最新高二数学会考模拟试卷(附答案)01

合集下载

2024届新高三数学开学摸底考试卷01及答案解析(九省新高考专用)

2024届新高三数学开学摸底考试卷01及答案解析(九省新高考专用)

2024届新高三数学开学摸底考试卷01及答案解析(九省新高考专用)第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U =R ,集合{}2|430A x x x =-+<,2{|log }B x x a =<,且满足{}|12A B x x ⋂=<<,则()U A B ⋃=ð()A .()0,3B .(][),03,-∞+∞ C .()1,3D .(][),13,-∞⋃+∞【答案】B【分析】首先求出集合A ,B 中的不等式,再根据{}|12A B x x ⋂=<<得出集合B ,根据集合并集和补集的定义计算即可.【详解】由题可知(1,3)A =,{|02}a B x x =<<,因为{}|12A B x x ⋂=<<,所以22a =,即{|02}B x x =<<,所以(0,3)A B ⋃=,所以()(0][3,)U A B ⋃=-∞⋃+∞,ð,故选:B .2.已知复数z 满足2i1i z-=+(i 为虚数单位),z 是z 的共轭复数,则4z z ⋅=()A .5BC .10D【答案】C【分析】先根据复数的除法求出z ,再计算4z z ⋅.【详解】由2i1i z-=+得()()()()2i 1i 2i 13i 13i 1i 1i 1i 222z ----====-+-+,所以13i 22z =+,所以()()413i 13i 10z z ⋅=-⋅+=.故选:C.3.已知复数z 在复平面内对应的点为M ,iz 在复平面内对应的点为N ,i 是虚数单位,则“点M 在第一象限”是“点N 在第四象限”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】设复数i z a b =+,复数z 在复平面内对应的点为M (),a b 在第一象限,求出,a b 的范围,iz在复平面内对应的点为N (),b a -在第四象限,求出,a b 的范围,再结合充分条件必要条件的定义即可求出答案.【详解】设复数i z a b =+,复数z 在复平面内对应的点为M (),a b 在第一象限,则0,0a b >>,()2i i i i i i i 1ia b z a b a b b a ++-====--,i z 在复平面内对应的点为N (),b a -在第四象限,则0,0b a >>.反之,也成立,“点M 在第一象限”是“点N 在第四象限”的充要条件.故选:C..4.木升在古代多用来盛装粮食作物,是农家必备的用具,如图为一升制木升,某同学制作了一个高为40cm 的正四棱台木升模型,已知该正四棱台的所有顶点都在一个半径为50cm 的球O 的球面上,且一个底面的中心与球O 的球心重合,则该正四棱台的侧面与底面所成二面角的正弦值为()A .23B .23C 255D .25【答案】A【分析】根据正四棱台的外接球的性质可得两底面的边长,进而根据直角三角形的边角关系,结合二面角的定义即可求解.【详解】如图:正四棱台,由题意可知:O 是底面正方形的中心也是球O 的球心,且50,40R OB OO '===,所以502,BC =2222504030O B R OO '''=-=-=,进而可得302,B C ''=取BC 的中点为N ,过B C ''的中点P 作PM ON ⊥,连接PN ,所以11522OM O P B A '''===,12522ON BA ==故2MN ON OM =-=在直角三角形PMN 中,tan 22,102PM PNM MN ∠===故22sin 3PNM ∠=,由于,PN BC ON BC ⊥⊥,所以PNM ∠即为正四棱台的侧面与底面所成二面角,故正弦值为223故选:A5.若数列{}n a 的首项114a =-,且满足111n na a +=-,则2022a =()A .14-B .5C .45D .54【答案】C【分析】根据递推公式,结合代入法可以求出数列的周期,利用数列的周期性进行求解即可.【详解】因为114a =-,111n na a +=-,所以2341141115,1,11455445a a a =-==-==-=--,所以该数列的周期为3,于是有20226743345a a a ⨯===,故选:C6.函数()222cos ()4xx x f x x --=-的部分图象为()A .B.C.D .【答案】C【分析】确定函数为奇函数,排除BD ,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≤,排除A ,得到答案.【详解】()f x 的定义域为{}2x x ≠±,()()()()()2222cos 22cos ()44xx xx x x f x f x x x ------==-=----,故()f x 为奇函数,其图象关于原点对称,排除B ,D ;又π0,2x ⎡⎤∈⎢⎥⎣⎦时,220x x --≥,cos 0x ≥,240x -<,故()0f x ≤,排除A .故选:C .7.我国东汉末数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,,3BC a BA b BE EF === ,则AE =()A .12162525a b- B .16122525a b+C .1292525a b+D .9122525a b-【答案】A【分析】根据给定条件,利用平面向量的线性运算列式,再借助方程思想求解作答.【详解】依题意,3339()44416AE BE BA BF BA BC CF BA BC AE BA =-=-=+-=--,于是25331644AE BC BA a b =-=-,所以12162525AE a b =-.故选:A8.设()f x 是定义在R 上的周期为3的函数,当[0,2)x ∈时,()23,012,12x x x f x x x ⎧-≤≤=⎨-<<⎩,则5(2f -=()A .﹣1B .1C .12D .14【答案】D【分析】根据题意,化简得到551()(3)()222f f f -=-+=,代入即可求解.【详解】因为()f x 是定义在R 上的周期为3的函数,当[0,2)x ∈时,()23,012,12x x x f x x x ⎧-≤≤=⎨-<<⎩,则2551111()(3)()3(222224f f f -=-+==⨯-=.故选:D.二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。

高二数学学业水平模拟试卷(一)

高二数学学业水平模拟试卷(一)

1 高中学业水平考试《数学》模拟试卷(一)一、选择题(本大题共25小题,第1~15题每小题2分,第16~25题每小题3分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1. 已知集合P ={0,1},Q ={0,1,2},则P ∩Q =( )A. {0}B. {1}C. {0,1}D. {0,1,2}2. 直线x =1的倾斜角为( )A. 0°B. 45°C. 90°D. 不存在3. 下列几何体各自的三视图中,有且仅有两个视图相同的几何体是( )(第3题)A. 圆锥B. 正方体C. 正三棱柱D. 球4. 下列函数中,为奇函数的是( )A. y =x +1B. y =1xC. y =log 3xD. y =(12)x5. 下列函数中,在区间(0,+∞)内单调递减的是( )A. y =1xB. y =x 2C. y =2xD. y =x 36. 若直线l 的方程为2x +y +2=0,则直线l 在x 轴与y 轴上的截距分别为( )A. -1,2B. 1,-2C. -1,-2D. 1,27. 已知平面向量a =(1,2),b =(-3,x ).若a ∥b ,则x 等于( )A. 2B. -3C. 6D. -68. 已知实数a ,b ,满足ab >0,且a >b ,则( )A. ac 2>bc 2B. a 2>b 2C. a 2<b 2D. 1a <1b9. 求值:sin 45°cos 15°+cos 45°sin 15°=( )A. -32 B. -12 C. 12 D. 3210. 设M =2a (a -2)+7,N =()a -2()a -3,则有( )A. M >NB. M ≥NC. M <ND. M ≤N11. 已知sin α=35,且角的终边在第二象限,则cos α=( )A. -45 B. -34 C. 45 D. 3412. 已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则a 5+a 7=( )A. 16B. 18C. 22D. 2813. 下列有关命题的说法正确的个数是( )①命题“同位角相等,两直线平行”的逆否命题为“两直线不平行,同位角不相等”;②“若实数x ,y 满足x +y =3,则x =1且y =2”的否命题为真命题;③若p ∧q 为假命题,则p ,q 均为假命题;④对于命题p :∃x 0∈R ,x 02+2x 0+2≤0, 则p :∀x ∈R ,x 2+2x +2>0 .A. 1个B. 2个C. 3个D. 4个14. 已知()3,2在椭圆x 2a 2+y 2b 2=1上,则( )A. 点()-3,-2不在椭圆上B. 点()3,-2不在椭圆上C. 点()-3,2在椭圆上D. 无法判断点()-3,-2,()3,-2,()-3,2是否在椭圆上15. 设a ∈R ,则“a =1”是“直线l 1:ax +2y =0与直线l 2:x +(a +1)y +4=0平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件16. 下列各式:①(log 23)2=2log 23; ②log 232=2log 23;③log 26+log 23=log 218; ④log 26-log 23=log 23.其中正确的有( )A. 1个B. 2个C. 3个D. 4个17. 下列函数中只有一个零点的是( )A. y =x -1B. y =x 2-1C. y =2xD. y =lg x18. 下列各式中,值为32的是( )A. sin 215°+cos 215°B. 2sin15°cos15°C. cos 215°-sin 215°D. 2sin 215°-119. 在△ABC 中,已知AB →·AC →=23,且∠BAC =30°,则△ABC 的面积为( )A. 1B. 2C. 3D. 420. 已知实数a 1,a 2,a 3,a 4,a 5构成等比数列,其中a 1=2,a 5=8,则a 3的值为( )A. 5B. 4C. -4D. ±421. 已知θ∈⎣⎢⎡⎦⎥⎤0,π2,则直线y =x sin θ+1的倾斜角的取值范围是( )A. [0,π2] B. [0,π6] C. [0,π3] D. [0,π4](第22题)22. 如图,在正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 为CC 1的中点,那么异面直线OE 与AD 1所成角的余弦值等于()A. 62 B. 63C. 33D. 2223. 若直线ax +by -3=0与圆x 2+y 2+4x -1=0切于点P (-1,2),则ab 积的值为( )A. 3B. 2C. -3D. -224. 已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确( )A. a ∥bB. a ⊥bC. |a |=|b |D. a +b =a -b25. 已知平面α内有两定点A ,B ,||AB =3,M ,N 在α的同侧且MA ⊥α,NB ⊥α,||MA =1,||NB =2.在α上的动点P 满足PM ,PN 与平面α所成的角相等,则点P 的轨迹所包围的图形的面积等于( )A. 9πB. 8πC. 4πD. π二、填空题(本大题共5小题,每小题2分,共10分)26. 若菱形ABCD 的边长为2,则|AB →-CD →+CD →|=________.27. 函数y =x +1x (x >0)的值域是________. 28. 若直线2()a +3x +ay -2=0与直线ax +2y +2=0平行,则a =________.29. 若双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为________.30. 已知数列{a n }是非零等差数列,且a 1,a 3,a 9组成一个等比数列的前三项,则a 1+a 3+a 9a 2+a 4+a 10的值是________. 三、解答题(本大题共4小题,第31,32题每题7分,第33,34题每题8分,共30分)31. (本题7分)已知cos α=35,3π2<α<2π,,求cos 2α,sin 2α的值.32. (本题7分,有A 、B 两题,任选其中一题完成,两题都做,以A 题计分)[第32题(A)](A)如图所示 ,四棱锥P -ABCD 的底面为一直角梯形,BA ⊥AD, CD ⊥AD ,CD =2AB ,PA ⊥ 底面ABCD ,E 为PC 的中点.(1)求证:EB ∥平面PAD ;(2)若PA =AD ,证明:BE ⊥平面PDC .(B)如图,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .[第32题(B)](1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E -DF -C 的余弦值.33. (本题8分)已知抛物线y 2=4x 截直线y =2x +m 所得弦长AB =3 5.(1)求m 的值;(2)设P 是x 轴上的一点,且△ABP 的面积为9,求点P 的坐标.34. (本题8分)定义在D 上的函数f (x ),如果满足:对任意的x ∈D ,存在常数M >0,都有||f (x )≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x. (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围.1 2014高中学业水平考试《数学》模拟试卷(一)1. C2. C3. A4. B5. A6. C7. D8. D 9. D 10. A 11. A 12. C 13. C 14. C15. A 16. B 17. D 18. C 19. A 20. B21. D 22. B 23. B 24. B25. C [提示:由题意知△AMP ∽△BNP ,所以|PB |=2|PA |,不妨以AB 所在直线为x 轴,中点为原点建立直角坐标系,设P (x ,y ),则(x -32)2+y 2=4[(x +32)2+y 2]⇒(x +52)2+y 2=4,所以P 的轨迹是半径为2的圆,因此面积为4π.] 26. 2 27. [2,+∞) 28. 629. -14 [提示:因为是双曲线,所以m <0,-1m =4,得m =-14.] 30. 1或1316 [提示:设公差为d ,则a 1·(a 1+8d )=(a 1+2d )2⇒a 1d =d 2,∴若d =0,a 1+a 3+a 9a 2+a 4+a 10=1;若d ≠0,则a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=1316.] 31. 解:cos 2α=2cos 2α-1=-725,∵3π2<α<2π,∴sin α=-45,∴sin 2α=2sin αcos α=-1225. 32. (A)证明:(1)取PD 的中点Q ,连接EQ ,AQ ,则QE ∥CD ,CD ∥AB ,∴QE ∥AB .又∵QE =12CD =AB ,∴四边形ABEQ 是平行四边形,∴BE ∥AQ .又∵AQ ⊂平面PAD ,∴BE ∥平面PAD .(2)PA ⊥底面ABCD ,∴CD ⊥PA .又∵CD ⊥AD ,∴CD ⊥平面PAD ,∴AQ ⊥CD .若PA =AD ,∴Q 为PD 中点,∴AQ ⊥PD ∴AQ ⊥平面PCD .∵BE ∥AQ ,∴BE ⊥平面PCD .(第32题)(B)(1)如图:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF //AB ,又AB ⊄平面DEF ,EF ⊂平面DEF ,所以AB //平面DEF . (2)以点D 为坐标原点,直线DB ,DC 为x 轴,y 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,2 3,0),E (0,3,1),F (1,3,0).平面CDF 的法向量为DA →=(0,0,2),设平面EDF 的法向量为n =(x ,y ,z ),⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,所以二面角E -DF -C 的余弦值为217. 33. 解:(1)由⎩⎪⎨⎪⎧y 2=4x ,y =2x +m ,得4x 2+4(m -1)x +m 2=0,由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24,|AB |=1+k 2(x 1+x 2)2-4x 1x 2,=1+22(1-m )2-4·m 24=5(1-2m ).由|AB |=35,即5(1-2m )=35⇒m =-4.(第33题)(2)设P (a ,0),P 到直线AB 的距离为d ,则d =|2a -0-4|22+(-1)2=2|a -2|5,又S △ABP =12|AB |·d ,则d =2·S △ABP |AB |,2|a -2|5=2×935⇒|a -2|=3⇒a =5或a =-1,故点P 的坐标为(5,0)和(-1,0). 34. 解:(1)当a =1时,f (x )=1+⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x,因为f (x )在(-∞,0)上递减,所以f (x )>f (0)=3,即f (x )在(-∞,0)的值域为(3,+∞),故不存在常数M >0,使得|f (x )|≤M 成立.所以函数f (x )在(-∞,0)上不是有界函数. (2)由题意知,|f (x )|≤3在[1,+∞)上恒成立,即-3≤f (x )≤3,-4-⎝ ⎛⎭⎪⎫14x ≤a ·⎝ ⎛⎭⎪⎫12x ≤2-⎝ ⎛⎭⎪⎫14x ,所以-4·2x -⎝ ⎛⎭⎪⎫12x ≤a ≤2·2x -⎝ ⎛⎭⎪⎫12x在[0,+∞)上恒成立.⎣⎢⎡⎦⎥⎤-4·2x -⎝ ⎛⎭⎪⎫12x max ≤a ≤⎣⎢⎡⎦⎥⎤2·2x -⎝ ⎛⎭⎪⎫12x min ,设2x =t ,g (t )=-4t -1t ,h (t )=2t -1t ,由x ∈[0,+∞)得t ≥1,所以g (t )在[1,+∞)上递减,h (t )在[1,+∞)上递增,g (t )max =g (1)=-5,h (t )min =h (1)=1,所以 a ∈[-5,1].。

