主轴伺服系统的分类
第4章 数控机床伺服系统
第4章 数控机床伺服系统
第4章 数控机床伺服系统 工作原理:假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对 齐。此时,B 相和 A 相空间差120,含 1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个 3 齿。所以,A 相的转子、定子的五个小齿对 齐时,B 相、C 相不能对齐,B相的转子、 定子相差 1/3 个齿(3),C相的转子、定 子相差2/3个齿(6)。
mz2 k
式中:n —转速(r/min); f —控制脉冲频率,即每秒输入步进电动机的脉冲数; 由上式可知:工作台移动的速度由指令脉冲的频率所控制。
第4章 数控机床伺服系统 特点:
(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
种类:
有励磁式和反应式两种。两种的区别在于励磁式步进电机的转 子上有励磁线圈,反应式步进电机的转子上没有励磁线圈。
第4章 数控机床伺服系统
计算机数控系统 机床 I/O 电路和装置 操作面板 键盘 输入输出 设备 机 床
PLC
计算机 数 装 控 置
主轴伺服单元
主轴驱动装置
进给伺服单元 测量装置
进给驱动装置
主进辅 运给助 传控 动 动制 机机机 构构构
数控机床的组成
第4章 数控机床伺服系统
第4章
数控机床伺服系统
第4章 数控机床伺服系统
360o s mz2 k
第4章 数控机床伺服系统
每个步距角对应工作台一个位移值,这个位移值称为脉 冲当量。 因此,只要控制指令脉冲的数量即可控制工作台移动的 位移量。步距角越小,它所达到的位置精度越高,因此实际 使用的步进电动机一般都有较小的步距角。 步进电动机的转速公式为:n 60 f
《数控原理与数控机床》填空 多选
1. 数字控制是用数字化的信息对机床的运动及加工过程进行控制的一种方法。
2. 数控机床按伺服系统的控制原理可分为开环控制、半闭环控制和闭环控制数控机床,其中,精度最高的是闭环控制数控机床。
3. 按机械加工的运动轨迹分类,数控机床可分为点位控制、直线控制和轮廓控制数控机床。
4. NC 机床的含义是数控机床,CNC 机床的含义是计算机数字控制机床。
5. 数控机床大体由输入输出设备、数控装置、测量反馈装置、伺服系统和机床本体组成,其中,数控机床的核心是数控装置。
6. 简单地说,是否采用数控机床进行加工,主要取决于零件的复杂程度;而是否采用专用机床进行加工,主要取决于零件的生产批量。
7. 数控机床按功能水平可分为高级型、普及型和经济型数控机床。
8. 对刀点就是在数控机床上加工零件时,刀具相对于工件运动的起点。
为了提高零件的加工精度,应尽量选在零件的设计基准或工艺基准上。
9. 数控机床坐标系三坐标轴X、Y、Z 及其正方向用右手定则判定,X、Y、Z 各轴的回转运动及其正方向+A、+B、+C 分别用右手螺旋法则判断。
10. 数控机床中的标准坐标系采用笛卡儿直角坐标系,并规定增大刀具与工件之间距离的方向为坐标正方向。
11. 机床的最小设定单位,即数控系统能实现的最小位移量称为脉冲当量,它是数控机床的一个重要技术指标,一般为0.001~0.01mm。
12. 与机床主轴重合或平行的刀具运动坐标轴为Z轴,并规定刀具远离工件的运动方向为正方向。
13. 对于机床X 坐标轴,规定其方向为水平方向,且垂直于Z 轴并平行于工件的装夹面。
14. 在轮廓控制中,为了保证一定的精度和编程方便,通常需要有刀具长度和半径补偿功能。
15. 在铣削平面轮廓零件时,为减少刀具切入切出的刀痕,应采用外延法,即刀具应沿着零件轮廓延长线的切向方向切入切出。
16. 机床接通电源后的回零操作是使刀具或工作台返回到机床参考点。
17. 数控编程时的数值计算,主要是计算零件的基点和节点的坐标。
数控机床的种类及其特点
金属切削机床:对金属材料的坯料或工件,用切削、特种加工等方法进行加工,使之获得要求的几何形状、尺寸精度和表面质量的机器。
1952年,试制成功世界上第一台数控机床试验性样机。
它是由大型立式仿型铣床改装而成的三坐标数控铣床,其数控装置采用电子管元件,体积庞大,可作直线插补。
1957年投入使用。
1959年,美国克耐·杜列克公司(Keaney & Trecker)首次成功开发了加工中心(Machining Center-MC)。
