高中数学专题练习-函数的实际应用

合集下载

2020届高考文科数学复习练习题(二):函数 专题训练

2020届高考文科数学复习练习题(二):函数 专题训练

专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则.所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a≤0时,由a-1=-1得a=0;当a>0时,由-a2+2a+2=-1,即a2-2a-3=0得a=3或a=-1(舍).综上,a=0或a=3.例3 下列四组函数中,表示同一函数的是( )(A) (B)(C) (D)【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y=|x|及y=|t|,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1) (2)(3) (4)解:(1)由|x-1|-1≥0,得|x-1|≥1,所以x-1≥1或x-1≤-1,所以x≥2或x≤0.所以,所求函数的定义域为{x|x≥2或x≤0}.(2)由x2+2x-3>0得,x>1或x<-3.所以,所求函数的定义域为{x|x>1或x<-3}.(3)由得x<3,且x≠0,x≠1,所以,所求函数的定义域为{x|x<3,且x≠0,x≠1}(4)由所以-1≤x≤1,且x≠0.所以,所求函数定义域为{x|-1≤x≤1,且x≠0}.例5 已知函数f(x)的定义域为(0,1),求函数f(x+1)及f(x2)的定义域.【分析】此题的题设条件中未给出函数f(x)的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x的取值范围;②受对应法则f制约的量的取值范围在“已知”和“求”当中是一致的.那么由f(x)的定义域是(0,1)可知法则f制约的量的取值范围是(0,1),而在函数f(x+1)中,受f直接制约的是x+1,而定义域是指x的范围,因此通过解不等式0<x+1<1得-1<x<0,即f(x+1)的定义域是(-1,0).同理可得f(x2)的定义域为{x|-1<x<1,且x≠0}.例6 如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x,求此框架围成的面积y与x的函数关系式,并指出定义域.解:根据题意,AB=2x.所以,根据问题的实际意义.AD>0,x>0.解所以,所求函数定义域为【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y=tan x,则,k∈Z.(2)不给出f(x)的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知,求f(x)的解析式;(2)已知,求f(3)的值;(3)如果f(x)为二次函数,f(0)=2,并且当x=1时,f(x)取得最小值-1,求f(x)的解析式;(4)*已知函数y=f(x)与函数y=g(x)=2x的图象关于直线x=1对称,求f(x)的解析式.【分析】(1)求函数f(x)的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,方法二.设,则.则,所以这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,(3)因为f(x)为二次函数,并且当x=1时,f(x)取得最小值-1,所以,可设f(x)=a(x-1)2-1,又f(0)=2,所以a(0-1)2-1=2,所以a=3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.40元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.30元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x元/kW·h时,用电量将增加至故电力部门的收益为.(2)易知,上年度的收益为(0.8-0.3)a,依题意,且0.55≤x≤0.75,解得0.60≤x≤0.75.所以,当电价最低定为0.60元/kW·h时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题1.已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( )(A){x|x>1} (B){x|x<1} (C){x|-1<x<1} (D)2.图中的图象所表示的函数的解析式为( )(A)(B)(C)(D)y=1-|x-1|(0≤x≤2)3.已知f(x-1)=x2+2x,则( )(A) (B) (C) (D)4.已知若f(x)=3,则x的值是( )(A)0 (B)0或 (C) (D)二、填空题5.给定映射f:(x,y)→(x+2y,x-2y),在映射f下(0,1)的象是______;(3,1)的原象是______.6.函数的定义域是______.7.已知函数f(x),g(x)分别由下表给出x 1 2 3 x 1 2 3f(x) 1 3 1 g(x) 3 2 1则f[g(1)]的值为______;满足f[g(x)]>g[f(x)]的x的值是______.8.已知函数y=f(x)与函数y=g(x)=2x的图象关于点(0,1)对称,则f(x)的解析式为______.三、解答题9.已知f(x)=2x+x-1,求g(-1),g[f(1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.为使物体落在区间D内,求a的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点(-x,-f(x))都在其图象上.又点P与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间MA.如果取区间M中的任意两个值x1,x2,改变量x=x2-x1>0,则当y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性.(1) (2)(3)f(x)=x3-3x; (4)(5)解:(1)解,得到函数的定义域为{x|x>1或x≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x|x≠0},但是,由于f(1)=2,f(-1)=0,即f(1)≠f(-1),且f(1)≠-f(-1),所以此函数为非奇非偶函数.(3)函数的定义域为R,又f(-x)=(-x)3-3(-x)=-x3+3x=-f(x),所以此函数为奇函数.(4)解,得-1<x<1,又所以此函数为奇函数.(5)函数的定义域为R,又,所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②f(x)是奇函数,并且f(x)在x=0时有定义,则必有f(0)=0;③既是奇函数又是偶函数的函数,其解析式一定为f(x)=0.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察f(-x)与f(x)的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f(x)在R上有定义,给出下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x).其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F(x)=-|f(x)|,则F(-x)=-|f(-x)|,由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.②令F(x)=xf(x2),则F(-x)=-xf[(-x)2]=-xf(x2)=-F(x),所以F(x)为奇函数.③令F(x)=-f(-x),则F(-x)=-f[-(-x)]=-f(x),由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.④令F(x)=f(x)-f(-x),则F(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-F(x),所以F(x)为奇函数.所以,②④为奇函数.例3 设函数f(x)在R上有定义,f(x)的值不恒为零,对于任意的x,y∈R,恒有f(x+y)=f(x)+f(y),则函数f(x)的奇偶性为______.解:令x=y=0,则f(0)=f(0)+f(0),所以f(0)=0,再令y=-x,则f(0)=f(x)+f(-x),所以f(-x)=-f(x),又f(x)的值不恒为零,故f(x)是奇函数而非偶函数.【评析】关于函数方程“f(x+y)=f(x)+f(y)”的使用一般有以下两个思路:令x,y为某些特殊的值,如本题解法中,令x=y=0得到了f(0)=0.当然,如果令x=y=1则可以得到f(2)=2f(1),等等.令x,y具有某种特殊的关系,如本题解法中,令y=-x.得到f(2x)=2f(x),在某些情况下也可令y=,y=x,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f(x)=x2+bx+c满足f(1+x)=f(1-x),求b的值,并比较f(-1)与f(4)的大小.解:因为f(1+x)=f(1-x),所以x=1为二次函数图象的对称轴,所以,b=-2.根据对称性,f(-1)=f(3),又函数在[1,+∞)上单调递增,所以f(3)<f(4),即f(-1)<f(4).例5已知f(x)为奇函数,当x≥0时,f(x)=x2-2x,(1)求f(-1)的值;(2)当x<0时,求f(x)的解析式.解:(1)因为f(x)为奇函数,所以f(-1)=-f(1)=-(12-2×1)=1.(2)方法一:当x<0时,-x>0.所以,f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.方法二:设(x,y)是f(x)在x<0时图象上一点,则(-x,-y)一定在f(x)在x>0时的图象上.所以,-y=(-x)2-2(-x),所以y=-x2-2x.例6 用函数单调性定义证明,函数y=ax2+bx+c(a>0)在区间上为增函数.证明:设,且x1<x2f(x2)-f(x1)=(ax22+bx2+c)-(ax12+bx1+c)=a(x22-x12)+b(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(x2-x1)[a(x1+x2)+b]因为x1<x2,所以x2-x1>0,又因为,所以,所以f(x2)-f(x1)>0,函数y=ax2+bx+c(a>0)在区间上为增函数.例7 已知函数f(x)是定义域为R的单调增函数.(1)比较f(a2+2)与f(2a)的大小;(2)若f(a2)>f(a+6),求实数a的取值范围.解:(1)因为a2+2-2a=(a-1)2+1>0,所以a2+2>2a,由已知,f(x)是单调增函数,所以f(a2+2)>f(2a).(2)因为f(x)是单调增函数,且f(a2)>f(a+6),所以a2>a+6,解得a>3或a<-2.【评析】回顾单调增函数的定义,在x1,x2为区间任意两个值的前提下,有三个重要的问题:x=x2-x1的符号;y=f(x2)-f(x1)的符号;函数y=f(x)在区间上是增还是减.由定义可知:对于任取的x1,x2,若x2>x1,且f(x2)>f(x1),则函数y=f(x)在区间上是增函数;不仅如此,若x2>x1,且函数y=f(x)在区间上是增函数,则f(x2)>f(x1);若f(x2)>f(x1),且函数y=f(x)在区间上是增函数,则x2>x1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f(x)是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数.(1)试比较f(-2)与-f(3)的大小;(2)若mn<0,且m+n<0,求证:f(m)+f(n)>0.解:(1)因为f(x)是奇函数,所以-f(3)=f(-3),又f(x)在区间(-∞,0)上是减函数,所以f(-3)>f(-2),即-f(3)>f(-2).(2)因为mn<0,所以m,n异号,不妨设m>0,n<0,因为m+n<0,所以n<-m,因为n,-m∈(-∞,0),n<-m,f(x)在区间(-∞,0)上是减函数,所以f(n)>f(-m),因为f(x)是奇函数,所以f(-m)=-f(m),所以f(n)>-f(m),即f(m)+f(n)>0.例9函数f(x)是周期为2的周期函数,且f(x)=x2,x∈[-1,1].(1)求f(7.5)的值;(2)求f(x)在区间[2n-1,2n+1]上的解析式.解:(1)因为函数f(x)是周期为2的周期函数,所以f(x+2k)=f(x),k∈Z.所以f(7.5)=f(-0.5+8)=f(-0.5)=.(2)设x∈[2n-1,2n+1],则x-2n∈[-1,1].所以f(x)=f(x-2n)=(x-2n)2,x∈[2n-1,2n+1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( )(A)y=x2-4x (B)y=|x| (C) (D)y=x2+2x2.下列判断正确的是( )(A)定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数(B)定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数(C)定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f(x)是R上的奇函数,并且是周期为3的周期函数,又知f(1)=2.则f(2)=( )(A)-2 (B)2 (C)1 (D)-14.设f(x)是R上的任意函数,则下列叙述正确的是( )(A)f(x)f(-x)是奇函数 (B)f(x)|f(-x)|是奇函数(C)f(x)-f(-x)是偶函数 (D)f(x)+f(-x)是偶函数二、填空题5.若函数f(x)=4x2-mx+5在区间[-2,+∞)是增函数,则m的取值范围是______;f(1)的取值范围是______.6.已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=______.7.设函数为奇函数,则实数a=______.8.已知函数f(x)=x2-cos x,对于上的任意x1,x2,有如下条件:①x1>x2;②③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是______三、解答题9.已知函数f(x)是单调减函数.(1)若a>0,比较与f(3)的大小;(2)若f(|a-1|)>f(3),求实数a的取值范围.10.已知函数(1)判断函数f(x)的奇偶性;(2)当a=1时,证明函数f(x)在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y 为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质.【知识要点】1.一次函数:y=kx+b(k≠0)(1)定义域为R,值域为R;(2)图象如图所示,为一条直线;(3)k>0时,函数为增函数,k<0时,函数为减函数;(4)当且仅当b=0时一次函数是奇函数.一次函数不可能是偶函数.(5)函数y=kx+b的零点为2.二次函数:y=ax2+bx+c(a≠0)通过配方,函数的解析式可以变形为(1)定义域为R:当a>0时,值域为;当a<0时,值域为;(2)图象为抛物线,抛物线的对称轴为,顶点坐标为.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.(3)当a>0时,是减区间,是增区间;当a<0时,是增区间,是减区间.(4)当且仅当b=0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式=b2-4ac>0时,函数有两个变号零点;当判别式=b2-4ac=0时,函数有一个不变号零点;当判别式=b2-4ac<0时,函数没有零点.3.指数函数y=a x(a>0且a≠1)(1)定义域为R;值域为(0,+∞).(2)a>1时,指数函数为增函数;0<a<1时,指数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y=log a x(a>0且a≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x,使得x n=a (a∈R,n>1,n∈N+),则x叫做a的n次方根.负数没有偶次方根.;(2)分数指数幂,;n,m∈N*,且为既约分数).,且为既约分数).(3)幂的运算性质a m a n=a m+n,(a m)n=a mn,(ab)n=a nb n,a0=1(a≠0).(4)一般地,对于指数式a b=N,我们把“b叫做以a为底N的对数”记为log a N,即b=log a N(a>0,且a≠1).(5)对数恒等式:=N.(6)对数的性质:零和负数没有对数(对数的真数必须大于零!);底的对数是1,1的对数是0.(7)对数的运算法则及换底公式:;;.(其中a>0且a≠1,b>0且b≠1,M>0,N>0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y=x,y=x2,y=x3,这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.【例题分析】例1化简下列各式:(1); (2);(3); (4)log2[log3(log464)];(5).解:(1)(2)(3)(4)log2[log3(log464)]=log2[log3(log443)]=log2[log33]=log21=0.(5)【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定f(x)的解析式.解:解法一设f(x)=ax2+bx+c(a≠0),依题意解之得所以所求二次函数为f(x)=-4x2+4x+7.解法二f(x)=a(x-h)2+k(a≠0),为f(2)=-1,f(-1)=-1,所以抛物线的对称轴为,又f(x)的最大值为8,所以.因为(-1,-1)点在抛物线上,所以,解得a=-4.所以所求二次函数为.例3 (1)如果二次函数f(x)=x2+(a+2)x+5在区间(2,+∞)上是增函数,则a的取值范围是______.(2)二次函数y=ax2-4x+a-3的最大值恒为负,则a的取值范围是______.(3)函数f(x)=x2+bx+c对于任意t∈R均有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数,画简图可知此抛物线对称轴或与直线x=2重合,或位于直线x=2的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a<0,且判别式<0”,即,解得a∈(-∞,-1).(3)因为对于任意t∈R均有f(2+t)=f(2-t),所以抛物线对称轴为x=2,又抛物线开口向上,做出函数图象简图可得f(2)<f(1)<f(4).例4已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的范围.解:当m=0时,f(x)=-3x+1,其图象与x轴的交点为,符合题意;当m<0时,注意到f(0)=1,又抛物线开口向下,所以抛物线与x轴的两个交点必在原点两侧.所以m<0符合题意;当m>0时,注意到f(0)=1,又抛物线开口向上,所以抛物线与x轴的两个交点必在原点同侧(如果存在),所以若满足题意,则解得0<m≤1.综上,m∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a≠0时,函数y=ax+b与y=b ax的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f(0)=1”,例5中“作直线y=1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y=1”.例6已知幂函数.(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.解:(1)因为f(x)在(0,+∞)上是增函数,所以,解得-1<k<3,因为k∈Z,所以k=0,1,2,又因为f(x)为偶函数,所以k=1,f(x)=x2.(2)因为f(x)在(0,+∞)上是减函数,所以,解得k<-1,或k>3(k∈Z).例7比较下列各小题中各数的大小(1);(2)lg2与lg(x2-x+3);(3)0.50.2与0.20.5;(4);(5);(6)a m+a-m与a n+a-n(a>0,a≠1,m>n>0)【分析】(1)函数y=log2x在区间(0,+∞)上是增函数,所以log20.6<log21=0,函数y=log0.6x在区间(0,+∞)上是减函数,所以所以.(2)由于,所以lg2<lg(x2-x+3).(3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为.根据不等式的性质有(5)因为比较与log32,只需比较与log32,因为y=log3x是增函数,所以只需比较与2的大小,因为,所以,所以,综上,(6),当a>1时,因为m>n>0,a m>a n,a m+n>1,所以a m+a-m>a n+a-n;当0<a<1时,因为m>n>0,a m<a n,a m+n<1,所以a m+a-m>a n+a-n.综上,a m+a-m>a n+a-n.例8已知a>2,b>2,比较a+b,ab的大小.【分析】方法一(作商比较法),又a>2,b>2,所以,所以,所以a+b<ab.方法二(作差比较法),因为a>2,b>2,所以2-a<0,2-b<0,所以a+b-ab<0,即a+b<ab.方法三(构造函数)令y=f(a)=a+b-ab=(1-b)a+b,将y看作是关于a的一次函数,因为1-b<0,所以此函数为减函数,又a∈(2,+∞),y最大<f(2)=(1-b)×2+b=2-b<0,所以a+b-ab<0,即a+b<ab.【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9若log2(x-1)<2,则x的取值范围是______.解:log2(x-1)<2,即log2(x-1)<log24,根据函数y=log2x的单调性,可得x-1<4,所以x<5,结合x-1>0,所以x的取值范围是1<x<5.例10 已知A,B为函数y=log8x的图象上两点,分别过A,B作y轴的平行线与函数y=log2x的图象交于C,D两点.(1)如果A,B两点的连线经过原点O,请问C,D,O三点也共线么?证明你的结论.(2)当A,B,O三点共线并且BC与x轴平行时,求A点的坐标.略解:(1)设A(x1,log8x1),B(x2,log8x2),由于A,B,O在同一条直线上,所以又设C(x1,log2x1),D(x2,log2x2),于是有同样可得结合①式,有k OC=k OD,即C,D,O三点共线.(2)当BC∥x轴时,即。