高二数学会考试题

高二数学会考试题

高二数学会考试题高二数学会考试题是每年高二学生必须参加的一项考试,旨在考察学生对数学知识的掌握程度以及解决数学问题的能力。

以下是一道典型的高二数学会考试题,供同学们参考和练习。

1. 已知函数 f(x) = 2x^3 - 3x^2 - 12x + 5,求解下列问题:(1) 求函数 f(x) 的零点;(2) 求函数 f(x) 的极值点及取值范围。

2. 解答(1) 求函数 f(x) 的零点:零点即为函数 f(x) 的解 x,当 f(x) = 0 时,即可求得零点。

2x^3 - 3x^2 - 12x + 5 = 0该方程不易解,可利用因式定理和二次因式分解进行求解。

首先,根据因式定理,若方程存在有理根,则有理根 p 必满足 p 的形式为 p = ±(因子)/±(因子),即 p = ±a/b,其中 a 为 5 的因子,b 为 2 的因子。

列举 5 和 2 的因子:5 的因子为 ±1、±5,2 的因子为 ±1、±2。

则 p 可列举为:±1/±1,±5/±1,±1/±2,±5/±2。

将列举出的 p 带入原方程 f(x) = 2x^3 - 3x^2 - 12x + 5,判断是否成立。

经计算,得 p=1 时,f(1) = -6;p = -1 时,f(-1) = 18;p = 5/2 时,f(5/2) = 0;p = -5/2 时,f(-5/2) = 0。

因此,零点为 x = 5/2 和 x = -5/2。

(2) 求函数 f(x) 的极值点及取值范围:函数 f(x) 的极值点即为函数的导数为零的点。

对函数 f(x) 求导,得到导函数 f'(x)。

f'(x) = 6x^2 - 6x - 12令 f'(x) = 0,解方程得:6x^2 - 6x - 12 = 0化简方程,得:x^2 - x - 2 = 0对方程进行因式分解,得:(x - 2)(x + 1) = 0解得 x = 2 和 x = -1。

高中数学会考模拟试题(附答案)

高中数学会考模拟试题(附答案)

高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(一)(解析版)

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(一)(解析版)

2020-2021学年福建省普通高中高二学业水平合格性考试(会考 )数学模拟试题(一)一、单选题1.设全集{}0,1,2,3,4U =,已知集合{}{}0,1,2,0,2,3A B ==,则如图所示的阴影部分的集合等于( )A .{}0,2B .{}3C .{}3,4D .{}1,4【答案】B【分析】根据韦恩图得解【详解】因为{}{}0,1,2,0,2,3A B ==,阴影部分表示的集合为(){}3U C A B =,故选:B 2.复数13ii=+( ) A .311010i - B .311010i + C .131010i - D .131010i + 【答案】B【分析】直接利用复数代数形式的乘除运算化简即可.【详解】因为复数()()()13131313i i i i i i -=++- 331101010i i +==+. 故选:B【点睛】本小题主要考查复数的除法运算,属于基础题.3.从2019年末开始,新型冠状病毒在全球肆虐.为了研制新型冠状病毒疫苗,某大型药企需要从150名志愿者中抽取15名志愿者进行临床试验,现采用分层抽样的方法进行抽取,若这150名志愿者中老年人的人数为50人,则老年人中被抽到进行临床试验的人数是( )A .15B .10C .5D .1【答案】C【分析】根据分层抽样中抽样比公式进行求解即可.【详解】设老年人中被抽到进行临床试验的人数是x ,因此有15050515x x=⇒=, 故选:C4.若sin αcos α0<,则角α的终边位于 A .第一、二象限 B .第二、三象限C .第二、四象限D .第三、四象限【答案】C【分析】由sin αcos α0<可得sin α0,cos α>0<⎧⎨⎩ 或sin α>0,cos α0⎧⎨<⎩又三角函数在各个象限的符号可求角α的终边所在象限.【详解】由sin αcos α0<可得sin α0,cos α>0<⎧⎨⎩ 或sin α>0,cos α0⎧⎨<⎩当sin α0cos α>0<⎧⎨⎩时角α的终边位于第四象限,当sin α>0cos α0⎧⎨<⎩时角α的终边位于第二象限.故选C.【点睛】本题考查角函数在各个象限的符号,属基础题. 5.若一组数据的茎叶图如图,则该组数据的中位数是A .79B .79.5C .80D .81.5【答案】A【分析】由给定的茎叶图得到原式数据70,71,72,76,82,82,85,87,再根据中位数的定义,即可求解.【详解】由题意,根据给定的茎叶图可知,原式数据为:70,71,72,76,82,82,85,87, 再根据中位数的定义,可得熟记的中位数为7682792+=,故选A. 【点睛】本题主要考查了茎叶图的应用,以及中位数的概念与计算,其中真确读取茎叶图的数据,熟记中位数的求法是解答的关键,属于基础题. 6.()cos 1050︒-的值为( )A .B .C .12-D .12【答案】A【分析】将1050-︒表示为360k α︒⨯+的形式,利用诱导公式求解. 【详解】1050360330-︒=-⨯+︒,根据诱导公式:()cos 1050cos30-︒=︒=故选:A.【点睛】本题考查诱导公式的使用,属基础题.7.直线1:310l x y ++=和直线2:2610l x y -+=的位置关系是 A .重合 B .垂直C .平行D .相交但不垂直【答案】B【分析】由两直线的斜率关系可得结论.【详解】因为已知两直线的斜率分别为13k =-,213k =,121k k =-,所以12l l ⊥. 故选:B .【点睛】本题考查两直线的位置关系,掌握两直线位置关系的判断方法是解题关键.在斜率都存在的情况下,121k k =-⇔两直线垂直,12k k =且纵截距不相等⇔两直线平行.8.下列函数中,在区间(0,1)上是递增函数的是 A .y =|x +1| B .y =3﹣xC .y 1x=D .24y x =-+【答案】A【分析】根据基本初等函数的单调性,分别求得选项中函数的单调性,即可作出判定,得到答案.【详解】由题意,对于A 中,函数1,111,1x x y x x x +≥-⎧=+=⎨--<-⎩,函数在[1,)-+∞上单调递增,可得在区间(0,1)也单调递增,所以是正确的;对于B 中,函数3y x =-在R 上单调递减,在区间(0,1)也单调递减,所以是不正确的; 对于C 中,函数1y x=在(0,)+∞上单调递减,在区间(0,1)也单调递减,所以是不正确的;对于D 中,函数24y x =-+在(0,)+∞上单调递减,在区间(0,1)也单调递减,所以是不正确的. 故选A.【点睛】本题主要考查了基本初等函数的单调性的判定及应用,其中解答中熟记基本初等函数的单调性是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.若数列{}n a 满足:11a =,12n n a a +=(*n N ∈),则5a =( ) A .8 B .16C .32D .9【答案】B【分析】根据等比数列的定义,结合等比数列的通项公式进行求解即可. 【详解】由1122n n n na a a a ++⇒==,所以数列{}n a 是以2为公比的等比数列, 又因为11a =,所以11122n n n a --=⨯=,因此51452216a -===,故选:B10.不等式2450x x +->的解集为( ) A .()1,5- B .()5,1-C .()(),15,-∞-+∞D .()(),51,-∞-⋃+∞【答案】D【分析】根据一元二次不等式的解法进行求解即可.【详解】2450(5)(1)01x x x x x +->⇒+->⇒>或5x <-, 故选:D11.《易经》是中国文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(——表示一根阳线,一一表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有1根阳线和2根阴线的概率为( )A.18B.14C.38D.12【答案】C【分析】直接根据概率公式计算即可.【详解】从八卦中任取一卦,基本事件有188C=种,其中恰有1根阳线和2根阴线,基本事件共有3种,∴从八卦中任取一卦,这一卦的三根线中恰有1根阳线和2根阴线的概率为38 p=故选:C【点睛】具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.12.以下函数图象中为奇函数的一项是()A.B.C.D.【答案】A【分析】根据奇函数的性质进行判断即可.【详解】因为奇函数的图象关于原点对称,所以只有选项A 符合, 故选:A13.已知向量()1,1AB =,()2,1BC =-,则AC =( ) A .5 B .5C .3D .3【答案】B【分析】先把向量AB 和BC 相加得到向量AC 的坐标,再利用向量AC 的坐标算出向量AC 的模长.【详解】(1,1)(2,1)(1,2)AC AB BC =+=+-=-, ()22125AC =-+=.故选:B .14.下表是x 和y 之间的一组数据,则y 关于x 的回归方程必过( )A .点()2,3B .点()2,4C .点()3,4D .点()2.5,5【答案】C【分析】根据线性回归方程必过样本中心点进行求解即可. 【详解】因为323413573,444x y ++++++====,所以y 关于x 的回归方程必过点()3,4, 故选:C15.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为 A .12π B .16π C .20π D .24π【答案】A【分析】先求出外接球的半径,再求球的表面积得解. 【详解】由题得正方体的对角线长为3 所以23=2,3,=43=12R R S ππ∴=球. 故选A【点睛】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题16.AB AD -=________. 【答案】DB【分析】根据平面向量减法的几何意义进行求解即可.【详解】由平面向量减法的几何意义可知:AB AD DB -=, 故答案为:DB17.等比数列{}n a 的首项11a =,48a =,则4S =___________. 【答案】15【分析】设等比数列{}n a 的公比为q ,根据题中条件求出q 的值,再利用等比数列求和公式可计算出4S 的值. 【详解】11a =,48a =,所以3418a q a ==,所以2q ,因此,()()4414111215112a q S q-⨯-===--,故答案为15.【点睛】本题考查等比数列求和,对于等比数列,一般是通过建立首项和公比的方程组,求出这两个量,再结合相关公式进行计算,考查运算求解能力,属于中等题. 18.lg0.01+log 216=_____________. 【答案】2【详解】lg0.01+log 216=-2+4=2【解析】本题考查对数的概念、对数运算的基础知识,考查基本运算能力.19.已知()y f x =是定义在R 上的奇函数,且当0x >时,()12xf x =+,则(3)f -=________.【答案】-9【详解】()y f x =是定义在R 上的奇函数,所以()()()333129f f -=-=-+=-.答案为:-9.20.在ABC 中,若30A =︒,AB =2AC =,则ABC 的面积S 是________.【分析】利用公式1sin 2s bc A =即可. 【详解】1sin 2s bc A =12sin 302s ∴=⨯⨯︒=【点睛】本题考查三角形的面积公式,要根据不同条件灵活选择1sin 2s ab C =,1sin 2s ac B =,1sin 2s bc A =三个公式.三、解答题21.已知α为锐角,且3sin 5α=. (1)求cos α的值. (2)求sin 24απ⎛⎫+ ⎪⎝⎭的值.【答案】(1)45;(2【分析】(1)根据同角的三角函数关系式中的平方和关系进行求解即可; (2)根据正弦、余弦的二倍角公式,结合两角和的正弦公式进行求解即可.【详解】(1)因为α为锐角,且3sin 5α=,所以4cos 5α===;(2)因为3sin 5α=,4cos 5α=,所以3424sin 22sin cos 25525ααα==⨯⨯=,2247cos 22cos 12()1525αα=-=⨯-=,因此247sin 2sin 2cos cos 2sin 444252252ππαααπ⎛⎫+=+=⨯+⨯= ⎪⎝⎭22.设n S 为等差数列{}n a 的前n 项和,57a =-,555S =-. (1)求{}n a 的通项公式; (2)求n S 的最小值及对应的n 值.【答案】(1)217n a n =-;(2)当8n =时,n S 的值最小,且864.S =- 【分析】(1)利用等差数列的通项公式以及前n 项和公式即可求解. (2)利用等差数列的前n 项和公式配方即可求最值. 【详解】解:(1)设等差数列{}n a 的公差为d .由题意可得515147,54555,2a a d S a d =+=-⎧⎪⎨⨯=+=-⎪⎩解得115,2a d =-=.故11()217n a a n d n =+-=-. (2)由(1)可得()2116.2n n n n S na d n n -=+=- 因为28()64,n S n =--所以当8n =时,n S 取得最小值,最小值为864.S =-23.如图,在四棱锥P ABCD -中,底面ABCD 是正方形, PA ⊥平面ABCD ,且PA AD =,点E 为线段PD 的中点.(1)求证://PB 平面AEC ; (2)求证:AE ⊥平面PCD . 【答案】(1)见解析(2)见解析【详解】试题分析:(1)连结,AC BD 交于点0,连结OE ,通过中位线的性质得到//PB OE ,由线面平行判定定理得结果;(2)通过线面垂直得到AE ⊥ CD ,通过等腰三角形得到AE ⊥ PD ,由线面垂直判定定理可得AE ⊥平面PCD .试题解析:(1)证明:连结,AC BD 交于点0,连结OE ,∵四边形ABCD 为正方形,∴O为AC 的中点,又∵E 为PC 中点,∴OE 为PBD △的中位线 ∴ //PB OE ,又∵,,OE AEC PA AEC ⊂⊄面 //PB 平面AEC .(2)∵四边形ABCD 为正方形,∴ AD CD ⊥,PD CD ⊥,∴CD ⊥面PAD ∴AE ⊥ CD ,又∵PA AD =,E 为PD 中点 ∴AE ⊥ PD ,∴AE ⊥面PCD .点睛:本题主要考查了线面平行的判定,面面平行的判定,属于基础题;主要通过线线平行得到线面平行,常见的形式有:1、利用三角形的中位线(或相似三角形);2、构造平行四边形;3、利用面面平行等;垂直关系中应始终抓住线线垂直这一主线.. 24.如图,动物园要围成一个长方形的虎笼.一面可利用原有的墙,其他各面用钢筋网围成.现有可围36m 长网的材料,虎笼的长、宽各设计为多少时,可使虎笼面积最大?【答案】虎笼的长、宽各设计为18m,9m 时,可使虎笼面积最大【分析】设虎笼的长为m x ,宽为m y ,根据已知可得236x y +=,求出虎笼面积的表达式,最后利用消元思想、基本不等式进行求解即可. 【详解】设虎笼的长为m x ,宽为m y ,因此有236x y +=,设虎笼面积为S ,所以218(362)2(18)2()1622y y S xy y y y y -+==-=-≤⋅=, 当且仅当18y y -=时取等号,即9,18y x ==时,S 有最大值,最大值为162, 所以虎笼的长、宽各设计为18m,9m 时,可使虎笼面积最大.25.已知以点()1,2A -为圆心的圆与直线1l :270x y ++=相切,过点()2,0B-的动直线l 与圆A 相交于M 、N 两点,Q 是MN 的中点.(1)求圆A 的方程;(2)当MN =时,求直线l 的方程.【答案】(1)22(1)(2)20x y ++-=;(2)2x =-或3460x y -+=.【分析】(1)设出圆A 的半径,根据以点(1,2)A -为圆心的圆与直线1:270l x y ++=相切.点到直线的距离等于半径,我们可以求出圆的半径,进而得到圆的方程;(2)根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,我们可以结合直线l 过点(2,0)B -,求出直线的斜率,进而得到直线l 的方程. 【详解】(1)设圆A 的半径为R ,由于圆A 与直线1:270l x y ++=相切,R ∴== ∴圆A 的方程为22(1)(2)20x y ++-=;(2)①当直线l 与x 轴垂直时,易知2x =-符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为(2)y k x =+,即20kx y k -+=,连接AQ ,则AQ MN ⊥||MN =||1AQ ∴=, 则由||1AQ ==,得34k =,∴直线:3460l x y -+=. 故直线l 的方程为2x =-或3460x y -+=.【点睛】本题考查的知识点是直线和圆的方程的应用、直线的一般式方程和圆的标准方程,其中(1)的关键是求出圆的半径,(2)的关键是根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,求出弦心距(即圆心到直线的距离).。