数控机床主要由以下七个基本部分组成:介质:数控机床加工零件所需的控制信息和数据的载体(1)控制,即用来存放加工程序的载体,也称程序载体;早期用穿孔带、穿孔卡、磁带或磁盘制成。
(2)输入装置:将程序载体上的控制代码转换成电平信号,送数控装置的内部存储器。
如光电阅读机、磁带机、软驱、MDI、计算机输入(3)数控装置:NC机床的核心部件,它将输入的电信号译码和寄存,进行数据的运算和处理,实现刀具运动轨迹的插补运算,输出机床动作的控制指令。
主要包括运算器、控制器、存储器等,早期由逻辑元件的固定硬接线电路组成。
(4)强电控制装置:接受NC内部PLC输出的M、S、T信号,经功率放大驱动执行部件。
是介于数控装置和机床机械、液压部件之间的辅助控制系统。
(5)伺服系统:接受数控装置输出的进给指令脉冲,经转换和功率放大,带动机床的移动部件或执行部件产生指令规定的运动,是一个位置控制系统,要求准确的控制机床刀具或工作台的位置。
由伺服驱动装置(位置和速度控制单元)、伺服电机和检测反馈装置组成。
它是整个数控系统的执行部分。
(6)检测反馈装置:测量运动部件的实际位移和速度,并转换成数字反馈信号后送回NC装置,从而构成机床伺服控制的闭合路径。
通常安装在机床的工作台或丝杠上。
(7)机床:主轴、床身、立柱、导轨、滚珠丝杠、工作台、刀架(库)等机床的机械构件。
1.2.1 按工艺用途分类1、普通数控机床 NC:包括:切削类.成型类.特种加工类.测量绘图类等2、数控加工中心机床 Machining Center-MC:结构:普通NC机床+刀库和自动换刀装置(ATC)特点:一次装夹后能完成多个工序,又称多工序数控机床3、多坐标数控机床:结构特点:可以进行多坐标轴的联动控制,常用4~6轴,多则可达24轴4、计算机群控: Direct Numerical Control -DNC即直接数控1.2.2 按运动方式分类1.点位控制数控机床点位控制NC机床能控制工件相对于刀具运动,从一个位置精确地移动到另一个位置,在移动过程中不进行任何切削加工。
伺服系统的分类
伺服系统的分类主轴驱动系统→主轴的旋转运动进给驱动系统→进给轴直线运动直流驱动系统交流驱动系统伺服系统(组成)伺服电机(M)驱动信号控制转换电路电力电子驱动放大模块电流调解单元,速度调解单元检测装置数控机床的伺服系统是指以机床移动部件的位移和速度作为控制系统,它是执行CNC装置所发出命令的执行机构。
因为电动机拖着一个重量很重的工作台,而且摩擦力随着季节、新旧程度、润滑状态等因素而变化,控制了一个稳定速度,精确定位,可以想象其难度之大位置环也称为外环,其输入信号是计算机给出的指令和位置检测器反馈的位置信号。
这个反馈是负反馈,也就是说与指令信号相位相反。
指令信号是相位置环送去加数,而反馈信号是送去减数。
位置环的输出就是速度环的输入位置检测器可以是光电编码器、旋转变压器,也可能是光栅尺、感应同步器或磁栅尺等。
但是,它的作用就是检测位置的,有时可能是直接检测位置的,有时可能是直接检测位置,但也有时是间接检测位置机床进给伺服系统高精度快响应宽调速范围低速大转矩对主轴传动提出下述要求:1、主传动电动机应有(2.2~250)KW的功率范围;2、要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩速度和1:10的恒功率调速3、要求主传动有四项限的驱动能力4、为了满足螺纹车削,要求主轴能与进给实行同步控制5、在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有角度控制功能等。
主轴驱动变速目前主要有两种形式:一是主轴电动机带齿轮换挡,目的在于降低主轴转速,增大传动比,放大主轴功率以适应切削的需要;二是主轴电动机通过同步齿形带或皮带驱动主轴,该类主轴电动机又称宽域电动机或强切削电动机,具有恒功率宽的特点FANUC公司主轴驱动系统主要采用交流主轴驱动系统S H P 三个系列(1.5~37、1.5~22、3.7~37KW)SIEMENS 公司主轴驱动系统直流主轴电机1GG5、1GF5交流主轴电机1PH5、1PH6主轴伺服系统的故障形式及诊断方法故障形式诊断方法速度调节器的输入作为电流调节器的给定信号来控制电动机的电流和转矩。
5数控机床伺服驱动和检测
10
第一节 概述