高中数学 人教A版 必修1 第三章 函数的应用 高考复习习题(选择题201-300)含答案解析

高中数学 人教A版 必修1 第三章 函数的应用 高考复习习题(选择题201-300)含答案解析

高中数学 人教A 版 必修1 第三章 函数的应用 高考复习习题(选择题201-300)含答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知函数f(x)=|lnx|,g(x){0,0<x ≤1|x 2−4|−2,x >1,则方程|f(x)−g(x)|=2的实根个数为( )A . 1B . 2C . 3D . 4 2,方程()0f x a -=有四个不同的根,记最大的根的所有取值为集合D ,若函数()()F x f x kx =- ()x D ∈有零点,则k 的取值范围是( )A . B.C . D. 3.已知函数()22,{52,x x af x x x x a+>=++≤,若函数恰有三个不同的零点,则实数的取值范围是( )A . [-1,1)B . [-1,2)C . [-2,2)D . [0,2]4函数()()g x f x m =-,则下列说法错误的是( )A . ,则函数()g x 无零点B . ,则函数()g x 有零点C .,则函数()g x 有一个零点,则函数()g x 有两个零点5,则实数m 的取值范围( ) A .B .C . (),16-∞D .6.已知函如果存在实数,s t ,其中s t <,使得()()f s f t =,则t s -的取值范围是( )A . [)32ln2,2-B . []32ln2,1e --C . []1,2e -D . [)0,1e + 7.设[]x 表示不超过x 的最大整数,如[][]11,0.50==,已知函数,若方程()0fx =有且仅有3个实根,则实数k 的取值范围是( )A .B .C .D . 8.已知函数f(x)=ln |x |−2ax 3+x 2,若f(x)有三个零点,则实数a 的取值范围是 A . (−12,0)∪(0,12) B . (−∞,−12)∪(12,+∞)C . (−1,0)∪(0,1)D . [−1,0)∪(0,1] 9()()2h x f x mx =-+有三个不同的零点,则实数m 的取值范围是() A .B .C .D . 10与直线y x =的交点的横坐标是0x ,则0x 的取值范围是( )A.()1,2 D .()2,3 11.已知函数()2221,2,{ 2,2,x x x x f x x --++<=≥且存在三个不同的实数123,,x x x ,使得()()()123f x f x f x ==,则123x x x ++的取值范围为( )A . ()4,5B . [)4,5C . (]4,5D . []4,512 ()()g x f x a =-,若函数()g x 有四个零点,则a 的取值范围( ).A . ()0,1B . (]0,2C . []0,1D . (]0,113.设f(x)=(12)x −x 3,已知0<a <b <c ,且f(a)·f(b)·f(c)<0,若x 0是函数f(x)的一个零点,则下列不等式不可能成立的是( )A . x 0<aB . 0<x 0<1C . b <x 0<cD . a <x 0<b14.已知函数f (x )={−x 2+4x, x ≤0ln (x +1), x >0 ,若|f (x )|≥ax ,则实数a 的取值范围为A . [−2,1]B . [−4,1]C . [−2,0]D . [−4,0]15.函数f(x)按照下述方式定义,当x ≤2时,f(x)=−x 2+2x ;当x >2时,f(x)=12f(x −3),方程f(x)=15的所有实数根之和是( )A . 8B . 12C . 18D . 2416.已知函数()f x 是R 上的奇函数,当0x >时,函数()()1g x xf x =-在[)7,-+∞上的所有零点之和为( ) A . 0 B . 4 C . 8 D . 1617.已知(),,0,a b c ∈+∞且a b c ≥≥, 12a b c ++=, 45ab bc ca ++=,则a 的最小值为( )A . 5B . 10C . 15D . 2018.已知函数()cos f x x =,,,a b c 分别为ABC ∆的内角,,A B C 所对的边,且222334a b c ab +-=,则下列不等式一定成立的是( )A .()()sin cos f A fB ≤ B .()()sin sin f A f B ≤420C .()()cos sin f A f B ≤D .()()cos cos f A f B ≤19,则方程()()330f f x e -=的根的个数为( )A . 1B . 2C . 3D . 420.已知函数f(x)={x 2−2x,x ≥0e −x ,x <0,若方程|f(x)|=mx 有3个根,则m 的取值范围是( )A . 0<m <2B . m <−2或0<m <2C . −e <m ≤2D . m <−e 或0<m <221.已知函数若函数()()g x f x k =-有2个零点,则实数k 的取值范围为( )A . ()0,+∞B . [)1,+∞ C . ()0,1 D . ()1,+∞ 22.已知M 是函数在()0,x ∈+∞上的所有零点之和,则M 的值为( )A . 3B . 6C . 9D . 1223且()()1f x f x =, ()()()1n n f x f f x -=,1,2,3,n =….则满足方程()n f x x =的根的个数为( ). A . 2n 个 B . 22n 个 C . 2n个 D . ()221n -个 24.将函图象按向量()1,0a =平移,得到的函数图象与函数()2sin 24y x x π=-≤≤的图象的所有交点的横坐标之和等于( )A . 2B . 4C . 6D . 825.已知函数f(x)=x −√x(x >0),g(x)=x +e x ,ℎ(x)=x +lnx 的零点分别为x 1,x 2,x 3,则A . x 1<x 2<x 3B . x 2<x 1<x 3C . x 2<x 3<x 1D . x 3<x 1<x 2 26.R 上的偶函数()f x 满足()()11f x f x -=+,当01x ≤≤时, ()2f x x =,则)A . 4B . 8C . 5D . 1027.3个零点,则实数a 的取值范围为( ) A . B . C . D .28.已知函数f(x)是定义在R 上的单调递增函数,且满足对任意实数x 都有f[f(x)−2x ]=3,当x ≥0时,函数g(x)=f(x)−31sinπx −1零点的个数为 A . 4 B . 5 C . 6 D . 7 29.已知函数f (x )=e x x,若关于x 的方程f 2(x )+2a 2=3a |f (x )|有且仅有4个不等实根,则实数a 的取值范围为( )A . (0,e2) B . (e2,e) C . (0,e ) D . (0,+∞)302个不同的零点,则实数k 的取值范围是( )A . (-4,0)B . (-4,0]C . (-∞,0]D . (-∞,0)31.把函数y =sin (4x −π6)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f (x )的图象,已知函数g (x )={f (x ),−11π12≤x ≤a 3x 2−2x −1,a <x ≤13π12 ,则当函数g (x )有4个零点时a 的取值集合为( ) A . (−5π12,−13)∪(π12,1)∪(7π12,13π12) B . [−5π12,−13)∪[π12,1)∪[7π12,13π12)C . [−5π12,−13)∪[7π12,13π12) D . [−5π12,−13)∪[π12,1) 32.已知函数()()sin 1f x x ϕ=--(()f x 的一个零点是( )A.B . C. D. 33.设函数()()()2ln 1f x x a x x =++-,若()f x 在区间()0+∞,上无零点,则实数a 的取值范围是( )A . []01,B . []10-,C . []02,D . []11-,34.已知二次函数f(x)=x 2+bx +c(b ∈R,c ∈R),M,N 分别是函数f(x)在区间[−1,1]上的最大值和最小值,则M −N 的最小值 A . 2 B . 1 C . 12 D . 1435.定义在R 上的奇函数f(x),当x≥0时,f(x)则关于x 的函数g(x)=f(x)+a(0<a<2)的所有零点之和为( ) A . 10 B . 1-2aC . 0D . 21-2a36.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( ) A . 3,12e ⎡⎫-⎪⎢⎣⎭ B . 33,24e ⎡⎫-⎪⎢⎣⎭C . 33,24e ⎡⎫⎪⎢⎣⎭D . 3,12e ⎡⎫⎪⎢⎣⎭37.若*n N ∈时,不等式()6ln 0n nx x ⎛⎫-≥⎪⎝⎭恒成立,则实数x 的取值范围是( ) A . []1,6 B . []2,3 C . []1,3 D . []2,638.已知函数f (x )=(2x −2−x )∙x 3,若实数a 满足f (log 2a )+f (log 0.5a )≤2f (1),则实数a 的取值范围为A . (−∞,12)∪(2,+∞) B . (12,2)C . [12,2]D . (−∞,12]∪[2,+∞)39.已知函数f(x)=x 2e 2x +m|x|e x +1(m ∈R)有四个零点,则m 的取值范围为( ) A . (−∞,−e −1e ) B . (−∞,e +1e ) C . (−e −1e ,−2) D . (−∞,−1e )40.定义运算,,{,,b a b a b a a b <⊗=≥设函数,若函数()()g x f x ax =-在区间()0,4上有三个零点,则实数a 的取值范围是( )A .B .C .D . 41.已知函数()222,0{ ,0x x x a x f x e ax e x ++<=-+-≥ 恰有两个零点,则实数a 的取值范围是( )A . ()0,1B . (),e +∞C . ()()0,1,e ⋃+∞D . ()()20,1,e ⋃+∞42.已知1x 是函数f (x )=x+1-ln (x+2)的零点, 2x 是函数g (x )=2x -2ax 4a 4++的零点,且满足|12x -x |≤1,则实数a 的最小值是 A . -1 B . -2 C .D .43()f x[]1,x π∈时()ln f x x =,若函数()()g x f x ax =-在上有唯一的零点,则实数a 的取值范围是( )A .B .C . []0,ln ππD . 44,在区间()0,1内任取两个数,p q ,且p q ≠,不等恒成立,则实数a 的取值范围为( )A . [)4,+∞B . (]1,4C . [)10,+∞D . []0,10 45.已知函数f (x )=22,{ 52,x x ax x x a+>++≤函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A . [-1,1)B . [0,2]C . [-2,2)D . [-1,2)46.已知f (x )是定义域为(0 , +∞)的单调函数,若对任意x ∈(0 , +∞)都有f (f (x )+log 13x)=4,且关于x 的方程|f (x )−3|=x 2−6x 2+9x −4+a 在区间(0 , 3]上有两个不同实数根,则实数a 的取值范围是A . (0 , 5]B . [0 , 5]C . (0 , 5)D . [5 , +∞)47,若方程()0f x kx -=有3个不同的实根,则实数k 的取值范围为()A .B .C .D . 48.函数()|2|ln f x x x =--在定义域内的零点的个数为A .0B .1C .2D .349.不等式xlnx +x 2+(a −2)x ≤2a 有且只有一个整数解,则a 的取值范围是( ) A . [−1 , +∞) B . (−∞ , −4−4ln2]∪[−1 , +∞)C . (−∞ , −3−3ln3]∪[−1 , +∞)D . (−4−4ln2 , −3−3ln3]∪[−1 , +∞)50.若关于x 的方程.则实数a 的取值范围是( ) A . ()0,1 B . (]0,1 C . ()0,+∞ D . ()1,+∞ 51.已知函数()()221,1{log 1,1x x f x x x +≤=->, ()2221g x x x m =-+-。

高中数学三角函数恒等变形公式及应用

高中数学三角函数恒等变形公式及应用

高中数学三角函数恒等变形公式及应用
恒等变形一直三角函数中的一个难点,但在高考中也并非重点,因为在高考中,三角恒等变换由于题型的原因变得相当简单。

但是三角恒等变换题型能够培养学生计算、分解、添加项等各方面的能力,所以在学习必修四中学生们应该大量练习,从练习中也能理解三角函数的真正意义。

下面给出了三角函数常见变形形式和几道典型例题。

】4.设函数f(x)=(a为实常数)在区间上的最小值为-4,
那么a的值等于_______
三角形中恒等式锦囊:
11.求证:。

分析:这是一道三角恒等的证明问题,解决这类问题的一般策略是“切割化弦”、由繁到简。

其基本思路是根据题目的特点,结合有关三角公式,作适当的恒等变形。

证法1:左边
右边证法2:右边
证法3:右
边左边证法4:右边
左边证法5:右边
左边证法6:因为
,又
所以
从而,故原式成立。

反思:对三角公式做到不仅会用,而且能变形应用,这样才达到了灵活运用公式的目的,才能从中体会到公式变形的妙处及知识间的内在联系。

原题还可作如下变形,
同学们不妨试着证一下。

变形:;;
;;;;
;。

高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。

高中数学教师资格证笔试练题:4.5函数的应用(二)(练习)

高中数学教师资格证笔试练题:4.5函数的应用(二)(练习)

4.5 函数的应用(二)一、单选题1.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在(1,1.5)内的近似解的过程中,有f (1)<0,f (1.5)>0,f (1.25)<0,则该方程的根所在的区间为( ) A .(1,1.25) B .(1.25,1.5) C .(1.5,2)D .不能确定2.函数()()()200x x f x x x ⎧≥⎪=⎨-<⎪⎩,,的零点所在的区间是( )A .()2,1--B .1,2C .0,1D .()1,1-3.若函数=0y ax b a 经过点(2,0),则函数2y bx ax 的零点是( ) A .0,2B .0,12C .0,12-D .2,12-4.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次计算,得f (0)<0,f (0.5)>0,第二次应计算f (x 1),则x 1等于( ) A .1B .-1C .0.25D .0.755.函数()33x f x x =+的零点所在区间为( )A .()1,0-B .()0,1C .()1,2D .()2,36.已知函数()2x f x e x =--有一个零点所在的区间为()()*,1k k k N +∈,则k 可能等于( ) A .0B .1C .2D .37.某地区植被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加值y (万公顷)关于年数x (年)的函数关系较为近似的是( ) A .y =0.2x B .210=xyC .y =110x 2+2x D .160.2log y x =+8.已知函数2()f x x bx c =++有1-和3两个零点,若()f x 在区间[1,2]a a -+上单调递增,则a 的取值范围是( ) A .(,1]-∞-B .(,0]-∞C .[1,)+∞D .[2,)+∞9.在一次数学实验中,某同学运用图形计算器集到如下一组数据:在四个函数模型(a ,b 为待定系数)中,最能反映x ,y 函数关系的是( ) A .y a bx =+ B .x y a b =+ C .log b y a x =+D .b y a x=+10.某化工厂对产生的废气进行过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间(单位:h )间的关系为:0kt P P e -=,其中0,P k 是正的常数.如果在前5h 消除了10%的污染物,则污染物减少50%需要花费的时间为( ) (精确到1h ,参考数据0.9log 0.5 6.579≈) A .30B .31C .32D .3311.已知{}min ,a b 表示a ,b 两个数中较小一个,则函数()211min ,2f x x x ⎧⎫=-⎨⎬⎩⎭的零点是( )A 12B 12,12-C .),1,02⎛⎫⎪⎝⎭D .1,02⎛⎫- ⎪⎝⎭,1,02⎛⎫⎪⎝⎭,(),)12.定义在R 的奇函数()f x 满足()()4f x f x +=,且当()0,2x ∈时,()()21f x x =-,则函数()f x 在区间[64]-,上的零点个数为( ) A .10 B .11 C .12 D .13二、多选题13.下列函数中,有零点但不能用二分法求零点的近似值的是( )A .y =2x +1B .y =1010x x x x -+≥⎧⎨+<⎩,,,C .y =12x 2+4x +8D .y =|x |14.若函数()f x 的图像在R 上连续不断,且满足(0)0f <,(1)0f >,(2)0f >,则下列说法错误的是( )A .()f x 在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B .()f x 在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C .()f x 在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D .()f x 在区间(0,1)上可能有零点,在区间(1,2)上一定有零点15.给定函数()221xf x x =+( ) A .()f x 的图像关于原点对称 B .()f x 的值域是[]1,1- C .()f x 在区间[)1,+∞上是增函数D .()f x 有三个零点16.已知函数()()12log 1,0,(1),0,x x f x f x x ⎧+≥⎪=⎨⎪+<⎩若函数()()g x f x x a =--有且只有两个不同的零点,则实数a 的取值可以是( ) A .-1B .0C .1D .217.某食品的保鲜时间y (单位:小时)与储存温度x (单位:O C )满足函数关系e kx b y +=( 2.718e =⋯,k 、b 为常数).若该食品在O 0C 的保鲜时间是120小时,在O 20C 的保鲜时间是30小时,则关于该食品保鲜的描述正确的结论是( ) A .0k <B .储存温度越高保鲜时间越长C .在O 10C 的保鲜时间是60小时D .在O 30C 的保鲜时间是20小时三、填空题18.若函数f (x )=x 2-ax +1在区间1(,3)2上有零点,则实数a 的取值范围是________.19.若32a =,2log 3b =,则函数21y x abx =--的所有零点之和等于______.20.若函数2()2f x x x a =--有4个零点,则实数a 的取值范围为___________.21.若函数4()32x f x a x =--的一个零点在区间()1,2内,则实数a 的取值范围是________.22.把物体放在冷空气中冷却,如果物体原来的温度是θ1o C ,空气的温度是θ0℃,那么t min 后物体的温度θ(单位:o C )可由公式()kt010e θθθθ-=+-(k 为正常数)求得.若1ln 22k =,将55o C 的物体放在15o C 的空气中冷却,则物体冷却到35o C 所需要的时间为___________min .四、解答题23.用二分法求24x x +=在[1]2,内的近似解(精确度为0.2).参考数据:24.用二分法求方程x 2-2=0的一个正实数解的近似值.(精确到0.1)25.已知函数1122()log (2)log f x x x =-+.(1)求函数()f x 的定义域; (2)求函数()f x 的零点.26.已知函数()23f x x ax =++.(1)若()f x 有一个零点为3x =,求a ;(2)若当x ∈R 时,()f x a ≥恒成立,求a 的取值范围.27.某疫苗公司生产某种型号的疫苗,2016年平均每箱疫苗的成本5000元,并以纯利润20%标定出厂价.2017年开始,公司更新设备、加强管理,逐步推行股份制,从而使生产成本逐年降低2020年平均每箱疫苗出厂价仅是2016年出厂价的80%,但却实现了纯利润50%的高效率.(1)求2020年的每箱疫苗成本;(2)以2016年的生产成本为基数,求2016年至2020年生产成本平均每年降低的百分率(精确到0.01).( 1.414= 2.236=,lg20.301=,lg30.477=).28.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:3log 10Qv a b =+(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为10 m/s. (1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于20 m/s ,求其耗氧量至少要多少个单位?参考答案1.B∵f (1.25)·f (1.5)<0,且f (x )是单调增函数,∴该方程的根所在的区间为(1.25,1.5). 2.D当0x ≥时,令0f x ,即20x =,所以0x =;当0x <时,令0f x,即x 0-=,0x =,不在定义域区间内,舍所以函数()f x 零点所在的区间为()1,1- 3.C函数=y ax b +经过点(2,0),2+=0a b ,∴=2b a , ∴222y bx axax ax ,令22=0ax ax ,则1210,2x x ==-所以函数2y bx ax 的零点是0和12-.4.C第一次计算,得f (0)<0,f (0.5)>0,可知零点在()0,0.5之间, 所以第二次计算f (x 1),则x 1=00.52+=0.25. 5.A()()31213103f --=+-=-<;()()3003010f =+=>;()()3113140f =+=>;()()32232170f =+=>;()()33333540f =+=>;所以()()100f f -<. 6.B因为(1)120f e =--<,2(2)220f e =-->,3(3)320f e =-->,4(4)420f e =-->, 所以(1)(2)0f f <,且函数的图象连续不断,所以函数()2x f x e x =--有一个零点所在的区间为(1,2),故k 可能等于1. 7.B由题意得图像上三点:(1,0.2),(2,0.4),(3,0.76),对于A 选项:y =0.2x ,将三点(1,0.2),(2,0.4),(3,0.76)代入y =0.2x , 当3x =时,函数值与0.76相差较大;对于B 选项:210=x y ,将三点(1,0.2),(2,0.4),(3,0.76)代入210=xy ,当3x =时,函数值与0.76相差仅有0.04;对于C 选项:y =110x 2+2x ,将三点(1,0.2),(2,0.4),(3,0.76)代入y =110x 2+2x , 当1,2,3x =时,函数值都与实际数值相差较大;对于D 选项:160.2log y x =+,将三点(1,0.2),(2,0.4),(3,0.76)代入160.2log y x =+, 当3x =时,函数值都与0.76相差较大;综上:沙漠增加值y (万公顷)关于年数x (年)的函数关系较为近似的是210=xy . 8.D依题意可知,20x bx c ++=有两个实根1-和3, 所以13b -+=-,13c -⨯=,解得2b =-,3c =-, 所以函数2()23f x x x =--的对称轴为1x =,因为()f x 在区间[1,2]a a -+上单调递增,所以11a -≥,得2a ≥, 所以a 的取值范围是[2,)+∞. 9.C根据数据可以知道:当自变量每增加1时,y 的增加是不相同的,所以不是线性增加,排除A ; 当自变量增加到8时,y 的增加也不是很多,所以不符合指数的增加特征,排除B ; 当x 增加时,y 是缓慢增加,并没有靠近一常数的特征,所以排除D. 10.D由题意当0t =时,0P P =,当5t =时,00(110%)0.9P P P =-=,所以5000.9kP P e -=,解得1ln 0.95k =-,所以500.9t P P =.当050%P P =时,有50000.950%0.5tP P P ==, 即50.90.5t=,解得0.95log 0.55 6.57933t ==⨯≈. 11.B 当21x x <,可解得10x -<<或01x <<, 此时()2111min ,022x x x f x ⎧⎫=-=-=⎨⎬⎩⎭,解得12x =±,满足, 当21x x ≥时,可解得1x ≤-或1≥x ,此时()221111min ,022x x f x x ⎧⎫=-=-=⎨⎬⎩⎭,解得x =综上,()f x 12,12-.12.B∵当()0,2x ∈时,()()21f x x =-,又函数()f x 为奇函数,∴ ()()f x f x -=-∴当()2,0x ∈-时,()()21f x x =-+,(0)0f =,(2)(2)f f -=-∵ ()()4f x f x +=∴函数()f x 是周期函数,且周期为4,(2)(2)f f -=, ∴ (2)(2)0f f -==∴ 函数()f x 在[2,2)-的零点有4个,即2,1,0,1--,∴函数()f x 在[6,2)--的零点有4个,又函数()f x 在[2,4]的零点有2,3,4, ∴函数()f x 在区间[64]-,上的零点个数为11个, 13.CD对于选项C ,y =12x 2+4x +8=12(x +4)2≥0,故不能用二分法求零点的近似值. 对于选项D ,y =|x |≥0,故不能用二分法求零点的近似值. 易知选项A ,B 有零点,且可用二分法求零点的近似值. 14.ABD由题知()()010f f ⋅<,所以根据函数零点存在定理可得()f x 在区间()0,1上一定有零点, 又()()120f f ⋅>,无法判断()f x 在区间()1,2上是否有零点,在区间(1,2)上可能有零点. 15.AB解:对于A :因为函数()f x 的定义域为R ,且()()()()222211x xf x f x x x --==-=-+-+,所以函数()f x 是奇函数,所以()f x 的图像关于原点对称,故A 正确; 对于B :当0x =时,()0f x =, 当0x ≠时,()21f x x x=+,又12x x +≥或12x x +≤-,所以()01f x <≤或()10f x -≤<,综上得()f x 的值域为[]1,1-,故B 正确; 对于C :因为1t x x=+在[)1,+∞单调递增,所以由B 选项解析得, ()f x 在区间[)1,+∞上是减函数,故C 不正确; 对于D :令()0f x =,即2201xx =+,解得0x =,故D 不正确, 16.BCD根据题意,作出()f x 的图像如下所示:令()0g x =,得()f x x a =+,所以要使函数()()g x f x x a =--有且只有两个不同的零点, 所以只需函数()f x 的图像与直线y x a =+有两个不同的交点, 根据图形可得实数a 的取值范围为(1,)-+∞, 17.AC18.102,3⎡⎫⎪⎢⎣⎭由题意知方程ax =x 2+1在1(,3)2上有解,即1a x x =+在1(,3)2上有解.设t =x +1x ,x ∈1(,3)2,则t 的取值范围是102,3⎡⎫⎪⎢⎣⎭,所以实数a 的取值范围是102,3⎡⎫⎪⎢⎣⎭.19.1.由32a =,可得3log 2a =,则32log 2log 31ab ==, 由函数21y x abx =--,可得22()4(1)450ab ∆=-+=-+=>, 令210x abx --=,设方程的两根分别为12,x x ,可得121x x ab +==, 即函数21y x abx =--的所有零点之和等于1. 20.01a <<令()=0f x 得22x x a -=,作出22y x x =-的函数图像,如图,因为()f x 有4个零点,所以直线y a =与22y x x =-的图像有4个交点,所以01a <<. 故答案为:01a <<21.17,22⎛⎫- ⎪⎝⎭.由条件可知函数()f x 在(1,2)上单调递增,所以(1)(2)0f f ⋅<,即(342)(922)0a a ----<,解之得1722a -<<.所以实数a 的取值范围是17,22⎛⎫- ⎪⎝⎭.故答案为:17,22⎛⎫- ⎪⎝⎭22.2将1ln 22k =,155C θ=︒,015C θ=︒,35C θ=︒代入()010e ktθθθθ-=+-得1(ln 2)23515(5515)e t -=+-,所以ln 223515(5515)e t -=+-,ln 221e2t -∴=, 所以ln 21ln ln 222t -==-, 即2min t =. 23.1.375解:令()24xf x x =+-,则()12140f =+-<,()222240f =+->,区间 区间中点值x nf (x n )的值及符号(1,2) 1 1.5x =()10.330f x =>(1,1.5)2 1.25x =()20.370f x =-<∴24x x +=在[1]2,内的近似解可取为1.375. 24.1.4可作为所求方程的一个正实数解的近似值.【分析】令f (x )=x 2-2,由于f (0)=-2<0,f (2)=2>0,可确定区间[0,2]作为计算的初始区间,用二分法逐步计算即可【详解】解:令f (x )=x 2-2,由于f (0)=-2<0,f (2)=2>0,可确定区间[0,2]作为计算的初始区间,用二分法逐步计算,列表如下:由上表的计算可知,区间[1.375,1.437 5]的长度为1.437 5-1.375=0.062 5<0.1. 故1.4可作为所求方程的一个正实数解的近似值.25.(1)(0,2);(2)1.【详解】 (1)由已知可得200x x ->⎧⎨>⎩,解得02,()x f x <<∴的定义域为(0,2). (2)()()()212log 20,2f x x x x =-+∈,, 由()0f x =得221x x -+=,即2210x x -+=,解得1x =,()f x ∴的零点是1.26.(1)4a =-;(2)[]6,2-.【详解】解:(1)因为()f x 有一零点3x =,所以23330a +⨯+=,所以4a =-.(2)因为当x ∈R 时,230x ax a ++-≥恒成立,需()2430a a ∆=--≤,即24120a a +-≤,解得62a -≤≤,所以a 的取值范围是[]6,2-.27.(1)3200元;(2)11%.【详解】解:(1)5000(120%)80%(150%)3200⨯+⨯÷+=元;(2)设2016年至2020年生产成本平均每年降低的百分率为x ,450000(1)3200x ⨯-=,1111%x ==≈. 28.(1)1010a b =-⎧⎨=⎩;(2)至少要270个单位. 【详解】(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位, 故有330log 010a b +=,即a +b =0.· 当耗氧量为90个单位时,速度为10 m/s , 故390log 1010a b +=,整理得a +2b =10. 解方程组0210a b a b +=⎧⎨+=⎩得1010a b =-⎧⎨=⎩ (2)由(1)知,33log 1010log .1010Q Q v a b =+=-+ 所以要使飞行速度不低于20m/s ,则有v ≥20, 所以31010log 2010Q -+≥, 即3log 310Q ≥,解得2710Q ≥,即Q ≥270. 所以若这种鸟类为赶路程,飞行的速度不能低于20 m/s ,则其耗氧量至少要270个单位.。

