作轴对称图形第1课时5
小学五年级上学期数学《轴对称图形(一)》(第一课时 )教学设计
教学重点:
1.引导学生判断轴对称图形。
2.认识对称轴并利用轴对称图形的性质在方格纸上画出简单图形的对称轴。
教学难点:
1.认识对称轴并利用轴对称图形的性质在方格纸上画出简单图形的对称轴。
教学过程
一.复习引入。
1.师:什么是轴对称图形?ቤተ መጻሕፍቲ ባይዱ
(预设1:能对折的图形就是轴对称图形。)
师:怎样用标准的数学语言描述呢?(课件出示图形对折动画)
三.知识应用。
1.方法:师:因为轴对称图形的对称轴其实就是一条对称点所在线段的垂直平分线。画平面图形的对称轴只需要找到每组对称点所在线段的中心点,连接起来。
2.你能画出下面这个图形的对称轴吗?
①学生先尝试画一画。
②交流展示。
预设:我们先在图上找到两组对称点A和A',B和B',A和A'之间有4格,B和B'之间有10格,根据对称轴就是对称点所在线段的垂直平分线的特点,找到它们各自中心点,连接起来。
预设:A和A'所在线段与对称轴是互相垂直的。同样,对称点B和B'所在的线段和对称轴也是互相垂直的,因此对称点所在的线段与对称轴都是互相垂直。
(3)总结。轴对称图形到底有什么特点呢?
【在轴对称图形中,对称点到对称轴的距离相等,对称点所在的线段和对称轴互相垂直。轴对称图形的对称轴其实就是一条对称点所在线段的垂直平分线。】
②对称点到对称轴的距离相等。
师:我们可以看到A和A'与对称轴之间的距离都是2格,B和B'到对称轴之间的距离都是5格,每组对称点到对称轴的距离都是相等的,对称轴刚好在对称点所在线段的中心点上。
③对称点所在的线段与对称轴都是互相垂直。
师:仔细观察,这是A和A'这组对称点所在的线段,这条线段和对称轴有怎样的位置关系?
八年级上册数学(人教版)课件:13.第1课时 画轴对称图
解:①作点A关于MN的对称点A′; ②连结BA′交MN于点P,连接AP,则∠MPA=∠NPB
9.如图所示,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和 △A″B″C″关于直线EF对称.
(1)画出直线EF; (2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角 α的数量关系.
3.如图,分别以直线l为对称轴,所作轴对称图形错误的是( C)
4.以直线l为对称轴画出图形的另一半. 解:图略
5.仔细观察下列图案,并按规律在横线上画出合适的图形.
6.如图,小新把一张含30°角的直角三角形纸板ABC沿较短边的垂 直平分线翻折,则∠BOC的度数为_6_0_°_.
7.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC, 请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这 样的三角形共用__5__个.
Байду номын сангаас
(1)如图,连接B′B″,作线段B′B″的垂直平分线EF,则直线EF是△A′B′C′ 与△A″B″C″的对称轴
(2)连结BO,B′O,B″O,∵△ABC和△A′B′C′关于MN对称,∴∠BOM= ∠B′OM,又∵△A′B′C′和△A″B″C″关于EF对称,∴∠B′OE=∠B″OE, ∴∠BOB″=∠BOB′+∠B′OB″=2∠B′OM+2∠B′OE=2(∠B′OM+ ∠B′OE)=2∠MOE=2α,即∠BOB″=2α
第十二章 全等三角形
13.2 画轴对称图形
第1课时 画轴对称图形
1.已知对称轴l和一点A,要画出点A关于l的对称点A′,可采用以下方 法:过点A作对称轴l的___垂_,线垂足为点O,延长___A_至O ___A_′,使___O_A= _O_A_′_,则点A′就是点A关于直线l的对称点.
轴对称的基本性质(第1课时)课件
点A′就是点A关于直线l的对称点;
2.类似地,作出点B关于直线l
的对称点B′; 3.连接A′B′.
B
B′
所以线段A′B′即为所求.
【规律方法】 作已知图形关于某条直线对称的图形的一般步聚:
1.找点 (确定图形中的一些特殊点). 2.画点 (画出特殊点关于已知直线的对称点). 3.连线 (连接对称点).
【跟踪训练】
1.两个图形关于某直线对称,对称点一定在 ( D )
A.直线的两旁
B.直线的同旁
C.直线上
D.直线两旁或这直线上
2.轴对称图形沿对称轴对折后,对称轴两旁的
部分( A )
A.完全重合
B.不完全重合
C.两者都有
D. 没有关系
3.如果两个图形关于某条直线对称,那么对应点所连的线 段被__对__称__轴__垂直平分. 4.下图是轴对称图形,相等的线段是_A_B_=_C_D_,__B_E_=_C_E__, 相等的角__∠__B_=_∠__C___.
A
ED
B
C
共同探究
l
已知对称轴 l 和一个点A,如何
画出点A关于 l 的对称点A′?
A
O
A′
作法: 过点A作直线l的垂线,在垂线上
截取OA′=OA,垂足为点O,点A′就是 点A关于直线l 的对称点.
【例 题】
例2 如图,已知△ABC和直线l,怎样作出与△ABC关于直
线l对称的图形呢?
【解析】△ABC可以由三
(2)对应线段相等,对应角相等. 2.按要求作出一图形关于某条直线成轴对称的图形.
1.下面说法中,正确的是( C ) A.设A,B关于直线MN对称,则AB垂直平分MN. B.如果△ABC≌△DEF,则一定存在一条直线MN,使 △ABC与△DEF关于MN对称. C.如果一个三角形是轴对称图形,且对称轴不止一条, 则它是等边三角形. D.两个图形关于MN对称,则这两个图形分别在MN的两 侧.
