主轴伺服系统的分类
《数控加工工艺及设备》教学教案
《数控加工工艺及设备》教案内容欢迎阅读备注欢迎阅读 《数控加工工艺及设备》教案内容第一章数控加工工艺及设备基础备注第一节机床数控技术与数控加工设备概述一、机床中有关数控的基本概念1.数字控制(数控)及数控技术 一般意义的数字控制是指用数字化信息对过程进行的控制,是相对模拟控制 而言的。
机床中的数字控制是专指用数字化信号对机床的工作过程进行的可编程 自动控制,简称为数控(NC)。
这种用数字化信息进行自动控制的技术就叫数控 技术。
2.数控系统 是实现数控技术相关功能的软硬件模块的有机集成系统,是数控技术的载 体,它能自动阅读输入载体上事先给定的程序,并将其译码,从而使机床运动并 加工零件。
在其发展过程中有硬件数控系统和计算机数控系统两类。
早期的数控系统主要由数控装置、主轴驱动及进给驱动装置等部分组成,数 字信息由数字逻辑电路来处理,数控系统的所有功能都由硬件实现,故又称为硬 件数控系统(NC 系统)。
3.计算机数控系统 是以计算机为核心的数控系统,由装有数控系统程序的专用计算机、输入输 出设备、可编程逻辑控制器(PLC)、存储器、主轴驱动及进给驱动装置等部分 组成,习惯上又称为 CNC 系统。
CNC 系统已基本取代硬件数控系统(NC 系统)。
4.开放式 CNC 系统 国际电子与电气工程师协会提出的开放式 CNC 系统的定义是:一个开放式 CNC 系统应保证使开发的应用软件能在不同厂商提供的不同的软硬件平台上运 行,且能与其它应用软件系统协调工作。
根据这一定义,开放式 CNC 系统至少包括以下五个特征: (1)对使用者是开放的:应可以采用先进的图形交互方式支持下的简易编 程方法,使得数控机床的操作更加容易; (2)对机床制造商是开放的:应允许机床制造商在开放式 CNC 系统软件的 基础上开发专用的功能模块及用户操作界面; (3)对硬件的选择是开放的:即一个开放式 CNC 系统应能在不同的硬件平 台上运行; (4)对主轴及进给驱动系统是开放的:即能控制不同厂商提供的主轴及进 给驱动系统;欢迎阅读 《数控加工工艺及设备》教案内容(5)对数据传输及交换等是开放的。
《数控机床故障诊断与维护》课程标准
《数控机床故障诊断与维护》课程标准课程代码:学时:64 学分:4一、课程的地位与任务《数控机床故障诊断与维护》是一门专业课程,先修课程有机械制造、气动液压、电控及PLC 技术应用等。
本课程是机电技术的综合应用,对学习机、电技术综合能力的培养有明显的促进作用。
同时也是数控的一门专业主干核心课程,具有实践性强、应用面广的特点。
通过《数控机床故障诊断与维护》的教学,使学生能够获得数控机床的基本理论和基本知识,初步掌握数控机床故障诊断与维护的基本思路、基本方法和基本原则,具有分析并排除数控机床常见故障的能力。
为今后学习后续课程和从事相关工作打下扎实的基础。
二、课程的主要内容和学时分配1.课程的主要内容第一章数控机床维修与维护基础第一节数控机床概述(1)数控机床的产生背景(2)数控机床的基本概念(3)数控机床的组成(4)数控机床的工作过程(5)数控机床的种类(6)数控机床的常用数控系统简介第二节数控机床的故障维修基础(1)数控机床的故障定义(2)数控机床常见故障的特点与规律(3)数控机床常见故障的种类(4)数控机床发生故障时的诊断方法第三节数控机床的日常维修维护与保养(1)数控机床日常维修维护工作的内容(2)数控机床机体的维护与保养(3)数控机床电气控制系统的日常维护(4)数控机床维修人员应具备的基本要求(5)数控机床的维修维护的技术资料(6)数控机床故障诊断与维护常用仪器仪表及工具第四节FANUCOi系统数控机床基本操作(1)数控机床面板介绍(2)数控机床的基本操作(3)手动进给操作第二章数控系统硬件故障诊断与维护第一节数控系统硬件概述第二节数控系统硬件的更换方法第三节数控系统硬件故障的诊断方法第四节数控机床的抗干扰措施第三章数控系统软件故障诊断与维护第一节数控系统软件的组成第二节数控系统的参数设置第三节数控系统的参数备份与恢复第四节数控系统软件故障的诊断与处理方法第四章数控机床PLC故障诊断与维护第一节数控机床PLC基础(1)数控机床中PMC的用途(2)数控机床用PLC种类(3)数控机床PLC梯形图程序(4)数控机床PLC梯形图符号第二节数控机床用PLC的操作(1)FANUCOi数控系统的PMC调试功能(2)PMC的基本操作(3)PMC编程实例第三节数控系统PMC故障诊断(1)数控系统PMC的故障类型及原因(2)通过PMC进行故障诊断的方法(3)数控机床PMC控制功能程序分析(4)典型PLC故障的分析与诊断流程第五章数控机床进给伺服系统故障诊断与维护第一节进给伺服系统的概述(1)进给伺服系统的组成(2)数控机床对进给伺服驱动系统的要求(3)进给伺服驱动系统的分类第二节步进电动机伺服系统及工作原理(1)步进进给伺服驱动系统(2)步进电动机进给伺服驱动系统的工作原理(3)步进电动机驱动系统的常见故障与维修第三节交流伺服进给驱动装置的组成及工作原理(1)交流进给伺服系统的特点(2)模拟式交流伺服控制原理(3)数字交流伺服系统控制原理(4)交流伺服系统的维