超声波加湿器电路图

合集下载

超声波加湿器电路图锦集

超声波加湿器电路图锦集

超声波加湿器电路图经典电路设备维修超声换能器一工作就使最底层的一片压电陶瓷片某一处或多处振裂,即使更换新片也无济于事,而其它五块却无任何问题,试再次更换新的仍是最底面与铁柱相接触的那一片瞬间产生几道裂纹,再次开关机裂纹不再扩大,但肯定会影响使用寿命,因为已经坏掉了几个,寿命一般只能用一个月左右,真是纳闷至极,不知谁能解释这个问题,请回复,在此深表感谢。

对此厂家也没能作出一个合适的解释,希望专家们多多指教。

超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极,3脚是换能器的负极而且与换能器的外壳相连。

检查,2 3 脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。

如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 ℃左右烘干3小时或者使用电吹风去潮至阻值正常为止。

换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。

振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做出判断。

一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。

振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。

避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。

振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经到了,一般只能更换。

超声波加湿器电路图加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。

本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:&qH;P [ g-b8b$@!r#g)N加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。

超声波加湿器工作原理

超声波加湿器工作原理

超声波加湿器工作原理(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除超声波加湿器雾化工作原理及特点超声波雾化原理:利用压电陶瓷所固有超声波振荡特点,通过一定的振荡电路手段与压电陶瓷固有振荡频率产生共振,就能直接将与压电陶瓷接触的液体雾化成1--3μm的微小颗粒。

超声波加湿器其原理是,电路超声波振荡,传输到压电陶瓷振子表面,压电陶瓷振子会产生轴向机械共振变化,这种机械共振变化再传输到与其接触的液体,使液体表面产生隆起,并在隆起的周围发生空化作用,由这种空化作用产生的冲击波将以振子的振动频率不断反复,使液体表面产生有限振幅的表面张力波。

这种张力波的波头飞散,使液体雾化,同时产生大量的负离子。

压电陶瓷粉料:压电陶瓷主要由锆钛酸铅(PZT)所组成, 在氧化锆(ZrO2)、氧化铅 (PbO)及氧化钛(TiO2)等的粉末原料中,按一定比例适当添加微量的添加物后,由多道加工程序完成陶瓷粉料制作,再利用油压机使之压缩成各种规格形状,成型后在1350 ℃ 左右温度下进行烧结,所得的成品,再以电镀的方法或者不锈钢贴片法完成电极极化工作后,就是压电陶瓷晶片成品。

雾化单元与雾化量:由于其单独成型的压电陶瓷振荡频率是固有的,因此,只能产生一个震荡冲击波。

如果需要增加雾化量,只可采用多组并联同时工作的方法来实现。

以现有技术考虑压电陶瓷寿命,每一单元振子功率为0.25W,雾化量为0.3L。

由于液体溶液表面张力不同,各种液体的雾化量也不完全相同,相对液体表面张力越大,雾化量越小,反之则越大。

液体内所含杂质不同,对设备的使用寿命、雾化效果、保养周期都有一定的影响,以水为例,当水中钙、镁、矽酸含量高时,各种加湿方法在一定程度上都会受到影响,影响加湿效率,甚至会造成设备损坏,再超声波加湿中,水中钙、镁、矽酸含量高时,会造成雾化器本身结垢、加湿环境受到污染等等负面影响加湿器工作原理目前家用加湿器市场的产品主要分为超声波型加湿器、直接蒸发型加湿器和热蒸发型加湿器三类:超声波技术是世界上一种比较成熟的技术,已被广泛应用在各种领域。

超声波加湿原理

超声波加湿原理

超声波加湿器为空气增加湿度,其工作是靠加湿器中的“超声波换能器”器件。

该器件是一种“压电陶瓷晶体”,类似压电蜂鸣器中的压电陶瓷片,只是其固有频率比蜂鸣器要高得多,在超声频以上。

当有超声频以上的高频电压加到“换能器”两端时,因“压电效应”,由电振荡变换为机械振荡,其金属片的一端(与水池接触的那一端)将产生超声波,作用于水中,“换能器”附近的水在超声波的作用下沸腾,并在风扇的作用下,通过水箱上的蒸发口,将雾汽吹到空气中,为空气加湿。