最新人教版八年级数学上册《第1课时作轴对称图形》优质教案
13.2画轴对称图形第1课时作轴对称图形一、新课导入1.导入课题:你们会利用轴对称进行简单的图案设计吗?今天我们就一起来学习怎样作轴对称图形.2.学习目标:(1)知道轴对称变换前后的两个图形是全等的,并且任意一对对应点所连线段被对称轴垂直平分.(2)已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形.3.学习重、难点:重点:已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形 .难点:能进行简单的轴对称变换设计对称性图案.二、分层学习1.自学指导:(1)自学内容:教材第67页到本页思考上面部分.(2)自学时间:5分钟.(3)自学方法:通过观察、动手操作、总结出成轴对称的两个图形的有关性质.(4)自学参考提纲:①结合图13.2-1,阅读教材第67页第一段,把重点语句做上记号.②将下列图案沿直线l折叠,用针尖沿着玉米图案扎出,再打开看看,得到了什么?连接对应点(找三对),看所连线与l有何位置关系?测量对应点所连线段被l分成的两段有何关系?解:得到一个与玉米图案一样的图形,所连线段被l垂直平分、相等.图1 图2③将你实验得出的结论用几何方法论证一下.④结论:a.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;b.新图形上的每一点,都是原图形上的某一点关于直线l的对称点;c.连接任意一对对应点的线段都被对称轴垂直平分.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:八年级学生已经具备一定观察能力,了解学生能否将实验操作得出的结论完整地用语言表达出来.②差异指导:结合学生画出的图形,引导学生表述实验发现的结论.(2)生助生:互助交流关于直线对称的两个图形的对应点与对称轴存在的关系.4.强化:(1)填空:①由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;②新图形上的每一点,都是原图形上的某一点关于直线l的对称点;③连接任意一对对应点的线段都被对称轴垂直平分.④两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.(2)交流学习成果:①轴对称前后两个图形的关系;②对应点连线与对称轴的关系.(3)总结:①轴对称前后两个图形全等;②对应点连线被对称轴垂直平分.1.自学指导:(1)自学内容:探究如何作出一个图形关于某直线的对称图形.(2)自学时间:5分钟.(3)自学方法:作一个图形关于某条直线的对称图形,应根据轴对称的性质作对称点.(4)探究提纲:①作已知一点关于某条直线的对称点的方法是怎样的?过点P作直线l的垂线,垂足为O,在垂线上截取OP′=OP,P′即为所求作的点.②作已知一条线段关于某条直线的对称线段的方法是怎样的?分别作点A,B关于直线l的对称点A′,B′,连接A′B′,A′B′即为所求作的线段.③作已知一个三角形关于某条直线对称的三角形的方法是怎样的?分别作点A,B,C关于直线l的对称点A′,B′,C′,顺次连接A′B′、A′C′、B′C′,△A′B′C′即为所求作的三角形.④作已知图形关于某条直线对称的图形的方法是怎样的?分别作点A,B,C,D关于直线l的对称点A′,B′,C′,D′,顺次连接A′B′,B′C′,C′D′,D′A′,四边形A′B′C′D′即为所求作的四边形.⑤改变对称轴的位置,然后画一画.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否掌握画图的依据和方法.②差异指导:由点、线段、三角形再到复杂图形,一步一步引出关于直线对称的图形的画法,并让学生观察改变对称轴后图形的变与不变之处.(2)生助生:学生之间相互交流帮助.4.强化:(1)交流及总结:作一个图形关于某条直线的对称图形的方法.(2)结论:分别作出这些点关于对称轴的对应点再连接这些对应点,就可以得到原图形的轴对称图形(3)教材第68页“练习”.三、评价1.学生的自我评价(围绕三维目标):学生之间相互交流学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(第1、2题每题10分,第3题20分,第4题30分,共70分)1.已知:直线AB与直线A′B′交于点P,并且这两条直线关于直线l成轴对称,下列说法正确的是(C )A.直线AB与直线A′B′的长度不相等B.直线AB、A′B′与直线l不一定能交于同一点C.直线AB、A′B′与直线l一定交于P点D.点P关于直线l的对称点不存在2.下列说法:①关于某直线对称的两个图形的面积相等;②平面内两个完全相同的图形一定关于某直线对称;③两个图形成轴对称,其对应点连线的垂直平分线就是它们的对称轴;④关于某直线对称的两个图形,对称点一定在该直线的两旁;其中正确的是(B)A.①②B.①③C.①②③D.①②③④3.如图,把下列图形补成关于直线l对称的图形.4.已知△ABC及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形.(1)直线l 就是AA ′的垂直平分线;(2)作出B 、C 关于直线l 的对称点B ′、C ′.(3)连接A ′B ′、B ′C ′、C ′A ′,即得△ABC 关于直线l 的对称图形△A ′B ′C ′.二、综合应用(15分)5.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.解:一般三角形:沿中线折,没有重合的;沿高线折,底边重合,沿角平分线折,两邻边重合.等腰三角形:沿底边上的中线折,底边重合,两邻边也重合;沿底边上的高线折,底边重合,两邻边重合;沿顶角角平分线折,底边重合,两邻边也重合.三、拓展延伸(15分)6.如图所示,∠AOB 内一点P ,P1P2分别是P 关于OA 、OB 的对称点,P 1P 2=交OA 于M ,交OB 于N.若P 1P 2=8cm ,则△PMN 的周长是多少?解:∵P 1、P 关于OA 对称,P 2、P 关于OB 对称,∴OA 垂直平分P1P ,OB 垂直平分P 2P.∴MP 1=MP ,NP 2=NP.∴C △PMN=PM+MN+NP.=P 1M+MN+NP 2= P 1P 2==8cm.人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。
四年级下册数学课件-第1课时 轴对称(人教版)(共15张PPT)
B 3格 3格 B'
四 课堂小结
1.把一个图形沿着某一条直线对折,如果直线两 侧的图形能完全重合,那么就说这个图形是轴对 称图形。这条直线叫它的对称轴,对折后重合的 点是对应点,对应点到对称轴的距离相等。
四 课堂小结
2.画一个图形的轴对称图形的四个步骤: ①找到关键点。 ② 数出或量出关键点到对称轴的距离。 ③ 在对称轴的另一侧找出关键点的对称点。 ④ 按照所给图形,顺次连接各点。
想一想: 1.先画什么?再画什么? 2.每条线段应该画多长?
