABC的外角∠ABF,∠CAG的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若∠BAC=∠ABC+102°,∠D=∠E+27°,则∠ACB的度数为()A.39°B.40°C.41°D.42°7.如图,△ABC中,∠C=90°,将△ABC沿DE折叠,使得点B落在AC边上的点F处,若∠CFD=60°且△AEF中有两个内角相等,则∠A的度数为()A.30°或40°B.40°或50°C.50°或60°D.30°或60°8.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°9.下列说法中,正确的是()A.三角形的高都在三角形内B.三角形的三条中线相交于三角形内一点C.三角形的一个外角大于任何一个内角D.三角形最大的一个内角的度数可以小于60度10.如图,点A、B、C、D、E在同一平面内连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°11.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16 12.如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA的延长线于F,连接AD,CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A.32°B.64°C.77°D.87°二.填空题(共6小题)13.如图,已知∠ABC、∠ACB的外角平分线交于D点.∠A=40°,那么∠D=.14.如图,将△ABC沿DE、DF翻折,使顶点B、C都落于点G处,且线段BD、CD翻折后重合于DG,若∠AEG+∠AFG=54°,则∠A=度.15.如图,BF是∠ABD的角平分线,CE是∠ACD的角平分线,BF、CE交于点G,如果∠BDC=120°,∠BGC=100°,则∠A的度数为度.16.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与F A交与点E,则∠E的度数.17.如图△ABC中,将边BC沿虚线翻折,若∠1+∠2=110°,则∠A的度数是度.18.如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④,其中正确的结论有.三.解答题(共6小题)19.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?请说明理由.(2)已知∠1=∠2,∠3=64°,求∠ACB的度数.20.如图,把△ABC沿EF折叠,使点A落在点D处,(1)若DE∥AC,试判断∠1与∠2的数量关系,并说明理由;(2)若∠B+∠C=130°,求∠1+∠2的度数.21.请认真思考,完成下面的探究过程.已知在△ABC中,AE是∠BAC的角平分线,∠B=60°,∠C=40°.【解决问题】如图1,若AD⊥BC于点D,求∠DAE的度数;【变式探究】如图2,若F为AE上一个动点(F不与E重合),且FD⊥BC于点D时,则∠DFE =°;【拓展延伸】如图2,△ABC中,∠B=x°,∠C=y°,(且∠B>∠C),若F为线段AE上一个动点(F不与E重合),且FD⊥BC于点D时,试用x,y表示∠DFE的度数,并说明理由.22.已知在△ABC中,图1,图2,图3中的△ABC的内角平分线或外角平分线交于点O.(1)如图1,点O是△ABC的两个内角平分线的交点,猜想∠O与∠A之间的数量关系,并加以证明.(2)请直接写出结果.如图2,若∠A=60°,△ABC的内角平分线与外角平分线交于点O,则∠O=;如图3,若∠A=60°,△ABC的两个外角平分线交于点O,则∠O=.23.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAB=3∠CAP,∠CDB=3∠CDP”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.24.直线m与直线n相交于C,点A是直线m上一点,点B是直线n上一点,∠ABC的平分线BP与∠DAB的平分线AE的反向延长线相交于点P.(1)如图1,若∠ACB=90°,则∠P=;若∠ACB=α,则∠P=(结果用含α的代数式表示);(2)如图2,点F是直线n上一点,若点B在点C左侧,点F在点C右侧时,连接AF,∠CAF与∠AFC的平分线相交于点Q.①随着点B、F的运动,∠APB+∠AQF的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ交直线n于点G,作QH∥CF交AF于点H,则=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年人教版数学八年级上册《三角形》专题培优练习一、选择题1.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°2.如图,l1∥l2,则下列式子中值等于180°的是()A.∠α+∠β+∠γB.∠α+∠β-∠γC.∠α+∠γ-∠βD.∠β-∠α+∠γ3.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°4.如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BDG=8,S△AGE=3,则S△ABC=( )A.25B.30C.35D.405.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A.2a+2b-2cB.2a+2bC.2cD.06.如图,∠1,∠2,∠3,∠4的数量关系为( )A.∠1+∠2=∠4-∠3B.∠1+∠2=∠3+∠4C.∠1-∠2=∠4-∠3D.∠1-∠2=∠3-∠47.若三角形的三个外角的度数之比为2∶3∶4,则与之对应的三个内角的度数之比为( )A.4∶3∶2B.3∶2∶4C.5∶3∶1D.3∶1∶58.如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M,若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )A.120° B.108° C.72° D.36°10.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是()A.54 B.54 C.60 D.6611.如图,半径为2的正六边形ABCDEF的中心在坐标原点0,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2018秒时,点P的坐标是( )A.(1,)B.(-1,-)C.(1,-)D. (-1,)12.