高中数学 第三章 函数的应用章末整合提升课时作业(含解析)新人教A版必修1-新人教A版高一必修1数学

高中数学 第三章 函数的应用章末整合提升课时作业(含解析)新人教A版必修1-新人教A版高一必修1数学

第三章 函数的应用章末整合提升A 级 基础巩固一、选择题1.函数f (x )=x 2-3x -4的零点是( D ) A .(1,-4) B .(4,-1) C .1,-4D .4,-1[解析] 由x 2-3x -4=0,得x 1=4,x 2=-1.2.在用二分法求函数f (x )在区间(a ,b )上的唯一零点x 0的过程中,取区间(a ,b )上的中点c =a +b2,若f (c )=0,则函数f (x )在区间(a ,b )上的唯一零点x 0( D )A .在区间(a ,c )内B .在区间(c ,b )内C .在区间(a ,c )或(c ,b )内D .等于a +b2[解析] 根据二分法求方程的近似解的方法和步骤,函数f (x )在区间(a ,b )上的唯一零点,x 0=a +b2,故选D .3.某工厂2018年生产某种产品2万件,计划从2019年开始每年比上一年增产20%,那么这家工厂生产这种产品的年产量从哪一年开始超过12万件?( C )A .2026年B .2027年C .2028年D .2029年[解析] 设经过x 年这种产品的年产量开始超过12万件,则2(1+20%)x>12,即1.2x>6,∴x >lg6lg1.2≈9.8,取x =10,故选C .4.(2019·某某某某市高一期末测试)函数f (x )=2x+x -4,则f (x )的零点所在的大致区间是( B )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)[解析]f (0)=20-4=-3<0,f (1)=2+1-4=-1<0, f (2)=22+2-4=2>0,∴f (1)·f (2)<0,故选B .5.向高为H 的水瓶中注水,若注满为止,注水量V 与水深h 的函数关系图象如图所示,那么水瓶的形状是( B )[解析] 解法一:很明显,从V 与h 的函数图象看,V 从0开始后,随h 的增大而增大且增速越来越慢,因而应是底大口小的容器,即应选B .解法二:取特殊值h =H 2,可以看出C ,D 图中的水瓶的容量恰好是V2,A 图中的水瓶的容量小于V2,不符合上述分析,排除A ,C ,D ,应选B .解法三:取模型函数为y =kx 13(k >0),立即可排除A ,C ,D ,故选B .6.用长度为24 m 的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( A )A .3 mB .4 mC .5 mD .6 m[解析] 设隔墙的长度为x m ,即矩形的宽为x m ,则矩形的长为24-4x 2m(0<x <6),∴矩形的面积S =x ·24-4x 2=x (12-2x )=-2x 2+12x =-2(x -3)2+18,∴当x =3时,S max =18.∴当隔墙的长度为3 m 时,矩形的面积最大,最大为18 m 2. 二、填空题7.设函数f (x )=⎩⎪⎨⎪⎧12x -7x <0x x ≥0,f (a )<1,则实数a 的取值X 围是__(-3,1)__.[解析] 当a <0时,(12)a -7<1,即2-a <23,∴a >-3,∴-3<a <0;当a ≥0时,a <1, ∴0≤a <1.综上可知-3<a <1.故实数a 的取值X 围是(-3,1).8.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要清洗的次数是__4__(lg2≈0.301 0).[解析] 设至少要洗x 次,则(1-34)x ≤1100,∴x ≥1lg2≈3.322,所以需4次.三、解答题9.某旅行团去风景区旅游,若每团人数不超过30人,飞机票每X 收费900元;若每团人数多于30人,则给予优惠,每多1人,机票每X 减少10元,直至每X 降为450元为止.某团乘飞机,旅行社需付给航空公司包机费15 000元.假设一个旅行团不能超过70人.(1)写出每X 飞机票的价格关于人数的函数关系式; (2)每团人数为多少时,旅行社可获得最大利润? [解析] (1)设旅行团的人数为x ,机票价格为y ,则:y =⎩⎪⎨⎪⎧9001≤x ≤30900-x -30·1030<x ≤70,即y =⎩⎪⎨⎪⎧9001≤x ≤301 200-10x 30<x ≤70.(2)设旅行社可获得利润为Q ,则Q =⎩⎪⎨⎪⎧900x -15 0001≤x ≤3012 000-10x x -15 00030<x ≤70,即Q =⎩⎪⎨⎪⎧900x -15 0001≤x ≤30-10x 2+1 200x -15 00030<x ≤70.当x ∈[1,30]时,Q max =900×30-15 000=12 000(元), 当x ∈(30,70]时,Q =-10(x -60)2+21 000, 所以当x =60时,Q max =21 000(元),所以当每团人数为60时,旅行社可获得最大利润21 000元.B 级 素养提升一、选择题1.方程4x=4-x 的根所在区间是( B )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)[解析] 由4x=4-x ,得4x+x -4=0,令f (x )=4x+x -4, ∴方程4x=4-x 的根即为函数,f (x )=4x+x -4的零点,f (-1)=4-1-1-4=-194<0,f (0)=40-4=1-4=-3<0, f (1)=4+1-4=1>0,f (2)=42+2-4=14>0, f (3)=43+3-4=63>0,∴f (0)·f (1)<0,故选B .2.一水池有两个进水口,一个出水口,每个进水口的进水速度如图甲所示,出水口的出水速度如图乙所示,某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的是( A )A .①B .①②C .①③D .①②③[解析] 由甲、乙两图可知进水速度为1,出水速度为2,结合丙图中直线的斜率,只进水不出水时,蓄水量增加速度是2,故①正确;不进水只出水时,蓄水量减少速度是2,故②不正确;两个进水一个出水时,蓄水量减少速度也是0,故③不正确.3.四人赛跑,假设他们跑过的路程f i (x )(i ∈{1,2,3,4})和时间x (x >1)的函数关系式分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( D )A .f 1(x )=x 2B .f 2(x )=4xC .f 3(x )=log 2xD .f 4(x )=2x[解析] 显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f 4(x )=2x,故选D .4.中国共产党第十八届中央委员会第五次全体会议认为,至2020年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到2020年国内生产总值和城乡居民人均收入比2010年翻一番,产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从2011年起,城乡居民人均收入每年比上一年都增长p %.下面给出了依据“至2020年城乡居民人均收入比2010年翻一番”列出的关于p 的四个关系式:①(1+p %)×10=2;②(1+p %)10=2; ③lg(1+p %)=2;④1+10×p %=2. 其中正确的是( B ) A .① B .② C .③D .④[解析] 设从2011年起,城乡居民人均收入每一年比上一年都增长p %,由题意,得(1+p %)10=2,故选B .二、填空题5.函数f (x )=x 2-3x +2a 有两个不同的零点,则a 的取值X 围是__(-∞,98)__.[解析] 令x 2-3x +2a =0,由题意得Δ=9-8a >0, ∴a <98.6.某地野生薇甘菊的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生薇甘菊的面积就会超过30 m 2;③设野生薇甘菊蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3,则有t 1+t 2=t 3; ④野生薇甘菊在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有__①②③__(请把正确说法的序号都填在横线上). [解析]∵其关系为指数函数,图象过点(4,16),∴指数函数的底数为2,故①正确; 当t =5时,S =32>30,故②正确; ∵t 1=1,t 2=log 23,t 3=log 26, ∴t 1+t 2=t 3,故③正确;根据图象的变化快慢不同知④不正确,综上可知①②③正确. 三、解答题7.已知关于x 的二次方程x 2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值X 围.[解析] 由题意知,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,可以画出示意图(如图所示),观察图象可得⎩⎪⎨⎪⎧f0=2m +1<0f-1=2>0f1=4m +2<0f2=6m +5>0,解得-56<m <-12.所以m 的取值X 围是(-56,-12).8.我们知道,燕子每年秋天都要从北方飞向南方过冬.研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算,当燕子静止时的耗氧量是多少单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?[解析] (1)由题意可知,当燕子静止时,它的速度v =0,∴5log 2Q 10=0,∴log 2Q10=0,∴Q10=1,∴Q =10.∴当燕子静止时的耗氧量是10个单位.(2)由题意可知,当一只燕子的耗氧量是80个单位时,它的飞行速度v =5log 28010=5log 28=5×3=15.∴它的飞行速度是15 m/s.9.牧场中羊群的最大畜养量为m 只,为保证羊群的生长空间,实际畜养量不能达到最大畜养量,必须留出适当的空闲量.已知羊群的年增长量y 只和实际畜养量x 只与空闲率的乘积成正比,比例系数为k (k >0).(1)写出y 关于x 的函数解析式,并指出这个函数的定义域; (2)求羊群年增长量的最大值;(3)当羊群的年增长量达到最大值时,求k 的取值X 围.[解析] (1)根据题意,由于最大畜养量为m 只,实际畜养量为x 只,则畜养率为x m,故空闲率为1-x m ,由此可得y =kx (1-x m)(0<x <m ).(2)y =kx (1-x m )=-km (x 2-mx )=-k m (x -m2)2+km4,∵0<x <m ,∴当x =m 2时,y 取得最大值km4. (3)由题意知为给羊群留有一定的生长空间,则有实际畜养量与年增长量的和小于最大畜养量,即0<x +y <m .因为当x =m 2时,y max =km 4,所以0<m 2+km4<m , 解得-2<k <2.又因为k >0,所以0<k <2.。

高中数学函数应用练习题及参考答案

高中数学函数应用练习题及参考答案

高中数学函数应用练习题及参考答案一、选择题1. 下列函数中,不是一次函数的是()。

A. f(x) = 2x + 3B. f(x) = x^2C. f(x) = 3x - 1D. f(x) = 4 + x2. 已知函数 f(x) = 2x - 1,以下说法正确的是()。

A. 当 x = 0 时,f(x) = -1B. 当 f(x) = 2 时,x = 1C. 当 f(x) = 0 时,x = 1/2D. 当 f(x) = 1 时,x = 1/23. 若函数 f(x) = ax^2 + bx + c 是一个二次函数,其中a ≠ 0,则二次函数的图像是()。

A. 横坐标轴上的一条直线B. 一条抛物线的顶点在原点C. 一条抛物线开口向上D. 一条抛物线开口向下4. 已知函数 f(x) = x^2 + 2x - 3,求函数图像与 x 轴的交点个数为()。

A. 0B. 1C. 2D. 35. 如果 f(x) = 2x - 1,且 g(x) = 3x + 2,则函数复合 f(g(x)) 的解析式为()。

A. 6x + 1B. 6x + 5C. 5x + 6D. 5x - 6二、填空题1. 函数 f(x) = 3x^2 + 2x - 1 的对称轴为 _________。

2. 函数 f(x) = 4x^2 - 5x + 2 的顶点坐标为 _________。

3. 若函数 f(x) = ax^2 + bx + c 的图像与 x 轴有两个交点,则判别式Δ = _________。

4. 函数 f(x) = |x - 2| 的图像在 x 轴上的截距为 _________。

5. 函数 f(x) = log2(x - 1) 是定义域为 _________ 的对数函数。

三、计算题1. 已知函数 f(x) = 2x + 3,求 f(4) 的值。

2. 已知函数 f(x) = 3x^2 - 2x + 1,求解 f(x) = 0 的根。

高中数学 第三章 函数概念与性质 3.4 函数的应用(一)精品练习(含解析)新人教A版必修第一册-新

高中数学 第三章 函数概念与性质 3.4 函数的应用(一)精品练习(含解析)新人教A版必修第一册-新

3.4 函数的应用(一)必备知识基础练知识点一用一次函数模型解决实际问题1.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x 的函数关系式为( )A.y=0.2x(0≤x≤4 000)B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000)D.y=0.1x+1 200(0≤x≤4 000)2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A.310元 B.300元C.390元 D.280元知识点二用二次函数模型解决实际问题3.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x 和L2=2x(其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( ) A.90万元 B.60万元C.120万元 D.120.25万元4.用长度为24 m的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为______m.知识点三用幂函数、分段函数模型解决实际问题5.一辆汽车在某段路程中的行驶速度v与时间t的关系图象如图所示,则当t=2时,汽车已行驶的路程为( )A .100 kmB .125 kmC .150 kmD .225 km6.某药厂研制出一种新型药剂,投放市场后其广告投入x (万元)与药品利润y (万元)存在的关系为y =x α(α为常数),其中x 不超过5万元,已知去年投入广告费用为3万元时,药品利润为27万元,若今年广告费用投入5万元,预计今年药品利润为________万元.关键能力综合练 一、选择题1.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加1辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.要使租赁公司的月收益最大,则每辆车的月租金应定为( )A .4 050元B .4 000元C .4 100元D .4 150元2.某厂生产中所需一些配件可以外购,也可以自己生产.如果外购,每个配件的价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点(即生产多少件以上自产合算)是( )A .1 000件B .1 200件C .1 400件D .1 600件3.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与费s (元)的函数关系如图所示,当通话150分钟时,这两种方式费相差( )A .10元B .20元C .30元 D.403元4.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m (件)与售价x (元)满足一次函数:m =162-3x ,若要每天获得最大的销售利润,每件商品的售价应定为( )A .30元B .42元C .54元D .越高越好5.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧4x ,1≤x ≤10,x ∈N ,2x +10,10<x <100,x ∈N ,1.5x ,x ≥100,x ∈N ,其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为( )A .15B .40C .25D .1306.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0时到6时,该水池的蓄水量如图丙所示.给出以下3个论断: ①0点到3点只进水不出水; ②3点到4点不进水只出水; ③4点到6点不进水不出水. 则一定正确的是( ) A .① B.①② C .①③ D.①②③ 二、填空题7.稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4 000元,定额减除费用800元;每次收入在4 000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4 000元的:应纳税额=(每次收入额-800)×20%×(1-30%); (2)每次收入在4 000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%). 已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为________元. 8.某市出租车收费标准如下:起步价为8元,起步里程为3千米(不超过3千米按起步价付费);超过3千米但不超过8千米时,超过部分按每千米2.15元收费;超过8千米时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.若某人乘坐出租车行驶了5.6千米,则需付车费________元,若某人乘坐一次出租车付费22.6元,则此出租车行驶了________千米.9.(探究题)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是______(单位:元).三、解答题10.某种商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为:P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30.(t ∈N *)设该商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大是第几天?学科素养升级练1.(多选题)生活经验告诉我们,当把水注进容器(设单位时间内进水量相同),水的高度会随着时间的变化而变化,则下列选项中容器与图象匹配正确的是( )A .(A)—(3)B .(B)—(1)C .(C)—(4)D .(D)—(2)2.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +110x 2,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-303.(学科素养—数据分析)医院通过撒某种药物对病房进行消毒.已知开始撒放这种药物时,浓度激增,中间有一段时间,药物的浓度保持在一个理想状态,随后药物浓度开始下降.若撒放药物后3小时内的浓度变化可用下面的函数表示,其中x 表示时间(单位:小时),f (x )表示药物的浓度:f (x )=⎩⎪⎨⎪⎧-x 2+4x +400<x ≤1,431<x ≤2,-3x +482<x ≤3.(1)撒放药物多少小时后,药物的浓度最高?能维持多长时间?(2)若需要药物浓度在41.75以上消毒1.5小时,那么在撒放药物后,能否达到消毒要求?并简要说明理由.3.4 函数的应用(一)必备知识基础练1.解析:由题意得y =0.3(4 000-x )+0.2x =-0.1x +1 200.(0≤x ≤4 000) 答案:C2.解析:由图象知,该一次函数过(1,800),(2,1 300),可求得解析式y =500x +300(x ≥0),当x =0时,y =300.答案:B3.解析:设公司在甲地销售x 台,则在乙地销售(15-x )台,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎪⎫x -1922+30+1924,∴当x =9或10时,L 最大为120万元.答案:C4.解析:设隔墙的长为x m ,矩形面积为S m 2,则S =x ·24-4x 2=x (12-2x )=-2x 2+12x =-2(x -3)2+18,0<x <6,所以当x =3时,S 有最大值为18. 答案:35.解析:t =2时,汽车行驶的路为s =50×0.5+75×1+100×0.5=25+75+50=150(km).答案:C6.解析:由已知投入广告费用为3万元时,药品利润为27万元,代入y =x α中,即3α=27,解得α=3,故函数解析式为y =x 3,所以当x =5时,y =125.答案:125关键能力综合练1.解析:设每辆车的月租金为x (x >3 000)元, 则租赁公司月收益为y =⎝⎛⎭⎪⎫100-x -3 00050(x -150)-x -3 00050×50, 整理得y =-x 250+162x -21 000=-150(x -4 050)2+307 050.∴当x =4 050时,y 取最大值为307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大为307 050元. 答案:A2.解析:设生产x 件时自产合算,由题意得1.1x ≥800+0.6x ,解得x ≥1600,故选D. 答案:D3.解析:设A 种方式对应的函数解析式为s =k 1t +20.B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15.t =150时,150k 2-150k 1-20=150×15-20=10.∴A 正确. 答案:A4.解析:设当每件商品的售价为x 元时,每天获得的销售利润为y 元. 由题意得,y =m (x -30)=(x -30)(162-3x )(30≤x ≤54). 上式配方得y =-3(x -42)2+432. 所以当x =42时,利润最大. 答案:B5.解析:若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用25人.答案:C6.解析:由甲乙两图知,出水的速度是进水的2倍,所以0点到3点只进水不出水,3点到4点水量减少,则一个进水口进水,另一个关闭,出水口出水;4点到6点水量不变,可能是不进水不出水或两个进水口进水,一个出水口出水,所以只有①正确,故选A.答案:A7.解析:当此人收入为4 000元时(扣税前),应纳税(4 000-800)×20%×(1-30%)=448>280,可知此人收入不超过4000元(扣税前),则设此人应得稿费为x 元(扣税前),则(x -800)×20%×(1-30%)=280,解得x =2 800.故正确答案为2 800. 答案:2 8008.解析:设出租车行驶x 千米时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15x -3+1,3<x ≤8,8+2.15×5+2.85x -8+1,x >8,当x =5.6时,y =8+2.15×2.6+1=14.59(元). 由y =22.6,知x >8,由8+2.15×5+2.85(x -8)+1=22.6,解得x =9. 答案:14.59 99.解析:设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎪⎫2x +2×4x =80+20⎝ ⎛⎭⎪⎫x +4x ≥80+20×2x ·4x=160⎝ ⎛⎭⎪⎫当且仅当x =4x,即x =2时取等号.所以该容器的最低总造价为160元. 答案:16010.解析:设日销售金额为y (元),则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800,0<t <25,t 2-140t +4 000,25≤t ≤30.(t ∈N *)①当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900(元).②当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125(元). 结合①②得y max =1 125(元).因此,这种商品日销售额的最大值为1 125元,且在第25天时日销售金额达到最大.学科素养升级练1.解析:(A)容器下粗上细最上方为柱形,水高变化为逐渐变快再匀速,故(A)应匹配(4),(B)容器下方为球形上方为柱形,水高变化为先逐渐变慢再逐渐变快再匀速,故(B)应匹配(1);(C),(D)容器都是柱形的,水高变化的速度都应是不变的,但(C)容器细,(D)容器粗,故(C)容器水高变化快,(D)容器慢.(C)应匹配(3),(D)应匹配(2),故正确匹配的是BD.答案:BD2.解析:设生产x 吨产品全部卖出,获利润为y 元, 则y =xQ -P =x ⎝ ⎛⎭⎪⎫a +x b -⎝ ⎛⎭⎪⎫1 000+5x +110x 2=⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.所以⎩⎨⎧-a -52⎝ ⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎪⎨⎪⎧a =45,b =-30.答案:A3.解析:(1)当0<x ≤1时,f (x )=-x 2+4x +40=-(x -2)2+44,∴f (x )在(0,1]上是增函数,其最大值为f (1)=43;f (x )在(2,3]上单调递减,故当2<x ≤3时, f (x )<-3×2+48=42.因此,撒放药物1小时后,药物的浓度最高为43,并维持1小时.(2)当0<x ≤1时,令f (x )=41.75,即-(x -2)2+44=41.75,解得x =3.5(舍去)或x =0.5;当2<x ≤3时,令f (x )=41.75,即-3x +48=41.75,解得x ≈2.08. 因此药物浓度在41.75以上的时间为2.08-0.5=1.58小时>1.5小时, ∴撒放药物后,能够达到消毒要求.。