高中数学会考模拟题(含答案)

高中数学会考模拟题(含答案)

实用文档一、选择题(共20个小题,每小题3分,共60分)1.若集合{}13A x x =≤≤,集合{}2B x x =<,则A B =(A ){}12x x ≤< (B ){}12x x << (C ){}3x x ≤ (D ){}23x x <≤2.tan330︒=(A(B(C) (D) 3.已知lg2=a ,lg3=b ,则3lg 2=(A )a -b (B )b -a (C )ba(D )a b4.函数()2sin cos f x x x =的最大值为(A )2 (B )2- (C )1(D )1-5.随机投掷1枚骰子,掷出的点数恰好是3的倍数的概率为(A )12 (B )13(C )15(D )166.在等比数列{}n a 中,若32a =,则12345a a a a a = (A )8(B )16(C )32(D )7.已知点()0,0O 与点()0,2A 分别在直线y x m =+的两侧,那么m 的取值范围是(A )20m -<< (B )02m <<(C )0m <或2m >(D )0m >或2m <-8.如果直线ax +2y +1=0与直线x +3y -2=0互相垂直,那么a 的值等于(A )6(B )-32(C )- (D )-69.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是(A )(,0)12π-(B )(,0)6π-(C )(,0)6π(D )(,0)3π10.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是11.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是(A )(B ) (C ) (D )(A )()()f x f x =-(B )()1f x f x ⎛⎫= ⎪⎝⎭(C )()f x x > (D )()2f x >12.如果一个几何体的三视图中至少有两个三角形,那么这个几何体不可能...是 (A )正三棱锥(B )正三棱柱(C )圆锥(D )正四棱锥13.如图,D 是△ABC 的边AB 的三等分点,则向量CD 等于(A )23CA AB + (B )13CA AB + (C )23CB AB +(D )13CB AB + 14.有四个幂函数:①()1f x x -=; ②()2f x x -=; ③()3f x x =; ④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的两个性质:(1)定义域是{x | x ∈R ,且x ≠0};(2)值域是{y | y ∈R ,且y ≠0}.如果这个同学给出的两个性质都是正确的, 那么他研究的函数是(A )① (B )②(C )③(D )④15.如果执行右面的程序框图,那么输出的S 等于(A )45 (B )55(C )90 (D )11016.若0(,)b a a b R <<∈,则下列不等式中正确的是(A )b 2<a 2 (B )1b >1a(C )-b <-a (D )a -b >a +b17.某住宅小区有居民2万户,从中随机抽取200户,调查是否已接入宽带. 调查结果如下表所示:(A )3000户(B )6500户(C )9500户(D )19000户18.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于(A )2(B(C(D )119.半径是20cm 的轮子按逆时针方向旋转,若轮周上一点转过的弧长是40cm ,则轮子转过的弧度数是(A )2(B )-2(C )4(D )-420.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是CADB(A )113a << (B )1a >(C )13a <(D )1a =二、填空题(共4道小题,每小题3分,共12分)21.函数()f x ________________________.22.在1-和4之间插入两个数,使这4个数顺次构成等差数列,则插入的两个数的和为____.23.把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 24.如图,单摆的摆线离开平衡位置的位移s (厘米)和时间t (秒)的函数关系是1sin 223s t ππ⎛⎫=+ ⎪⎝⎭,则摆球往复摆动一次所需要的时间是_____ 秒.实用文档ADBCB ;CBDAA ;BBBAB ;DCCAA ;[]1,1-;3;sin 23y x π⎛⎫=+⎪⎝⎭;1。

高二年级学业水平考试模拟考数学试卷有参考答案

高二年级学业水平考试模拟考数学试卷有参考答案

高二年级学业水平考试模拟考数学试卷(考试时间:100分钟; 试卷满分:100分)【注意事项】1.答题前,考生务必用黑色碳素笔将自己的学校、姓名、准考证号、考场号、座位号填写在答题卡上。

2.请在答题卡指定位置按规定要求作答,答在试卷上一律无效。

参考公式∶如果事件 A 、B 互斥,那么P (AUB )= P (A )+P (B ).球的表面积公式:S=4πR 2,体积公式;V =43πR 3,其中R 表示球的半径. 柱体的体积公式∶V= Sh ,其中S 表示柱体的底面面积,h 表示柱体的高. 锥体的体积公式∶V=13Sh ,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷(选择题 共66分)一、选择题:本大题共22个小题,每小题3分,共66分.在每个小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应的位置上填涂.1. 已知集合S ={0,1,2},T ={2,3},则S ∪T =( ).A. {0,1,2}B. {0,2}C. {0,1,2,3}D. {2}2. 数学中,圆的黄金分割的张角是137.5°,这个角称为黄金角,黄金角在植物界受到广泛青睐,例如车前草的轮生叶片之间的夹角正好是137.5°,按这一角度排列的叶片,能很好的镶嵌而又互不重叠,这是植物采光面积最大的排列方式,每片叶子都可以最大限度的获得阳光,从而有效提高植物光合作用的效率。

那么,黄金角所在的象限是( ).A.第一象限B. 第二象限C. 第三象限D. 第四象限3. 一元二次不等式的解集为( ).A. B. C. D.4. 已知向量a =(1,2),b =(-2,0),则a b ⋅的值等于( ).A. -4B. -3C. -2D. 1 5. 已知i 是虚数单位,复数5−i 1+i 的虚部是( ). A. -3 B. -3iC. 2D. 2i 220x x -<{}02x x <<{}20x x -<<{}22x x -<<{}11x x -<<6. 下列函数中,在R 上为增函数的是( ).7. 224log log 55+的值为( ). A. 12 B. 2 C. 1029 D. 29108. 0000sin 79cos34cos79sin34-的值为( ).A. 1B. 2C. 2D. 129. 已知角α的终边过点P (−1,√3),则cosα的值为( ).A. √32B. 12C. −12D. −√3210. 在ABC ∆中, A 、B 、C 所对的边分别为a 、b 、c ,已知三个内角的度数之比A:B:C= 1:2:3,那么三边长之比a:b:c 等于( ).A. 1:2:3B. 2C. 2D. 3:2:1 11.为了得到函数的图像,只需把的图像上所有的点( ).A.向左平移个单位B. 向右平移个单位C.横坐标变为原来的π3倍,纵坐标不变D. 纵坐标变为原来的π3倍,横坐标不变12. 已知,若,则的最小值为( ). A. 1 B. C. 2 D.13. 函数()ln 26f x x x =+-的零点一定位于区间( ).A. ()1,2B. ()2,3C. ()3,4D. ()4,5. 2x A y =. B y x =-1. C y x =0.5. log D y x =sin(),3y x x R π=-∈sin ,y x x R =∈3π3π0,0x y >>2xy =12x y+214. 如图,在正方体1111ABCD A B C D -中,对角线1A C 与平面ABCD 所成角的正弦值为( ). A. 3 B. 22 C. 6 D. 315. 已知sinθ=−45,且θ为第四象限的角,则tan θ的值等于( ). A. 35 B. 34- C. 35 D. 43- 16. 先后抛掷一枚质地均匀的硬币,则两次均正面向上的概率为( ). A .14 B .12 C .34D .1 17. 函数2()log f x x =在区间[2,8]上的值域为( ).A. (-∞,1]B. [2,4]C. [1,3]D. [1, +∞) 18. 设50.31,0.3,5a b c ===,则下列不等式正确的是( ).A .a b c >>B .b a c >> C.c a b >> D .a c b>> 19 .已知向量a =(2,3),b =(4,x ),若a ⃗∥b⃗⃗,则实数x 的值为( ). A.−6 B. 6 C. 83 D. −8320. 一个圆锥的底面直径和高都等于一个球的直径,那么圆锥与球的体积之比是( ).A. 1:3B. 2:3C. 1:2D. 2:921.已知)(x f 是定义在R 上的偶函数,且在区间(]0,∞-上为减函数,则)1(f 、)2(-f 、)3(f 的大小关系是( ).)A ()3()2()1(f f f >-> )B ()3()1()2(f f f >>-)C ()2()3()1(-<<f f f )D ()3()2()1(f f f <-<22. 已知函数()123,0,log ,0x x f x x x +⎧≤=⎨>⎩若f (x 0)>3,则x 0的取值范围是( ). A. (8,,∞) B. (,∞,0)∪(8,,∞) C. (0,8) D. (,∞,0)∪(0,8)第Ⅱ卷(非选择题共34分)二、填空题:本大题共4个小题,每小题4分,共16分.请把答案写在答题卡相应的位置上.23. 昆明市某公司有高层管理人员、中层管理人员、一般员工共1000名,现用分层抽样的方法从公司的员工中抽取80人进行收入状况调查.若该公司有中层管理人员100名,则从中层管理人员中应抽取的人数为______.24. 已知向量a=(2,1),b=(3,λ),若a⃗⊥b⃗⃗,则λ=25. 函数1lg(2)y x x的定义域是 .f-的值是________________.26. 若函数()f x为奇函数,当0x>时,()10xf x=,则(1)三、解答题:本大题共3个小题,第27题5分,第28题6分,第29题7分,共18分.解答应写出文字说明、证明过程或演算步骤.27. 小李到某商场购物,并参加了一次购物促销的抽奖活动,抽奖规则是:一个袋子中装有大小相同的红球3个、白球2个,每个球被取到的概率相等,红球上分别标有数字1、2、3,每个红球上只标有一个数字.一次从袋中随机取出2个球,如果2个球都是红球则中奖(其他情况不中奖),而且2个红球上标记的数字之和表示所得奖金数(单位:元).求小李所得奖金数为3元或者5元的概率.28. 已知∆ABC的内角A,B,C的对边分别是a,b,c,a=bcosC+csinB.(1)求角B;(2)若b=2,求三角形∆ABC面积的最大值.29. 如图,点P为菱形ABCD所在平面外一点,PA⊥平面ABCD,点E为PA的中点.(1)求证: PC//平面BDE;(2)求证: BD⊥平面PAC.第五次学业水平测试模拟考试参考答案二、填空题23、 8 24、 -6 25、 [1,2) 26、 -10三、解答题27、解:设袋子中的两个白球标号为A、B,三个红球的标号为上面的数字,即为1、2、3;一次从袋子中随机取出2个球的结果用(x,y)表示,则所有可能的结果有:(A,B),((A,1),(A,2),(A,3),(B,1),(B,2),(B,3),(1,2),(1,3),(2,3),共10种。