但直流电机有电刷,限制了转速的提高,而且结构复杂,价格 也高。进入80年代后,由于交流电机调速技术的突破,交流伺服 驱动系统进入电气传动调速控制的各个领域。交流伺服电机,转 子惯量比直流电机小,动态响应好。而且容易维修,制造简单, 适合于在较恶劣环境中使用,易于向大容量、高速度方向发展, 其性能更加优异,已达到或超过直流伺服系统,交流伺服电机已 在数控机床中得到广泛应用。 直线电动机的实质是把旋转电动机沿径向剖开,然后拉直演 变而成,利用电磁作用原理,将电能直接转换成直线运动动能的 一种推力装置,是一种较为理想的驱动装置。在机床进给系统中, 采用直线电动机直接驱动与旋转电动机的最大区别是取消了从电 动机到工作台之间的机械传动环节,把机床进给传动链的长度缩 短为零。正由于这种传动方式,带来了旋转电动机驱动方式无法 达到的性能指标和优点。由于直线电动机在机床中的应用目前还 处于初级阶段,还有待进一步研究和改进。随着各相关配套技术 的发展和直线电动机制造工艺的完善,相信用直线电动机作进给 驱动的机床会得到广泛应用。
选择:①伺服系统要求的分辨率; ②考虑机械传动系统的参数。
分辨率(分辨角)α
设增量式码盘的规格为 n 线/转:
18
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
19
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
20
二、脉冲编码器
第 五 章 数 控 机 床 的 驱 动 装 置
2
第一节 概述
数控机床闭环进给系统的一般结构如图所示,这是一个双闭环系统,内环 为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。速 度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控制系 统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由CNC装置 中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组成。由速度 检测装置提供速度反馈值的速度环控制在进给驱动装置内完成,而装在电动机 轴上或机床工作台上的位置反馈装置提供位置反馈值构成的位置环由数控装置 来完成。伺服系统从外部来看,是一个以位置指令输入和位置控制为输出的位 置闭环控制系统。但从内部的实际工作来看,它是先把位置控制指令转换成相 应的速度信号后,通过调速系统驱动伺服电机,才实现实际位移的。
数控技术知识点总结及考试练习资料
数控技术一、判断题(正确的画√,错误的画×,每题1分共10分)二、填空题(每空1分,共20分)三、选择题(10分,每小题1分)四、简答题(每题6分共30分)五、五、解释如下指令或名词含义(10X1分)六、六、编程题(10分)七、论述题(10分)第一章1.数字控制:是一种借助数字、字符或其它符号对某一工作过程(如加工、测量、装配等)进行可编程控制的自动化方法。
数控技术采用数字控制的方法对某一工作过程实现自动控制的技术.它集计算机技术、微电子技术、自动控制技术和机械制造技术等多学科、多技术于一体。
数控机床是采用数字控制技术对机床的加工过程进行自动控制的一类机床。
数控系统实现数字控制的装置。
它能够自动输入载体上事先给定的数字量,并将其译码后进行必要的信息处理和运算后,控制机床动作并加工零件。
CNC系统的核心是CNC装置。
2.数控机床的优势:3.数控技术的发展趋势:4.数控机床的组成5.数控机床的分类:一、按控制功能分类(点位控制数控系统;直线控制数控系统;轮廓控制数控系统)二、按工艺用途分类(金属切削类数控机床;金属形成类数控机床;特种加工数控机床;其它类型机床:如火焰切割数控机床、数控测量机、机器人等。
)三、按伺服驱动的方式分类(开环控制;半闭环控制;全闭环控制)NC,CNC,CAD、CAM、CAPP、FMC,FMS,CIMS的中文含义.第二章1.数控编程的方法常用的编程方法有手工编程、自动编程。
2.数控机床的机床坐标系和工件坐标系的概念,各坐标轴及其方向的规定.1)机床坐标系是机床上固定的坐标系。
工件坐标系是固定于工件上的笛卡尔坐标系。
2)①Z轴:规定与机床主轴线平行的坐标轴为Z轴,刀具远离工件的方向为Z轴的正向。
②X轴:对大部分铣床来讲,X轴为最长的运动轴,它垂直于轴,平行于工件装夹表面。
+X的方向位于操作者观看工作台时的右方。
③Y轴:对大部分铣床来讲,Y轴为较短的运动轴,它垂直于轴.在Z、X轴确定后,通过右手定则可以确定Y轴.④回转轴:绕X轴回转的坐标轴为A轴;绕Y轴回转的坐标轴为B轴;绕Z轴回转的坐标轴为C轴;方向的确定采用右手螺旋原则,大拇指所指的方向是+X、+Y或+Z的方向。
数控机床的主要组成部分有哪些?
