2020届天津市塘沽一中2017级高三二模考试数学试卷参考答案
天津市滨海新区塘沽一中2020届高三复课模拟考试数学试卷(解析)
1时, an
an1
1 1n
2
,
a2n+1 a2n 1
1 2
2 n +1
a2n
1 ①,
a2n a2n1 1
1 2
2n
a2 n 1
②,
则① ②得 a2n1 a2n1 1,
2
当 n 1 时, a1 1,
a2n1 是首项为 1,公差为 1 的等差数列
(2)①当
2 时, an
y
3m 3m2
4
m
x
4 3m2
4
,
令
y
0
,得
x
1 3m2
4
,即
G
1 3m2
4
,
0
,所以
GF2
1 3m2
4
1
3m2 3m2
3 4
12 m2 1
所以 | AB | GF2
3m2 4 3m2 3
12 3
4
,所以
| AB GF2
|
为定值,定值为
4.
3m2 4
19.【详解】
(1)证明:当
20.(1)由 g x 1 aex 得切线的斜率为 k g1 1 ae ,切点为 1, ae .
x
∴切线方程为: y ae 1 ae x 1 ,
3
∴所求切线的一般式方程为 1 ae x y 1 0 .
(2)令 f x g x h x ln x aex axex 由题意可知, f x 的定义域为 0, ,
4 3
,公比为
4
的等比数列,
a2n1
1 3
4 3
4n1
1 4n , 3
[精品]2017年天津市滨海新区高考数学模拟试卷及解析答案word版(理科)
2017年天津市滨海新区高考数学模拟试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知集合M={x|x2﹣1≤0},N=|x∈Z|<2x+1<4},则M∩N=()A.{1}B.{﹣1,0}C.{﹣1,0,1}D.∅2.(5分)若x,y满足约束条件,则z=x+y的最大值为()A.B.﹣3 C.D.13.(5分)执行如图所示的程序框图,若输入的x=2017,则输出的i=()A.5 B.4 C.3 D.24.(5分)“∀x∈R,x2+ax+1>0成立”是“|a|≤2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)△ABC的内角A、B、C的对边分别为a,b,c,若cosA=,bcosC+ccosB=2,则△ABC外接圆的面积为()A.4πB.8πC.9πD.36π6.(5分)已知双曲线9y2﹣m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=()A.1 B.2 C.3 D.47.(5分)已知函数f(x)=(e x﹣e﹣x)x.若f(log 3x)+f(log x)≤2f(1),则x的取值范围()A.(﹣∞]∪[3,+∞)B.[,3]C.[,1]D.[1,3]8.(5分)定义在R上的函数y=f(x),当x∈[0,2]时,f(x)=4(1﹣|x﹣1|),且对任意实数x∈[2n﹣2,2n+1﹣2](n∈N*,n≥2),都有f(x)=f(﹣1).若g(x)=f(x)﹣log a x有且仅有3个零点,则实数a的取值范围是()A.[2,10] B.[,]C.(2,10)D.[2,10)二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知i是虚数单位,若复数z=(m∈R)是纯虚数,则m=.10.(5分)一个几何体的三视图如图所示,则该几何体的体积为.11.(5分)设a=cosxdx,则(a+)6展开式中的常数项为.12.(5分)在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρsin(θ+)=1,圆C的参数方程为(θ为参数).则直线l与圆C相交所得弦长为.13.(5分)已知抛物线(t为参数),过其焦点F的直线l与抛物线分别交于A、B两点(A在第一象限内),|AF|=3|FB|,过AB的中点且垂于l的直线与x轴交于点G,则△ABG的面积为.14.(5分)如图,已知点G是△ABC的重心,过点G作直线与AB、AC两边分别交于M、N两点,且=,=,则+的最小值为.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=cosx•tan(x+)cos(x+)﹣cos2x+.(Ⅰ)求函数f(x)的定义域和最小正周期;(Ⅱ)求函数f(x)在x∈[﹣,0]上的最大值和最小值.16.(13分)随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店;5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取4名,求至多有一名倾向于选择实体店的女性购物者的概率;(Ⅱ)若分别从男性购物者和女性购物者中各随机抽取2名,设X表示抽到倾向于选择网购的人数,求X的分布列和数学期望.17.(13分)如图,已知直角梯形ABCD所在的平面垂直于平面ABE,∠EAB=∠ABC=90°,∠DAB=60°,AB=AD=AE,P为线段BE的中点.(Ⅰ)求证:CP∥平面DAE;(Ⅱ)求平面CDE与平面ABE所成的锐二面角θ的余弦值;(Ⅲ)在线段EC上是否存在一点Q,使直线PQ与平面CDE所成的角的正弦值为.若存在,求出的值;若不存在,请说明理由.18.(13分)已知正项数列{a n}是公差为2的等差数列,数列{b n}满足b1=1,b2=,且b n﹣b n=.+1(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和T n,并证明≤T n<对一切n∈N*都成立.19.(14分)已知椭圆C:+=1(a>b>0)离心率为,它的一个顶点在抛物线x2=4y的准线上.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,一条直线l与椭圆交于M、N两点,直线OM、ON的斜率之积为﹣,求△MON的面积.20.(14分)已知函数f(x)=lnx+ax2,g(x)=+x,且直线y=﹣是曲线y=f (x)的一条切线.(Ⅰ)求实数a的值;(Ⅱ)对任意的x1∈[1,],都存在x2∈[1,4],使得f(x1)=g(x2),求实数b的取值范围;(Ⅲ)已知方程f(x)=cx有两个根x1,x2(x1<x2),若b=1时有g(x1+x2)+m+2c=0,求证:m<0.2017年天津市滨海新区高考数学模拟试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知集合M={x|x2﹣1≤0},N=|x∈Z|<2x+1<4},则M∩N=()A.{1}B.{﹣1,0}C.{﹣1,0,1}D.∅【解答】解:集合M={x|x2﹣1≤0}={x|﹣1≤x≤1},N={x|<2x+1<4,x∈Z}={x|﹣2<x<1,x∈Z}={﹣1,0},则M∩N={﹣1,0}故选:B2.(5分)若x,y满足约束条件,则z=x+y的最大值为()A.B.﹣3 C.D.1【解答】解:由约束条件,作出可行域如图,由解得A(0,1)化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A(0,1)时,目标函数有最大值,为z=1+0=1.故选:D.3.(5分)执行如图所示的程序框图,若输入的x=2017,则输出的i=()A.5 B.4 C.3 D.2【解答】解:根据题意,得a=2017,i=1,b=﹣,i=2,a=﹣,b=,i=3,a=,b=2017,不满足b≠x,退出循环,输出i的值为3.故选:C.4.(5分)“∀x∈R,x2+ax+1>0成立”是“|a|≤2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:“∀x∈R,x2+ax+1>0成立”⇔△=a2﹣4<0,⇔“|a|<2”.∴“∀x∈R,x2+ax+1>0成立”是“|a|≤2”的充分不必要条件.故选:A.5.(5分)△ABC的内角A、B、C的对边分别为a,b,c,若cosA=,bcosC+ccosB=2,则△ABC外接圆的面积为()A.4πB.8πC.9πD.36π【解答】解:由题意,cosA=,∴sinA=.由正弦定理:,可得:2RsinBcosC+2RsinCcosB=2.即R(sinBcosC+sinCcosB)=1.RsinA=1.∴R=3.圆的面积为:πR2=9π.故选:C.6.(5分)已知双曲线9y2﹣m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=()A.1 B.2 C.3 D.4【解答】解:,取顶点,一条渐近线为mx﹣3y=0,∵故选D.7.(5分)已知函数f(x)=(e x﹣e﹣x)x.若f(log 3x)+f(log x)≤2f(1),则x的取值范围()A.(﹣∞]∪[3,+∞)B.[,3]C.[,1]D.[1,3]【解答】解:函数f(x)=(e x﹣e﹣x)x,x∈R,∴f(﹣x)=(e﹣x﹣e x)•(﹣x)=(e x﹣e﹣x)x=f(x),∴f(x)是定义域R上的偶函数;又f(x)=f(﹣log 3x)=f(log3x),∴不等式f(log 3x)+f(log x)≤2f(1)可化为f(log3x)≤f(1);又f′(x)=(e x﹣e﹣x)+(e x+e﹣x)x,当x≥0时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上是单调增函数;∴原不等式可化为﹣1≤log3x≤1,解得≤x≤3;∴x的取值范围是[,3].故选:B.8.(5分)定义在R上的函数y=f(x),当x∈[0,2]时,f(x)=4(1﹣|x﹣1|),且对任意实数x∈[2n﹣2,2n+1﹣2](n∈N*,n≥2),都有f(x)=f(﹣1).若g(x)=f(x)﹣log a x有且仅有3个零点,则实数a的取值范围是()A.[2,10] B.[,]C.(2,10)D.[2,10)【解答】解:当x∈[0,2]时,f(x)=4(1﹣|x﹣1|),当n=2时,x∈[2,6],此时﹣1∈[0,2],则f(x)=f(﹣1)=×4(1﹣|﹣1﹣1|)=2(1﹣|﹣2|),当n=3时,x∈[6,14],此时﹣1∈[2,6],则f(x)=f(﹣1)=×2(1﹣|﹣|)=1﹣|﹣|,由g(x)=f(x)﹣log a x=0,得f(x)=log a x,分别作出函数f(x)和y=log a x的图象,若0<a<1,则此时两个函数图象只有1个交点,不满足条件.若a>1,当对数函数图象经过A时,两个图象只有2个交点,当图象经过点B 时,两个函数有4个交点,则要使两个函数有3个交点,则对数函数图象必须在A点以下,B点以上,∵f(4)=2,f(10)=1,∴A(4,2),B(10,1),即满足,即,解得,即2<a<10,故选:C.二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知i是虚数单位,若复数z=(m∈R)是纯虚数,则m=﹣2.【解答】解:复数z===+i是纯虚数,则=0,≠0,解得m=﹣2.故答案为:﹣2.10.(5分)一个几何体的三视图如图所示,则该几何体的体积为.【解答】解:由三视图可知:该几何体左边是半圆柱,右边是四棱锥.∴该几何体的体积V=+=.故答案为:.11.(5分)设a=cosxdx,则(a+)6展开式中的常数项为240.【解答】解:a=cosxdx==2,则的展开式中通项公式:T r==26﹣r,+1令3﹣=0,解得r=2.∴常数项==240.故答案为:240.12.(5分)在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρsin(θ+)=1,圆C的参数方程为(θ为参数).则直线l与圆C相交所得弦长为.【解答】解:直线l的极坐标方程为ρsin(θ+)=1,展开可得:ρsinθ+=1,化为直角坐标方程:x+y﹣2=0.圆C的参数方程为(θ为参数),化为普通方程:=4,可得圆心,半径r=2.圆心C到直线l的距离d==.∴直线l与圆C相交所得弦长=2=2=.故答案为:.13.(5分)已知抛物线(t为参数),过其焦点F的直线l与抛物线分别交于A、B两点(A在第一象限内),|AF|=3|FB|,过AB的中点且垂于l的直线与x轴交于点G,则△ABG的面积为.【解答】解:抛物线(t为参数),消去参数化为:y2=4x.设直线l的方程为:y=k(x﹣1),A(x1,y1),B(x2,y2).联立,化为:k2x2﹣(4+2k2)x+k2=0,△>0,∴x1+x2=,x1x2=1,(*)可得线段AB的中点M.∵|AF|=3|FB|,∴=3,∴1﹣x1=3(x2﹣1),与(*)联立可得:k2=3,取k=.∴M,∴过AB的中点且垂于l的直线方程为:y﹣=﹣(x﹣),令y=0,可得G,∴点G到直线l的距离d==.|AB|===.∴△ABG的面积S=•d•|AB|=×=.故答案为:.14.(5分)如图,已知点G是△ABC的重心,过点G作直线与AB、AC两边分别交于M、N两点,且=,=,则+的最小值为3.【解答】解:由向量共线定理可得:=m+(1﹣m)=+(1﹣m)×.==+.∴,(1﹣m)×=.化为:a﹣1=.∴+=b﹣2+≥2,当且仅当b=a=3时取等号.故答案为:2.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=cosx•tan(x+)cos(x+)﹣cos2x+.(Ⅰ)求函数f(x)的定义域和最小正周期;(Ⅱ)求函数f(x)在x∈[﹣,0]上的最大值和最小值.【解答】解:(Ⅰ)由题意,函数f(x)=cosx•tan(x+)cos(x+)﹣cos2x+.根据正切函数的性质可得x+≠,k∈Z,可得:x≠,k∈Z,函数f(x)的定义域为{x∈R|x≠,k∈Z}.将函数f(x)化简可得:f(x)=cosx•sin(x+)﹣cos2x+=sinxcosx+cos2x﹣cos2x+.=sin2x﹣cos2x=sin2x﹣=sin2x﹣cso2x=sin(2x﹣)∴函数f(x)的最小正周期T=.(Ⅱ)由(Ⅰ)可知f(x)=sin(2x﹣)当x∈[﹣,0]上时,可得:2x﹣∈[,].当2x﹣=时,f(x)取得最小值为﹣.当2x﹣=时,f(x)取得最大值为.故得函数f(x)在x∈[﹣,0]上的最大值为,最小值为.16.(13分)随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店;5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取4名,求至多有一名倾向于选择实体店的女性购物者的概率;(Ⅱ)若分别从男性购物者和女性购物者中各随机抽取2名,设X表示抽到倾向于选择网购的人数,求X的分布列和数学期望.【解答】解:(Ⅰ)设“至多有1名倾向于选择实体店的女性购物者”为事件A,则P(A)=+=;(Ⅱ)根据题意,X的取值为0,1,2,3,4;则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==;∴随机变量X的分布列为:数学期望为E(X)=0×+1×+2×+3×+4×=2.17.(13分)如图,已知直角梯形ABCD所在的平面垂直于平面ABE,∠EAB=∠ABC=90°,∠DAB=60°,AB=AD=AE,P为线段BE的中点.(Ⅰ)求证:CP∥平面DAE;(Ⅱ)求平面CDE与平面ABE所成的锐二面角θ的余弦值;(Ⅲ)在线段EC上是否存在一点Q,使直线PQ与平面CDE所成的角的正弦值为.若存在,求出的值;若不存在,请说明理由.【解答】(Ⅰ)证明:取AE的中点F,连接DF、PF,∵P为BE中点,∴PF∥AB,且PF=,又直角梯形ABCD中,∠DAB=60°,AB=AD,可得DC∥AB,且DC=,∴PF∥DC,且PF=DC,则四边形DCPF为平行四边形,可得PC∥DF.而DF⊂平面EAD,PC⊄平面EAD,∴CP∥平面DAE;(II)解:∵∠BAE=90°,平面ABCD平面ABE,在平面ABCD内过A作Az⊥AB.∴以点A为原点,直线AE为x轴,直线AB为y轴,Az为z轴建立空间直角坐标系A﹣xyz,设AB=AD=AE=2,由已知,得E(2,0,0),C(0,2,),D(0,1,).∴,,设平面ECD的法向量为=(x,y,z),则,取z=2,得平面ECD的一个法向量为=(,0,2).又∵平面ABC的一个法向量为=(0,0,1).∴cosθ=|cos<>|=,即平面CDE与平面ABE所成的锐二面角θ的余弦值为;(Ⅲ)解:线段EC上存在点Q,使直线PQ与平面CDE所成的角的正弦值为,此时=或=.设Q(x,y,z),且,则(x﹣2,y,z)=(﹣2),∴,即Q(2﹣2λ,2λ,),P(1,1,0),则.∵直线PQ与平面CDE所成的角的正弦值为,∴|cos<>|=||=.解得:或.∴=或=.18.(13分)已知正项数列{a n}是公差为2的等差数列,数列{b n}满足b1=1,b2=,﹣b n=.且b n+1(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和T n,并证明≤T n<对一切n∈N*都成立.﹣b n=.∴,,【解答】解:(Ⅰ)∵b n+1解得a1=1 (负值舍去)即数列{a n}是公差为2,首项为1的等差数列,∴a n=2n﹣1b n+1﹣b n==.,,…由累加法得:,∴(Ⅱ)∵(2﹣b n)2=∴c n==,T n=…①T n=++…+++…②①﹣②得﹣==∴T n=.令f(n)=,∵f(n+1)﹣f(n)=∴令f(n)=,当n∈N+时递减,则T n=递增.∴,即≤T n<对一切n∈N*都成立.19.(14分)已知椭圆C:+=1(a>b>0)离心率为,它的一个顶点在抛物线x2=4y的准线上.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,一条直线l与椭圆交于M、N两点,直线OM、ON的斜率之积为﹣,求△MON的面积.【解答】解:(Ⅰ)∵椭圆的焦点在x轴上,抛物线x2=4y的准线,y=﹣1,由椭圆的顶点在抛物线的准线上,则b=1,椭圆的离心率e===,则a=2,∴椭圆C的方程为;(Ⅱ)当直线MN的斜率存在时,设其方程为y=kx+m,(m≠0),设M(x1,y1),N(x2,y2),由,消去y,得:(4k2+1)x2+8kmx+4m2﹣4=0,则x1+x2=﹣,x1x2=,∴|MN|==,点O到直线y=kx+m的距离d=,S△MON=×丨MN丨×d=2,∵k 1k2=﹣,∴k1k2=====﹣,∴4k2=2m2﹣1,=2=2=1.∴S△MON∴△MON的面积1.20.(14分)已知函数f(x)=lnx+ax2,g(x)=+x,且直线y=﹣是曲线y=f (x)的一条切线.(Ⅰ)求实数a的值;(Ⅱ)对任意的x1∈[1,],都存在x2∈[1,4],使得f(x1)=g(x2),求实数b的取值范围;(Ⅲ)已知方程f(x)=cx有两个根x1,x2(x1<x2),若b=1时有g(x1+x2)+m+2c=0,求证:m<0.【解答】(I)解:f(x)=lnx+ax2,(x>0),f′(x)=+2ax.设切点为,则f′(x0)=+2ax0=0,lnx0+=﹣,解得x0=1,a=﹣.(II)解:对任意的x1∈[1,],都存在x2∈[1,4],使得f(x1)=g(x2),⇔函数f(x)的值域A是函数g(x)的值域B的子集,即A⊆B.(i)由(I)可得:f(x)=lnx﹣x2,x∈[1,],f′(x)=﹣x=.可知:函数f(x)在x∈[1,]单调递减,∴f(x)=f(1)=﹣,f(x)min=f()=.max∴A=.(ii)g′(x)=1﹣=.b≤1时,g′(x)≥0,函数g(x)在x∈[1,4]单调递增,g(1)=b+1,g(4)=4+.∴B=.∵A⊆B.∴,解得,满足条件.b>1时,g(x)=x+>0,不满足A⊆B,舍去.综上可得:实数b的取值范围是.(III)证明:方程f(x)=cx有两个根x1,x2(x1<x2),∴lnx1﹣=cx1,lnx2﹣=cx2,∴lnx2﹣lnx1+﹣=cx2﹣cx1,∴2c=﹣(x2+x1).(*)b=1时有g(x1+x2)+m+2c=0,∴+(x2+x1)+m+2c=0,把(*)代入上式可得:++m=0,即﹣m=+,证明m<0⇔+>0,∵x 1<x 2,∴x 2﹣x 1>0,ln>ln1=0,∴+>0,因此m <0.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
天津市滨海新区塘沽第一中学2020届高三毕业班第二次模拟数学试题及答案
姓名
座号
2020 年塘沽一中高三毕业班第二次模拟考试
数学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷两部分,共 150 分,考试用时 120 分钟。第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页。
温馨提示:疫情期间,受时间和地域限制,此次考试采用线上测试方式,答卷时,考生务必 将答案选出上传,拍照上传部分的试题按要求,拍照清楚,在规定时间内完成上传。特殊时期, 请各位考生珍惜实战演练机会,独立作答!