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.设集合,,则()A.B.C.D.2.函数在区间上的最小值是( )A.B.0C.1D.23.已知, , 且, 则等于 ( )A.-1B.-9C.9D.14.不等式的解集是( )A.B.C.D.5.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B.C.D.6.式子的值为()A.B.C.D.17.已知数列是公比为2的等比数列,若,则= ( )A.1B.2C.3D.48.下列函数中,在定义域内是单调递增函数的是()A.B.C.D.9.在中,内角的对边分别为,若,,,则等于( )A.1B.C.D.210.下表是某厂1—4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程为=-0.7x+a,则a等于() A.10.5 B.5.15 C.5.2 D.5.25二、填空题1.化简= .2.直线的倾斜角为.3.右边的程序中, 若输入,则输出的.4.若实数满足约束条件:,则的最大值等于.三、解答题1.已知函数.(1)求函数的最小正周期;(2)判断函数的奇偶性, 并说明理由。

2.某校在高二年级开设了,,三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从,,三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人)兴趣小组小组人数抽取人数3(1)求,的值;(2)若从,两个兴趣小组所抽取的人中选2人作专题发言,求这2人都来自兴趣小组的概率.3.如图,在正方体中,、分别为,中点。

(1)求异面直线与所成角的大小;(2)求证:平面。

4.已知圆(1)将圆的方程化为标准方程,并指出圆心坐标和半径;(2)求直线被圆所截得的弦长。

5.已知是首项的递增等差数列,为其前项和,且.(1)求数列的通项公式;(2)设数列满足,为数列的前n项和.若对任意的,不等式恒成立,求实数的取值范围.湖南高二高中数学水平会考答案及解析一、选择题1.设集合,,则()A.B.C.D.【答案】D【解析】由题意可知集合A表示的三个实数-1,0,1,而集合B表示的是大于0的所有实数,所以两个集合的交集为只含一个元素的集合即。

2024年高二下学期期末模拟数学试卷01(新题型)含参考答案

2024年高二下学期期末模拟数学试卷01(新题型)含参考答案

2023-2024学年高二下学期期末模拟数学试卷01(考试时间:120分钟 试卷满分:150分)命题范围:第五章一元函数的导数及其应用----第八章成对数据的统计分析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(22-23高二下·江西赣州·阶段练习)已知f x =x2+2xf 1 ,则f1 =()A.0B.-4C.-2D.-32.(22-23高二下·江苏泰州·期末)口袋中有2个黑球,2个红球和1个白球,这些球除颜色外完全相同.任取两球,用随机变量X表示取到的黑球数,则P X=2的值为()A.15B.110C.310D.353.(2023上·山东青岛·高三青岛二中校考期中)若1+x148的展开式中共有m个有理项,则m的值是()A.1B.2C.3D.44.(22-23高二下·河南郑州·阶段练习)某同学参加篮球测试,老师规定每个同学罚篮10次,每罚进一球记5分,不进记-1分,已知该同学的罚球命中率为60%,并且各次罚球互不影响,则该同学得分的数学期望为()A.30B.36C.20D.265.(22-23高二下·山东淄博·期末)某市高二年级进行了一次教学质量检测,考生共2万人,经统计分析数学成绩服从正态分布,其平均分为85分,60分以下的人数约15%,则数学成绩在85分至110分之间的考生人数约为()A.3000B.5000C.7000D.140006.(22-23高二下·山东菏泽·期末)有两箱零件,第一箱内有10件,其中有2件次品;第二箱内有20件,其中有3件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率是()A.790B.16C.740D.7207.(22-23高二下·山东淄博·期末)某医院要安排5名医生到A、B、C三个社区参加义诊,每位医生必须去一个社区,每个社区至少有一名医生.则不同的安排方法数为()A.150B.210C.240D.1808.(22-23高二下·江苏泰州·期末)在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a >0,都有P ξ≥a ≤E ξa.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A ,其概率为P A .则P A 的最大值为()A.271000B.2431000C.427D.49二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(22-23高二下·湖北武汉·期末)下列说法正确的是()A.将一组数据的每一个数减去同一个数后,新数据的方差与原数据方差相同B.线性回归直线y =b x +a 一定过样本点中心x ,yC.线性相关系数r 越大,两个变量的线性相关性越强D.在残差的散点图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好10.(22-23高二下·江苏泰州·期末)关于二项式2x 2-1x5的展开式,下列说法正确的有()A.含x 5的项的系数为-80B.二项式系数和为32C.常数项为10D.只有第3项的二项式系数最大11.(22-23高二下·山东淄博·期末)事件A ,B 的概率分别为:P A =12,P B =13,则()A.若A ,B 为互斥事件,P A +B =56B.P A +B >56C.若A ,B 相互独立,P AB =13D.若P B A =13,则A ,B 相互独立第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.(22-23高二下·辽宁·阶段练习)某校高三年级进行了一次高考模拟测试,这次测试的数学成绩X ~N 90,δ2 ,且P X <60 =0.1,规定这次测试的数学成绩高于120分为优秀.若该校有1200名高三学生参加测试,则数学成绩为优秀的人数是.13.(22-23高二下·山东菏泽·期末)根据下面的数据:x 1234y31.652.57291.9求得y 关于x 的回归直线方程为y=20x +12,则这组数据相对于所求的回归直线方程的4个残差的方差为.14.(22-23高二下·北京昌平·期中)已知函数f x =e x ,(x >0)-x ,x ≤0,若直线y =kx +1与曲线y =f (x )有且只有一个公共点,则实数k的取值范围是四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.(22-23高二下·山东菏泽·期末)已知随机变量X的分布列为:X56789P0.1a0.2b0.3(1)若E X =385,求a、b的值;(2)记事件A:X≥7;事件B:X为偶数.已知P B A=16,求a,b的值.16.(2022·江苏南京·南京市宁海中学校考模拟预测)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个100元,在机器使用期间,如果备件不足再购买,则每个300元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)以购买易损零件所需费用的期望为决策依据,在n=19与n=20之中选其一,应选用哪个更合理?17.(22-23高二下·山东菏泽·期末)电商的兴起,促进了我市经济的发展.已知某电商平台对其牌下一家专营店在2022年3月至7月的营业收入y (单位:万元)进行统计,得到以下数据:月份x 34567营业收入y1012111220(1)依据表中给出的数据,用样本相关系数r 说明营业收入y 与月份x 的相关程度;(2)试用最小二乘法求出营业收入y 与月份x 的一元线性回归方程,并预测当x =8时该专营店的营业收入.r =ni =1(x i -x ) (y i -y )n i =1(x i -x )2 ni =1(y i -y )2 ,b =ni =1(x i -x ) (y i -y )n i =1(x i -x )2 =ni =1x i y i -nx y n i =1x 2i -nx 2a =y -b x,10≈3.162.以上各式仅供参考)18.(22-23高二下·江苏泰州·期末)某市举办大型车展,为了解该市人民对此次大型车展的关注情况,在该市随机地抽取男性和女性各100人进行调查统计,得到如下2×2列联表:关注不关注合计男性5050100女性3070100合计80120200(1)能否有99%的把握认为男性和女性对此次大型车展的关注程度有明显差差异?(2)有3位市民去参观此次大型车展,假设每人去新能源汽车展区的概率均为13,且相互独立.设这3位市民参观新能源汽车展区的人数为ξ,求ξ的概率分布和数学期望.附:χ2=n ad-bc2a+bc+da+cb+dPχ2≥x00.0500.0100.001 x0 3.841 6.63510.82819.(22-23高二下·山东淄博·期末)已知函数f x =2x3-3ax2+1a∈R.(1)讨论f x 的单调性;(2)若对∀x∈0,+∞,f x ≥0恒成立,求a的取值范围.2023-2024学年高二下学期期末模拟数学试卷01(考试时间:120分钟 试卷满分:150分)命题范围:第五章一元函数的导数及其应用----第八章成对数据的统计分析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(22-23高二下·江西赣州·阶段练习)已知f x =x2+2xf 1 ,则f1 =()A.0B.-4C.-2D.-3【答案】D【分析】先求导函数,把x=1代入求得f 1 ,然后求得f1 =-3.【详解】由已知f x =2x+2f 1 ,f 1 =2+2f 1 ,则f 1 =-2,即f x =x2-4x,所以f1 =-3.故选:D.2.(22-23高二下·江苏泰州·期末)口袋中有2个黑球,2个红球和1个白球,这些球除颜色外完全相同.任取两球,用随机变量X表示取到的黑球数,则P X=2的值为()A.15B.110C.310D.35【答案】B【分析】根据题意,由超几何分布的概率计算公式,代入计算即可得到结果.【详解】由题意可得,P X=2=C22C25=110.故选:B3.(2023上·山东青岛·高三青岛二中校考期中)若1+x148的展开式中共有m个有理项,则m的值是()A.1B.2C.3D.4【答案】C【分析】利用二项展开式通项即可得解.【详解】1+x 1 48的展开式通项为T r+1=C r8x r4,r=0,1,2,⋯,8,当r=0,4,8时,T1,T5,T9为有理项,故m=3.故选:C.4.(22-23高二下·河南郑州·阶段练习)某同学参加篮球测试,老师规定每个同学罚篮10次,每罚进一球记5分,不进记-1分,已知该同学的罚球命中率为60%,并且各次罚球互不影响,则该同学得分的数学期望为()A.30B.36C.20D.26【答案】D【分析】根据二项分布数学期望公式可求得该同学罚球命中次数的数学期望,结合罚球得分的规则可计算得到结果.【详解】记该同学罚球命中的次数为X ,则X ∼B 10,0.6 ,∴E X =10×0.6=6,∴该同学得分的数学期望为6×5+10-6 ×-1 =30-4=26.故选:D .5.(22-23高二下·山东淄博·期末)某市高二年级进行了一次教学质量检测,考生共2万人,经统计分析数学成绩服从正态分布,其平均分为85分,60分以下的人数约15%,则数学成绩在85分至110分之间的考生人数约为()A.3000B.5000C.7000D.14000【答案】C【分析】根据考生的数学成绩服从正态分布,数学成绩平均分为85分,得到正态曲线关于x =85对称,根据60分以下的人数约15%,高于110分的所占的比例也是15%,根据正态曲线的对称性,即可得到结果.【详解】∵考生的数学成绩服从正态分布,数学成绩平均分为85分,∴正态曲线关于x =85对称,∵60分以下的人数约15%,∴高于110分的所占的比例也是15%,∴数学成绩在85分至110分之间的考生人数所占百分比约50%-15%=35%,所以数学成绩在85分至110分之间的考生人数约为20000×35%=7000(人).故选:C6.(22-23高二下·山东菏泽·期末)有两箱零件,第一箱内有10件,其中有2件次品;第二箱内有20件,其中有3件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率是()A.790B.16C.740D.720【答案】C【分析】根据全概率公式计算可得.【详解】设事件A i 表示从第i i =1,2 箱中取一个零件,事件B 表示取出的零件是次品,则P B =P A 1B +P A 2B =P A 1 ⋅P (B |A 1)+P A 2 ⋅P (B |A 2)=12×210+12×320=740,即取出的零件是次品的概率为740.故选:C .7.(22-23高二下·山东淄博·期末)某医院要安排5名医生到A 、B 、C 三个社区参加义诊,每位医生必须去一个社区,每个社区至少有一名医生.则不同的安排方法数为()A.150B.210C.240D.180【答案】A【分析】先将5名医生分为三组,确定每组的人数,然后将这三组医生分配到A 、B 、C 三个社区,利用分步计数原理可得结果.【详解】将5名医生分为三组,每组人数分别为2、2、1或3、1、1,再将这三组医生分配到A 、B 、C 三个社区,由分步计数原理可知,不同的安排方法种数为C 25C 23A 22+C 35A 33=15+10 ×6=150.故选:A .8.(22-23高二下·江苏泰州·期末)在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a >0,都有P ξ≥a ≤E ξa.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A ,其概率为P A .则P A 的最大值为()A.271000B.2431000C.427D.49【答案】B【分析】记该市去年人均收入为X 万元,从该市任意选取3名市民,年收入超过100万元的人数为Y ,设从该市任选1名市民,年收入超过100万元的概率为p ,根据马尔可夫不等式可得0≤p ≤110,再根据二项分布求得P A =3p 1-p 2=3p 3-6p 2+3p ,令f (p )=3p 3-6p 2+3p ,求导判断单调性即可求得最大值.【详解】记该市去年人均收入为X 万元,从该市任意选取3名市民,年收入超过100万元的人数为Y .设从该市任选1名市民,年收入超过100万元的概率为p ,则根据马尔可夫不等式可得p =P X ≥100 ≤E X 100=10100=110,∴0≤p ≤110,因为Y ~B (3,p ),所以P A =P Y =1 =C 13p 1-p 2=3p 1-p 2=3p 3-6p 2+3p ,令f (p )=3p 3-6p 2+3p ,则f (p )=9p 2-12p +3=3(3p -1)(p -1),∵0≤p ≤110,∴3p -1<0,p -1<0,即f (p )>0,∴f (p )在0,110上单调递增.∴f (p )max =f 110 =3×110×1-110 2=2431000,即P (A )max=2431000.故选:B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(22-23高二下·湖北武汉·期末)下列说法正确的是()A.将一组数据的每一个数减去同一个数后,新数据的方差与原数据方差相同B.线性回归直线y =b x +a 一定过样本点中心x ,yC.线性相关系数r 越大,两个变量的线性相关性越强D.在残差的散点图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好【答案】ABD【分析】借助方差的性质、样本点中心的性质、线性相关系数的性质与残差的性质逐项判断即可得.【详解】对A :由方差的性质可知,将一组数据的每一个数减去同一个数后,新数据的方差与原数据方差相同,故A 正确;对B :由a =y -b x ,故线性回归直线y =b x +a 一定过样本点中心x ,y,故B 正确;对C :线性相关系数r 越大,两个变量的线性相关性越强,故C 错误;对D :在残差的散点图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好,故D 正确.故选:ABD .10.(22-23高二下·江苏泰州·期末)关于二项式2x 2-1x5的展开式,下列说法正确的有()A.含x 5的项的系数为-80B.二项式系数和为32C.常数项为10D.只有第3项的二项式系数最大【答案】BC【分析】先求出二项式展开式的通项公式,然后逐个分析判断即可.【详解】二项式2x 2-1x5的展开式的通项公式为T r +1=C r 52x 2 5-r -1xr =C r 5⋅25-r ⋅-1 r x 10-52r,对于A ,令10-52r =5,得r =2,所以含x 5的项的系数为C 25⋅23⋅-1 2=80,所以A 错误,对于B ,二项式系数和为25=32,所以B 正确,对于C ,令10-52r =0,得r =4,所以常数项为C 45⋅2⋅-1 4=10,所以C 正确,对于D ,因为二项式2x 2-1x5的展开式共有6项,所以第3项和第4项的二项式系数最大,即C 25=C 35=10,所以D 错误,故选:BC11.(22-23高二下·山东淄博·期末)事件A ,B 的概率分别为:P A =12,P B =13,则()A.若A ,B 为互斥事件,P A +B =56B.P A +B >56C.若A ,B 相互独立,P AB =13 D.若P B A =13,则A ,B 相互独立【答案】AD【分析】利用互斥事件的定义及性质判断A 选项;利用和事件的关系判断B 选项;利用相互独立事件的定义及性质判断C 选项;利用条件概率公式,求解事件A 与B 的积事件,根据独立事件关系确定A 、B 的独立性可判断D .【详解】选项A :若A ,B 为互斥事件,则P (AB )=0,所以P A +B =P A +P B -P (AB )=12+13-P (AB )=56,故A 正确;选项B :P A +B =P A +P B -P (AB )=12+13-P (AB )≤56,故B 错误;选项C :若A ,B 相互独立,所以P AB =1-P AB =1-P A ⋅P B =1-12×13=56,故C 错误;选项D :因为P B A =P (AB )P (A )=13,所以P (AB )=P B |A ⋅P (A )=13×12=16=P (A )⋅P (B ),则A ,B 相互独立,故D 正确;故选:AD .【点睛】关键点点睛:通常判断两个事件是否相互独立,常用以下两种方法:1、事件独立性的定义:如果事件A 和事件B 相互不影响,则称事件A 和事件B 是相互独立的;2、乘法原理:如果事件A 和事件B 是相互独立,则它们同时发生的概率等于它们各自发生的概率之积.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.(22-23高二下·辽宁·阶段练习)某校高三年级进行了一次高考模拟测试,这次测试的数学成绩X ~N 90,δ2 ,且P X <60 =0.1,规定这次测试的数学成绩高于120分为优秀.若该校有1200名高三学生参加测试,则数学成绩为优秀的人数是.【答案】120【分析】由已知结合正态分布曲线的对称性得P X >120 =0.1,乘以总人数即可得出答案.【详解】由X ~N 90,δ2 ,得正态分布曲线的对称轴为x =90,因为P X <60 =0.1,所以P X >120 =0.1,则数学成绩为优秀的人数是1200×0.1=120,故答案为:120.13.(22-23高二下·山东菏泽·期末)根据下面的数据:x1234y31.652.57291.9求得y 关于x 的回归直线方程为y =20x +12,则这组数据相对于所求的回归直线方程的4个残差的方差为.【答案】0.105/21200【分析】分别计算出四个数据的估计值,即可求得残差,继而求得残差的平均数,根据方差公式即可求得答案.【详解】根据y =20x +12,分别将x =1,2,3,4代入求得y 分别为:32,52,72,92,则4个残差为-0.4,0.5,0,-0.1,残差的平均数为0,故残差的方差为s 2=14[(-0.4-0)2+(0.5-0)2+(0-0)2+(-0.1-0)2]=0.105,故答案为:0.10514.(22-23高二下·北京昌平·期中)已知函数f x =e x ,(x >0)-x ,x ≤0 ,若直线y =kx +1与曲线y =f (x )有且只有一个公共点,则实数k 的取值范围是【答案】-1<k ≤1【分析】找到直线y =kx +1与y =e x 相切时的斜率k =1以及y =kx +1与y =-x 平行时的斜率k =-1,通过转动直线即可得到k 的范围.【详解】y =kx +1过定点(0,1),f x =e x 求导有f x =e x ,f 0 =1,且f 0 =1,y =e x 在(0,1)处的切线斜率为1,要满足y =kx +1与曲线f (x )有且仅有一个公共点,当直线y =kx +1与y =-x 平行时,此时k =-1,转动直线y =kx +1可知-1<k ≤1.故答案为:-1<k ≤1.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.(22-23高二下·山东菏泽·期末)已知随机变量X 的分布列为:X56789P 0.1a 0.2b0.3(1)若E X =385,求a 、b 的值;(2)记事件A :X ≥7;事件B :X 为偶数.已知P B A =16,求a ,b 的值.【答案】(1)a =0.1,b =0.3;(2)a =0.3,b =0.1.【分析】(1)由随机变量分布列的性质和E X =385联立方程,解出即可;(2)由事件A :X ≥7,可得P A =0.5+b ,又事件B :X 为偶数,得P AB =P X =8 =b ,再根据条件概率可求得a ,b 的值.【详解】(1)由随机变量分布列的性质,有0.1+a +0.2+b +0.3=1, 得a +b =0.4,即b =0.4-a ,又E X =5×0.1+6×a +7×0.2+8×b +9×0.3=0.5+6a +1.4+80.4-a +2.7=7.8+2b =385,解得b =0.3,a =0.1.(2)由事件A :X ≥7,得P A =P X =7 +P X =8 +P X =9 =0.2+b +0.3=0.5+b ,又事件B :X 为偶数,得P AB =P X =8 =b ,所以P B A =P AB P A=b 0.5+b =16,解得b =0.1.由(1)知a +b =0.4,所以a =0.3.所以a =0.3,b =0.1.16.(2022·江苏南京·南京市宁海中学校考模拟预测)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个100元,在机器使用期间,如果备件不足再购买,则每个300元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)以购买易损零件所需费用的期望为决策依据,在n=19与n=20之中选其一,应选用哪个更合理?【答案】(1)分布列见解析;(2)选n=19更合理,理由见解析.【分析】(1)由柱状图,易得X的可能取值为16,17,18,19,20,21,22,分别求得其相应概率,列出分布列;(2)购买零件所需费用含两部分:一部分为购买零件的费用,令一部分为备件不足时额外购买的费用,结合(1)分别求出n=19、n=20时费用的期望即可下结论.【详解】(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,X的可能取值为16,17,18,19,20,21,22,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04;所以X的分布列为X16171819202122P0.040.160.240.240.20.080.04(2)购买零件所需费用含两部分:一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×100+300×0.2+600×0.08+900×0.04=2044元,当n=20时,费用的期望为:20×100+300×0.08+600×0.04=2048元,因为2044<2048,所以选n=19更适合.17.(22-23高二下·山东菏泽·期末)电商的兴起,促进了我市经济的发展.已知某电商平台对其牌下一家专营店在2022年3月至7月的营业收入y(单位:万元)进行统计,得到以下数据:月份x34567营业收入y 1012111220(1)依据表中给出的数据,用样本相关系数r 说明营业收入y 与月份x 的相关程度;(2)试用最小二乘法求出营业收入y 与月份x 的一元线性回归方程,并预测当x =8时该专营店的营业收入.r =n i =1(x i -x ) (y i -y )n i =1(x i -x )2 n i =1(y i -y )2 ,b =n i =1(x i -x ) (y i -y )n i =1(x i -x )2 =ni =1x i y i -nx y n i =1x 2i -nx 2 a =y -b x ,10≈3.162.以上各式仅供参考)【答案】(1)r ≈0.79,营业收入y 与月份x 的相关程度很强(2)线性回归方程为y =2x +3,当x =8时该专营店的营业收入为19万元【分析】(1)计算出x 、y ,5i =1x i -x y i -y 、5i =1x i -x 2 、5i =1y i -y 2 ,代入r 可得答案;(2)用最小二乘法求出营业收入y 与月份x 的一元线性回归方程,并代入x =8可得答案.【详解】(1)x =3+4+5+6+75=5,y =10+12+11+12+205=13,5i =1(x i -x ) (y i -y )=3-5 10-13 +4-5 12-13 +5-5 11-13+6-5 12-13 +7-5 20-13 =20,5i =1x i -x 2 =3-5 2+4-5 2+5-5 2+6-5 2+7-5 2=10,5i =1y i -y2 =10-13 2+12-13 2+11-13 2+12-13 2+20-13 2=64,所以r =5i =1x i -x y i -y5i =1x i -x 2 5i =1y i -y 2 =2010×64≈0.79,因为r ≈0.79∈0.75,1 ,说明营业收入y 与月份x 的相关程度很强,可用线性回归模型拟合y 与x 的关系;(2)由(1),b =5i =1x i -x y i -y5i =1x i -x 2 =2010=2,a =y -b x =13-2×5=3,所以y 关于x 的线性回归方程为y =2x +3,当x =8时该专营店的营业收入为y =2×8+3=19万元.18.(22-23高二下·江苏泰州·期末)某市举办大型车展,为了解该市人民对此次大型车展的关注情况,在该市随机地抽取男性和女性各100人进行调查统计,得到如下2×2列联表:关注不关注合计男性5050100女性3070100合计80120200(1)能否有99%的把握认为男性和女性对此次大型车展的关注程度有明显差差异?(2)有3位市民去参观此次大型车展,假设每人去新能源汽车展区的概率均为13,且相互独立.设这3位市民参观新能源汽车展区的人数为ξ,求ξ的概率分布和数学期望.附:χ2=n ad -bc 2a +b c +d a +c b +dP χ2≥x 00.0500.0100.001x 0 3.841 6.63510.828【答案】(1)有(2)分布列见解析,数学期望为1【分析】(1)根据表中的数据利用公式χ2=n ad -bc 2a +bc +d a +c b +d 求解χ2,再根据临界值表进行判断即可,(2)由题意知ξ的可能取值为:0,1,2,3,而ξ∼B 3,13,所以利用二项分布的概率公式求出各自对应的概率,从而可求得ξ的概率分布和数学期望.【详解】(1)提出假设H 0:男性和女性对此次大型车展的关注程度没有明显差异.由列联表中的数据可得:χ2=20050×70-50×30 2100×100×80×120=253≈8.333,因为当H 0成立时,P χ2≥6.635 ≈0.010,这里的χ2≈8.000>6.635,所以我们有99%的把握认为男性和女性对此次大型车展的关注程度有明显差异.(2)由题意知ξ的可能取值为:0,1,2,3.因为ξ∼B 3,13,所以P ξ=k =C k 313 k 23 3-k ,其中k =0,1,2,3,故ξ的概率分布表为:ξ0123P 8274929127所以E ξ =0×827+1×49+2×29+3×127=1,所以随机变量ξ的数学期望为1.19.(22-23高二下·山东淄博·期末)已知函数f x =2x 3-3ax 2+1a ∈R .(1)讨论f x 的单调性;(2)若对∀x ∈0,+∞ ,f x ≥0恒成立,求a 的取值范围.【答案】(1)答案见解析(2)-∞,1【分析】(1)首先求函数的导数,讨论导数零点的大小关系,从而判断函数的单调性;(2)参变分离可得a ≤23x +13x 2对∀x ∈0,+∞ 恒成立,令F x =23x +13x2,x ∈0,+∞ ,利用导数求出函数的最小值,即可得解.【详解】(1)f x =2x 3-3ax 2+1定义域为R ,f x =6x 2-6ax =6x x -a ,当a >0时,令f x >0,得x >a 或x <0,令f x <0,得0<x <a ,函数的单调递增区间是-∞,0 和a ,+∞ ,单调递减区间是0,a ;当a <0时,令f x >0,得x >0或x <a ,令f x <0,得a <x <0,函数的单调递增区间是-∞,a 和0,+∞ ,单调递减区间是a ,0 ;当a =0时,f x =6x 2≥0恒成立,函数在-∞,+∞ 单调递增.综上可知,当a >0时,函数的单调递增区间是-∞,0 和a ,+∞ ,单调递减区间是0,a ;当a <0时,函数的单调递增区间是-∞,a 和0,+∞ ,单调递减区间是a ,0 ;当a =0时,函数的单调递增区间是-∞,+∞ ,无减区间.(2)若函数f x =2x 3-3ax 2+1≥0,对∀x ∈0,+∞ 恒成立,即a ≤23x +13x2对∀x ∈0,+∞ 恒成立,令F x =23x +13x2,x ∈0,+∞ ,则F x =23-23x 3=2x 3-1 3x 3,当0<x <1时F x <0,当x >1时F x >0,所以F x 在区间0,1 上单调递减,在区间1,+∞ 上单调递增,所以F x 在x =1处取得极小值即最小值F x min =F 1 =1,所以a ≤1,即实数a 的取值范围为-∞,1 .。