数控机床的主要组成部分有哪些?数控机床的主要组成部分有哪些?现代数控机床都是CNC机床,一般由数控操作系统和机床本体组成,专门用来对金属或木材进行加工的设备,主要有如下几部分组成。
1) CNC装置:计算机数控装置(即CNC装置)是CNC系统的核心,由微处理器(CPU)、存储器、各I/O接口及外围逻辑电路等构成。
2) 数控面板:数控面板是数控系统的控制面板,主要有显示器和键盘组成。
通过键盘和显示器实现系统管理和对数控程序及有关数据进行输入和编辑修改。
3) 可编程逻辑控制器PLC:PLC是一种以微处理器为基础的通用型自动控制装置,用于完成数控机床的各种逻辑运算和顺序控制。
例如:主轴的启停、刀具的更换、冷却液的开关等辅助动作。
4) 机床操作面板:一般数控机床均布置一个机床操作面板,用于在手动方式下对机床进行一些必要的操作,以及在自动方式下对机床的运行进行必要的干预。
上面布置有各种所需的按钮和开关。
5) 伺服系统:伺服系统分为进给伺服系统和主轴伺服系统,进给伺服系统主要有进给伺服单元和伺服进给电机组成。
用于完成刀架和工作台的各项运动。
主轴伺服系统用于数控机床的主轴驱动,一般由恒转矩调速和恒功率调速。
为满足某些加工要求,还要求主轴和进给驱动能同步控制。
6) 机床本体:机床本体的设计与制造,首先应满足数控加工的需要,具有刚度大、精度高、能适应自动运行等特点,由于一般均采用无级调速技术,使得机床进给运动和主传动的变速机构被大大简化甚至取消,为满足高精度的传动要求,广泛采用滚珠丝杆、滚动导轨等高精度传动件。
为提高生产率和满足自动加工的要求,还采用自动刀架以及能自动更换工件的自动夹具等。
上海市松江丰远是在原松江县骏马五金厂(1995年成立)的基础上成立的,位于国际大都市上海的西郊。
工厂是由三线建设大型军工企业回沪人员创建。
二十多年来先后成为几十家内外资企业的配套厂家。
以合理的价格、可靠的质量多次成为年度先锋供应商。
FANUC主轴驱动系统的简单分类
FANUC 主轴驱动系统的简单分类:序号名称维修品的特点简介所配系统型号1 直流可控硅主轴伺服单元型号特征为A06B-6041-HXXX 主回路有12个可控硅组成正反两组可逆整流回路,200V三相交流电输入,六路可控硅全波整流,接触器,三只保险。
电流检测器,控制电路板(板号为:A20B-0008-0371~0377)的作用是接受系统的速度指令(0-10V模拟电压)和正反转指令,和电机的速度反馈信号,给主回路提供12路触发脉冲。
报警指示有四个红色二极管显示各自的意义。
配早期系统,如:3,6,5,7,330C,200C,2000C等。
2 交流模拟主轴伺服单元型号特征为A06B-6044-HXXX,主回路有整流桥将三相185V交流电变成300V直流,再由六路大功率晶体管的导通和截止宽度来调整输出到交流主轴电机的电压,以达到调节电机的速度的目的。
还有两路开关晶体管和三个可控硅组成回馈制动电路,有三个保险、接触器、放电二极管,放电电阻等。
控制电路板作用原理与上述基本相同(板号为:A20B-0009-0531~0535或A20B-1000-0070 ~ 0071 )。
报警指示有四个红色二极管分别代表8,4,2,1编码,共组成15个报警号。
较早期系统,如:3,6,7,0A等。
3 交流数字主轴伺服单元型号特征为A06B-6055-HXXX,主回路与交流模拟主轴伺服单元相同,其他结构相似,控制板的作用原理与上述基本相似(板号为A20B-1001-0120),但是所有信号都转换为数字量处理。
有五位的数码管显示电机速度,报警号,可进行参数的显示和设定。
较早期系统,如:3,6,0A,10/11/12,15E,15A,0E,0B等。
4 交流S系列数字主轴伺服单元型号特征为A06B-6059-HXXX,主回路该为印刷板结构,其他元件有螺钉固定在印刷板上,这样便于维修,拆卸较为方便,不会造成接线错误。
以后的主轴伺服单元都是此结构。
数控机床故障诊断与维修第2版习题答案
数控机床故障诊断与维修第2版习题答案《数控机床故障诊断与维修》第2版练习与思考题及答案第1章练习与思考题1(见书30页)1-1 数控机床故障诊断与维修的意义是什么?答:在许多⾏业中,数控机床均处在关键⼯作岗位的关键⼯序上,若出现故障后不能及时修复,将直接影响企业的⽣产率和产品质量,会对⽣产单位带来巨⼤的损失。