数学
第Ⅱ卷
二.填空题(每小题 5 分,共 30 分,将每道小题的结果标清题号按顺序分别拍图片上传)
10.函数 f (x) log0.5(4x 3)的定义域是 ____________.
11.已知二项式
x2
2 x
n
的展开式中各项的二项式系数和为 512 ,其展开式中第四项的系数
____________.
4 月 23 日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外 阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一 个读书小组)学生抽取 12 名学生参加问卷调查.各组人数统计如下:
小组
甲
乙
人数
12
9
丙
丁
6
9
(1)从参加问卷调查的 12 名学生中随机抽取 2 人,求这 2 人来自同一个小组的概率;
12.已知 F 是抛物线 C : y2 2x 的焦点, 是 C 上一点,F 的延长线交 y 轴于点 .若 为
F 的中点,则 F ____________.
13.已知三棱锥 P-ABC 的四个顶点在球 O 的球面上,PA=PB=PC,△ABC 是边长为 2 的正三角形,
2020届天津市南开区2017级高三下学期二模考试数学试卷参考答案
当 k=0 时,可得 m=0, 综上,m∈[0, 1 ).
2 (ⅱ)依题意有|QF1|=|QA|=|QB|,且 F1(–1,0),
…………11 分
∴由
(
x
m)2 x2
y2 2y
(m 2 2,
1)2,消去
y,得
x2–4mx2–4m=0,
…………12 分
∴x1,x2 也是此方程的两个根.
∴x1+x2=4m=
i 1
pq p2n1
2n1
(1)i1 p q 2n1i i1 ] 2m–1
i 1
[1 ( q )2m1 ] 2n–1>[1 ( q )2n1 ] 2m–1
p
p
[1
(
q
)2
1
m1]2m1
>[1
(
q
1
)2n1]2n1
p
p
1 ln[1 ( q )2m1]> 1 ln[1 ( q )2n1].
2m 1
p
2n 1
南开区高三年级模拟考试(二)参考答案 第 4 页(共 8 页) 2020届天津市南开区2017级高三下学期二模考试数学试卷
解得 d=2,q=2 或 d= 1 ,q=5, 2
由于{an}是各项都为整数的等差数列,所以 d=2,q=2. ………………4 分
从而 an=2n–1,bn=2n–1. (Ⅱ)∵log2bn=n–1,
(10)(0,2]; (11)2; (12)4;
(13)3,1;(第一个空 2 分,第二个空 3 分) (14)4;
(15)[0,2],(–∞,–1]∪(3,+∞).(第一个空 2 分,第二个空 3 分)
三、解答题:(其他正确解法请比照给分)
2020年2020届天津市滨海新区2017级高三高考二模考试数学试卷及解析
2020年2020届天津市滨海新区2017级高三高考二模考试数学试卷★祝考试顺利★(解析版)一、选择题1.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}2,3,4B =,则集合U A B 是( ) A. {1,3,5,6}B. {1,3,5}C. {1,3}D. {1,5} 【答案】D【解析】利用补集和交集的定义可求出集合U A B . 【详解】集合{}1,2,3,4,5,6U =,{}13,5A =,,{}2,3,4B =,则{}1,5,6U B =, 因此,{}1,5U AB =. 故选:D.2.设x ∈R ,则“|2|1x ->”是“2430x x -+>”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件【答案】C【解析】 分别求解|2|1x ->和2430x x -+>,观察解集的关系即可得出结果.【详解】解:|2|1x ->等价于2121x x ->-<-或,即31x x ><或;2430x x -+>的解为31x x ><或,解集相等,所以“|2|1x ->”是“2430x x -+>”的充分必要条件.故选:C.3.某校有200位教职员工,其每周用于锻炼所用时间的频率分布直方图如图所示.据图估计,每周锻炼时间在[10,12]小时内的人数为( )A. 18B. 36C. 54D. 72【答案】B【解析】 由频率分布直方图求出每周锻炼时间在[10,12]小时内的频率,由此能求出每周锻炼时间在[10,12]小时内的人数.【详解】由频率分布直方图得:每周锻炼时间在[10,12]小时内的频率为:1﹣(0.03+0.06+0.18+0.14)×2=0.18, ∴每周锻炼时间在[10,12]小时内的人数为:200×0.18=36.故选:B .4.函数()()311x x e f x x e +=-(其中e 为自然对数的底数)的图象大致为( ) A. B. C. D.【答案】D【解析】先根据函数的奇偶性排除A 、C,再由x →+∞时,()f x 的趋向性判断选项即可 【详解】由题,()f x 的定义域为{}|0x x ≠,因为()()()()331111x x x x e e f x f x x e x e --++-===---,所以()f x 是偶函数,图象关于y 轴对称,故排除A 、C ;又因()()()33311211x x x e f x x x e x e +==+--,则当x →+∞时,3x →+∞,1x e -→+∞,所以()0f x →,。
2020年天津市塘沽一中高考数学模拟试卷(3月份)
2020年天津市塘沽一中高考数学模拟试卷(3月份)一、选择题(将每道小题的答案选项直接上传) 1.(5分)已知集合{|21x A y y ==+,}x R ∈,1{|0}2x B x x +=-…,则()(R A B =⋂ð ) A .[2,)+∞B .[1,2]C .(1,2]D .(-∞,1]2.(5分)函数2cos ()x xx xf x e e --=+的大致图象为( )A .B .C .D .3.(5分)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“1532S S S +<”是“0d <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(5分)设1F ,2F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=相切于点E ,与双曲线右支交于点P ,且满足11()2OE OP OF =+u u u r u u u r u u u r,||3OE =u u u r ( )A .221612x y -=B .22169x y -=C .22136x y -=D .221312x y -=5.(5分)定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当[0x ∈,1]时,()21x f x =-,设1a lnπ=,25lnb e-=,0.11()3c -=,则( )A .f (a )f <(b )f <(c )B .f (b )f <(c )f <(a )C .f (b )f <(a )f <(c )D .f (c )f <(b )f <(a )6.(5分)已知()sin()cos()f x x x ωϕωϕ=+++,0ω>,||2πϕ<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( )A .()f x 在3(,)88ππ上单调递减B .()f x 在(0,)4π上单调递减C .()f x 在(0,)4π上单调递增D .()f x 在3(,)88ππ上单调递增7.(5分)袋中装有5个同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3个球,记被取出的球的最大号码数为ξ,则E ξ等于( ) A .4B .4.5C .4.75D .58.(5分)已知M 是边长为1的正ABC ∆的边AC 上的动点,N 为AB 的中点,则BM MNu u u u r u u u u r g 的取值范围是( )A .3[4-,23]64-B .3[4-,1]2-C .2[5-,1]5-D .3[5-,1]2-9.(5分)已知函数32()32f x x x =-+,函数22(3)1,0()1()1,02x x g x x x ⎧-++<⎪=⎨-+⎪⎩…,则关于x 的方程[()]0(0)g f x a a -=>的实根个数取得最大值时,实数a 的取值范围是( )A .(1,5]4B .5(1,)4C .[1,5]4D .[0,5]4二、填空题(每小题5分,共30分,将前三道题的结果直接上传,后三道结果标清题号按顺序分别拍图片上传) 10.(5分)i 是虚数单位,则(34)(1)||1i i i+-=+ .11.(5分)已知9(a x 的展开式中,3x 的系数为94,则常数a 的值为 .12.(5分)已知抛物线2:2(0)C y px p =>的焦点为F ,准线5:2l x =-,点M 在抛物线C 上点A 在准线l 上,若MA l ⊥,直线AF 的倾斜角为3π,则||MF = . 13.(5分)一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个球的半径是 ,三棱柱的体积是 .14.(5分)已知正实数x ,y 满足22412x y xy +=+,则当x = 时,121x y xy ++的最小值是 .15.(5分)定义在R 上的偶函数()f x 满足()()f e x f e x +=-,且(0)0f =,当(0x ∈,]e 时,()f x lnx =.已知方程1()sin()22f x x e π=在区间[e -,3]e 上所有的实数根之和为3ea .将函数2()3sin ()14g x x π=+的图象向右平移a 个单位长度,得到函数()h x 的图象,则a = ,h (8)=.三、解答题(共5个大题,共75分,将每道大题的解题过程按规定顺序拍图片分别上传)16.(14分)已知函数2()(4cos2)sin2cos4f x x x x=-+,x R∈.(1)求函数()f x的单调区间,并求当[0x∈,]4π时,函数()f x的最大值和最小值:(2)设A,B,C为ABC∆的三个内角,若22cos B=,()12Af=-,且角A为钝角,求cos C的值.17.(15分)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD CD⊥,//AB CD,112AB AD CD===,点M在线段EC上.(Ⅰ)若点M为EC的中点,求证://BM平面ADEF;(Ⅱ)求证:平面BDE⊥平面BEC;(Ⅲ)当平面BDM与平面ABF所成二面角的余弦值为6时,求AM的长.18.(15分)已知nS是数列{}na的前n项和,12a=,且14n n nS a a+=g,数列{}nb中,114b=,且1(1)nnnnbbn b+=+-,*n N∈.(1)求数列{}na的通项公式;(2)设*1233()2nnnban N+=∈ð,求{}nð的前n项和nT.19.(15分)已知函数2()(1)xf x x a e=-+.(1)当2a=时,求曲线()y f x=在点(1,f(1))处的切线方程;(2)讨论函数()f x的单调的单调性;(3)已知1x,2x是()f x的两个不同的极值点,12x x<,且1212||||1x x x x+-…,若12111()()(2)xg x f x x e=+-,证明:126()g xe„.20.(16分)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,短轴两个端点为A 、B ,且四边形12F AF B 是边长为2的正方形.(1)求椭圆的方程;(2)若C 、D 分别是椭圆长的左、右端点,动点M 满足MD CD ⊥,连接CM ,交椭圆于点P .证明:OM OP u u u u r u u u rg 为定值. (3)在(2)的条件下,试问x 轴上是否存异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,请说明理由.。
2020届天津市滨海新区塘沽一中高三毕业班下学期复课模拟检测数学答案
1 绝密★启用前
天津市滨海新区塘沽一中
2020届高三毕业班下学期复课模拟检测
数学试题参考答案
一、选择题
1-4 CDAC 5-9 DAABD
二、填空题 10.52 11;.22216y x ; 12. 32,1027 13;827 14 7
7. 15 8
16.【答案】解:设“从这100箱橙子中随机抽取一箱,抽到一级品的橙子”为事件A ,
则
现有放回地随机抽取4箱,设抽到一级品的个数为, 则
, 所以恰好抽到2箱是一级品的概率为
. 设方案二的单价为,则单价的期望为
,
因为, 所以从采购商的角度考虑应该采用方案一. 用分层抽样的方法从这100箱橙子中抽取10箱,其中珍品4箱,非珍品6箱, 则现从中抽取3箱,则珍品等级的数量X 服从超几何分布,
则X 的所有可能取值分别为0,1,2,3,。
2020年天津市塘沽一中高考数学二模试卷
2020年天津市塘沽一中高考数学二模试卷一、选择题1.(5分)设复数z 满足(1)21(z i i i +=+g 为虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(5分)已知集合{|0}3xA x Z x =∈+„,则集合A 真子集的个数为( ) A .3B .4C .7D .83.(5分)已知m 为实数,直线1:10l mx y +-=,2:(32)20l m x my -+-=,则“1m =”是“12//l l ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.(5分)已知圆224210x y x y +-++=关于双曲线2222:1(0,0)y x C a b a b-=>>的一条渐近线对称,则双曲线C 的离心率为( )A B .5 C D .54 5.(5分)已知数列{}n a 的通项公式是221sin()2n n a n π+=,则12312(a a a a +++⋯+= )A .0B .55C .66D .786.(5分)设()f x 是定义在实数集R 上的函数,满足条件(1)y f x =+是偶函数,且当1x …时,1()()12x f x =-,则3(log 2)a f =,(b f =-,c f =(3)的大小关系是( ) A .a b c >> B .b c a >> C .b a c >> D .c b a >>7.(5分)已知函数()sin()f x x ωθ=+,其中0ω>,(0,)2πθ∈,其图象关于直线6x π=对称,对满足12|()()|2f x f x -=的1x ,2x ,有12||2min x x π-=,将函数()f x 的图象向左平移6π个单位长度得到函数()g x 的图象,则函数()g x 的单调递减区间是( ) A .[6k ππ-,]()2k k Z ππ+∈ B .[k π,]()2k k Z ππ+∈C .[3k ππ+,5]()6k k Z ππ+∈ D .[12k ππ+,7]()12k k Z ππ+∈ 8.(5分)袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .382439.(5分)已知函数22,0()2,0xlnx x x f x x x x ->⎧=⎨+⎩…的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象.上,则实数k 的取值范围是( ) A .1(,1)2B .(0,1)C .1(,0)2-D .(1,0)-二.填空题(每小题5分,共30分)10.(5分)设函数()f x =的定义域是 .11.(5分)已知二项式22()n x x-的展开式中各项的二项式系数和为512,其展开式中第四项的系数 .12.(5分)已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则||FN = .13.(5分)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,PA PC ⊥,则球O 的体积为 .14.(5分)若ABC ∆的面积为2221()4a c b +-,且C ∠为钝角,则B ∠= ;c a的取值范围是 .15.(5分)已知0a >,0b >,2c >,且2a b +=,则2ac c c b ab +-+的最小值为 . 三.解答题(共5个大题,共75分)16.(14分)4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如表:(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率; (2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用X 表示抽得甲组学生的人数,求随机变量X 的分布列和数学期望.17.(15分)如图,已知四边形ABCD 的直角梯形,//AD BC ,AD DC ⊥,4AD =,2DC BC ==,G 为线段AD 的中点,PG ⊥平面ABCD ,2PG =,M 为线段AP 上一点(M不与端点重合). (1)若AM MP =, ()i 求证://PC 平面BMG ;()ii 求平面PAD 与平面BMD 所成的锐二面角的余弦值;(2)否存在实数λ满足AM AP λ=u u u u r u u u r,使得直线PB 与平面BMG 所成的角的正弦值为10,若存在,确定λ的值,若不存在,请说明理由.18.(15分)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,且过点(2,0)P .(1)求椭圆C 的方程;(2)设F 为C 的左焦点,点M 为直线4x =-上任意一点,过点F 作MF 的垂线交C 于两点A ,B .()i 证明:OM 平分线段AB (其中O 为坐标原点); ()ii 当||||MF AB 取最小值时,求点M 的坐标. 19.(15分)已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,21a -,3a ,7a ,恰为等比数列{}n b 的前3项(1)求数列{}n a ,{}n b 的通项公式; (2)求数列1{}n n n nb a a +的前n 项和n T ;若对*n N ∀∈均满足2020n mT >,求整数m 的最大值; (3)是否存在数列{}n c ,满足等式111(1)22n n i n i i a c n ++-=-=--∑成立,若存在,求出数列{}n c 的通项公式;若不存在,请说明理由.20.(16分)已知()sin(1)f x a x lnx =-+,其中a R ∈. (1)当0a =时,设函数2()()g x f x x =-,求函数()g x 的极值. (2)若函数()f x 在区间(0,1)上递增,求a 的取值范围; (3)证明:211sin32(2)nk ln ln k =<-+∑.。