山东高二水平数学会考试卷及答案解析

山东高二水平数学会考试卷及答案解析

山东高二水平数学会考试卷及答案解析:___________ ___________ ___________ 班级姓名:分数:题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题条件,条件,则是的().1.p q.充分不必要条件.必要不充分条件充要条件.既不充分又不必要条件A B D【答案】A【解析】,,试题分析:的充分不必要条件.考点:四种条件的判定.已知等差数列的前项和为,满足2.n()A.B.C.D.【答案】D【解析】,又.试题分析:,所以,那么n考点:等差数列的前项和.3.x=0下列函数中,在处的导数不等于零的是().D.A.B.C y=【答案】A【解析】x=01,试题分析:因为,,所以,,所以,在处的导数为故选A。

考点:导数计算。

点评:简单题,利用导数公式加以验证。

4.设,若,则等于()A.e2B.e C.D.ln2【答案】B【解析】试题分析:因为,所以所以,解得考点:本小题主要考查函数的导数计算.点评:导数计算主要依据是导数的四则运算法则,其中乘法和除法运算比较麻烦,要套准公式,仔细计算.5.曲线的直角坐标方程为()A.B.C.D.【答案】B【解析】试题分析:化为考点:极坐标方程点评:极坐标与直角坐标的关系为6.是虚数单位,复数( )A.B.C.D.【答案】A【解析】试题分析:考点:复数运算点评:复数运算中7.关于直线与平面,有下列四个命题:①若,且,则;②若且,则;③若且,则;④若,且,则.其中真命题的序号是()A.①②B.③④C.①④D.②③【答案】D【解析】试题分析:直线m//平面α,直线n//平面β,当α∥β时,直线m,n有可能平行,也有可能异面,所以①不正确;∵,α⊥β,所以,故②正确;据此结合选项知选D.考点:本题主要考查空间直线与平面的位置关系。