二 探究新知
2
①找到关键点
②数出或量出关键 点到对称轴的距离
③在对称轴的另一侧 找出关键点的对称点
④按照所给图形,顺 次连接各点
三 对应练习
做一做
试一试,画出下面这个轴对称图形的另一半。
A 5格
5格 A'
第一步:找到关键点; 第二步:通过数格找到 对称点; 第三步:顺次连线。
7 图形的运动(二 )
第1课时 轴对称
一 情景导入
观察这些物体,你能发现它们都有什么共同特征?
二年级时,我们已经初步认识了生活中的轴对称 现象,今天我们继续学习轴对称图形。
二 探究新知
像这样,对折后两边能够完全重合的图形就是轴 对称图形。
中间这条直线就是对称轴。
二 探究新知
发现:有的图 形只有一条对 称轴,有的图 形有多条对称 轴。
仔细观察这些轴对称图形,你发现了什么?
二 探究新知
1 看一看,数一数,你发现了什么?
(1)这幅图是轴对称图形吗? 是
(2)中间的一条直线表示什么? 对称轴
二 探究新知
1 看一看,数一数,你发现了什么?
(3)点A和A′在这幅图中是两 个对应点, 它们到对称轴的距 离( 相等 )。
13.1.1轴对称(第一课时)教学设计
13.1.1 轴对称【教学目标】1.认识轴对称图形的共同特征,能识别简单的轴对称图形及对称轴,通过实践操作,理解轴对称图形和两个图形成轴对称的区别。
2.经历折叠、剪纸等活动,发展学生的形象思维和空间观念,积累数学活动的经验,在动手实践中学会与人合作、彼此交流。
3.初步获得动手的乐趣和成就感,欣赏并体会对称美,感受轴对称的价值,培养学生热爱生活的情感。
【教学重点、难点】重点:掌握轴对称图形和两图形关于直线对称的概念,识别轴对称图形和对称轴。
难点:理解轴对称图形和两个图形关于直线对称的区别。
【教学准备】剪刀、已裁好的圆、矩形、等腰三角形,平行四边形等,白纸,彩纸,多媒体课件。
【教学过程设计】一、设计问题,创设情境师:一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式?”你知道怎么做吗?生:挪动第第一个数中的2根火柴,师:这不是火柴搭的,所以没法挪动。
学生茫然了。
师:我相信,通过这节课的学习,大家一定能解决这个问题。
设计意图:以学生感兴趣的的问题引入,引起学生的兴趣,激起学生的思维。
二、信息交流,揭示规律1.欣赏生活中的轴对称图片。
设计意图:以生活中尽可能多的丰富实例,让学生欣赏并体会轴对称图形,发展学生审美能力、鉴赏能力。
2.观察特点、形成概念[问题1]:这些美丽的图形来自生活,细心观察之后,你能发现这些图形有什么共同特征么?用自己的语言描述。
师生活动:鼓励学生积极用自己的语言概括图形的共同特征。
并课件演示以下两个轴对称图形的重合过程,让学生感受动态过程。
[问题2]:举出几个生活中具有对称特征的物体,并与同伴交流。
师生活动:给学生一定的思考交流时间,鼓励学生从自己的生活经验出发,列举符合对称特征的物体,并进行广泛交流,进一步体会轴对称图形的特点。
)板书轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线即折痕所在直线就是它的对称轴。
3.练习: (1)我们学过的图形中,你知道哪些图形是轴对称图形吗?设计意图:学生回忆学过的几何图形,比如线段、角、长方形、等腰三角形、圆等,并让学生折一折,看看各有几条对称轴。
人教版数学八年级上册说课稿《13-2画轴对称图形》(第1课时)
人教版数学八年级上册说课稿《13-2画轴对称图形》(第1课时)一. 教材分析《13-2画轴对称图形》是人教版数学八年级上册的教学内容。
这部分内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的。
本节课的主要内容是让学生学会如何通过尺规作图的方法画出轴对称图形,并能够找出生活中的轴对称图形。
这部分内容对于学生来说,既是对轴对称知识的一个巩固,又是培养学生观察能力和动手能力的一个好机会。
二. 学情分析八年级的学生已经具备了一定的数学基础,对轴对称的概念和性质有一定的了解。
但是,由于每个人的学习习惯和思维方式不同,学生在画轴对称图形的过程中可能会遇到一些困难。
因此,在教学过程中,教师需要关注学生的个体差异,及时给予学生指导和帮助。
三. 说教学目标1.知识与技能目标:让学生掌握通过尺规作图的方法画出轴对称图形,提高学生的动手操作能力。
2.过程与方法目标:通过观察和动手实践,培养学生的观察能力和创新能力。
3.情感态度与价值观目标:让学生体验到数学与生活的紧密联系,增强学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生掌握通过尺规作图的方法画出轴对称图形。
2.教学难点:如何引导学生发现生活中的轴对称图形,并运用轴对称的知识进行解释。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法和合作学习法。
2.教学手段:利用多媒体课件、尺规作图工具和生活中的实例进行教学。
六. 说教学过程1.导入新课:通过展示一些生活中的轴对称图形,如衣服、剪刀等,引导学生回顾轴对称的概念和性质。
2.讲解示范:讲解通过尺规作图的方法画出轴对称图形的步骤,并进行示范。
3.动手实践:让学生分组进行尺规作图,画出轴对称图形。
4.交流分享:让学生展示自己的作品,并分享在作图过程中遇到的问题和解决方法。
5.总结提升:引导学生总结轴对称图形的特征,并思考如何将轴对称的知识应用到生活中。
七. 说板书设计板书设计如下:1.概念:……2.性质:……3.作图方法:……4.应用:……八. 说教学评价1.学生参与度:观察学生在课堂上的积极参与情况,是否能够主动思考和解决问题。
人教版数学八年级上册13 轴对称(第一课时)课件
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
11
是轴对称图形且有两条对称轴的是 A.①② C.②④
B.②③ D.③④
第十三章 轴对称
(A)
上一页 返回导航 下一页
数学·八年级 (上)·配人教
12
8.【易错题】观察下列图形,其中所有轴对称图形的对称轴条数之和为 (B)
A.13 C.10
B.11 D.8
第十三章 轴对称
上一页 返回导航 下一页
数学·八年级 (上)·配人教
第十三章 轴对称
小房子
上一页 返回导航 下一页
数学·八年级 (上)·配人教
18
思维训练
14.【核心素养题】舞蹈教室的东西墙壁有平面镜AC、BD,如图.小华在平 面镜AC、BD之间练习舞蹈,她在每个平面镜中都能看到自己的一列身形,且越来 越小.若AC、BD都垂直于地面,AB=6 m.试问:
(1)小华在每个平面镜中看到的第二个身形之间的距离是多少? (2)猜想小华在每个平面镜中的第10个身形之间的距离是多少?并说明理由.