那么,加在“换能器”两端的高频电压又是如何产生的呢?上图是北京产亚都YC—D22型超声波加湿器电路(按照实物绘出)。

该电路类似于电视机的行振荡与行扫描电路,只是电视机的行振荡是独立设置的,而加湿器的振荡是靠电路的正反馈形成的。

振荡管BU406如同电视机的行管,D5等同于电视机的阻尼二极管.C2、C4、C5(及换能器)为逆程电容.L2等同于电视机的行输出变压器初级线圈。

高频振荡的形成见右图所示的交流等效图。

振荡管BU406因电源供电正常、偏置齐全,将导通,有交流电流IC产生,致使L2产生上负下正的自感电势。

正反馈电容C3,形成正反馈电压给BU406的b极,使UB406通导加剧,直至饱和。

L2在此刻储能,磁芯“吸”足磁能很快达到“磁饱和”。

L2磁饱和后,两端自感电势极性反转,变为上正下负,C2也将其正反馈至BU406的b 极,使其迅速截止,L2上的上正下负的自感电势对C2、C4、c5及换能器充电,当电容充到最大值时,L2恰好“泄”磁完毕,且成为充电后电容器的放电路径,并使L2产生上负下正的自感电势。

因此时BU406还处在截止状态,所以,自感电势便通过D5阻尼二极管将磁能回归于电源,一个振荡周期就完成了。

因L2上负下正的自感电势消失,BU406的e极电位降低,所以BU406再次通导,又重复上述过程,形成振荡。

这样,在振荡电容两端,也可说成是在换能器两端,形成了振荡电压,波形类似于单个二极管的半波整流波形——脉冲振荡波,频率高于声频。

超声波雾化器的制作电路图

超声波雾化器的制作电路图

超声波雾化器的制作电路图
超声波增湿器(超声波雾化器)是以超声波换能的方法产生高频震动使水面产生雾化,在雾化的过程中产生水雾不断向周围蒸发使空气中保持一定的湿度。

见下电路图:由QA、L2、C1、L1、C3、C2、R1及U和WR1组成一个大功率的高频振荡器,采用电容三点式振荡电路,电路的振荡频率是超声波压电换能振子U的固有频率1.013MHz。

L2和C1组成的谐振回路在这里不决定振荡器频率,而是决定振荡幅度,它的谐振频率比电路的振荡频率约低,L1和C3谐振频率大于电路的振荡频率,采用两个谐振回路是为了使电路的振荡频率合成,使振荡器在大功率下保证稳定工作。

三极管采用13009加上散热片,R1、WR1是偏置电阻,调整WR1使振荡器输出适中,确定电路已经开始振荡,这里的 A 是电流表,整个电路电流确定在0.4A左右,就可以进行电路调试了。

将雾化喷水头固定在盆底,水深6-10cm为宜。

调整电位器WR1,先把电位器旋至阻值最大处。

打开电源,慢慢减小WR1阻值,观察电流表和水喷起情况,直至水雾最高及雾量最大,而电流最小,用相同阻值电阻代替电位器WR1即可,第一步调试完成。

然后开始进行第二步调整!将短波磁棒敲成大小不一样的磁块,
放入L2的骨架中,经过反复地选择大小不同的磁块,仔细观察电流表和水喷起的新情况!这时水雾应该比前面更高及雾量更大,而电流比较前面更小,三极管的温度更低。

最后将磁块固定在L2骨架中。

如果有新的调试方法我们将会更新电子制作网这里的技术资料。

元件选择与制作 C1、C2、C3用高频瓷介电容电压630V。

三极管要求功率为60W,反压大于300V的开关管。

加湿器介绍及原理图

加湿器介绍及原理图

目前市场上的家用加湿器一般采用超声波方式将水雾化,并通过风机将雾化的水汽吹出壳体,从而达到加湿空气的效果,其电气原理图如附图所示。

市电经过开关电源后,输出两路电压36V和12V。

其中36V供电水汽雾化模块.12V供电风机。

电路中,D1、D2分别是缺水指示灯和工作指示灯;干簧管为液位检测开关;RT1为雾气大小调节电位器。

以02为核心及其外围电路为超声波发生电路。

一、加漫器的工作原理接通电源后.开关电源输出36V和12V。

当储水罐尚未放到底座或储水罐内缺水时,磁铁远离干簧管,干簧管弹开.Ql导通,缺水指示灯Dl亮,工作指示灯D2灭;Q2基极无电压,超声波发生电路不起振。

当储水罐加入适量水后,磁铁靠近干簧管,干簧管吸合,QI因其基极变为高电平而截止.同时D2亮,Dl灭,电流经干簧管,并由R3、R6分压后,经R5、RT1送到超声波发生电路,超声波发生电路起振,从而产生雾气,由风机吹出壳体,达到室内加湿空气的效果。