护与调整第四节位置检测装置的组成及工作原理(1)位置检测装置的要求(2)位置检测方式分类(3)位置检测元件及其维护(4)位置检测故障的诊断第六章主轴驱动系统故障诊断与维护第一节数控机床主轴驱动系统基本知识(1)数控机床对主轴传动的要求(2)主轴系统分类及特点(3)主轴伺服系统故障的形式及诊断第二节交流主轴伺服系统概述(1)交流主轴伺服系统的特点(2)交流主轴调速原理(3)交流数字式主轴伺服系统(4)交流模拟式主轴伺服系统第三节交流主轴驱动系统故障诊断与维修(1)交流数字式主轴伺服系统故障的诊断与排除(2)交流模拟式主轴伺服系统故障的诊断与排除(3)主轴伺服系统故障实例及分析第七章数控机床机械结构故障诊断与维护第一节数控机床精度的检验第二节主传动机械结构的维护与维修第三节进给系统机械传动结构的维修第四节换刀装置的维护与故障诊断第五节其它辅助故障诊断与维护2.学时分配本课程在教学过程中,强调基础理论和基本概念的掌握,同时注重学生的实际动手操作,要求能把基础理论应用于实践中,让学生具备处理和排除数控机床基本故障的能力。
第4章 数控机床伺服系统
第4章 数控机床伺服系统
第4章 数控机床伺服系统 工作原理:假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对 齐。此时,B 相和 A 相空间差120,含 1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个 3 齿。所以,A 相的转子、定子的五个小齿对 齐时,B 相、C 相不能对齐,B相的转子、 定子相差 1/3 个齿(3),C相的转子、定 子相差2/3个齿(6)。
mz2 k
式中:n —转速(r/min); f —控制脉冲频率,即每秒输入步进电动机的脉冲数; 由上式可知:工作台移动的速度由指令脉冲的频率所控制。
第4章 数控机床伺服系统 特点:
(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
种类:
有励磁式和反应式两种。两种的区别在于励磁式步进电机的转 子上有励磁线圈,反应式步进电机的转子上没有励磁线圈。
第4章 数控机床伺服系统
计算机数控系统 机床 I/O 电路和装置 操作面板 键盘 输入输出 设备 机 床
PLC
计算机 数 装 控 置
主轴伺服单元
主轴驱动装置
进给伺服单元 测量装置
进给驱动装置
主进辅 运给助 传控 动 动制 机机机 构构构
数控机床的组成
第4章 数控机床伺服系统
第4章
数控机床伺服系统
第4章 数控机床伺服系统
360o s mz2 k
第4章 数控机床伺服系统
每个步距角对应工作台一个位移值,这个位移值称为脉 冲当量。 因此,只要控制指令脉冲的数量即可控制工作台移动的 位移量。步距角越小,它所达到的位置精度越高,因此实际 使用的步进电动机一般都有较小的步距角。 步进电动机的转速公式为:n 60 f
数控机床的伺服系统
第6章 数控机床的伺服系统
伺服驱动装置
位置控制模块 速度控制单元
工作台 位置检测
速度环 速度检测 位置环
伺服电机
测量反馈
图6-1 闭环进给伺服系统结构
数控机床闭环进给系统的一般结构如图,这是一个双闭环系统,内 环为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。 速度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控 制系统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由 CNC装置中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组 成。
第6章 数控机床的伺服系统
A C1 B4 2 B 3C A
逆时针转30º
C 4 B
A 1 2 3 A
B
C 1 B
A 2
B 3 C
C
逆时针转30º
4 A
第6章 数控机床的伺服系统
采用三相双三拍控制方式,即通电顺序按AB→BC→CA→AB(逆时针 方向)或AC→CB→BA→AC(顺时针方向)进行,其步距角仍为30。由于 双三拍控制每次有二相绕组通电,而且切换时总保持一相绕组通电,所以 工作比较稳定。
第6章 数控机床的伺服系统
设 A 相首先通电,转子齿与定子 A 、 A′ 对齐(图 3a )。然后在 A 相继续通电的情 况下接通 B 相。这时定子 B 、 B′ 极对转子 齿 2 、 4 产生磁拉力,使转子顺时针方向转 动,但是 A 、 A′ 极继续拉住齿 1 、 3 ,因 此,转子转到两个磁拉力平衡为止。这时转 子的位置如图 3b 所示,即转子从图 (a) 位 置顺时针转过了 15° 。接着 A 相断电, B 相继续通电。这时转子齿 2 、 4 和定子 B 、 B′ 极对齐(图 c ),转子从图 (b) 的位置又 转过了 15° 。其位置如图 3d 所示。这样, 如果按 A→A 、 B→B→B 、 C→C→C 、 A→A… 的顺序轮流通电,则转子便顺时针 方向一步一步地转动,步距角 15° 。电流 换接六次,磁场旋转一周,转子前进了一个 齿距角。如果按 A→A 、 C→C→C 、 B→B→B 、 A→A… 的顺序通电,则电机 转子逆时针方向转动。这种通电方式称为六 拍方式。