河南数学中考题型汇总二次函数的实际应用题型练习含答案

河南数学中考题型汇总二次函数的实际应用题型练习含答案

河南数学中考题型汇总二次函数的实际应用题型练习含答案类型 1 抛物线形问题1.[2022甘肃兰州]掷实心球是兰州市高中阶段学校招生体育考试的选考项目.一名女生投掷实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图所示,掷出时起点处高度为5m,当水平距离为3 m时,3实心球行进至最高点(距地面3 m处).(1)求y关于x的函数解析式.(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于或等于6.70 m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.2.[2022开封二模]如图(1)是古典凝重的开封北门,也叫安远门.其主门洞的截面如图(2),上部分可看作是抛物线形,下部分可看作是矩形,边AB为16米,BC为6米,最高处点E到地面AB的距离为8米.(1)请在图(2)中建立适当的平面直角坐标系,并求出抛物线的解析式.(2)若该主门洞内设双向行驶车道,正中间有0.6米宽的双黄线,车辆必须在双黄线两侧行驶,不能压双黄线,并保持车辆最高点与门洞正上方有不少于0.6米的空隙(安全距离).一辆大型货运汽车装载某大型设备后,宽3.7米,高6.6米,试判断它能否安全通过该主门洞,并说明理由.图(1)图(2)3.[2022江苏扬州中考改编]如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8 dm,外轮廓线是抛物线的一部分,对称轴为y 轴,高度OC=8 dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长.4.如图(1)是一个高脚杯的截面图,杯体CPD呈抛物线形(杯体厚度不计),点P是抛物线的顶点,点O是杯底AB的中点,且OP⊥AB,OP=CD=6 cm,杯子的高度(即CD,AB之间的距离)为15 cm.以O为原点,AB所在直线为x轴,OP所在直线为y轴建立平面直角坐标系(1个单位长度表示1 cm).(1)求杯体CPD所在抛物线的解析式.(2)将杯子向右平移2 cm,并倒满饮料,杯体CPD与y轴交于点E,如图(2),过D点放一根吸管,吸管底部碰触到杯壁后不再移动,喝过一次饮料后,发现剩余饮料的液面低于点E,设吸管所在直线的解析式为y=kx+b,求k的取值范围.图(1)图(2)5.某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A 在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函(x-5)2+6.数表达式为y=-16(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10 m,EF=1.8 m,EF⊥OD.问:顶部F 是否会碰到水柱?请通过计算说明.6.[2022浙江台州中考改编]如图(1),灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地面的竖直高度为1.5 m.如图(2),可以把灌溉车喷出的水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象.把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3 m,竖直高度EF=0.5 m.下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2 m,高出喷水口0.5 m,灌溉车到l的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求灌溉车喷出的水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.图(1)图(2)7.[2022安徽]如图(1),隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式.(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图(2)、图(3)中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(i)修建一个“”型栅栏,如图(2),点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值.(ii)现修建一个总长为18米的栅栏,有如图(3)所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).图(1)图(2)图(3)(方案一)图(3)(方案二)类型 2 面积问题8.[2022湖南湘潭]为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12 m)和21 m长的篱笆墙,围成Ⅰ,Ⅱ两块矩形劳动实践基地(即矩形ADGH,矩形BCGH).某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题.(1)方案一:如图(1),全部利用围墙的长度(即AB=12 m),但要在Ⅰ区中留一个宽度AE=1 m的矩形水池,且需保证总种植面积为32 m2,试分别确定CG,DG的长.(2)方案二:如图(2),要使围成的两块矩形总种植面积最大,请问BC应设计为多长.此时最大面积为多少?9.某校计划花费1 200元建造一个长方形牡丹花圃,如图,其中一边靠墙(墙长24 m),另外三边选用不同材料建造.已知平行于墙的边的费用为20元/m,垂直于墙的边的费用为15元/m,设平行于墙的边长x m.(1)设垂直于墙的一边长y m,直接写出y与x之间的函数关系式.(2)设花圃的面积为S m2,求S与x的函数关系式,并求出当S=546时x的值.(3)小明计算出花圃的最大面积是600 m2,小明计算的结果对吗?请说明理由.类型 3 利润问题10.[2022山东滨州]某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元/件)的一次函数.(1)求y关于x的函数解析式.(2)当销售价格定为多少元/件时,每月获得的利润最大?并求此最大利润.11.[2022湖北仙桃]某超市销售一种进价为18 元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售价格x(元/千克)有如下表所示的关系:销售价格x/…2022.52537.540…(元/千克)销售量y/千克…3027.52512.510…(1)根据表中的数据在下图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数解析式.(2)设该超市每天销售这种商品的利润为w(元)(不计其他成本),①求出w关于x的函数解析式,并求出获得最大利润时,销售价格为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w=240(元)时的销售价格.类型 4 其他问题12.[2022湖北武汉]如图,在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70 cm处.小聪测量黑球减速后的运动速度v (单位:cm/s)、运动距离y (单位:cm)随运动时间t (单位:s)变化的数据,整理得下表.运动时间t/s 01234运动速度v/(cm/s) 10 9.5 9 8.5 8运动距离y/cm0 9.75 19 27.75 36小聪探究发现,黑球的运动速度v 与运动时间t 之间成一次函数关系,运动距离y 与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64 cm 时,求它此时的运动速度;(3)若白球一直以2 cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球,请说明理由.答案:题型十三 二次函数的实际应用1.(1)设y 关于x 的函数解析式为y=a (x-3)2+3,把(0,53)代入,得53=a (0-3)2+3, 解得a=-427,故y 关于x 的函数解析式为y=-427(x-3)2+3.(2)该女生在此项考试中是得满分.理由:令y=0,则-427(x-3)2+3=0,解得x 1=7.5,x 2=-1.5(舍去).∵7.5>6.70,∴该女生在此项考试中是得满分.2.(1)建立如图所示的平面直角坐标系(建立坐标系的方法不唯一).由题意知E(0,8),故可设抛物线的解析式为y=ax2+8.∵矩形ABCD的边BC=6 m,AB=16 m,∴C(8,6).把C(8,6)代入y=ax2+8,得64a+8=6,解得a=-1,32故抛物线的解析式为y=-1x2+8.32(2)可以安全通过该主门洞.理由:0.6÷2+3.7=4,当x=4时,y=-1×42+8=7.5.32∵7.5-0.6=6.9>6.6,16÷2=8>4,∴可以安全通过该主门洞.3.(1)由题意,得A(-4,0),B(4,0),C(0,8).可设抛物线的解析式为y=ax2+8,,把B(4,0)代入,得0=16a+8,∴a=-12x2+8.∴抛物线的解析式为y=-12易知当正方形的面积最大时,它有两个顶点在抛物线上,设此正方形为正方形EFGH,如图(1),则GH=FG=2OG.设H(t,-1t2+8)(t>0),2t2+8=2t,∴-12解得t1=-2+2√5,t2=-2-2√5(舍去),∴正方形EFGH的面积=FG2=(2t)2=4t2=4(-2+2√5)2=(96-32√5)(dm2).图(1)(2)易知当矩形的周长最大时,它有两个顶点在抛物线上. 如图(2),设矩形EFGH 的顶点H (k ,-12k 2+8)(k>0),图(2)则矩形EFGH 的周长=2FG+2HG=4k+2×(-12k 2+8)=-k 2+4k+16=-(k-2)2+20, ∴当k=2时,矩形EFGH 的周长最大,最大值是20 dm. 4.(1)由题意可知,P (0,6),D (3,15).设杯体CPD 所在抛物线的解析式为y=ax 2+6, 将D (3,15)代入,得15=9a+6, 解得a=1,故杯体CPD 所在抛物线的解析式为y=x 2+6.(2)杯子平移后,杯体CPD 所在抛物线的对称轴为直线x=2,抛物线的解析式为y=(x-2)2+6, ∴当x=0时,y=10, ∴E (0,10).易得D (5,15),点E 关于直线x=2的对称点E'的坐标为(4,10). 将D (5,15),E (0,10)代入y=kx+b ,得{5k +b =15,b =10,解得{k =1,b =10.将D (5,15),E'(4,10)代入y=kx+b ,得{5k +b =15,4k +b =10,解得{k =5,b =−10.分析可知,k 的取值范围为1<k<5. 5.(1)由题意得,A 点在图象上.当x=0时,y=-16×(0-5)2+6=-256+6=116, ∴OA=116m .(2)由题意得,D 点在图象上.令y=0,得-16(x-5)2+6=0, 解得x 1=11,x 2=-1,∴OD=11 m ,∴CD=2OD=22 m .(3)顶部F 不会碰到水柱.说明:当x=10时,y=-16×(10-5)2+6=-256+6=116>1.8, ∴顶部F 不会碰到水柱.6.(1)由题意得A (2,2)是上边缘抛物线的顶点, 故设上边缘抛物线的函数解析式为y=a (x-2)2+2.∵抛物线经过点(0,1.5), ∴1.5=4a+2, ∴a=-18, ∴上边缘抛物线的函数解析式为y=-18(x-2)2+2. 令-18(x-2)2+2=0, 解得x 1=6,x 2=-2,∴灌溉车喷出的水的最大射程OC 为6 m . (2)易知上边缘抛物线的对称轴为直线x=2.∵点(0,1.5)关于直线x=2的对称点的坐标为(4,1.5),∴下边缘抛物线是由上边缘抛物线向左平移4 m 得到的,即点B 是由点C 向左平移4 m 得到的,∴点B 的坐标为(2,0).(3)∵EF=0.5,∴点F 的纵坐标为0.5.令-18(x-2)2+2=0.5,解得x=2±2√3, ∴当上边缘抛物线恰好经过点F 时,点F 的横坐标为2+2√3.易知当下边缘抛物线经过点D 时,d=2,当上边缘抛物线经过点F时,d=2+2√3-3=2√3-1,故要使灌溉车行驶时喷出的水能浇灌到整个绿化带,d 的取值范围是2≤d ≤2√3-1.7.(1)由题意可知A (-6,2).设此抛物线对应的函数表达式为y=ax 2+c ,将A (-6,2),E (0,8)分别代入,得{36a +c =2,c =8,解得{a =−16,c =8,故此抛物线对应的函数表达式为y=-16x 2+8. (2)(i )由题意得P 1(m ,0),将x=m 代入y=-16x 2+8,得y=-16m 2+8, ∴P 2(m ,-16m 2+8), ∴P 3(-m ,-16m 2+8),P 4(-m ,0), ∴P 2P 3=2m ,MN=P 3P 4=P 1P 2=-16m 2+8, ∴l=3(-16m 2+8)+2m=-12m 2+2m+24=-12(m-2)2+26. ∵-12<0,0<m ≤6, ∴当m=2时,l 的值最大,最大值为26.综上,栅栏总长l 与m 之间的函数表达式为l=-12m 2+2m+24,l 的最大值为26. (ii )方案一:设P 1P 2=MN=P 3P 4=t (0<t<6),则P 2P 3=18-3t ,∴S 矩形P 1P 2P 3P 4=t (18-3t )=-3(t-3)2+27.∵-3<0,∴当t=3时,S 矩形P 1P 2P 3P 4的值最大,最大值为27,将y=3代入y=-16x 2+8, 解得x 1=√30,x 2=-√30,∴P 4横坐标的最小值为-√30,P 1横坐标的最大值为√30.当t=3时,P 1P 4=P 2P 3=18-9=9,∴P 1横坐标的最小值为9-√30,∴P 1横坐标的取值范围为9-√30≤x P 1≤√30.方案二:设MN=P 2P 3=n (0<n<9),则P 3P 4=P 1P 2=9-n ,∴S 矩形P 1P 2P 3P 4=n (9-n )=-(n-92)2+814. ∵-1<0,∴当n=92时,S 矩形P 1P 2P 3P 4的值最大,最大值为814, 此时P 3P 4=P 1P 2=92. 把y=92代入y=-16x 2+8,解得x 1=-√21,x 2=√21, ∴P 4横坐标的最小值为-√21,P 1横坐标的最大值为√21.当n=92时,P 1P 4=P 2P 3=92, ∴P 1横坐标的最小值为92-√21, ∴P 1横坐标的取值范围是92-√21≤x P 1≤√21. (两种方案写一种即可)8. (1)易知CD=AB=12,∴AD=GH=BC=(21-12)÷3=3.设CG 长为a ,则DG=AH=12-a ,由题意得,AD ×DC-AE ×AH=32,即12×3-1×(12-a )=32,解得a=8,∴12-a=4.答:CG 的长为8 m ,DG 的长为4 m .(2)设两块矩形总种植面积为y ,BC 长为x ,则AD=HG=BC=x ,DC=21-3x ,由题意得,y=BC ×DC=x (21-3x )=-3x 2+21x=-3(x-72)2+1474. ∵0<21-3x ≤12,∴3≤x<7.又∵-3<0,∴当x=72时,y 取得最大值,y 最大=1474. 答:BC 应设计为72 m ,此时最大面积为1474m 2.9.(1)y=-23x+40. (2)根据题意得,S=x (-23x+40)=-23x 2+40x , 当S=546时,-23x 2+40x=546, 解得x 1=21,x 2=39.∵x ≤24,∴当S=546时,x=21.(3)小明计算的结果不对.理由:S=-23x 2+40x=-23(x-30)2+600. ∵-23<0,x ≤24, ∴当x=24时,S 最大,此时S=576<600,∴小明计算的结果不对.10.(1)设y=kx+b (k ≠0),将(20,360),(30,60)分别代入,得{20k +b =360,30k +b =60,解得{k =−30,b =960,故y=-30x+960.(2)设每月获得的利润为P 元,则P=(-30x+960)(x-10)=-30(x-21)2+3 630.∵-30<0,∴当x=21时,P 最大,最大值为3 630.答:当销售价格定为21元/件时,每月获得的利润最大,最大利润为3 630元. 11.(1)如图.设y=kx+b ,把(20,30)和(25,25)代入,得{20k +b =30,25k +b =25,解得{k =−1,b =50,∴y=-x+50.(2)①w=(x-18)(-x+50)=-x 2+68x-900=-(x-34)2+256,∵-1<0,∴当x=34时,w 有最大值,即超市每天销售这种商品获得最大利润时,销售价格为34元/千克.②当w=240时,-(x-34)2+256=240,解得x 1=38,x 2=30,答:超市本着“尽量让顾客享受实惠”的销售原则,w=240(元)时的销售价格为30元/千克.12.(1)v=-12t+10,y=-14t 2+10t. (2)依题意,得-14t 2+10t=64, ∴t 2-40t+256=0,解得t 1=8,t 2=32.当t=8时,v=6;当t=32时,v=-6(舍去).答:黑球减速后运动距离为64 cm 时的速度为6 cm/s.(3)不会.理由:设黑、白两球的距离为w cm .依题意,得w=70+2t-y=14t 2-8t+70=14(t-16)2+6. ∵14>0,∴当t=16时,w 的值最小,为6, ∴黑、白两球的最小距离为6 cm ,故黑球在运动过程中不会碰到白球.另解1:当w=0时,14t 2-8t+70=0,判定方程无解. 另解2:当黑球的速度减小到2 cm/s 时,如果黑球没有碰到白球,此后,速度低于白球速度,就不会碰到白球.先确定黑球速度为2 cm/s 时,其运动时间为16 s ,再判断黑、白两球的运动距离之差小于70 cm.。