二、常见故障检修[例1]雾化的水汽不能吹出壳体。

检修:打开加温器,插上电源,发现风机不转。

去除风机后,测量开关电源输出12V.正常,则判断风机坏,更换风机后,故障排除。

[例2]通电无反应。

检修:接通电源,测量36V、12V均无输出,判断为开关电源故障。

拆开开关电源检查,其整流部分有发黑情况,经测量,整流二极管(1N4007)损坏一只,更换后,故障排除。

[例3]水汽雾化很弱,调节旋钮不起作用。

‘检修:经测量36V、12V均输出正常,Q2也无击穿现象,各阻容件无烧黑情况,但发现储水罐污垢较多,换能器件表面及水池底部池壁上都积了一层水垢,用餐洗净彻底清除后通电,雾化效果恢复正常。

提示:在日常使用中,加湿器的很多故障都是水垢造成的,因此应经常清洗加湿器的储水罐及液位检测部分,防止污垢沉积,有条件的可以考虑用纯净水作为加湿器用水。

加湿器原理与维修

加湿器原理与维修

本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。

电源部分有两种供电方式,一种是变压器降压整流滤波后为振荡电路供电,如图二ZS2-45型。

因变压器过载能力强而被广泛机型采用。

另一种是由开关电源供电,特点是重量明显减小,电源效率高,如图三半球牌CJ-380D。

控制电路包括缺水检测、缺水指示和雾量调整电路。

缺水检测有两种方式,一是干簧管配合漂浮磁环检测方式,目前大多机型都采用此方式。

如图四桑普SC 25A型,不缺水时包在泡沫塑料中的磁环被水漂浮起来,磁场使干簧管常开触点闭合,接通电源给振荡管提供偏置,振荡电路开始工作。

当缺水时随着水面下降磁环离开干簧管受控区,干簧管触点释放,振荡管失去偏置而停振,加湿器处于待机状态。

另一种是水面探针检测方式,如图五琦丽牌加湿器。

加湿器的振荡管集电极是直接固定在换能片金属框架上的(是很好的水冷散热片)。

因振荡管集电极是电源正极,所以水和探针为振荡管提供了偏置通路。

当水面降到离开探针时,偏置通路被断开,加湿器进入待机状态。

缺水指示都采用发光二极管点亮来指示,图六康福尔SPS-818和图三半球牌CJ-380D是通过PNP三极管在干簧管断开后基极处于低电位而导通点亮发光二极管的。

有的机型则没有缺水指示,如图七国萃和图八亚都。

雾量调整电路在所有的加湿器电路中都是通过调整面板上设置的电位器(起可调电阻作用)来调节振荡管的偏置实现的,这部分电路与缺水检查电路是串联的。

为确保振荡管不会因偏置过高而损坏,电源电压都经过电阻分压和一个可调电阻压降后提供给雾量调整电位器的。

经调整后的偏置电压通过电感电阻加到振荡管基极,使振荡管能在截至状态和最强振荡状态之间变化。

振荡电路由功率三极管和外围电容电感组成三点式振荡电路,这部分的电路在所有加湿器电路中几乎是一样的,电路振荡频率约0.65MHZ。

因换能器本身就是一个固有频率约1.7MHZ的晶振,它通过耦合电容加跨接在振荡管基极和电源之间,振荡电路的6.5KHZ的振荡电压通过耦合电容加在换能器上。

1.7mhz雾化片驱动电路

1.7mhz雾化片驱动电路

1.7mhz雾化片驱动电路加湿器相信大家不会陌生,加湿器内加入自来水,打开加湿器的开关,不出几秒,加湿器便能产生云雾缭绕的效果。

那么,水到底是怎样就变成云雾的呢?下面就给大家解密一下!现在所用的加湿器,大部分是利用超声波的高频振荡(振荡频率高达1.7MHz 或2.4MHz),可以将水雾化为1微米到5微米的超微粒子。