天津市塘沽区2019-2020学年高考第二次模拟数学试题含解析
天津市塘沽区2019-2020学年高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v() A .4 B .6C .23D .43【答案】B 【解析】 【分析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果. 【详解】 如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =30BDC ∠=︒,∴|||3302|326BD CD BD CD cos =⨯⨯︒==⋅u u u r u u u r u u u r u u u r, 故选B . 【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..2.已知定义在R 上的偶函数()f x 满足()()11f x f x +=-,当[]0,1x ∈时,()1f x x =-+,函数()1x g x e--=(13x -≤≤),则函数()f x 与函数()g x 的图象的所有交点的横坐标之和为( )A .2B .4C .5D .6【答案】B 【解析】 【分析】由函数的性质可得:()f x 的图像关于直线1x =对称且关于y 轴对称,函数()1x g x e--=(13x -≤≤)的图像也关于1x =对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线1x =对称,则()f x 与()g x 的图像所有交点的横坐标之和为4得解.【详解】由偶函数()f x 满足()()11f x f x +=-,可得()f x 的图像关于直线1x =对称且关于y 轴对称, 函数()1x g x e--=(13x -≤≤)的图像也关于1x =对称,函数()y f x =的图像与函数()1x g x e--=(13x -≤≤)的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线1x =对称, 则()f x 与()g x 的图像所有交点的横坐标之和为4. 故选:B 【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题. 3.已知集合M ={x|﹣1<x <2},N ={x|x (x+3)≤0},则M∩N =( ) A .[﹣3,2) B .(﹣3,2)C .(﹣1,0]D .(﹣1,0)【答案】C 【解析】 【分析】先化简N ={x|x (x+3)≤0}={x|-3≤x≤0},再根据M ={x|﹣1<x <2},求两集合的交集. 【详解】因为N ={x|x (x+3)≤0}={x|-3≤x≤0}, 又因为M ={x|﹣1<x <2}, 所以M∩N ={x|﹣1<x≤0}. 故选:C 【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.4.已知双曲线C :22221(0,0)x y a b a b -=>>的焦点为1F ,2F ,且C 上点P 满足120PF PF ⋅=u u u v u u u u v ,13PF =u u u v ,24PF =u u u u v,则双曲线C 的离心率为A.2B.C .52D .5【答案】D 【解析】 【分析】根据双曲线定义可以直接求出a ,利用勾股定理可以求出c ,最后求出离心率. 【详解】依题意得,2121a PF PF =-=,125F F ==,因此该双曲线的离心率12215F F e PF PF ==-.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.5.已知抛物线y 2= 4x 的焦点为F ,抛物线上任意一点P ,且PQ ⊥y 轴交y 轴于点Q ,则 PQ PF ⋅u u u r u u u r的最小值为( ) A .-14B .-12C .-lD .1【答案】A 【解析】 【分析】设点2,4y P y ⎛⎫⎪⎝⎭,则点()0,Q y ,()1,0F ,利用向量数量积的坐标运算可得()22112164PQ PF y =⋅--u u u r u u u r ,利用二次函数的性质可得最值. 【详解】解:设点2,4y P y ⎛⎫⎪⎝⎭,则点()0,Q y ,()1,0F , 22,0,1,44PQ P y F y y ⎛⎫⎛⎫∴=-=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,()22422211,01,244164164PQ P y y y y y F y ⎛⎫⎛⎫∴=-⋅--=-=-- ⎪ ⎪⎝⎭⎝⎭⋅u u u r u u u r ,当22y =时,PQ PF ⋅u u u r u u u r 取最小值,最小值为14-.故选:A. 【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.6.使得()3nx n N x x +⎛+∈ ⎪⎝⎭的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7【答案】B 【解析】二项式展开式的通项公式为r -n 3x ()n rr C x x (),若展开式中有常数项,则3--=02n r r ,解得5=2n r ,当r 取2时,n 的最小值为5,故选B【考点定位】本题考查二项式定理的应用.7.如图,ABC V 中260A B ∠=∠=︒,点D 在BC 上,30BAD ∠=︒,将ABD △沿AD 旋转得到三棱锥B ADC '-,分别记B A ',BD '与平面ADC 所成角为α,β,则α,β的大小关系是( )A .2αβα<≤B .23αβα≤≤C .2βα≤,23αβα<≤两种情况都存在D .存在某一位置使得3a β> 【答案】A 【解析】 【分析】根据题意作出垂线段,表示出所要求得α、β角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案. 【详解】由题可得过点B 作BE AD ⊥交AD 于点E ,过B ′作CD 的垂线,垂足为O ,则易得B AO α=∠',B DO β=∠'.设1CD =,则有2BD AD ==,1DE =,3BE =∴可得23AB AB '==,2B D BD '==.sin ,sin OB OB AB DB αβ''==''Q , sin 3sin βαα∴=>,βα∴>;Q 3]OB '∈,∴1sin [0,]2α∈; Q 2sin 22sin cos 2sin 1sin αααα==-,21[3,2]sin α-,∴sin 23sin ααβ=…,2αβ∴….综上可得,2αβα<„. 故选:A . 【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.8.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( ) A .12πB .3πC .2πD .1π【答案】D 【解析】 【分析】根据统计数据,求出频率,用以估计概率. 【详解】70412212π≈. 故选:D. 【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题. 9.函数()cos 22x xxf x -=+的部分图像大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据函数解析式,可知()f x 的定义域为x ∈R ,通过定义法判断函数的奇偶性,得出()()f x f x -=,则()f x 为偶函数,可排除,C D 选项,观察,A B 选项的图象,可知代入0x =,解得()00f >,排除B 选项,即可得出答案. 【详解】 解:因为()cos 22x xxf x -=+,所以()f x 的定义域为x ∈R , 则()()()cos cos 2222x x x xx xf x f x ----===++,∴()f x 为偶函数,图象关于y 轴对称,排除,C D 选项, 且当0x =时,()1002=>f ,排除B 选项,所以A 正确. 故选:A. 【点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.10.双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,那么它的离心率为( )A .3B .5C .6 D .5 【答案】D 【解析】 【分析】根据双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,列出方程,求出m 的值即可.【详解】∵双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,可得12m =,∴4m =, ∴双曲线的离心率5c e a ==. 故选:D. 【点睛】本小题主要考查双曲线离心率的求法,属于基础题.11.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424πB .()85824πC .()854216πD .()858216π【答案】C 【解析】 【分析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积. 【详解】最上面圆锥的母线长为,底面周长为2π24π⨯=,侧面积为14π2⨯=,下面圆锥的母线长为2π48π⨯=,侧面积为18π2⨯=,没被挡住的部分面积为22π4π212π⨯-⨯=,中间圆柱的侧面积为2π214π⨯⨯=.故表面积为()16π,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.12.若1(1)z a i =+-(a R ∈),||z =,则a =( )A .0或2B .0C .1或2D .1【答案】A 【解析】 【分析】利用复数的模的运算列方程,解方程求得a 的值. 【详解】由于1(1)z a i =+-(a R ∈),||z ==0a =或2a =.故选:A 【点睛】本小题主要考查复数模的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
2020届天津市滨海新区2017级高三下学期在线考试数学试卷及解析
2020届天津市滨海新区2017级高三下学期在线考试数学试卷★祝考试顺利★(解析版)时量:120分钟 总分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 7sin3π的值是( )A. 12B. 12-C.D. 2【答案】D【解析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:7sinsin 2sin 333ππππ⎛⎫=+== ⎪⎝⎭. 故选:D.2. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2a =,30A =︒,105C =︒,则b =( )A. 1 C. D. 【答案】C【解析】由A 与C 的度数,求出B 的度数,利用正余弦定理求解即可. 【详解】解:30A =︒,105C =︒,180A B C ++=︒,∴45B =︒.由正弦定理可知sin sin a c A C =,即2sin 30sin105c =︒︒,则c =.由余弦定理可知222222cos 222cos 458b a c ac B =+-⋅=+-⨯⨯⨯︒=, ∴b =.故选:C.3. 已知向量()1,2a =,()11b =-,,若2ma b +与a b -共线,则m 的值为( ) A. 12 B. 2 C. 12- D. 2-【答案】D【解析】计算出平面向量2ma b +与a b -的坐标,利用共线向量的坐标表示可得出关于实数m 的等式,进而可求得实数m 的值. 【详解】向量()1,2a =,()11b =-,,()22,22ma b m m ∴+=-+,()2,1a b -=, 由于2ma b +与a b -共线,则()2222m m -=+,解得2m =-. 故选:D.4. 在ABC 中,已知内角A ,B ,C 的对边分别是a ,b ,c ,且222a b c bc =++,则角A =( )A. 30B. 60︒C. 120︒D. 150︒ 【答案】C【解析】根据余弦定理与已知条件结合,求得1cos 2A =-,进而根据角的范围得出结果即可.【详解】解:由余弦定理可知2222cos a b c bc A =+-⋅, 因为222a b c bc =++,所以2cos 1A =-,即1cos 2A =-, 因为()0,180A ∈︒︒,所以120A =︒.故选:C.5. 已知向量a ,b 满足2=a ,4b =,a 与b 的夹角为120°,则a 在b 方向上的投影为( )A. 1B.C. 1-D. - 【答案】C【解析】根据平面向量数量积的几何意义计算可得;。
2020 年塘沽一中高三毕业班模拟考试(1)
2020年塘沽一中高三毕业班模拟考试化学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试用时60分钟。
第Ⅰ卷1至5页,第Ⅱ卷6至10页。
温馨提示:疫情期间,受时间和地域限制,此次考试采用线上测试方式,答卷时,考生务必将答案填涂在答题卡上,拍照上传部分的试题按要求,拍照清楚,在规定时间内完成上传。
特殊时期,请各位考生珍惜实战演练机会,独立作答!祝各位考生考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共12题,每题3分,共36分。
在每题给出的四个选项中,只有一项是最符合题目要求的。
以下数据可供解题时参考:可能用到的相对原子质量:N14Na23Al27S32Ca40As75Ga70Cr52 1.下列说法正确的是A.国庆70周年放飞的气球材质是可降解材料,主要成分是聚乙烯B.“滴水石穿,绳锯木断”不包含化学变化C.纤维的应用很广,人造纤维、合成纤维和光导纤维都是有机高分子化合物D.韩愈的诗句“榆荚只能随柳絮,等闲撩乱走空园”中的柳絮富含糖类2.下列说法正确的是A.纯碱和烧碱熔化时克服的化学键类型相同B.碘晶体受热转变成碘蒸气,吸收的热量用于克服碘原子间的作用力C.SO3溶于水的过程中有共价键的断裂和离子键的形成D.HF的热稳定性很好,主要是因为HF分子间存在氢键3.用N A表示阿伏加德罗常数,下列说法正确的是①18gD2O含有的电子数为10N A;②1mol Na2O2与水完全反应时转移电子数为2N A;③12g石墨烯(单层石墨)中含有六元环的个数为0.5N A;④在标准状况下,22.4LSO3的物质的量为1mol;⑤7.8g过氧化钠中含有的离子数为0.3NA;⑥28g硅晶体中含有2NA个Si-Si键;⑦200mL1mol/LFe2(SO4)3溶液中,Fe3+和SO42-离子数的总和是NA;⑧在常温常压下,0.1mol铁与0.1molCl2充分反应,转移的电子数为0.3NA;⑨标准状况下,22.4LNO和11.2LO2混合后气体的分子总数为1.5NA;⑩S2和S8的混合物共6.4g,其中所含硫原子数一定为0.2NAA.①③⑤⑧B.②④⑥⑦C.③⑤⑥⑩D.⑤⑧⑨⑩4.下列说法正确的是A.铜锌原电池中,盐桥中的K+和NO分别移向负极和正极B.SiO2(s)+2C(s)===Si(s)+2CO(g)必须在高温下反应才能发生,则ΔH>0C.室温下,将Na2CO3和NaHCO3的混合溶液加水稀释,-32-3c(HCO)c(CO)减小D.电解精炼铜时,若阴极析出3.2g铜,则阳极失电子数大于6.02×10225.关于有机物的说法正确的是A.a、b互为同系物B.c中所有碳原子可能处于同一平面C.a、b、c均能使酸性高锰酸钾溶液褪色D.b的同分异构体中含有羧基的结构还有7种(不含立体异构)6.下列设计的实验方案能达到相应实验目的的是选项实验目的实验方案A证明反应速率会随反应物浓用3mL稀硫酸与足量纯锌反应,产生气泡速率较度的增大而加快慢,然后加入1mL1mol·L−1CuSO4溶液,迅速产生较多气泡B 检验Fe(NO3)2晶体是否已氧化变质将Fe(NO3)2样品溶于稀硝酸后,滴加KSCN溶液,观察溶液是否变红C 证明“84”消毒液的氧化能力随溶液pH的减小而增强将“84”消毒液(含NaClO)滴入品红溶液中,褪色缓慢,若同时加入食醋,红色很快褪为无色D 证明氯化银的溶解度大于硫化银的溶解度向2mL0.1mol·L−1硝酸银溶液中加入1mL0.1mol·L−1NaCl溶液,出现白色沉淀,再加入几滴0.1mol·L−1的Na2S溶液,有黑色沉淀生成7.A、B、C、D、E为原子序数依次增大的五种短周期元素,其中C为第三周期简单离子半径最小的元素,0.1mol·L−1A、B、D的最高价氧化物对应的水化物溶液加水稀释时溶液的pH变化情况如图,则下列说法中不正确的是A.C制的容器可盛装A和D的最高价含氧酸的浓溶液B.AE3、D2E2分子中所有原子最外层均达到8电子结构C.B、D、E的单质或者化合物中都可能有能作漂白剂的物质D.工业上分别电解熔融的B与E、C与E形成的化合物制备B、C单质8.下列离子方程式正确的是A.NaHSO3溶液中的水解方程式:HSO3−+H2O H3O++23SO-B.FeI2溶液中加双氧水,出现红褐色沉淀:6Fe2++3H2O2=2Fe(OH)3↓+4Fe3+ C.10mL0.1mol·L−1NaOH溶液中滴加几滴AlCl3溶液:Al3++3OH−=Al(OH)3↓D.3a mol CO2通入含2a mol Ba(OH)2的溶液中:3CO2+4OH−+Ba2+=BaCO3↓+23HCO-+H2O9.电导率可用于衡量电解质溶液导电能力的大小。
2017年天津市部分区高考数学二模试卷(理科)(解析版)