解:(1)点A对应点A,点B对应点D,点C对应点E. (2)AB=AD,AC=AE,BC=DE,∠BAC=∠DAE,∠B=∠D,∠C=∠E.
(3)△AFC与△AFE,△ABF与△ADF,四边形ABFE和四边形ADFC.
第十三章 轴对称
上一页 返回导航 下一页
能力提升
7.【山东泰安中考】下列图形:
数学·八年级 (上)·配人教
人教版八年级上册数学作业课件 第十三章 轴对称 画轴对称图形 第1课时 画轴对称图形
解:如图所示:
Байду номын сангаас解:图略
4.(4分)如图,在正三角形网格中,已有两个小正三角形被涂色,再 将图中其余小正三角形中的一个涂色,使整个被涂色的图案构成一个轴 对称图形的方法有___3_种.
5.(12分)(哈尔滨中考)如图,方格纸中每个小正方形的边长均为1,四 边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在 小正方形的顶点上,连接AE.
(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点 B是对称点;
(2)求△AEF与四边形ABCD重叠部分的面积.
题图
解:(1)△AEF如图所示
答图
(2)重叠部分的面积=12 ×4×4-12 ×2×2=6
6.(12分)在3×3的正方形格点图中(如图),有格点三角形ABC和格点 三角形DEF,若△ABC和△DEF关于某直线成轴对称,请在下面的备用 图中画出所有这样的△DEF.
人教版
第十三章 轴对称
13.2 画轴对称图形
第1课时 画轴对称图形
1.(6分)如图所示是轴对称图形的一部分,请以直线l为对称轴,画出 它的另一部分.
解:如图
2.(8分)在下图中,画出△A′B′C′,使△A′B′C′与△ABC关于直线l成轴 对称图形.
解:如图
3.(8分)如图,将已知四边形分别在格点图中补成关于已知直线l1,l2, l3,l4为对称轴的轴对称的图形.
新人教版八年级数学上册12.1轴对称(第1课时)教案
1前准备,课前预习了解.
新人教版八年级数学上册 12.1 轴对称教案
(1 课时) 山东省滨州市滨城区滨北街道办事处北城中学 耿新华 邮 编:256651 联系电话:15865403584 一、教材分析: 本节教材是新人教版, 初中数学八年级上册第十二章第一节第一课时的内容, 它是在学 习了有关“全等三角形”的知识基础上,进一步学习有关图形性质的第一节课,它是初中数 学的重要内容之一.一方面,本节课为学习轴对称的性质、变换,等腰三角形的直观认识打 下坚实基础.另一方面,涉及到“空间与图形”领域中的图形与变换内容,能培养学生的观 察能力,归纳类比能力,合作交流能力,让学生经历数学现象的探究过程,感受数学美,从而激 发数学学习的乐趣,体会数学与生活的密切联系。所以,我认为本节课不仅是本章节的重要 开局,而且起着承前启后的桥梁作用. 教学目标 (一)教学知识点 1.在生活实例中认识轴对称图形. 2.分析轴对称图形,理解轴对称的概念. (二)能力训练要求 1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴. 2.经历观察、分析的过程,训练学生观察、分析的能力. (三)情感与价值观要求 通过对丰富的轴对称现象的认识, 进一步培养学生积极的情感、 态度, 促进观察、 分析、 归纳、概括等一般能力和审美能力的提高. 教学重点 轴对称图形、轴对称的有关概念. 教学难点 能够识别轴对称图形并找出它的对称轴. 二、教学方法 启发诱导法. 三、教学过程 Ⅰ.创设情境,引入新课 [师]我们生活在一个充满对称的世界中, 许多建筑物都设计成对称形, 艺术作品的创作 往往也从对称角度考虑, 自然界的许多动植物也按对称形生长, 中国的方块字中些也具有对 称性„„
Ⅲ.实践和应用 1、 下列图片是生活中的一些建筑物,它们是轴对称图形吗? /i?ct=201326592&cl=&word= %BD%A8%D6%FE%CE%EF%CD%BC%C6%AC&istype=2&z=0&fm=rs3#pn=24 2、 下列图形是部分汽车的标志,那些是轴对称图形? /i?ct=201326592&cl=&word= %CA%C0%BD%E7%C3%FB%B3%B5%B1%EA%D6%BE%CD%BC%C6%AC&istype=2&z=0&fm=rs6 3、下图中的两个图形是否成轴对称?如果是,请找出它的对称轴. /i?ct=5033=%B3%C9%D6% E1%B6%D4%B3%C6%B5%C4%C1%BD%B8%F6%CD%BC%D0%CE&in=23156&cl=2&lm=-1&st=&pn=30&r n=1&di=7045485450&ln=1983&fr=&fm=&fmq=1332071370375_R&ic=&s=&se=&sme=0&tab=& width=&height=&face=&is=&istype=#pn30&-1&di7045485450&objURLhttp%3A%2F%2Ftec %2Fwzym%2F0129%2Fc20129%2Fc2sxq901.files%2Fimage015.jpg&fromURLhttp %3A%2F%%2Fwzym%2F0129%2Fc20129%2Fc2sxq901.htm&W368&H157&T10265 &S8&TPjpg
最新沪科版八年级数学上册《轴对称图形》全课时教学设计