超声波加湿器,具有在室内降温、保湿等功能,这项目技术的关键,是利用超声波击打出水雾,其中能产生超声波震动的核心元件就是雾化片。

▲雾化片雾化片产生的高频振荡,可以将液态水分子结构打散而产生自然飘逸的水雾。

超声波的雾化方式与加热雾化方式比较,能源节省90%。

▲ 加湿器PCB超声波雾化片可分成两种,一种是陶瓷雾化片,另一种是微孔雾化片。

陶瓷雾化片和微孔雾化片结构构造不一样,陶瓷雾化片是由压电陶瓷片制成,具有压电效应。

▲陶瓷雾化片陶瓷雾化片是把雾化片放在离水面三毫米的地方,利用高频振动把水瞬间分解成细小的水珠状,再由喷嘴喷出来,利用超声原理将水变成微小的水珠状,从而产生雾气喷出。

陶瓷雾化片需要较大的电压来带动,常规是都是24V~48V电压,所以比微孔雾化片的功率要大。

而微孔雾化片是由钢片穿孔而成,微孔雾化片是通过中间细微孔,由海绵吸棒把水吸上来,由雾化片中间细孔喷出。

▲微孔雾化片小型加湿器里面用到最多的是微孔雾化片,功率是比较小的。

雾化片的常用尺寸有13.8mm、16mm、20mm,最大的有25mm。

雾化片的频率有108kHz、110kHz、150kHz、160kHz、1700kHz。

接下来,分享几个雾化片驱动的几个电路,供大家参考。

分立元件驱动方式该超声波加湿器电路由电源电路、振荡器电路和水位控制电路组成。

交流220V电压经变压器降压,然后经过桥式整流滤波电路,为水位控制电路和振荡器提供工作电压。

在水位检测电极检测到有水时,整流后的直流电压经两个水位电极之间水的电阻,为V1的集电极提供工作电压,使V1导通,V1导通后V2也导通,为振荡器提供偏置电压。

超声波加湿器电路图概要

超声波加湿器电路图概要

超声波加湿器电路图2010-04-24 20:49:48| 分类:设备维修| 标签:|举报|字号大中小订阅超声换能器一工作就使最底层的一片压电陶瓷片某一处或多处振裂,即使更换新片也无济于事,而其它五块却无任何问题,试再次更换新的仍是最底面与铁柱相接触的那一片瞬间产生几道裂纹,再次开关机裂纹不再扩大,但肯定会影响使用寿命,因为已经坏掉了几个,寿命一般只能用一个月左右,真是纳闷至极,不知谁能解释这个问题,请回复,在此深表感谢。

对此厂家也没能作出一个合适的解释,希望专家们多多指教。

超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极,3脚是换能器的负极而且与换能器的外壳相连。

检查,2 3 脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。

如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 ℃左右烘干3小时或者使用电吹风去潮至阻值正常为止。

换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。

振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做出判断。

一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。

振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。

避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。

振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经到了,一般只能更换。

超声波加湿器电路图加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。

超声波加湿器电路图

超声波加湿器电路图

超声波加湿器电路图超声换能器一工作就使最底层的一片压电陶瓷片某一处或多处振裂,即使更换新片也无济于事,而其它五块却无任何问题,试再次更换新的仍是最底面与铁柱相接触的那一片瞬间产生几道裂纹,再次开关机裂纹不再扩大,但肯定会影响使用寿命,因为已经坏掉了几个,寿命一般只能用一个月左右,真是纳闷至极,不知谁能解释这个问题,请回复,在此深表感谢。

对此厂家也没能作出一个合适的解释,希望专家们多多指教。

超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极,3脚是换能器的负极而且与换能器的外壳相连。

检查,23脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。

如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 C左右烘干3小时或者使用电吹风去潮至阻值正常为止。

换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。

振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做出判断。

一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。

振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。

避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。

振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经到了,一般只能更换。

超声波加湿器电路图加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。

本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。

超声波加湿器电路图

超声波加湿器电路图

超声波加湿器电路图设备维修 2010-04-24 20:49:48 阅读1851 评论2 字号:大中小订阅超声换能器一工作就使最底层的一片压电陶瓷片某一处或多处振裂,即使更换新片也无济于事,而其它五块却无任何问题,试再次更换新的仍是最底面与铁柱相接触的那一片瞬间产生几道裂纹,再次开关机裂纹不再扩大,但肯定会影响使用寿命,因为已经坏掉了几个,寿命一般只能用一个月左右,真是纳闷至极,不知谁能解释这个问题,请回复,在此深表感谢。