伺服系统的分类
伺服系统的分类主轴驱动系统→主轴的旋转运动进给驱动系统→进给轴直线运动直流驱动系统交流驱动系统伺服系统(组成)伺服电机(M)驱动信号控制转换电路电力电子驱动放大模块电流调解单元,速度调解单元检测装置数控机床的伺服系统是指以机床移动部件的位移和速度作为控制系统,它是执行CNC装置所发出命令的执行机构。
因为电动机拖着一个重量很重的工作台,而且摩擦力随着季节、新旧程度、润滑状态等因素而变化,控制了一个稳定速度,精确定位,可以想象其难度之大位置环也称为外环,其输入信号是计算机给出的指令和位置检测器反馈的位置信号。
这个反馈是负反馈,也就是说与指令信号相位相反。
指令信号是相位置环送去加数,而反馈信号是送去减数。
位置环的输出就是速度环的输入位置检测器可以是光电编码器、旋转变压器,也可能是光栅尺、感应同步器或磁栅尺等。
但是,它的作用就是检测位置的,有时可能是直接检测位置的,有时可能是直接检测位置,但也有时是间接检测位置机床进给伺服系统高精度快响应宽调速范围低速大转矩对主轴传动提出下述要求:1、主传动电动机应有(2.2~250)KW的功率范围;2、要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩速度和1:10的恒功率调速3、要求主传动有四项限的驱动能力4、为了满足螺纹车削,要求主轴能与进给实行同步控制5、在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有角度控制功能等。
主轴驱动变速目前主要有两种形式:一是主轴电动机带齿轮换挡,目的在于降低主轴转速,增大传动比,放大主轴功率以适应切削的需要;二是主轴电动机通过同步齿形带或皮带驱动主轴,该类主轴电动机又称宽域电动机或强切削电动机,具有恒功率宽的特点FANUC公司主轴驱动系统主要采用交流主轴驱动系统S H P 三个系列(1.5~37、1.5~22、3.7~37KW)SIEMENS 公司主轴驱动系统直流主轴电机1GG5、1GF5交流主轴电机1PH5、1PH6主轴伺服系统的故障形式及诊断方法故障形式诊断方法速度调节器的输入作为电流调节器的给定信号来控制电动机的电流和转矩。
5数控机床伺服驱动和检测
10
第一节 概述
但直流电机有电刷,限制了转速的提高,而且结构复杂,价格 也高。进入80年代后,由于交流电机调速技术的突破,交流伺服 驱动系统进入电气传动调速控制的各个领域。交流伺服电机,转 子惯量比直流电机小,动态响应好。而且容易维修,制造简单, 适合于在较恶劣环境中使用,易于向大容量、高速度方向发展, 其性能更加优异,已达到或超过直流伺服系统,交流伺服电机已 在数控机床中得到广泛应用。 直线电动机的实质是把旋转电动机沿径向剖开,然后拉直演 变而成,利用电磁作用原理,将电能直接转换成直线运动动能的 一种推力装置,是一种较为理想的驱动装置。在机床进给系统中, 采用直线电动机直接驱动与旋转电动机的最大区别是取消了从电 动机到工作台之间的机械传动环节,把机床进给传动链的长度缩 短为零。正由于这种传动方式,带来了旋转电动机驱动方式无法 达到的性能指标和优点。由于直线电动机在机床中的应用目前还 处于初级阶段,还有待进一步研究和改进。随着各相关配套技术 的发展和直线电动机制造工艺的完善,相信用直线电动机作进给 驱动的机床会得到广泛应用。
选择:①伺服系统要求的分辨率; ②考虑机械传动系统的参数。
分辨率(分辨角)α
设增量式码盘的规格为 n 线/转:
18
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
19
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
20
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
2
第一节 概述
数控机床闭环进给系统的一般结构如图所示,这是一个双闭环系统,内环 为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。速 度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控制系 统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由CNC装置 中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组成。由速度 检测装置提供速度反馈值的速度环控制在进给驱动装置内完成,而装在电动机 轴上或机床工作台上的位置反馈装置提供位置反馈值构成的位置环由数控装置 来完成。伺服系统从外部来看,是一个以位置指令输入和位置控制为输出的位 置闭环控制系统。但从内部的实际工作来看,它是先把位置控制指令转换成相 应的速度信号后,通过调速系统驱动伺服电机,才实现实际位移的。
数控机床的主要组成部分有哪些?