2017年天津市部分区高考数学二模试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分)1.(5分)已知全集U={x∈N|x≤4},A={0,1,3},B={1,3,4},则∁U(A ∩B)=()A.{2}B.{4}C.{2,4}D.{0,2,4} 2.(5分)若变量x,y满足约束条件,则目标函数z=2x+y的最大值为()A.﹣2B.4C.7D.83.(5分)阅读右边的程序框图,运行相应的程序,输出k的值是()A.3B.4C.5D.64.(5分)设x∈R,则“|x﹣2|<1”是“x2﹣2x﹣8<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件5.(5分)△ABC的内角A,B,C的对边分别是a,b,c,若a2=(b+c)2﹣4,△ABC的面积为,则A等于()A.30°B.60°C.150°D.120°6.(5分)已知函数f(x)=log a(4﹣ax)在[0,2]上是单调递减函数,则实数a的取值范围为()A.(0,1)B.(1,+∞)C.(1,2)D.(2,+∞)7.(5分)已知双曲线=1(a>0,b>0)的右焦点为F(c,0),过点F 且斜率为﹣的直线与双曲线的渐近线交于点A,若△OAF的面积为4ab(O 为坐标原点),则双曲线的离心率为()A.B.C.2D.48.(5分)平面内三点A,B,C满足||=3,||=4,=0,M,N为平面内的动点,且为单位向量,若=2,则||的最大值与最小值的和为()A.10B.8C.7D.5二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)i是虚数单位,复数z=,则z的共轭复数=.10.(5分)某四棱锥和球的组合体的三视图如图所示,则该组合体的体积是11.(5分)直线y=x+3与抛物线x2=4y所围成的封闭图形的面积等于.12.(5分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=3,则直线l被圆C所截得弦的长度为.13.(5分)若正数x,y满足x+2y=4xy,则x+的最小值为.14.(5分)已知函数f(x)=,若关于x的方程f(x)﹣ax=0恰有1个实数根,则实数a的取值范围是.三、解答题(本大题共6小题,共80分)15.(13分)已知函数f(x)=4tan(x+)cos2(x+)﹣1.(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)讨论f(x)在区间(0,)上的单调性.16.(13分)为丰富学生的课外生活,学校组织学生代表参加电视台的公益助演活动,初中部推选了6名代表,其中男生代表2名,高中部推选了4名代表,其中男生代表2名,现从这10名学生中随机选出2名男生和1名女生为压轴节目助演.(Ⅰ)设事件A为“在选出的3名代表中,2名男生都来自初中部”,求事件A 发生的概率;(Ⅱ)设X为选出的3名代表中高中部男生的人数,求随机变量X的分布列和数学期望.17.(13分)如图,在三棱锥A﹣BCD中,顶点A在底面BCD上的射影O在棱BD上,AB=AD=,BC=BD=2,∠CBD=90°,E为CD的中点.(Ⅰ)求证:AD⊥平面ABC;(Ⅱ)求直线AC与平面ABE所成角的正弦值;(Ⅲ)求二面角B﹣AE﹣C的余弦值.18.(13分)已知正项数列{a n}的前n项和S n满足S n=(n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(﹣1)n a n+(﹣1)n a n2,求数列{b n}的前2n项和T2n.19.(14分)已知中心在原点,焦点在x轴上的椭圆C的离心率为,上顶点与右焦点的距离为2,(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线y=kx+2与椭圆C交于A.B两点,点D(t,0)满足|DA|=|DB|,且t∈[﹣,﹣],求实数k的取值范围.20.(14分)已知函数f(x)=ae x﹣x2﹣x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e﹣2)y﹣1=0垂直,求f(x)的单调区间;(2)若函数f(x)有两个极值点,求实数a的取值范围;(3)证明:当x>1时,e x lnx>x.2017年天津市部分区高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.(5分)已知全集U={x∈N|x≤4},A={0,1,3},B={1,3,4},则∁U(A ∩B)=()A.{2}B.{4}C.{2,4}D.{0,2,4}【解答】解:全集U={x∈N|x≤4}={0,1,2,3,4},∵A={0,1,3},B={1,3,4},∴A∩B={1,3},∴∁U(A∩B)={0,2,4},故选:D.2.(5分)若变量x,y满足约束条件,则目标函数z=2x+y的最大值为()A.﹣2B.4C.7D.8【解答】解:画出变量x,y满足约束条件的平面区域,如图示:,由,解得A(4,﹣1),由z=2x+y得:y=﹣2x+z,平移直线y=﹣2x,结合图象直线过A(4,﹣1)时,z最大,z的最大值是7.故选:C.3.(5分)阅读右边的程序框图,运行相应的程序,输出k的值是()A.3B.4C.5D.6【解答】解:由框图知:n=3,k=0第一次循环n=3不是偶数,n=10,k=1;第二次循环n是偶数,n=5,k=2;第三次循环n不是偶数,n=16,k=3;第四次循环n是偶数,n=8,k=4.满足条件n=8,跳出循环体,输出k=4.故选:B.4.(5分)设x∈R,则“|x﹣2|<1”是“x2﹣2x﹣8<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【解答】解:由|x﹣2|<1,解得﹣1<x<3.由x2﹣2x﹣8<0,解得﹣2<x<4.∴“|x﹣2|<1”是“x2﹣2x﹣8<0”的充分不必要条件.故选:B.5.(5分)△ABC的内角A,B,C的对边分别是a,b,c,若a2=(b+c)2﹣4,△ABC的面积为,则A等于()A.30°B.60°C.150°D.120°【解答】解:∵a2=(b+c)2﹣4=b2+c2+2bc﹣4,∴cos A===﹣1∵△ABC的面积为,∴bc sin A=,∴bc=,∴cos A=﹣1=sin A﹣1,∴sin A=(cos A+1)∵cos2A+sin2A=1,∴3(cos A+1)2+cos2A=1,∴4cos2A+6cos A+2=0(2cos A+1)(cos A+1)=0,∵cos A+1≠0∴cos A=﹣,∴A=120°,故选:D.6.(5分)已知函数f(x)=log a(4﹣ax)在[0,2]上是单调递减函数,则实数a的取值范围为()A.(0,1)B.(1,+∞)C.(1,2)D.(2,+∞)【解答】解:由题意可得,a>0,且a≠1,故函数t=4﹣ax在区间[0,2]上单调递减.再根据y=log a(4﹣ax)在区间[0,2]上单调递减,可得a>1,且4﹣a×2>0,解得1<a<2,故选:C.7.(5分)已知双曲线=1(a>0,b>0)的右焦点为F(c,0),过点F 且斜率为﹣的直线与双曲线的渐近线交于点A,若△OAF的面积为4ab(O 为坐标原点),则双曲线的离心率为()A.B.C.2D.4【解答】解:过点F且斜率为﹣的直线方程为y=﹣(x﹣c),与双曲线的渐近线y=x,联立,得到A(,),∵△OAF的面积为4ab,∴=4ab,∴c=4a,∴双曲线的离心率为e==4,故选:D.8.(5分)平面内三点A,B,C满足||=3,||=4,=0,M,N为平面内的动点,且为单位向量,若=2,则||的最大值与最小值的和为()A.10B.8C.7D.5【解答】解:∵=0,∴BA⊥BC,∵||=1,∴M在以A为原点,1为半径的圆A上,∵=2,∴N是MC的中点,以BC,BA为坐标轴建立坐标系,如图:则B(0,0),C(4,0),A(0,3),设M(cosθ,3+sinθ),则N(cosθ+2,sinθ+),∴||===,∴||的最大值为=3,最小值为=2,∴||的最大值与最小值的和为5.故选:D.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)i是虚数单位,复数z=,则z的共轭复数=i.【解答】解:∵z==,∴.故答案为:i.10.(5分)某四棱锥和球的组合体的三视图如图所示,则该组合体的体积是【解答】解:该组合体由上面为球,下面为正四棱锥组成,球的半径为1,正四棱锥的底面边长为2,高为2,则该组合体的体积是π•13+•22•2=.故答案为:.11.(5分)直线y=x+3与抛物线x2=4y所围成的封闭图形的面积等于.【解答】解:由直线y=x+3与抛物线x2=4y,联立解得,x1=﹣2,x2=6.6(x+3﹣x2)dx故所求图形的面积为S=∫﹣26=,=(+3x﹣)|﹣2故答案为:.12.(5分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=3,则直线l被圆C所截得弦的长度为2.【解答】解:曲线C的极坐标方程为ρ=3,化为直角坐标方程为x2+y2=9,直线l的参数方程为(t为参数),化为标准形式,代入圆方程可得t′2﹣6t′+17=0设方程的根为t′1,t′2,∴t′1+t′2=6,t′1t′2=17,∴曲线C被直线l截得的弦长为|t′1﹣t′2|==2.故答案为:2.13.(5分)若正数x,y满足x+2y=4xy,则x+的最小值为.【解答】解:根据题意,若x+2y=4xy,则有+=4,则x+=×(x+)(+)=(++)≥(+2)=,当且仅当x=y=时等号成立;即x+的最小值为;故答案为:.14.(5分)已知函数f(x)=,若关于x的方程f(x)﹣ax=0恰有1个实数根,则实数a的取值范围是(﹣∞,﹣)∪[1,+∞).【解答】解:f(x)=,作出y=f(x)的函数图象如图所示:设直线y=ax与y=﹣lnx相切,切点为(x0,y0),则,解得x0=e,y0=﹣1,a=﹣.∵f(x)﹣ax=0只有一解,∴y=f(x)与y=ax的函数图象只有1个交点,∴a≥1或a<﹣.故答案为:(﹣∞,﹣)∪[1,+∞).三、解答题(本大题共6小题,共80分)15.(13分)已知函数f(x)=4tan(x+)cos2(x+)﹣1.(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)讨论f(x)在区间(0,)上的单调性.【解答】解:(Ⅰ)函数f(x)=4tan(x+)cos2(x+)﹣1.∵正切函数的定义域满足,x+,可得:x≠,k∈Z∴函数f(x)的定义域为{x|x≠,k∈Z},函数f(x)化简可得:f(x)==2sin(2x+)﹣1∴f(x)的最小正周期T=;(Ⅱ)∵f(x)=2sin(2x+)﹣1,由2x+,k∈Z得:,∵x∈(0,)上时,令k=0,可得f(x)在区间(0,]上是单调增区间.由2x+,k∈Z.得:,∵x∈(0,)上,令k=0,可得f(x)在区间[,)上是单调减区间.∴f(x)在区间(0,)上时,(0,]是单调增区间,[,)上是单调减区间.16.(13分)为丰富学生的课外生活,学校组织学生代表参加电视台的公益助演活动,初中部推选了6名代表,其中男生代表2名,高中部推选了4名代表,其中男生代表2名,现从这10名学生中随机选出2名男生和1名女生为压轴节目助演.(Ⅰ)设事件A为“在选出的3名代表中,2名男生都来自初中部”,求事件A发生的概率;(Ⅱ)设X为选出的3名代表中高中部男生的人数,求随机变量X的分布列和数学期望.【解答】解:(Ⅰ)设事件A为“在选出的3名代表中,2名男生都来自初中部”,则P(A)==,所以事件A发生的概率为;(Ⅱ)设X为选出的3名代表中高中部男生的人数,则X的可能取值为0,1,2;则P(X=0)=P(A)=,P(X=1)==,P(X=2)==;∴随机变量X的分布列为数学期望为EX=0×+1×+2×=1.17.(13分)如图,在三棱锥A﹣BCD中,顶点A在底面BCD上的射影O在棱BD上,AB=AD=,BC=BD=2,∠CBD=90°,E为CD的中点.(Ⅰ)求证:AD⊥平面ABC;(Ⅱ)求直线AC与平面ABE所成角的正弦值;(Ⅲ)求二面角B﹣AE﹣C的余弦值.【解答】证明:(Ⅰ)∵顶点A在底面BCD上的射影O在棱BD上,∴平面ABD⊥平面BCD,∵∠CBD=90°,∴BC⊥BD,∵平面ABD∩平面BCD=BD,∴BC⊥平面ABD,AD⊂面ABD,∴BC⊥AD,由AB=AD=,BD=2,得BD2=AB2+AD2,∴AD⊥AB,∵AB∩BC=B,∴AD⊥平面ABC.解:(Ⅱ)连结OE,分别以OE、OD、OA为x轴,y轴,z轴,建立空间直角坐标系,O(0,0,0),A(0,0,1),B(0,﹣1,0),C(2,﹣1,0),D(0,1,0),E(1,0,0),=(2,﹣1,﹣1),=(0,﹣1,﹣1),=(1,0,﹣1),设=(x,y,z)为平面ABE的一个法向量,则,取x=1,得=(1,﹣1,1),设AC与平面ABE所成角为θ,则sinθ=|cos<>|==.∴直线AC与平面ABE所成角的正弦值为.(Ⅲ)=(2,﹣1,﹣1),=(1,0,﹣1),设平面ACE的法向量=(x,y,z),则,取z=1,则=(1,1,1),平面ABE的法向量=(1,﹣1,1),设二面角B﹣AE﹣C的平面角为θ,则cosθ==.∴二面角B﹣AE﹣C的余弦值为.18.(13分)已知正项数列{a n}的前n项和S n满足S n=(n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(﹣1)n a n+(﹣1)n a n2,求数列{b n}的前2n项和T2n.【解答】解:(Ⅰ)由S n=,得当n=1时,,得a1=1;当n≥2时,,化简得:﹣2)(a n+a n﹣1)=0,得a n﹣a n﹣1=2(n≥2).(a n﹣a n﹣1∴数列{a n}是以1为首项,以2为公差的等差数列,∴a n=1+2(n﹣1)=2n﹣1;(Ⅱ)∵b n=(﹣1)n a n+(﹣1)n a n2,∴T2n=b1+b2+b3+b4+…+b2n=(﹣1﹣12)+(3+32)+(﹣5﹣52)+(7+72)+…+[(4n﹣1)+(4n﹣1)2]=(﹣1+3)+(﹣5+7)+…+[﹣(4n﹣3)+(4n﹣1)]+(﹣12+32)+(﹣52+72)+…+[﹣(4n﹣3)2+(4n﹣1)2]=2n+8[1+3+5+…+(2n﹣1)]=2n+8•=8n2+2n.19.(14分)已知中心在原点,焦点在x轴上的椭圆C的离心率为,上顶点与右焦点的距离为2,(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线y=kx+2与椭圆C交于A.B两点,点D(t,0)满足|DA|=|DB|,且t∈[﹣,﹣],求实数k的取值范围.【解答】解:(Ⅰ)由题意可知:e==,则a=2c,由上顶点与右焦点的距离为2,则a=2,c=1,b2=a2﹣c2=3,∴椭圆的标准方程:;(Ⅱ)设A(x1,y1),B(x2,y2).,整理得:(3+4k2)x2+16kx+4=0,由x1+x2=﹣,x1x2=,由△=256k2﹣4×4(3+4k2)>0,解得:k<﹣,k>,∵|DA|=|DB|,则(+)•=0,解得:t=﹣,t∈[﹣,﹣],则﹣≤﹣≤﹣,整理得:,由k<﹣,k>,则<k≤,∴实数k的取值范围(,].20.(14分)已知函数f(x)=ae x﹣x2﹣x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e﹣2)y﹣1=0垂直,求f(x)的单调区间;(2)若函数f(x)有两个极值点,求实数a的取值范围;(3)证明:当x>1时,e x lnx>x.【解答】解:(1)f(x)=ae x﹣x2﹣x的导数f′(x)=ae x﹣x﹣1,可得曲线y=f(x)在点(1,f(1))处的切线斜率为ae﹣2,由切线与直线x+(e﹣2)y﹣1=0垂直,可得(ae﹣2)•(﹣)=﹣1,解得a=1,即f(x)=e x﹣x2﹣x的导数f′(x)=e x﹣x﹣1,令g(x)=e x﹣x﹣1,g′(x)=e x﹣1,当x>0时,g′(x)>0,g(x)递增;当x<0时,g′(x)<0,g(x)递减.即有g(x)≥g(0)=0,即有f′(x)≥0,则f(x)的单调增区间为(﹣∞,+∞);(2)解法一、由f′(x)=ae x﹣x﹣1,函数f(x)有两个极值点,即为h(x)=ae x﹣x﹣1有两个零点,h′(x)=ae x﹣1,当a≤0时,h′(x)<0,h(x)递减,h(x)不可能有两个零点;当a>0时,令h′(x)=0,可得x=﹣lna,当x>﹣lna时,h′(x)>0,h(x)递增;当x<﹣lna时,h′(x)<0,h(x)递减.可得x=﹣lna处h(x)有极小值也为最小值,若函数h(x)有两个零点,则h(﹣lna)<0,即lna<0,即有0<a<1;解法二、由f′(x)=ae x﹣x﹣1,函数f(x)有两个极值点,即为f′(x)=ae x﹣x﹣1=0有两个不等的实根,即有a=有两个不等实根.令h(x)=,h′(x)=,当x>0时,h′(x)<0,h(x)递减;当x<0时,h′(x)>0,h(x)递增.h(x)在x=0处取得最大值1,当x>0时,h(x)>0,x→+∞,h(x)→0,当x≤0时,h(0)=1,h(﹣2)=﹣e2<0,结合h(x)在(﹣∞,0)递增,可得h(x)在(﹣∞,0)只有一个零点;故0<a<1.(3)证明:由(1)可得x>1时,e x>x+1>0,lnx>0,即有e x lnx>(x+1)lnx,设φ(x)=(x+1)lnx﹣x+,φ′(x)=lnx+﹣1﹣=lnx+(1﹣)>0(x>1),所以φ(x)在(1,+∞)递增,即有φ(x)>φ(1)=0,即(x+1)lnx>x﹣,故当x>1时,e x lnx>x.。
2020年天津市塘沽一中高考数学二模试卷 含解析