所以熟悉和掌握数控机床的故障诊断与维修技术、及时排除故障是⾮常重要的。
1-2什么是平均⽆故障⼯作时间?什么是平均有效度?答:平均⽆故障时间是指数控机床在使⽤中两次故障间隔的平均时间,即总故障次数总的⼯作时间=MTBF 答:平均有效度是对数控设备正常⼯作概率进⾏综合评价的指标,它是指⼀台可维修数控机床在某⼀段时间内维持其性能的概率,即MTTRMTBF MTBF A +=1-3数控系统故障如何分类?答:1.从故障的起因分类2.从故障的时间分类3.从故障的发⽣状态分类4.按故障的影响程度分类5.按故障的严重程度分类6.按故障的性质分类1-4数控机床常⽤的故障诊断与维修的⽅法有哪些?故障诊断的⼀般步骤是什么?答:1.常规⽅法(1)直观法(2)⾃诊断功能法(3)功能程序测试法(4)交换法(5)转移法(6)参数检查法(6)参数检查法(7)测量⽐较法(8)敲击法(9)局部升温(10)原理分析法2.先进⽅法(1)远程诊断(2)⾃修复系统(3)专家诊断系统答:1.故障的调查与分析2.电⽓维修与故障的排除3.维修排故后的总结提⾼⼯作1-5数控机床故障诊断常⽤的⼯具有哪些?各有什么⽤途?答:1.万⽤表测量电压、电流、电阻及⾳频电平等多种电参量。
2.逻辑夹逻辑夹是⼀种测试数字电路的⼯具。
3.逻辑笔测试输出信号相对固定于⾼电位或低电位的逻辑门电路。
4.逻辑脉冲发⽣器在测试电路时,如果被测试电路的信号不变,或是有脉冲信号产⽣时,可以使⽤逻辑脉冲发⽣器将受控制的脉冲信号送⾄电路中。
5.电流跟踪器电流跟踪器是⼀种便携式检修辅助⼯具,这种辅助测试⼯具可以帮助检修者准确地找出系统电路板中的短路点。
数控机床伺服系统的分类
数控机床伺服系统的分类数控机床伺服系统按用途和功能分为进给驱动系统和主轴驱动系统;按控制原理和有无检测反馈环节分为开环伺服系统、闭环伺服系统和半闭环伺服系统;按使用的执行元件分为电液伺服系统和电气伺服系统。
1.按用途和功能分:(1)进给驱动系统:是用于数控机床工作台坐标或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的力矩。
主要关心其力矩大小、调速范围大小、调节精度高低、动态响应的快速性。
进给驱动系统一般包括速度控制环和位置控制环。
(2)主轴驱动系统:用于控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。
主要关心其是否有足够的功率、宽的恒功率调节范围及速度调节范围;它只是一个速度控制系统。
2.按使用的执行元件分:(1)电液伺服系统其伺服驱动装置是电液脉冲马达和电液伺服马达。
其优点是在低速下可以得到很高的输出力矩,刚性好,时间常数小、反应快和速度平稳;其缺点是液压系统需要供油系统,体积大、噪声、漏油等。
(2)电气伺服系统其伺服驱动装置伺服电机(如步进电机、直流电机和交流电机等)。
其优点是操作维护方便,可靠性高。
其中,1)直流伺服系统其进给运动系统采用大惯量宽调速永磁直流伺服电机和中小惯量直流伺服电机;主运动系统采用他激直流伺服电机。
其优点是调速性能好;其缺点是有电刷,速度不高。
2)交流伺服系统其进给运动系统采用交流感应异步伺服电机(一般用于主轴伺服系统)和永磁同步伺服电机(一般用于进给伺服系统)。
优点是结构简单、不需维护、适合于在恶劣环境下工作;动态响应好、转速高和容量大。
3.按控制原理分(1)开环伺服系统系统中没有位置测量装置,信号流是单向的(数控装置→进给系统),故系统稳定性好。
开环伺服系统的特点:1. 一般以功率步进电机作为伺服驱动元件。
2. 无位置反馈,精度相对闭环系统来讲不高,机床运动精度主要取决于伺服驱动电机和机械传动机构的性能和精度。
步进电机步距误差,齿轮副、丝杠螺母副的传动误差都会反映在零件上,影响零件的精度。
数控技术试题集+答案
填空题1、数控机床坐标系采用的是右手笛卡尔直角坐标系。
2、数控机床坐标系的正方向规定为增大刀刀具与工件距离的方向。
3、数控机床坐标系中Z轴的方向指的是与主轴平行的方向,其正方向是刀具远离工件的方向。
4、数控机床中旋转坐标有 A 轴、B 轴、 C 轴,其正方向的判断是用右手螺旋定则。