对此厂家也没能作出一个合适的解释,希望专家们多多指教。

超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极, 3脚是换能器的负极而且与换能器的外壳相连。

检查,2 3 脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。

如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 ℃左右烘干3小时或者使用电吹风去潮至阻值正常为止。

换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。

振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做专业知识整理分享出判断。

一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。

振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。

避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。

振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经到了,一般只能更换。

超声波雾化加湿器故障分析检修三例

超声波雾化加湿器故障分析检修三例

超声波雾化加湿器故障分析检修三例例1:故障现象:一台D201型超声波雾化加湿器,接通电源后不喷雾。

故障原因分析:该雾化器电路原理如附图所示:引起不喷雾的原因主要有:(1)电源供电失常,输出电压为零或过低;(2)磁环浮子S-N卡滞不随水位升降,或干簧管水位开关SL接触不良;(3)VT等组成的超声频振荡器停振,一般是有关元件开路失效,击穿漏电或性能变差;(4)超声波换能器HTD损坏或失效。

故障检查修理:(1)测量电源变压器T次故障为正常值交流48V,说明市电输人无问题,再测高频消噪扰电容C1两端电压为直流48V,说明VD1-VD4桥式整流器、直流保险FU及限流保护电阻R1均正常;(2)检查雾量调整电位器RP1和辅助调整电位器RP2接触良好,引线无折断〕检查磁环浮子S-H随储水槽水位上下浮动自动,水位控制干簧管开关SL闭合及断开无异常;(3)检查振荡电路有关元件:C2-C6无开路失效及容量减退现象,电感L1-L3无需断开路及受潮漏电,R2和R3无脱焊开路,保护二极管V DS正、反向电阻也正常,振荡管VT极间正、反向电阻未见异常。

最后怀疑是VT性能变劣(如穿透电流增大、开关特性变差或p下降等),用一只特性相近的中功率晶体管2SD1163代换后(也可用2DS35 , RU408等代换),开机试验,喷雾恢复正常,故障排除。

例2:故障现象:一台SRQ-SSA型超声雾化器,喷雾量明显减少,调节雾量控制电位器无效。

故障原因分析:本故障与不喷雾故障(例1)看似不同,实际上无本质区别,只是元件坏损程度稍轻。

尚未导致电路停振而已。

该机电路与附图大同小异,这里不再给出引起喷雾量变少的原因主要为:(1)电源电路有故障,供给振荡电路的电压过低;(2)雾量调节电位器及辅助调节电位器引线折断、接触不良等造成雾量调整失控;(3)超声频振荡电路振弱,输出的信号幅度过低;(4)超声波换能器HTD效率低。

故障检查修理:(1)测量整流输出的直流电压约SOV ,说明电源变压器、桥式整流器及保险丝等均完好:(2)测量整流器输出电流,喷雾正常时应为SOOmA左右,实测电流不到300mA,说明振荡器虽然能起振工作,但振荡较弱;(3)检查雾量控制(实际仁是输出功率控制)及辅助控制电位器引线完好,滑动接触正常;(4)检查相关振荡元件无异常,试更换中功率振荡管,故障依ll};(5)检查超声波换能器,正常时用万用表Rxl档测其极间电阻应为零欧,实测值为620K,fZ,说明换能器有问题二仔细观察换能器被水封压住的地方腐蚀成黑灰色,用随机配送的专用清洗剂清洗后,极间电阻降至5.8K,fZ。

2款实用的超声波发生器电路图解

2款实用的超声波发生器电路图解

2款实用的超声波发生器电路图解
例一、多功能超声波发生器电路
见图①
图①超声波发生器电路图
工作原理如下:
AC220v市电经D1一D4桥式整流后在经过电容C1丶C2滤波后获得300v左右的直流电压,再经电阻R给BG2提供偏置电压,使BG2首先导通。

逆变变压器B共有4个绕组n1、n2、n3、n4绕于同一个高频磁芯上。

当BG1、BG2见图②
图②13005开关三极管
轮流导通与截止,使逆变电路进入振荡状态时,在绕组n4上输出AC24v电压,连接压电陶瓷片即可输出超声波。

此电路可作为清洗金属件机,可作为超声波雾化机,也可作为电子变压器。

例2、用于鱼缸加氧的超声波发生器
见图①
图①微型超声波发生器电路图
见图①工作原理:
本例是一个微型超声波发生器电路,用于鱼缸加氧。

电路釆用lC555时基集成电路,外围元件少。

电路中IC555电路接成无稳态多谐振荡器,振荡频率受电位器RP控制,可以在20kHz一40kH之间调节。

超声波信号由Ic555时基集成电路3脚输出,经电容C3耦合经变压器升压后,驱动压电陶瓷片B发出超声波。

超声波在水面可产生强烈的空气作用,使鱼缸内产生许多小泡泡,气泡中的气体来自空气,从而达到向水中加氧的目的。

元件选择: 变压器T可釆用老式晶体管收音机的输入输出变压器代替,也可以用铁氧体磁芯绕制。

B为Φ27一Φ35mm的压电陶瓷片,见图②
图②压电陶瓷片
将其装入带孔的小塑料盒内,使用时把它放入水中,调整BP 可观察到小孔向外冒出的小气泡,气泡越多越好,就成功了! 以上2例超声波发生器电路简单、用途广泛,实用各种场合。