2019版数学人教A版必修1训练:3.2.2 函数模型的应用实例 Word版含解析

2019版数学人教A版必修1训练:3.2.2 函数模型的应用实例 Word版含解析

3.2.2函数模型的应用实例课时过关·能力提升基础巩固1.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()AC解析:设第一年年初生产总值为1,则这两年的生产总值为(p+1)(q+1).设这两年生产总值的年平均增长率为x,则(1+x)2=(p+1)(q+1),解得x故选D.答案:D2.在一次数学实验中,采集到如下一组数据:x-2.0-1.001.02.03.0则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()A.y=a+bxB.y=b xC.y=ax2+bD.y解析:画出散点图如图所示:由散点图可知选项B正确.答案:B3.2017年年底某偏远地区农民人均年收入为3 000元,随着我国经济的不断发展,预计该地区今后农民的人均年收入的年平均增长率为6%,则2024年年底该地区的农民人均年收入为()A.3 000×1.06×7元B.3 000×1.067元C.3 000×1.06×8元D.3 000×1.068元解析:设经过x年,该地区农民人均年收入为y元,则依题意有y=3 000×(1+6%)x=3 000×1.06x,因为2017年年底到2024年年底经过了7年,故x=7,所以y=3 000×1.067.答案:B4.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物.已知该动物的繁殖数量y(单位:只)与引入时间x(单位:年)的关系为y=a log2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A.300只B.400只C.600只D.700只解析:∵当x=1时,y=100,∴a=100.∴y=100log2(x+1),∴当x=7时,y=100log28=300.答案:A5.商店某种货物的进价下降了8%,但销售价不变,于是货物的销售利润率销售价-进价进价由原来的增加到则的值等于A.12B.15C.25D.50解析:设原销售价为a,原进价为x,可以列出方程组----解这个方程组,消去a,x,可得r=15.答案:B6.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖2小时后的即时价格为3元;g(2)=3表示2小时内的平均价格为3元,下面给出了四个图象,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是()解析:根据即时价格与平均价格的相互依赖关系,可知,当即时价格升高时,对应平均价格也升高;反之,当即时价格降低时,对应平均价格也降低,故选项C中的图象可能正确.答案:C7.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60.若t=0为中午12时,中午12时之前,t取值为负,中午12时之后,t取值为正,则上午8时的温度是.解析:上午8时,即t=-4,则T(-4)=(-4)3-3×(-4)+60=8(℃).答案:8 ℃8.某人从A地出发,开汽车以60 km/h的速度,经2 h到达B地,在B地停留1 h,则汽车离开A地的距离y(单位:km)是时间t(单位:h)的函数,该函数的解析式是.答案:y9.有A,B两个水桶,桶A中开始有a L水,桶A中的水不断流入桶B,若经过t min后,桶A中剩余的水符合指数衰减曲线y1=a e-nt,则桶B中的水就是y2=a-a e-nt(n为常数).假设5 min时,桶A和桶B中的水相等,则再过 min,桶A中的水只有解析:因为5 min时,桶A和桶B中的水相等,所以a·e-5n=a-a·e-5n,所以e-5n令a·e-nt则e-nt故有t=15.所以再过10 min,桶A中的水只有L.答案:1010.某工厂生产某种产品的固定成本为2 000万元,并且每生产1个单位产品,成本增加10万元.又知总收入k是单位产品数Q的函数k(Q)=40Q求总利润的最大值解:总利润L(Q)=40Q000)=500,故当Q=300时,总利润L(Q)有最大值,最大值为2 500万元.能力提升1.某厂日产手套总成本y(单位:元)与手套日产量x(单位:副)的解析式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套量至少为()A.200副B.400副C.600副D.800副解析:由10x-y=10x-(5x+4 000)≥0,得x≥800.答案:D2.一天,亮亮发烧了,早晨6时他烧得很厉害,吃过药后感觉好多了,中午12时亮亮的体温基本正常,但是从12时到下午18时他的体温又不断上升,直到半夜24时亮亮才感觉身上不那么发烫了.下列各图能基本上反映出亮亮这一天(0~24时)体温的变化情况的是()解析:从0时到6时,体温上升,图象是上升的,排除选项A;从6时到12时,体温下降,图象是下降的,排除选项B;从12时到18时,体温上升,图象是上升的,排除选项D.答案:C3.★某城市出租汽车的收费标准是:起步价为6元,行程不超过2千米均按此价收费;行程超过2千米,超过部分按3元/千米收费(不足1千米按1千米计价);另外,遇到堵车或等候时,汽车虽没有行驶,但仍按6分钟折算1千米计算(不足1千米按1千米计价).已知陈先生坐了一趟这种出租车,车费24元,车上仪表显示等候时间为11分30秒,则陈先生此趟行程的取值范围是()A.[5,6)B.(5,6]C.[6,7)D.(6,7]解析:若按x(x∈Z)千米计价,则6+(x-2)×3+2×3=24,得x=6.故实际行程应属于区间(5,6].答案:B4.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是元.解析:设进货价为x元,则132×0.9-x=10%x,解得x=108.答案:1085.一名驾驶员喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少.为了保障交通安全,规定驾驶员血液中的酒精含量不得超过0.09 mg/mL,则这名驾驶员至少要经过小时才能开车.(精确到1小时,参考数据lg 2≈0.30,lg3≈0.48)解析:设经过n小时后才能开车,此时酒精含量为0.3(1-0.25)n.根据题意,有0.3(1-0.25)n≤0.09,即(1 -0.25)n≤0.3,在不等式两边取常用对数,则有n lg3-2lg 2)≤lg 0.3=lg 3-1,将已知数据代入,得n(0.48-0.6)≤0.48-1,解得n≥故至少经过5小时才能开车.答案:56.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中室内每立方米空气中的含药量y(单位:mg)与时间t(单位:h)成正比.药物释放完毕后,y与t的函数解析式为y -为常数如图根据图中提供的信息回答下列问题(1)从药物释放开始,每立方米空气中的含药量y(单位:mg)与时间t(单位:h)之间的函数解析式为;(2)据测定,当空气中每立方米的含药量降低到0.25 mg以下时,学生方可进教室,从药物释放开始,至少需要经过 h后,学生才能回到教室.解析:(1)由题图可设y=kt(0≤t≤0.1),把点(0.1,1)分别代入y=kt和y-解得k=10,a=0.1,故所求函数解析式为y-(2)由-解得t>0.6.答案:(1)y-7.某市原来民用电价为0.52元/(kW·h).换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/(kW·h),谷时段(晚上九点到次日早上八点)的电价为0.35元/(kW·h).对于一个平均每月用电量为200 kW·h的家庭,要使节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为多少?解:原来每月电费为0.52×200=104(元).设峰时段用电量为x kW·h,电费为y元,谷时段用电量为(200-x)kW·h,则y=0.55x+0.35(200-x)≤(1-10%)×104,即0.55x+70-0.35x≤93.6,则0.2x≤23.6,故x≤118,即这个家庭每月在峰时段的平均用电量至多为118 kW·h.8.★沿海地区某村在2018年底共有人口1 480人,全年工农业生产总值为3 180万,从2019年起计划10年内该村的总产值每年增加60万元,人口每年净增a人,设从2019年起的第x年(2019年为第一年)该村人均产值为y万元.(1)写出y与x之间的函数解析式;(2)为使该村的人均产值10年内每年都有增长,则该村每年人口的净增不能超过多少人? 解:(1)依题意得第x年该村的工农业生产总值为(3 180+60x)万元,而该村第x年的人口总数为(1 480+ax)人,故y≤x≤10,x∈N*).(2)y -为使该村的人均产值10年内每年都有增长,则当1≤x≤10时,y=f(x)为增函数,则有53∴a≈27.9.又a∈N*,∴a的最大值是27,即该村每年人口的净增不能超过27人.。

新教材高中数学第五章函数应用 实际问题的函数刻画用函数模型解决实际问题素养作业北师大版必修第一册

新教材高中数学第五章函数应用 实际问题的函数刻画用函数模型解决实际问题素养作业北师大版必修第一册

第五章 §2 2.1A 组·素养自测一、选择题1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960卖出,这两台取暖器卖出后,该商场( C )A .不赚不亏B .赚了80元C .亏了80元D .赚了160元[解析] 设第1台原价x 1,第2台原价x 2,则x 1·(1+20%)=960得x 1=800,x 2·(1-20%)=960,得x 2=1200,960×2-(800+1200)=-80. ∴选C .2.用长度为24m 的材料围成一矩形场地,如果在中间加两道隔墙,要使矩形面积最大,则隔墙的长度应为( A )A .3mB .4mC .6mD .12m[解析] 设矩形的长为x ,则宽为14(24-2x ),则矩形的面积为S =14(24-2x )x =-12(x2-12x )=-12(x -6)2+18,所以当x =6时,矩形的面积最大,此时隔墙的长度应为3m.3.某生产厂家的生产总成本y (万元)与产量x (件)之间的关系式为y =x 2-80x ,若每件产品的售价为25万元,则该厂获得最大利润时,生产的产品件数为( D )A .52B .52.5C .53D .52或53[解析] 因为利润=收入-成本,当产量为x 件时(x ∈N ),利润f (x )=25x -(x 2-80x ),所以f (x )=105x -x 2=-⎝⎛⎭⎪⎫x -10522+10524,所以x =52或x =53时,f (x )有最大值.4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧4x (1≤x <10,x ∈N +),2x +10(10≤x <100,x ∈N +),1.5x (x ≥100,x ∈N +),其中x 代表拟录用人数,y 代表面试人数.若面试人数为60,则该公司拟录用人数为( C )A .15B .40C .25D .130[解析] 令y =60,若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用25人.5.如图1,动点P 从直角梯形ABCD 的直角顶点B 出发,沿B →C →D →A 的顺序运动,得到以点P 运动的路程x 为自变量,△ABP 的面积y 为因变量的函数的图象,如图2,则梯形ABCD 的面积是( B )A .96B .104C .108D .112[解析] 从图2可看出,BC =8,CD =10,DA =10,在图1中,过点D 作AB 的垂线,垂足为E ,可推得AE =6,AB =16,所以梯形的面积为12(DC +AB )·BC =12(10+16)×8=104,故选B .6.(福建高考题)要制作一个容积为4m 3,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( C )A .80元B .120元C .160元D .240元[解析] 设该容器的总造价为y 元,长方体的底面矩形的长为x m,因为无盖长方体的容积为4m 3,高为1m,所以长方体的底面矩形的宽为4xm,依题意,得y =20×4+10⎝ ⎛⎭⎪⎫2x +2×4x =80+20⎝ ⎛⎭⎪⎫x +4x ≥160,当且仅当x =4x,即x =2时,等号成立,y 取得最小值,即y min =160.所以该容器的最低总造价为160元.故选C .二、填空题7.某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的纯利,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系是__y =a4x (x ∈N +)__.[解析] 依题意,设新价为b ,则有b (1-20%)-a (1-25%)=b (1-20%)·25%.化简,得b =54a . ∴y =b ·20%·x =54a ·20%·x ,即y =a4x (x ∈N +).8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本就增加1万元,又知总收入R 是单位产量Q 的函数:R (Q )=4Q -1200Q 2,那么总利润L (Q )的最大值是__250__万元,这时产品的产量为__300__.(总利润=总收入-成本)[解析] L (Q )=4Q -1200Q 2-(200+Q )=-1200(Q -300)2+250,则当Q =300时,总利润L (Q )取最大值250万元.9.某人计划购买一辆A 型轿车,售价为14.4万元,购买后轿车每年的保险费、汽油费、车检费、停车费等约需2.4万元,同时汽车年折旧率约为10%,试问,大约使用__4__年后,用在该车上的费用(含折旧费)达到14.4万元.[解析] 设使用x 年后花费在该车上的费用达到14.4万元,依题意可得14.4(1-0.9x)+2.4x =14.4化简得x -6×0.9x=0,令f (x )=x -6×0.9x易得f (x )为递增函数,又f (3)=-1.374<0,f (4)=0.0634>0,∴f (x )在(3,4)上有一个零点,故大约使用4年后,用在该车上费用达到14.4万元.三、解答题10.(10分)有l 米长的钢材,要做成如图所示的窗框:上半部分为半圆,下半部分为四个全等的小矩形组成的矩形,则小矩形的长与宽之比为多少时,窗户所透过的光线最多?并求出窗户面积的最大值.[解析] 设小矩形的长为x ,宽为y ,窗户的面积为S , 则由题图可得9x +πx +6y =l ,所以6y =l -(9+π)·x , 所以S =π2x 2+4xy =π2x 2+23x ·[l -(9+π)·x ]=-36+π6x 2+23lx =-36+π6·⎝ ⎛⎭⎪⎫x -2l 36+π2+2l23(36+π). 要使窗户所透过的光线最多,只需窗户的面积S 最大. 由6y >0,得0<x <l9+π.因为0<2l 36+π<l9+π,所以当x =2l 36+π,y =l -(9+π)x 6=l (18-π)6(36+π),即x y =1218-π时,窗户的面积S 有最大值,且S max =2l23(36+π).11.(10分)国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.(1)写出每人需交费用y 关于人数x 的函数; (2)旅行团人数为多少时,旅行社可获得最大利润?解:(1)当0<x ≤30时,y =900;当30<x ≤75,y =900-10(x -30)=1200-10x .即y =⎩⎪⎨⎪⎧900,0<x ≤30,1200-10x ,30<x ≤75.(2)设旅行社所获利润为S 元, 则当0<x ≤30时,S =900x -15000;当30<x ≤75时,S =x (1200-10x )-15000=-10x 2+1200x -15000.即S =⎩⎪⎨⎪⎧900x -15000,0<x ≤30,-10x 2+1200x -15000,30<x ≤75. 因为当0<x ≤30时,S =900x -15000为增函数, 所以x =30时,S max =12000;当30<x ≤75时,S =-10x 2+1200x -15000=-10(x -60)2+21000, 即x =60时,S max =21000>12000.所以当旅行团人数为60时,旅行社可获得最大利润.B 组·素养提升一、选择题1.如图所示,从某幢建筑物10m 高的窗口A 处用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M 离墙1m,离地面403m,则水流落地点B离墙的距离OB 是( B )A .2mB .3mC .4mD .5m[解析] 以OB 所在直线为x 轴,OA 所在直线为y 轴建立平面直角坐标系,设抛物线方程是y =a (x -1)2+403,由条件(0,10)在抛物线上,可得10=a +403,a =-103,所以y =-103(x -1)2+403,设B (x ,0)(x >1),代入方程得:(x -1)2=4,所以x =3.2.某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;若顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,并按下表折扣分别累计计算:若某顾客在此商场获得的折扣金额为50元,则此人购物实际所付金额为( A ) A .1500元 B .1550元 C .1750元D .1800元[解析] 设该顾客在此商场的购物总金额为x 元,可以获得的折扣金额为y 元. 由题可知,y =⎩⎪⎨⎪⎧0,0<x ≤800,0.05(x -800),800<x ≤1300,0.1(x -1300)+25,x >1300.∵y =50>25,∴x >1300,∴0.1(x -1300)+25=50,解得x =1550.1550-50=1500(元).故此人购物实际所付金额为1500元.3.(多选)在某种金属材料的耐高温试验中,温度随着时间变化的情况由计算机记录后显示的图象如图所示.给出下列说法,其中正确的是( BD )A .前5min 温度增加的速度越来越快B .前5min 温度增加的速度越来越慢C .5min 以后温度保持匀速增加D .5min 以后温度保持不变E .温度随时间的变化情况无法判断[解析] 温度y 关于时间t 的图象是先凸后平,即5min 前每当t 增加一个单位增量Δt ,则y 相应的增量Δy 越来越小,而5min 后y 关于t 的增量保持为0,则BD 正确.4.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y 1(千元)、乙厂的总费用y 2(千元)与印制证书数量x (千个)的函数关系图分别如图中甲、乙所示,则( ABC )A .甲厂的制版费为1千元,印刷费平均每个为0.5元B .甲厂的费用y 1与证书数量x 之间的函数关系式为y 1=0.5x +1C .当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元D .若该单位需印制证书数量为8千个,则该单位选择甲厂更节省费用[解析] 由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,甲厂的费用y 1与证书数量x 满足的函数关系为y 1=0.5x +1,故A 、B 正确;当印制证书数量不超过2千个时,乙厂的印刷费平均每个为3÷2=1.5元,故C 正确;当x =8时,y 1=0.5×8+1=5,y 2=14×8+52=92,因为y 1>y 2,所以当印制8千个证书时,选择乙厂更节省费用,故D 不正确. 二、填空题5.某零售商购买某种商品的进价P (单位:元/千克)与数量x (单位:千克)之间的函数关系的图象如图所示.现此零售商仅有现金2700元,他最多可购买这种商品__90__千克.[解析] 由题意得,购买这种商品所需费用y (单位:元)与数量x (单位:千克)之间的函数关系式为y =⎩⎪⎨⎪⎧37x ,0<x ≤10,32x ,10<x ≤50,30x ,50<x ≤100,27x ,100<x ≤150,25x ,x >150,从而易得30×50<2700<30×100,即该零售商购买这种商品的数量应在50千克与100千克之间,故最多可购买这种商品270030=90(千克).6.甲工厂八年来某种产品的年产量y 与年份代号x 的函数关系如图所示.现有下列四种说法:①前三年该产品的年产量增长速度越来越快; ②前三年该产品的年产量增长速度越来越慢; ③第三年后该产品停止生产; ④第三年后该产品的年产量保持不变. 其中说法正确的是__②④__.[解析] 设年产量y 与年份代号x 的关系为f (x ),由图,可知前三年该产品的年产量的增长速度越来越慢,故①错误,②正确;由图,可知从第四年开始该产品的年产量不发生变化,且f (4)≠0,故③错误,④正确.7.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为__800__副.[解析]由5x+4000≤10x,解得x≥800,即日产手套至少为800副时才不亏本.三、解答题8.某种商品进价为每个80元,零售价为每个100元,为了促销,采用买一个这种商品赠送一个小礼品的办法.实践表明:礼品的价格为1元时,销售量增加10%,且在一定范围内,礼品价格为(n+1)元时比礼品价格为n(n∈N+ )元时的销售量增加10%.设未赠送礼品时的销售量为m件.(1)写出礼品价格为n元时,利润y n(单位:元)与n(单位:元)的函数关系式;(2)请你设计礼品的价格,以使商店获得最大利润.[解析](1)当礼品价格为n元时,销售量为m(1+10%)n件,故利润y n=(100-80-n)·m(1+10%)n=m(20-n)·1.1n(0<n<20,n∈N+).(2)令y n+1-y n≥0,即m(19-n) ·1.1n+1-m(20-n)·1.1n≥0,解得n≤9.所以y1<y2<y3<…<y9=y10.令y n+1-y n+2≥0,即m(19-n)·1.1n+1-m(18-n)·1.1n+2≥0,解得n≥8.所以y9=y10>y11>y12>y13>…>y19.所以礼品价格为9元或10元时,商店获得最大利润.9.某创业团队拟生产A,B两种产品,根据市场预测,A产品的利润与投资额成正比(如图1),B产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A,B两种产品的利润f(x),g(x)表示为投资额x的函数;(2)该团队已筹到10万元资金,并打算全部投入A,B两种产品的生产,问:当B产品的投资额为多少万元时,生产A,B两种产品能获得最大利润,最大利润为多少?解析:(1)由题意可设f(x)=k1x,g(x)=k2x,则f(1)=k1=0.25,g(4)=2k2=2.5,k2=1.25.所以f(x)=0.25x(x≥0),g (x )=1.25x (x ≥0).(2)设B 产品的投资额为x 万元,则A 产品的投资额为(10-x )万元.y =f (10-x )+g (x )=0.25(10-x )+1.25x (0≤x ≤10),令t =x ,则y =-0.25t 2+1.25t +2.5,所以当t =2.5,即x =6.25时,收益最大,y max =6516万元.答:投资B 产品6.25万元,A 产品3.75万元时,能获得最大利润,最大利润为6516万元.。

专题09 函数的应用-高中数学经典错题深度剖析及针对训练

专题09 函数的应用-高中数学经典错题深度剖析及针对训练

2【标题01】考虑问题不严谨不全面忽略了在行驶过程中车速有可能低于25 (km / h )【习题01】在一个交通拥挤及事故易发生路段,为了确保交通安全,交通部门规定,在此路段内的车速v (单位:km/h)的平方和车身长l (单位:m )的乘积与车距d 成正比,且最小车距不得少于半个车身长. 假定车身长均为l (单位:m )且当车速为50(km/h)时,车距恰为车身长,问交通繁忙时,应规定怎样的车速,才能使在此路段的车流量Q 最大?(车流量=车速)车距+车身长【经典错解】d =kv 2l ,将v = 50 ,d =l 代入得k =1 2500,∴d125002v 2l ,又将d =1l 代入得2v = 25,由题意得d =212500 v 2l (v 251000v)将Q= =2d l1000vv 2l(1 +)2500(v ≥ 25 )1000v ∵v 2=1000≤1 v1000=25000∴当且仅当v = 50 时,Q lmaxl ⋅21⋅v v 2500=25000ll(1 +)2500l( +)v 2500综上所述,v = 50 (km / h )时,车流量Q 取得最大值. 当v > 251000v时,Q = =2=≤100025000=d +lv 2 l(1 )25001 l(vl ⋅21⋅vv 25002 xv) l2500当且仅当v = 50 时,上式等号成立.综上所述,当且仅当v = 50 时,车流量Q 取得最大值.【深度剖析】(1)经典错解错在考虑问题不严谨不全面,忽略了在行驶过程中车速有可能低于25 (km / h ),所以解题材中应分两类情形求解,得分段函数.(2)同学们在审题时,一定要认真审题,不能理解出现偏差.【习题01 针对训练】某公司生产一种产品的固定成本为0.5 万元,但每生产100 件需要增加投入0.25 万2元,市场对此产品的需要量为500 件,销售收入为函数R (x)= 5x -(0 ≤x ≤ 5)万元,其中x 是产品2售出的数量(单位:百件).(1)把利润表示为年产量的函数f (x);(2 )年产量为多少时,当年公司所得利润最大.【标题 02】没有弄清一棵果树的种植成本导致错误【习题 0 2】某科研小组研究发现:一棵水果树的产量w (单位:百千克)与肥料费用(单位:百元)满1x2 +1(0 ≤x ≤ 2)(x)= { 2足如下关系:4 -31+x(2 <x ≤ 5)6 6 ⎨ 48 .此外,还需要投入其它成本(如施肥的人工费等) 2x 百元.已知这种水果的市场售价为 16 元/千克(即 16 百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为 L ( x ) (单位:百元).(1)求 L ( x ) 的函数关系式;(2)当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?答:当投入的肥料费用为2 -1元时,种植该果树获得的最大利润是66 - 8 元.⎧8x 2 +16 - 3x (0 ≤ x ≤ 2) 【经典正解】(1) L ( x ) = 16w ( x ) - 2x - x = ⎪ 64 - - 3x (2 < x ≤ 5) (2) 当0 ≤ x ≤ 2时⎪⎩L (x)=L (2)= 42max1+x当2 <x ≤ 5时L (x)= 67 -⎡8 + 3(x+1)⎤≤ 67 - 2⎢⎣x+1 ⎥⎦当且仅当48 x 1= 3(x+1)时,即x = 3 时等号成立答:当投入的肥料费用为 30 0 元时,种植该果树获得的最大利润是 4300 元.【习题02 针对训练】为响应国家扩大内需的政策,某厂家拟在 2016 年举行某一产品的促销获得,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用(t t)≥0万元满足x = 4 -k2t 1(k 为常数).如果不搞促销活动,则该产品的年销量只能是 1 万件.已知 2016 年生产该产品的固定投入为 6 万元,每生产 1 万件该产品需要再投入 12 万元,厂家将每件产品的销售价格定为每件产品平均成本的 1.5 倍(成产投入成本包括生产固定投入和生产再投入两部分).(1)求常数k ,并将该厂家 2016 年该产品的利润y 万元表示为年促销费用t 万元的函数;(2)该厂家 2016 年的年促销费用投入多少万元时,厂家利润最大?。