5、数控车床中X轴的方向是工件的径向,其正方向是远离工件的方向 .6、数控机床坐标系一般可分为机床坐标系和工件坐标系两大类。
7、数控机床坐标系按坐标值的读法不同可分为绝对坐标系和增量坐标系 .8、在绝对坐标系中所有刀具运动轨迹的坐标值都以坐标原点为计算基准,而增量坐标系中所有运动轨迹的坐标值都相对前一位置进行计算的。
9、数控系统的插补是指根据给定的数学函数,在理想的轨迹和轮廓上的已知点之间进行数据密化处理的过程。
10、大多数数控系统都具有的插补功能有直线插补和圆弧插补。
11、插补的精度是以脉冲当量的数值来衡量的。
12、所谓脉冲当量是指数控装置发出一个脉冲信号机床执行部件的位移量。
13、数控机床插补过程中的四个节拍是:偏差差别、坐标进给、偏差计算、终点差别 .14、插补过程中终点判别的具体方法有:单向计数、双向计数、分别计数。
15、数控编程是从零件图样到获得数控机床所能识别的数控加工程序的全过程。
16、数控编程的步骤有工艺分析、数值计算、编写程序单、程序输入、程序检验和首件加工.17、数控机床程序段的格式有固定程序段格式和可变程序段格式。
18、数控机床的编程方法有手动编程和自动编程。
19、以下指令的含义:G00 快速点定位;G01直线插补;G02 顺时针圆弧插补;G03 逆时针圆弧插补 .20、准备功能G代码有模态代码和非模态代码两大类。
二、判断题1、数控加工程序是由若干程序段组成,而且一般常采用可变程序进行编程。
(√)2、只需根据零件图样进行编程,而不必考虑是刀具运动还是工件运动。
(× )3、进给路线的确定一是要考虑加工精度,二是要实现最短的进给路线. ( √)4、刀位点是刀具上代表刀具在工件坐标系的一个点,对刀时,应使刀位点与对刀点重合. (√)5、绝对值方式是指控制位置的坐标值均以机床某一固定点为原点来计算计数长度。
数控机床的进给伺服系统概述
• 当步进电机励磁绕组相数大于3时,多相通电多数 能提高输出转矩。
• 所以功率较大的步进电机多数采用多于三相的励磁 绕组,且多相通电。
3、启动转矩Mq
AB C Mq
e
当电机所带负载ML<Mq时,电机可不失步的启动。
2、最高启动频率和最高工作频率
最高启动频率fg: 步进电机由静止突然启动,并不失步地进 入稳速运行,所允许的启动频率的最高值。 最高启动频率fg与步进电机的惯性负载J有 关。
故电动机的转速n为:
n f (r/s) 60 f (r/min) f ——控制脉冲的频率
mzk
mzk
SB-58-1型五定子轴向分相反应式步进电机。
• 定子和转子都分为5段,呈轴向分布;有16个 齿均匀分布在圆周上,
• 齿距=360º/16=22.5º;各相定子彼此径向错开 1/5个齿的齿距;
如按5相5拍通电,则步距角为:
4)电动机定子绕组每改变一次通电方式——称为一拍 5)每输入一个脉冲信号,转子转过的角度——步距角αº • 上述通电方式称为:三相单三拍。(三相三拍) • 单——每次通电时,只有一相绕组通电; • 双——每次通电时,有两相绕组通电; • 三拍——经过三次切换绕组的通电状态为一个循环; • 除此之外的通电方式还有: • 三相双三拍: AB—BC—CA—AB • 三相单双六拍: A—AB—B—BC—C—CA—A
第三节 数控机床的检测装置
1、检测装置的作用
• 检测装置是数控机床闭环伺服系统的重要组成部分 • 其作用是:检测位移和速度,发送反馈信号,构成
(1) 直线进给系统 已知:进给系统的脉冲当量δmm;步进电机的
步距角αº;滚珠丝杠的导程t mm;
求: 齿轮传动比 i。
数控机床的伺服驱动系统
数控机床的伺服驱动系统
伺服系统是指以机械位置或角度作为控制对象的自动控制系统,而在数控机床中,伺服系
2
统主要指各坐标轴进给驱动的位置控制系统,它由执行组件(如步进电机、交直流电动机
等)和相应的控制电路组成,包括主驱动和进给驱动。伺服系统接收来自CNC装置的进给
脉冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有
(4)步进电动机的主要特点
步进电动机受脉冲信号的 控制,每输入一个脉冲, 就变换一次绕组的通电状 态,电动机就相应转动一 步。因此角位移与输入脉 冲个数成严格的比例关系。