数控机床的主要组成部分有哪些?数控机床的主要组成部分有哪些?现代数控机床都是CNC机床,一般由数控操作系统和机床本体组成,专门用来对金属或木材进行加工的设备,主要有如下几部分组成。
1) CNC装置:计算机数控装置(即CNC装置)是CNC系统的核心,由微处理器(CPU)、存储器、各I/O接口及外围逻辑电路等构成。
2) 数控面板:数控面板是数控系统的控制面板,主要有显示器和键盘组成。
通过键盘和显示器实现系统管理和对数控程序及有关数据进行输入和编辑修改。
3) 可编程逻辑控制器PLC:PLC是一种以微处理器为基础的通用型自动控制装置,用于完成数控机床的各种逻辑运算和顺序控制。
例如:主轴的启停、刀具的更换、冷却液的开关等辅助动作。
4) 机床操作面板:一般数控机床均布置一个机床操作面板,用于在手动方式下对机床进行一些必要的操作,以及在自动方式下对机床的运行进行必要的干预。
上面布置有各种所需的按钮和开关。
5) 伺服系统:伺服系统分为进给伺服系统和主轴伺服系统,进给伺服系统主要有进给伺服单元和伺服进给电机组成。
用于完成刀架和工作台的各项运动。
主轴伺服系统用于数控机床的主轴驱动,一般由恒转矩调速和恒功率调速。
为满足某些加工要求,还要求主轴和进给驱动能同步控制。
6) 机床本体:机床本体的设计与制造,首先应满足数控加工的需要,具有刚度大、精度高、能适应自动运行等特点,由于一般均采用无级调速技术,使得机床进给运动和主传动的变速机构被大大简化甚至取消,为满足高精度的传动要求,广泛采用滚珠丝杆、滚动导轨等高精度传动件。
为提高生产率和满足自动加工的要求,还采用自动刀架以及能自动更换工件的自动夹具等。
上海市松江丰远是在原松江县骏马五金厂(1995年成立)的基础上成立的,位于国际大都市上海的西郊。
工厂是由三线建设大型军工企业回沪人员创建。
二十多年来先后成为几十家内外资企业的配套厂家。
以合理的价格、可靠的质量多次成为年度先锋供应商。
数控机床故障诊断与维修第2版习题答案
数控机床故障诊断与维修第2版习题答案《数控机床故障诊断与维修》第2版练习与思考题及答案第1章练习与思考题1(见书30页)1-1 数控机床故障诊断与维修的意义是什么?答:在许多⾏业中,数控机床均处在关键⼯作岗位的关键⼯序上,若出现故障后不能及时修复,将直接影响企业的⽣产率和产品质量,会对⽣产单位带来巨⼤的损失。
所以熟悉和掌握数控机床的故障诊断与维修技术、及时排除故障是⾮常重要的。
1-2什么是平均⽆故障⼯作时间?什么是平均有效度?答:平均⽆故障时间是指数控机床在使⽤中两次故障间隔的平均时间,即总故障次数总的⼯作时间=MTBF 答:平均有效度是对数控设备正常⼯作概率进⾏综合评价的指标,它是指⼀台可维修数控机床在某⼀段时间内维持其性能的概率,即MTTRMTBF MTBF A +=1-3数控系统故障如何分类?答:1.从故障的起因分类2.从故障的时间分类3.从故障的发⽣状态分类4.按故障的影响程度分类5.按故障的严重程度分类6.按故障的性质分类1-4数控机床常⽤的故障诊断与维修的⽅法有哪些?故障诊断的⼀般步骤是什么?答:1.常规⽅法(1)直观法(2)⾃诊断功能法(3)功能程序测试法(4)交换法(5)转移法(6)参数检查法(6)参数检查法(7)测量⽐较法(8)敲击法(9)局部升温(10)原理分析法2.先进⽅法(1)远程诊断(2)⾃修复系统(3)专家诊断系统答:1.故障的调查与分析2.电⽓维修与故障的排除3.维修排故后的总结提⾼⼯作1-5数控机床故障诊断常⽤的⼯具有哪些?各有什么⽤途?答:1.万⽤表测量电压、电流、电阻及⾳频电平等多种电参量。
2.逻辑夹逻辑夹是⼀种测试数字电路的⼯具。
3.逻辑笔测试输出信号相对固定于⾼电位或低电位的逻辑门电路。
4.逻辑脉冲发⽣器在测试电路时,如果被测试电路的信号不变,或是有脉冲信号产⽣时,可以使⽤逻辑脉冲发⽣器将受控制的脉冲信号送⾄电路中。
5.电流跟踪器电流跟踪器是⼀种便携式检修辅助⼯具,这种辅助测试⼯具可以帮助检修者准确地找出系统电路板中的短路点。
机床数控系统的组成
机床数控系统的组成机床数控系统是现代机床的核心技术之一,它由多个组成部分构成,共同实现对机床的自动化控制和加工操作。
本文将从硬件和软件两个方面介绍机床数控系统的组成。
一、硬件组成1.主轴驱动系统:主轴驱动系统是机床数控系统的核心部分,它负责控制主轴的转速和运动方向。
主轴驱动系统通常由伺服电机、减速器、编码器等组成,通过对电机的控制,实现对主轴的精确控制。
2.进给驱动系统:进给驱动系统用于控制工件在加工过程中的运动轴向,包括直线进给轴和旋转进给轴。
直线进给轴通常由伺服电机、滚珠丝杠等组成,用于控制工件的直线运动;旋转进给轴通常由伺服电机、齿轮传动等组成,用于控制工件的旋转运动。
3.运动控制卡:运动控制卡是机床数控系统的核心控制器,它负责接收数控指令,并将其转换为电信号,通过与主轴驱动系统和进给驱动系统的配合,实现对机床的精确控制。
运动控制卡通常具备高速数据处理能力和多个输入输出接口,以满足机床复杂加工过程的控制需求。
4.传感器:传感器是机床数控系统的重要组成部分,用于实时监测机床的运行状态和工件加工过程中的各种参数。
常见的传感器包括位置传感器、力传感器、温度传感器等,它们通过与运动控制卡的连接,将采集到的数据反馈给数控系统,以实现对机床的自动化调节和控制。