第15章轴对称图形与等腰三角形15.1 轴对称图形第1课时轴对称图形(一)教学目标【知识与技能】1.在生活实例中认识轴对称,能画出简单轴对称图形的对称轴.2.使学生了解轴对称图形和关于直线成轴对称的概念.3.了解轴对称图形和轴对称的联系与区别.【过程与方法】1.通过实例认识轴对称,能够识别生活中的轴对称图形及其对称轴.2.培养学生的观察能力、思维能力、动手能力、总结能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】理解并掌握轴对称图形、轴对称的概念、画对称图形的对称轴.【难点】理解并掌握轴对称图形和两个图形成轴对称之间的关系.教学过程一、创设情境、导入新知教师多媒体课件出示:师:同学们认识这些图形吗?生:认识.师:你能说出它们的共同点吗?学生观察后,思考并讨论交流.生:它们的左右两边是一样的.师:对,实际上它们的左右两边是对称的.自然界中,许多物体的平面图形都具有对称性.今天我们就来研究轴对称图形.二、共同探究,获取新知学生实验一师:把一张纸对折,然后从折叠处剪出一个图形,想一想:展开后会是什么样的图形?位于折痕两侧的图案有什么关系?学生分组活动,合作交流后选代表回答实验结果.生甲:我们得到了一个美丽的图形:飞鸟,它有对称美.生乙:我们得到的是大树和五角星,它们是对称的.生丙:我们得到的是轴对称图形,位于折痕两部分的图案能够完全重合.师:你们的发现真是了不起啊!那么你们能说说什么样的图形是轴对称图形吗?生甲:能够完全重合的图形是轴对称图形.生乙:不对!应该是沿着一条直线折叠后能完全重合的图形才是轴对称图形.师:很好,如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.请同学们尽可能多地从你周围的环境中找出轴对称的物体.学生畅所欲言.教师提示:天上飞的、地上跑的、水里游的,还有已经学过的那些简单的图形、数字、字母等都可以.生:我们组将这个平行四边形对折后,发现无论怎么对折,两边都无法重合,所以它不是一个轴对称图形.师:有道理,其他同学有没有不同的想法?生:我们组将这个平等四边形剪拼成一个长方形,而长方形对折后两边完全重合,所以我们认为它是一个轴对称图形.师:听起来好像也有道理.生甲:我们反对.因为在刚才的学习中,我们知道判断一个图形是不是轴对称图形关键是看对折后两边能否完全重合,而这个图形对折后显然无法重合.生乙:(补充)而且你们将这个图形剪拼后,已经改变了这个图形的形状和性质,所以我们认为它原本不是一个轴对称图形.师:(回到赞成“是的”一方)听了对方的阐述,再结合我们一开始探讨轴对称图形时的要求,你现在的观点是什么?生:(沉默一会儿后)现在我也同意这个平行四边形不是轴对称图形了.师:对,平行四边形不是轴对称图形.学生实验二:折纸印墨迹学生分组完成实验教师提出问题1:你发现折痕两边的墨迹形状一样吗?为什么?问题2:两边墨迹的位置与折痕有什么关系?(让学生充分观察、讨论和交流,并指名汇报):生甲:我们组发现两边的墨迹形状一样,因为它们折过去能完全重合.生乙:我们组的发现和他们一样.生丙:两边的墨迹关于折痕对称.生丁:我想补充的是两边的墨迹是关于折痕成轴对称的.师:同学们观察得真仔细啊!那你们能说说究竟什么样的两个图形成轴对称吗?生甲:一个图形和另一个图形能完全重合,这两个图形成轴对称.生乙:我不同意他的观点,应该是一个图形沿着某条直线折叠,如果它能和另一个图形重合,那么称这两个图形关于这条直线对称.师:你真是太聪明了!动画演示,师生共同总结出轴对称、对称轴及对称点的概念.教师用多媒体展示练习,学生独立思考后回答.三、深入探究师:通过刚才的学习,你们能说说轴对称与轴对称图形是否是一回事吗?生齐答:不是.师:那谁能说说它们的关系呢?(见学生面有难色,让学生先思考交流)生甲:轴对称是两个图形,轴对称图形是一个图形.师:说得好,谁还想说?生乙:它们都是沿着一条地线对折的,并且能重合.生丙:如果把成轴对称的两个图形看成一个整体,就是一个轴对称图形;如果把一个轴对称图形看成两个图形就是成轴对称.师:怎样将一个轴对称图形看成两个图形呢?生:哦,是将位于对称轴两旁的部分看成两个图形.师:你可以当小老师了!各位同学的发现合起来就是轴对称与轴对称图形的区别与联系.四、课堂小结师:生活中处处有数学,我们只有学好了数学,才能更好地运用所学的知识去解决生活中的实际问题,谁想说说你今天收获得了什么?生甲:我今天最大的收获是认识了轴对称图形和轴对称.生乙:我通过观察发现了轴对称图形和轴对称的区别和联系.生丙:通过欣赏图片,我感受到了对称图形的美.生丁:通过找生活中的轴对称物体,我体会到数学就在我们身边,生活中处处有数学知识.教学反思在学习轴对称与轴对称图形的时候,充分让学生通过实验去感知、思考、探索知识,从更深层次上理解概念.在本节课中轴对称和轴对称图形是两个重要要概念且易混淆.在教学中充分地进行比较,这样不仅能帮助学生建立、理解概念,而且有利于学生在头脑中建立起事物与概念间的内在联系,达到事半功位的效果.第2课时轴对称图形(二)教学目标【知识与技能】1.知道线段垂直平分线的概念.2.知道成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线.【过程与方法】1.探索并了解线段垂直平分线的有关性质,通过作对称轴提高学生的作图能力.2.经历探索轴对称性质的活动,积累数学活动经验,进一步发展空间观念和表达能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】会利用轴对称性质作对称点、轴对称图形等.【难点】根据题目要求画出轴对称图形.教学过程一、创设情境,导入新知师:上节课我们探讨了轴对称图形,知道现实生活中由于轴对称图形,而显得异常美丽,那么什么样的图形是轴对称图形呢?学生思考回答:如果一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.师:大家想一想,我们以前学过的哪些几何图形是轴对称图形呢?生甲:正方形、矩形.生乙:圆、等腰三角形.生丙:角、线段.师:刚才有人提出“线段是轴对称图形”,今天我们就来研究这个简单的轴对称图形(板书课题).二、共同探究,获取新知教师画出一条线段.师:你能找出它的一条对称轴吗?生甲:它的对称轴是与线段垂直的,且垂足是线段中点的直线.教师画出一条线段AB,对折AB使点A、B重合,折痕与AB的交点为O.师:OA=OB吗?折痕与直线所成的两个角是多少度?学生观察.生:OA=OB,折痕与直线所成的两个解都是90°师;折痕(即线段的对称轴)与线段有什么关系?学生讨论交流.