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°二、填空题13.小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .15.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C= .16.△ABC中,∠B=40°,D在BA的延长线上,AE平分∠CAD,且AE∥BC,则∠BAC= .17.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.18.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H.下面说法中正确的序号是 .①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.三、解答题19.如图,在△ABC中,AD⊥BC于D,AE平分EBAC.(1)若∠B=70°,∠C=40°,求∠DAE的度数.(2)若∠B﹣∠C=30°,则∠DAE= .(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度数(用含α的代数式表示)20.如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40的两部分,求AC和AB的长.21.已知:如图,在△ABC 中,∠B>∠C ,AE 为∠BAC 的平分线,AD ⊥BC 于点D.求证:∠DAE=12(∠B -∠C).22.如图,∠EOF=90°,点A ,B 分别在射线OE ,OF 上移动,连结AB 并延长至点D ,∠DBO 的平分线与∠OAB 的平分线交于点C ,试问:∠ACB 的度数是否随点A ,B 的移动而发生变化?如果保持不变,请说明理由;如果随点A ,B 的移动而发生变化,请给出变化的范围.23.如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,BE 平分∠ABC ,分别交AC ,CD 于点E ,F. 求证:∠CEF=∠CFE.24.如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,试说明∠A、∠B、∠C、∠D之间的关系;(2)如图2,在(1)的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.①若∠D=40°,∠B=36°,则∠P=________;②探究∠P与∠D、∠B之间有何数量关系,并说明理由.25.如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……(1)完成下表:(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.参考答案1.答案为:B.2.答案为:B.3.答案为:B.4.答案为:B.5.答案为:D.6.答案为:A.7.答案为:C.8.答案为:B9.答案为:B.10.答案为:D.11.答案为:D12.答案为:9.13.答案为:100°.14答案为:40°.15.答案为:92°16.答案为:100°17.答案为:2b﹣2c.18.答案为:①②③.19.解:∵AD⊥BC于D,∴∠ADC=90°,∵AE平分∠BAC,∴∠EAC=∠BAC,而∠BAC=180°﹣∠B﹣∠C,∴∠EAC=90°﹣∠B﹣∠C,∵∠DAC=90°﹣∠C,∴∠DAE=∠DAC﹣∠EAC=90°﹣∠C﹣[90°﹣∠B﹣∠C]=(∠B﹣∠C),(1)若∠B=70°,∠C=40°,则∠DAE=(70°﹣40°)=15°;(2)若∠B ﹣∠C=30°,则∠DAE=×30°=15°;(3)若∠B ﹣∠C=α(∠B >∠C ),则∠DAE=α;故答案为15°.20.解:∵AD 是BC 边上的中线,AC=2BC ,∴BD=CD ,AC=4BD .设BD=CD=x ,AB=y ,则AC=4x .分两种情况讨论:①AC +CD=60,AB +BD=40,则4x +x=60,x +y=40,解得x=12,y=28,即AC=4x=48,AB=28,BC=2x=24,此时符合三角形三边关系定理. ②AC +CD=40,AB +BD=60,则4x +x=40,x +y=60,解得x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理.综上所述,AC=48,AB=28.21.证明:∵AE 为∠BAC 的平分线,∴∠BAE=12∠BAC=12(180°-∠B -∠C). ∵AD ⊥BC ,∴∠BAD=90°-∠B ,∴∠DAE=∠BAE -∠BAD=12(180°-∠B -∠C)-(90°-∠B)=12(∠B -∠C). 22.解:∠ACB 的度数不随点A ,B 的移动发生变化.理由如下:∵BC ,AC 分别平分∠DBO ,∠BAO ,∴∠DBC=12∠DBO , ∠BAC=12∠BAO. ∵∠DBO +∠OBA=180°,∠OBA +∠BAO +∠AOB=180°,∴∠DBO=∠BAO +∠AOB ,∴∠DBO -∠BAO=∠AOB=90°.∵∠DBC +∠ABC=180°,∠ABC +∠ACB +∠BAC=180°,∴∠DBC=∠BAC +∠ACB ,∴12∠DBO=12∠BAO +∠ACB ,∴∠ACB=12(∠DBO -∠BAO)=12∠AOB=45°. 23.证明:∵BE 平分∠ABC ,∴∠ABE=∠CBE.∵∠ACB=90°,CD ⊥AB ,∴∠CEF +∠CBE=90°,∠DFB +∠ABE=90°,∴∠CEF=∠DFB.又∵∠CFE=∠DFB ,∴∠CEF=∠CFE.24.解:(1)在△AOD 中,∠AOD=180°-∠A -∠D ,在△BOC 中,∠BOC=180°-∠B -∠C ,∵∠AOD=∠BOC ,∴180°-∠A -∠D=180°-∠B -∠C.∴∠A +∠D=∠B +∠C.(2)①38°,②根据“8字形”数量关系,∠OAD +∠D=∠OCB +∠B , ∠DAM +∠D=∠PCM +∠P ,∴∠OCB -∠OAD=∠D -∠B ,∠PCM -∠DAM=∠D -∠P.∵AP 、CP 分别是∠DAB 和∠BCD 的平分线,∴∠DAM=12∠OAD ,∠PCM=12∠OCB .∴∠PCM -∠DAM=12∠OCB -12∠OAD. ∴∠D -∠P=12(∠D -∠B). ∴2∠P=∠B +∠D ,即∠P 与∠D 、∠B 之间的数量关系为2∠P=∠B +∠D.25.解:(1)(2)共连接了8个点.(3)1+2+3+…+(n+1)=0.5[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=0.5(n+1)(n+2). 故填0.5(n+1)(n+2).。

相关文档
最新文档