5.人机界面:人机界面是机床数控系统与操作人员之间的交互界面,用于输入加工参数、监视加工过程和显示加工结果等。
人机界面通常由触摸屏、键盘、显示器等组成,操作人员可以通过它们与数控系统进行交互,并实时了解机床的工作状态。
二、软件组成1.数控系统软件:数控系统软件是机床数控系统的核心程序,它负责解释和执行数控指令,控制机床的运动和加工过程。
数控系统软件通常由操作系统、驱动程序、插补算法等组成,它们共同实现对机床的高精度控制和加工操作。
2.加工程序:加工程序是机床数控系统的另一重要组成部分,它是由一系列数控指令组成的程序,用于描述工件的加工路径和加工过程。
数控伺服系统详细论述
0
500
1000
1500 n
图6﹒8永磁直流伺服电机工作曲线
Ⅰ区为连续工作区; Ⅱ区为断续工作区,由负 载-工作周期曲线决定工作时间;Ⅲ区为瞬时加 减速区
0 1 3 tR 6 10 30 60 100 tR(min)
图6﹒9负载-工作周期曲线
2021/7/16
4.主轴直流伺服电机的工作原理和特性
(2)电气伺服系统 伺服电机(步进电机、直流电机和交流电机) 优点:操作维护方便,可靠性高。
1)直流伺服系统 进给运动系统采用大惯量宽调速永磁直流伺 服电机和中小惯量直流伺服电机;主运动系统采用他激直流伺 服电机。优点:调速性能好。缺点:有电刷,速度不高。
2)交流伺服系统 交流感应异步伺服电机(一般用于主轴伺服系 统) 和永磁同步伺服电机(一般用于进给伺服系统)。 优点:结构简单、不需维护、适合于在恶劣环境下工作。动 态响 应好、转速高和容量大。
速度控制 调节与驱动
实际 位置 反馈
实际 速度 反馈
检测与反馈 单元
机械执行部件 电机
2021/7/16
6.1.2 伺服系统的分类
从理论上讲,可以消除整个驱动和传动环节的误差、间 隙和失动量。具有很高的位置控制精度。
由于位置环内的许多机械传动环节的摩擦特性、刚性和 间隙都是非线性的,故很容易造成系统的不稳定,使闭 环系统的设计、安装和调试都相当困难。
指令 位置控制
速度控制
伺服电机 速度检测
位置检测
(3)半闭环伺服系统 指令 位置控制
速度控制
伺服电机 脉冲编码器
工作台
2021/7/16
6.1.2 伺服系统的分类
开环数控系统 没有位置测量装置,信号流是单向的(数控装置 →进给系统),故系统稳定性好。
数控机床的进给伺服系统概述
• 当步进电机励磁绕组相数大于3时,多相通电多数 能提高输出转矩。
• 所以功率较大的步进电机多数采用多于三相的励磁 绕组,且多相通电。
3、启动转矩Mq
AB C Mq
e
当电机所带负载ML<Mq时,电机可不失步的启动。
2、最高启动频率和最高工作频率
最高启动频率fg: 步进电机由静止突然启动,并不失步地进 入稳速运行,所允许的启动频率的最高值。 最高启动频率fg与步进电机的惯性负载J有 关。
故电动机的转速n为:
n f (r/s) 60 f (r/min) f ——控制脉冲的频率
mzk
mzk
SB-58-1型五定子轴向分相反应式步进电机。
• 定子和转子都分为5段,呈轴向分布;有16个 齿均匀分布在圆周上,
• 齿距=360º/16=22.5º;各相定子彼此径向错开 1/5个齿的齿距;
如按5相5拍通电,则步距角为:
4)电动机定子绕组每改变一次通电方式——称为一拍 5)每输入一个脉冲信号,转子转过的角度——步距角αº • 上述通电方式称为:三相单三拍。(三相三拍) • 单——每次通电时,只有一相绕组通电; • 双——每次通电时,有两相绕组通电; • 三拍——经过三次切换绕组的通电状态为一个循环; • 除此之外的通电方式还有: • 三相双三拍: AB—BC—CA—AB • 三相单双六拍: A—AB—B—BC—C—CA—A
第三节 数控机床的检测装置
1、检测装置的作用
• 检测装置是数控机床闭环伺服系统的重要组成部分 • 其作用是:检测位移和速度,发送反馈信号,构成
(1) 直线进给系统 已知:进给系统的脉冲当量δmm;步进电机的
步距角αº;滚珠丝杠的导程t mm;
求: 齿轮传动比 i。
数控机床伺服驱动系统
变挡机构
电磁离合器变挡机构:电磁离合器可以通过控制线圈的通 断,来控制传动链接续和切断,便于实现电气自动控制。 其缺点是体积较大,产生的磁通易使机械零件磁化。在数 控机床主轴传动中,使用电磁离合器可简化变速机构,通 过安装在各传动轴上离合器的吸合与分离,形成不同的运 动组合传动链,实现主轴变速。数控机床常使用无滑环摩 擦片式电磁离合器和牙嵌式电磁离合器。摩擦片式电磁离 合器采用摩擦片传递转矩,允许不停车变速。但如果速度 过高,会产生大量的摩擦热。牙嵌式电磁离合器将摩擦面 加工成一定的齿形,可提高传递转矩,缩小离合器的径向 和轴向尺寸,使主轴结构更加紧凑,减少摩擦势,但牙嵌 式电磁离合器必须在低速时才能变速。
数控机床对伺服系统的基本要求
5)低速大转矩 机床加工的特点是,在低速时进行重切削。
因此,要求伺服系统在低速时要有大的转 矩输出。进给坐标的伺服控制属于恒转矩 控制,在整个速度范围内都要保持这个转 矩;主轴坐标的伺服控制在低速时为恒转 矩控制,能提供较大转矩;在高速时为恒 功率控制,具有足够大的输出功率。