教师小结:经过线段的中点并且垂直这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线.线段是轴对称图形,它的对称图形就是线段的垂直平分线.教师让学生任意画一条线段,然后用带有刻度的直角三角板画出线段的垂直平分线.学生讨论做法,教师巡视指导.三、合作交流,深化理解教师多媒体出示:如图,△ABC与△A'B'C'关于直线l对称,点A'B'C'分别是点A、B、C的对称点,连接AA',设AA'与直线l交于点O1.师:直线l与线段AA'有怎样的位置关系?生:垂直.师:OA1与O1A'的长度有什么关系?学生观察后回答:相等.师:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,如果两个图形各对对应点的连线被同一条直线平分,那么这两个图形关于这条直线对称.四、练习新知师:请同学们完成课本练习的第3题.教师找三名学生板演,其余同学在下面做,教师巡视指导,然后集体订正.师:请同学们完成练习第4题.教师找两名学生板演,其余同学在下面做,然后集体订证.五、课堂小结师:今天你有什么收获你又学到了什么?学生回答,教师补充完整.教学反思对称是一种最基本的图形变换,是学生学习空间与图形的必要基础,了解对称图形,对于帮助学生建立空间观念,培养学生的空间想象力都有着不可忽视的作用,这节课鼓励每个学生动手、动口、动脑,积极参与到数学的学习过程中来,注意发挥学生的主体性,给学生留下充分的时间与空间进行活动.上述的自主活动是整堂课的重点所在,通过活动既可充分发挥学生的理解能力、创造能力,又能在整个活动中对轴对称的概念从感性认识升华到理性认识.第3课时轴对称图形(三)教学目标【知识与技能】1.理解并掌握平面直角坐标系中,与已知点关于x轴或y轴对称的点的坐标的规律.2.能作出与一个图形关于x轴或y轴对称的图形.【过程与方法】1.通过作图提高学生的实践能力.2.通过现实情境的创设使学生体验到数学就在我们身边,从而培养审美感以及数学应用意识.【情感、态度与价值观】1.通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新的意识及多方位审视问题的创造技巧.2.在作图过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神.重点难点【重点】用坐标表示点关于坐标轴对称的点的坐标.【难点】找对称点的坐标之间的关系、规律.教学过程一、创设情境,导入新知师:什么是轴对称图形?生:如果一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形.师:什么是轴对称?生:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称.师:什么是线段的垂直平分线生;经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线.师:很好!这节课我们继续学习轴对称的有关知识.老师板书课题.二、共同探究,获取新知师:已知点A和一条直线,你能画出这个点关于已知直线的对称点吗?教师多媒体出示:学生作图,教师巡视指导,然后集体纠正.教师边操作边讲解:我们过A点作MN的垂线并延长,记垂线与MN的交点为O,然后在上面截取一段使OA'=AO,则A'点就是A点关于MN的对称点.教师强调:不是题中要求作出的,比如我们作的这条垂线,它相当于辅助线,用虚线表示.三、深入探究,层层推进师:在平面直角坐标系里,如何作出图形的轴对称图形呢?下面只介绍以特殊直线(坐标轴)为对称轴的情形.教师多媒体出示:如图所示,在平面直角坐标系中,正方形ABCD四个顶点的坐标分别为A(1,1),B(3,1),C(3,3),D(1,3).师:我请两名同学分别作出点A、B、C、D关于x轴和y轴对称的点,并写出它们的坐标.学生思考.教师找两名学生板演,其余同学在下面做.教师出示表格.已知点的A(1,1)B(3,1)C(3,3)D(1,3)坐标关于x轴对A1(1,-1)B1(3,-1)C1(3,-3)D1(1,-3)应点的坐标关于y轴对A2(1,-1)B2(-3,1)C2(-3,3)D2(-1,3)应点的坐标师:观察上表,已知点与它关于x轴对称的点的坐标有什么关系?已知点与它关于y轴对称点的坐标呢?学生观察表格,思考后回答.生:关于x轴对称的点横坐标不变,纵坐标互为相反数;关于y轴对称的点纵坐标不变,横坐标互为相反数师:很好!我们得到:一般地,已知点P(x,y),它关于x轴对应的点的坐标为P1(x,-y),它关于y轴对应的点的坐标P2(-x,y).四、练习新知,加深理解教师找一名学生完成课本练习第1题,然后集体订正.点关于x轴对称的点关于y轴对称的点A(-2,0)(-2,0)(2,0)B(2,-3)(2,3)(-2,-3)C(-4,-2)(-4,2)(4,-2)D(-3,2)(-3,-2)(3,2)E(0,-1)(0,1)(0,-1)F(2,3)(2,-3)(-2,3)教师找一名学生板演练习2,其余同学在下面做,老师巡视指导,然后集体订正.五、课堂小结师:今天我们学习了什么知识?你有哪些收获?生甲:我学习了一点关于x轴或y轴对称的点的坐标的求法.生乙:我知道了一个图形关于x轴或y轴对称的图形的画法.师:你还有哪些疑问?学生提问,教师解答.教学反思上节课我们只是根据对称轴是两个图形对应点所连线段的垂直平分线作出一个图形关于一条对称轴对称的图形,在这节课上我们把图形放在坐标系里,来讨论这个图形上点的坐标和与它对应的点的坐标的关系,先让学生作出对应点,然后让他们自己分析关于两条坐标轴对称的两点坐标之间的关系.比较一个点和它的对应点和对称轴之间的关系,发挥了学生的主动性,让他们自己去发现规律,总结规律,提高他们的分析、归纳能力,同时也给他们提供表达自己观点的机会,提高他们表达问题的能力.。
鲁教版五四制七上数学简单的轴对称图形第1课时课件
【解析】
作夹角的角平分线OC,截取OD=2.5cm ,D
即为所求.