一旦停止送入控制脉冲, 只要维持控制绕组电流不 变,电动机可以保持在其 固定的位置上,不需要机 械制动装置。
输出转角精度高,虽有相 邻齿距误差;但无积累误 差。
4.3.2.2 直流伺服电动机
直流伺服电动机是数控机床伺服系统中应用最早的,也是使用最广泛的 执行组件。直流伺服电动机有永磁式和电磁式两种结构类型。随着磁性 材料的发展,用稀土材料制作的永磁式直流伺服电动机的性能超过了电 磁式直流伺服电动机,目前广泛应用于机床进给驱动。直流伺服电动机 的工作原理与普通直流电动机完全相同,但工作状态和性能差别很大。 机床进给伺服系统中使用的多为大功率直流伺服电动机,如低惯量电动 机和宽调速电动机等。
θb =
从上面的分析可以看 出,步进电动机转动 的角度取决于定子绕 组的相数、转子齿数 及供电的逻辑状态。 若以θb表示步距角, 则有
(4-12)
360
mzK 式中 m—步进电动机相数;z—转子齿数;K—由 步进电动机控制方式确定的拍数和相数的比例系 数,如三相三拍时,K=1;而三相六拍制时,K =2。 为了提高加工精度,一般要求步距角很小,数控 机床中常用的步进电动机步距角为0.36o~3o
伺服电机分类与工作原理及优缺点
伺服电机分类与工作原理及优缺点“伺服”一词源于希腊语“奴隶”的意思。
“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。
伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。
伺服电动机又称执行电动机,在自动控制系统中用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
伺服电机的分类伺服电机分为交流伺服和直流伺服两大类。
交流伺服电机的基本构造与交流感应电动机(异步电机)相似。
在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。
交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。
直流伺服电机的优缺点优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。
缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜)。
直流伺服电机基本构造与一般直流电动机相似。
电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。
直流伺服电动机具有良好的线性调节特性及快速的时间响应。
交流伺服电机的优缺点优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可实现恒力矩,惯量低,低噪音,无电刷磨损,免维护(适用于无尘、易爆环境)。
河南科技大学机电工程学院
其性能决定了进给伺服系统的性能。
控制 电机
伺服电机 分类
步进电机(Stepping Motor) 直流伺服电机(DC Motor将电脉冲信号转化为角位移的执行机构。
(一) 步进电机结构和工作原理
结构:主要由定子、转子和励磁绕组三 部分组成。 定子上有六个磁极,每个磁极上绕有 励磁绕组,每相对的两个磁极组成一 相,分成A、B、C三相。定子和转子
要求伺服系统有足够的输出扭矩或驱动功率。机床加工 的特点是,在低速时进行重切削。因此,伺服系统在低速时 要求有大的转矩输出。
三、进给伺服系统的分类
按其控制原理和有 无位置反馈装置
开环系统 半闭环系统 全闭环系统
1、开环系统:没有任何测量反馈装置
功率步进 电机
这类系统具有结构简单、工作稳定、调试方便、维修简单、价格低廉 等优点,在精度和速度要求不高、驱动力矩不大的场合得到广泛应用。
进给伺服系 统的组成
➢ 伺服驱动器(位置、速度控制单元) ➢ 驱动元件(电机) ➢ 检测与反馈单元 ➢ 机械执行部件
CNC 插补 指令
位置控制单元 + -
位置控制调节 器
速度控制单元
+
-
速度控制 调节与驱动
实际 位置 反馈
实际 速度 反馈
检测与反馈单元
机械执行部件 电机
作用:接受CNC发出的进给速度和位移指令信号,由伺服驱动器作
why?