数控机床对伺服系统的基本要求
2)稳定性好 稳定性是指系统在给定输入或外界干扰作
用下,能在短暂的调节过程后,达到新的 或者恢复到原来的平衡状态,对伺服系统 要求有较强的抗干扰能力。稳定性是保证 数控机床正常工作的条件,直接影响数控 加工的精度和表面粗糙度。
数控机床对伺服系统的基本要求
3)快速响应 快速响应是伺服系统动态品质的重要指标,它反
削速度与主轴转速的关系可知,若保持切削速v恒定不变, 当切削直径D逐渐减小时,主轴转速n必须逐渐增大。
数控装置必须设计相应的控制软件来完成主轴转速的调整。 车削端面过程中,切削直径变化的增量为
Di 2Fti
(完整版)数控技术试题集+答案
填空题1、数控机床坐标系采用的是右手笛卡尔直角坐标系。
2、数控机床坐标系的正方向规定为增大刀刀具与工件距离的方向。
3、数控机床坐标系中Z轴的方向指的是与主轴平行的方向,其正方向是刀具远离工件的方向。
4、数控机床中旋转坐标有 A 轴、 B 轴、 C 轴,其正方向的判断是用右手螺旋定则。
5、数控车床中X轴的方向是工件的径向,其正方向是远离工件的方向。
6、数控机床坐标系一般可分为机床坐标系和工件坐标系两大类。
7、数控机床坐标系按坐标值的读法不同可分为绝对坐标系和增量坐标系。
8、在绝对坐标系中所有刀具运动轨迹的坐标值都以坐标原点为计算基准,而增量坐标系中所有运动轨迹的坐标值都相对前一位置进行计算的。
9、数控系统的插补是指根据给定的数学函数,在理想的轨迹和轮廓上的已知点之间进行数据密化处理的过程。
10、大多数数控系统都具有的插补功能有直线插补和圆弧插补。
11、插补的精度是以脉冲当量的数值来衡量的。
12、所谓脉冲当量是指数控装置发出一个脉冲信号机床执行部件的位移量。
13、数控机床插补过程中的四个节拍是:偏差差别、坐标进给、偏差计算、终点差别。
14、插补过程中终点判别的具体方法有:单向一、计数、双向计数、分别计数。
15、数控编程是从零件图样到获得数控机床所能识别的数控加工程序的全过程。
16、数控编程的步骤有工艺分析、数值计算、编写程序单、程序输入、程序检验和首件加工。
17、数控机床程序段的格式有固定程序段格式和可变程序段格式。
18、数控机床的编程方法有手动编程和自动编程。
19、以下指令的含义:G00 快速点定位;G01 直线插补;G02 顺时针圆弧插补;G03 逆时针圆弧插补。
20、准备功能G代码有模态代码和非模态代码两大类。
二、判断题1、数控加工程序是由若干程序段组成,而且一般常采用可变程序进行编程。
(√)2、只需根据零件图样进行编程,而不必考虑是刀具运动还是工件运动。
(×)3、进给路线的确定一是要考虑加工精度,二是要实现最短的进给路线。
数控机床复习总结资料
机床数控技术及应用复习资料填空1.现代数控机床(即CNC机床)一般由程序载体、输入装置、数控装置、伺服驱动及检测装置、机床本体及其辅助控制装置组成。
2.数控机床的分类(1)按运动控制方式分类:点位控制数控机床、直线控制数控机床、轮廓控制数控机床(2)按伺服系统类型分类:开环控制数控机床、闭环控制数控机床、半闭环控制数控机床区别标志:有无位置检测装置,没有为开环控制,有则为闭环控制;半闭环也带有检测装置,检测转角。
3.数控加工程序编制方法:自动编程、手工编程4.数控编程指令采用有EIA和ISO标准,我国采用的是ISO标准。
5.切削用量包括主轴转速(切削速度)、切削深度、进给量三个要素。
主轴转速(S=1000V c /n D,V c表示切削速度,D(mm)表示工件或刀具的直径)切削深度由工艺系统的刚度决定。
6.刀具补偿的作用:把零件轮廓转换成刀具中心点的轨迹。
C实施插补前必须完成的两件工作:1刀具补偿;2进给速度处理。
CNC装置控制刀具中心点。
8.旋转变压器是根据互感原理工作的。
由定子和转子组成,分为有刷和无刷两种。
9.伺服系统常见驱动元件:步进电机、直流电机、交流电机和直线电机。
10.步进电机用电脉冲信号进行控制,并将电脉冲信号转换成相应的机械角位移。
11直线电机是直接产生直线运动的电磁装置,电磁力矩直接作用于工作台。
12用直线逼近曲线的方法:等间距法、等步长法和等误差法。
计算节点的方法:等间距法、等步长法、等误差法。
13在编程时,X方向可以按半径值或直径值编程。
按增量坐标编程时,以径向实际位移量的2倍值表示。
14对刀的实质:使“刀位点”与“对刀点”重合。
15常见的三种机床布局形式:平床身布局、斜床身布局和立式床身布局。
16数控机床进给运动分为直线运动和圆周运动两大类。
17数控机床与传动机床相比优点是:滚珠丝杠螺母副18实现直线进给运动的三种形式:过丝杠螺母副、过齿轮齿条副、直接采用直线电机驱动19坐标偏差原则:逼近给定轨迹朝偏差缩小的方向进行20机床回零目的:消除坐标漂移积累的误差21螺纹加工方法:直进式(螺距V3mm)、斜进式(螺距〉3mm)22切削分配方式:常量式、递减式原则:后一刀的切削深度不能超过前一刀切削深度23刀具半径补偿原则:内轮廓增大,外轮廓减小。
FANUC 0i模拟主轴相关问题
问1:什么是数字主轴?什么是模拟主轴?什么是串行主轴?答1:首先了解一下主轴的类型,如下图:主轴伺服系统可分为直流和交流两大类,由于现在大多数机床采用交流主轴伺服系统,在这里也仅介绍交流系统。