O
s
D C
反过来,到一个角的两边的距离相等的点是 否一定在这个角的平分线上呢?
【结论】
角的内部到角的两边的距离相等的点在角的平分线上. 用数学语言表示为: 因为QD⊥OA,QE⊥OB,QD=QE. 所以点Q在∠AOB的平分线上.
在数学的领域中,提出问题的艺术比解答 问题的艺术更为重要.
——康托尔
3 简单的轴对称图形 第1课时
1.了解线段垂直平分线及角的平分线的性质和判定. 2.会应用线段垂直平分线及角的平分线的性质和判定
解决问题.
不利用工具,请你将一张用纸片做的角分成
两个相等的角.你有什么办法? 对折
A
对折后再打开纸片 ,看看折痕
C 与这个角有何关系?
O
B
【探究】画线段AB的垂直平分线l,在l上取任意点P, 量一量点P到A与B的距离,你有什么发现?再取几个点
A
【跟踪训练】
12
(1)因为∠1= ∠2,DC⊥AC, DE⊥AB,
所以_D__C_=__D_E_.
CD
(__角__的__平__分__线__上__的__点__到__角__的__两__边__的__距__离__相__等___).
E B
(2)因为DC⊥AC ,DE⊥AB ,DC=DE, 所以_∠_1_=__∠__2___
3.(宁德·中考)如图,已知AD是△ABC的角平分线,
在不添加任何辅助线的前提下,要使△AED≌△AFD,需
添加一个条件是:_______________,并给予证明.
A E
F
B
D
C
【解析】解法一:添加条件:AE=AF. 在△AED与△AFD中,
轴对称图形(第一课时)教学设计及点评
轴对称图形(第一课时)教学目标:一、知识技能目标:1.通过欣赏现实生活中的轴对称图形,抽象、概括轴对称图形的概念,能找出轴对称图形的对称轴;2.能够利用轴对称图形的特点,进行简单图案的设计.二、过程方法目标:经历欣赏生活中的轴对称图形的美,探索、发现它们的共同特征,发展学生的形象思维和空间观念,积累数学活动的经验,培养学生的动手能力、总结归纳能力、想象力和创造力。
三、情感态度目标:欣赏现实生活中的轴对称图形,体会轴对称图形在现实生活中的广泛应用和它的丰富的文化价值,培养学生审美情趣和动手能力,增强鉴赏美的能力和分享美的情怀。
重点难点:重点:轴对称图形的概念难点:轴对称图形概念的获得过程学情分析:这节课的教学对象是八年级的学生,他们虽然在小学已学过简单的轴对称图形,但对什么是轴对称图形还停留在直观的表象认识上,对轴对称图形概念缺乏理性的认识,八年级学生的思维已开始由形象思维向抽象思维过渡,这为本节课教学提供了条件。
教学准备:剪刀、纸张、剪好的一些几何图形、多媒体课件教学流程:教学过程:一、欣赏图片,引入新课欣赏一组图片:建筑之美、文化之美、自然之美二、观察发现,探索概念(一)发现:活动1:多媒体展示图案时,演示对折重合的过程。
活动2:折一折把一张纸对折,然后从折叠处剪出一个图形,想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?让学生思考、讨论。
引导学生得出:轴对称图形的定义(二)探究:活动3:说一说下面这些图形是不是轴对称图形?活动4:找一找看看下面的轴对称图形,各有几条对称轴?三、动手创造、体验成功活动5:看一看活动6:猜一猜活动7:试一试你能用纸剪一个双喜图吗?看谁剪得快?四、小组交流、整理归纳活动8:理一理:本节课你有哪些体会呢?师生共同总结活动9:晒一晒五、分享美丽分享快乐活动10:亲爱的同学,2014年即将过去了,新的一年就要来到,请大家一起行动起来,用你灵巧的双手,运用剪纸艺术,手工制作一张贺年卡,把最美的祝福分享给你的亲人、朋友、老师、同学!《轴对称图形》教学设想与反思马鞍山外国语学校杨庆九本节课的内容是沪科版版八年级数学(上)第十五章第一节《轴对称图形》第一课时。
《轴对称》第一课时PPT课件人教版数学八年级上册
平面几何中常见的轴对称图形及它们的对称轴
课堂导入
对称现象无处不在,从自然景观到艺术作品,从建筑 物到交通标志,甚至日常生活用品,都可以找到对称 的例子,对称给我们带来美的感受!
你还能举出生活中见到的对称现象吗?
新知探究 知识点1 轴对称图形
仔细观察,你能从这些图片中发现什么共同特点吗?
以上图形沿着一条直线翻折后,直线两旁的部分能 够完全重合.
轴对称图形 定义: 如果一个平面图形沿一 条直线折叠,直线两旁的部分 能够互相重合,这个图形就叫 做轴对称图形,这条直线就是 它的对称轴.这时,我们也说这 个图形关于这条直线(成轴) 对称.
轴对称图形
(1)轴对称图形是对一个图形而言的,它是一个 图形自身的对称特征,它被对称轴分成的两部分 能够互相重合. (2)一个轴对称图形的对称轴可以有一条,也可 以有多条.
1.(2020·重庆中考)下列图形是轴对称图形的是( A ) 轴是_____________________
轴分成两个图形,这两个图形关于这条轴对称.
(2)一个轴对称图形的对称轴可以有一条,也可以有多条.
(1)轴对称图形是对一个图形而言的,它是一个图形自身的对称特征,它被对称轴分成的两部分能够互相重合.