点评:熟练掌握空间直线与平面之间各种关系的几何特征是解答本题的关键。

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.已知集合A={0,1,2},B={1,2,3},则A∩B=( ) A .{1,2,3} B .{1,2} C .{0,1,1,2,2,3}D .{0,1,2,3}2.在直角坐标系中,直线x+y+3=0的倾斜角是( ) A .B .C .D .3.函数y=log 2(x ﹣3)的定义域为( ) A .[3,+∞) B .(3,+∞)C .(﹣∞,﹣3)D .R4.若运行如图的程序,则输出的结果是( )A .4B .9C .13D .175.在等比数列{a n },a 3=2,a 7=32,则q=( ) A .2 B .﹣2C .±2D .46.点(2,1)到直线3x ﹣4y+2=0的距离是( ) A .B .C .D .7.一个容量为20的样本数据,分组后,组距与频数如下,A .B .C .D .8.已知=(4,2),=(6,y ),且⊥,则y 的值为( ) A .﹣12B .﹣3C .3D .129.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的体积为:( )A .12πcm3B .15πcm2C .36πcm3D .以上都不正确10.若x 、y 满足,则z=x+2y 的最大值为( ) A .9B .8C .7D .6二、填空题1.求值:2log 3+log 312﹣0.70+0.25﹣1= . 2.已知函数f (x )=,则f[f (﹣2)]= .3.如图,有一个边长为2的正方形,其中有一块边长为1的阴影部分,向大的正方形中撒芝麻,假设芝麻落在正方形中任何位置上的概率相等,则芝麻落在阴影区域上的概率为 .4.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ; ④若α⊥γ,β⊥γ,则α∥β;其中正确命题的序号是 .三、解答题1.已知数列{a n }的通项公式a n =2n+2(n ∈N *) (1)求a 2,a 5;(2)若a 2,a 5恰好是等比数列{b n }的第2项和第3项,求数列{b n }的通项公式. 2.已知曲线C :x 2+y 2+2x+4y+m=0. (1)当m 为何值时,曲线C 表示圆?(2)若直线l :y=x ﹣m 与圆C 相切,求m 的值.3.如图,四棱锥P ﹣ABCD 的底面ABCD 是正方形,棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点.(1)证明:PA ∥平面BDE ;(2)证明:平面BDE ⊥平面PBC . 4.已知函数f (x )=sinxcos (π+x )+cosxsin (π+x )+sin (+x )cosx .(1)求f (x )的最小正周期;(2)当x 为何值时,f (x )有最大值?5.已知函数f (x )=x 2+bx+c 有两个零点0和﹣2,且g (x )和f (x )的图象关于原点对称. (1)求函数f (x )和g (x )的解析式; (2)解不等式f (x )≥g (x )+6x ﹣4;(3)如果f (x )定义在[m ,m+1],f (x )的最大值为g (m ),求g (m )的解析式.湖南高二高中数学水平会考答案及解析一、选择题1.已知集合A={0,1,2},B={1,2,3},则A∩B=()A.{1,2,3}B.{1,2}C.{0,1,1,2,2,3}D.{0,1,2,3}【答案】B【解析】解:∵A={0,1,2},B={1,2,3},∴A∩B={1,2},故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在直角坐标系中,直线x+y+3=0的倾斜角是()A.B.C.D.【答案】D【解析】解:直线x+y+3=0斜率等于﹣,设此直线的倾斜角为θ,则tanθ=﹣,又0≤θ<π,∴θ=,故选D.【点评】本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,已知三角函数值求角是解题的难点.(x﹣3)的定义域为()3.函数y=log2A.[3,+∞)B.(3,+∞)C.(﹣∞,﹣3)D.R【答案】B(x﹣3)有意义,【解析】解:要使函数y=log2则x﹣3>0,即x>3.∴函数y=log(x﹣3)的定义域为:(3,+∞).2故选:B.【点评】本题考查对数函数的定义域,是基础题.4.若运行如图的程序,则输出的结果是()A.4B.9C.13D.17【答案】D【解析】解:模拟程序的运行,可得s=4,a=13s=4+13=17,输出s 的值为17. 故选:D .【点评】本题主要考查了赋值语句的应用,理解赋值的含义是解决问题的关键,属于基础题.5.在等比数列{a n },a 3=2,a 7=32,则q=( ) A .2 B .﹣2 C .±2 D .4【答案】C【解析】解:设等比数列的公比为q ,首项为a 1 则由题意可得两式相除可得,即q 4=16∴q=±2 故选C【点评】本题主要考查了利用基本量表示等比数列的项,解题的关键是数量应用等比数列的通项公式6.点(2,1)到直线3x ﹣4y+2=0的距离是( ) A .B .C .D .【答案】A【解析】解:点(2,1)到直线3x ﹣4y+2=0的距离d==.故选A .【点评】本题考查了点到直线的距离公式,属于基础题.7.一个容量为20的样本数据,分组后,组距与频数如下,组距(10,20](20,30](30,40](40,50](50,60](60,70]则样本在(10,50]上的频率为( )A .B .C .D .【答案】D【解析】解:根据题意,样本在(10,50]上的频数为2+3+4+5=14, 所求的频率为P==.故选:D .【点评】本题考查了频率的计算问题,是基础题目.8.已知=(4,2),=(6,y ),且⊥,则y 的值为( ) A .﹣12B .﹣3C .3D .12【答案】A【解析】解:因为=(4,2),=(6,y ),且⊥, 所以•=0,即4×6+2y=0, 解得y=﹣12, 故选:A .【点评】本题考查两个向量垂直的充要条件:数量积等于0以及向量的数量积公式,属于基础题.9.有一个几何体的三视图及其尺寸如图(单位cm),则该几何体的体积为:()A.12πcm3B.15πcm2C.36πcm3D.以上都不正确【答案】A【解析】解:由三视图知该几何体是底面半径为3cm,母线长为5cm的圆锥,则它的高是4cm,∴此圆锥的体积是×π×9×4=12πcm3故选A.【点评】本题的考点是由三视图求几何体的体积,关键是根据三视图对几何体进行还原,并且求出几何体中几何元素的长度,代入相应的公式求解,考查了空间想象能力.10.若x、y满足,则z=x+2y的最大值为()A.9B.8C.7D.6【答案】C【解析】解:在直角坐标系内,画出可行域为图中阴影部分(O为原点),A (3,2),由图可知,最优解为A (3,2),故Zmax=7.故选:C.【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.二、填空题1.求值:2log3+log312﹣0.70+0.25﹣1= .【答案】4【解析】解:∵=﹣2log32+1+2log32﹣1+4=4.故答案为:4.【点评】本题考查对数的运算性质,着重考查数的运算性质与指数幂的运算性质的应用,属于基础题.2.已知函数f(x)=,则f[f(﹣2)]= .【答案】【解析】解:∵f (x )=,∴f (﹣2)= ∴f[f (﹣3)]=f ()=.故答案为:.【点评】本题考查求分段函数的函数值:根据自变量所属范围,分段代入求.分段函数分段处理,这是研究分段函数图象和性质最核心的理念.3.如图,有一个边长为2的正方形,其中有一块边长为1的阴影部分,向大的正方形中撒芝麻,假设芝麻落在正方形中任何位置上的概率相等,则芝麻落在阴影区域上的概率为 .【答案】【解析】解:根据题意,阴影部分的正方形的边长为1,面积为1; 大正方形的边长为2,面积为4; 故芝麻落在阴影区域上的概率为; 故答案为:.【点评】本题考查几何概型的性质和应用;每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型.4.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ; ④若α⊥γ,β⊥γ,则α∥β; 其中正确命题的序号是 . 【答案】①②③【解析】解:命题①,由于n ∥α,根据线面平行的性质定理,设经过n 的平面与α的交线为b , 则n ∥b ,又m ⊥α,所以m ⊥b ,从而,m ⊥n ,故正确;命题②,由α∥β,β∥γ,可以得到α∥γ,而m ⊥α,故m ⊥γ,故正确; 命题③,由线面垂直的性质定理即得,故正确;命题④,可以翻译成:垂直于同一平面的两个平面平行,故错误; 所以正确命题的序号是 ①②③【点评】本题考查线线关系中的垂直、平行的判定;面面关系中垂直于平行的判定,要注意判定定理与性质定理以及课本例题结论的应用.三、解答题1.已知数列{a n }的通项公式a n =2n+2(n ∈N *) (1)求a 2,a 5;(2)若a 2,a 5恰好是等比数列{b n }的第2项和第3项,求数列{b n }的通项公式. 【答案】(1)6 12(2)b n =3×2n ﹣1 【解析】解:(1)∵a n =2n+2, ∴a 2=2×2+2=6, a 5=2×5+2=12.(2)设等比数列{b n }的公比为q , ∵b 2=a 2=6, b 3=a 5=12. ∴q==2.∴b n ==6×2n ﹣2=3×2n ﹣1.【点评】本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.2.已知曲线C:x2+y2+2x+4y+m=0.(1)当m为何值时,曲线C表示圆?(2)若直线l:y=x﹣m与圆C相切,求m的值.【答案】(1)当m<5时,曲线C表示圆(2)m=±3【解析】解:(1)由C:x2+y2+2x+4y+m=0,得(x+1)2+(y+2)2=5﹣m,由5﹣m>0,得m<5.∴当m<5时,曲线C表示圆;(2)圆C的圆心坐标为(﹣1,﹣2),半径为.∵直线l:y=x﹣m与圆C相切,∴,解得:m=±3,满足m<5.∴m=±3.【点评】本题考查圆的一般方程,考查了直线与圆位置关系的应用,训练了点到直线的距离公式的应用,是基础题.3.如图,四棱锥P﹣ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:PA∥平面BDE;(2)证明:平面BDE⊥平面PBC.【答案】见解析【解析】证明:(1)连结AC,设AC与BD交于O点,连结EO.∵底面ABCD是正方形,∴O为AC的中点,又E为PC的中点,∴OE∥PA,∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.(2)∵PD=DC,E是PC的中点,∴DE⊥PC.∵PD⊥底面ABCD,∴PD⊥AD.又由于AD⊥CD,PD∩CD=D,故AD⊥底面PCD,所以有AD⊥DE.又由题意得AD∥BC,故BC⊥DE.于是,由BC∩PC=C,DE⊥PC,BC⊥DE可得DE⊥底面PBC.故可得平面BDE⊥平面PBC.【点评】本题考查直线与平面平行的判定,考查平面与平面垂直的判定,在(1)中证得EO为△PAC的中位线,在(2)中证得DE⊥底面PBC是关键,考查推理证明的能力,属于中档题.4.已知函数f(x)=sinxcos(π+x)+cosxsin(π+x)+sin(+x)cosx.(1)求f(x)的最小正周期;(2)当x为何值时,f(x)有最大值?【答案】(1)T=(2)x=时,f(x)有最大值1+【解析】解:∵f(x)=sinxcos(π+x)+cosxsin(π+x)+sin(+x)cosx=sin2x+cos2x=1.(1)f(x)的最小正周期T=;(2)当sin2x=﹣1,即2x=﹣,x=时,f(x)有最大值1+.【点评】本题考查三角函数中的恒等变换应用,考查了y=Asin(ωx+φ)型函数的图象和性质,是中档题.5.已知函数f(x)=x2+bx+c有两个零点0和﹣2,且g(x)和f(x)的图象关于原点对称.(1)求函数f(x)和g(x)的解析式;(2)解不等式f(x)≥g(x)+6x﹣4;(3)如果f(x)定义在[m,m+1],f(x)的最大值为g(m),求g(m)的解析式.【答案】(1)f(x)=x2+2x g(x)=﹣x2+2x(2){x|x≥2或x≤1}(3)g(m)=m2+4m+3【解析】解:(1)由f(x)=x2+bx+c有两个零点0和﹣2,即有,解得b=2,c=0,即f(x)=x2+2x,由f(x)和g(x)的图象关于原点对称,所以g(x)=﹣x2+2x.(2)f(x)≥g(x)+6x﹣4即x2+2x≥﹣x2+2x+6x﹣4,即x2﹣3x+2≥0得不等式的解为{x|x≥2或x≤1}(3)f(x)=x2+2x=(x+1)2﹣1,当m+1≤﹣1,即m≤﹣2时,f(x)的最大值g(m)=m2+2m,当m>﹣1时,f(x)的最大值g(m)=(m+1)2+2(m+1)=m2+4m+3,当时,f(x)的最大值g(m)=m2+2m,当时,f(x)的最大值g(m)=(m+1)2+2(m+1)=m2+4m+3【点评】本题考查了求函数的解析式问题,考查二次函数的性质,函数的最值问题,是一道中档题.。

2024年6月福建省普通高中学业水平合格性考试数学仿真模拟试卷01(解析版)

2024年6月福建省普通高中学业水平合格性考试数学仿真模拟试卷01(解析版)