交流主轴伺服系统由模拟式和数字式两种产品。
fanuc系统主轴控制可分为主轴串行输出/主轴模拟输出(Spindle serial output/Spindle analog output)。
特别的,这两种接口Fanuc 0i都具备,主轴串行输出接口能够控制两个串行主轴,主轴模拟输出接口只能控制一个模拟主轴。
按串行方式传送数据(CNC给主轴电动机的指令)的接口称为串行输出;另一种是输出模拟电压(电流)量作为主轴电动机指令的接口。
前一种必须使用FANUC的主轴驱动单元和电动机,后一种用模拟量控制的主轴驱动单元(如变频器)和电动机。
所以就有了串行主轴和模拟主轴的称法,串行主轴和数字主轴是按不同的分类标准得出的名称,个人认为串行主轴是数字主轴的一个子集。
目前大部分的经济型机床均采用数控系统模拟量输出+变频器+感应(异步)电机的形式,性价比很高,这时也可以将模拟主轴称为变频主轴。
Fanuc 0i主轴连接示意图问2:我用的是OI-MC的数控系统,XYZ三轴加1模拟主轴,模拟主轴由变频器控制,我现在只连接了0-10V的模拟信号端,有几点问题请教高手:1.请问模拟主轴的正反转怎样控制?2.我的模拟主轴每次开机第一次启动时,执行S500时程序不往下执行,总要先按下RESET键后再按下启动按钮才可以,再一次启动程序时就不会再有这样的现象,请问这个现象怎样解除?请高手指点非常感谢!答2:1.FANUC 0i的模拟主轴设置和siemens802s/c的模拟主轴设置基本类似,也可以分为单极性主轴和双极性主轴。
1)双极性主轴使用0~±10Vdc模拟量输出,即控制了转速和也控制了方向(正电压定义一个方向,负电压为其反方向)。
使能信号控制起停。
数控机床伺服系统
直流脉宽调速系统的优点 PWM驱动装置与一般晶闸管驱动装置相比 具有以下优点: ①需用的大功率可控器件少,线路简单。 ②调速范围宽。 ⑧快速性好。 ④电流波形系数好,附加WM驱动装置 的不足在于过载能力差,在大功率场合, 还不能与晶闸管相抗衡,
3、转速电流双闭环系统
晶体管直流脉宽(PWM)调速系统
调速的方法是改变加在电机电枢两端电压 的平均值。一个不变的整流电压,如何 改变它的平均电压呢? 使用的方法是改变占空比,也就是让晶体 管断续地导通,实现的方法是需要为晶 体管的基极提供振荡的电流信号。 调节基极电流的占空比是通过脉冲宽度调 制器实现的。 制器实现的。
幅值比较伺服系统以位置检测信号的幅值大小反 映机械位移的数值,并以此信号作为位置反馈 信号,一般还要转换成数字信号才能与指令信 号进行比较,而后获得位置偏差信号构成闭环 控制系统。此类伺服系统的位置检测装置多用 感应同步器或旋转变压器。
相位比较和幅值比较系统从结构上和安装 维护上都比脉冲、数字比较系统复杂和 要求高,因此,一般情况下脉冲、数字 比较伺服系统应用最为广泛,相位比较 系统又比幅值比较系统应用的多。 (4)全数字伺服系统
直流电动机调速:
永磁直流伺服电机的速度一转矩特性曲线, 也称工作特性曲线
直流电机晶闸管供电的速度控制系统
1、速度负反馈有静差单闭环调速系统
2、无静差转速负反馈单闭环调速系统
上述两种单闭环调速系统仅适合于一般要求不高的调速系统, 上述两种单闭环调速系统仅适合于一般要求不高的调速系统, 对于高性能的调速系统,如数控机床进给伺服系统, 对于高性能的调速系统,如数控机床进给伺服系统,要求快速 启动、制动、动态特性好,通常采用转速电流双闭环系统。 启动、制动、动态特性好,通常采用转速电流双闭环系统。
FANUC 主轴伺服单元简介
序号/名称/特点简介/所配系统型号1.直流可控硅主轴伺服单元型号特征为A06B-6041-HXXX主回路有12个可控硅组成正反两组可逆整流回路,200V三相交流电输入,六路可控硅全波整流,接触器,三只保险。
电流检测器,控制电路板(板号为:A20B-0008-0371~0377)的作用是接受系统的速度指令(0-10V模拟电压)和正反转指令,和电机的速度反馈信号,给主回路提供12路触发脉冲。
报警指示有四个红色二极管显示各自的意义。
配早期系统,如:3,6,5,7,等。
2.交流模拟主轴伺服单元型号特征为A06B-6044-HXXX,主回路有整流桥将三相185V交流电变成300V直流,再由六路大功率晶体管的导通和截止宽度来调整输出到交流主轴电机的电压,以达到调节电机的速度的目的。
还有两路开关晶体管和三个可控硅组成回馈制动电路,有三个保险、接触器、放电二极管,放电电阻等。
控制电路板作用原理与上述基本相同(板号为:A20B-0009-0531~0535或A20B-1000-0070~0071)。
报警指示有四个红色二极管分别代表8,4,2,1编码,共组成15个报警号。
较早期系统,如:3,6,7,0A等。
3.交流数字主轴伺服单元型号特征为A06B-6055-HXXX,主回路与交流模拟主轴伺服单元相同,其他结构相似,控制板的作用原理与上述基本相似(板号为A20B-1001-0120),但是所有信号都转换为数字量处理。
有五位的数码管显示电机速度,报警号,可进行参数的显示和设定。
较早期系统,如:3,6,0A,10/11/12,15E,15A,0E,0B等。