2021新教材人教版高中数学A版必修第一册模块练习题--4.5.3 函数模型的应用

2021新教材人教版高中数学A版必修第一册模块练习题--4.5.3 函数模型的应用

4.5.3 函数模型的应用基础过关练题组一 利用已知函数模型解决问题1.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)={√x<a,√a≥a(a,c 为常数).已知该工人组装第4件产品用时30分钟,组装第a 件产品用时5分钟,那么c 和a 的值分别是( ) A.75,25 B.75,16 C.60,144 D.60,162.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似满足关系式:y=alog 3(x+2),观测发现2019年冬(作为第1年)有越冬白鹤3 000只,估计到2025年冬越冬白鹤有( ) A.4 000只 B.5 000只 C.6 000只 D.7 000只3.某商品专营部每天的房租、人员工资等固定成本为300元,已知该商品的进价为3元/件,并规定其销售价格不低于商品进价,且不高于12元/件.该商品日均销售量y(件)与销售单价x(元)的关系如图所示. (1)试求y 关于x 的函数解析式;(2)当销售单价定为多少元时,该商品每天的利润最大?4.某企业生产的新产品必须先靠广告打开销路,该产品广告效益应该是产品的销售额与广告费之间的差,如果销售额与广告费的算术平方根成正比,那么根据对市场的抽样调查发现:每投入100万元的广告费,所得的销售额是1000万元.问:该企业投入多少广告费才能获得最大的广告效益?题组二建立函数模型解决问题5.(2020山东烟台高一上期末)某商家准备在2020年春节来临前连续两次对某一商品的销售价格进行提价且每次提价10%,然后在春节活动期间连续两次对该商品进行降价且每次降价10%,则该商品的最终售价与原来的价格相比()A.略有降低B.略有提高C.相等D.无法确定6.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.p+q2B.(p+1)(q+1)-12C.√pqD.√(1+p)(1+q)-17.某工厂2019年生产某产品2万件,计划从2020年开始每年比上一年增产20%,则这家工厂生产这种产品的年产量超过6万件的起始年份是(参考数据:lg2≈0.3010,lg3≈0.4771)()A.2023年B.2024年C.2025年D.2026年8.大气温度y(℃)随着距地面的高度x(km)的增加而降低,到高空11km 处为止,在更高的上空气温几乎不变.设地面温度为22℃,每上升1km 大气温度大约降低6℃,则y与x的函数关系式为.9.(2020河北唐山一中高一上期中)某工厂生产过程中产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p(单位:毫克/升)与过滤时间t(单位:小时)之间的关系为p(t)=p0e-kt(式中的e为自然对数的底数,p0为污染物的初始含量).过滤1小时后检测,发现污染物的含量减少了15.(1)求函数关系式p(t);(2)要使污染物的含量不超过初始值的11 000,至少还需过滤几个小时?(参考数据:lg2≈0.3)题组三拟合函数模型解决问题10.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()x 1.99234 5.15 6.126y 1.517 4.04187.51218.01(x2-1)A.y=2x-2B.y=12C.y=log2xD.y=lo g1x211.现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好.12.为减少空气污染,某市鼓励居民用电(减少粉尘),并采用分段计费的方法计算电费.当每个家庭月用电量不超过100千瓦时时,按每千瓦时0.57元计算;当月用电量超过100千瓦时时,其中的100千瓦时仍按原标准收费,超过的部分按每千瓦时0.5元计算.(1)设月用电x千瓦时时,应交电费y元,写出y关于x的函数关系式;(2)若某家庭一月份用电120千瓦时,则应交电费多少元?(3)若某家庭第一季度缴纳电费的情况如下表:月份1月2月3月合计交费金额(元)766345.6184.6则这个家庭第一季度共用电多少千瓦时?13.下表是某款车的车速与刹车后的停车距离的一组数据,试分别就y=a·e kx,y=ax n,y=ax2+bx+c三种函数关系建立数学模型,并探讨最佳模拟,根据最佳模拟求车速为120km/h时刹车后的停车距离.车速(km/h)1015304050停车距离(m)47121825车速(km/h)60708090100停车距离(m)3443546680能力提升练题组一 利用已知函数模型解决问题 1.()某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=2kx+m (k,m 为常数).若该食品在0 ℃的保鲜时间是64小时,在18 ℃的保鲜时间是16小时,则该食品在36 ℃的保鲜时间是( ) A.4小时 B.8小时 C.16小时 D.32小时 2.(2019山西太原五中高一月考,)国家规定某行业征税如下:年收入在280万元及以下的税率为p%,超过280万元的部分按(p+2)%征税.有一公司的实际缴税比例为(p+0.25)%,则该公司的年收入是( ) A.560万元 B.420万元 C.350万元 D.320万元 3.(2020山东泰安一中高一上期中,)山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略综合试验区,也是中国第一个以新旧动能转换为主题的区域发展战略综合试验区.泰安某高新技术企业决定抓住发展机遇,加快企业发展.已知该企业的年固定成本为500万元,每生产设备x(x>0)台,需另投入成本y 1万元.若年产量不足80台,则y 1=12x 2+40x;若年产量不小于80台,则y 1=101x+8 100x-2 180.每台设备售价为100万元,通过市场分析,该企业生产的设备能全部售完.(1)写出年利润y(万元)关于年产量x(台)的关系式;(2)当年产量为多少台时,该企业所获利润最大?题组二建立函数模型解决问题4.(2019湖南醴陵一中高一上期中,)某种放射性元素,每年在前一年的基础上按相同比例衰减,100年后只剩原来的一半,现有这种元素1克,3年后剩下()A.0.015克B.(1-0.5%)3克100克C.0.925克D.√0.1255.(2019辽宁沈阳五校协作体高一期中,)为了落实国务院“提速降费”的要求,某市移动公司欲下调移动用户消费资费.已知该公司共有移动用户10万人,人均月消费50元.经测算,若人均月消费下降x%,则万人.用户人数会增加x8(1)若要保证该公司月总收入不减少,试求x的取值范围;(2)为了布局“5G网络”,该公司拟定投入资金进行5G网络基站建设,投入资金方式为每位用户月消费中固定划出2元进入基站建设资金,若使该公司总盈利最大,试求x的值.(总盈利资金=总收入资金-总投入资金)6.()国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,飞机票价格为900元/张;若旅行团人数多于30人,则给予优惠:每多1人,每张飞机票价格就减少10元,直到达到规定人数75人为止.旅行团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?题组三拟合函数模型解决问题7.(2020北京人大附中高一上期中,)如图是吴老师散步时所走的离家距离(y)与行走时间(x)之间的函数关系的图象,若用黑点表示吴老师家的位置,则吴老师散步行走的路线可能是()8.(2020河北石家庄二中高一上月考,)如图①是某公共汽车线路收支差额y元与乘客量x的图象.图①图②图③由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的方案,根据图①上点A、点B以及射线AB上的点的实际意义,用文字说明图②方案是,图③方案是.9.(2020辽宁大连高一上期中,)某纪念章从2019年10月1日起开始上市,通过市场调查,得到该纪念章每枚的市场价(单位:y元)与上市时间(单位:x天)的数据如下:上市时间x天41036市场价y元905190(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①y=ax+b;②+b.y=ax2+bx+c;③y=ax(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.10.(2019江西赣州十四县(市)高一上期中联考,)中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近70%,居全球首位.中国又属赣州钨矿资源最为丰富,其素有“世界钨都”之称.某科研单位在研发钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值与这种新合金材料的含量x(单位:克)的关系为:当0≤x<6时,y是x的二次函数;当x≥6时,y=(13)x-t.测得数据如表(部分).x(单位:克)0129…y074319…(1)求y关于x的函数关系式y=f(x);(2)求函数f(x)的最大值.答案全解全析 基础过关练1.C 显然a>4,则由题意可得{√4=30,√a=5,解得{c =60,a =144,故选C.2.C 当x=1时,由3 000=alog 3(1+2)得a=3 000,所以到2025年冬,即第7年,y=3 000×log 3(7+2)=6 000.故选C.3.解析 (1)由题图可知该商品日均销售量y(件)与销售单价x(元)满足一次函数关系,于是设y=kx+b(k ≠0). ∵点(3,600),(5,500)在其图象上, ∴{3k +b =600,5k +b =500,解得{k =-50,b =750, ∴y=-50x+750(3≤x ≤12).(2)设该商品每天的利润为w 元.由题意知w=(-50x+750)(x-3)-300, 整理得w=-50(x 2-18x+51)=-50[(x-9)2-30].∵x ∈[3,12],∴当x=9时,w 取得最大值,最大值为1 500. 故当销售单价定为9元时,该商品每天的利润最大.4.解析 设广告费为x 万元时,广告效益为y 万元,销售额为t 万元.由题意可设t=k √x (k>0),则y=t-x=k √x -x.∵当x=100时,t=1 000,∴1 000=10k,解得k=100, ∴t=100√x ,∴y=100√x -x.令√x =m,则m ≥0,y=100m-m 2=-(m-50)2+2 500, ∴当m=50,即x=2 500时,y 取得最大值,为2 500.∴该企业投入2 500万元广告费时,能获得最大的广告效益. 5.A 设这种商品的原价为a,则两次提价后的价格为a(1+10%)2=1.12·a,又进行两次降价后的价格为1.12·a(1-10%)2=(1+0.1)2(1-0.1)2·a=0.992a<a,因此最终售价与原来的价格相比略有降低,故选A. 6.D 设年平均增长率为x,则有(1+p)(1+q)=(1+x)2,解得x=√(1+p)(1+q)-1.7.D 设从2019年起,再过n 年这家工厂生产这种产品的年产量超过6万件,根据题意,得2(1+20%)n >6,即1.2n >3,两边取对数,得nlg 1.2>lg 3,∴n>lg3lg1.2=lg3lg3-1+2lg2≈6.03,又n 为整数,∴n 的最小值为7,又2 019+7=2 026,∴从2026年开始这家工厂生产这种产品的年产量超过6万件.故选D.8.答案 y={22-6x(0<x ≤11)-44(x >11)解析 根据题意得函数关系式为y={22-6x(0<x ≤11),-44(x >11).9.解析 (1)根据题意,得45p 0=p 0e -k ,∴e -k =45,∴p(t)=p 0(45)t.(2)由p(t)=p 0(45)t≤11 000p 0,得(45)t≤10-3,两边取对数并整理得t(1-3lg2)≥3,∴t ≥30.因此,至少还需过滤30个小时.10.B 由题中表格可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大得越来越快,分析选项可知B 符合,故选B. 11.答案 甲解析 对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好. 12.解析 (1)由题意得,当0≤x ≤100时,y=0.57x; 当x>100时,y=100×0.57+(x-100)×0.5=0.5x+7, 则y 关于x 的函数关系式为 y={0.57x,0≤x ≤100,0.5x +7,x >100.(2)由x=120>100,得y=67,即应交电费67元. (3)1月用电:因为76>0.57×100=57,所以x>100,由0.5x+7=76得x=138; 2月用电:因为63>0.57×100=57,所以x>100,由0.5x+7=63得x=112; 3月用电:因为45.6<0.57×100=57,所以0≤x ≤100,由0.57x=45.6得x=80,则138+112+80=330(千瓦时),即第一季度共用电330千瓦时. 13.解析 若以y=a ·e kx 为模拟函数,将(10,4),(40,18)代入函数关系式,得{a ·e 10k =4,a ·e 40k=18,解得{k ≈0.050 136,a ≈2.422 8.∴y=2.422 8e 0.050 136x .以此函数关系式计算车速为90 km/h,100 km/h 时,停车距离分别为220.8 m,364.5 m,与实际数据相比,误差较大.若以y=a ·x n 为模拟函数,将(10,4),(40,18)代入函数关系式,得{a ·10n =4,a ·40n =18,解得{n ≈1.085,a ≈0.328 9. ∴y=0.328 9x 1.085.以此函数关系式计算车速为90 km/h,100 km/h 时,停车距离分别为43.39 m,48.65 m,与实际情况误差也较大.若以y=ax 2+bx+c 为模拟函数,将(10,4),(40,18),(60,34)代入函数关系式,得{a ·102+b ·10+c =4,a ·402+b ·40+c =18,a ·602+b ·60+c =34,解得{a =1150,b =215,c =2.∴y=1150x 2+215x+2.以此函数关系式计算车速为90 km/h,100 km/h 时,停车距离分别为68 m,82 m,与前两个相比,它比较符合实际情况.当x=120时,y=114,即当车速为120 km/h 时,停车距离为114 m.能力提升练1.A 依题意得{2m =64,218k+m =16,解得{m =6,k =-19, ∴y=2-19x+6.当x=36时,y=2-19×36+6=22=4(时),故选A.2.D 设该公司的年收入为a 万元,则280p%+(a-280)(p+2)%=a(p+0.25)%, 解得a=280×22-0.25=320.3.解析 (1)当0<x<80时,y=100x-(12x 2+40x)-500=-12x 2+60x-500; 当x ≥80时,y=100x-101x+8 100x-2 180-500=1 680-(x +8 100x).所以当0<x<80时,y=-12x 2+60x-500;当x ≥80时,y=1 680-(x +8 100x).(2)当0<x<80时,y=-12(x-60)2+1 300,当x=60时,y 取得最大值,最大值为1 300.当x ≥80时,y=1 680-(x +8 100x)≤1 680-2√x ·8 100x=1 500,当且仅当x=8 100x,即x=90时,y 取得最大值,最大值为1 500.所以当年产量为90台时,该企业所获利润最大,最大利润为1 500万元. 4.D 设每年减少的比例为x,因此1克这种放射性元素,经过100年后剩余1×(1-x)100克,依题意得(1-x)100=0.5,所以x=1-√0.5100. 3年后剩余为(1-x)3,将x 的值代入,得结果为√0.125100,故选D. 5.解析 (1)根据题意,设该公司的总收入为W 万元, 则W=50(10+x8)(1-x100),0<x<100.若该公司月总收入不减少,则有50·(10+x8)(1-x100)≥10×50,解得0<x ≤20.(2)设该公司总盈利为y 万元,则y=50(10+x8)(1-x100)-210+x8=-x 216+x+480,0<x<100,结合二次函数的性质分析可得,当x=8时,该公司的总盈利最大. 6.解析 (1)设旅行团人数为x,飞机票价格为y 元/张, 则y={900,0<x ≤30,x ∈N *,900-10(x -30),30<x ≤75,x ∈N *, 即y={900,0<x ≤30,x ∈N *,1 200-10x,30<x ≤75,x ∈N *.(2)设旅行社获利S 元,则S={900x -15 000,0<x ≤30,x ∈N *,x(1 200-10x)-15 000,30<x ≤75,x ∈N *,即S={900x -15 000,0<x ≤30,x ∈N *,-10(x -60)2+21 000,30<x ≤75,x ∈N *.因为S=900x-15 000在区间(0,30]上单调递增,所以当x=30时,S 取最大值12 000,又因为S=-10(x-60)2+21 000在区间(30,60]上单调递增,在(60,75]上单调递减,所以当x=60时,S 取最大值21 000.故旅行团人数为60时,旅行社可获得最大利润.7.D 根据题中图象可知在第一段时间吴老师离家的距离随着时间的增加而增加,第二段时间吴老师离家的距离随着时间的增加不变,第三段时间吴老师离家的距离随着时间的增加而减少,最后回到始点位置,对比各选项可知,只有选项D 正确,故选D. 8.答案 降低成本,票价不变;增加票价解析 由题图①知,点A 表示无人乘车时,收支差额为-20元,即运行成本为20元;点B 表示10人乘车,收支平衡,收支差额为0.线段AB 上的点表示亏损,AB 延长线上的点表示盈利.题图②与题图①相比,一次函数的一次项系数不变,图象与y 轴负半轴的交点上移,故题图②表示降低成本,票价不变,题图③与题图①相比,一次项系数增大,图象与y 轴负半轴的交点不变,故题图③表示增加票价,故答案为降低成本,票价不变;增加票价.9.解析 (1)∵随着时间x 的增加,y 的值先减后增,而所给的三个函数中y=ax+b 和y=ax +b 显然都是单调函数,不满足题意,∴选择y=ax 2+bx+c.(2)把点(4,90),(10,51),(36,90)代入y=ax 2+bx+c 中, 得{16a +4b +c =90,100a +10b +c =51,1 296a +36b +c =90,解得{a =14,b =-10,c =126. ∴y=14x 2-10x+126=14(x-20)2+26,∴当x=20时,y 有最小值,且y min =26.故当纪念章上市20天时,该纪念章的市场价最低,最低市场价为26元. 10.解析 (1)当0≤x<6时,由题意,设f(x)=ax 2+bx+c(a ≠0),由题中表格数据可得{f(0)=c =0,f(1)=a +b +c =74,f(2)=4a +2b +c =3,解得{a =-14,b =2,c =0.所以当0≤x<6时, f(x)=-14x 2+2x.当x ≥6时, f(x)=(13)x -t,由题中表格数据可得,f(9)=(13)9-t =19,解得t=7,所以当x ≥6时,f(x)=(13)x -7.综上,f(x)={-14x 2+2x,0≤x <6,(13)x -7,x ≥6.(2)当0≤x<6时, f(x)=-14x 2+2x=-14(x-4)2+4,所以当x=4时,函数f(x)取得最大值,为4; 当x ≥6时,f(x)=(13)x -7单调递减,所以f(x)的最大值为f(6)=(13)6-7=3,因为4>3,所以函数f(x)的最大值为4.。

高中数学教师资格证笔试练题:3.4函数的应用(一)(练习)

高中数学教师资格证笔试练题:3.4函数的应用(一)(练习)