2020年高考数学二模试卷一、选择题(共9小题)1.设复数z满足z•(1+i)=2i+1(i为虚数单位),则复数z的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合,则集合A真子集的个数为()A.3B.4C.7D.83.已知m为实数,直线l1:mx+y﹣1=0,l2:(3m﹣2)x+my﹣2=0,则“m=1”是“l1∥l2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.已知圆x2+y2﹣4x+2y+1=0关于双曲线C:﹣=1(a>0,b>0)的一条渐近线对称,则双曲线C的离心率为()A.B.5C.D.5.已知数列{a n}的通项公式是,则a1+a2+a3+…+a12=()A.0B.55C.66D.786.设f(x)是定义在实数集R上的函数,满足条件y=f(x+1)是偶函数,且当x≥1时,f(x)=()x﹣1,则a=f(log32),b=f(﹣log),c=f(3)的大小关系是()A.a>b>c B.b>c>a C.b>a>c D.c>b>a7.已知函数f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),其图象关于直线x=对称,对满足|f(x1)﹣f(x2)|=2的x1,x2,有|x1﹣x2|min=,将函数f(x)的图象向左平移个单位长度得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[k,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)8.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A.B.C.D.9.已知函数的图象上有且仅有四个不同的点关于直线y=﹣1的对称点在y=kx﹣1的图象.上,则实数k的取值范围是()A.B.(0,1)C.D.(﹣1,0)二.填空题10.设函数的定义域是.11.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数.12.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.13.已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,PA⊥PC,则球O的体积为.14.若△ABC的面积为,且∠C为钝角,则∠B=;的取值范围是.15.已知a>0,b>0,c>2,且a+b=2,则的最小值为.三.解答题(共5个大题)16.4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如表:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用X表示抽得甲组学生的人数,求随机变量X的分布列和数学期望.17.如图,已知四边形ABCD的直角梯形,AD∥BC,AD⊥DC,AD=4,DC=BC=2,G 为线段AD的中点,PG⊥平面ABCD,PG=2,M为线段AP上一点(M不与端点重合).(1)若AM=MP,(i)求证:PC∥平面BMG;(ii)求平面PAD与平面BMD所成的锐二面角的余弦值;(2)否存在实数λ满足,使得直线PB与平面BMG所成的角的正弦值为,若存在,确定λ的值,若不存在,请说明理由.18.已知椭圆C b>0)的焦距为2,且过点P(2,0).(1)求椭圆C的方程;(2)设F为C的左焦点,点M为直线x=﹣4上任意一点,过点F作MF的垂线交C 于两点A,B.(i)证明:OM平分线段AB(其中O为坐标原点);(ii)当取最小值时,求点M的坐标.19.已知各项均为正数的数列{a n}的前n项和为S n,满足,a2﹣1,a3,a7,恰为等比数列{b n}的前3项(1)求数列{a n},{b n}的通项公式;(2)求数列的前n项和T n;若对∀n∈N*均满足,求整数m的最大值;(3)是否存在数列{c n},满足等式成立,若存在,求出数列{c n}的通项公式;若不存在,请说明理由.20.(16分)已知f(x)=a sin(1﹣x)+lnx,其中a∈R.(1)当a=0时,设函数g(x)=f(x)﹣x2,求函数g(x)的极值.(2)若函数f(x)在区间(0,1)上递增,求a的取值范围;(3)证明:.参考答案一、选择题1.设复数z满足z•(1+i)=2i+1(i为虚数单位),则复数z的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把已知等式变形,利用复数代数形式的乘除运算化简,求出的坐标得答案.解:由z•(1+i)=2i+1,得z=,∴,则复数z的共轭复数在复平面内对应的点的坐标为(),位于第四象限.故选:D.2.已知集合,则集合A真子集的个数为()A.3B.4C.7D.8【分析】解出集合A,再由含有n个元素的集合,其真子集个数为2n﹣1个可得答案.解:已知集合,解得:={x∈Z|﹣3<x≤0}={﹣2,﹣1,0},则集合A真子集的个数为23﹣1=7个,故选:C.3.已知m为实数,直线l1:mx+y﹣1=0,l2:(3m﹣2)x+my﹣2=0,则“m=1”是“l1∥l2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.解:当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.当m≠0时,则l1∥l2⇒=≠,由=得m2﹣3m+2=0得m=1或m=2,由≠得m≠2,则m=1,即“m=1”是“l1∥l2”的充要条件,故选:A.4.已知圆x2+y2﹣4x+2y+1=0关于双曲线C:﹣=1(a>0,b>0)的一条渐近线对称,则双曲线C的离心率为()A.B.5C.D.【分析】由圆的方程可得圆心坐标,由双曲线的方程可得渐近线的方程,因为圆关于直线对称是直线过圆心,将圆心代入渐近线的方程可得a,b的故选,进而求出离心率.解:圆x2+y2﹣4x+2y+1=0的圆心坐标为:(2,1),有题意圆关于渐近线的对称,可得圆心在直线上,而由双曲线的方程可得,渐近线的方程为:y=x,所以1=•2,即=,所以离心率e===,故选:A.5.已知数列{a n}的通项公式是,则a1+a2+a3+…+a12=()A.0B.55C.66D.78【分析】本题先分n为奇数和偶数两种情况计算出sin(π)的值,可进一步得到数列{a n}的通项公式,然后代入a1+a2+a3+…+a12=转化计算,再根据等差数列求和公式可计算出结果.解:由题意,可知当n为奇数时,sin(π)=sin(nπ+)=sin(π+)=sin=﹣1;当n为偶数时,sin(π)=sin(nπ+)=sin=1.∴a n=.故a1+a2+a3+…+a12=﹣12+22﹣32+42﹣…﹣112+122=22﹣12+42﹣32+…+122﹣112=(2+1)(2﹣1)+(4+3)(4﹣3)+…+(12+11)(12﹣11)=1+2+3+4+…+11+12==78,故选:D.6.设f(x)是定义在实数集R上的函数,满足条件y=f(x+1)是偶函数,且当x≥1时,f(x)=()x﹣1,则a=f(log32),b=f(﹣log),c=f(3)的大小关系是()A.a>b>c B.b>c>a C.b>a>c D.c>b>a【分析】根据函数y=f(x+1)是偶函数得到函数关于x=1对称,然后利用函数单调性和对称之间的关系,进行比较即可得到结论.解:∵y=f(x+1)是偶函数,∴f(﹣x+1)=f(x+1),即函数f(x)关于x=1对称.∵当x≥1时,f(x)=()x﹣1为减函数,∵f(log32)=f(2﹣log32)=f(log3),且﹣=2=log34,log34<log3<3,∴b>a>c,故选:C.7.已知函数f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),其图象关于直线x=对称,对满足|f(x1)﹣f(x2)|=2的x1,x2,有|x1﹣x2|min=,将函数f(x)的图象向左平移个单位长度得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[k,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)【分析】由周期求出ω,由图象的对称性求出φ的值,可得f(x)的解析式;再利用函数y=A sin(ωx+φ)的图象变换规律,得到g(x)得解析式,再利用余弦函数的单调性,求得函数g(x)的单调递减区间.解:已知函数f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),其图象关于直线x=对称,对满足|f(x1)﹣f(x2)|=2的x1,x2,有|x1﹣x2|min==•,∴ω=2.再根据其图象关于直线x=对称,可得2×+φ=kπ+,k∈Z.∴φ=,∴f(x)=sin(2x+).将函数f(x)的图象向左平移个单位长度得到函数g(x)=sin(2x++)=cos2x 的图象.令2kπ≤2x≤2kπ+π,求得kπ≤x≤kπ+,则函数g(x)的单调递减区间是[kπ,kπ+],k∈Z,故选:B.8.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A.B.C.D.【分析】获奖的概率P1==,由此n次独立重复试验中事件A恰好发生k次概率计算公式能求出有5人参与摸球,则恰好2人获奖的概率.解:∵袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,基本事件总数为,获奖包含的基本事件有:(1,2),(1,5),(2,4),(3,6),(4,5),获奖的概率P1==,若有5人参与摸球,则恰好2人获奖的概率是:P==.故选:C.9.已知函数的图象上有且仅有四个不同的点关于直线y=﹣1的对称点在y=kx﹣1的图象.上,则实数k的取值范围是()A.B.(0,1)C.D.(﹣1,0)【分析】由题意可化为函数f(x)图象与y=﹣kx﹣1的图象有且只有四个不同的交点,结合题意作图求解即可.解:∵已知函数的图象上有且仅有四个不同的点关于直线y=﹣1的对称点在y=kx﹣1的图象上,而函数y=kx﹣1关于直线y=﹣1的对称图象为y=﹣kx﹣1,∴已知函数的图象与y=﹣kx﹣1的图象有且只有四个不同的交点,作函数f(x)的图象与y=﹣kx﹣1的图象如下,易知直线y=﹣kx﹣1恒过点A(0,﹣1),设直线AC与y=xlnx﹣2x相切于点C(x,xlnx﹣2x),y′=lnx﹣1,故lnx﹣1=,解得,x=1;故k AC=﹣1;设直线AB与y=x2+2ax相切于点B(x,x2+2x),y′=2x+2,故2x+2=,解得,x=﹣1;故k AB=﹣2+2=0,故﹣1<﹣k<0,故0<k<1,故选:B.二.填空题10.设函数的定义域是(,1].【分析】根据偶次根号下的被开方数大于等于零,对数的真数大于零,列出不等式组,进行求解再用集合或区间的形式表示出来.解:要使函数有意义,则,解得<x≤1,则函数的定义域是:(,1].故答案为:(,1].11.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数﹣672.【分析】令x=1可得,其展开式各项系数的和,又由题意,可得2n=512,解可得n=9,进而可得其展开式的通项,即可得答案.解:在中,令x=1可得,其展开式各项系数的和是2n,又由题意,可得2n=512,解可得n=9,则二项式的展开式的通项为T r+1=C9r(x2)9﹣r(﹣)r=(﹣2)r•C9r x18﹣3r,r=0,1, (9)令r=3,则其展开式中的第4项的系数为:(﹣2)3•=﹣672,故答案为:﹣672.12.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=6.【分析】求出抛物线的焦点坐标,推出M坐标,然后求解即可.解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.13.已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,PA⊥PC,则球O的体积为8π.【分析】可得三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是棱长为2的正方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的体积.解:∵PA=PB=PC,△ABC是边长为2的正三角形,可得∠APC=∠APB=∠BPC,∵PA⊥PC,故三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是棱长为2长方体的外接球,长方体的对角线的长为:2∴半径为.所以球的体积V=πR3=8π.故答案为:8π.14.若△ABC的面积为,且∠C为钝角,则∠B=;的取值范围是().【分析】由已知结合余弦定理及三角形的面积公式进行化简可求B,然后结合正弦定理及和差角公式进行化简后,结合正切函数的性质可求.解:因为S=,由题意可得=ac cos B═,所以sin B=cos B即B=,因为C=,所以,所以0<tan A<1由正弦定理可得,===.故答案为:,()15.已知a>0,b>0,c>2,且a+b=2,则的最小值为+.【分析】由2=,先将+﹣变形为,运用基本不等式可得最小值,再求c+=[(c﹣2)++1]的最小值,运用基本不等式即可得到所求值.解:a>0,b>0,c>2,且a+b=2,则=c(+﹣)+=+,由2=,可得==≥=,当且仅当b=a时,取得等号.则原式≥c+=[(c﹣2)++1]≥[2+1]=+.当且仅当c=2+时,取得等号.则所求最小值为+.故答案为:+.三.解答题(共5个大题,共75分)16.4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如表:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用X表示抽得甲组学生的人数,求随机变量X的分布列和数学期望.【分析】(1)采用分层抽样的方法甲组抽取4人,乙组抽取3人,丙组抽取2人,丁组抽取3人,从参加问卷调查的12名学生中随机抽取2人,基本基本事件总数n==66,这2人来自同一个小组包含的基本事件个数m==13,由此能求出这2人来自同一个小组的概率.(2)已抽取的甲、丙两个小组的学生分别有4人和2人,从中随机抽取2人,用X表示抽得甲组学生的人数,则X的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.解:(1)采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查,甲组抽取:12×=4人,乙组抽取:12×=3人,丙组抽取:12×=2人,丁组抽取:12×=3人,从参加问卷调查的12名学生中随机抽取2人,基本基本事件总数n==66,这2人来自同一个小组包含的基本事件个数m==13,∴这2人来自同一个小组的概率p=.(2)已抽取的甲、丙两个小组的学生分别有4人和2人,从中随机抽取2人,用X表示抽得甲组学生的人数,则X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==,∴随机变量X的分布列为:X012P数学期望EX==.17.如图,已知四边形ABCD的直角梯形,AD∥BC,AD⊥DC,AD=4,DC=BC=2,G 为线段AD的中点,PG⊥平面ABCD,PG=2,M为线段AP上一点(M不与端点重合).(1)若AM=MP,(i)求证:PC∥平面BMG;(ii)求平面PAD与平面BMD所成的锐二面角的余弦值;(2)否存在实数λ满足,使得直线PB与平面BMG所成的角的正弦值为,若存在,确定λ的值,若不存在,请说明理由.【分析】(1)(i)连结AC,交BG于点O,连结OM,CG,由题意得四边形ABCG 是平行四边形,推导出AO=OC,MO∥PC,由此能证明PC∥平面BMG.(ii)推导出BG⊥GD,以G为原点建立空间直角坐标系O﹣xyz,利用向量法能求出平面PAD与平面BMD所成的锐二面角的余弦值.(2)设==(0,2λ,2λ),λ∈(0,1),求出平面BMG的法向量,利用向量法能求出存在实数λ=满足,使得直线PB与平面BMG所成的角的正弦值为.解:(1)(i)证明:连结AC,交BG于点O,连结OM,CG,由题意得四边形ABCG是平行四边形,∴AO=OC,∵PM=MA,∴MO∥PC,∵MO⊂平面BMG,PC⊄平面BMG,∴PC∥平面BMG.(ii)解:如图,在平行四边形BCDG中,∵BG∥CD,CD⊥GD,∴BG⊥GD,以G为原点建立空间直角坐标系O﹣xyz,则G(0,0,0),P(0,0,2),D(0,2,0),A(0,﹣2,0),B(2,0,0),C(2,2,0),M(0,﹣1,1),∴=(2,0,﹣2),=(2,0,0),=(0,﹣1,1),=(﹣2,2,0),=(﹣2,﹣1,1),平面PAD的法向量=(1,0,0),设平面BMD的法向量=(x,y,z),则,即,取x=1,得=(1,1,3),设平面PAD与平面BMD所成的锐二面角为θ,则平面PAD与平面BMD所成的锐二面角的余弦值cosθ===.(2)设==(0,2λ,2λ),λ∈(0,1),∴M(0,2λ﹣2,2λ),=(﹣2,2λ﹣2,2λ),=(﹣2,0,0),设平面BMG的法向量=(a,b,c),则,取b=λ,得=(0,λ,1﹣λ),∵直线PB与平面BMG所成的角的正弦值为,∴==,解得.∴存在实数λ=满足,使得直线PB与平面BMG所成的角的正弦值为.18.已知椭圆C b>0)的焦距为2,且过点P(2,0).(1)求椭圆C的方程;(2)设F为C的左焦点,点M为直线x=﹣4上任意一点,过点F作MF的垂线交C 于两点A,B.(i)证明:OM平分线段AB(其中O为坐标原点);(ii)当取最小值时,求点M的坐标.【分析】(1)由题意可得c=1,a=2,由a,b,c的关系求得b,即可求椭圆C的标准方程;(2)(i)设M(﹣4,3m),A(x1,y1),B(x2,y2),AB的中点为N(x0,y0),k MF=﹣m,设直线PQ的方程为x=my﹣1,代入椭圆方程,运用韦达定理和中点坐标公式,结合三点共线的方法:斜率相等,即可得证;(ii)利用两点间距离公式及弦长公式将表示出来,由换元法和对勾函数的单调性,可得取最小值时的条件获得等量关系,从而确定点M的坐标.解:(1)由焦距为2,且过点P(2,0),可得c=1,a=2,b==,则椭圆方程为+=1;(2)设M(﹣4,3m),A(x1,y1),B(x2,y2),AB的中点为N(x0,y0),k MF=﹣m,(i)证明:由F(﹣1,0),可设直线PQ的方程为x=my﹣1,代入椭圆方程3x2+4y2=12,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=﹣,于是N(﹣,),则直线ON的斜率k ON=﹣,又k OM=﹣,∴k OM=k ON,∴O,N,M三点共线,即有OM平分线段AB;(ii)由两点间距离公式得|MF|==3,由弦长公式得|AB|=•|y1﹣y2|=•=•=,∴=,令t=(t≥1),则==(3t+),由g(t)=3t+在[1,+∞)递增,可得t=1,即m =0时,g(t)取得最小值4,所以当取最小值时,点M的坐标为(﹣4,0).19.