4.交流S系列数字主轴伺服单元型号特征为A06B-6059-HXXX,主回路该为印刷板结构,其他元件有螺钉固定在印刷板上,这样便于维修,拆卸较为方便,不会造成接线错误。
以后的主轴伺服单元都是此结构。
原理与交流模拟主轴伺服单元相似,有一个驱动模块和一个放电模块(H001~003没有放电模块,只有放电电阻),控制板与交流数字基本相似(板号为A20B-1003-0010或120B-1003-0100),数码管显示电机速度及报警号,可进行参数的设定,还可以设定检测波形方式等(在后面有详细介绍)。
主轴伺服电机功能和原理
主轴伺服电机功能和原理主轴伺服电机是一种用于控制主轴运动的电机。
它的功能是通过精确控制电机的转速和位置,来实现对主轴的精准控制。
主轴伺服电机的原理是通过感应器和控制器来实现对电机转速和位置的闭环控制。
主轴伺服电机通常由电机、编码器、控制器和传动装置组成。
电机是主轴伺服系统的核心部件,它负责提供驱动力和转动力矩。
编码器是用于测量电机转速和位置的装置,它可以将转动运动转化为电信号输出。
控制器是主轴伺服系统的大脑,它根据编码器的反馈信号和设定值,对电机的控制信号进行调整,以实现精确的转速和位置控制。
传动装置则负责将电机的转动力矩传递给主轴。
主轴伺服电机的工作原理是在电机转动过程中,编码器实时测量电机的转速和位置,并将测量值反馈给控制器。
控制器根据设定值和测量值之间的误差,通过调整电机的电流或电压,来实现对电机转速和位置的闭环控制。
当设定值和测量值一致时,控制器停止调整电机的控制信号,从而实现对主轴的精准控制。
主轴伺服电机具有很多优势。
首先,它具有高精度的转速和位置控制能力,可以满足高精度加工的要求。
其次,主轴伺服电机具有快速响应的特点,可以在短时间内实现转速和位置的调整。
此外,主轴伺服电机的控制系统相对简单,可以实现高效的控制和调节。
在实际应用中,主轴伺服电机广泛应用于机床、自动化生产线和机器人等领域。
在机床中,主轴伺服电机可以实现对工件的高精度加工;在自动化生产线中,主轴伺服电机可以实现对产品的精准定位和组装;在机器人中,主轴伺服电机可以实现机械臂的精确运动控制。
主轴伺服电机是一种具有高精度转速和位置控制能力的电机。
它通过感应器和控制器实现对电机的精确控制,广泛应用于机床、自动化生产线和机器人等领域。
主轴伺服电机的出现,为工业生产和制造带来了更高的效率和质量保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主轴伺服系统的分类
主轴伺服提供加工各类工件所需的切削功率,因此,只需完成主轴调速及正反转功能。
但当要求机床有螺纹加工、准停和恒线速加工等功能时,对主轴也提出了相应的位置控制要求,因此,要求其输出功率大,具有恒转矩段及恒功率段,有准停控制,主轴与进给联动。
与进给伺服一样,主轴伺服经历了从普通三相异步电动机传动到直流主轴传动。
随着微处理器技术和大功率晶体管技术的进展,现在又进入了交流主轴伺服系统的时代。
一、交流异步伺服系统
交流异步伺服通过在三相异步电动机的定子绕组中产生幅值、频率可变的正弦电流,该正弦电流产生的旋转磁场与电动机转子所产生的感应电流相互作用,产生电磁转矩,从而实现电动机的旋转。
其中,正弦电流的幅值可分解为给定或可调的励磁电流与等效转子力矩电流的矢量和;正弦电流的频率可分解为转子转速与转差之和,以实现矢量化控制。
交流异步伺服通常有模拟式、数字式两种方式。
与模拟式相比,数字式伺服加速特性近似直线,时间短,且可提高主轴定位控制时系统的刚性和精度,操作方便,是机床主轴驱动采用的主要形式。
然而交流异步伺服存在两个主要问题:一是转子发热,效率较低,转矩密度较小,体积较大;二是功率因数较低,因此,要获得较宽的恒功率调速范围,要求较大的逆变器容量。
二、交流同步伺服系统
近年来,随着高能低价永磁体的开发和性能的不断提高,使得采用永磁同步调速电动机的交流同步伺服系统的性能日益突出,为解决交流异步伺服存在的问题带来了希望。
与采用矢量控制的异步伺服相比,永磁同步电动机转子温度低,轴向连接位置精度高,要求的冷却条件不高,对机床环境的温度影响小,容易达到极小的低限速度。
即使在低限速度下,也可作恒转矩运行,特别适合强力切削加工。
同时其转矩密度高,转动惯量小,动态响应特性好,特别适合高生产率运行。
较容易达到很高的调速比,允许同一机床主轴具有多种加工能力,既可以加工像铝一
样的低硬度材料,也可以加工很硬很脆的合金,为机床进行最优切削创造了条件。
三、电主轴
电主轴是电动机与主轴融合在一起的产物,它将主轴电动机的定子、转子直接装入主轴组件的内部,电动机的转子即为主轴的旋转部分,由于取消了齿轮变速箱的传动与电动机的连接,实现了主轴系统的一体化、“零传动”。
因此,其具有结构紧凑、重量轻、惯性小、动态特性好等优点,并可改善机床的动平衡,避免振动和噪声,在超高速切削机床上得到了广泛的应用。
从理论上讲,电主轴为一台高速电动机,其既可使用异步交流感应电动机,也可使用永磁同步电动机。
电主轴的驱动一般使用矢量控制的变频技术,通常内置一脉冲编码器,来实现厢位控制及与进给的准确配合。
由于电主轴的工作转速极高,对其散热、动平衡、润滑等提出了特殊的要求。
在应用中必须妥善解决,才能确保电主轴高速运转和精密加工。