3.4 函数的应用(一)一、单选题1.一等腰三角形的周长是20,底边y 是关于腰长x 的函数,它的解析式为( ) A .()20210y x x =-≤ B .()20210y x x =-< C .()202510y x x =-≤≤D .()202510y x x =-<<2.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元),一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为( ) A .139万元B .149万元C .159万元D .169万元3.某工厂八年来某种产品总产量C 与时间t 的函数关系如图所示.下列说法:①前三年中产量增长的速度越来越快; ②前三年中产量增长的速度保持稳定; ③第三年后产量增长的速度保持稳定; ④第三年后,年产量保持不变; ⑤第三年后,这种产品停止生产. 其中说法正确的是( ) A .②⑤B .①③C .①④D .②④4.函数1,()()0,()x f x x ⎧=⎨⎩为有理数为无理数,则下列结论错误的是( )A .任意x 都有()()f x f x =-B .方程(())()f f x f x =的解只有1x =C .()f x 的值域是{0,1}D .方程(())f f x x =的解只有1x =5.已知{},;min ,,.a ab a b b a b ≤⎧=⎨>⎩设()f x {}2min 6,246x x x =-+-++,则函数()f x 的最大值是( ) A .8B .7C .6D .56.已知某旅游城市在过去的一个月内(以30天计),第t 天()130,N t t +≤≤∈的旅游人数()f t (万人)近似地满足1()4f t t=+,而人均消费()g t (元)近似地满足()120|20|g t t =--.则求该城市旅游日收益的最小值是( )二、多选题7.在某种金属材料的耐高温实验中,温度随着时间变化的情况由计算机记录后显示的图象如图所示.则下列说法正确的是( ) A .前5min 温度增加的速度越来越快 B .前5min 温度增加的速度越来越慢 C .5min 以后温度保持匀速增加D .5min 以后温度保持不变8.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费:超过8km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是( ) A .出租车行驶2km ,乘客需付费8元 B .出租车行驶4km ,乘客需付费9.6元 C .出租车行驶10km ,乘客需付费25.45元D .某人乘出租车行驶5km 两次的费用超过他乘出租车行驶10km 一次的费用 E.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km9.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用1y (千元)乙厂的总费用2y (千元)与印制证书数量x (千个)的函数关系图分别如图中甲、乙所示,则( )A .甲厂的制版费为1千元,印刷费平均每个为0.5元B .甲厂的费用1y 与证书数量x 之间的函数关系式为10.51y x =+C .当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元D .当印制证书数量超过2千个时,乙厂的总费用2y 与证书数量x 之间的函数关系式为21542y x =+ E.若该单位需印制证书数量为8千个,则该单位选择甲厂更节省费用三、填空题10.设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________.11.大气温度()C y ︒随着距地面的高度x (km )的增加而降低,到高空11km 处为止,在更高的上空气温几乎不变,设地面温度为22C ︒,每上升1km 大气温度大约降低6C ︒,则y 与x 的函数关系式为________.12.根据市场调查,某种商品在最近的40天内的价格()f t 与时间t 满足关系()111,020,241,2040t t f t t t ⎧+≤<⎪=⎨⎪-+≤≤⎩()t N ∈,销售量()g t 与时间t 满足关系()14333g t t =-+()040,t t N ≤≤∈则这种商品的日销售额(销售量与价格之积)的最大值为______.四、解答题13.重庆朝天门批发市场某服装店试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的60%.经试销发现,销售量y (件)与销售单价x (元)符合函数y kx b =+,且70x =时,30y =;60x =时,40y =. (1)求函数y kx b =+的解析式;(2)若该服装店获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,服装店可获得最大利润,最大利润是多少元?14.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域; (2)求矩形BNPM 面积的最大值.15.某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格()P x (元)与时间x (天)的函数关系近似满足()1kP x x=+(k 为正常数).该商品的日销售量()Q x (个)与时间x (天)部分数据如下表所示:x (天)10 20 25 30 ()Q x (个)110120125120已知第10天该商品的日销售收入为121元. (1)求k 的值;(2)给出以下二种函数模型:①()Q x ax b =+,②()|25|Q x a x b =-+,请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量()Q x 与时间x 的关系,并求出该函数的解析式;(3)求该商品的日销售收入()()130,f x x x N +≤≤∈(元)的最小值.参考答案1.D依题意得220x y +=,所以202y x =-,由三边形三边关系可得20y xy <⎧⎨>⎩,即02022x x <-<,解得510x <<.因此,函数解析式为()202510y x x =-<<. 2.C利润()222()304102610(13)159L x x x x x x x =-++=-+-=--+,故最大利润为159万元3.A观察函数图象知,在区间[0,3]上图象是线段,直线上升,表明年产量增长的速度保持不变,②正确;在区间(3,8]上图象是线段,却是水平的,表明总产量停留在第三年末的总产量上未变,第三年后的年产量为0,即产品停止生产,⑤正确. 4.BA.当x 为有理数时,-x 为有理数,则()()f x f x =-=1,当x 为无理数时,-x 为无理数,则()()f x f x =-=0,正确;B. 当x 为有理数时,方程()(())(1)1f f x f f x ===成立;当x 为无理数时,方程()(())(0)1f f x f f x ==≠成立;方程(())()f f x f x =的解为任意有理数;故错误;C. 因为()f x 的值域是{0,1},故正确;D. 当x 为有理数时,方程(())(1)1f f x f x ===,解得 1x =;当x 为无理数时,方程(())(0)1f f x f ==,无解,故正确;5.C根据题目的定义得,{}2()min 6,246f x x x x =-+-++2226,6246246,6246x x x x x x x x x ⎧-+-+≤-++=⎨-++-+>-++⎩,化简得,()256,0,2()5246,,0(,)2x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎪⎣⎦=⎨⎪-++∈-∞⋃+∞⎪⎩,可根据该分段函数做出图像,显然在左边的交点处取得最大值,此时,0x =,得(0)6f =即为所求; 6.C记旅游日收益为()W t ,当[)0,20t ∈时,()()12020+100g t t t =+-=,()14f t t =+,所以()()110010044400W t t t t t ⎛⎫=++=++ ⎪⎝⎭,所以 所以()1004401401441W t t t =++≥=,取等号时5t =; 当[]20,30t ∈时,()()12020140g t t t =--=-,()14f t t=+,所以()()114014045594W t t t t t ⎛⎫=-+=+- ⎪⎝⎭,显然()1405594W t t t =+-在[]20,30上单调递减,所以()()min 1483043944144133W t W ==+=+>, 由上可知:旅游日收益的最小值为441万元, 7.BD因为温度y 关于时间t 的图象是先凸后平,即前5min 每当t 增加一个单位增量Δt ,则y 相应的增量Δy 越来越小,而5min 后是y 关于t 的增量保持为0,则BD 正确. 8.CDE解:在A 中,出租车行驶2km ,乘客需付起步价8元和燃油附加费1元,共9元,A 错误;在B 中,出租车行驶4km ,乘客需付费81 2.15111.15+⨯+=元,B 错误;在C 中,出租车行驶10km ,乘客需付费()8 2.155 2.85108125.45+⨯+⨯-+=元,C 正确; 在D 中,乘出租车行驶5km ,乘客需付费82 2.15113.30+⨯+=元,乘坐两次需付费26.6元,26.625.45>,D 正确;在E 中,设出租车行驶xkm 时,付费y 元,由85 2.15119.722.65+⨯+=<知8x >,因此由()8 2.155 2.858122.6y x =+⨯+-+=,解得9x =,E 正确.9.ABCD由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,故A 正确; 甲厂的费用1y 与证书数量x 满足的函数关系为10.51y x =+,故B 正确;当印制证书数量不超过2千个时,乙厂的印刷费平均每个为32 1.5÷=元,故C 正确;易知当2x >时,2y 与x 之间的函数关系式为21542y x =+,故D 正确 当8x =时,121590.5815,8422y y =⨯+==⨯+=,因为12y y >,所以当印制8千个证书时,选择乙厂更节省费用,故E 不正确. 10.(-2,0)∪(2,5)利用函数f (x )的图象关于原点对称.∴f (x )<0的解集为(-2,0)∪(2,5). 11.()()2260114411x x y x ⎧-<≤⎪=⎨->⎪⎩. 解:根据题意得,当011x <≤时,226y x =-; 当11x >时,气温几乎不变,故2261144y =-⨯=-. 综上,函数关系式为()()2260114411x x y x ⎧-<≤⎪=⎨->⎪⎩.故 12.176由题意,设日销售额为()F t ,①当020t ≤<,t N ∈时,()211431211441119462336264F t t t t ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=--++ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故当10t =或11时,最大值为()max 176F t =;②当2040t ≤≤,t N ∈时,()()()21431141423333F t t t t ⎛⎫=-+-+=-- ⎪⎝⎭,故当20t =时,最大值为()max 161F t =,综合①②知,当10t =或11时,日销售额最大,最大值为176.13.(1)()1005080y x x =-+≤≤;(2)21505000W x x =-+-()5080x ≤≤,销售价定为每件75元时,可获得最大利润是625元. 【详解】(1)因为()5050160%x ≤≤+ ,所以5080x ≤≤,由题意得:70306040k b k b +=⎧⎨+=⎩,解得:1100k b =-⎧⎨=⎩,所以函数的解析式为:()1005080y x x =-+≤≤, (2)由题意知:利润为()()2501001505000W x x x x =--+=-+-()5080x ≤≤,因为()22150500075625W x x x =-+-=--+, 所以当75x =时,W 取得最大值,最大值是625.所以利润W 与销售单价x 之间的关系式为21505000W x x =-+-()5080x ≤≤, 销售价定为每件75元时,可获得最大利润是625元. 14.(1)[]110,4,82=-+∈y x x ;(2)48.【详解】解 (1)如图所示,延长NP 交AF 于点Q ,所以PQ =8-y ,EQ =x -4. 在EDF 中,EQ EFPQ FD =,所以4482x y -=-. 所以1102y x =-+,定义域为[]4,8.(2)设矩形BNPM 的面积为S ,则()2110105022⎛⎫==-=--+ ⎪⎝⎭x S xy x x ,开口向下,且对称轴为10x =,则S 在[]4,8上单调递增,所以当x =8时,S 取最大值48,所以矩形BNPM 面积的最大值为48.15.(1)1k =;(2)()()12525130,Q x x x x N +=--≤≤∈;(3)最小值为121元.【详解】(1)依题意知第10天该商品的日销售收入为 (10)(10)111012110k P Q ⎛⎫⋅=+⨯= ⎪⎝⎭,解得1k =.(2)由题中的数据知,当时间变化时,该商品的日销售量有增有减并不单调,故只能选②()25Q x a x b =-+.(10)110Q =,(20)120Q =,可得1025=1102025=120a b a b ⎧-+⎪⎨-+⎪⎩,解得:=1=125a b -⎧⎨⎩∴()()12525130,Q x x x x N +=--≤≤∈(3)由(2)知()12525Q x x =--100,125,,150,2530,,x x x N x x x N +++≤<∈⎧=⎨-≤≤∈⎩∴()()()f x P x Q x =⋅100101,125,,150149,2530,.x x x N xx x x N x++⎧++≤<∈⎪⎪=⎨⎪-+≤≤∈⎪⎩当125x ≤<时,100y x x=+在区间[]1,10上是单调递减的,在区间[10,25)上是单调递增, 所以当10x =时,()f x 取得最小值,且min ()121f x =; 当2530x ≤≤时,150y x x=-是单调递减的,所以当30x =时,()f x 取得最小值,且min ()124f x =.综上所述,当10x =时,()f x 取得最小值,且min ()121f x =. 故该商品的日销售收入()f x 的最小值为121元.。