已知各项均为正数的数列{a n}的前n项和为S n,满足,a2﹣1,a3,a7,恰为等比数列{b n}的前3项(1)求数列{a n},{b n}的通项公式;(2)求数列的前n项和T n;若对∀n∈N*均满足,求整数m的最大值;(3)是否存在数列{c n},满足等式成立,若存在,求出数列{c n}的通项公式;若不存在,请说明理由.【分析】(1)由a n+12=2S n+n+4,(n∈N*)①,可得a n与S n﹣1之间的关系,a n2=2S n+(n﹣1)+4,(n≥2,n∈N*)②,把这两个等式相减,化简得,a n+1=a n+1,公差为﹣11,因为a2﹣1,a3,a7,恰为等比数列{b n}的前3项,得a32=(a2﹣1)a7,化简计算得a1=2,进而得数列{a n}的通项公式,再计算出a2﹣1=2,a3=4,a7=8,进而可得等比数列{b n}的首项,公比,写出通项公式.(2)令c n==,(n∈N*),化简计算得c n+1﹣c n>0,所以数列{c n}即{}是递增的,若对∀n∈N*均满足,只要T n最小值大于即可,T n最小值为T1=c1=,所以m<≈673.3,进而得出答案.(3)有题意可得(a1﹣1)c n+(a2﹣1)c n﹣1+(a3﹣1)c n﹣2+…+(a n﹣1)c1=2n+1﹣n﹣2,即c n+2c n﹣1+3c n﹣2+…+nc1=2n+1﹣n﹣2,(n∈N*)③,c n﹣1+2c n﹣2+3c n﹣3+…+(n﹣1)c1=2n﹣(n﹣1)﹣2,(n≥2,n∈N*)④,再③﹣④得,c n+c n﹣1+c n﹣2+…+c1=2n﹣1,(n∈N*)⑤,进而可得c n﹣1+c n﹣2+c n﹣3+…+c1=2n﹣1﹣1,(n≥2,n∈N*)⑥,⑤﹣⑥得,c n=2n﹣1(n∈N*).进而得出答案.解:(1)a n+12=2S n+n+4,(n∈N*)①a n2=2S n﹣1+(n﹣1)+4,(n≥2,n∈N*)②①﹣②得,a n+12﹣a n2=2a n+1,a n+12=a n2+2a n+1=(a n+1)2,因为a n>0,所以a n+1=a n+1,所以数列{a n}是等差数列,公差d=1,因为a2﹣1,a3,a7,恰为等比数列{b n}的前3项,所以a32=(a2﹣1)a7,即(a1+2d)2=(a1+d﹣1)(a1+6d),把d=1代入得,a1=2,所以a n=a1+(n﹣1)d=n+1,此时a2﹣1=2,a3=4,a7=8,所以数列{b n}是以2为首项,2为公比的等比数列,所以b n=2×2n﹣1=2n,(2)令c n==,(n∈N*)c n+1﹣c n=﹣=()=•=•>0,所以数列{c n}即{}是递增的,若对∀n∈N*均满足,只要T n最小值大于即可,T n最小值为T1=c1=,所以m<≈673.3,所以整数m的最大值为673.(3)(a i﹣1)c n+1﹣i=2n+1﹣n﹣2,(a1﹣1)c n+(a2﹣1)c n﹣1+(a3﹣1)c n﹣2+…+(a n﹣1)c1=2n+1﹣n﹣2,c n+2c n﹣1+3c n﹣2+…+nc1=2n+1﹣n﹣2,(n∈N*)③c n﹣1+2c n﹣2+3c n﹣3+…+(n﹣1)c1=2n﹣(n﹣1)﹣2,(n≥2,n∈N*)④③﹣④得,c n+c n﹣1+c n﹣2+…+c1=2n﹣1,(n∈N*)⑤c n﹣1+c n﹣2+c n﹣3+…+c1=2n﹣1﹣1,(n≥2,n∈N*)⑥⑤﹣⑥得,c n=2n﹣1(n∈N*).所以存在这样的数列{c n},c n=2n﹣1(n∈N*).20.(16分)已知f(x)=a sin(1﹣x)+lnx,其中a∈R.(1)当a=0时,设函数g(x)=f(x)﹣x2,求函数g(x)的极值.(2)若函数f(x)在区间(0,1)上递增,求a的取值范围;(3)证明:.【分析】(1)先求导,根据导数和函数极值的关系即可求出;(2)先求导,再函数f(x)在区间(0,1)上递增,分离参数,构造函数,求出函数的最值,问题得以解决;(3)取a=﹣1得到sin(1﹣x)<ln,取1﹣x=,可得sin<ln,累加和根据对数的运算性质和放缩法即可证明.解:(1)当a=0时,设函数g(x)=f(x)﹣x2=lnx﹣x2,x>0,∴g′(x)=﹣2x==,令g′(x)=0,解得x=,当0<x<时,g′(x)>0,当x>时,g′(x)<0,∴g(x)在(0,)上单调递增,在(,+∞)上单调递减,∴当x=时,函数取的极大值,即极大值为g()=﹣ln2﹣,无极小值;(2)∵f(x)=a sin(1﹣x)+lnx,∴f′(x)=﹣a cos(1﹣x)+,∵函数f(x)在区间(0,1)上递增,∴f′(x)=﹣a cos(1﹣x)+≥0在(0,1)上恒成立,∴a≤在(0,1)上恒成立,当a≤0时,a≤在(0,1)上恒成立,当a>0时,≥x cos(1﹣x),设h(x)=x cos(1﹣x),x∈(0,1),∴h′(x)=cos(1﹣x)﹣x sin(1﹣x)>0在(0,1)上恒成立∴h(x)在(0,1)上单调递增,∴h(x)<h(1)=1,∴≥1,即a≤1,综上所述a≤1;(3)∵f(x)在x∈(0,1)上单调递增,取a=﹣1,∴f(x)=﹣sin(1﹣x)+lnx<f(1)=0,∴﹣sin(1﹣x)>lnx,∴sin(1﹣x)<ln取1﹣x=,∴sin<ln,∴sin+sin+…+sinsin<ln[××…×ln]=ln()<ln=ln3﹣ln2,∴.。
天津市塘沽一中2020届高三毕业班第二次模拟考试及答案解析:数学
2020 年塘沽一中高三毕业班第二次模拟考试数学第 I 卷注意事项:本卷共 9 小题,每小题 5 分,共 45 分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
一、选择题1. 设复数 z 满足z ·(1+i)=2i+1 (i 为虚数单位),则复数 z 的共轭复数在复平面内对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2. 已知集合 A ={x ∈ Z |xx + 3≤ 0}, 则集合A 真子集的个数为( ) A.3 B.4C.7D.83.已知 m 为实数,直线l 1 : mx + y -1 = 0,l 2 : (3m - 2)x + my - 2 = 0, 则“m=1”是“ l 1 / /l 2 ”的() A.充要条件 B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件22y 2 x 2 4. 已知圆 x + y - 4x + 2y +1 = 0 关于双曲线 C : - a 2 b2 = 1(a > 0, b > 0) 的一条渐近线对称,则双曲线 C 的离心率为()A .B.5C.52D.5 45. 已知数列{a }的通项公式是a = n 2 sin(2n +1π ), 则a + a + a + + a = ()nn21 2 3 12A.0B.55C.66D.786. 设 f(x)是定义在实数集 R 上的函数,满足条件 y= f(x+1)是偶函数,且当 x≥1 时, f (x ) = ( 1)x -1, 则 2a = f (log 2),b = f (-log 1), c=f(3)的大小关系是( )3 3 2A. a>b>cB. b>c> aC. b>a>cD. c>b>a7. 已 知 函 数 f(x)=sin(ωx+θ), 其中 0>0, θ ∈ π (0, ), 2其 图 象 关 于 直 线x = π 6对 称 , 对 满 足| f (x ) - f (x ) |= 2 的 x , x , 有| x - x | = π , 将函数 f(x)的图象向左平移 π个单位长度得到函数 g(x)的1 2 1 21 2 min 2 6图象,则函数 g(x)的单调递减区间是()5⎨x 2+ 2x , x ≤ 0 A . [k π - π , k π + π](k ∈ Z )6 2 B . [k π , k π + π](k ∈ Z )2 C . [k π + π , k π + 5π](k ∈ Z )D . [k π + π , k π + 7π| (k ∈ Z )3 612 128. 袋中装有标号为 1, 2, 3, 4, 5, 6 且大小相同的 6 个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是 3 的倍数,则获奖,若有 5 人参与摸球,则恰好 2 人获奖的概率是()A. 40243B. 243C. 243D.243 9. 已知函数 f (x ) = ⎧x ln x - 2x , x > 0的图像上有且仅有四个不同的点关于直线 y=-1 的对称点在 y= ⎩kx-1 的图像.上,则实数 k 的取值范围是( )1 A . ( ,1)2B. (0,1)C . (- 1, 0) 2D. (-1,0)第 II 卷二.填空题(每小题 5 分,共 30 分)10. 函数 f (x ) =log 0.5 (4x - 3) 的定义域是11. 已知二项式(x 2 -2)n 的展开式中各项的二项式系数和为 512,其展开式中第四项的系数 x12. 已知 F 是抛物线C : y 2 = 2x 的焦点,M 是 C 上一点,FM 的延长线交 y 轴于点 N.若 M 为 FN 的中点,则|FN|=13. 已知三棱锥P-ABC 的四个顶点在球O 的球面上, PA=PB=PC,△ABC 是边长为 2 的正三角形,PA ⊥PC,则球O 的体积为14. 若△ABC 的面积为1 (a2 + c 2 - b 2 ) ,且∠C 为钝角,则∠B= 4 ; c的取值范围是 .a15.已知 a>0,b>0,c≥4,且 a+b=2,则 ac + c - c +的最小值为b ab 三.解答题(共 5 个大题,共 75 分) 16. (本题满分 14 分)2 c - 24 月 23 日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况, 采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12 名学生参加问卷调查.各组人数统计如下:5(1)从参加问卷调查的12 名学生中随机抽取2 人,求这2 人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2 人,用X 表示抽得甲组学生的人数,求随机变量X 的分布列和数学期望.17.(本题满分15 分)如图,已知四边形ABCD 的直角梯形, AD// BC, AD⊥DC,AD=4,DC= BC=2, G 为线段AD 的中点, PG ⊥平面ABCD, PG=2, M 为线段AP 上一点(M 不与端点重合).(1)若AM=MP,(i)求证:PC//平面BMG ;(ii)求平面PAD 与平面BMD 所成的锐二面角的余弦值;(2)否存在实数λ 满足AM =λAP, 使得直线PB 与平面BMG 所成的角的正弦值为10, 若存在,确定λ 的值,若不存在,请说明理由. 5nk =1x 2 y 218. (本题满分 15 分)已知椭圆 C : a 2 + b2 (1) 求椭圆 C 的方程;= 1 (a > b>0)的焦距为 2,且过点 P(2,0) .(2) 设 F 为 C 的左焦点,点M 为直线 x=-4 上任意一点,过点 F 作 MF 的垂线交C 于两点 A, B(i)证明: OM 平分线段AB (其中O 为坐标原点); (ii) 当| MF |取最小值时,求点 M 的坐标.| AB |19. ( 本 题 满 分 15 分 ) 已 知 各 项 均 为 正 数 的 数 列 {a n }的前 n 项 和 为 S n , 满足a 2 = 2S + n + 4, a -1, a , a , 恰为等比数列{b }的前 3 项n +1n237n(1) 求数列{a n }, {b n }的通项公式;(2) 求数列{nb n }的前 n 项和T ;若对∀n ∈ N * 均满足T > m , 求整数 m 的最大值; a n a n +1n2020 (3) 是否存在数列{c },满足等式∑a -1)c= 2n +1 - n - 2 成立,若存在,求出数列{c }的通项公式;n若不存在,请说明理由.i =1i n +1-in20. (本题满分 16 分)已知 f(x)= asin(1-x)+lnx,其中 a ∈R. (1)当 a= 0 时,设函数 g (x ) = f (x ) - x 2, 求函数 g(x)的极值. (2)若函数 f(x)在区间(0,1)上递增,求 a 的取值范围;n1(3)证明:∑sin (2 + k )2< ln 3 - ln 2 .n122020 届塘沽一中高三毕业班线上二模考试试题一.选择题:(每小题 5 分,共计 45 分) DCAAD ,CBCB二.填空:(每小题 5 分,共计 30 分)3数 学参考答案310.( ,1] 4;11. -672 ;12.213.6π 14. 45ο( 2, +∞)15.三.解答题16.(1)由题设易得,问卷调查从四个小组中抽取的人数分别为 4,3,2,3(人),从参加问卷调查的 12 名学生中随机抽取两名的取法2= 66共有(种),抽取的两名学生来自同一小组的取法共c 2 + 2 c 2+ c 2 = 13有(种),43所以,抽取的两名学生来自同一个小组的概率为2P =1366(2)由(1)知,在参加问卷调查的 12 名学生中,来自甲、丙两小组的学生人数分别为 4 人、2 人, 所以,抽取的两人中是甲组的学生的人数 X 的可能取值为 0,1,2所求 X 的期望为4317.(Ⅰ)(i )证明:连接 AC 交 BG 于点O ,连接OM , CG ,依题意易证四边形 ABCG 为平行四边形. ∴ AO = OC 又∵ PM = MA ,∴ MO ∏ PC 又∵ MO ⊂ 平面 BMG , PC ⊄平面 BMG , ∴ PC ∏ 平面 BMG .5 5 2c X 01 2 P 1/158/156/15(ii)解:如图,在平行四边形BCDG 中∵ BG ∏CD ,CD ⊥GD ,∴BG ⊥GD以G 为原点建立空间直角坐标系O -xyz则G (0, 0, 0), P (0, 0, 2), D (0, 2, 0),A(0, -2, 0), B (2, 0, 0), C (2, 2, 0), M (0, -1,1)∴PB =(2, 0, -2),GB =(2, 0, 0),GM =(0, -1,1 )平面 PAD 的法向量为(1,0,0)平面 BMD 的法向量为锐二面角的余弦值为11 (1,1,3)11(Ⅱ)设AM =λAP =λ(0, 2, 2)=(0, 2λ, 2λ),λ∈(0,1) ∴ M (0, 2λ- 2, 2λ)平面BMG 的法向量为(0,λ,1-λ)(过程略)解得18.(1)x2+y2=λ=134 3(2)(i)设点 M 的坐标为(-4,m)当m = 0 时,AB 与x 轴垂直,F 为 AB 的中点,OM 平分 AB 显然成立当m ≠ 0 由已知可得:KMF3=-m,∴K =33 AB m则直线 AB 的方程为:y =(x +1)m联立消去y 得:(m2+12)x2+ 24x - 4m2+12 = 0 ,由韦达定理得AB 中点P 的坐标为(-12,m2+123m)m2+12又因为直线y =-mx4OM:所以 P 在直线 OM 上.综上 OM 平分线段 AB. 12 1 4m 2 + 9 + 9m 2+ 9 + 6 n n +1 n n nn n n c n 1 (ii )当 m = 0= 2时, 当m ≠ 0 时,由(i) 可知 AB= 4 , MF == > 1又<12∴m=0 时, 最小,点 M 的坐标为(-4,0)19.(1) 由题,当 n = 1 时, a2= 2S+ 5 ,即 a 2 = 2a + 5当 n ≥ 2 时,2n +1 2= 2S n 12+ n + 4 …① 1a 2= 2Sn -1+ n + 3 …②①-②得a 2 - a 2 = 2a +1,整理得 a2 n +1 +1)2,又因为各项均为正数的数列{a }.故 a n +1 = a n + 1 ,{a n }是从第二项的等差数列,公差为 1. 又 a 2 -1 , a 3 , a 7 恰为等比数列{b n }的前 3 项,故 a 2 = (a -1) a ⇒ (a +1)2= (a -1)(a + 5) ,解得a = 3 .又 a 2= 2a + 5 , 32722222 1故 a 1 = 2 ,因为 a 2 - a 1 = 1也成立.故{a n }是以 a 1 = 2 为首项,1 为公差的等差数列.故 a n = 2 + n -1 = n +1 .即 2, 4,8 恰为等比数列{b }的前 3 项,故{b }是以b = 2 为首项,公比为 4= 2 的等比数列.nn12故b = 2n .综上 a = n +1, b = 2n(2)nb n= a n a n +1 2n +1 -n + 2 2nn +1前 n 项和为2n +1, {T }单增,所以T 的最小值为 1/3 T n = n + 2 -1所以m <2020 ,所以 m 的最大整数是 673. 3(3) 过程略n ≥ 3, c 所以c = 2n -1= 2n -1 ,又 = 1, c = 2 符合 MFAB (m 2 + 9)2 (m 2 +12)2m 2+ 9 MFABMFAB a = (a n n nn220. (1)极大值 ln2 - 1无极小值; 2 2(2)即 a ≤1x c os (1- x )在区间(0,1) 上恒成立.设t ( x ) = x c os (1- x ) ,则t '( x ) = cos (1- x ) + x s in (1- x ) > 0 在区间(0,1) 上恒成立. 所以t (x ) = x cos (1- x ) 在(0,1) 单调递.增,则0 < t ( x ) < 1 , 所以 a ≤ 1.(3) 由(2)可知当 a = 1 时,函数G ( x ) = sin (1 - x ) + ln x 在区间(0,1) 上递增,所以sin (1- x )+ ln x < G (1) = 0 ,即sin (1 - x ) < ln 1x(0 < x < 1) ,所以sin 1 (2 + k )2 = sin[1- (k +1)(k + 3) (2 + k )2] < ln (2 + k )2 . (k +1)(k + 3).求和即可得证(略)。
2020年天津市塘沽一中高三毕业班第二次模拟考试数学(版)(含答案)
1 k )2
ln 3 ln 2 .