2.完成下列填空: (1)成轴对称的两个图形的对应角_相__等_,对应边相__等__. (2)在“线段、钝角、长方形、等边三角形”这四个图 形中,是轴对称图形的有_4__个,其中对称轴最多的是 _等__边__三__角__形_,线段的对称轴是_经__过__线__段__中__点__且__垂__直__于__ _线_段__的__直__线___. (3)成轴对称的两个图形_是__全等形;把一个轴对称 图形沿着对称轴分成两个图形,这两个图形_是__全等形. (填“是”或“否”)
第1课时轴对称图形
第1课时 轴对称图形【知识与技能】1.通过观察和实际操作,让学生初步认识轴对称图形的基本特征。
2.进一步发展学生的空间观念,培养学生的观察能力、想象能力,同时感受对称图形的美。
【教学重难点】1.认识轴对称图形的基本特征。
2.能画出轴对称图形的对称轴。
课件出示教材第28页的主题图。
师:这是在什么地方?小朋友在做什么? 生:游乐场,放风筝、滑滑梯、坐缆车……师:像这些小朋友放的风筝都是轴对称图形,小朋友们玩滑梯、坐小火车、坐缆车等运动都包含着平移和旋转现象,从这节课开始我们就来探索这些问题吧!知识点 认识对称现象教学教材第29页例11.课件出示教材第29页上面的三幅图。
师:这些图形好看吗?这些图形有什么特点?学生观察,组内交流。
(1)从哪儿可以分为左边和右边?请同学到前边来指一指。
指名学生上台指一指,集体讨论分的方法是否正确。
师:你是怎么知道图形的左边和右边相同的?还有别的办法吗?让学生用手中的蝴蝶图形动手试一试,互相讨论。
师:通过对折,图形左右两边完全合在一起,也就是完全重合。
(2)师:以上这些图形都是对称的。
在生活中,你还见过哪些对称现象?学生自由回答,师生共同评价。
(3)师:通过观察刚才这些图形,发现了它们左右两边或上下都是相同的,用对折法发现它们对折后能完全重合,像这样的图形就是今天要学习的轴对称图形。
(板书课题) 2.教材第29页例1。
(1)教师剪1个图形,让学生猜一猜剪的是什么,并判断一下它是否是轴对称图形。
(出示一半的衣服)师:为什么这个是轴对称图形?学生思考后回答。
(2)师:你能不能很快地剪出一个图形,使图形的左右两边能完全重合?大家一起讨论,看一看其他同学是怎么剪的。
学生操作后,教师提出:把纸对折起来,再剪。
(3)请学生将剪出的图形贴在黑板上。
师:你们剪出的这些图形都有什么特点?学生回答后,教师小结:像这样剪出来的图形都是对称的,它们都是轴对称图形。
(4)认识轴对称图形。
师:观察这几个轴对称图形,你们有没有发现这些图形中都有一条折痕,你们看这条折痕刚好把这个图形怎么样了?学生观察后,发现刚好把这个图形分成了两边一样的部分。
轴对称(第1课时)
2. 填表(剪一剪,折一折)
图形 长方形 形状 是否轴对称 图形 对称轴的 数量(条)
是 是 不是 是 是
2 4 ------1 无数
正方形 平行四 边形
等腰三 角形 圆形
探索新知
问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C 的对称点,线 段AA′,BB′,CC′与直线MN 有什么关系? M A A′ P 追问1 你能说明其中
八年级 数学 12.1 轴对称(1)
第十二章
轴对称
请 观 察 !
八年级 数学 12.1 轴对称(1)
第十二章
轴对称
轴对称图形定义:
一个图形 如果________沿一条直线折叠,直线两旁的部分 轴对称图形 互相重合 能够_________,这个图形就叫做____________.这条 对称轴 直线就是它的__________.这时我们也说这个图形关 轴对称图形 于这条直线(成轴)对称。
八年级 数学
第十三章 轴对称
13.1 轴对称(1)
智力测验
八年级 数学
第十三章 轴对称
13.1 轴对称(1)
想一想:0-9十个数字中,哪些是
轴对称图形?(抢答)
0 1 2 3 4
5 6 7 8 9
猜字游戏: 在艺术字中,有些汉字是轴对称的, 你能猜一猜下列是哪些字的一半吗?
八年级 数学
第十三章 轴对称
课堂小结
(1)本节课学习了哪些主要内容? (2)轴对称图形和两个图形成轴对称的区别与联系是 什么? (3)成轴对称的两个图形有什么性质?轴对称图形有
什么性质?我们是怎么探究这些性质的?
八年级 数学 12.1 轴对称(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.能够按要求作出简单平面图形经 过一次对称后的图形。 2、能设计简单的轴对称图案。
自研自探
认真看课本P67--68页练习以上的内容: 1、阅读课本页画图过程,自己动手试一试, 结合自己作品对67页的“归纳栏目”中的内 容进行理解。 2、重点看例1的分析和作法,想一想: 已知一点和一条直线,如何作这点关于直线的 对称点? 如果将该点换成一个几何图形呢? 3、4பைடு நூலகம்页“归纳栏目” 中的内容整理出画轴对 称图形的一般步骤。 (自主完成,10分钟后比比看,看谁完成的 最好!加油!)
图 (1)
图 (2)
图 图 (3) (4)
我要说:
谈谈你这一节课的收获、疑惑· · · · · ·
日清反馈
1、如图,已知四边形ABCD和直线l,作出与四 边形ABCD关于直线l对称的图形。 2、已知△ABC,及点A的对称点A′,请作出对 称轴直线l,并画出△ABC关于直线l的对称图形。
A
A'
B C
谢谢大家!
B组 1、请用四个半圆设计对称图形。 2、课本P68练习题 C组 为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分 成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相 等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图1);⑵过一条边的四等分点 作这边的垂线段(图2)(图2中两个图形的分割看作同一方法).请你按照上述三个要求, 分别在下面两个正方形中给出另外两种不同的分割方法.(正确画图,不写画法)
合作交流 (一)对子互查自研完成情况 (二)小组交流
归纳:作一个图形的轴对 称图形的步骤
A组 1.如图(1),请画出三角形关于直线l对称的图形。
2、身高1.80米的人站在平面镜前2米处,它在镜子中的像高______米,人与像之 间距离为_______米;如果他向前走0.2米,人与像之间距离为_________米.