高中数学复习:用函数解决实际问题练习及答案

高中数学复习:用函数解决实际问题练习及答案

高中数学复习:用函数解决实际问题练习及答案1.某药品分两次降价,假设平均每次降价的百分率为x.已知该药品的原价是m元,降价后的价格是y元,则y与x的函数关系是( )A.y=m(1-x)2 B.y=m(1+x)2 C.y=2m(1-x) D.y=2m(1+x)2.已知等腰三角形的周长为20cm,底边长y cm是腰长x cm的函数,则此函数的定义域为( )A.(0,10) B.(0,5) C.(5,10) D.[5,10)3.某个体户在进一批服装时,进价是原标价的75%.现打算对该服装定一个新标价在价目表上,并注明按新价降低20%销售,这样,仍可获得25%的纯利,求该个体户给这批服装定的新标价与原标价之间的函数关系式.4.如图给出了红豆生长时间t(月)与枝数y(枝)的散点图.那么“红豆生南国,春来发几枝.”的红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A.指数函数:y=2t B.对数函数:y=log2tC.幂函数:y=t3 D.二次函数:y=2t25.今有一组实验数据如表所示:则体现这些数据关系的最佳函数模型是( )D.u=2t-2A.u=log2t B.u=2t-2 C.u=t2−126.以下是三个变量y1、y2、y3随变量x变化的函数值表:其中关于x呈指数函数变化的函数是________.7.辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y与上市时间x的变化关系并说明理由:①y=ax+b;②y=ax2+bx+c;③y=a log b x;(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.8.某服装厂某年1月份、2月份、3月份分别生产某名牌衣服1万件、1.2万件、1.3万件,为了估测当年每个月的产量,以这三个月的产品数量为依据,用一个函数模型模拟该产品的月产量y 与月份x的关系,模拟函数可选用函数y=p·qx+r(其中p,q,r为常数)或二次函数.又已知当年4月份该产品的产量为1.36万件,请问用以上哪个函数作为模拟函数较好,并说明理由.9.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈持续上涨趋势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式.(注:函数定义域是[0,5].其中x=0表示8月1日,x=1表示9月1日,…,以此类推)10.20世纪90年代,气候变化专业委员会向政府提供的一项报告指出:全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO2体积分数增加.据测,1990年、1991年、1992年大气中的CO2体积分数分别比1989年增加了1个可比单位、3个可比单位、6个可比单位.若用一个函数模拟20世纪90年代中每年CO2体积分数增加的可比单位数y与年份增加数x(即当年数与1989的差)的关系,模拟函数可选用二次函数f(x)=px2+qx+r(其中p,q,r为常数)或函数g(x)=abx+c(其中a,b,c为常数,且b>0,b≠1).(1)根据题中的数据,求f(x)和g(x)的解析式;(2)如果1994年大气中的CO2体积分数比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数较好?并说明理由.11.某跨国饮料公司对所有人均GDP(即人均纯收入)在0.5—8千美元的地区销售该公司M饮料的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.(1)下列几个模拟函数中(x表示人均GDP,单位:千美元;y表示年人均M饮料的销量,单位:升),用哪个来描述人均饮料销量与地区的人均GDP的关系更合适?说明理由;A.f(x)=ax2+bx;B.f(x)=log a x+b;C.f(x)=a x+b;D.f(x)=xα+b.(2)当人均GDP为1千美元时,年人均M饮料的销量为2升;人均GDP为4千美元时,年人均M饮料的销量为5升;把你所选的模拟函数求出来;(3)因为M饮料在N国被检测出杀虫剂的含量超标,受此事件影响,M饮料在人均GDP不高于3千美元的地区销量下降5%,不低于6千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在各个地区中,年人均M饮料的销量最多为多少?12.某汽车销售公司在A、B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆).若该公司在两地共销售16辆这种品牌的汽车,则能获得的最大利润是( )A.10.5万元B.11万元C.43万元D.43.025万元13.某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A.上午10∶00B.中午12∶00C.下午4∶00D.下午6∶0014.如图,某单位准备修建一个面积为600平方米的矩形场地(图中ABCD)的围墙,且要求中间用围墙EF隔开,使得ABEF为矩形,EFDC为正方形,设AB=x米,已知围墙(包括EF)的修建费用均为每米800元,设围墙(包括EF)的修建总费用为y元.(1)求出y关于x的函数解析式;(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.15.某地需要修建一条大型输油管道通过240公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为400万元,铺设距离为x公里的相邻两增压站之间的输油管道费用为(x2+x)万元.设余下工程的总费用为y万元.(1)试将y表示成x的函数;(2)需要修建多少个增压站才能使y最小,其最小值为多少?16.为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,1cm厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系C(x)=k(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为83x+5万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小?并求出最小值.17.某公司对营销人员有如下规定:①年销售额x在9万元以下,没有奖金;②年销售额x(万元),当x∈[9,81]时,奖金为y(万元),y=log ax,y∈[2,4],且年销售额x越大,奖金越多;③年销售额超过81万元,按5%(x-1)发奖金(年销售额x万元).(1)求奖金y关于x的函数解析式;(2)某营销人员争取年奖金3≤y≤10(万元),则年销售额x在什么范围内?18.南博汽车城销售某种型号的汽车,进货单价为25万元,市场调研表明,当销售单价为29万元时,每周平均售出8辆汽车;当每辆汽车每降价0.5万元时,平均每周能多售出4辆汽车,如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元(每辆车的销售利润=销售单价-进货单价).(1)求y与x之间的函数关系式,并在保证商家不亏本的前提下,写出x的取值范围;(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;(3)当每辆汽车的销售单价为多少万元时,平均每周的销售利润最大?最大利润是多少?19.“学习曲线”可以用来描述学习达到某一水平所需的学习时间,假设“学习曲线”符合函数t)(B为常数),N(单位:字)表示某一英文词汇量水平,t(单位:天)表示达到这一英文词=5log2(NB汇量所需要的学习时间.(1)已知某人学习达到40个词汇量,需要10天,求他的学习曲线解析式;(2)他学习几天能掌握160个词汇量;(3)如果他学习时间大于30天,他的词汇量情况如何.20.手机上网每月使用量在500分钟以下(包括500分钟)60分钟以上(不包括60分钟)按30元计费,超过500分钟的部分按0.15元/分钟计费,假如上网时间过短,使用量在1分钟以下不计费,在1分钟以上(包括1分钟)按0.5元/分钟计费,计费时间均取整数,不足1分钟的按1分钟计费,手机上网不收通话费和漫游费.(1)12月份小王手机上网使用量为20小时,要付多少钱?(2)小周10月份付了90元的手机上网费,那么他上网的计费时间是多少?(3)电脑上网费包月60元/月,根据时间长短,你会选择哪种方式上网呢?答案1.某药品分两次降价,假设平均每次降价的百分率为x.已知该药品的原价是m元,降价后的价格是y元,则y与x的函数关系是( )A.y=m(1-x)2 B.y=m(1+x)2 C.y=2m(1-x) D.y=2m(1+x)【答案】A【解析】由题意,药品的原价是m元,分两次降价,每次降价的百分率为x,则降价后的价格为y =m(1-x)(1-x)=m(1-x)2.故选A.2.已知等腰三角形的周长为20cm,底边长y cm是腰长x cm的函数,则此函数的定义域为( )A.(0,10) B.(0,5) C.(5,10) D.[5,10)【答案】C【解析】由题意知y=20-2x,因为三角形两边之和大于第三边,所以2x>y,即2x>20-2x,x>5.又因为y>0,即20-2x>0,所以x<10.故5<x<10.3.某个体户在进一批服装时,进价是原标价的75%.现打算对该服装定一个新标价在价目表上,并注明按新价降低20%销售,这样,仍可获得25%的纯利,求该个体户给这批服装定的新标价与原标价之间的函数关系式.【答案】设原标价为x元/件,新标价为y元/件,则有(1−20%)y−75%x=25%,75%xx(x>0).化简得y=75644.如图给出了红豆生长时间t(月)与枝数y(枝)的散点图.那么“红豆生南国,春来发几枝.”的红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A.指数函数:y=2tB.对数函数:y=log2tC.幂函数:y=t3D.二次函数:y=2t2【答案】A【解析】由题意知函数的图象在第一象限是增函数,并且增长较快,且图象过(2,4)点,∴图象由指数函数y =2t来模拟比较好,故选A.5.今有一组实验数据如表所示:则体现这些数据关系的最佳函数模型是( )A .u =log 2tB .u =2t -2C .u =t 2−12D .u =2t -2【答案】C【解析】由散点图可知,图象不是直线,排除D ;图象不符合对数函数的图象特征,排除A ;当t =3时,2t -2=23-2=6,t 2−12=32−12=4,由表格知当t =3时,u =4.04,模型u =t 2−12能较好地体现这些数据关系.故选C.6.以下是三个变量y 1、y 2、y 3随变量x 变化的函数值表:其中关于x呈指数函数变化的函数是________.【答案】y1【解析】从题表格可以看出,三个变量y1、y2、y3都是越来越大,但是增长速度不同,其中变量y1的增长速度最快,画出它们的图象,可知变量y1呈指数函数变化,故填y1.7.辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y与上市时间x的变化关系并说明理由:①y=ax+b;②y=ax2+bx+c;③y=a log b x;(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.【答案】(1)∵随着时间x的增加,y的值先减后增,而所给的三个函数中y=ax+b和y=a log b x 显然都是单调函数,不满足题意,∴y=ax2+bx+c.(2)把点(4,90),(10,51),(36,90)代入y=ax2+bx+c中,得{16a +4b +c =90,100a +10b +c =51,1296a +36b +c =90,解得a =14,b =-10,c =126.∴y =14x 2-10x +126=14(x -20)2+26,∴当x =20时,y min =26.即上市20天时,市场价最低,为26元.8.某服装厂某年1月份、2月份、3月份分别生产某名牌衣服1万件、1.2万件、1.3万件,为了估测当年每个月的产量,以这三个月的产品数量为依据,用一个函数模型模拟该产品的月产量y 与月份x 的关系,模拟函数可选用函数y =p ·qx+r (其中p ,q ,r 为常数)或二次函数.又已知当年4月份该产品的产量为1.36万件,请问用以上哪个函数作为模拟函数较好,并说明理由.【答案】设y 1=f (x )=ax 2+bx +c (a ≠0),依题意得{f (1)=a +b +c =1,f (2)=4a +2b +c =1.2,f (3)=9a +3b +c =1.3,解得{a =−0.05,b =0.35,c =0.7.y 1=f (x )=-0.05x 2+0.35x +0.7,故f (4)=1.3.设y 2=g (x )=p ·q x+r ,依题意得{g (1)=p ·q +r =1,g (2)=p ·q 2+r =1.2,g (3)=p ·q 3+r =1.3,解得{p =−0.8,q =0.5,r =1.4.y 2=g (x )=-0.8×0.5x +1.4,故g (4)=1.35.由以上可知,函数y 2=g (x )=-0.8×0.5x+1.4作为模拟函数较好.9.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈持续上涨趋势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p (以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);(2)若f (0)=4,f (2)=6,求出所选函数f (x )的解析式.(注:函数定义域是[0,5].其中x =0表示8月1日,x =1表示9月1日,…,以此类推)【答案】(1)根据题意,应选模拟函数f (x )=x (x -q )2+p .(2)由f (0)=4,f (2)=6,得{p =4,(2−p )2=1⇒{p =4,q =3. ∴f (x )=x 3-6x 2+9x +4(0≤x ≤5).10.20世纪90年代,气候变化专业委员会向政府提供的一项报告指出:全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO 2体积分数增加.据测,1990年、1991年、1992年大气中的CO 2体积分数分别比1989年增加了1个可比单位、3个可比单位、6个可比单位.若用一个函数模拟20世纪90年代中每年CO 2体积分数增加的可比单位数y 与年份增加数x (即当年数与1989的差)的关系,模拟函数可选用二次函数f (x )=px 2+qx +r (其中p ,q ,r 为常数)或函数g (x )=abx +c (其中a ,b ,c 为常数,且b >0,b ≠1).(1)根据题中的数据,求f (x )和g (x )的解析式;(2)如果1994年大气中的CO 2体积分数比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数较好?并说明理由.【答案】(1)根据题中的数据,得{p +q +r =1,4p +2q +r =3,9p +3q +r =6和{ab +c =1,ab 2+c =3,ab 3+c =6,解得{p =12,q =12,r =0和{a =83,b =32,c =−3,∴f (x )=12x 2+12x ,g (x )=83·(32)x-3.(2)∵f (5)=15,g (5)=17.25,f (5)更接近于16,∴选用f (x )=12x 2+12x 作为模拟函数较好.11.某跨国饮料公司对所有人均GDP(即人均纯收入)在0.5—8千美元的地区销售该公司M 饮料的调查中发现:人均GDP 处在中等的地区对该饮料的销售量最多,然后向两边递减.(1)下列几个模拟函数中(x 表示人均GDP ,单位:千美元;y 表示年人均M 饮料的销量,单位:升),用哪个来描述人均饮料销量与地区的人均GDP 的关系更合适?说明理由;A .f (x )=ax 2+bx ;B.f (x )=log a x +b ;C.f (x )=a x +b ;D.f (x )=x α+b .(2)当人均GDP 为1千美元时,年人均M 饮料的销量为2升;人均GDP 为4千美元时,年人均M 饮料的销量为5升;把你所选的模拟函数求出来;(3)因为M 饮料在N 国被检测出杀虫剂的含量超标,受此事件影响,M 饮料在人均GDP 不高于3千美元的地区销量下降5%,不低于6千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在各个地区中,年人均M 饮料的销量最多为多少?【答案】(1)因为B ,C ,D 表示的函数在区间[0.5,8]上是单调的,所以用A 来模拟比较合适.(2)因为当人均GDP 为1千美元时,年人均M 饮料的销售量为2升;当人均GDP 为4千美元时,年人均M 饮料的销售量为5升,把x =1,y =2;x =4,y =5代入函数f (x )=ax 2+bx ,得{2=a +b ,5=16a +4b ,解得{a =−14,b =94,所以所求函数的解析式为 f (x )=-14x 2+94x (x ∈[0.5,8]).(3)根据题意可得 y =-1980[(x -92)2-814]在[0.5,3]上是增函数,则当x =3时,y max =17140;当x ∈(3,6)时,y =-940[(x -92)2-814],92∈(3,6),则当x =92时,y max =729160; y =-1980[(x -92)2-814]在[6,8]上是减函数,则当x =6时,y max =17140;显然729160>17140,所以在人均GDP 为4.5千美元的地区,年人均M 饮料的销量最多,为729160升.12.某汽车销售公司在A 、B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售16辆这种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元【答案】C【解析】设利润为y ,则y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+32+44.14,当x =10或x =11时,有最大利润y =43.13.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10∶00B .中午12∶00C .下午4∶00D .下午6∶00【答案】C【解析】当x ∈[0,4]时,设y =k 1x ,把(4,320)代入,得k 1=80,∴y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)代入,得{4k 2+b =320,20k 2+b =0,解得{k 2=−20,b =400,∴y =400-20x .∴y =f (x )={80x ,0≤x ≤4,400−20x ,4<x ≤20,由y ≥240,得{0≤x ≤4,80x ≥240或{4<x ≤20,400−20x ≥240,解得3≤x ≤4或4<x ≤8,∴3≤x ≤8.故第二次服药最迟应在当日下午4∶00.故选C.14.如图,某单位准备修建一个面积为600平方米的矩形场地(图中ABCD )的围墙,且要求中间用围墙EF 隔开,使得ABEF 为矩形,EFDC 为正方形,设AB =x 米,已知围墙(包括EF )的修建费用均为每米800元,设围墙(包括EF )的修建总费用为y 元.(1)求出y 关于x 的函数解析式;(2)当x 为何值时,围墙(包括EF )的修建总费用y 最小?并求出y 的最小值.【答案】(1)设AD =t 米,则由题意得xt =600,且t >x ,故t =600x >x ,可得0<x <10√6.则y =800(3x +2t )=800(3x +2×600x )=2400(x +400x ), 所以y 关于x 的函数解析式为y =2400(x +400x )(0<x <10√6). (2)y =2400(x +400x ),由对勾函数的性质知,当x =400x ,即x =20时,y 有最小值,最小值为96000元.15.某地需要修建一条大型输油管道通过240公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为400万元,铺设距离为x 公里的相邻两增压站之间的输油管道费用为(x 2+x )万元.设余下工程的总费用为y 万元.(1)试将y 表示成x 的函数;(2)需要修建多少个增压站才能使y 最小,其最小值为多少?【答案】(1)设需要修建k 个增压站,则(k +1)x =240,即k =240x -1. 所以y =400k +(k +1)(x 2+x )=400(240x -1)+240x (x 2+x )=96000x +240x -160.因为x 表示相邻两增压站之间的距离,则0<x ≤240.故y 与x 的函数关系是y =96000x +240x -160(0<x ≤240). (2)y =96000x +240x -160,由对勾函数的性质知,当96000x =240x ,即x =20时y 有最小值. 此时,k =240x -1=24020-1=11.故需要修建11个增压站才能使y 最小,其最小值为9440万元.16.为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,1cm 厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k 3x+5(0≤x ≤10,k 为常数),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求出最小值.【答案】(1)当x =0时,C =8,∴k =40,∴C (x )=403x+5.∴f (x )=6x +20×403x+5=6x +8003x+5(0≤x ≤10).(2)f (x )=2(3x +5)+8003x+5-10,设3x +5=t ,t ∈[5,35],∴y =2t +800t -10, 由对勾函数的性质知,当2t =800t ,即t =20时,y 有最小值.此时x =5,因此f (x )的最小值为70.即隔热层修建5cm 厚时,总费用f (x )达到最小,最小值为70万元.17.某公司对营销人员有如下规定:①年销售额x 在9万元以下,没有奖金;②年销售额x (万元),当x ∈[9,81]时,奖金为y (万元),y =log ax ,y ∈[2,4],且年销售额x 越大,奖金越多;③年销售额超过81万元,按5%(x -1)发奖金(年销售额x 万元).(1)求奖金y 关于x 的函数解析式;(2)某营销人员争取年奖金3≤y ≤10(万元),则年销售额x 在什么范围内?【答案】(1)∵y =log a x 在[9,81]上是增函数,∴log a9=2,∴a=3.经验证log381=4符合题意,∴y={0(0≤x<9),log3x(9≤x≤81),5%(x-1)(x>81).(2)∵3≤y≤10,∴3≤log3x≤4,∴27≤x≤81.∵4<120(x-1)≤10,∴81<x≤201,∴27≤x≤201.所以年销售额x的取值范围为[27,201]万元.18.南博汽车城销售某种型号的汽车,进货单价为25万元,市场调研表明,当销售单价为29万元时,每周平均售出8辆汽车;当每辆汽车每降价0.5万元时,平均每周能多售出4辆汽车,如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元(每辆车的销售利润=销售单价-进货单价).(1)求y与x之间的函数关系式,并在保证商家不亏本的前提下,写出x的取值范围;(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;(3)当每辆汽车的销售单价为多少万元时,平均每周的销售利润最大?最大利润是多少?【答案】(1)∵y=29-25-x,∴y=-x+4(0≤x≤4,x=0.5n,n∈N).(2)z=(8+x0.5×4)y=(8x+8)(-x+4)=-8x2+24x+32(0≤x≤4,x=0.5n,n∈N).(3)由(2)知,z=-8x2+24x+32=-8(x-1.5)2+50(0≤x≤4,x=0.5n,n∈N).故当x=1.5时,z max=50.所以当销售单价为29-1.5=27.5(万元)时,有最大利润,最大利润为50万元.19.“学习曲线”可以用来描述学习达到某一水平所需的学习时间,假设“学习曲线”符合函数t)(B为常数),N(单位:字)表示某一英文词汇量水平,t(单位:天)表示达到这一英文词=5log2(NB汇量所需要的学习时间.(1)已知某人学习达到40个词汇量,需要10天,求他的学习曲线解析式;(2)他学习几天能掌握160个词汇量;(3)如果他学习时间大于30天,他的词汇量情况如何.【答案】(1)把t=10,N=40代入t=5log2(N),B),解得B=10,得10=5log2(40B)(N>0).所以t=5log2(N10(2)当N=160时,t=5log2(160)=5log216=20.10)>30,(3)当t>30时,5log2(N10解得N>640,所以当学习时间大于30天时,他的词汇量大于640个.20.手机上网每月使用量在500分钟以下(包括500分钟)60分钟以上(不包括60分钟)按30元计费,超过500分钟的部分按0.15元/分钟计费,假如上网时间过短,使用量在1分钟以下不计费,在1分钟以上(包括1分钟)按0.5元/分钟计费,计费时间均取整数,不足1分钟的按1分钟计费,手机上网不收通话费和漫游费.(1)12月份小王手机上网使用量为20小时,要付多少钱?(2)小周10月份付了90元的手机上网费,那么他上网的计费时间是多少?(3)电脑上网费包月60元/月,根据时间长短,你会选择哪种方式上网呢?【答案】设上网时间为x分钟,用[x]表示不小于x的最小整数,由已知条件知,所付费用y关于x的函数解析式为y={0,0≤x<1,0.5[x],1≤x≤60,30,60<x≤500,30+0.15([x]−500),x>500.(1)当x=20×60=1200(分钟),即当x>500时,应付费y=30+0.15×(1200-500)=135(元).(2)90元已超过30元,所以上网时间超过500分钟,∴30+0.15×([x]-500)=90,解得[x]=900,所以他上网的计费时间为900分钟.(3)令60=30+0.15([x]-500),解得[x]=700.故当一个月经常上网(一个月上网计费时间超过700分钟)时,选择电脑上网,而当一个月短时间上网(一个月上网计费时间不超过700分钟)时,选择手机上网.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题练习-函数的实际应用[题型分析·高考展望] 函数的实际应用也是高考常考题型,特别是基本函数模型的应用,在选择题、填空题、解答题中都会出现,多以实际生活、常见的自然现象为背景,较新颖、灵活,解决此类问题时,应从实际问题中分析涉及的数学知识,从而抽象出基本函数模型,然后利用基本函数的性质或相应的数学方法,使问题得以解决.常考题型精析题型一 基本函数模型的应用例1 (1)(·北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟(2)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5 040x ,x ∈[120,144),12x 2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.①当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?②该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?点评 解决实际应用问题关键在于读题,读题必须细心、耐心,从中分析出数学“元素”,确定该问题涉及的数学模型,一般程序如下: 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.变式训练1 (1)(·北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程. 在这段时间内,该车每100千米平均耗油量为( ) A.6升 B.8升 C.10升 D.12升(2)2015年“五一”期间某商人购进一批家电,每台进价以按原价a 扣去20%,他希望对货物定一新价,以使每台按新价让利25%销售后,仍可获得售价20%的纯利,则此商人经营这种家电的件数x 与按新价让利总额y 之间的函数关系式是______________.题型二 分段函数模型的应用例2 2015年4月,某地自来水苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为m 的药剂后,经过x 天该药剂在水中释放的浓度y (毫克/升)满足y =mf (x ),其中f (x )=⎩⎪⎨⎪⎧x 216+2,0<x ≤4,x +142x -2,x >4,当药剂在水中的浓度不低于4(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于4(毫克/升)且不高于10(毫克/升)时称为最佳净化.(1)如果投放的药剂质量为m =4,试问自来水达到有效净化一共可持续几天? (2)如果投放药剂质量为m ,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m 的最小值.点评函数有关应用题的常见类型及解题关键(1)常见类型:与函数有关的应用题,经常涉及物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.变式训练2季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P与周次t之间的函数关系式;(2)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N,试问该服装第几周每件销售利润最大?最大值是多少?(注:每件销售利润=售价-进价)高考题型精练1.(·北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油2.(·湖南)某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.p+q2 B.(p+1)(q+1)-12C.pqD.(p+1)(q+1)-13.(·陕西)如图,某飞行器在4千米高空水平飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=1125x3-35x B.y=2125x3-45xC.y=3125x3-x D.y=-3125x3+15x4.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=a log2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A.300只B.400只C.600只D.700只5.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是(lg 2=0.301 0,lg 3=0.477 1,lg 109=2.037 4,lg 0.09=-2.954 3)()A.2015年B.2011年C.2016年D.2008年6.某公司在甲、乙两地销售一种品牌车,利润(单元:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.45.56万元D.45.51万元7.(·福建)要制作一个容积为4 m3,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元)8.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n年的累计产量为f(n)=12n(n+1)(2n+1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是______年.9.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过______ min,容器中的沙子只有开始时的八分之一.10.(2015·四川)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.11.为了保护学生的视力,课桌椅子的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为y cm,椅子的高度为x cm,则y应是x的一次函数,下表列出了两套符合条件的课桌椅的高度:(1)请你确定y与x的函数关系式(不必写出x的取值范围).(2)现有一把高42.0 cm的椅子和一张高78.2 cm的课桌,它们是否配套?为什么?12.某企业实行裁员增效,已知现有员工a人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的情况下,每裁员一人,则留岗员工每人每年可多创纯收益0.01万元,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的34,设该企业裁员x人后年纯收益为y万元.(1)写出y关于x的函数关系式,并指出x的取值范围;(2)当140<a≤280时,该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁员)答案精析——函数的实际应用 常考题型精析例1 (1)B [根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎨⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎨⎧7a +b =0.1,9a +b =-0.3,解得⎩⎨⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.] (2)解 ①当x ∈[200,300]时,设该项目获利为S , 则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损. ②由题意,可知二氧化碳的每吨处理成本为 y x =⎩⎪⎨⎪⎧13x 2-80x +5 040,x ∈[120,144).12x +80 000x -200,x ∈[144,500].(ⅰ)当x ∈[120,144)时,y x =13x 2-80x +5 040 =13(x -120)2+240,所以当x =120时,yx 取得最小值240. (ⅱ)当x ∈[144,500]时, y x =12x +80 000x -200≥212x ×80 000x -200=200,当且仅当12x =80 000x ,即x =400时,yx 取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低.变式训练1 (1)B (2)y =a3x (x ∈N *)解析 (1)由表知:汽车行驶路程为35 600-35 000=600千米,耗油量为48升,∴每100千米耗油量8升.(2)设每台新价为b ,则售价b (1-25%),让利b ×25%,由于原价为a ,则进价为a (1-20%),根据题意,得每件家电利润为b ×(1-25%)×20%=b ×(1-25%)-a (1-20%),化简得b =43a .∴y =b ×25%·x =43a ×25%×x =a3x (x ∈N *), 即y =a3x (x ∈N *).例2 解 (1)由题意,得当药剂质量m =4时, y =⎩⎪⎨⎪⎧x 24+8,0<x ≤4,2x +28x -1,x >4.当0<x ≤4时,x 24+8≥4,显然符合题意. 当x >4时,2x +28x -1≥4,解得4<x ≤16.综上0<x ≤16.所以自来水达到有效净化一共可持续16天.(2)由y =m ·f (x )=⎩⎪⎨⎪⎧mx 216+2m ,0<x ≤4,m (x +14)2x -2,x >4,得当0<x ≤4时,y =mx 216+2m 在区间(0,4]上单调递增,即2m <y ≤3m ; 当x >4时,y ′=-30m(2x -2)2<0,所以函数在区间(4,7]上单调递减, 即7m 4≤y <3m ,综上知,7m4≤y ≤3m ,为使4≤y ≤10恒成立,只要7m4≥4且3m ≤10即可, 即167≤m ≤103.所以应该投放的药剂量m 的最小值为167.变式训练2 解(1)P =⎩⎨⎧10+2t ,t ∈[0,5],t ∈N ,20,t ∈(5,10],t ∈N ,40-2t ,t ∈(10,16],t ∈N .(2)设该服装每件销售利润为L 元. 由题意,得L =⎩⎨⎧10+2t +0.125(t -8)2-12,t ∈[0,5],t ∈N ,20+0.125(t -8)2-12,t ∈(5,10],t ∈N ,40-2t +0.125(t -8)2-12,t ∈(10,16],t ∈N=⎩⎨⎧0.125t 2+6,t ∈[0,5],t ∈N ,0.125t 2-2t +16,t ∈(5,10],t ∈N ,0.125t 2-4t +36,t ∈(10,16],t ∈N .①当t ∈[0,5]时,L max =9.125,此时t =5; ②当t ∈(5,10]时,L max =8.5,此时t =6或10; ③当t ∈(10,16]时,L max =7.125,此时t =11; ∴第五周每件销售利润最大,最大值为9.125元. 高考题型精练1.D [根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A 错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B 错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对.]2.D [设年平均增长率为x ,则(1+x )2=(1+p )(1+q ),∴x =(1+p )(1+q )-1.]3.A [函数在[-5,5]上为减函数,所以在[-5,5]上y ′≤0,经检验只有A 符合.故选A.]4.A [将x =1,y =100代入y =a log 2(x +1)得,100=a log 2(1+1),解得a =100,所以x =7时,y =100log 2(7+1)=300.]5.B [设1995年生产总值为a ,经过x 年翻两番,则a ·(1+9%)x=4a .∴x =2lg 2lg 1.09≈16.]6.B [依题意可设甲销售x 辆,则乙销售(15-x )辆,所以总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30 (x ≥0),所以当x =10时,S 有最大值为45.6(万元).]7.160解析 设该长方体容器的长为x m ,则宽为4x m.又设该容器的造价为y 元,则y=20×4+2(x +4x )×10,即y =80+20(x +4x )(x >0).因为x +4x ≥2x ·4x =4(当且仅当x =4x ,即x =2时取“=”),所以y min =80+20×4=160(元).8.7解析 设第n (n ∈N *)年的年产量为a n ,则a 1=12×1×2×3=3;当n ≥2时,a n =f (n )-f (n -1)=12n (n +1)·(2n +1)-12n (n -1)(2n -1)=3n 2.又a 1=3也符合a n =3n 2,所以a n =3n 2(n ∈N *).令a n ≤150,即3n 2≤150,解得-52≤n ≤52,所以1≤n ≤7,n ∈N *,故最长的生产期限为7年.9.16解析 当t =0时,y =a ,当t =8时,y =a e -8b =12a ,∴e -8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.10.24解析 由题意得⎩⎨⎧e b =192,e22k +b =48,∴e 22k =48192=14,∴e 11k =12,∴x =33时,y =e 33k +b=(e 11k )3·e b =⎝ ⎛⎭⎪⎫123·e b =18×192=24. 11.解 (1)根据题意,课桌高度y 是椅子高度x 的一次函数,故可设函数关系为y =kx +b .将符合条件的两套课桌椅的高度代入上述函数关系式,得⎩⎨⎧ 40k +b =75,37k +b =70.2, ∴⎩⎨⎧k =1.6,b =11.∴y 与x 的函数关系式是y =1.6x +11.(2)把x =42代入上述函数关系式中,有y =1.6×42+11=78.2.∴给出的这套课桌椅是配套的.12.解 (1)由题意可知,y =(a -x )(1+0.01x )-0.4x=-1100x 2+⎝ ⎛⎭⎪⎫a 100-140100x +a . ∵a -x ≥34a ,∴x ≤14a ,即x 的取值范围是⎣⎢⎡⎦⎥⎤0,a 4中的自然数. (2)∵y =-1100⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫a 2-702+1100⎝ ⎛⎭⎪⎫a 2-702+a , 且140<a ≤280,∴当a 为偶数时,x =a 2-70,y 取最大值.当a 为奇数时,x =a -12-70,y 取最大值(∵尽可能少裁人,∴舍去x =a +12-70).∴当员工人数为偶数时,裁员⎝ ⎛⎭⎪⎫a 2-70人,才能获得最大的经济效益; 当员工人数为奇数时,裁员⎝ ⎛⎭⎪⎫a -12-70人,才能获得最大的经济效益.。

相关文档
最新文档