....【答案】C【分析】由偶函数的性质即可得【详解】根据偶函数的图象性质可知,关于轴对称的函数是偶函数.故选:C.A .2B .1【答案】D【分析】直接利用棱锥的体积公式计算【详解】因为1DD ⊥面ADP所以1113D ADP ADP V DD S -=⨯⨯=A .1AD B .1AA C .1BD D .EO【答案】C【分析】根据线面平行的判定定理即可得出答案.【详解】解:对于A ,因为直线1AD 与平面AEC 交于点A ,故不平行;对于B ,因为直线1AA 与平面AEC 交于点A ,故不平行;对于C ,在正方体1111ABCD A B C D -中,因为E 为1DD 的中点,O 为BD 的中点,所以1EO BD ∕∕,又EO ⊂平面AEC ,1BD ⊄平面AEC ,所以1BD ∕∕平面AEC ;对于D ,因为EO ⊂平面AEC ,故不平行.故选:C.13.已知函数()221,2,2x x f x x ax x ⎧+<=⎨-+≥⎩,若[(1)]6f f =-,则实数a 的值为()A .3-B .3C .1-D .1【答案】D【分析】先求出(1)3f =,则可得[(1)](3)6f f f ==-,解方程可得a 的值.【详解】因为1(1)213f =+=,所以2[(1)](3)33936f f f a a ==-+=-+=-,解得1a =.故选:D14.从某班所有同学中随机抽取10人,获得他们某学年参加社区服务次数的数据如下:4,4,4,7,7,8,8,9,9,10,根据这组数据,下列说法正确的是()A .众数是7B .平均数是7C .第75百分位数是8.5D .中位数是8【答案】B【分析】根据众数,平均数,中位数,百分位数的定义逐一判断即可.A .ABC 是钝角三角形B .ABC 的面积是A B C '' C .ABC 是等腰直角三角形D .ABC 的周长是44+所以ABC 的周长是442+,面积是在A B C ''' 中,4''=A C ,过B '作x 轴垂线,垂足为D ¢,所以2222B D O B ''''==,四、解答题(本大题共3小题,共27分.解答应写出文字说明,证明过程或演算步骤.)24.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得某年100位居民每人的月均用水量(单位:吨),将数据按照[)0,0.5,[)0.5,1,…,[]4,4.5分成9组,制成了如图所示的频率直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.【答案】(1)0.30(2)36000,理由见解析【分析】(1)根据频率之和为1得到方程,求出答案;(2)计算出月均用水量不低于3吨的频率,进而求出答案.【详解】(1)由频率直方图可知,月均用水量在[)0,0.5的频率为0.080.50.04⨯=.同理在[)0.5,1,[)1.5,2,[)2,2.5,[)3,3.5,[]4,4.5的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由()10.040.080.210.250.060.040.020.52a -++++++=⨯,解得0.30a =.(2)由(1)知,该市100位居民月均用水量不低于3吨的频率为0.060.040.020.12++=.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为3000000.1236000⨯=.25.如图,三棱柱111ABC A B C -内接于一个圆柱,且底面是正三角形,圆柱的体积是2π,底面直径与母线长相等.(1)求圆柱的底面半径;(2)求三棱柱11ABC A B -【答案】(1)1(2)332【分析】(1)根据圆柱体积公式直接计算;(1)作出函数在[]3,3x ∈-的图像;(2)求52f f ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(3)求方程()0f x =的解集,并说明当整数)553312222f f ⎫⎫⎛⎫⎛⎫=-+=-=-+⎪ ⎪ ⎪⎪⎭⎝⎭⎝⎭⎭时,由10x +=,得=1x -;时,由310x -=,得13x =;10x -=,得1x =;解集为11,,13⎧⎫-⎨⎬⎩⎭;。

会考数学模拟试题与答案解析

会考数学模拟试题与答案解析

会考数学模拟试题与答案解析高中会考数学模拟试题与答案解析一、选择题1. 若函数 f(x) = 2x^2 - 5x + 3,求 f(2) 的值。

解析:将 x=2 代入函数 f(x),得 f(2) = 2(2)^2 - 5(2) + 3 = 8 - 10 + 3 = 1。

2. 设直线 y = mx + c 与曲线 y = 2x^2 - x + 1 相切,则常数 m 的值为多少?解析:相切的直线与曲线有且仅有一个交点。

首先,求出曲线的导函数 f'(x) = 4x - 1。

然后,令导函数与直线的斜率相等,即 4x - 1 = m。

由于相切,令导函数与直线在交点处的函数值相等,即 2x^2 - x + 1 = mx + c。

联立两个方程,求解得 m = 2,c = 2。

二、填空题1. 直线 x - 3y - 3 = 0 与直线 5x + ky - 7 = 0 平行,则 k 的值为______。

解析:两条直线平行,斜率相等。

将两条直线的方程转化为一般式,得到 y = (1/3)x - 1 和 y = -(5/k)x + 7/k。

比较斜率,得 (1/3) = -(5/k),解得 k = -15。

2. 已知集合 A={1, 3, 5, 7},集合 B={2, 4, 6, 8},则 A ∪ B = ______。

解析:集合的并集是指将两个集合中的元素合并,形成一个新的集合,不包括重复的元素。

将集合 A 和集合 B 合并,得到集合 A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}。

三、解答题1. 解方程 3x + 2 = 4x - 1,并判断方程的解是否正确。

解析:将方程化简,得到 x = 3。

验证解是否正确,将 x = 3 代入方程,两边相等,方程的解是正确的。

2. 函数 y = 2x^2 + bx + 3 与 x 轴交于两个点 A(-1, 0) 和 B(2, 0),求常数 b 的值。

解析:由题意得到两个方程,-1:0 = 2(-1)^2 + b(-1) + 3 和 2:0 =2(2)^2 + b(2) + 3。

2025届新高三数学开学摸底考试卷01(新高考通用)01(答案及评分标准)

2025届新高三数学开学摸底考试卷01(新高考通用)01(答案及评分标准)

2025届新高三开学摸底考试卷(新高考通用)01数学·答案及评分标准一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 2 3 4 5 6 7 8 DCCBAABC二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 BCDACDAC三、填空题:本题共3小题,每小题5分,共15分。

12. π313.13 14.6四、解答题:本题共5小题,共77分。

解答应写出文字说明、证明过程或演算步棸。

15.(13分)【详解】(1)由题意2222AB CD AD BC ====,则60ABC ∠= , 因为1,2BC AB ==,所以90,ACB AC BC ∠=⊥ ,(1分) 因为平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD AB =, 且,PA AB PA ⊥⊂平面PAB , 所以PA ⊥平面ABCD ,(2分) 因为BC ⊂平面ABCD ,所以PA BC ⊥,(3分) 且,,AC PA A AC PA =⊂ 平面PAC ,所以BC ⊥平面PAC ,(4分)又BC ⊂平面PBC ,所以平面PAC ⊥平面PBC ;(5分) (2)如图,以A 为原点,,AP AB分别为x 轴,y 轴正方向,在平面ABCD 内过点A 作平面ABC 的垂线为z 轴,建立空间直角坐标系,则13(1,0,0),(0,2,0),0,,0,22P B D C ,(7分,建系、设点各一分)所以1(1,0,0),0,2AP AD == ,1(1,2,0),0,2PB BC =−=− , 设平面PAD 的一个法向量1(,,)n x y z =,则11002n AP x y n AD ⋅==⋅=+=,令1z =−,得11)n =− ,(9分) 设平面PBC 的法向量()2,,n m n p = ,则222002n PB m n n n BC ⋅=−+=⋅=−=,令1p =,得2n = ,(11分) 设平面PAD 与平面PBC 的夹角为θ,则121221cos 244n n n n θ⋅===×⋅ ,(12分)所以平面PAD 与平面PBC.(13分)16.(15分)【详解】(1)易知9.398.570.82=+,所以根据正态分布区间公式有()()()19.390.162P x P X P x µσµσµσ−−≤≤+>=>+==,(3分) 即每个地区大于该地区的人均生产总值的概率为0.16, 则()2,0.16Y B ∼,(4分,不写不扣分) 所以:()()()121C 0.1610.160.2688P Y ==××−=;(6分) (2)因为0.2 2.2t x =+,由题意可知,每年的人均生产总值分别依次为: 12314.6417.4220.726.1, 6.7,7.40.21 2.20.22 2.20.23 2.2u u u ======×+×+×+, 4525.230.088.4,9.40.24 2.20.25 2.2u u ====×+×+,(8分) 所以()()11123453, 6.1 6.77.48.49.47.655x u =×++++==×++++=,(10分) 则()()518.3i i i x x u u =−−=∑,()52110i i x x =−=∑(12分) 由公式可知()()()515218.30.83,7.60.833 5.1110ˆˆˆiii ii x x u u ba u bx x x ==−−====−=−×=−∑∑,(14分)即0.83 5.11u x +.(15分)17.(15分)【详解】(1)设()()00,,,G x y M x y ,则()0,0N x ,因G 为OMN 的重心, 故有:00233x x y y= =,(2分)解得003,32x x y y ==,代入22009x y +=,化简得2214x y +=,(4分) 又000x y ≠,故0xy ≠,所以G 的轨迹方程为()22104xy xy +=≠.(5分)(2)因H 为ABQ 的垂心,故有,AB HQ AH BQ ⊥⊥,又HQ k ==l k =(7分)故设直线l的方程为()1y m m +≠,与2214x y +=联立消去y得:2213440++−=x m ,(8分) 由2Δ208160m =−>得213m <,(9分) 设()()1122,,,A x y B x y,则212124413m x x x x −+=,(10分) 由AH BQ ⊥2211y x −=−,所以()211210x x mm +++−=,(12分)所以)()21212410x x m x x m m −++−=, 所以()()()22444241130m m m m −−−+−=,化简得2511160m m +−=,(13分) 解得1m =(舍去)或165m =−(满足Δ0>),(14分) 故直线l的方程为165y =−.(15分)18.(17分)【详解】(1)由题意得()()ln e 1ln x xf x ax ax+==,()0,x ∈+∞,则()2ln x f x ax =−′,(1分) 由()0f x ′=,解得1x =.(2分) 显然0a ≠,若0a >,则当01x <<时,()()0,f x f x ′>单调递增,当1x >时,()()0,f x f x ′<单调递减;(3分)若0a <,则当01x <<时,()()0,f x f x ′<单调递减,当1x >时,()()0,f x f x ′>单调递增.(4分) 综上,当0a >时,()f x 在区间()0,1内单调递增,在区间()1,+∞内单调递减; 当a<0时,()f x 在区间()0,1内单调递减,在区间()1,+∞内单调递增.(5分) (2)(i )由()ln e 1x ax=,得1ln xa x+=, 设()1ln xg x x+=,由(1)得()g x 在区间()0,1内单调递增,在区间()1,+∞内单调递减,(6分) 又()10,11e g g ==,当1x >时,()0g x >,且当x →+∞时,()0g x →,(8分) 所以当01a <<时,方程1ln xa x +=有两个不同的根,即方程()ln e 1x ax=有两个不同的根,故a 的取值范围是()0,1.(9分)(ii )不妨设12x x <,则1201x x <<<,且1212ln 1ln 1x x x x ++=.(10分) 设()()()11ln 1ln xh x g x g x x x x + =−=−−,()0,x ∈+∞, 则()222ln 1ln ln 0x x h x x x x x ′−−=+=⋅≥,(11分) 所以()h x 在区间()0,∞+内单调递增, 又()10h =,所以()()11110h x g x g x =−< ,即()111g x g x<.(13分) 又()()21g x g x =,所以()211g x g x< ,(14分)又()2111,1,x g x x >>在区间()1,+∞内单调递减. 所以211x x >,即121x x >,(16分) 又12x x ≠,所以22121222x x x x +>>,得证.(17分)19.(17分)【详解】(1)存在,理由如下: 由已知得11a =,21a =,3122a a a =+=,(1分) 123,,2,c m c m c m ∴===(2分) 312+,c c c ∴=即1+212+,c c c = (3分)∴对m ∀∈R ,当正整数=1k 时,存在=2n ,使得k nk n c c c +=+成立,即数列{}n c 为“1阶可分拆数列”;(4分)(2)3n nS a =− , ∴当1n =时,13d a =−,(5分) 当2n ≥时,111(3)(3)23n n n n n n d S S a a −−−=−=−−−=⋅,(6分)(i )若数列{}n d 为“1阶可分拆数列”,则存在正整数n 使得11nn d d d +=+成立, 当1n =时,211d d d =+,即()623a =−,解得0a =,(7分) 当2n ≥时,()1233+23n n a −⋅=−⋅,即1433n a −⋅=−,(8分) 因0a ≥,所以33a −≤,又14312n −⋅≥,(9分) 故方程1433n a −⋅=−无解.综上所述,符合条件的实数a 的值为0. (10分) (ii )证明:*21,()n n n a a a n ++=+∈N , ∴当2n ≥时,()21111nn n n n n n n a a a a a a a a +−+−=−=−, ∴2222123n a a a a +++⋅⋅⋅⋅⋅⋅+()()()21232134324543+++a a a a a a a a a a a a a =+−−+−⋅⋅⋅⋅⋅⋅()11n n n n a a a a +−−2121=a a a −1+n n a a +1=n n a a +,(11分)222212311=1n n n a a a a a a +∴+++⋅⋅⋅⋅⋅⋅+−+,(12分) 由(i )知3nn S =,所以3nn na f =, 31121231=++++33333n n n n na a a a a T −−∴⋅⋅⋅⋅⋅⋅+①,3112234+11=++++333333n n n n n a a a a a T −⋅⋅⋅⋅⋅⋅+②,(13分)由①-②可得324311211234+12=++++3333333n n n n n n a a a a a a a a a a T −−−⋅⋅⋅⋅⋅−−⋅+− 21234+11=+++33333n n n n a a a a −⋅⋅⋅⋅−⋅⋅+ 1222122+111=+++333333n n n n a a a a −−⋅⋅⋅−⋅⋅⋅+()(14分) -22+111=+333n n n a T −,(15分) +12<03n n n n a T T −> , ,-22+1221111=++333333n n n n n a T T T −∴<,(16分)315n T ∴<<,当*n ∈N 且3n ≥时, 222212311n n n n T a a a a a a +<+++⋅⋅⋅⋅⋅⋅+−+成立.(17分)。