超声波加湿器原理及电路图

超声波加湿器原理及电路图

超声波加湿器原理及电路图超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极, 3脚是换能器的负极而且与换能器的外壳相连。

检查,2 3 脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。

如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 ℃左右烘干3小时或者使用电吹风去潮至阻值正常为止。

换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。

振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做出判断。

一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。

振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。

避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。

振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经到了,一般只能更换。

加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。

本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。

电源部分有两种供电方式,一种是变压器降压整流滤波后为振荡电路供电,如图二ZS2-45型。

因变压器过载能力强而被广泛机型采用。

另一种是由开关电源供电,特点是重量明显减小,电源效率高,如图三半球牌CJ-380D。

控制电路包括缺水检测、缺水指示和雾量调整电路。

缺水检测有两种方式,一是干簧管配合漂浮磁环检测方式,目前大多机型都采用此方式。

超声波加湿器的检修方法及实例

超声波加湿器的检修方法及实例

超声波加湿器的检修方法及实例超声波加热器的检修方法及实例超声波加湿器是我国北方和西部高寒干燥地区大中城市家庭使用的一种环保型家电,能调节室内空气,增加湿度,消除静电,消毒除尘,防病健身,滋润皮 , 肤。

这种小家电一般都不带维修电路图,现在根据维修中接触到的多种型号加湿器,着重介绍一种新型欧牌超声波加湿器电路和维修,供参考。

一、电路和工作原理整机电路如图1 所示,主要有电源和超声波振荡两部分电路组成。

电源由 AC220V 市电通过以场效应管 (4N60B) 作振荡的开关稳压电源,输出 38V 和 12V 两路。

其中 38V 供超声波振荡电路; 12V 供直流电机FA( 风扇) 。

图中VR2(5.1k Ω ) 为调节雾化加湿程度控制器,LED1( 红色 ) 为缺水指示灯 ( 该家电应注意随时加水 ) , LED2 为 ( 绿色 ) 加湿指示灯。

该加湿器常见故障是不能加湿,风扇不转,但不能加湿的LED2 绿色指示灯并未亮。

此故障常见为电源供电部分发生故障较多,如 Fu(1.6A) 保险管熔断,若管内有严重发黑的痕迹,必有击穿短路现象,要仔细检查D1 ~ D4 , C1 , ZD9 , Q3 和 IC1 、 IC2 、 D12 、 D13 等相关元件。

只有检查出故障原因后才能更换上同规格 1.6A 保险管通电。

其次是超声波振荡 Q2(BU406) 换能器件 DT 、 VT 干簧管、 C3 、 C4 、C5 等主要元件损坏或性能不良,导致超声波形成电路不能正常工作。

另外.虽然缺水指示灯 LED1 未亮。

但因盛水不足或电路 Q1 损坏,电路自动保护,加湿器也不工作。

风扇 FA 不能启动。

先查供电CT ∥ 2T5 接插件及 12V 电压是否正常,如没有 12V 电压,再查 D13 、 C4 是否击穿。

电机本身是否烧坏或其内部有无阻塞现象,可以更换电机或清洗加油。

加湿器使用功效降低。

主要是雾化湿气很弱。

调节 VR2 到最大也不见效,这除了供电不足,超声波振荡电路性能变劣,换能器件 DT 性能不良外,还有使用中未及时清除盛水池内水垢及加水水质差等。

超声波加湿器工作原理

超声波加湿器工作原理

一・超声波加湿器的工柞原理趙占波加温器的电路原理如图&乩3所示,它由电源变換、换陡F 7度育超芮波发生器曲自动恒湿功輕的1C寻组威*闭合开关5叭指忻灯H ■- ■ '4机运转•电汹变压器T把220V 电压变为険V”换能器泉压电陶瓷片T6它既是块L吐岔咸抿為啊车的元件,又是振荡电路的负載。