kx-1 的图像 . 上,则实数 k 的取值范围是 ( )
1 A. ( ,1)
2
B. (0,1)
二 . 填空题 ( 每小题 5 分 , 共 30 分 )
1 C. ( ,0)
2
第 II 卷
D. (-1,0)
10. 函数 f ( x) log 0.5 (4x 3) 的定义域是 ___
11. 已知二项式 ( x2 2 )n 的展开式中各项的二项式系数和为 x
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D.既不充分也不必要条件
4. 已知圆 x2
y2
y2 4x 2 y 1 0 关于双曲线 C: a2
x2 b2
1(a
0, b
0) 的一条渐近线对称 , 则双曲
线 C 的离心率为 ()
A. 5
B.5
5 C.
2
5 D.
4
5. 已知数列 { an} 的通项公式是 an n 2 sin( 2n 1 ), 则 a1 a2 a3 L 2
512,其展开式中第四项的系数 ____
12. 已知 F 是抛物线 C : y2 2 x 的焦点, M是 C上一点, FM的延长线交 y 轴于点 N.若 M为 FN 的中点 ,
则|FN|=___
13. 已知三棱锥 P-ABC 的四个顶点在球 O 的球面上 , PA=PB=PC, △ABC是边长为 2 的正三角形 ,PA⊥ PC,
2
6
g(x)
的图象,则函数 g(x) 的单调递减区间是 ()
A. [ k
,k
]( k Z )
6
2
B. [k ,k
天津滨海新区塘沽一中2020年秋高二数学上学期期中模拟卷二附答案解析
nn
AD CD
天津滨海新区塘沽一中 2020 年秋高二数学上学期期中模拟卷二
一、单选题
1.若两平行直线 x 2 y m 0, (m 0) 与 x ny 3 0 之间的距离是 5 ,则 m+n=( )
A.0
B.1
C. 1
D. 2
2.已知直线 l 过点 1, 2 ,且在纵坐标轴上的截距为横坐标轴上的截距的两倍,则直线 l 的方程为( )
(1)求 E 的方程;
(2)直线 l : x y m 0 与椭圆 E 相较于 M 、 N 两点,试问:在 y 轴上是否存在点 A ,使得 AMN 为 等边三角形,若存在,求直线 l 的方程;若不存在,请说明理由.
解析
天津滨海新区塘沽一中 2020 年秋高二数学上学期期中模拟卷二
一、单选题
1.若两平行直线 x 2 y m 0, (m 0) 与 x ny 3 0 之间的距离是 5 ,则 m+n=( )
D. 0,1 1,
4.已知圆 C1 : x2 y2 2x 3y 1 0 ,圆 C2 : x2 y2 4x 3y 36 0 ,则圆 C1 和圆 C2 的位置关系为
()
A.相切
B.内含
C.外离
D.相交
5.若椭圆 C : x2 y2 1的右焦点为 F,且与直线 l : x 3y 2 0 交于 P,Q 两点,则 △PQF 的周长为( )
A. 2 3 3
B. 3 3
C. 2 2 3
D. 2 3
【答案】A
【分析】求出平面 ACD 的一个法向量 n ,再求出 BD 在 n 方向上的投影的绝对值即可.
【详解】由题意 AD (2, 2, 0),CD (1, 0,1), BD (0, 0, 2) ,
2020届天津市滨海新区高考数学二模试卷(含解析)
2020届天津市滨海新区高考数学二模试卷一、单选题(本大题共12小题,共60.0分)1.设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A. {x|2<x<3}B. {x|x>1}C. {x|1<x<2}D. {x|x>2}2.已知i为虚数单位,则复数(2+i)(1+i)=()A. 1+3iB. 3+3iC. 2iD. 13.现对某次大型联考的1.2万份成绩进行分析,该成绩ξ服从正态分布N(520,σ2),已知P(470≤ξ≤570)=0.8,则成绩高于570的学生人数约为()A. 1200B. 2400C. 3000D. 15004.阅读如图所示的程序框图,当输出的结果S为3时,判断框中应填()A. k<6B. k<7C. k<8D. k<95.已知α∈(π2,π),且tan(α+π4)=,则sinα+cosα的值是()A. 15B. −15C. −43D. −346.下列命题中是假命题的是()A. ;B. 使得函数是偶函数;C. 使得;D. 是幂函数,且在上递减;7.若函数f(x)=2sin2x的图象向右平移φ(0<φ<π)个单位后得到函数g(x)的图象,若对满足|f(x1)−g(x2)|=4的x1、x2,有|x1−x2|的最小值为π6,则φ=()A. π3B. π6C. π3或2π3D. π6或5π68.已知双曲线x2−y24=1上点P与左焦点F1的连线的中点M恰好在y轴上,则|OM|等于()A. 2B. 3C. √3D. 149. 正四面体ABCD 的棱长为1,G 是△ABC 的中心,M 在线段DG 上,且∠AMB =90°,则GM 的长为( )A. 12B. √22C. √33D. √6610. 一个几何体的三视图如图所示,其左视图是等边三角形,该几何体的侧面中面积最大的侧面的面积等于( )A. √7B. √6C. 2D. √311. 抛物线y 2=2px(p >0)的焦点为F ,其准线与x 轴的交点为N ,过点F 作直线与此抛物线交于A 、B 两点,若NB ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,且|AF ⃗⃗⃗⃗⃗ |−|BF ⃗⃗⃗⃗⃗ |=4,则p 的值为( )A. 2B. 3C. 4D. 512. 函数f(x)={2,(x <1)x 2+ax,(x ≥1),若f(f(0))=4a ,则实数a 的值为( )A. 0B. 1C. 2D. 4二、单空题(本大题共3小题,共15.0分)13. 若二项式(x 2−1x )n 的展开式中二项式系数的和为64,则展开式中的常数项为______ . 14. 记不等式{x −y +1≥03x −y −3≤0x +y −1≥0所表示的平面区域为D ,若对任意(x 0,y 0)∈D ,不等式x 0−2y 0+c ≤0恒成立,则c 的取值范围是______.15. 已知定义在(0,+∞)上的函数f(x)满足f(x)={e x +lgx,0<x ≤3−1f(x−3),x >3,则f(2020)= ______ . 三、多空题(本大题共1小题,共5.0分)16. 在△ABC 中,∠B =45°,AC =2,O 为△ABC 的外接圆圆心,则OA ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ = (1) ,△ABC 的面积最大值为 (2) .四、解答题(本大题共7小题,共82.0分) 17. 已知a 1=1,a 2=4,a n+2=4a n+1+a n ,b n =a n+1a n,n ∈N ∗(Ⅰ)求b 1,b 2,b 3的值;(Ⅱ)设c n =b n b n+1,S n 为数列{c n }的前n 项和,求证:S n ≥17n .18. 从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图如下:(Ⅰ)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;(Ⅱ)以上述样本的频率作为概率,从该校高三学生中有放回地抽取3人,记抽取的学生成绩不低于90分的人数为,求的分布列和期望.19.如图,在四棱锥P−ABCD中,平面PAD⊥平面ABCD.平面PCD⊥平面ABCD.(1)证明,PD⊥平面ABCD;(2)若E为PC的中点,DE⊥PC,四边形ABCD为菱形,且∠BAD=60°,求二面角D−BE−C的余弦值.20.已知椭圆C:x2a2+y2b2=1(a>b>0)过点(1,32),过坐标原点O作两条互相垂直的射线与椭圆C分别交于M,N两点.(1)证明:当a2+9b2取得最小值时,椭圆C的离心率为√22.(2)若椭圆C的焦距为2,是否存在定圆与直线MN总相切?若存在,求定圆的方程;若不存在,请说明理由.21.已知函数f(x)=13x3−ax−3(a∈R).(Ⅰ)当a=1时,求函数f(x)在区间[−2,3]的最值;(Ⅱ)求函数f(x)的极值点;22. 在平面直角坐标系xOy 中,圆C 的参数方程为{x =−5+√2costy =3+√2sint(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=−√2. (Ⅰ)求圆C 的普通方程和直线l 的直角坐标方程;(Ⅱ)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任一点,求△PAB 面积的最大值.23. 已知函数f(x)=xln(x +√2a +x 2(a >0)为偶函数.(1)求a 的值;(2)求g(x)=ax 2+2x +1在区间[−6,3]上的值域.【答案与解析】1.答案:A解析:解:集合A={x|1<x<3},集合B={x|x2>4}={x|x<−2或x>2},则集合A∩B={x|2<x<3}.故选:A.解不等式求出集合B,根据交集的定义写出A∩B.本题考查了解不等式与交集的运算问题,是基础题.2.答案:A解析:解:原式=2−1+i+2i=1+3i.故选:A.利用复数的乘法法则即可得出.本题考查了复数的乘法法则,属于基础题.3.答案:A解析:解:成绩ξ服从正态分布N(520,σ2),可得曲线关于直线x=520对称,×0.8=0.4,P(470≤ξ≤570)=0.8,可得P(520≤ξ≤570)=12则P(ξ>570)=1−0.4=0.1,成绩高于570的学生人数约为12000×0.1=1200.故选:A.×0.8=0.4,P(ξ>570)=1−0.4=由题意可得曲线关于直线x=520对称,P(520≤ξ≤570)=120.1,即可得到所求人数.本题考查正态曲线的对称性和运用,考查运算能力,属于基础题.4.答案:C解析:解:执行程序框图,有k=2,S=1执行循环体,S=log 23,k=3满足判断条件,执行循环体,S=log 23⋅log43,k=4满足判断条件,执行循环体,S=log 23⋅log43⋅log54,k=5满足判断条件,执行循环体,S=log 23⋅log43⋅log54⋅log65,k=6满足判断条件,执行循环体,S=log 23⋅log43⋅log54⋅log65⋅log76,k=7满足判断条件,执行循环体,S=log 23⋅log43⋅log54⋅log65⋅log76⋅log87=3,k=8由题意,此时应该不满足判断条件,退出循环,输出S的值为3,比较各个选项,从而判断框中应填k<8,故选:C.执行程序框图,写出每次循环得到的s,k的值,当s=3,k=8时应有不满足判断条件,退出循环,输出S的值,从而得解.本题主要考察了程序框图和算法,模拟程序的运行,依次写出每次循环得到的S,k的值是解题的关键,属于基础题.5.答案:A解析:试题分析:由题意可得tanα+11−tanα=−17,解得tanα=−43,再根据α的范围,利用同角三角函数的基本关系求得sinα和cosα的值,从而求得sinα+cosα的值.6.答案:A解析:答案A当时,,所以该命题是假命题,选A.考点:全称命题与特称命题真假判断.7.答案:C解析:解:因为将函数f(x)=2sin2x的周期为π,函数的图象向右平移φ(0<φ<π)个单位后得到函数g(x)的图象.若对满足|f(x1)−g(x2)|=4的可知,两个函数的最大值与最小值的差为4,有|x1−x2|min=π6,不妨x1=π4,x2=π12,即g(x)在x2=π12,取得最小值,sin(2×π12−2φ)=−1,此时φ=π3−kπ,k∈Z,结合0<φ<π,可得φ=π3,满足题意.x1=π4,x2=5π12,即g(x)在x2=5π12,取得最小值,sin(2×5π12−2φ)=−1,此时φ=2π3−kπ,k∈Z,结合0<φ<π,可得φ=2π3,满足题意.故选:C.利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可得解.本题主要考查了三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答,属于中档题.8.答案:A解析:解:双曲线x2−y24=1上点P与左焦点F1的连线的中点M恰好在y轴上,可知PF2⊥x轴,|PF2|=b2a =41=4,则|OM|=2.故选:A.求出双曲线的通径,利用已知条件转化求解即可.本题考查双曲线的简单性质的应用,是基本知识的考查.9.答案:D解析:本题考查棱锥的结构特征,考查空间想象能力,逻辑思维能力,是中档题.由题意可知,三角形AMB是等腰直角三角形,求得MA,然后求得MG.解:∵点G是正△ABC的中心,∴AG=BG=√3,3M在AB垂直平分线上,MA=MB=√2,2MG=√MA2−AG2=√6;6故选D.10.答案:B解析:本题考查了利用三视图求几何体表面积的应用问题,属于基础题.还原几何体,结合图中数据求出该四棱锥侧面中的最大面积.解:根据三视图知,该几何体如图所示;×2×√22−12=√3,则该四棱锥P−ABCD中,各侧面的面积为S△PAB=12×1×2=1,S△PAD=12×2×2=2,S△PBC=12△PCD中,CD=PD=√5,PC=2√2,×2√2×√5−2=√6,S△PCD=12即各侧面中面积最大的面的面积是√6.故选B.11.答案:A解析:本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.假设k 存在,设AB 方程为:y =k(x −p2),代入椭圆方程,可得根与系数的关系,由∠NBA =90°,可得|AF|−|BF|=(x 2+p2)−(x 1+p2)=2p ,再利用焦点弦长公式即可求得p 的值. 解:抛物线y 2=2px(p >0)的焦点为F(p2,0), 设两交点为A(x 2,y 2),B(x 1,y 1),当直线AB 的斜率不存在时,NF ⊥AB ,不符合题意; 当直线AB 的斜率存在时,设AB 方程为:y =k(x −p2), {y =k(x −p2)y 2=2px,整理得k 2x 2−(k 2+2)px +k 2p 24=0, ∵NB ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,则∠NBA =90°,∴NB ⃗⃗⃗⃗⃗⃗ ·FB ⃗⃗⃗⃗⃗ =0.∴(x 1−p2)(x 1+p 2)+y 12=0,∴x 12+y 12=p 24,∴x 12+2px 1−p 24=0(x 1>0), ∴x 1=√5−22p ,x 2=2+√52p ,∴|AF|−|BF|=(x 2+p 2)−(x 1+p 2)=2p , 即2p =4,则p =2, 故选A .12.答案:C解析:解:函数f(x)={2,(x <1)x 2+ax,(x ≥1),f(0)=2,f(f(0))=4a , 可得f(2)=4a ,即22+2a =4a ,解得a =2. 故选:C .利用分段函数列出方程,求解即可.本题考查分段函数的应用,函数值的求法,考查计算能力.13.答案:15解析:解:2n =64,n =6,二项式(x 2−1x )6的展开式中常数项为C 64(−1)4=15.故答案为:15.由二项式定理可以直接确定n 的值,进而确定常数项. 本题考查了二项式定理,属于基础题.14.答案:(−∞,−1]解析:解:由已知得到可行域如图:由图可知,对任意(x 0,y 0)∈D ,不等式x 0−2y 0+c ≤0恒成立, 即c ≤−x +2y 恒成立,即c ≤(−x +2y)min ,当直线z =−x +2y 经过图中A(1,0)时 z 最小为−1, 所以c ≤−1; 故答案为:(−∞,−1].画出平面区域,由对任意(x 0,y 0)∈D ,不等式x 0−2y 0+c ≤0恒成立,即求−x +2y 的最小值,利用其几何意义求得即可.本题考查了简单线性规划与恒成立问题;由恒成立得到实质是求−x +2y 的最小值,借助于数形结合的思想解答.15.答案:−1e解析:解:根据题意,当x >3时,f(x)=−1f(x−3),则有f(x)=−1−1f(x−6)=f(x −6),(x >6)则f(2020)=f(4+6×336)=f(4)=−1f(1), 又由f(1)=e +lg1=e ,则f(2020)=−1f(1)=−1e , 故答案为:−1e .根据题意,变形分析可得当x >6时,f(x)=f(x −6),据此可得f(2020)=f(4+6×336)=f(4)=−1f(1),结合函数的解析式计算可得答案.本题考查分段函数的求值,涉及指数、对数的计算,属于基础题.16.答案:0√2+1解析:解:由,∠B =45°,则∠AOC ,即OA ⊥OC ; ∴OA ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ =0;又由余弦定理|AC|2=|AB|2+|BC|2−2|AB|⋅|BC|cos∠B ≥2|AB|⋅|BC|−√2|AB|⋅|BC|; 即|AB|⋅|BC|≤2−√2=2√2(√2+1); S △ABC =12|AB||BC|sinB ≤12×2√2(√2+1)×√22=√2+1;故答案为:0,√2+1;(1)直接由圆心角是对应圆周角的2倍,可得OA ⊥OC ;(2)由余弦定理可得|AB|⋅|BC|≤2−√2=2√2(√2+1),再用三角形的面积公式可求得三角形面积是最大值;本题考查余弦定理、三角形的面积公式,考查利用均值不等式求最值;属于中档题.17.