当步进电机转动时,电机各相绕组的电感将形成一个反向电动势; 频率越高,反向电动势越大,相电流减小,从而导致力矩下降。
本节课程讲授主要内容:
进给伺服系统的基本概念 伺服电机及其调速 位置检测装置
第一节 概述 一、 伺服系统的组成
FANUC 0i模拟主轴相关问题
问1:什么是数字主轴?什么是模拟主轴?什么是串行主轴?答1:首先了解一下主轴的类型,如下图:主轴伺服系统可分为直流和交流两大类,由于现在大多数机床采用交流主轴伺服系统,在这里也仅介绍交流系统。
交流主轴伺服系统由模拟式和数字式两种产品。
fanuc系统主轴控制可分为主轴串行输出/主轴模拟输出(Spindle serial output/Spindle analog output)。
特别的,这两种接口Fanuc 0i都具备,主轴串行输出接口能够控制两个串行主轴,主轴模拟输出接口只能控制一个模拟主轴。
按串行方式传送数据(CNC给主轴电动机的指令)的接口称为串行输出;另一种是输出模拟电压(电流)量作为主轴电动机指令的接口。
前一种必须使用FANUC的主轴驱动单元和电动机,后一种用模拟量控制的主轴驱动单元(如变频器)和电动机。
所以就有了串行主轴和模拟主轴的称法,串行主轴和数字主轴是按不同的分类标准得出的名称,个人认为串行主轴是数字主轴的一个子集。
目前大部分的经济型机床均采用数控系统模拟量输出+变频器+感应(异步)电机的形式,性价比很高,这时也可以将模拟主轴称为变频主轴。
Fanuc 0i主轴连接示意图问2:我用的是OI-MC的数控系统,XYZ三轴加1模拟主轴,模拟主轴由变频器控制,我现在只连接了0-10V的模拟信号端,有几点问题请教高手:1.请问模拟主轴的正反转怎样控制?2.我的模拟主轴每次开机第一次启动时,执行S500时程序不往下执行,总要先按下RESET键后再按下启动按钮才可以,再一次启动程序时就不会再有这样的现象,请问这个现象怎样解除?请高手指点非常感谢!答2:1.FANUC 0i的模拟主轴设置和siemens802s/c的模拟主轴设置基本类似,也可以分为单极性主轴和双极性主轴。
1)双极性主轴使用0~±10Vdc模拟量输出,即控制了转速和也控制了方向(正电压定义一个方向,负电压为其反方向)。
使能信号控制起停。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流异步伺服通过在三相异步电动机的定子绕组中产生幅值、频率可变的正弦电流,该正弦电流产生的旋转磁场与电动机转子所产生的感应电流相互作用,产生电磁转矩,从而实现电动机的旋转。其中,正弦电流的幅值可分解为给定或可调的励磁电流与等效转子力矩电流的矢量和;正弦电流的频率可分解为转子转速与转差之和,以实现矢量化控制。交流异步伺服通常有模拟式、数字式两种方式。与模拟式相比,数字式伺服加速特性近似直线,时间短,且可提高主轴定位控制时系统的刚性和精度,操作方便,是机床主轴驱动采用的主要形式。然而交流异步伺服存在两个主要问题:一是转子发热,效率较低,转矩密度较小,体积较大;二是功率因数较低,因此,要获得较宽的恒功率调速范围,伺服系统
近年来,随着高能低价永磁体的开发和性能的不断提高,使得采用永磁同步调速电动机的交流同步伺服系统的性能日益突出,为解决交流异步伺服存在的问题带来了希望。与采用矢量控制的异步伺服相比,永磁同步电动机转子温度低,轴向连接位置精度高,要求的冷却条件不高,对机床环境的温度影响小,容易达到极小的低限速度。即使在低限速度下,也可作恒转矩运行,特别适合强力切削加工。同时其转矩密度高,转动惯量小,动态响应特性好,特别适合高生产率运行。较容易达到很高的调速比,允许同一机床主轴具有多种加工能力,既可以加工像铝一
主轴伺服系统的分类主轴伺服提供加工各类工件所需的切削功率,因此,只需完成主轴调速及正反转功能。但当要求机床有螺纹加工、准停和恒线速加工等功能时,对主轴也提出了相应的位置控制要求,因此,要求其输出功率大,具有恒转矩段及恒功率段,有准停控制,主轴与进给联动。与进给伺服一样,主轴伺服经历了从普通三相异步电动机传动到直流主轴传动。随着微处理器技术和大功率晶体管技术的进展,现在又进入了交流主轴伺服系统的时代。