KS-3为湿度传感器,由湿敏材料制成”甚输出的电压18 焜度变化;湿度传感器输出的倍号电圧加利K:内的比较器•与湿度旋N X占弋『'电r 信号比较后,将僵度检测數据送人IC内的橄电脑,进行醍度门动控制&当环境霆度低于淮择的湿虞时,振落器丄作•加氓器喷雾*当环境湿度达列选择的湿度时■接蒜器停振■加糧器停止喷S2为水位开关-当水箱无水时+睜止瑚雾,保护换能器不祐晓环.X :.;貞竹选择电位器,调节V R可调节掘荡幅度.控制雾量大小"ST €.3.3 趙韶波知湿舞頓理31超声波加湿器雾化工作原理及特点超声波雾化原理:利用压电陶瓷所固有超声波振荡特点,通过一定的振荡电路手段与压电陶瓷固有振荡频率产生共振,就能直接将与压电陶瓷接触的液体雾化成1--3 n m的微小颗粒。

超声波加湿器其原理是,电路超声波振荡,传输到压电陶瓷振子表面,压电陶瓷振子会产生轴向机械共振变化,这种机械共振变化再传输到与其接触的液体,使液体表面产生隆起,并在隆起的周围发生空化作用,由这种空化作用产生的冲击波将以振子的振动频率不断反复,使液体表面产生有限振幅的表面张力波。

这种张力波的波头飞散,使液体雾化,同时产生大量的负离子。

压电陶瓷粉料:压电陶瓷主要由锆钛酸铅(PZT)所组成,在氧化锆(ZrO2)、氧化铅(PbO)及氧化钛仃i02)等的粉末原料中,按一定比例适当添加微量的添加物后,由多道加工程序完成陶瓷粉料制作,再利用油压机使之压缩成各种规格形状,成型后在1350 C左右温度下进行烧结,所得的成品,再以电镀的方法或者不锈钢贴片法完成电极极化工作后,就是压电陶瓷晶片成品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波加湿器电路图
超声换能器一工作就使最底层的一片压电陶瓷片某一处或多处振裂,即使更换新片也无济于事,而其它五块却无任何问题,试再次更换新的仍是最底面与铁柱相接触的那一片瞬间产生几道裂纹,再次开关机裂纹不再扩大,但肯定会影响使用寿命,因为已经坏掉了几个,寿命一般只能用一个月左右,真是纳闷至极,不知谁能解释这个问题,请回复,在此深表感谢。

对此厂家也没能作出一个合适的解释,希望专家们多多指教。

超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极,3脚是换能器的负极而且与换能器的外壳相连。

检查,2 3 脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。

如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 ℃左右烘干3小时或者使用电吹风去潮至阻值正常为止。

换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。

振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做出判断。

一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。

振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。

避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。

振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经到了,一般只能更换。

超声波加湿器电路图
加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。

本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:
加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。

电源部分有两种供电方式,一种是变压器降压整流滤波后为振荡电路供电,如图二ZS2-45型。

因变压器过载能力强而被广泛机型采用。

另一种是由开关电源供电,特点是重量明显减小,电源效率高,如图三半球牌CJ-380D。

f |+|&u _ Y f
控制电路包括缺水检测、缺水指示和雾量调整电路。

缺水检测有两种方式,一是干簧管配合漂浮磁环检测方式,目前大多机型都采用此方式。

如图四桑普SC 25A型,不缺水时包在泡沫塑料中的磁环被水漂浮起来,磁场使干簧管常开触点闭合,接通电源给振荡管提供偏置,振荡电路开始工作。

当缺水时随着水面下降磁环离开干簧管受控区,干簧管触点释放,振荡管失去偏置而停振,加湿器处于待机状态。

另一种是水面探针检测方式,如图五琦丽牌加湿器。

加湿器的振荡管集电极是直接固定在换能片金属框架上的(是很好的水冷散热片)。

因振荡管集电极是电源正极,所以水和探针为振荡管提供了偏置通路。

当水面降到离开探针时,偏置通路被断开,加湿器进入待机状态。

缺水指示都采用发光二极管点亮来指示,图六康福尔SPS-818和图三半球牌CJ-380D是通过PNP三极管在干簧管断开后基极处于低电位而导通点亮发光二极管的。

有的机型则没有缺水指示。

b o R L/s c o q$A'Z 雾量调整电路在所有的加湿器电路中都是通过调整面板上设置的电位器(起可调电阻作用)来调节振荡管的偏置实现的,这部分电路与缺水检查电路是串联的。