答案:解:(Ⅰ)由于a 1=1,a 2=4,a n+2=4a n+1+a n ,所以a 3=4a 2+a 1=17,a 4=4a 3+a 2=72,又b n =a n+1a n,n ∈N ∗,所以b 1=4,b 2=174,b 3=7217; (Ⅱ)证明:由a n+2=4a n+1+a n ,得an+2a n+1=4+ana n+1,即b n+1=4+1b n,所以当n ≥2时,b n >4,于是c 1=b 1b 2=17,c 2=b 2b 3=18,c n =b n b n+1=4b n +1>17(n ≥2) 所以S n =c 1+c 2++c n ≥17n .解析:(Ⅰ)由a1=1,a2=4,a n+2=4a n+1+a n,可求得a3=17,a4=72,又b n=a n+1a n,n∈N∗,于是可求b1,b2,b3的值;(Ⅱ)由a n+2=4a n+1+a n,得a n+2a n+1=4+a na n+1,即b n+1=4+1bn,由c n=b n b n+1,可求得c1=b1b2=17,当n≥2时,b n>4,c n=b n b n+1=4b n+1>17(n≥2),于是易证S n≥17n.本题考查数列的求和,着重考查数列递推式的应用,考查运算与求解能力,属于难题.18.答案:(Ⅰ)92分;(Ⅱ)分布列详见解析,.解析:试题分析:本题主要考查频率分布直方图的读图能力和计算能力,以及离散型随机变量的分布列与数学期望.第一问根据频率分布直方图,求该校高三学生本次数学考试的平均分,解决实际问题,公式为:每一个区间的中点×每一个长方形的高×组距,把所得结果相加即可;第二问利用频率=高×组距,求出样本中成绩不低于90分的频率,通过分析发现人数符合二项分布,利用二项分布的概率计算公式:来计算每种情况的概率,列出分布列,由于,所以利用上面的公式计算期望.试题解析:(Ⅰ)由频率分布直方图,得该校高三学生本次数学考试的平均分为5分(Ⅱ)样本中成绩不低于90分的频率为,所以从该校高三学生中随机抽取1人,分数不低于90分的概率为.7分由题意,,(),其概率分布列为:X0123P0.0640.2880.4320.21610分的期望为.考点:1.频率分布直方图;2.分布列;3.数学期望.19.答案:(1)证明:过B 作BF ⊥CD 于F ,过B 作BG ⊥AD 于G .∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,BF ⊂平面ABCD ,BF ⊥CD ,∴BF ⊥平面PCD ,∴BF ⊥PD . 同理可得BG ⊥PD ,又∵BG ∩BF =B ,∴PD ⊥平面ABCD .(2)解:以DC 所在方向为y 轴,DP 所在方向为z 轴建立如图所示空间直角坐标系, ∵PD ⊥平面ABCD ,∴PD ⊥CD ,又DE ⊥PC ,E 为PC 的中点,∴PD =DC .不妨假设PD =2,则D(0,0,0),B(√3,1,0),E(0,1,1),C(0,2,0).可知BE ⃗⃗⃗⃗⃗ =(−√3,0,1),DB ⃗⃗⃗⃗⃗⃗ =(√3,0,1),BC ⃗⃗⃗⃗⃗ =(−√3,1,0). 设m⃗⃗⃗ =(x,y,z)为平面BDE 的法向量, 则{m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,即{−√3x +z =0√3x +y =0. 令x =1,得y =−√3,z =√3.可知平面BDE 的一个法向量m ⃗⃗⃗ =(1,−√3,√3) 同理可得平面BEC 的一个法向量n ⃗ =(1,√3,√3). ∴cos〈m ⃗⃗⃗ ,n ⃗ 〉=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ ||n ⃗⃗ |=17, 又二面角D −BE −C 为钝角, ∴二面角D −BE −C 的余弦值为−17.解析:(1)过B 作BF ⊥CD 于F ,过B 作BG ⊥AD 于G.证明BF ⊥CD ,BF ⊥PD.BG ⊥PD ,然后证明PD ⊥平面ABCD .(2)以DC 所在方向为y 轴,DP 所在方向为z 轴建立如图所示空间直角坐标系,求出平面BDE 的法向量,平面BEC 的一个法向量,利用空间向量的数量积求解即可.本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及计算能力.20.答案:解:(1)方法一:由椭圆过点(1,32),则1a 2+94b 2=1,a 2+9b 2=(a 2+9b 2)(1a 2+94b 2)=1+9a 24b 2+9b 2a 2+814≥2√9a 24b 2×9b 2a 2+814=1214,当且仅当9a 24b 2=9b 2a 2时,即a =√2b ,a 2+9b 2取得最小值, 所以椭圆的离心率e =c a =√1−b 2a 2=√22,方法二:由方法一可知:1a 2+94b 2=1,则1=1a 2+8149b 2≥(1+92)2a 2+9b2,所以a 2+9b 2≥1214,当且仅当1a 2=929b 2,即a =√2b ,a 2+9b 2取得最小值, 所以椭圆的离心率e =c a =√1−b 2a 2=√22, (2)存在定圆x 2+y 2=127,使得定圆与直线MN 总相切,理由如下:椭圆的焦距为2,所以a 2−b 2=1,所以由(1)可知1a 2+94b 2=1,解得:a 2=4,b 2=3, 当直线MN 的斜率不存在时,由对称性,设M(x 0,x 0),M(x 0,−x 0),因为M ,N 在椭圆上,解得x 02=127,所以O 到直线MN 的距离d =|x 0|=2√217, 当直线MN 的斜率存在时,设直线MN 的方程为y =kx +m ,联立方程组{y =kx +mx 24+y 23=1,消去y ,整理得(3+4k 2)x 2+8kmx +4m 2−12=0,由△=(8km)2−4(3+4k 2)(4m 2−12)>0, 设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=−8km3+4k 2,x 1x 2=4m 2−123+4k 2,因为OM ⊥ON ,所以x 1x 2+y 1y 2=0,x 1x 2+y 1y 2=x 1x 2+(kx 1+m)(kx 2+m)=(k 2+1)x 1x 2+km(x 1+x 2)+m 2=0, 所以(k 2+1)(4m 2−123+4k 2)+km(−8km3+4k 2)+m 2=0,即7m 2=12(k 2+1),所以O 到直线MN 的距离d =√1+k2=2√217, 综上可知,O 到直线MN 的距离为定值,且定值为2√217,故存在定圆O :x 2+y 2=127.解析:(1)方法一:将点代入椭圆方程,利用“1”代换及基本不等式即可求得a 与b 的关系,求得椭圆的离心率;方法二:由方法一:转化,利用权方和不等式,求得a 与b 的关系,即可求得椭圆的离心率; (2)由(1)及c =1求得椭圆方程,分类讨论,当直线斜率存在时,代入椭圆方程,利用韦达定理及向量的坐标运算,求得7m 2=12(k 2+1),根据点到直线的距离公式求得O 到直线,MN 的方程为定值,即可判断定圆与直线MN 总相切.本题考查椭圆的标准方程的求法,直线与椭圆的位置关系,考查基本不等式及权方和不等式的应用,考查转化思想,计算能力,属于中档题.21.答案:(Ⅰ)解:a =1时,f′(x)=x 2−1,由f′(x)>0,可得x >1或x <−1;由f′(x)<0,可得−1<x <1,即有f(x)在(−1,1)递减,在[−2,−1],[1,3],递增, f(−2)=−113,f(1)=−113 f(−1)=−73,f(3)=3,∴函数f(x)在区间[−2,3]的最大值为f(3)=3,最小值为f(−2)=f(1)=−113 (Ⅱ)解:f′(x)=x 2−a当a ≤0时,f′(x)≥0恒成立,f(x)单调递增,无极值;当a >0时,令f′(x)=0,x =±√a ,f(x)在(−∞,−√a),(√a,+∞)单调递增,在(−√a,√a)递减, ∴函数f(x)的极大,小值点分别为−√a ,√a .解析:(Ⅰ)求得f(x)的导数,由导数大于0可得增区间;导数小于0,可得减区间,进而得到f(x)的最值;(Ⅱ)f′(x)=x 2−a ,分a ≤0,a >0讨论,本题考查导数的运用:求单调性和极值、最值,考查分类讨论思想方法,以及化简整理的运算能力,属于中档题.22.答案:解:(1)圆C 的参数方程为{x =−5+√2costy =3+√2sint(t 为参数),消去参数t ,转换为直角坐标方程为(x +5)2+(y −3)2=2.直线l 的极坐标方程为ρcos(θ+π4)=−√2.整理得√22ρcosθ−√22ρsinθ=−√2,根据:{x =ρcosθy =ρsinθρ2=x 2+y 2,转换为直角坐标方程为x −y +2=0.(2)直线l 与x 轴和y 轴的交点坐标为A(−2,0),B(0,2). 所以|AB|=√22+(−2)2=2√2点P(−5+√2cosα,3+√2sinα)到直线l的距离d=√2cosα−3−√2sinα+2|√2=|−6+2cos(α+π4)|√2,当cos(α+π4)=−1时,d max=√2=2√2,所以S△PAB=12×d max×|AB|=12×2√2×2√2=4.解析:(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用和三角函数关系式的恒等变换和三角形的面积公式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,正弦型函数的性质的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:(1)由题意知f(x)是偶函数,∵a>0,∴√2a+x2>√x2=|x|≥−x,所以函数f(x)定义域为R,则有:f(1)=f(−1),即ln(1+√2a+1)=−ln(−1+√2a+1),∴1+√2a+1=√2a+1−1,即2a+1−1=1,a=12;(2)g(x)=12(x+2)2−1,开口向上,对称轴为x=−2,∴g(x)关于x在[−6,−2]上递减,则g(−2)≤g(x)≤g(−6),g(x)关于x在(−2,3]上递增,则g(−2)<g(x)≤g(3),又g(−2)=−1,g(3)=232,g(−6)=7,g(x)的值域为[−1,232].解析:(1)根据函数的奇偶性,求出a的值即可;(2)求出g(x)的表达式,根据函数的单调性求出g(x)在值域即可.本题考查了函数的单调性、最值问题,考查二次函数的性质,是一道中档题.。
2020届天津市滨海新区塘沽一中高三二模考试数学试卷及答案
}
的前
n
项和为 Tn
;若对 n
N*
均满足 Tn
m 2020
,求整数
m
的最大值;
n
(3)是否存在数列 cn ,满足等式 (ai 1)cn1i 2n1 n2成立,若存在,求出数列 cn 的通项 i1
公式;若不存在,请说明理由.
20. (本题满分 16 分)已知 f ( x) a sin(1 x) ln x ,其中 a R .
243
)
70
B.
243
80
C.
243
38
D.
243
第2页共5页
9.已知函数
f
x
xlnx2x,x x2 2x,x 0
0
的图像上有且仅有四个不同的点关于直线 y 1的对称
点在 y kx 1的图像上,则实数 k 的取值范围是( )
A.
1 2
,1
B.(0,1)
C.
1 2
,0
D.(-1,0)
2020 年塘沽一中高三毕业班第二次模拟考试
数学
第Ⅱ卷
二.填空题(每小题 5 分,共 30 分,将每道小题的结果标清题号按顺序分别拍图片上传)
10.函数 f (x) log0.5(4x 3)的定义域是 ____________.
11.已知二项式
x2
2 x
n
的展开式中各项的二项式系数和为 512 ,其展开式中第四项的系数
____________.
AB 4
(m2 9)2 (m2 12)2
,
MF
m2 9
MF
MF 1 AB 4
m2
9
9 m2
9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学 参考答案
一.选择题:(每小题 5 分,共计 45 分)
DCAAD ,CBCB
二.填空:(每小题 5 分,共计 30 分)
10.
( 3 ,1] ; 4
11. -672 ;
3
12.
2
13. 6
14. 45
( 2, )
15. 5 5 2
三.解答题
16.(1)由题设易得,问卷调查从四个小组中抽取的人数分别为 4,3,2,3(人),
(3)过程略 n 3, cn 2n1 ,又 c1 1, c2 2 符合 所以 cn 2n1
数学 第 1 页 (共 17 页)
2020届天津市塘沽一中2017级高三二模考试数学试卷
20. (1)极大值 ln 2 1 无极小值; 22
(2)
即a
1
x cos 1 x
在区间 0,1 上恒成立.
3
项,故bn 是以
b1
2
为首项,公比为
4 2
2
的等比数列.
故 bn 2n .综上 an n 1, bn 2n
(2) nbn 2n1 2n anan1 n 2 n 1
前
n
项和为
Tn
2n1 n2
1, Tn 单增,所以 Tn
的最小值为
1/3
所以 m 2020 ,所以 m 的最大整数是 673. 3
设 t x x cos1 x ,则 t x cos1 x x sin 1 x 0 在区间 0,1 上恒成立.
所以 t x x cos1 x 在 0,1 单调递.增,则 0 t x 1 ,
所以 a 1.
(3) 由(2)可知当 a 1 时,函数 G x sin 1 x ln x 在区间 0,1 上递增,
c 从参加问卷调查的 12 名学生中随机抽取两名的取法
2 12
66
共有(种),
c c c 抽取的两名学生来自同一小组的取法共
2 4
2
2
3
2 2
13
所以,抽取的两名学生来自同一个小组的概率为
P 13
66
有(种),
(2)由(1)知,在参加问卷调查的 12 名学生中,来自甲、丙两小组的学生人数分别为 4 人、2 人,
由韦达定理得 AB 中点 P 的坐标为
(
m
12 2
12
,
m
3m 2 12
)
又因为直线
y m x OM: 4
所以 P 在直线 OM 上.综上 OM 平分线段 AB.
数学 第 1 页 (共 17 页) 2020届天津市塘沽一中2017级高三二模考试数学试卷
ii 当 m 0
MF 2 时, AB 2
所以 sin 1 x ln x G 1 0 ,即 sin 1 x ln 1 0 x 1 ,
x
所以
sin
1 (2 k)2
sin[1
(k
1)(k (2 k)2
3)
]
ln
(2 k)2 (k 1)(k 3)
.
.
求和即可得证(略)
数学 第 1 页 (共 17 页)
2020届天津市塘沽一中2017级高三二模考试数学试卷
当 m 0 时,由 (i) 可知
AB 4
(m2 9)2 (m2 12)2
,
MF
m2 9
MF
MF 1 AB 4
m2
9
9 m2
9
6
1
又
2 1 ∴m=0 时, AB 最小,点 M 的坐标为(-4,0) 2
19.
(1)由题,当 n 1 时, a22 2S1 5 ,即 a22 2a1 5
(过程略)解得 1 3
18.
(1) x2 y2 1 43
(2) i 设点 M 的坐标为(-4,m)
当 m 0 时,AB 与 x 轴垂直,F 为 AB 的中点,OM 平分 AB 显然成立
当 m 0,由已知可得:
K MF
m 3
,
K
AB
3 m
则直线 AB 的方程为: y 3 (x 1) m
联立消去 y 得: (m2 12)x2 24x 4m2 12 0 ,
∴ PB 2, 0, 2,GB 2, 0, 0 ,GM 0, 1,1
平面 PAD 的法向量为
(1,0,0) 平面 BMD 的法向量为 锐二面角的余弦值为
11 (1,1,3) 11
(Ⅱ)设 AM AP 0, 2, 2 0, 2, 2 , 0,1
∴ M 0, 2 2, 2 平面 BMG 的法向量为 (0, ,1 )
故 a32 a2 1 a7 a2 12 a2 1 a2 5 ,解得 a2 3 .又 a22 2a1 5 ,
故 a1 2 ,因为 a2 a1 1也成立.
故an 是以 a1 2 为首项,1 为公差的等差数列.故 an 2 n 1 n 1 .
即
2,
4, 8
恰为等比数列 bn 的前
∴ PC 平面 BMG .
数学 第 1 页 (共 17 页)
(ii)解:如图,在平行四边形 BCDG 中∵ BG CD , CD GD , ∴ BG GD 以 G 为原点建立空间直角坐标系 O xyz
则 G 0,0,0, P 0,0, 2, D0, 2,0 ,
A0, 2,0, B 2,0,0,C 2, 2,0, M 0, 1,1
所以,抽取的两人中是甲组的学生的人数 X 的可能取值为 0,1,2
X
ห้องสมุดไป่ตู้
0
1
2
P
1/15
8/15
6/15
4 所求 X 的期望为 3 17.(Ⅰ)(i)证明:连接 AC 交 BG 于点 O ,连接 OM , CG ,依题意易证四边形 ABCG 为平行四边形. ∴ AO OC 又∵ PM MA , ∴ MO PC 又∵ MO 平面 BMG , PC 平面 BMG ,
当 n 2 时,
a2 n1
2Sn
n
4
…①
an2 2Sn1 n 3 …②
①-②得
a2 n1
an2
2an
1 ,整理得
a2 n1
an 1 2 ,又因为各项均为正数的数列
an
.
故 an1 an 1 ,an 是从第二项的等差数列,公差为 1.
又 a2 1 , a3, a7 恰为等比数列bn 的前 3 项,