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考带答案解析

湖南高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.满足条件M{0,1,2}的集合共有()A.3个B.6个C.7个D.8个2.已知,,则=()A.B.C.D.3.某公司在甲、乙、丙三个城市分别有180个、150个、120个销售点,公司为了调查产品销售的情况,需从这450个销售点中抽取一个容量为90的样本,记这项调查为①; 某学校高二年级有25名足球运动员,要从中选出5名调查学习负担情况,记这项调查为②;则完成①②这两项调查宜采用的抽样方法依次是()A.系统抽样,分层抽样B.简单随机抽样,分层抽样C.分层抽样,简单随机抽样D.分层抽样,系统抽样4.已知集合,,则集合等于()A.B.C.D.5.在复平面中,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论:①直线OC与直线BA平行②③④.其中正确结论的个数是()A.1个B.2个C.3个D.4个6.下列不等式中, 错误的是()A.B.C.D.7.在等比数列中,若,则()A.-2B.2C.-4D.48.的最小正周期为()A B C D9.的值是()A B C D 010.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1市场供给量表2市场需求量A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内二、填空题1.长方体的三条侧棱长的比1:2:3,全面积是88,则长方体的体积是2.直线得的劣弧所对的圆心角为3.设、满足约束条件,则的最大值是4.已知直线与相互平行,则它们之间的距离是5.已知的最大值是三、解答题1.在等比数列中,求及前项和.2.求函数的值域及y取得最小值时x的取值的集合.3.如图,直角三角形的顶点坐标,直角顶点,顶点在轴上,点为线段的中点(1)求边所在直线方程;(2)圆是△ABC的外接圆,求圆的方程;(3)若DE是圆的任一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.4.如图,三棱锥P-ABC中,已知PA^平面ABC, PA=3,PB=PC=BC="6," 求二面角P-BC-A的正弦值5.某单位计划建一长方体状的仓库, 底面如图, 高度为定值. 仓库的后墙和底部不花钱, 正面的造价为元, 两侧的造价为元, 顶部的造价为元. 设仓库正面的长为, 两侧的长各为.(1)用表示这个仓库的总造价(元);(2)若仓库底面面积时, 仓库的总造价最少是多少元,此时正面的长应设计为多少?湖南高二高中数学水平会考答案及解析一、选择题1.满足条件M{0,1,2}的集合共有()A.3个B.6个C.7个D.8个【答案】B【解析】本题考查集合的子集个数集合的子集个数为,其中的两个子集不满足条件M{0,1,2}共个,则满足条件的子集的个数为个。

2023-2024学年冬季甘肃省普通高中学业水平合格性考试数学考前模拟卷01+答案解析(附后)

2023-2024学年冬季甘肃省普通高中学业水平合格性考试数学考前模拟卷01+答案解析(附后)

一、单选题:本题共12小题,每小题4分,共48分。

在每小题给出的选项中,只有一项是符合题目要2023-2024学年冬季甘肃省普通高中学业水平合格性考试数学考前模拟卷01求的。

1.设集合,,则( )A.B.C.D.2.某学校调查了200名学生每周的自习时间单位:小时,制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为根据直方图,这200名学生中每周的自习时间不少于小时的人数是( )A. 140B. 60C. 56D. 1203.复数z 满足,则( )A. B.C. 2D.4.命题“”的否定为( )A. B. C. D.5.已知函数在R 上单调递增,则实数a 的取值范围是( )A.B.C.D.6.下列说法中,正确的是( )A. 数据5,4,4,3,5,2的众数是4B.一组数据的标准差是这组数据的方差的平方根C. 数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D. 频率分布直方图中各小长方形的面积等于对应各组的频数7.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过的部分3元超过但不超过的部分6元超过的部分9元若某户居民本月缴纳的水费为99元,则此户居民本月的用水量为( )A. B. C. D.8.已知,则( )A. B. C. D. 59.已知函数在上单调递增,且函数是R上的偶函数,若,则实数a的取值范围是( )A.或 B. C. D.10.A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:102 798 391 925 173 845 812 529 769 683231 307 592 027 516 588 730 113 977 539则这三天中至少有两天有强浓雾的概率近似为( )A. B. C. D.11.甲、乙两人独立地破译一份密码,已知个人能破译的概率分别是,,求密码被成功破译的概率( )A. B. C. D.12.的值域是( )A. B. C. D.二、填空题:本题共5小题,每小题4分,共20分。

高二数学会考模拟试卷(一)

高二数学会考模拟试卷(一)

高二数学会考模拟试卷(一)一选择题(共20个小题,每小题3分,共60分)在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上1. 满足条件}3,2,1{}1{=⋃M 的集合M 的个数是A 4B 3C 2D 12.0600sin 的值为 A23 B 23- C 21- D 21 3."21"=m 是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件4.设函数()log (0,1)a f x x a a =>≠的图象过点(18,–3),则a 的值 A 2 B –2 C – 12 D 125.直线a ∥平面M, 直线a ⊥直线b ,则直线b 与平面M 的位置关系是A 平行B 在面内C 相交D 平行或相交或在面内6.下列函数是奇函数的是A 12+=x yB x y sin =C )5(log 2+=x yD 32-=x y7.点(2,5)关于直线01=++y x 的对称点的坐标是A (6,3)B (-6,-3)C (3,6)D (-3,-6)8.21cos 12π+值为A 64B 24+ C 34 D 74 9.已知等差数列}{n a 中,882=+a a ,则该数列前9项和9S 等于A 18B 27C 3 6D 4510.甲、乙两个人投篮,他们投进蓝的概率分别为21,52,现甲、乙两人各投篮1次 则两个人都投进的概率是 A15 B 103 C 910 D 4511.已知向量a 和b 的夹角为0120,3,3a a b =⋅=-,则b 等于A 1B 23C 3D 212.两个球的体积之比是8:27,那么两个球的表面积之比为A 2:3B 4:9C 3:2D 27:813.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离A 558B 554C 338D 33414.已知圆的参数方程为2()1x y θθθ⎧=⎪⎨=⎪⎩为参数,那么该圆的普通方程是 A 22(2)(1)x y -+-=B 22(2)(1)x y +++=C 22(2)(1)2x y -+-=D 22(2)(1)2x y +++=15.函数)321sin(+=x y 的最小正周期为 A 2π B π C π2 D π4 16.双曲线122=-y x 的离心率为A 22B 3C 2D 2117.从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数中是偶数的概率A 51B 53C 41D 52 18.圆0204222=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则C 的值为A 10 B-68 C 12 D 10或-6819.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有A720 B 360 C 240 D 12020.国庆期间,某商场为吸引顾客,实行“买100送20 ,连环送活动”即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

01 高二数学会考模拟试卷1、已知集合{}3,1,0=A ,{}2,1=B ,则B A ⋃等于( )A {}1B {}3,2,0C {}3,2,1,0D {}3,2,1 2.已知集合{1,0,1,2,3}A =-,1{|0}B x x=<,则B A ⋂等于 A 1- B {}1- C (,0)-∞ D {}1,0-3.已知等差数列}{n a 中,7916,a a +=,则8a 的值是 A 1 B 2 C 3 D 4 4."21sin "=A 是"30"A =o 的 A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件5.一条直线若同时平行于两个相交平面,则这条直线与这两个相交平面的位置关系是 A 异面 B 相交 C 平行 D 平行或相交 6、函数12)(2+=x x f 是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 既不是奇函数又不是偶函数7、 点A(0,1)且与直线25y x =-平行的直线的方程是( ) A 210x y -+=B 210x y --=C 210x y +-=D 210x y ++=8、在空间中,下列命题正确的是( ) A 平行于同一平面的两条直线平行 B 平行于同一直线的两个平面平行 C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行9、已知,a b R +∈,且1ab =,则a b +的最小值是( ) A1B2C3D410、如图,在正六边形ABCDEF 中,点O 为其中点,则下列判断错误的是()A OC AB = B AB ∥DEC BE AD = D FC AD =11、已知向量(3,1),(1,2)a b =-=-r r,则2a b -=r r ( )A (7,0)B (5,0)C (5,-4)D (7,-4)12、“0=x ”是“0=xy ”的( ) A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件13、焦点为(1,0)的抛物线的标准方程是( ) A 22y x = B 22x y =C 24y x =D 24x y =14、不等式0)2)(1(<++x x 的解集是( )A {}12-<<-x xB {}12->-<x x x 或C {}21<<x xD {}21><x x x 或15、函数中,在(-∞,0)上为增函数的是( )A 1y x =-+B 1y x =C 12xy ⎛⎫= ⎪⎝⎭ D 21y x =-16、满足n n a a a 21,111==+,则=4a ( ) A 32 B 14 C 18 D 11617、5(12)x -的展开式中2x 的系数是 ( )A10 B -10C40 D -4018、双曲线19422=-y x 的离心率是 ( )A32B 49C 25D 21319、用1,2,3,4,5组成没有重复数字的三位数,其中偶数共有 ( ) A60个 B30个 C24个 D12个17、若α∈(0,2π),且sin α=54,则cos2α等于( ) A257 B —257C1 D 5720、把直线y =-2x 沿向量→a =(2,1)平移所得直线方程是( )A y =-2x +5B y =-2x -5 Cy =-2x +4 D y =-2x -4 21、若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为 A –1或3 B1或3C –2或6 D0或422、在︒60的二面角βα--l ,面α上一点到β的距离是2cm ,那么这个点到棱的距离为( )A 43cmB 23cmC 43cmD 23cm23、若2k <且0k ≠,则椭圆22132x y +=与22123x y k k +=--有( )A 相等的长轴B 相等的短轴C 相同的焦点D 相等的焦距24、计算机是将信息换成二位制进行处理的二进制,即“逢二进一”。

如(1101)2表示二进位制,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数()43421ΛΛ162111转换成十进制形式是( )A217―2 B216―2 C216―1 D215―125.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有 A 108种 B 186 种 C 216种 D 270种26、已知(2,5)a =v ,(,3)b λ=-v,且a b ⊥v v ,则λ=______________27、一个口袋内装有大小相等的2个白球和3个黑球,从中摸出2个球,则摸到2个黑球的概率为_________ 28、球的表面积扩大到原来的2倍,则球的体积扩大到原来的____________倍。

29、变量x ,y 满足约束条件:⎪⎩⎪⎨⎧≥+≤+≤011y y x x y ,则2x+y 的最大值为____________30、如图,已知两个灯塔A 和B 与观察站C 的距离都为akm ,灯塔A 在观察站C 的北偏东ο10,灯塔B 在观察站C 的南偏东ο50,则灯塔A,B 间的距离是 km31.函数R x x x y ∈-⋅=,1cos sin 2的值域 32.不等式021>-+x x 的解集 33.抛物线x y 82=的准线方程是 34.在6)1(+x 的展开式中,含3x 项的系数为35.在四棱锥P-ABCD 中,底面ABCD 是正方形,侧面PAD 是正三角形,平面PAD ⊥ 底面ABCD(1) 证明AB ⊥平面PAD(2) 求面PAD 与面PDB 所成的二面角的正切值 如图ABCD 是正方形,⊥PD 面ABCD ,PD=DC 。

(1)求证:AC ⊥PB ;(2)求二面角P BC A --的大小; (3)求AD 与PB 所成角的正切值。

36已知函数31()sin cos ,2f x x x x R =-∈ 求()f x 的最大值,并求使()f x 取得最大值时x 的集合。

37在数列{}n a 中,112,3n n a a a +==+,求n a 及前n 项和n S附加题(本题5分,供选做,得分计入总分)一个电路如图所示,,,,,,a b c d e f 为6个开关,其闭合的概率都是12,且相互独立的, (1)求灯亮的概率;(2)设计一个电路图,要求原来的6个开关全部用上,灯亮的概率在715(,)816内。

D PA高二数学会考模拟试卷(二)参考答案一、选择题二、填空题三、解答题 29、解:()cossin sincos sin()666f x x x x πππ=-=-当262x k πππ-=+,即22,3x k k Z ππ=+∈时,max ()1f x =30、解:由题意可知公差3d =1(1)2(1)331n a a n d n n ∴=+-=+-⨯=-21(1)(1)323222n n n n n n nS na d n --+=+=+⨯=31、解法一:过E 作EG||DC ,且EG=DC ,连结CG ,BG ,则∠BEG 为异面直线BE 与CD 所成的角 由于四边形ABCD ,ADEF 均为正方形,故DEGC 也为正方形,又AD ⊥DC ,AD ⊥DE ,∴AD ⊥面DEGC ,∴BC ⊥面DEGC ,∴BC ⊥EG ,又EG ⊥CG , ∴EG ⊥面BCG∴EG ⊥GE ,在RT ∆BGE 中,BG=2EG , ∴tan 2BEG ∠=,即arctan 2BEG ∠=故异面直线BE 与CD 所成的角的大小为arctan 2解法二:由于四边形ABCD ,ADEF 均为正方形,∴AD ⊥DC ,AD ⊥DE ,又090CDE ∠=,所以以D 为原点,以DC ,DC ,DA 所在直线为x,y,z 轴建立空间直角坐标系,如图所示。

设正方形边长为1,则C (1,0,0),E (0,1,0),B (1,0,1)∴(1,0,0)DC =u u u v ,(1,1,1)EB =-u u u v,3cos ,3||||3DC EB DC EB DC EB •∴<>===u u u v u u u vu u u v u u u v u u u v u u u u v 即异面直线BE 与CD 所成的角的大小为3arccos 32、解:(1)当m=0时,6()2f x x x=-,显然D={|0}x x ≠ 由()f x x =得6x x=,即6x =±所以函数()y f x =图象上的不动点为(6,6),(6,6)-- (2)由题意,当[1,)x ∈+∞时,不等式()f x x >恒成立,即2(3)2m x m x x-++>恒成立,由于0x >,不等式等价于22(3)0x mx m ++->对[1,)x ∈+∞恒成立,又等价于226(2)2(2)22(2)4222x x x m x x x x --++++>==-++++++恒成立。

而根据函数2()g x x x =-+的单调性可知,当[1,)x ∈+∞时,2(2)42x x -++++有最大值53,因此只要53m >时,上述不等式恒成立,即所求实数m 的取值范围为53m >33、解:(1)设椭圆的方程为22221x y a b+=由题意知12c a =,得2234b a =,又222522514a b+= 解得22100,75a b ==∴椭圆的方程为22110075x y += (2)存在,λ=2由题意可知双曲线方程为2212575x y -= 离心率为2,右准线l 方程为:52x = F 1(-5,0),B (10,0)∴准线l 为F 1B 的垂直平分线,交F 1P 于点M ,过P 作PD ⊥l 交于D ,由双曲线第二定义可知2PBPD=,即2PB PD =且BF 1=2F 1C 。

Q DP||F 1C ,∴11MP PD MF F C =,∴11111212PBMP PD PBMF FC F B F B ===∴BM 是∠PBF 1的角平分线,又∠MBF 1=∠PF 1B ∴∠PBF 1=2∠PF 1B附加题(1) 灯亮的概率为5564(2)设计如下:答案不唯一。

相关文档
最新文档