为确保振荡管不会因偏置过高而损坏,电源电压都经过电阻分压和一个可调电阻压降后提供给雾量调整电位器的。

经调整后的偏置电压通过电感电阻加到振荡管基极,使振荡管能在截至状态和最强振荡状态之间变化。

9? L;y5@7Z y,R q F W q
振荡电路由功率三极管和外围电容电感组成三点式振荡电路,这部分的电路在所有加湿器电路中几乎是一样的,电路振荡频率约0.65MHZ。

因换能器本身就是一个固有频率约1.7MHZ的晶振,它通过耦合电容加跨接在振荡管基极和电源之间,振荡电路的6.5KHZ的振荡电压通过耦合电容加在换能器上。

换能器受振荡电路激励后产生振荡,这个振荡信号又通过耦合电容反馈到振荡管基极,使振荡电路谐振在1.7MHZ,振荡幅度峰峰值达二百伏左右。

强烈的超声波振荡电能经换能器转换成机械能将表面的水打成水雾,由送风电扇把水雾吹出从而使室内空气增加湿度。

加湿器的风机有采用220V罩极式异步电机风扇,也有采用12V仪表风扇。

加湿器的主要故障是不出雾或雾量小。

开启电源开关不出雾,电源指示灯不亮,风机不转多属于电源故障,拆开机壳后先检查电源220V输入保险。

此保险管熔断说明电路有短路性故障,如振荡功率管(BU406)击穿、整流二极管击穿、电源变压器初级绕组短路、开关电源开关管击穿等。

如果开启电源开关后风机会转动,应检查振荡电路板上的二次电源保险是否开路(有机型使用0.5欧姆保险电阻),此保险管一般都加在38V整流后的电源地端。

如果保险管已熔断多是振荡功率管击穿(也有瞬间电流过大烧坏保险管换上保险即可工作的)。

振荡功率管击穿一般不会殃及其它元件,换上新管即可。

BU406耐压400V,功率18W,换新管时要选择直流放大倍数大于50的同型号管子或耐压功率足够的其它NPN中功率管。

在维修中也发现有的机型使用大功率管的,这样会更加耐用一些。

N D&[ _ b9Z Y C.`
二次保险完好并且振荡管无损坏,就需通电进行电压检测。

为免换能器脱水振荡发热烧裂,必需先脱开换能器一条引线。

换能器脱水工作轻则性能变差,重会损坏烧裂。

振荡管不要脱开换能器金属框,以免失去散热片过热损坏。

首先测量振荡管集电极对保险管(二次地)是否有50V左右的直流电压,有交流38V但没有此电压多是电路板有漏水腐蚀开路的地方。

加湿器在水雾环境里工作,电路板遭腐蚀是常有的事。

如果有50V电压,则需测量振荡管be结电压。

用导线将缺水检测干簧管闭合或缺水探针与电源挂通,此时调整雾量电位器be结电压能在0.6V左右变化。

没有此电压说明偏置电路开路,多是电路板上的可调电阻损坏开路或接触不良,此可调电阻的故障率很高。

这里还要强调一点,就是振荡管be结击穿也会造成无偏置电压,所以确定振荡管良好是进行这一步检查的前提。

在检查并排除上述故障后,可用示波器观察振荡管发射极波形,应有0.65MHZ约20V的振荡波形。

在观察过程中把换能器被脱开的引线接触一下原焊点,振荡波形立刻发生变化,频率将谐振在1.7MHZ。

如果振荡频率无变化说明换能器失效,与换能器串联的47n耦合电容失效也会造成这种现象。

失效的换能器一般表面金属膜已经开裂或剥落,还有的压电陶瓷片已经破碎。

外型完好但确已失效的换能器也有。

换能器背面有两根引线,外圈与表面一体常用黑线或黄线,要接与电源相连的一点,中心引线常用红线,接偶合电容一点。

经上述检修后加水试机能看到换能器表面的水被激起水柱和雾化效果。

有雾但雾小,首先检查换能器是否干净,换能器在使用一段时间后表面会凝结一层水垢,需拆下换能器进行清理。

如清理后出雾仍然很小就是换能器性能不良,需更换换能器。

如果手头没有配件,对采用变压器供电的机型可在整流桥后并联一个470Uf/63V的电解电容,以提高电源供电效率而增加
雾量。

相关文档
最新文档